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Torus Fibrations and Localization of Index I

– Polarization and Acyclic Fibrations

By Hajime Fujita, Mikio Furuta∗ and Takahiko Yoshida†

Abstract. We define a local Riemann-Roch number for an open
symplectic manifold when a completely integrable system without
Bohr-Sommerfeld fiber is provided on its end. In particular when a
structure of a singular Lagrangian fibration is given on a closed sym-
plectic manifold, its Riemann-Roch number is described as the sum of
the number of nonsingular Bohr-Sommerfeld fibers and a contribution
of the singular fibers. A key step of the proof is formally explained as
a version of Witten’s deformation applied to a Hilbert bundle.

1. Introduction

The purpose of this paper is to give a localization technique for the index
of spinc Dirac operator. Our localization makes use of no group action, but
a family of acyclic flat connections on tori. A typical example is given by a
symplectic manifold with an integrable system.

For a completely integrable system on a closed symplectic manifold,
the Riemann-Roch number is sometimes equal to the number of Bohr-
Sommerfeld fibers. For Kähler case D. Borthwick, T. Paul and A. Uribe
gave a relationship between Bohr-Sommerfeld Lagrangians and the kernels
of twisted spinc Dirac operators using Fourier integral operators [2]. A
problem here would be how to count singular Bohr-Sommerfeld fibers, and
how to count the contribution from other singular fibers if there are. M. D.
Hamilton and E. Miranda dealt with the singular Bohr-Sommerfeld fibers
using J. Śniatycki’s framework and found a discrepancy between quantiza-
tions via real and complex polarizations under this framework [10, 11].
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When an integrable system is associated to a Hamiltonian group action,
the geometric quantization conjecture of V. Guillemin and S. Sternberg is a
localization property of the Riemann-Roch character. H. Duistermaat, V.
Guillemin, E. Meinrenken and S. Wu gave a proof of the conjecture for torus
actions using the geometric localization provided by E. Lerman’s symplectic
cuts [3] [12]. Y. Tian and W. Zhang gave a proof using a direct analytic
localization with perturbation of the Dirac operator [14].

In this paper we give a localization property of the Riemann-Roch num-
bers for a completely integrable system possibly with singular fibers. We
define multiplicities for Bohr-Sommerfeld fibers and singular fibers so that
the total sum of the multiplicities for all the fibers is exactly equal to the
Riemann-Roch number. Our method is flexible and allows various general-
izations. In this paper, however, we explain only the simplest case. In our
subsequent papers we will explain some of the generalizations and, as an
application, an approach to the conjecture of the Guillemin and Sternberg
for Hamiltonian torus actions [4, 5].

Our idea is simple. Let M be a 2n-dimensional closed symplectic man-
ifold with a prequantizing line bundle L. Suppose X is an n-dimensional
affine space, and π : M → X a completely integrable system. The symplec-
tic structure ω gives rise to an element [D ⊗ L] of the K-homology group
K0(M), where D is the Dolbeault operator for an almost complex structure
compatible with ω. The projection π gives an element of K0(X) defined to
be the pushforward π∗[D ⊗L]. The Riemann-Roch number is calculated as
the further pushforward of π∗[D ⊗ L] with respect to the map from X to a
point.

If we have a formulation of K-homology group in terms of some geo-
metric data, and if a geometric representative of π∗[D ⊗ L] has a localized
support, then the Riemann-Roch number can be calculated by the data on
the support.

In fact it is possible to realize this idea rigorously if we use a formulation
of K-homology in terms of some notion of generalized vector bundle with
Clifford module bundle action, which is developed in [7], [9]1. In this short
paper, however, we explain only the localization property without appealing

1Strictly speaking what we actually need here is the notion of a K-cohomology cocycle
with local coefficient which is defined using some action of a Clifford algebra bundle. For
a manifold if the Clifford algebra bundle is the one generated by its tangent space, the
twisted K-cohomology group is identified with its K-homology through a duality.
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to the framework of [7] at the expense of giving up identifying π∗[D ⊗L] in
terms of geometric data.

Some key points of our arguments are:

1. The restriction of the Dolbeault operator, or the spinc Dirac operator,
to a Lagrangian submanifold is equal to its de Rham operator at least
on the level of principal symbol.

