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Analysis and Estimation of Error Constants for

P0 and P1 Interpolations over Triangular Finite

Elements

By Xuefeng Liu and Fumio Kikuchi

Abstract. We give some fundamental results on the error con-
stants for the piecewise constant interpolation function and the piece-
wise linear one over triangles. For the piecewise linear one, we mainly
analyze the conforming case, but the present results also appear to be
available for the non-conforming case. We obtain explicit relations for
the upper bounds of the constants, and analyze dependence of such
constants on the geometric parameters of triangles. In particular, we
explicitly determine some special constants including the Babuška-
Aziz constant, which plays an essential role in the interpolation error
estimation of the linear triangular finite element. The obtained re-
sults are expected to be widely used for a priori and a posteriori error
estimations in adaptive computation and numerical verification of nu-
merical solutions based on the triangular finite elements. We also give
some numerical results for the error constants and for a posteriori
estimates of some eigenvalues related to the error constants.

1. Introduction

The finite element method (FEM) is now recognized as a powerful nu-
merical method for wide classes of partial differential equations. Further-
more, it also has sound mathematical bases such as highly refined a priori
and a posteriori error estimations. In the classical a priori error analysis of
FEM, the interpolation error analysis is essential to derive final error esti-
mates in various norms and/or semi-norms [10, 11, 21]. In this process, there
appear a number of positive constants besides the standard discretization (or
mesh) parameter h and norms (or seminorms), but it has been very difficult
to evaluate such constants explicitly. For quantitative purposes, however,
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it is indispensable to evaluate or bound them as accurately as possible, be-
cause sharper estimates enable more efficient finite element computations.
Thus such evaluation has become progressively more important and has
been attempted especially for adaptive finite element calculations based on
a posteriori error estimation as well as for numerical verification by FEM [3,
6, 8, 10, 25]. In this paper, we will give some fundamental results on various
interpolation error constants of the most popular triangular finite elements.

More specifically, we derive some fundamental estimates for the inter-
polation error constants appearing in the popular P0 (piecewise constant)
and P1 (piecewise linear) triangular finite elements. Inspired by the mon-
umental paper of Babuška-Aziz [5], we analyze the dependence of several
constants on the geometric parameters such as the maximum interior angle
and the minimum edge length of a triangle more quantitatively than works
precedent to ours. Among them, the optimal constant (C4 in the present
paper) appearing in the H1 error estimate of the P1 interpolation of H2

functions over the unit isosceles right triangle is essential and frequently
used, and it was explicitly evaluated firstly by Natterer [27]. On the other
hand, this constant was shown to be closely related to the one (C1 in this
paper) presented and effectively used by Babuška and Aziz in conjunction
with the maximum angle condition [5]. More precisely, C1 gives an upper
bound quite close to the optimal constant C4, and the relation between C4

and C1 was further discussed in [25, 30]. Thus a precise estimation of these
two constants is very important, and a number of researchers have given
bounds for these using various approximation methods including numerical
verification, see e. g. [4, 7, 22, 25, 26, 27, 30].

For the above Babuška-Aziz constant, we already obtained a value which
is in a sense optimal [18]. That is, by analytically solving an eigenvalue prob-
lem for the 2D Laplacian over the above triangular domain with the aid of
the reflection method [28], we showed that the constant can be easily deter-
mined from a solution of µ−1 + tan(µ−1) = 0. In this paper, we will also
give some additional results for exact values or bounds of various error con-
stants. Moreover, we will present some explicit relations for the dependence
of such constants on the geometry of triangles. In particular, emphasis is
put on the maximum angle condition presented in [5]. We also derive some
analytical results on asymptotic behaviors when a right triangle becomes
very thin or slender as may be seen in anisotropic triangulations, cf. [8].
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Thus our results can be effectively used in the quantitative a priori
and a posteriori error estimations of the finite element solutions by the P1

triangular element and also those based on the P0 triangle. The former
is the most classical and fundamental one but still in frequent use, while
the latter appears in some mixed finite element methods and implicitly on
various occasions. Moreover, we also give some concrete a posteriori error
estimates to eigenvalues related to several error constants. Numerical results
are also obtained for the error constants and a posteriori estimates of some
eigenvalues.

The plan of this paper is as follows. Section 1 is the present one on some
historical remarks and overview of our analysis. Section 2 gives necessary
notations and definitions, and also introduces various error constants to be
analyzed. Section 3 deals with estimation of various interpolation error con-
stants, and Section 4 analyzes asymptotic behaviors of such constants when
the triangle is a thin right one. Section 5 gives application of our results to a
posteriori estimation of some error constants by using the P1 FEM. Section
6 is the one for numerical results, while Section 7 is for concluding remarks
and acknowledgements. Appendix is also attached to give some additional
theoretical and numerical results related to Section 4.

2. Preliminaries: Error Constants

Let h, α and θ be positive constants such that

h > 0 , 0 < α ≤ 1 , (π/3 ≤) cos−1(α/2) ≤ θ < π .(1)

Then we can define the triangle Tα,θ,h by �OAB with three vertices O(0, 0),
A(h, 0) and B(αh cos θ, αh sin θ). From (1), AB is the edge of maximum
length, i. e. AB ≥ h ≥ αh with h = OA and αh = OB being the medium
and the minimum edge lengths, respectively. Notice here that the notation
h is mostly used as the largest edge length as in [11], but our usage of h as
the medium one may be convenient for the present purposes. A point on
the closure of Tα,θ,h is denoted by x = {x1, x2}, and the three edges e1, e2

and e3 of Tα,θ,h are defined as

e1 = OA , e2 = OB , e3 = AB .(2)

We can configure any triangle as Tα,θ,h by a congruent transformation with
suitable α, θ and h. As in [5], we will use abbreviated notations Tα,θ = Tα,θ,1,
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Fig. 1. Notations for triangles : Tα,θ = Tα,θ,1, Tα = Tα,π/2, T = T1

Tα = Tα,π/2 and T = T1 (Fig. 1).
We will use the popular Hilbert space L2(Tα,θ,h) with the norm ‖·‖Tα,θ,h

,
where the subscript Tα,θ,h will be often omitted. If we need the L2 space
and its norm for other domains like Ω, we will use L2(Ω) and ‖ · ‖Ω. Let us
define closed linear spaces for functions on Tα,θ,h by

V 0
α,θ,h = {v ∈ H1(Tα,θ,h) |

∫
Tα,θ,h

v(x) dx = 0},(3)

V i
α,θ,h = {v ∈ H1(Tα,θ,h) |

∫
ei

v ds = 0} (i = 1, 2, 3),(4)

V 4
α,θ,h = {v ∈ H2(Tα,θ,h)| v(O) = v(A) = v(B) = 0},(5)

where H1(Tα,θ,h) and H2(Tα,θ,h) are respectively the first- and second-order
Sobolev spaces for real square integrable functions over Tα,θ,h [2], and ds is
the line element. For other domains like Ω, we will also use spaces such as
H1(Ω) and H2(Ω) later. For the above spaces, we will again use abbreviated
notations V i

α,θ = V i
α,θ,1, V i

α = V i
α,π/2 and V i = V i

1 (0 ≤ i ≤ 4).

Let us consider the usual P0 interpolation operator Π0
α,θ,h and P1 one

Π1
α,θ,h for functions on Tα,θ,h [10, 11, 21] : Π0

α,θ,hv for any v ∈ H1(Tα,θ,h) is
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a constant function well-defined by

(Π0
α,θ,hv)(x) =

∫
Tα,θ,h

v(y) dy
/∫

Tα,θ,h
dy (∀x ∈ Tα,θ,h) ,(6)

while Π1
α,θ,hv for any v ∈ H2(Tα,θ,h) is an at most linear polynomial function

such that

(Π1
α,θ,hv)(x) = v(x) for x = O, A, B .(7)

To analyze these interpolation operators, let us introduce the positive
constants by

Ci(α, θ, h) = sup
v∈V i

α,θ,h\{0}
‖v‖/|v|1 (i = 0, 1, 2, 3) ,(8)

C4(α, θ, h) = sup
v∈V 4

α,θ,h\{0}
|v|1/|v|2 ,

C5(α, θ, h) = sup
v∈V 4

α,θ,h\{0}
‖v‖/|v|2 ,

(9)

where |v|1 = (
∑2

i=1 ‖∂v/∂xi‖2)1/2, and |v|2 = (
∑2

i,j=1 ‖∂2v/∂xi∂xj‖2)1/2.
When we need to specify a domain like Ω for the above semi-norms | · |1
and | · |2, we will use | · |1,Ω and | · |2,Ω, respectively. The existence of these
positive constants follows from the Rellich compactness theorem. Due to
the properties to become clear soon, such constants together with some
related ones are often called interpolation error constants. We will again
use abbreviated notations Ci(α, θ) = Ci(α, θ, 1), Ci(α) = Ci(α, π/2) and
Ci = Ci(1) for 0 ≤ i ≤ 5 as in [5].

By a simple scale change, we find that Ci(α, θ, h) = hCi(α, θ) (i =
0, 1, 2, 3, 4) and C5(α, θ, h) = h2C5(α, θ). These relations and constants are
used to derive popular interpolation error estimates for Πi

α,θ,h (i = 0, 1)
applied to functions on Tα,θ,h [10, 11, 21] :

‖v − Π0
α,θ,hv‖ ≤ C0(α, θ)h|v|1 ( ∀v ∈ H1(Tα,θ,h) ),(10)

|v − Π1
α,θ,hv|1 ≤ C4(α, θ)h|v|2 ( ∀v ∈ H2(Tα,θ,h) ),(11)

‖v − Π1
α,θ,hv‖ ≤ C5(α, θ)h2|v|2 ( ∀v ∈ H2(Tα,θ,h) ),(12)

by noting v − Π0
α,θ,hv ∈ V 0

α,θ,h for v ∈ H1(Tα,θ,h) and v − Π1
α,θ,hv ∈ V 4

α,θ,h

for v ∈ H2(Tα,θ,h).
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Moreover, for the partial derivative ∂v/∂x1 of v ∈ H2(Tα,θ,h), we have∥∥∂(v − Π1
α,θ,hv)/∂x1

∥∥ ≤ C1(α, θ)h |∂v/∂x1|1 ,(13)

since ∂(v − Π1
α,π/2,hv)/∂x1 ∈ V 1

α,θ,h. On the other hand, to obtain an esti-
mate in terms of C2(α, θ), let us rotate the x1-x2 plane around the origin O

by angle θ−π/2 so that the edge OB becomes the ordinate. Then the coor-
dinate transformation x̂ = Φθ(x) between the original variable x = {x1, x2}
and the new one x̂ = {x̂1, x̂2} is given by, along with the associated trans-
formation v̂ = v ◦ Φ−1

θ for v ∈ H2(Tα,θ,h),

x̂1 = x1 sin θ − x2 cos θ , x̂2 = x1 cos θ + x2 sin θ ,(14)

v̂(x̂) = v(x) = v(x̂1 sin θ + x̂2 cos θ,−x̂1 cos θ + x̂2 sin θ) .(15)

Based on essentially the same arguments as for ∂v/∂x1, we can show for
∂v̂/∂x̂2 that ∥∥∥∂(v̂ − Π̂1

α,θ,hv̂)/∂x̂2

∥∥∥ ≤ C2(α, θ)h |∂v̂/∂x̂2|1 ,(16)

where Π̂1
α,θ,h is Π1

α,θ,h for the rotated Tα,θ,h. The above two estimates (13)
and (16) are in a sense sharper than (11) as noted in [21]. Similar relation
also holds for C3(α, θ).

Thus we can give quantitative interpolation estimates, if we succeed in
bounding the constants Ci(α, θ)’s explicitly by fairly simple functions of α

and θ. Notice that each constant can be characterized by minimization of
a kind of Rayleigh quotient. Then it is equivalent to finding the minimum
eigenvalue of an eigenvalue problem expressed by a weak formulation, which
is further expressed by a partial differential equation with some auxiliary
conditions.