2. A flat line bundle over a torus is trivial if and only if the corresponding
twisted de Rham complex is not acyclic.

3. The localization we use is closely related to adiabatic limit.

4. The Laplacian corresponding to the de Rham operator along La-
grangian fibers plays the role of the potential term of the Dirac-type
operator on the base manifold.

5. Since the Laplacian is a second-order elliptic differential operator,
when it is strictly positive, it can absorb the effect of first-order term.

The last property makes our construction rather flexible.
The organization of this paper is as follows. In Sections 2, 3 and 4, we

give localization properties for symplectic setting, topological setting, and
analytical setting respectively. The latter is a generalization of the former
for each stage. In Section 5 we prove the localization. In Section 6 we give
examples for 2-dimensional topological case. Finally in Section 7 we give
comments for possible generalizations.

2. Symplectic Formulation

Let M be a 2n-dimensional closed symplectic manifold with a symplectic
form ω. Suppose L is a complex Hermitian line bundle over M with Hermi-
tian connection ∇ satisfying that the curvature of ∇ is equal to −2π

√
−1ω.

M has an almost complex structure compatible with ω, and we can de-
fine the Riemann-Roch number RR(M, L) as the index of the Dolbeault
operator with coefficients in L.

Let X be an n-dimensional affine space, and π : M → X a completely
integrable system. Then generic fibers of π are empty or disjoint unions of
finitely many n-dimensional tori with canonical affine structures.
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Definition 2.1. x ∈ X is L-acyclic if x is a regular value of π and L

does not have any non-vanishing parallel section over the fiber at x.

The main purpose of this paper is to show that RR(M, L) is localized
at non L-acyclic points. More precisely

Theorem 2.2. Suppose X = U∞ ∪ (∪m
i=1Ui) is an open covering satis-

fying the following properties.

1. {Ui}m
i=1 are mutually disjoint.

2. U∞ consists of L-acyclic points.

Let Vi = π−1(Ui). Then for each i = 1, . . . , m there exists an integer
RR(Vi, L), which depends only on the data restricted on Vi, such that

RR(M, L) =
m∑

i=1

RR(Vi, L).

Here the integer RR(Vi, L) is invariant under continuous deformations of
the data.

Remark 2.3. The theorem asserts that the Riemann-Roch number
RR(M, L) is localized at non-singular Bohr-Sommerfeld fibers and singular
fibers.

Remark 2.4. While the Riemann-Roch number RR(M, L) for the
closed symplectic manifold M depends only on the symplectic structure
ω, the localized Riemann-Roch number RR(Vi, L) depends on the restric-
tions of ω, π,∇ as well, though we omit this dependence in the notation if
there is no confusion.

Remark 2.5. In fact Theorem 2.2 holds for a Lagrangian fibration
possibly with singular fibers.

In the next section we reduce the above localization theorem to a slightly
more general localization (Theorem 3.3) formulated purely topologically.
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3. Topological Formulation

In this section let M be a 2n-dimensional closed spinc manifold,2 and E

a complex Hermitian vector bundle over M . We define the Riemann-Roch
number RR(M, E) as the index of the spinc Dirac operator with coefficients
in E.3 Let V be an open subset of M .

Definition 3.1. A real polarization on V is the data (U, π, φ, J) sat-
isfying the following properties.

1. U is an n-dimensional smooth manifold.

2. π : V → U is a fiber bundle whose fibers are disjoint unions of finitely
many n-dimensional tori with affine structures.

3. φ : π∗TfiberV → TU is an isomorphism between two real vector bun-
dles, where π∗TfiberV is the vector bundle on U consisting of parallel
sections of the tangent bundle of the fiber π−1(x) for each x ∈ U .

4. J is an almost complex structure on V which is a reduction of the
given spinc-structure.

5. The composition of J : TfiberV → TV and π∗ : TV → TU is equal to
the map induced from φ.

Suppose that V ⊂ M has a real polarization (U, π, φ, J) such that the
restriction E|V has a unitary connection ∇ along fibers for the bundle struc-
ture π : V → U .

Definition 3.2. (E,∇) is acyclic if the restriction (E,∇)|π−1(x) is a
flat vector bundle and the twisted de Rham cohomology group H∗(π−1(x),
(E,∇)|π−1(x)) is zero for every x ∈ U .