That is, such constants are characterized by minimization of Rayleigh’s
quotients R

(i)
α,θ’s:

C−2
i (α, θ) = inf

v∈V i
α,θ\{0}

R
(i)
α,θ(v) ;(17)

R
(i)
α,θ(v) = |v|21/‖v‖2 (i = 0, 1, 2, 3) ,

C−2
4 (α, θ) = inf

v∈V 4
α,θ\{0}

R
(4)
α,θ(v) ; R

(4)
α,θ(v) = |v|22/|v|21 ,(18)
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C−2
5 (α, θ) = inf

v∈V 4
α,θ\{0}

R
(5)
α,θ(v) ; R

(5)
α,θ(v) = |v|22/‖v‖2 ,(19)

where all notations and functions are for Tα,θ.
By the standard compactness arguments, each infimum above is actually

a minimum, and is the smallest eigenvalue of a certain eigenvalue problem.
For example, the eigenvalue problem associated with C0(α, θ) is to find
λ ∈ R and u ∈ V 0

α,θ\{0} that satisfy

(∇u,∇v) = λ(u, v) (∀v ∈ V 0
α,θ) ,(20)

where ∇ denotes the gradient operator, and (·, ·) the inner products of
L2(Tα,θ) and L2(Tα,θ)2. Notations such as (·, ·)Ω will be also used to specify
the domains like Ω. The above is also expressed by a differential equation,
a linear constraint and a boundary condition [25, 26]:

−∆u = λu in Tα,θ ,
∫
Tα,θ

u(x) dx = 0 , ∂u/∂n = 0 on ∂Tα,θ ,(21)

where ∂/∂n denotes the outward normal derivative on edges, and ∂Tα,θ is
the boundary of Tα,θ. The above boundary condition is the homogeneous
Neumann one, and the desired minimum eigenvalue is the second (and pos-
itive) one for the same problem without the linear constraint. Since Tα,θ is
a triangle, it is difficult to solve the above explicitly except in special cases.

As for C1(α, θ), it is characterized in the same fashion as (20), just
by replacing V 0

α,θ with V 1
α,θ. However, the equations corresponding to (21)

become more complicated [25, 26]:

− ∆u = λu in Tα,θ ,
∫ 1
0 u(x1, 0) dx1 = 0 ,

∂u/∂n =

{
0 on edges OB and AB ,

c on edge OA ,

(22)

where c denotes an unknown constant to be decided simultaneously with u

and λ, cf. Sec. 5.3.
The other constants are characterized similarly. For example, the eigen-

value problem associated to C4(α, θ) is to find λ ∈ R and u ∈ V 4
α,θ\{0}

that satisfy

2∑
i,j=1

(∂2u/∂xi∂xj , ∂
2v/∂xi∂xj) = λ(∇u,∇v) (∀v ∈ V 4

α,θ) .(23)
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But the partial differential equation related to the above and also that to
C5(α, θ) are of fourth order with special linear constraints and boundary
conditions [4, 7], and are more difficult to deal with than the second order
equations as in (21) and (22).

3. Estimation of Interpolation Error Constants

It is generally difficult to obtain exact values of the error constants
Ci(α, θ)’s. So we will first give some formulas to bound them in terms of
their special values such as Ci(= Ci(1, π/2))’s. Such formula can be useful
for various purposes if some selected values are evaluated with sufficient ac-
curacy, and we will also perform exact evaluation of some special constants.

3.1. Reconsideration of Natterer’s results
Natterer [27] derived an upper bound formula for C4(α, θ) in terms of

C4 = C4(1, π/2), α and θ. He also gave an upper bound for C4, so that
his formula has been effectively used in quantitative error estimates of finite
element solutions including numerical verifications [25, 26]. Here we begin
by applying his techniques to bound the error constants in Section 2.

To this end, let us introduce the following affine transformation ξ =
Ψα,θ(x) between x = {x1, x2} ∈ Tα,θ and ξ = {ξ1, ξ2} ∈ T = T1,π/2 :

ξ1 = x1 − x2/ tan θ , ξ2 = x2/(α sin θ) ;

x1 = ξ1 + αξ2 cos θ , x2 = αξ2 sin θ .
(24)

By utilizing the above, we obtain the following results including Natterer’s
one for C4(α, θ).

Theorem 1. For α ∈]0,+∞[ and θ ∈]0, π[, Ci(α, θ)’s are bounded as

ψi(α, θ)Ci ≤ Ci(α, θ) ≤ φi(α, θ)Ci (0 ≤ i ≤ 5) ,(25)

where Ci = Ci(1, π/2) (0 ≤ i ≤ 5),

ψi(α, θ) =

√
ν−(α, θ)

2
(0 ≤ i ≤ 3) ,

ψ4(α, θ) =
ν−(α, θ)√
2ν+(α, θ)

, ψ5(α, θ) =
ν−(α, θ)

2
,

(26)
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φi(α, θ) =

√
ν+(α, θ)

2
(0 ≤ i ≤ 3) ,

φ4(α, θ) =
ν+(α, θ)√
2ν−(α, θ)

, φ5(α, θ) =
ν+(α, θ)

2

(27)

with

ν−(α, θ) = 1 + α2−
√

1 + 2α2 cos 2θ + α4 ,

ν+(α, θ) = 1 + α2+
√

1 + 2α2 cos 2θ + α4 .
(28)

Remark 1. In general, the upper bounds are more important than
the lower ones, but the latter may be effective to evaluate the accuracy
of the boundings. The above estimates should be used essentially in the
range 0 < α ≤ 1 and π

3 ≤ cos−1 α
2 ≤ θ < π, where the upper bounds

except for i = 4 are uniformly bounded. Thus these constants are robust
to deformation of Tα,θ. On the other hand, the upper bound for C4(α, θ)
is not so, and, to assure such uniform boundedness, we use the so-called
minimum angle condition [11] : the minimum interior angle is bounded from
below by a certain positive constant. This may be seen by using the iden-
tity ν−(α, θ)ν+(α, θ) = 4α2 sin2 θ to rewrite the upper bound inequality for
C4(α, θ) as

C4(α, θ) ≤ C4[2−1ν+(α, θ)]
3
2 /(α sin θ) .(29)

The right-hand side above diverges to +∞ as α → +0 for each θ∈ ]0, π[, but
α cannot approach 0 under the minimum angle condition. Actually, C4(α, θ)
is uniformly bounded under a weaker condition called the maximum angle
one of Babuška-Aziz [5], see Remark 2.

Proof. We will use the coordinate transformation (24) between Tα,θ

and T . By simple calculations, we have for ṽ(ξ1, ξ2) = v(x1, x2), i. e., ṽ =
v ◦ Ψ−1

α,θ under the present transformation :

∑2
i=1(∂v/∂xi)2

= [(∂ṽ/∂ξ1)2 − 2α−1 cos θ ∂ṽ/∂ξ1 · ∂ṽ/∂ξ2 + α−2(∂ṽ/∂ξ2)2]/sin2 θ ,

where v and ṽ are assumed to be smooth. The two eigenvalues associated
to the quadratic form for ∂ṽ/∂ξi (i = 1, 2) in [ · ] above are two solutions



36 Xuefeng Liu and Fumio Kikuchi

of the characteristic equation µ2−α−2(1+α2)µ+α−2 sin2 θ = 0 , and given
by ν−(α, θ)/(2α2) and ν+(α, θ)/(2α2). Thus

ν−(α, θ)
∑2

i=1(∂ṽ/∂ξi)2 ≤ 2α2 sin2 θ
∑2

i=1(∂v/∂xi)2

≤ ν+(α, θ)
∑2

i=1(∂ṽ/∂ξi)2 .

Moreover, the Jacobian of the present transformation is evaluated as
∂(x1, x2)/∂(ξ1, ξ2) = α sin θ. From these estimates and the identity ν−(α, θ)·
ν+(α, θ) = 4α2 sin2 θ, we have

‖v‖2
Tα,θ

= α sin θ‖ṽ‖2
T ,

2α sin θ|ṽ|21,T /ν+(α, θ) ≤ |v|21,Tα,θ
≤ 2α sin θ|ṽ|21,T /ν−(α, θ) ,

(a.1)

where | · |1,Tα,θ
, for example, denotes | · |1 for Tα,θ. The results for i =

0, 1, 2, 3 are now easy to obtain by using the above and the definitions of
the constants Ci(α, θ)’s.

Similarly, by using notations vxixj = ∂2v/∂xi∂xj and ṽξiξj
= ∂2ṽ/

∂ξi∂ξj , we obtain∑2
i,j=1(vxixj )

2 =[(ṽξ1ξ1)
2 + α−4(ṽξ2ξ2)

2 + 2α−2(1 + cos2 θ)(ṽξ1ξ2)
2

+ 2α−2 cos2 θ ṽξ1ξ1 ṽξ2ξ2 − 4α−1 cos θ ṽξ1ξ1 ṽξ1ξ2

− 4α−3 cos θ ṽξ2ξ2 ṽξ1ξ2 ]/sin4 θ .

Let us consider the following real symmetric matrix related to the quadratic
form for ṽξ1ξ1 , ṽξ2ξ2 and

√
2 ṽξ1ξ2 in [ · ] of the right-hand side above :

 1 α−2 cos2 θ −
√

2 α−1 cos θ

α−2 cos2 θ α−4 −
√

2 α−3 cos θ

−
√

2 α−1 cos θ −
√

2 α−3 cos θ α−2(1 + cos2 θ)


 .

The associated characteristic equation is

µ3 − α−4{1 + (1 + cos2 θ)α2 + α4}µ2

+ α−6 sin2 θ{1 + (1 + cos2 θ)α2 + α4}µ − α−6 sin6 θ

= (µ − α−2 sin2 θ){µ2 − α−4(1 + 2α2 cos2 θ + α4)µ + α−4 sin4 θ} = 0 ,

which has three eigenvalues ν2
−(α, θ)/(4α4) ≤ α−2 sin2 θ ≤ ν2

+(α, θ)/(4α4)
with ν−(α, θ) and ν+(α, θ) defined by (28). Now we have the estimates

ν2
−(α, θ)

∑2
i,j=1(ṽξiξj

)2 ≤ 4α4 sin4 θ
∑2

i,j=1(vxixj )
2
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≤ ν2
+(α, θ)

∑2
i,j=1(ṽξiξj

)2 ,

which gives, as (a.1),

(a.2) 4α sin θ|ṽ|22,T /ν2
+(α, θ) ≤ |v|22,Tα,θ

≤ 4α sin θ|ṽ|22,T /ν2
−(α, θ) .

From (a.1) and (a.2), we obtain the results for i = 4, 5. �

As a corollary of the preceding theorem, we can bound each Ci(α, θ) in
terms of Ci(α) and θ. Such estimates can be effective when the dependence
of Ci(α) on α is known as we will see later. The bounding can be achieved
by utilizing the affine transformation between x = {x1, x2} ∈ Tα,θ and
ξ = {ξ1, ξ2} ∈ Tα : ξ1 = x1 − x2 cos θ/ sin θ , ξ2 = x2/ sin θ . But the same
can be attained by comparing this transformation with (24) and using (25)
for α = 1.

Corollary 1. For α ∈]0,+∞[ and θ ∈]0, π[, Ci(α, θ)’s are bounded
as

ψi(θ)Ci(α) ≤ Ci(α, θ) ≤ φi(θ)Ci(α) (0 ≤ i ≤ 5) ,(30)

where ψi(θ) = ψi(1, θ) and φi(θ) = φi(1, θ) for 0 ≤ i ≤ 5. More specifically,

ψi(θ) =
√

1 − | cos θ| (0 ≤ i ≤ 3) ,

ψ4(θ) =
1 − | cos θ|√
1 + | cos θ|

, ψ5(θ) = 1 − | cos θ| ,
(31)

φi(θ) =
√

1 + | cos θ| (0 ≤ i ≤ 3) ,

φ4(θ) =
1 + | cos θ|√
1 − | cos θ|

, φ5(θ) = 1 + | cos θ| .
(32)

Remark 2. The function φ4(θ) is consistent with the maximum angle
condition [5]: it is bounded on [π/3, π − δ] for each sufficiently small δ > 0.
Thus, C4(α, θ) is uniformly bounded for 0 < α ≤ 1 and

π

3
≤ θ < π − δ, if

C4(α) is uniformly bounded for such α, cf. Theorem 4.
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3.2. Estimation of C4(α, θ) by C1(α, θ) and C2(α, θ)
We can also give an upper bound for C4(α, θ) in terms of C1(α, θ) and

C2(α, θ).

Theorem 2. For any α ∈]0,+∞[ and θ ∈]0, π[, C4(α, θ) is bounded as

C4(α, θ) ≤ 1√
2 sin θ

ν(α, θ) ≤ C1
1 + | cos θ|

sin θ

√
ν+(α, θ)/2 ,(33)

where ν+(α, θ) is defined by (28), and ν(α, θ) by

ν(α, θ) =
[
C2

1 (α, θ) + C2
2 (α, θ) + 2C1(α, θ)C2(α, θ) cos2 θ(34)

+ (C1(α, θ) + C2(α, θ))

×
√

C2
1 (α, θ) + C2

2 (α, θ) + 2C1(α, θ)C2(α, θ) cos 2θ

]1/2

.

Remark 3. We can easily see that the maximum angle condition ap-
plies to the present estimate (33), cf. [5, 21]. It is also possible to bound
C4(α, θ) in terms of C1(α, θ) and C3(α, θ). Moreover, it may be meaningful
to compare two estimates (29) and (33) for C4(α, θ):

C4(α, θ) ≤ C4
1

α sin θ [ν+(α, θ)/2]
3
2 =: γ1(α, θ),

C4(α, θ) ≤ C1
1+| cos θ|

sin θ

√
ν+(α, θ)/2 =: γ2(α, θ).