Theorem 3.3. Let M be a closed spinc manifold and E a complex
Hermitian vector bundle over M . Suppose M = V∞ ∪ (∪m

i=1Vi) is an open
covering satisfying the following properties.

2In this paper we take a convention of spinc structures which do not need any Rie-
mannian metrics. See Appendix A for the convention.

3Precisely, in order to define the spinc Dirac operator with coefficients in E we need
a unitary connection on E. But it is well-known that RR(M, E) itself does not depend
on the choice of connections. So we do not mention it here.
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1. {Vi}m
i=1 are mutually disjoint.

2. V∞ has a real polarization (U, π, φ, J).

3. E|V∞ has a unitary connection ∇ along fibers for the bundle structure
π : V∞ → U .

4. (E|V∞ ,∇) is acyclic.

Then for each i = 1, . . . , m there exists an integer RR(Vi, E), which depends
only on the data restricted on Vi, such that

RR(M, E) =
m∑

i=1

RR(Vi, E).

Here the integer RR(Vi, E) is invariant under continuous deformations of
the data.

Proof of Theorem 2.2 assuming Theorem 3.3. Note that the
symplectic structure gives an isomorphism T ∗U∞ ∼= π∗TfiberV∞. Fix a Rie-
mannian metric on TU∞ so that we have an isomorphism TU∞ ∼= T ∗U∞.
Define φ by using these two. By fixing a Lagrangian splitting TV∞ ∼=
TfiberV∞ ⊕ π∗TU∞, φ induces an almost complex structure, which deter-
mines the spinc structure. We take E to be L. Then the rest would be
obvious. �

In the next section we further reduce Theorem 3.3 to more general lo-
calization for some Dirac-type operator (Theorem 4.5).

4. Analytical Formulation

In this section let M be a closed Riemannian manifold. We denote
by Cl(TM) the Clifford algebra bundle over M generated by TM . Let
W = W 0 ⊕ W 1 be a Z/2Z-graded complex Hermitian vector bundle over
M with a structure of Cl(TM)-module such that for each vector v in TM ,
the action of v is skew-Hermitian and of degree-one.

We use the following definition of Dirac-type operator.

Definition 4.1. A first order differential operator D : Γ(W ) → Γ(W )
is a Dirac-type operator on W if D is a degree-one formally self-adjoint
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operator with smooth coefficient whose symbol is given by the Clifford action
on W .

Dirac-type operators on W are not unique, but their indices are equal.

Definition 4.2. We denote by Ind (M, W ) the index of a Dirac-type
operator on W .

Let V be an open subset of M .

Definition 4.3. A generalized real polarization on V is the data (U, π,

Dfiber) satisfying the following properties.

1. U is a Riemannian manifold.

2. π : V → U is a fiber bundle with fiber a closed manifold.

3. Let TV = TfiberV ⊕ T⊥
fiberV be the orthogonal decomposition with

respect to the Riemannian metric on V . Then the projection gives an
isometric isomorphism T⊥

fiberV
∼= π∗TU .

4. Dfiber : Γ(W |V ) → Γ(W |V ) is a family of Dirac-type operators along
fibers anti-commuting with the Clifford action of TU in the following
sense.

(a) Dfiber is an order-one, formally self-adjoint differential operator
of degree-one.

(b) Dfiber contains only the derivatives along fibers, i.e, Dfiber com-
mutes with multiplication of the pullback of smooth functions on
U .

(c) The principal symbol of Dfiber is given by the Clifford action of
TfiberV .

(d) The Clifford action of TU on W |V anti-commutes with Dfiber.
Here the Clifford action of TU on W |V is defined through the
horizontal lift π∗TU ∼= T⊥

fiberV ⊂ TV , where the first isomor-
phism is the one given in 3 above.
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Definition 4.4. A generalized real polarization (U, π, Dfiber) on V is
acyclic if for each x ∈ U , the restriction of Dfiber to Γ(W |π−1(x)) has zero
kernel.

Theorem 4.5. Let M be a closed Riemannian manifold and W =
W 0 ⊕W 1 a Cl(TM)-module bundle as above. Suppose M = V∞ ∪ (∪m

i=1Vi)
is an open covering satisfying the following properties.

1. {Vi}m
i=1 are mutually disjoint.