Noting the relations 2α| cos θ| ≤
√

1 + 2α2 cos 2θ + α4 ≤ 1 + α2 and 2α ≤
1 + α2, we find

α(1 + | cos θ|)
1 + α2

C1

C4
≤ γ2(α, θ)

γ1(α, θ)
=

2α(1 + | cos θ|)
1 + α2 +

√
1 + 2α2 cos 2θ + α4

C1

C4
≤ C1

C4
.

It is known that C4 ≈ 0.489 by numerical computations without verifica-
tion [4, 22, 30]. On the other hand, C1 is theoretically shown to be an upper
bound of C4, but is quite close to C4 thanks to the numerically verified
bounding 0.492 < C1 < 0.493 [25, 26], see also Theorem 3 later. Thus (33)
is practically better than (29) for almost all values of α and θ.
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Proof. We will use temporary notations Ci,α,θ’s as Ci(α, θ)’s. From
the definition, we have

C2
4,α,θ = sup

v∈V 4
α,θ\{0}

|v|21/|v|22(b.1)

= sup
v∈V 4

α,θ\{0}
(‖∂v/∂x1‖2 + ‖∂v/∂x2‖2)/(|∂v/∂x1|21 + |∂v/∂x2|21).

Recall here the transformation rules (14) and (15). Then, for the present
v ∈ V 4

α,θ \ {0} and the associated v̂ = v ◦Φ−1
θ , we can show as (13) and (16)

that

(b.2) ‖∂v/∂x1‖ ≤ C1,α,θ|∂v/∂x1|1 , ‖∂v̂/∂x̂2‖ ≤ C2,α,θ|∂v̂/∂x̂2|1 ,

where ∂v̂/∂x̂2 = cos θ ∂v/∂x1 + sin θ ∂v/∂x2 at x = {x1, x2} ∈ Tα,θ and
x̂ = {x̂1, x̂2} = Φθ(x). Then ∂v/∂x2 = (∂v̂/∂x̂2 − cos θ ∂v/∂x1)/ sin θ can
be evaluated as

sin2 θ ‖∂v/∂x2‖2 ≤ ‖∂v̂/∂x̂2‖2 + 2| cos θ|·‖∂v̂/∂x̂2‖·‖∂v/∂x1‖
+ cos2 θ ‖∂v/∂x1‖2 .

By (b.2) and the present inequality, we can bound ‖∂v/∂x1‖2 +
‖∂v/∂x2‖2 from above as

sin2 θ [‖∂v/∂x1‖2+‖∂v/∂x2‖2](b.3)

≤ ‖∂v/∂x1‖2+2| cos θ|·‖∂v/∂x1‖·‖∂v̂/∂x̂2‖+‖∂v̂/∂x̂2‖2

≤ C2
1,α,θ|∂v/∂x1|21 + 2C1,α,θC2,α,θ| cos θ| · |∂v/∂x1|1 · |∂v̂/∂x̂2|1

+ C2
2,α,θ|∂v̂/∂x̂2|21 .

To evaluate |∂v̂/∂x̂2|1 above, we again use ∂v̂/∂x̂2 = cos θ ∂v/∂x1 +
sin θ ∂v/∂x2. Then

|∂v̂/∂x̂2|1 ≤ | cos θ| · |∂v/∂x1|1 + sin θ |∂v/∂x2|1 .

Substituting the above into the right-hand side of (b.3), we obtain

sin2 θ [‖∂v/∂x1‖2 + ‖∂v/∂x2‖2]

≤
{
C2

1,α,θ + 2C1,α,θC2,α,θ cos2 θ + C2
2,α,θ cos2 θ

}
|∂v/∂x1|21
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+ 2C2,α,θ{C1,α,θ + C2,α,θ} sin θ| cos θ|·|∂v/∂x1|1 ·|∂v/∂x2|1
+ C2

2,α,θsin
2 θ |∂v/∂x2|21 .

By eigenvalue analysis of the quadratic form above for |∂v/∂x1|1 and
|∂v/∂x2|1, we have

‖∂v/∂x1‖2 + ‖∂v/∂x2‖2 ≤ ν2(α, θ)
[
|∂v/∂x1|21 + |∂v/∂x2|21

]
/(2 sin2 θ) .

by using ν(α, θ) in (34). This gives the former part of (33) by (b.1).
To derive the latter part of (33), we should evaluate ν(α, θ) by using

Ci(α, θ) ≤ φi(α, θ)Ci (i = 1, 2) and φ1(α, θ) = φ2(α, θ) =
√

ν+(α, θ)/2 in
(25) along with equality C1 = C2. �

3.3. Determination of some constants
Theorem 1 tells us that we can obtain upper bounds of the constants

Ci(α, θ) (0 ≤ i ≤ 5), if correct values of Ci = Ci(1, π/2) are known. The
upper bounds thus evaluated may be rough but anyway correct, so that they
can be used for various theoretical purposes. According to some preceding
works [18, 19, 25, 26], such exact evaluation is possible at least for C0 and
C1 = C2. We quote the results below, along with an additional new result
for C3.

Theorem 3. It holds for Ci = Ci(1, π/2) (0 ≤ i ≤ 3) that

1) i = 0 : C0 = 1/π,

2) i = 1, 2 : C1 = C2 = the maximum positive solution of the following
equation for µ ;

1/µ + tan(1/µ) = 0 .(35)

The concrete value of C1 can be obtained numerically with verification.
For example,

0.49282 < C1 < 0.49293 .(36)

3) i = 3 : C3 = C1/
√

2 , 0.34847 < C3 < 0.34856 .
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Remark 4. i) Numerical computation without verification gives C1 =
0.49291245 · · · and C3 = 0.34854173 · · · . Eq. (35) is popular in vibration
analysis of strings [28], and the constant C1, called the Babuška-Aziz one [18,
19], plays an important role in various situations.
ii) Exact values of C4 and C5 are unavailable to the best of the authors’
knowledge. Fortunately, C1 (= C2) is a nice upper bound of C4, see Sections
4.2 and 6.2. Numerically, C4 ≈ 0.489 as reported in [4, 22, 30]. As for C5,
estimate C5 < 0.361 in [14] is correct but probably rough, while an exact
lower bound estimation C5 ≥ [(15 +

√
193)/1440]1/2 = 0.1416... can be

derived by the Ritz-Galerkin method using the basis functions x1 + x2 −
x2

1−x2
2 and x1x2 proposed in [25]. Our own numerical computations suggest

that C5 � 0.168.

Proof. As 1) and 2), we can prove 3) by using a kind of symmetry
method [18, 19, 25, 26].

1] Similarly to (20), the eigenvalue problem for C3 is to find {λ, u} ∈
R × V 3\{0} such that

(c.1) (∇u,∇v)T = λ(u, v)T (∀v ∈ V 3) .

Here, T is the unit right isosceles triangle T1,π/2,1, and V 3 = V 3
1,π/2,1 is

defined by (4). Notice that we are interested only in the minimum eigenvalue
and the associated eigenfunctions.

Let us divide T into two congruent parts using the line x2 = x1, which
is also the line of symmetry for T . Moreover, one of the congruent parts is
denoted by T̃ :

T̃ = {x = {x1, x2} ∈ T ; x1 > x2} .

The eigenfunction u = 0 can be uniquely decomposed into the symmetric
part us and the antisymmetric one ua with respect to the line x2 = x1:

u = us + ua .

Since us and ua are orthogonal to each other both for (·, ·)T and (∇·,∇·)T ,
they can be dealt with separately: us and ua both belong to V 3 and satisfy
(c.1) for the minimum eigenvalue λ.

2] We first consider the case where us = 0. We can see that the restriction
ũ of us to T̃ is not zero and satisfies the following eigenvalue problem related
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to T̃ :

(c.2) ũ ∈ Ṽ 3\{0} ; (∇ũ,∇ṽ)T̃ = λ(ũ, ṽ)T̃ (∀ṽ ∈ Ṽ 3) ,

where λ is identical to the former one, the inner products are for T̃ , and Ṽ 3

is defined by

Ṽ 3 = {ṽ ∈ H1(T̃ ) ;
∫ 1

2

0
ṽ(1 − s, s) ds = 0} .

Clearly, (c.2) is essentially the same as the eigenvalue problem for C1(1, π/2,

1/
√

2), since T̃ is congruent to T1,π/2,1/
√

2. It is also easy to see that the
eigenpair for the minimum eigenvalue of (c.2) satisfies (c.1), if the eigenfunc-
tion is extended to whole T symmetrically with respect to x2 = x1. Thus
ũ is an eigenfunction for the minimum eigenvalue of (c.2) in the present
case. Then we find that C3 = C1/

√
2, since C1(α, θ, 1/

√
2) = C1(α, θ)/

√
2,

cf. Section 2.

3] Secondly, we consider the case where ua = 0. Due to the antisymmetry,
the trace of ua to the line of symmetry x2 = x1 inside T is shown to be 0.
Moreover, any antisymmetric function in H1(T ) automatically satisfies the
line integration condition imposed on V 3. Thus the restriction u† of ua to
T̃ is not zero and is an eigenfunction of the eigenvalue problem:

(c.3) u† ∈ V †\{0} ; (∇u†,∇v†)T̃ = λ(u†, v†)T̃ (∀v† ∈ V †) ,

where λ is identical to the former one, and V † is defined by

V † = {v† ∈ H1(T̃ ) ; v†(s, s) = 0 (0 < s < 1/2)} .

If we consider the reflection with respect to the line x1 = 1/2, (c.3) becomes
the problem of the same form with V † replaced by

V ∗ = {v∗ ∈ H1(T̃ ) ; v∗(1 − s, s) = 0 (0 < s < 1/2)} .

Clearly, the eigenvalues remain the same. Since V ∗ ⊂ Ṽ 3, the minimum
eigenvalue of (c.3) cannot be smaller than that of (c.2), due to the charac-
terization of the minimum eigenvalue by the Rayleigh quotient. Thus it is
actually sufficient to consider the case where us = 0. �
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3.4. Application to interpolation and a priori error estimates
In this subsection, we show how to apply the obtained results to inter-

polation error estimates and some a priori error estimates for FEM.
From the preceding considerations, especially equations (10) through

(12) and Theorems 1 and 2, we have for example the following P0 and P1

interpolation error estimates :

‖v − Π0
α,θ,hv‖ ≤ C0φ0(α, θ)h|v|1 (∀v ∈ H1(Tα,θ,h) ) ,(37)

|v − Π1
α,θ,hv|1 ≤ C1

1 + | cos θ|
sin θ

[ν+(α, θ)/2]
1
2 h|v|2(38)

(∀v ∈ H2(Tα,θ,h) ) ,

‖v − Π1
α,θ,hv‖ ≤ C5φ5(α, θ)h2|v|2 (∀v ∈ H2(Tα,θ,h) ) .(39)

These may be rough but are correct quantitative upper bounds, if the values
of C0, C1 and C5 or at least their upper bounds are known. For C0 and
C1, we have obtained exact values in Theorem 3, while, presumably, C5 has
been evaluated only approximately, cf. Remark 4.

As was already noted, such error bounds are available for triangles of
general configuration by applying appropriate congruent transformations [5,
10, 11, 21]. Then such interpolation error estimates can be directly used in
a priori error estimates of finite element solutions. In what follows, we will
briefly explain an example of such process. See e. g. [11] for the details.

As a model problem, let us consider the Dirichlet problem of the Poisson
equation over an bounded polygonal domain Ω ⊂ R2: given f ∈ L2(Ω), find

u ∈ H1
0 (Ω) such that −∆u = f in Ω. Here, H1

0 (Ω) is the popular subspace of
H1(Ω) with the homogeneous Dirichlet condition imposed. In the standard
weak formulation, the condition for u ∈ H1

0 (Ω) is stated as

(∇u,∇v)Ω = (f, v)Ω
(
∀v ∈ H1

0 (Ω)
)

.(40)

Since this is a well-posed problem, we can define an operator G : f ∈
L2(Ω) �→ u ∈ H1

0 (Ω).
To apply the FEM based on the P1 triangle to this problem, we consider

a regular family of triangulations {T η}η>0 of Ω and construct a P1 finite
element space V η ⊂ H1

0 (Ω) for each T η, where η > 0 is the discretization
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parameter. For the terminology regular, cf. [11]. The finite element solution
uη ∈ V η for u = Gf is uniquely determined by imitating (40) in V η:

(∇uη,∇vη)Ω = (f, vη)Ω (∀vη ∈ V η) .(41)

An important fact in the Ritz-Galerkin FEM is the best approximation
property [11]:

|u − uη|1,Ω = min
vη∈V η

|u − vη|1,Ω (| · |1,Ω = | · |1 for Ω).(42)

Another important fact is the L2 error estimation based on the Aubin-
Nitsche trick [11]:

‖u − uη‖Ω ≤ |u − uη|1,Ω sup
g∈L2(Ω)\{0}

inf
vη∈V η

|Gg − vη|1,Ω/‖g‖Ω .(43)

From (42), an error estimation based on the standard nodal interpolation
function Πη,1u ∈ V η using the vertex values of u is given by

|u − uη|1,Ω ≤ |u − Πη,1u|1,Ω .(44)

Here, the global interpolation operator Πη,1 is closely related to the local
one Π1

α,θ,h. That is, for each triangle K ∈ T η, we can find a Tα,θ,h congruent
to K under a congruent transformation ΦK : K → Tα,θ,h, and it then holds
that (Πη,1u)|K = [Π1

α,θ,h{(u|K) ◦ Φ−1
K }] ◦ ΦK . If u ∈ H2(Ω), we have by

(11), using notations {αK , θK , hK} as {α, θ, h} of Tα,θ,h associated to K,

|u − Πη,1u|21,Ω =
∑

K∈T η |u − Πη,1u|21,K(45)

≤
∑

K∈T ηh2
KC2

4 (αK , θK)|u|22,K .

Thus we obtain from (44) an a priori error estimate

|u − uη|1,Ω ≤ |u − Πη,1u|1,Ω ≤ C4,ηη|u|2,Ω ;

C4,η = max
K∈T η

C4(αK , θK), η = max
K∈T η

hK .
(46)

To evaluate C4,η from above, we can utilize various upper bounds already
derived for C4(α, θ), an example of which can be also found in (38). In prob-
lems more general than (40), we may also need upper bounds for C5(α, θ)
to obtain global L2 error bounds, although we can avoid the use of such
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bounds to a certain extent by adopting the Aubin-Nitsche trick [11]. The
constants Ci(α, θ) for 0 ≤ i ≤ 3 may appear to be subsidiary here, but they
actually play essential roles in the analysis of the non-conforming P1 FEM
as is noted in [19].

To apply the above to verification of various differential equations by
FEM, it is often required to evaluate norms or semi-norms of the solutions
by various data. A typical example is to give upper bounds of |u|2,Ω in (46)
by a norm of f . Here we can use the relation |u|2,Ω ≤ ‖f‖Ω, if Ω is convex
in addition to the assumptions already stated [15]. Then we have

|u − uη|1,Ω ≤ C4,ηη‖f‖Ω ,(47)

and moreover, by applying (43) with vη taken as Πη,1(Gg),

‖u − uη‖Ω ≤ C4,ηη|u − uη|1,Ω ≤ C2
4,ηη

2‖f‖Ω ,(48)

where we have used the estimate |Gg − Πη,1(Gg)|1,Ω ≤ C4,ηη|Gg|2,Ω ≤
C4,ηη‖g‖Ω. The present estimation can be compared with the L2 inter-
polation estimate

‖u − Πη,1u‖Ω ≤ C5,ηη
2|u|2,Ω ≤ C5,ηη

2‖f‖Ω(49)

with C5,η = max
K∈T η

C5(αK , θK) .

3.5. Application to a posteriori error estimates
A posteriori error estimation is also feasible and effective in various situ-

ations by using the interpolation error constants considered in the preceding
subsections. So, before closing the present section, we also show how to ap-
ply the obtained results to a posteriori error estimates for FEM. Here we
only explain a special and rather classical approach [12, 20, 24] briefly.

Let q be an element of H(div; Ω) := {q ∈ L2(Ω)2 | div q ∈ L2(Ω)} [12,
20]. Then, some simple calculations give, with the same notations as in
Section 3.4,

|u − uη|21,Ω = (∇(u − uη),∇(u − uη))Ω
= (u − uη,−∆u)Ω + (∇(u − uη), q −∇uη − q)Ω
= (u − uη, f + div q)Ω + (∇(u − uη), q −∇uη)Ω
≤ ‖u − uη‖Ω · ‖f + div q‖Ω + |u − uη|1,Ω · ‖q −∇uη‖Ω .
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By (48), we have |u−uη|21,Ω ≤ (C4,ηη ‖f +div q‖Ω +‖q−∇uη‖Ω)|u−uη|1,Ω,
and hence

|u − uη|1,Ω ≤ C4,ηη ‖f + div q‖Ω + ‖q −∇uη‖Ω .(50)

Here C4,η appears again, and this becomes an a posteriori estimate by speci-
fying q. The most elegant but a restrictive choice is based on the hypercircle
method [12, 20], which employs q with f +div q = 0 so that C4,η is unnec-
essary. More practical choice is to obtain q by post-processing of uη, for
example, by smoothing ∇uη so as to belong to H(div; Ω). For this to be ef-
fective, we need that ‖q−∇uη‖Ω = O(η) and, preferably, ‖f+div q‖Ω = o(1).
Combining (50) with (43) as in (48), we also obtain an a posteriori L2-error
estimate using C4,η:

‖u − uη‖Ω ≤ C2
4,ηη

2 ‖f + div q‖Ω + C4,ηη‖q −∇uη‖Ω .(51)

4. Dependence of Ci(α) on α

Up to now, we have given some basic results for dependence of error
constants on h, α and θ. In this section, we will consider the dependence
of such constants on α > 0 in the special case when θ = π/2 and h =
1. Actually, we need their behaviors in the range 0 < α ≤ 1, and, in
view of (30), we want to find their maxima or nice upper bounds there.
Furthermore, the limiting case α → +0 is of some practical interests in the
anisotropic mesh refinements [1, 13].

4.1. Definitions and notations
Since each Ci(α) = Ci(α, π/2, 1) is defined through minimization of a

Rayleigh quotient in terms of norms and/or seminorms over Tα (see (17)
through (19)), it is natural to introduce the following transformation ξ =
Ψα(x) between x = {x1, x2} ∈ Tα and ξ = {ξ1, ξ2} ∈ T :

ξ1 = x1 , ξ2 = x2/α ,(52)

together with the associated transformation ṽ = v ◦Ψ−1
α between functions

v over Tα and ṽ over T : ṽ(ξ) = v(x) = v(ξ1, αξ2). Notice that Ψα = Ψα,π/2

for Ψα,θ in (24).
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Then we have the following expressions to (semi-)norms for Tα in terms
of those for T :

‖v‖2
Tα

=α‖ṽ‖2
T ,(53)

|v|21,Tα
=αa(1)

α (ṽ) ; a(1)
α (ṽ) :=‖∂ṽ/∂ξ1‖2

T + α−2 ‖∂ṽ/∂ξ2‖2
T ,(54)

|v|22,Tα
=αa(2)

α (ṽ) ; a(2)
α (ṽ)(55)

:=
∥∥∂2ṽ/∂ξ2

1

∥∥2

T
+2α−2

∥∥∂2ṽ/∂ξ1∂ξ2

∥∥2

T
+α−4

∥∥∂2ṽ/∂ξ2
2

∥∥2

T
,

where, for example in (53), v ∈ L2(Tα) and ṽ ∈ L2(T ) with v = ṽ ◦ Ψα. By
using these forms, R

(i)
α (v) = R

(i)
α,π/2(v) (0 ≤ i ≤ 5) for R

(i)
α,θ’s in (17) through

(19) are expressed as

R(i)
α (v) = R̃(i)

α (ṽ) := a(1)
α (ṽ)/‖ṽ‖2

T ;

v∈V i
α \ {0}, ṽ = v ◦ Ψ−1

α ∈V i \ {0} (0 ≤ i ≤ 3),
(56)

R(4)
α (v) = R̃(4)

α (ṽ) := a(2)
α (ṽ)/a(1)

α (ṽ) ;

v∈V 4
α \ {0}, ṽ = v ◦ Ψ−1

α ∈ V 4 \ {0},
(57)

R(5)
α (v) = R̃(5)

α (ṽ) := a(2)
α (ṽ)/‖ṽ‖2

T ;

v∈V 4
α \ {0}, ṽ = v ◦ Ψ−1

α ∈ V 4 \ {0}.
(58)

We can now analyze the constants Ci(α)’s over the common triangle T .
We also present the bilinear forms associated to the quadratic forms

a
(i)
α (·)’s for i = 1, 2:

a(1)
α (u, v) := (∂u/∂x1, ∂v/∂x1)T(59)

+ α−2 (∂u/∂x2, ∂v/∂x2)T (∀u, v ∈ H1(T ) ) ,

a(2)
α (u, v) :=

(
∂2u/∂x2

1, ∂
2v/∂x2

1

)
T

(60)

+ 2α−2
(
∂2u/∂x1∂x2, ∂

2v/∂x1∂x2

)
T

+ α−4
(
∂2u/∂x2

2, ∂
2v/∂x2

2

)
T

(∀u, v ∈ H2(T ) ) .

Here we have used u, v and x = {x1, x2} instead of ũ, ṽ and ξ = {ξ1, ξ2},
respectively.

The following function spaces will play important roles later:

Hk,Z(T ) = {v ∈ Hk(T ) ; ∂v/∂x2 = 0} (k = 1, 2) ,(61)
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V i,Z = {v ∈ V i ; ∂v/∂x2 = 0} (0 ≤ i ≤ 4) ,(62)

which are actually identified with the spaces of functions dependent only on
the variable x1 as we will see later. By considering bilinear forms a(i)(·, ·)
for i = 1, 2 over the above type of function spaces, we are naturally led to
the following bilinear forms:

a
(1)
Z (u, v) := (∂u/∂x1, ∂v/∂x1)T (∀u, v ∈ H1(T ) ) ,(63)

a
(2)
Z (u, v) :=

(
∂2u/∂x2

1, ∂
2v/∂x2

1

)
T

(∀u, v ∈ H2(T ) ) .(64)

As a characterization of H1,Z(T ) above, let us state a lemma to be used
later. Its proof is omitted since it can be performed by slightly modifying
that for Theorem 3.1.4′ of [16].

Lemma 1. Any v ∈ H1,Z(T ) can be identified with a function v∗ of
single variable x1 :

v(x1, x2) = v∗(x1) for a. e. x = {x1, x2} ∈ T .(65)

4.2. Monotonicity and upper bounds of Ci(α)
We first derive some fundamental results for Ci(α)’s for 0 < α ≤ 1,

especially for their upper bounds. With this regard, we owe much the
following analysis to Babuška and Aziz [5]. In particular, the estimation
C4(α) ≤ C1, an important part of the following theorem, was derived in [5]
and also refered to in [25, 30], so that we here call C1 the Babuška-Aziz
constant.

Theorem 4. Constants Ci(α) = Ci(α, π/2, 1) (0 ≤ i ≤ 5) are contin-
uous positive-valued functions of α ∈ ]0,+∞[ (here we consider also for
α > 1). In addition, except for i = 4, they are monotonically increasing in
α. Thus, in particular,

Ci(α) ≤ Ci (= Ci(1)) ; ∀α ∈]0, 1] (i = 0, 1, 2, 3, 5) .(66)

On the other hand, it holds for i = 4 that

C4(α) ≤ max{C1(α), C2(α)} ≤ C1(= C2) ; ∀α ∈]0, 1] .(67)
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Remark 5. From (66) and (67), C4(α) is bounded from above by a
monotonically increasing function of α. Moreover, numerical results in Sec-
tion 6 suggest that it is also monotonically increasing.

Proof. We just give sketches since the arguments below are popular.
As in [5], we utilize the Rayleigh quotients R̃

(i)
α ’s defined in Section 4.1 for

functions over the common domain T .
For the continuity, we first note that each Rayleigh quotient for a fixed

ṽ = 0 is a continuous positive function of α, so that its infimum over
all ṽ is uniformly bounded over any compact interval for α of the form
[α1, α2]; 0 < α1 < α2 < +∞. It is also clear that the infimum for each
α > 0 is actually the minimum and cannot be zero (i. e., it is positive), as is
shown by the Rellich compactness theorem and the reduction to absurdity.
Then we can assure the existence of both lim β→αC−2

i (β) (≤ C−2
i (α)) and

lim β→αC−2
i (β) for each α > 0 and i ; 0 ≤ i ≤ 5. Choosing an appropriate

bounded sequence in V i associated to the above lower limit, we can prove
C−2

i (α) ≤ lim β→αC−2
i (β), i. e., the continuity at α, by adopting the weakly

lower semi-continuity of the numerator and the continuity of the denomi-
nator appearing in the definition of R̃

(i)
α with respect to the metric of V i.

Here, the Rellich type compactness theorem is again needed, and arguments
similar to those in the subsequent subsection are used as well.

The monotonicity and (67) can be concluded in completely the same
fashion as in [5]. �

4.3. Asymptotic behaviors of constants as α → +0
We will now analyze asymptotic behaviors of the constants Ci(α)’s

(0 ≤ i ≤ 5) as α → +0 by adopting techniques developed e. g. in [23].
In particular, the right limit values Ci(+0)’s are determined from certain
transcendental equations (derived from eigenvalue problems of ordinary dif-
ferential equations) in terms of the hypergeometric functions [32]. For ex-
ample, C2(+0)−1 is equal to the first positive zero of the Bessel function
J0(·). Moreover, these right limits give lower bounds for respective Ci(α)’s,
including the non-trivial case i = 4. Such results can be of use for analyzing
the “anisotropic triangulations” discussed e. g. in [1, 8, 13].