2. V∞ has an acyclic generalized real polarization (U, π, Dfiber).

Then for each i = 1, . . . , m there exists an integer Ind (Vi, W ), which de-
pends only on the data restricted on Vi, such that

Ind (M, W ) =
m∑

i=1

Ind (Vi, W ).

Here the integer Ind (Vi, W ) is invariant under continuous deformations of
the data.

The proof of Theorem 3.3 follows from the next obvious lemma.

Lemma 4.6. Let T be an n-dimensional torus with an affine structure.
Let X be the n-dimensional vector space of parallel vector fields. For any
Euclidean metric on X, T has an induced flat Riemannian metric. Then
each element of the dual space X∗ gives a harmonic 1-form.

Proof of Theorem 3.3 assuming Theorem 4.5. Fix a Rieman-
nian metric on U . Combining it with the flat metric associated with the
affine structures on fibers of V∞ via the almost complex structure J , we
define a Riemannian metric on V∞ and extend it to M . Take W to be the
tensor product of the spinor bundle of the spinc manifold M and E. Then we
define the family of Dirac-type operators along fibers acting on Γ(W |V∞)
by Dfiber := dE,fiber + d∗E,fiber, where dE,fiber is the exterior derivative on
fibers twisted by the unitary connection ∇ on E and d∗E,fiber is its formal
adjoint. The above lemma implies the anti-commutativity between Dfiber

and the Clifford action of TU . The acyclic condition for (E,∇) implies the
acyclicity for (U, π, Dfiber). �
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5. Local Index

Let M be a Riemannian manifold and W = W 0⊕W 1 a Cl(TM)-module
bundle. Suppose V is an open subset of M with an acyclic generalized real
polarization (U, π, Dfiber) such that M � V is compact. We will define the
local index Ind (M, V, W ) (or Ind (V, W ) for short) and show deformation
invariance and an excision property. The local index depends on the acyclic
generalized real polarization on V though we omit it in the notation for
simplicity.

Remark 5.1. When π : V → U is a diffeomorphism, Dfiber is a degree-
one self-adjoint homomorphism on W |V anti-commuting with the Clifford
multiplication of TV . In this special case the definition of Ind (V, W ) is al-
ready given in [6, Chapter 3]. (See Definition 3.14 for the setting, Definition
3.21 for the definition in the case of cylindrical end, Theorem 3.20 for defor-
mation invariance, Theorem 3.29 for the excision property, and Section 3.3
for the definition for general case.) We will generalize the argument there.

5.1. Vanishing lemmas
We will show the following lemma later.

Lemma 5.2. Suppose M is closed and M = V has an acyclic gener-
alized real polarization. Take any Dirac-type operator D on W and write
D = D̃U + Dfiber for some operator D̃U . For a real number t, put Dt =
D̃U + tDfiber. Then for any large t > 0, Ker Dt = 0.

We also need a slightly generalized version, which is shown later.

Lemma 5.3. Suppose M = V and M has a cylindrical end with trans-
lationally invariant acyclic generalized real polarization on it. Take any
Dirac-type operator D on W with translationally invariance on the end,
and write D = D̃U + Dfiber for some operator D̃U . For a real number t, put
Dt = D̃U + tDfiber. Then for any large t > 0, KerDt ∩ {L2-sections} = 0.

Admitting these lemmas we first give the definition and properties of
the local index.
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5.2. Cylindrical end
We first give the definition for the special case that M has a cylindrical

end and every data is translationally invariant on the end.

Lemma 5.4. Suppose M has a cylindrical end V = N × (0,∞) with
translationally invariant acyclic generalized real polarization on it. Let ρ be
a non-negative smooth cut-off function on M satisfying ρ = 1 on N × [1,∞)
and ρ = 0 on M � V . For t > 1, put ρt := 1 + tρ. Take any Dirac-type
operator D on W with translationally invariance on the end, and write D =
D̃U +Dfiber for some operator D̃U on the end. Put Dt = D̃U +ρt Dfiber on the
end and Dt = D on M �V . Then for any large t > 0, KerDt∩{L2-sections}
is finite dimensional. Moreover its super-dimension is independent of large
t and any other continuous deformations of data.