4.3.1 Main results
We first present the main results as a theorem below.
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Theorem 5. For each i (0 ≤ i ≤ 5), Ci(+0) = limα→+0 Ci(α) exists
and is positive. Moreover, they are the lower limits of the respective con-
stants, i. e., Ci(+0) = infα>0 Ci(α) for 0 ≤ i ≤ 5. They are characterized by
the relations Ci(+0) = 1/

√
λ(i) for 0 ≤ i ≤ 5, where λ(i)’s are the minimum

eigenvalues of the following eigenvalue problems :

0 ≤ i ≤ 3 : Find λ(= λ(i)) ∈ R and u ∈ V i,Z \ {0} such that

a
(1)
Z (u, v) = λ(u, v)T (∀v ∈ V i,Z) ,(68)

i = 4 : Find λ(= λ(4)) ∈ R and u ∈ V 4,Z \ {0} such that

a
(2)
Z (u, v) = λa

(1)
Z (u, v) (∀v ∈ V 4,Z) ,(69)

i = 5 : Find λ(= λ(5)) ∈ R and u ∈ V 4,Z \ {0} such that

a
(2)
Z (u, v) = λ(u, v)T (∀v ∈ V 4,Z) .(70)

These eigenvalue problems are also expressed by those for the follow-
ing 2nd- or 4th-order ordinary differential equations for u = u(s) over the
interval [0, 1].

i = 0 : − [(1 − s)u′(s)]′ = λ(0)(1 − s)u(s) (0 < s < 1),(71) ∫ 1

0
(1 − s)u(s) ds = u′(0) = 0,

i = 1 : − [(1 − s)u′(s)]′ = λ(1)(1 − s)u(s) + C (0 < s < 1),(72) ∫ 1

0
u(s) ds = u′(0) = 0,

i = 2 : −[(1 − s)u′(s)]′ = λ(2)(1 − s)u(s) (0 < s < 1), u(0) = 0 ,(73)

i = 3 : essentially the same as for i = 1;

− [(1 − s)u′(s)]′ = λ(3)(1 − s)u(s) + C (0 < s < 1),(74)
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∫ 1

0
u(s) ds = u′(0) = 0 ,

i = 4 : actually reduces to the case i = 1;

[(1 − s)u′′(s)]′′ = −λ(4)[(1 − s)u′(s)]′ (0 < s < 1),(75)

u(0) = u(1) = u′′(0) = 0 ,

i = 5 : [(1 − s)u′′(s)]′′ = λ(5)(1 − s)u(s) (0 < s < 1),(76)

u(0) = u(1) = u′′(0) = 0 .

Here, C is an unknown constant to be determined simultaneously with u and
λ(i) (i = 1, 3).

Remark 6. Two conditions
∫ 1
0(1− s)u(s) ds = 0 and u′(0) = 0 in (71)

are actually identical as shown by integrating the differential equation in
(71) from s = 0 to s = 1. In the above, the numbers of boundary condi-
tions are smaller than the orders of differential equations. This is mainly
attributed to the singularities of coefficients at s = 1 in the differential equa-
tions, so that the usual full numbers of boundary conditions are excessive to
decide eigenfunctions in respective spaces V j ’s (0 ≤ j ≤ 4). The eigenpairs
expressed by the hypergeometric functions [32], together with numerical val-
ues of Ci(+0)’s (0 ≤ i ≤ 5), are given in Appendix.

4.3.2 Proof of main results
Let us prove Theorem 5. The proofs for the statements from i = 0 to

i = 5 are more or less alike, and we will give descriptions almost exclusively
for i = 4, the most complicated case.

1] To analyze C4(α), let us define λ4(α) for α > 0 by λ4(α) := C−2
4 (α) > 0,

that is,

λ4(α) = inf
v∈V 4\{0}

R̃(4)
α (v) ; R̃(4)

α (v) = a(2)
α (v)/a(1)

α (v) .(77)

By the standard arguments, the infimum is shown to be actually the min-
imum and attained by a certain u ∈ V 4 \ {0}. Moreover, {λ4(α), u} is an
eigenpair of the eigenvalue problem:

a(2)
α (u, v) = λ4(α)a(1)

α (u, v) (∀v ∈ V 4) ,(78)
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where a
(i)
α (u, v) for i = 1, 2 are the bilinear forms (59) and (60) associated to

a
(i)
α (·)’s. The present λ4(α) > 0 is also shown to be the minimum eigenvalue

of (78). Since R̃
(4)
α (v) is a homogeneous form of order 0, we can normalize

the eigenfunction u as

a(1)
α (u) = 1 .(79)

2] Let us show that λ4(+0) = limα→+0 λ4(α) exists and is positive. Taking
v ∈ V 4 \ {0} in (77) as v(x1, x2) = x1(1 − x1), we can see that λ4(α) is
uniformly bounded for α ∈]0,∞[, and hence α = 0 is an accumulation point.
In particular, both λ∗

4 := lim α→+0λ4(α) ≥ 0 and λ†
4 := lim α→+0λ4(α) exist.

Then we can find a sequence {αn}∞n=1 in ]0, 1] such that

lim
n→∞

αn = 0 , lim
n→∞

λ4(αn) = λ∗
4 .(80)

We must show that λ∗
4 coincides with λ†

4 to conclude the existence of the
right limit λ4(+0).

Associated to the above sequence {αn}, there exists a sequence {un} in
V 4 \ {0} such that each member satisfies (78) and (79), i. e., a

(1)
αn (un) = 1,

a
(2)
αn (un) = λ4(αn), and

a(2)
αn

(un, v) = λ4(αn)a(1)
αn

(un, v) (∀v ∈ V 4) .(81)

Since |u|21,T =
∑2

i=1 ‖∂u/∂xi‖2
T ≤ a

(1)
α (u) and |u|22,T =

∑2
i,j=1 ‖∂2u/

∂xi∂xj‖2
T ≤ a

(2)
α (u) for α ∈]0, 1], the sequence {un} is bounded with re-

spect to the semi-norms of H1(T ) and H2(T ):

|un|21,T + |un|22,T ≤ 1 + λ4(αn) (n = 1, 2, ...) .(82)

Moreover, {‖un‖T } is also shown to be bounded by noting that {un} is
a sequence in V 4 and utilizing the Rellich theorem. Thus {un} is bounded
in H2(T ), so that there exist a subsequence of {un}, again denoted by {un},
and u0 ∈ V 4 such that, for n → ∞,

un → u0 weakly in V 4 ⊂ H2(T ) and strongly in H1(T ) ,(83)
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where the strong convergence is concluded by the Rellich theorem. Substi-
tuting vZ ∈ V 4,Z as v ∈ V 4 in (81) and then taking the limit for n → ∞,
we find

a
(2)
Z (u0, vZ) = λ∗

4a
(1)
Z (u0, vZ) (∀vZ ∈ V 4,Z) .(84)

Furthermore, since ‖∂un/∂x2‖2
T = α2

n

[
a

(1)
αn (un) − ‖∂un/∂x1‖2

T

]
from (59),

we can show that

∂u0/∂x2 = 0 , i. e., u0 ∈ V 4,Z .(85)

Thus we have obtained (69), provided that u0 = 0. For the moment, we
cannot exclude the possibility that u0 = 0, so that we will now consider the
two cases below.

3] (Case : u0 = 0) In this case, {λ∗
4, u0} ∈ R×V 4,Z is an eigenpair of (84),

and is also associated with the following minimization problem:

λ = inf
v∈V 4,Z\{0}

a
(2)
Z (v)/a

(1)
Z (v) .(86)

It is not difficult to show that this minimization problem has a minimum
µ4 > 0, which is at the same time the minimum eigenvalue of (84) and
whose arbitrary minimizer vZ ∈ V 4,Z \ {0} is an associated eigenfunction.
Noting that λ∗

4 is an eigenvalue of (84) and, for all α ∈]0,∞[ ,

µ4 = inf
v∈V 4,Z\{0}

a
(2)
Z (v)/a

(1)
Z (v) = a

(2)
Z (vZ)/a

(1)
Z (vZ)(87)

= a(2)
α (vZ)/a(1)

α (vZ) = R̃{4}
α (vZ) ≥ λ4(α),

we have µ4 ≤ λ∗
4 = lim α→+0λ4(α) ≤ λ†

4 = lim α→+0λ4(α) ≤ µ4, that is,
λ∗

4 coincides with both λ†
4 and µ4, so that it is the minimum eigenvalue of

(84) and u0 is an associated eigenfunction. Thus, if u0 = 0 for all possible
subsequences, λ∗

4 is uniquely determined independently of the sequences
like original {un}, so that the present λ∗

4 is the true right limit λ4(+0).
Furthermore, from the above consideration, λ∗

4 is also the upper limit of
λ4(α) for α ∈]0,∞[, that is, 1/

√
λ∗

4 is the lower limit of C4(α). By using
v(x1, x2) = sinπx1 ∈ V 4,Z \ {0} in the Rayleigh quotient in (86), we can
also show that

0 < µ4 = λ∗
4 ≤ π2 < 10 .(88)
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4] (Case : u0 = 0) Let us define wn by wn = α−1
n ∂un/∂x2 (n = 1, 2, ...).

Then we can see that wn ∈ V 2 ⊂ H1(T ). Since un → u0 = 0 strongly
in H1(T ) and a

(1)
αn (un) = 1, it holds that ‖wn‖2

T = 1 − ‖∂un/∂x1‖2
T → 1.

Moreover, a
(2)
αn (un) = λ4(αn), i. e.,

‖∂2un/∂x2
1‖2

T + 2‖∂wn/∂x1‖2
T(89)

+ α−2
n ‖∂wn/∂x2‖2

T = λ4(αn) (n = 1, 2, ...) ,

is uniformly bounded, so that {wn} is bounded in H1(T ) and ‖∂wn/

∂x2‖T → 0 (n → ∞). Thus, further choosing a subsequence of {wn} and de-
noting it by the same notation, we can show the existence of w0 ∈ V 2,Z \{0}
with ‖w0‖T = 1 such that, for n → ∞,

wn → w0 weakly in V 2 ⊂ H1(T ) , and strongly in L2(T ) .(90)

Let v∗ be an arbitrary function of x1 such that v∗ ∈ C2([0, 1]) with
v∗(0) = 0, and take v ∈ V 4 in (81) as v(x1, x2) = v∗(x1)x2. For simplicity,
we will identify v∗ with v∗ ⊗ 1x2 , where 1x2 is the unit constant function of
x2. Then (81) becomes

αna
(2)
Z (un, v) + 2a

(1)
Z (wn, v∗) = λ4(αn)[αna

(1)
Z (un, v) + (wn, v∗)T ] .(91)

Letting n → ∞ above, we find that w0 ∈ V 2,Z \ {0} satisfies

a
(1)
Z (w0, v

∗) = 1
2λ∗

4 (w0, v
∗)T .(92)

Moreover, the above holds even for any v∗ taken from V 2,Z , since any func-
tions in V 2,Z can be approximated by C2 functions of x1 vanishing at x1 = 0.
Thus the present relation can be viewed as an eigenvalue problem in V 2,Z

with an eigenpair {λ∗
4/2, w0}. As usual, all the eigenvalues are positive, so

that λ∗
4 > 0.

By Lemma 1, w0 can be identified with a function w∗(x1), so that (92)
is rewritten as∫ 1

0 (1 − x1)dw∗
dx1

(x1) dv∗
dx1

(x1) dx1 = 1
2λ∗

4

∫ 1
0 (1 − x1) w∗(x1) v∗(x1) dx1 .(93)

Taking v∗ from C∞
0 (]0, 1[), we find, in the distributional (actually classical)

sense on ]0, 1[,

− d
dx1

[(1 − x1) dw∗
dx1

(x1)] = 1
2λ∗

4 (1 − x1) w∗(x1) .(94)
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Moreover, it follows from the condition w0 ∈ V 2,Z that w∗(0) = 0. Since
λ∗

4 > 0, the general solution of the above is of the form, for arbitrary con-
stants c1 and c2,

w∗(x1) = c1J0(
√

λ∗
4
2 (1 − x1)) + c2Y0(

√
λ∗
4
2 (1 − x1)) ,(95)

where J0(·) and Y0(·) are the 0-th order Bessel functions of the first and sec-
ond kinds, respectively. As is well known, J0(·) is sufficiently smooth, while
Y0(·) is of the form Y0(s) = c3 log s + r(s) for s > 0, where c3 = 0 is a con-
stant and r(s) is a sufficiently smooth remainder term [32]. Consequently,
c2 must be zero for w0 to belong to V 2,Z ⊂ H1(T ). Then by considering the
conditions w∗(0) = 0 and c1 = 0, J0(

√
λ∗

4/2) must be zero, that is,
√

λ∗
4/2

is equal to a positive zero of J0(·). In fact J0(·) has countably infinite pos-
itive zeros without any accumulation points except +∞ [32]. Denoting the
smallest positive zero by γ0 > 0, we have

λ∗
4 ≥ 2γ2

0 .(96)

We can show that γ0 > 2.25 = 9/4, so that λ∗
4 > 10. Comparing this with

(88), i. e., 10 > µ4 ≥ supα>0 λ4(α) ≥ λ∗
4, we have a contradiction, and can

exclude the possibility that u0 = 0.

Remark 7. Although it is well known that γ0 = 2.4048... numeri-
cally, we must verify that γ0 > 2.25 for strict analysis. This can be
done for example by using the well-known power series expansion J0(s) =∑∞

m=0(−s2/4)m/(m!)2 and numerical verification techniques, cf. [18, 33].

5] We have now proved that λ∗
4 and u0 = 0 are actually the minimum

eigenvalue and the associated eigenfunction of (69), respectively, and that
C4(+0) = 1/

√
λ∗

4 = infα>0 C4(α).
It is not difficult to prove (75). That is, the differential equation can be

obtained just as we derived (94) from (93), while u(0) = u(1) = 0 follow
from the condition u0 ∈ V 4,Z . Finally, u′′(0) = 0 is obtained as a natural
boundary condition associated to (69).

Let us also show that (75) reduces to (72). Denoting u′ by v and inte-
grating the differential equation in (75) with respect to the variable s, we
have, for an arbitrary constant C,

−[(1 − s)v′(s)]′ = λ(4)[(1 − s)v(s)] + C ,(97)
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which coincides with the differential equation in (72) after rewriting v as
u. The boundary condition v′(0) = 0 follows from u′′(0) = 0, and the
condition

∫ 1
0 v(s) ds = 0 is derived from the relation

∫ 1
0 u′(s) ds = u(1) −

u(0) = 0. Once v is determined, u can be reconstructed by integration :
u(s) =

∫ s
0 v(t) dt. Consequently, the present case i = 4 reduces to the case

i = 1.

6] In the cases other than i = 4, the analyses are a bit easier since the
denominators of R̃

(i)
α ’s do not depend on α. We just show how to derive

(72) from (68) for i = 1.
For i = 1, u = u(x1, x2) and v = v(x1, x2) in V 1,Z can be identified with

functions u∗ = u∗(x1) and v∗ = v∗(x1), respectively, so that (68) for i = 1
can be expressed by∫ 1

0 (1 − x1)du∗
dx1

(x1)dv∗
dx1

(x1) dx1 = λ
∫ 1
0 (1 − x1)u∗(x1)v∗(x1) dx1 .(98)

Let us consider dw∗/dx1 for an arbitrary w∗ ∈ C∞
0 (]0, 1[). Then it can be

identified with a function in V 1,Z , so that, by substituting it into (98) as
v∗, we find that

d2

dx2
1
[(1 − x1)du∗

dx1
(x1)] = −λ d

dx1
[(1 − x1)u∗(x1)] ,(99)

from which follows the differential equation in (72). The definition of V 1,Z

implicates that
∫ 1
0 u(s) ds = 0, while u′(0) = 0 is a natural boundary condi-

tion associated to (68) for i = 1.

5. A Posteriori Eestimation of Some Constants

It is in general difficult to determine exact values of various constants
defined in Section 2 for Tα,θ of general shape. Numerically, we can adopt
the FEM to obtain approximate values to them as in [4, 7, 22, 30], but their
quantitative error estimates are often unavailable. So, as an application
of our results, let us give a kind of a posteriori estimation of Ci(α, θ)’s
(0 ≤ i ≤ 3) by adopting the P1 (piecewise linear) FEM. At present, our
approach gives only approximate boundings of constants, which we expect
will be turned into mathematically correct ones by appropriate numerical
verification methods in future. Our approach is based on the classical a
priori error estimates for the finite element approximations to the smallest
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non-zero eigenvalue of the minus Laplacian with the Neumann or Dirichlet
conditions, cf. e. g. Schultz [29].

5.1. Preliminaries
First let us make some preparations. Let Ω be a bounded convex polyg-

onal domain, which will often be the triangle Tα,θ later. Let us also consider
a closed linear subspace H1

s (Ω) of H1(Ω), such as H1
0 (Ω) typically, which

can be infinite-dimensional and satisfies

H1
s (Ω) = {0}, 1 /∈ H1

s (Ω) (1 = constant function of unit value).(100)

As a generalization of (40), let us consider the problem of finding u ∈ H1
s (Ω),

for a given f ∈ L2(Ω), such that

(∇u,∇v)Ω = (f, v)Ω (∀v ∈ H1
s (Ω)) .(101)

Since the uniqueness and existence of u in H1
s (Ω) are trivial, we can define

an operator Gs by

Gs : f ∈ L2(Ω) �→ u ∈ H1
s (Ω) determined by (101) .(102)

As a generalization of the problem related to (17), let us also consider a
minimization problem for the Rayleigh quotient

Rs(v) := |v|21,Ω/ ‖v‖2
Ω ; v ∈ H1

s (Ω) \ {0} .(103)

The minimum actually exists and is positive under (100) as may be shown
by the compactness arguments. Moreover, denoting the minimum and an
associated minimizer by λ > 0 and u ∈ H1

s (Ω) \ {0}, respectively, they
satisfy

(∇u,∇v)Ω = λ(u, v)Ω (∀v ∈ H1
s (Ω)) .(104)

By using Gs in (102), the present u ∈ H1
s (Ω) is shown to satisfy u = λGsu.

To apply the P1 FEM to the above two problems, we first introduce
a regular family of triangulations {T η}η>0 of Ω mentioned in Section 3.4,
and then construct the piecewise linear finite element space Sη ⊂ H1(Ω) for
each T η as

Sη := {vη ∈ C(Ω) | vη|K is a linear function for each K ∈ T η} .(105)
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For u ∈ H2(Ω) ⊂ C(Ω), we can define the piecewise linear interpolant
Πη,1u ∈ Sη by

(Πη,1u)(x∗) = u(x∗) for any vertex x∗ of T η .(106)

We will also use η = maxK∈T η hK , C4,η = maxK∈T η C4(αK , θK) and C5,η =
maxK∈T η C5(αK , θK) defined in Section 3.4. Then we have the interpolation
estimates ((46), (49)) :

|u − Πη,1u|1,Ω ≤ C4,ηη|u|2,Ω , ‖u − Πη,1u‖Ω ≤ C5,ηη
2|u|2,Ω .(107)

To construct approximate problems to (101) and the minimization of
(103), let us consider the subspace Sη

s of Sη defined by

Sη
s := Sη ∩ H1

s (Ω) ,(108)

which we assume to be different from {0}. Although various other finite-
dimensional subspaces of H1

s (Ω) may be available in place of Sη
s , the above

is anyway one possible choice.
Then an approximation to (101) is to find uη ∈ Sη

s , for a given f ∈ L2(Ω),
such that

(∇uη,∇vη)Ω = (f, vη)Ω (∀vη ∈ Sη
s ) .(109)

The uniqueness and existence of uη in Sη
s are trivial, so that we can define

an operator Gη
s :

Gη
s : f ∈ L2(Ω) �→ uη ∈ Sη

s determined by (109) ,(110)

which is approximating Gs. As generalizations of (42) and (43), we have

|Gsf − Gη
sf |1,Ω = min

vη∈Sη
s

|Gsf − vη|1,Ω ,(111)

‖Gsf − Gη
sf‖Ω(112)

≤ |Gsf − Gη
sf |1,Ω sup

g∈L2(Ω)\{0}
inf

vη∈Sη
s

|Gsg − vη|1,Ω/‖g‖Ω .

On the other hand, an approximation problem related to Rs(·) is to find
its minimum in Sη

s \{0}. In this case, the existence of the minimum is again
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trivial, and the minimum λη and an associated minimizer uη ∈ Sη
s \ {0}

satisfies the relation analogous to (104) :

(∇uη,∇vη)Ω = λη(uη, vη)Ω (∀vη ∈ Sη
s ) .(113)

The following results (see e. g. Theorem 8.3 of [29]) play an essential role
in our approach.

Lemma 2. Let λ and λη be respectively defined by λ =
minv∈H1

s (Ω)\{0} Rs(v) and λη = minvη∈Sη
s \{0} Rs(vη), and u ∈ H1

s (Ω) be an
minimizer associated to λ such that ‖u‖Ω = 1. Then it holds that, for any
vη ∈ Sη

s \ {0} with ‖u − vη‖Ω < 1,

λ ≤ λη ≤ λ + [|u − vη|1,Ω/(1 − ‖u − vη‖Ω)]2 .(114)

The following results are also well known and will be used later, cf. [15].

Lemma 3. For the present Ω and a given f ∈ L2(Ω), let us consider
u ∈ H1(Ω) such that

(∇u,∇v)Ω = (f, v)Ω (∀v ∈ H1(Ω)) .(115)

Then such u exists if and only if

(f, 1)Ω = 0 ,(116)

and is unique up to an additive arbitrary constant function. Moreover, u ∈
H2(Ω) with

|u|2,Ω ≤ ‖�u‖Ω = ‖f‖Ω .(117)

Remark 8. One possible condition to assure the uniqueness of u is
(u, 1)Ω = 0. The present problem corresponds to the Poisson equation with
the homogeneous Neumann condition:

−�u = f in Ω , ∂u/∂n = 0 on ∂Ω .(118)
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5.2. A posteriori estimation of C0(α, θ)
We first give a posteriori estimates to C0(α, θ), for which Ω = Tα,θ and

H1
s (Ω) = V 0

α,θ. Let P0 be the orthogonal projection operator from L2(Tα,θ)
to L0

2(Tα,θ) :={g∈L2(α,θ)| (g, 1)Tα,θ
=0}:

P0g := g − |Tα,θ|−1(g, 1)Tα,θ
(∀g ∈ L2(Tα,θ)) ,(119)

where |Tα,θ| is the measure of Tα,θ. Moreover, P0|H1(Tα,θ) is also an or-
thogonal projection operator from H1(Tα,θ) to V 0

α,θ with respect to the in-
ner product of H1(Tα,θ) : (u, v)1,Tα,θ

:= (u, v)Tα,θ
+ (∇u,∇v)Tα,θ

(∀u, v ∈
H1(Tα,θ)). We also denote the present Gs, Gη

s and Sη
s respectively by G0,

Gη
0 and Sη

0 . Since Sη contains the constant functions, we have

Sη
0 = P0Sη .(120)

We will again omit the subscript Tα,θ for the (semi-)norms and inner
products. Since ∇P0v = ∇v and (f,P0v) = (P0f, v) for any v ∈ H1(Tα,θ),
eq. (101) for u ∈ V 0

α,θ in the present case becomes

(∇u,∇v) = (P0f, v) (∀v ∈ H1(Tα,θ)) ,(121)

where P0f = f under (116). Likewise, eq. (104) for {λ, u} ∈ R × V 0
α,θ \ {0}

becomes

(∇u,∇v) = λ(u, v) (∀v ∈ H1(Tα,θ)) ,(122)

since P0u = u. By Lemma 3, the above u belongs to H2(Tα,θ) ∩ V 0
α,θ with

|u|2 ≤ λ‖u‖ .(123)

Under the preceding preparations, let us apply Lemma 2 to estimate
the minimum eigenvalue λη

0 of (113) for Sη
s = Sη

0 in terms of the minimum
eigenvalue λ0 of (104) or (122). The minimizer associated to λ0 is denoted
by u0 with the normalization condition ‖u0‖ = 1. As vη in (112), we can
take various candidates from Sη

0 . One possibility is to utilize the interpolant
Πη,1u0 ∈ Sη of u0. Unfortunately, it may be outside Sη

0 , but its projection
P0Πη,1u0 can be used thanks to (120). By using the properties of the
orthogonal projection (119), we find that

|u0 − P0Πη,1u0|1 = |u0 − Πη,1u0|1 ,(124)
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‖u0 − P0Πη,1u0‖ = ‖P0(u0 − Πη,1u0)‖ ≤ ‖u0 − Πη,1u0‖ .(125)

Using (107) and (123), we can evaluate the above in terms of η, λ0, C4,η and
C5,η. Unfortunately, we have not necessarily obtained accurate theoretical
upper bounds for C5,η as was noted in Remark 4. So we should also try to
avoid the use of such a constant.

Another possibility is to use ũη,0 := λ0G
η
0u0, which is surely in Sη

0 and
is suggested by the identity u0 = λ0G

0u0. For this choice, we have

|u0 − ũη,0|1 ≤ |u0 − P0Πη,1u0|1 = |u0 − Πη,1u0|1 ,(126)

‖u0 − ũη,0‖ ≤ |u0 − ũη,0|1 sup
g∈L2(Tα,θ)\{0}

inf
vη∈Sη

0

|G0g − vη|1/‖g‖ .(127)

Here, only former part of (107) is needed: η, λ0 and C4,η are necessary but
C5,η is not so.

Based on the above considerations, we have now the following two a
priori error estimates.

Lemma 4 (A priori estimates for λη
0). If C5,ηη

2λ0 <1, it holds for the
above λ0 and λη

0 :

λ0 ≤ λη
0 ≤ λ0 + [C4,ηηλ0/(1 − C5,ηη

2λ0)]2 .(128)

Similarly, if C2
4,ηη

2λ0 < 1, then

λ0 ≤ λη
0 ≤ λ0 + [C4,ηηλ0/(1 − C2

4,ηη
2λ0)]2 .(129)

Remark 9. In actual application of the above estimates, where the
exact value of C4,η (C5,η, resp.) may not be available, we can use an appro-
priate upper bound C̃4,η (C̃5,η, resp.). From the considerations in Remark
4, (128) would give a better bounding than (129).

Let us define two functions of variable t related to (128) and (129) :

ϕ0,1(t) := t + [C4,ηηt/(1 − C5,ηη
2t)]2 (0 < t < 1/(C5,ηη

2) ) ,(130)

ϕ0,2(t) := t + [C4,ηηt/(1 − C2
4,ηη

2t)]2 (0 < t < 1/(C4,ηη)2 ) ,(131)
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where quantities other than t are considered just parameters. Since these
functions are continuous and monotonically increasing, they have their in-
verse functions, which are defined in ]0,+∞[ and will be denoted by ϕ−1

0,1

and ϕ−1
0,2. Then we can easily obtain the following a posteriori estimates or

boundings of λ0 by numerically obtained λη
0.

Theorem 6 (A posteriori estimates for λ0). The above λ0, λη
0, ϕ−1

0,1

and ϕ−1
0,2 satisfy

ϕ−1
0,1(λ

η
0) ≤ λ0 ≤ λη

0 if λη
0 < 1/(C5,ηη

2) ,(132)

ϕ−1
0,2(λ

η
0) ≤ λ0 ≤ λη

0 if λη
0 < 1/(C4,ηη)2 .(133)

Proof. Lemma 4 gives (0 <)λη
0 ≤ ϕ0,i(λ0) ≤ ϕ0,i(λ

η
0) if λη

0 <

1/(C5,ηη
2) (i = 1) or λη

0 < 1/(C4,ηη)2 (i = 2), from which the conclu-
sion follows by operating ϕ−1

0,i . �

Now we can easily obtain boundings to the constant C0(α, θ). For ex-
ample, from (132),

1/
√

λη
0 ≤ C0(α, θ) ≤ 1/

√
ϕ−1

0,1(λ
η
0) if λη

0 < 1/(C5,ηη
2) .(134)

The results (132) and (133) can be also viewed as a posteriori error estimates
for λη

0, since (132), for example, can be rewritten as 0 ≤ λη
0 − λ0 ≤ λη

0 −
ϕ−1

0,1(λ
η
0).

Remark 10. Estimates (128), (129), (132) and (133) also hold for λ

and λη of Lemma 2 with H1
s (Ω) = H1

0 (Ω) and Sη
s = Sη ∩ H1

0 (Ω). Here,
Lemma 3 cannot be used, but the corresponding Gs has the property Gs :
L2(Ω) → H1

0 (Ω) ∩ H2(Ω) with |Gsf |2 ≤ ‖f‖ (∀f ∈ L2(Ω)), cf. Section
3.4. Moreover, we cannot utilize projection operators like P0 above, but
can take advantage of the property Πη,1Gsf ∈ Sη

s (∀f ∈ L2(Ω)) for the
present Πη,1, Gs and Sη

s . Such a case is related to approximating Poincaré’s
constant [2], i.e., numerical evaluation of the smallest eigenvalue of −∆ with
the homogeneous Dirichlet condition.
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5.3. A posteriori estimation of Ci(α, θ)’s (i = 1, 2, 3)
Secondly, let us give a posteriori estimates to Ci(α, θ)’s (1 ≤ i ≤ 3),

where Ω = Tα,θ and H1
s (Ω) = V i

α,θ. As notations Gs, Gη
s and Sη

s for each
i ∈ {1, 2, 3}, we will use Gi, Gη

i and Sη
i , respectively. Let us define an

operator P i : H1(Tα,θ) → V i
α,θ (i ∈ {1, 2, 3}) by

P iv := v − |ei|−1∫
ei

v ds (∀v ∈ V i
α,θ) ,(135)

where |ei| denotes the length of edge ei. Unlike P0, the above operators are
not well-defined over L2(Tα,θ), but the following relations similar to (120)
still hold :

Sη
i = P iSη (1 ≤ i ≤ 3) .(136)

Suggested by [26], let us introduce quadratic functions fi’s (1≤ i≤3) of
x = {x1, x2} by

fi(x1, x2) := |ei|[(x1 − xi
1)

2 + (x2 − xi
2)

2]/(4|Tα,θ|) ,(137)

where x1 = {x1
1, x

1
2} = B(α cos θ, α sin θ), x2 = {x2

1, x
2
2} = A(1, 0) and x3 =

{x3
1, x

3
2} = O(0, 0). These functions are sufficiently smooth and satisfy

∂fi/∂n = δij on ej (∀ i, j ∈ {1, 2, 3}) .(138)

Then
∫
ei

v ds = (∇fi,∇v) + (∆fi, v) (∀v ∈ H1(Tα,θ)), so that (135) can be
rewritten by

P iv := v − |ei|−1[(∇fi,∇v) + (∆fi, v)] (∀v ∈ H1(Tα,θ)) .(139)

Similarly to (121), eq. (101) for u ∈ V i
α,θ in the present case becomes

(∇u,∇v) = (f,P iv) (∀v ∈ H1(Tα,θ)) , which can be rewritten by(
∇[u + |ei|−1(f, 1)fi],∇v

)
(140)

= (f − |ei|−1(f, 1) ∆fi, v) (∀v ∈ H1(Tα,θ)) .

By Lemma 3, we find that u + |ei|−1(f, 1) fi ∈ H2(Tα,θ) with |u +
|ei|−1(f, 1) fi|2 ≤ ‖f − |ei|−1(f, 1) ∆fi‖ , and hence, by using the triangle
and Schwarz inequalities,

|u|2 ≤ ‖f‖ + |ei|−1|(f, 1)|(|fi|2 + ‖∆fi‖)(141)
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≤ ‖f‖
[
1 + |ei|−1

√
|Tα,θ|(|fi|2 + ‖∆fi‖)

]
.

Clearly, it holds that 2|Tα,θ| = α sin θ, |e1| = 1, |e2| = α, |e3| =√
1 + α2 − 2α cos θ, |fi|2 = ‖∆fi‖/

√
2 and ∆fi(x1, x2) = |ei|/|Tα,θ|, so that

we have, for all i ∈ {1, 2, 3},

|u|2 ≤ (2 + 1/
√

2)‖f‖ .(142)

Similarly, eq. (104) for {λ, u} ∈ R× V i
α,θ (1 ≤ i ≤ 3) in the present case

becomes

(∇u,∇v) = λ(u,P iv) (∀v ∈ H1(Tα,θ)) .(143)

Thus, we can utilize the results for (140) by taking f in (140) as λu in
(143). The approximation problems corresponding to (109) and (113) are
also given by using Sη

i ’s (1 ≤ i ≤ 3). Then, just as in the case of C0(α, θ),
we have the following results for Ci(α, θ)’s (1 ≤ i ≤ 3).

Theorem 7 (A priori and a posteriori estimates for eigenvalues (i =
1, 2, 3)). For each i ∈ {1, 2, 3}, let λi and λη

i be respectively the smallest
eigenvalues of (104) and (113) for H1

s (Ω) = V i
α,θ and Sη

s = Sη
i . Then, if

(MC4,ηη)2λi < 1 with M := 2 + 1/
√

2, it holds that

λi ≤ λη
i ≤ λi +

[
MC4,ηηλi/(1 − M2C2

4,ηη
2λi)

]2
.(144)

and, if λη
i < 1/(MC4,ηη)2 ,

ϕ−1
i (λη

i ) ≤ λi ≤ λη
i ,(145)

where ϕ−1
i is the inverse function of the following monotonically increasing

continuous function:

ϕi(t) := t +
[
MC4,ηηt/(1 − M2C2

4,ηη
2t)

]2(146) (
0 < t < 1/(MC4,ηη)2 ; 1 ≤ i ≤ 3

)
.

Remark 11. Because of the factor M ≈ 2.7071..., efficiency of (144)
is worse than that of (129). In the present case, estimates corresponding
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to (128) using C5,η do not appear to be fully effective unlike (128). This is
attributed to the fact that we cannot at present obtain desirable estimates
for ‖u − P iΠη,1u‖ (∀u ∈ V i

α,θ ∩ H2(Tα,θ); 1 ≤ i ≤ 3), since P i is not
definable over L2(Tα,θ) and hence we cannot use the best approximation
property there.

6. Numerical Results

We performed numerical computations to see the actual dependence of
various constants on α and θ. Furthermore, we also utilized the obtained
exact values or upper bounds of such constants to give quantitative a pos-
teriori error estimates for some eigenvalue problems.

6.1. Computational methods
To obtain approximate values of error constants, we can utilize the FEM

quite effectively. In particular, we used the most popular P1 triangular finite
element for numerical computations of Ci(α, θ)’s for 0 ≤ i ≤ 3 by preparing
appropriate triangulations of Tα,θ. For C4(α, θ) and C5(α, θ), it is natural to
use various triangular finite elements for Kirchhoff plate bending problems,
since the associated partial differential equations are of 4th order as is noted
in Section 2. In our actual computations, we used the discrete Kirchhoff
triangular element presented in [17]. On the other hand, we can also use
the Siganevich approach for computation of C4(α, θ), which adopts the P1

triangle together with a penalty method for a system of 2nd order partial
differential equations similar to the incompressible Stokes system [30].

In every case, we have a matrix eigenvalue problem as the discretization
of the original eigenvalue problem described by a weak form. More specifi-
cally, it is a generalized matrix eigenvalue problem with respect to unknown
eigenvectors of nodal values of approximate eigenfunctions, and it can be
solved for example by the inverse iteration method [9]. A difficulty in deriv-
ing such matrix eigenvalue problems is how to deal with linear constraint
conditions imposed on the spaces V i

α,θ for i = 0, 1, 2, 3. Similar constraint
conditions also appear if we use the Siganevich method to compute C4(α, θ).
One possible method is to eliminate some unknown nodal values by using
the linear constraints, but then we have non-sparse coefficient matrices in
general. Another method is to employ the Lagrange multiplier method,
which does not destroy the global sparseness of the matrices. We tested
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both approaches with reasonable results. On the other hand, we do not
have such a difficulty in computing C4(α, θ) and C5(α, θ) by Kirchhoff type
triangular elements, where the linear constraints v(O) = v(A) = v(B) = 0
for V 4

α,θ can be handled as homogeneous “point” conditions.
The numerical results below are obtained by FEM in the double or

quadruple precision arithmetics, without strict numerical verification. But
their accuracy appears to be reasonable at least in graphical level, since
finer mesh computations give essentially the same graphs.

6.2. Numerical results for error constants
We first show some results for Ci(α)’s (0 ≤ i ≤ 5) by the P1 finite element

and the Kirchhoff triangular element in [17] with the uniform triangulation
of the domain Tα. In such calculations, Tα is subdivided into a number of
small triangles congruent to Tα,π/2,h with e. g. h = 1/20. The Siganevich
method [30] is also tested to calculate C4(α) approximately.

Figure 2 consists of two parts and illustrates the graphs of approximate
Ci(α)’s (0 ≤ i ≤ 5) versus α ∈]0, 1]. Exact values of C0 and C1 = C2

together with an approximate value of C5 are also included as horizontal
lines. At α = 1, the approximate values coincide well with the available ex-
act ones in Theorem 3, and we can numerically see that C1 (= C2) is a nice
upper bound of C4. For general α, the monotonically increasing behaviors
theoretically predicted for Ci(α)’s (i = 0, 1, 2, 3, 5) as well as the relation
C4(α) ≤ min{C1(α), C2(α)} are also well observable in the graphs. The
present numerical results suggest that C4(α) is also monotonically increas-
ing, but we have not succeeded in proving such a conjecture. Moreover,
when α ≈ 0, the numerical results agree well with the exact right limits
given in Appendix. For C4(α), we tested two methods, that is, the P1 tri-
angle with the Siganevich method and the Kirchhoff triangle. The graph
for C4(α) in Fig. 2 is actually obtained by the latter approach, but is
indistinguishable in graphical level from the one by the former method.

We also check numerically the validity of the upper bounds for C4(α, θ)
in Corollary 1 and Theorem 2. We here show one example with θ =
2π/3 : C4(α, 2π/3), C

(1)
4 (α, 2π/3) := C4(α)φ4(2π/3) and C

(2)
4 (α, 2π/3) :=

ν(α, 2π/3)/(
√

2 sin 2π
3 ), where two functions φ4 and ν come from (32) and

(34). We also obtained C4(α), C1(α, 2π/3) and C2(α, 2π/3) numerically to
use in the above two formulas. The results are shown in Fig. 3, and we
can see that both C

(1)
4 (α, 2π/3) and C

(2)
4 (α, 2π/3) give upper bounds to
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Fig. 2. Numerically obtained graphs for Ci(α)’s (0 ≤ i ≤ 5; 0 < α ≤ 1)

C
(1)
4 (α, 2π/3) numerically. In the present case, C

(2)
4 (α, 2π/3) appears to be

superior to C
(1)
4 (α, 2π/3) as upper bounds.

Figures 4 and 5 illustrate numerically obtained contour lines for
Ci(α, θ)’s in the α− θ polar coordinates, where the abscissa denotes α cos θ,
and the ordinate does α sin θ. The unit circle α = 1 is also shown by a
dotted curve. The minimum required range for α and θ is specified by (1),
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Fig. 3. Two upper bounds of C4(α, θ) for θ = 2π/3

but the contour lines are shown in wider ranges to see their global behav-
iors. The contour lines are sometimes cut off in the portions α ≈ 0 and
|θ − π/2| ≈ π/2, where the expected accuracy may be insufficient. The
behavior of C4(α, θ) appears to be the most complicated among all, and the
necessity of the maximum angle condition is visually seen. As is expected,
the other constants seem to be uniformly bounded for α ≤ 1.

6.3. A posteriori estimates of eigenvalues
To apply the results in Section 5, let us consider a posteriori estimates

for C0 = C0(1, π/2) and C1 = C1(1, π/2) based on the P1 FEM, or rather
for the eigenvalues λ0 = C−2

0 and λ1 = C−2
1 .

Table 1 gives boundings for λ0 by (132) and (133) of Theorem 6 and
those for λ1 by (145) of Theorem 7. We tested several meshes for T , which
are uniform ones as is shown in the table. The parameters C̃4,η, C̃5,η and η

in (132), (133) and (145) are specified here as

C̃4,η = 0.5 , C̃5,η = 0.17 , η = 1/N ,(147)
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Fig. 4. Contour lines of Ci(α, θ) for i = 0, 1, 2
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Fig. 5. Contour lines of Ci(α, θ) for i = 3, 4, 5



Error Constants for P0 and P1 Interpolations 71

Table 1. A posteriori estimates for λ0 and λ1

T
η = 1/N , N = 4 in the left figure

† Approximate eigenvalue is outside the domain of definition for ϕ−1
1 .

N bounds for λ0 by ϕ−1
0,1 bounds for λ0 by ϕ−1

0,2 bounds for λ1 by ϕ−1
1

2 6.5550 < λ0 < 11.7155 5.9890 < λ0 < 11.7155 λ1 < 4.3071†

3 8.1463 < λ0 < 10.7213 7.8874 < λ0 < 10.7213 1.9780 < λ1 < 4.2102

4 8.8616 < λ0 < 10.3570 8.7512 < λ0 < 10.3570 2.6006 < λ1 < 4.1713

8 9.6143 < λ0 < 9.9946 9.6055 < λ0 < 9.9946 3.6537 < λ1 < 4.1304

16 9.8060 < λ0 < 9.9012 9.8054 < λ0 < 9.9012 3.9982 < λ1 < 4.1196

32 9.8537 < λ0 < 9.8776 9.8537 < λ0 < 9.8776 4.0864 < λ1 < 4.1168

64 9.8656 < λ0 < 9.8716 9.8656 < λ0 < 9.8716 4.1085 < λ1 < 4.1161

(∞) λ0 = π2 = 9.869604... λ1 ≈ 4.115858

where N is the number of elements along each edge of T (N = 4 in the
figure of Table 1). Here C̃4,η is a correct upper bound of C4,η (cf. Theorems
3 and 4), while C̃5,η is only an approximate one of C5,η at present. We
tested (132) to see its effectiveness experimentally.

We can observe that the present simple methods can actually bound C0

and C1 from both above and below. As is expected, (132) gives better lower
bounds than (133) for coarser meshes. Table 1 also shows that the lower
bounds obtained for C1 are in general rougher than those for C0, which is
probably attributed to the factor M = 2 + 1/

√
2.

As another application, let us bound the first eigenvalue of −∆ with
the Dirichlet condition for the regular n-polygonal domain Ωn (n ≥ 3),
circumscribing the unit disk Ω∞ centered at the origin O. In this case, the
formulas in Lemma 4 and Theorem 6 can be used without modifications
since each Ωn is convex, cf. Remark 10. It is well known that the first
eigenvalue for Ωn is monotonically increasing in n and is bounded from above
by that for Ω∞. The eigenvalues for n = 4 and n = ∞ are known as π2/2
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n = 3 n = 4

n = 5 n = 10

Fig. 6. Meshes for n-polygonal domains Ωn with N = 5 : n = 3, 4, 5, 10

and the square of the first zero of the Bessel function J0, respectively, but it
is difficult to determine the exact values for general n. So we will numerically
evaluate such eigenvalues for several n with a posteriori estimates.

As meshes, we first triangulate the right triangle �OAB with OA = 1,
AB = tan(π/n) and ∠OAB = π/2 by dividing each edges uniformly into N

segments. Then by a reflection and rotations, we can obtain whole meshes
for Ωn, see Fig. 6. Then we can use (133) with

C̃4,η = 0.5, η =
√

3/N if n = 3 , η = 1/N if n ≥ 4 ,(148)

where α ≤ 1 in all the cases. The obtained results are summarized in Table
2, from which we can experimentally see the effectiveness of our bounding
(133). Such results will be strictly mathematical one when appropriate
verification methods become available.
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Table 2. A posteriori estimates for the first eigenvalue λ associated to Ωn

n N bounds for λ N bounds for λ N bounds for λ

3 5 3.9082 < λ < 4.4963 10 4.2688 < λ < 4.4147 100 4.3853 < λ < 4.3868

4 5 4.7700 < λ < 5.0211 10 4.8954 < λ < 4.9569 100 4.9344 < λ < 4.9351

5 5 5.0049 < λ < 5.2826 10 5.1590 < λ < 5.2273 100 5.2075 < λ < 5.2082

6 5 5.1387 < λ < 5.4323 10 5.3114 < λ < 5.3839 100 5.3659 < λ < 5.3667

7 5 5.2220 < λ < 5.5257 10 5.4078 < λ < 5.4831 100 5.4666 < λ < 5.4674

8 5 5.2774 < λ < 5.5879 10 5.4727 < λ < 5.5498 100 5.5346 < λ < 5.5354

9 5 5.3160 < λ < 5.6313 10 5.5185 < λ < 5.5969 100 5.5827 < λ < 5.5836

10 5 5.3440 < λ < 5.6628 10 5.5520 < λ < 5.6313 100 5.6181 < λ < 5.6190

7. Concluding Remarks

We have obtained some explicit relations for the dependence of several
interpolation error constants on geometric parameters of triangular finite
elements. We can effectively utilize these results to give upper bounds of
various a priori and a posteriori error estimates of finite element solutions
based on the P1 and/or P0 approximate functions. Some numerical results
were also given to see the effectiveness of our analysis and the actual be-
haviors of the error constants. To obtain clearer picture of the interpolation
error constants, we should also perform various analyses including numerical
analysis with verifications, asymptotic analysis etc.

We have mainly considered the conforming P1 triangle, which can natu-
rally construct subspaces of H1 space over the entire domain. But there also
exists a non-conforming counterpart, which is also based on the piecewise
linear polynomials but uses the midpoint nodes of edges [11, 31]. Analysis of
such an element is more complicated, since we must evaluate the errors in-
duced by the interelement discontinuity of the approximate functions. Still
we can obtain some interpolation error estimates as given in [19] by using
the constants for the P0 and the conforming P1 triangles. We will report
more refined results in subsequent papers.
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Appendix A. Determination of λ(i) = C−2
i (+0) (0 ≤ i ≤ 5)

Recall Theorem 5 for the determination of Ci(+0) := limα→+0 Ci(α)
or λ(i) = C−2

i (+0) (0 ≤ i ≤ 5). Fortunately, all the ordinary differen-
tial equations (ODE) there can be solved by means of the hypergeometric
functions [32], so that we can obtain the determination equations in terms
of such functions. All the numerical results below are obtained by using
Mathematica r©.

A.1 λ(0)

From Theorem 5, the ODE and the boundary condition in this case are
given by

−((1 − s)u′(s))′ = λ(0)(1 − s)u(s) for s ∈]0, 1[, u′(0) = 0 .(149)

The general solution of the above that can be identified with an element of
H1(T ) ⊃ V 0,Z is

u(s) = c(1)J0(
√

λ(0)(1 − s)) ,(150)

where c(1) is an arbitrary constant and J0 is the 0-th order Bessel function of
the first kind. Actually Y0(

√
λ(0)(1−s)) (Y0= the 0-th order Bessel function

of the second kind) also satisfies the ODE but cannot be identified with an
element of H1(T ). Thus applying the boundary condition above and the
relation J1 = −J ′

0, we have the equation for λ(0) as J1(
√

λ(0)) = 0 , which
means that

√
λ(0) is the smallest positive zero of J1. Approximately, we get

λ(0) ≈ 3.831712 , C0(+0) ≈ 0.260980 .(151)
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A.2 λ(1) = λ(3) = λ(4)

In this case, the ODE, the linear constraint and the boundary condition
are given by (72) as

− ((1 − s)u′(s))′ = λ(1)(1 − s)u(s) + C for s ∈]0, 1[,∫ 1

0
u(s)ds = 0, u′(0) = 0 ,

(152)

where C is an arbitrary constant. Then the general solution of ODE that
can be identified with an element of H1(T ) ⊃ V 1,Z is expressed by

u(s) = c(1)J0(
√

λ(1)(1 − s))(153)

− C (1 − s) 1F2(1; 3/2, 3/2;−λ(1)(1 − s)2/4) ,

where c(1) is an arbitrary constant, and 1F2(·; ·, ·; ·) is a kind of hypergeo-
metric function. Using the linear constraint and the boundary condition,
we have the following for λ = λ(1):

λ

4 0F1(; 2;−λ

4
) 2F3(1, 1;

3
2
,
3
2
, 2;−λ

4
)(154)

+ 1F2(
1
2
; 1,

3
2
;−λ

4
) 1F2(1;

1
2
,
3
2
;−λ

4
) = 0 ,

where 0F1 and 2F3 are also hypergeometric functions. Approximately, we
have

λ(1) ≈ 3.081262, C1(+0) ≈ 0.324542 .(155)

A.3 λ(2)

By Theorem 5, the ODE and the boundary condition associated with
λ(2) are given as

−((1 − s)u′(s))′ = λ(2)(1 − s)u(s) for s ∈]0, 1[ , u(0) = 0 .(156)

Then the general solution of the above ODE belonging to H1(T ) ⊃ V 2,Z is
the same as (150) : u(x) = c(1)J0(

√
λ(2)(1 − s)), so that the determination

equation for λ(2) is obtained as J0(
√

λ(2)) = 0 , that is,
√

λ(2) is the minimum
positive zero of J0. Approximately, we have

λ(2) ≈ 2.404832, C2(+0) ≈ 0.415831 .(157)
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A.4 λ(5)

By Theorem 5, the ODE and the boundary conditions associated to λ(5)

are given as

((1 − s)u′′(s))′′ = λ(5)(1 − s)u(s)(158)

for s ∈]0, 1[ , u(0) = u(1) = u′′(0) = 0 .

Then the general solution of the ODE belonging to H2(T ) ⊃ V 4,Z is

u(s) =c(1)
0F3(;

1
2
,
3
4
,
3
4
;
λ(5)(1 − s)4

256
)(159)

+ c(2)(1 − s) 0F3(;
3
4
, 1,

5
4
;
λ(5)(1 − s)4

256
)

+ c(3)(1 − s)2 0F3(;
5
4
,
5
4
,
3
2
;
λ(5)(1 − s)4

256
) ,

where c(1), c(2) and c(3) are arbitrary constants, and 0F3 is a hypergeometric
function. Then, introducing two functions f(λ, t) = t 0F3(; 3

4 , 1, 5
4 ; λ

256 t4) and
g(λ, t) = t2 0F3(; 5

4 , 5
4 , 3

2 ; λ
256 t4), the determination equation for λ = λ(5) is

given by

f ′′(λ, 1)g(λ, 1) − g′′(λ, 1)f(λ, 1) = 0 ,(160)

where ′′ = ∂2/∂t2. Approximately, we find that

λ(5) ≈ 9.267752, C5(+0) ≈ 0.107901 .(161)
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