Proof. The restriction of Dt to N × [1,∞) is of the form α(∂r +DN,t)
where α is the Clifford multiplication of ∂r and DN,t is a formally self-adjoint
operator on N depending on the parameter t. We show that KerDN,t = 0
for large t. It is technically convenient to introduce a Dirac-type operator
DN×S1,t on N × S1 as follows: DN×S1,t is written as the same expression
α(∂r + DN,t) where we use the identification S1 = R/Z. Since N × S1 is
a closed manifold, we can apply Lemma 5.2 to obtain KerDN×S1,t = 0 for
large t, which implies our claim KerDN,t = 0 for large t.

When DN,t does not have zero as an eigenvalue, any L2-solution f for
the equation Dtf = 0 on M is exponentially decreasing on the end. Then
it is well-known that the space of L2-solutions is finite dimensional, and its
super-dimension is deformation invariant as far as KerDN,t = 0. �

The super-dimension of the space of L2-solutions is equal to the index
of Dt|M�V for the Atiyah-Patodi-Singer boundary condition. We use this
index as the definition of our local index for the case of cylindrical end.

Definition 5.5. Under the assumption of Lemma 5.4, Ind (M, V, W )
is defined to be the super-dimension of KerDt ∩ {L2-sections}.

The following sum formula follows from a standard argument.

Lemma 5.6. Suppose (M, V = N × (0,∞), W ) and (M ′, V ′ = N ′ ×
(0,∞), W ′) satisfy the assumption of Lemma 5.4. Let N0 and N ′

0 be a
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connected component of N and N ′ respectively. Suppose N0 is isometric
to N ′

0 via φ : N0 → N ′
0, and for some R > 0 the map φ : N0 × (0, R) →

N ′
0 × (0, R) given by (x, r) �→ (φ(x), R− r) can be lifted to the isomorphism

between the acyclic generalized real polarizations on them. Then we can glue
M � (N0 × [R,∞)) and M ′ � (N ′

0 × [R,∞)) to obtain a new manifold M̂

with cylindrical end V̂ = N̂ × (0,∞) for N̂ = (N � N0) ∪ (N ′ � N ′
0), and

we also have a Clifford module bundle Ŵ obtained by gluing W and W ′ on
N0 × (0, R) ∼= N ′

0 × (0, R). Then we have

Ind (M̂, V̂ , Ŵ ) = Ind (M, V, W ) + Ind (M ′, V ′, W ′).

Proof. A proof is given by the APS formula of the indices. An alter-
native direct argument is to apply the excision property [6, Theorem 5.40]. �

5.3. General case
Now we would like to define the local index for general case.
Let V be an open subset of M with an acyclic generalized real po-

larization (U, WU , π, Dfiber) such that M � V is compact. We can take
a codimension-one closed submanifold NU of U such that N = π−1(NU )
divides M into compact part and non-compact part: For instance, let
f : M → [0,∞) be the distance from M � V and define g : U → [0,∞)
to be the maximal value of f on the fiber of π. Take a small real number
r > 0 such that f−1([0, r]) is a compact subset of M . Let h : U → [0,∞) be
a smooth functions on U satisfying |h(x) − g(x)| < r/2 for x ∈ U . Take a
regular value r0 of h satisfying 0 < r0 < r/2. Then NU = h−1(r0) satisfies
the required property.

Let K be the compact part of M�N . Note that a neighborhood VN of N

in V is diffeomorphic to N×(−ε, ε). Then we can construct the Riemannian
metric and the translationally invariant acyclic generalized real polarization
on (M ′, V ′), where M ′ := K∪(N×[0,∞)) and V ′ := (K∩V )∪(N×[0,∞)).
For instance, let φ : M ′ → M be a smooth map which is the identity
on the complement of N × (−ε,∞) and is given by (x, r) �→ (x, β(r)) on
N × (−ε,∞) for a smooth function β satisfying β(r) = r for −ε < r <

−(2/3)ε, and β(r) = 0 for r ≥ (1/3)ε. Define a bundle endmorphism
φ̃ : TM ′ → TM covering φ as follows. On the complement of N × (−ε,∞),
φ̃ is the identity. On T (N × (−ε,∞)) = TN × T (−ε,∞), define φ̃ by
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((x, r), (u, v)) �→ (φ(x, r), (u, v)), where x ∈ N , r ∈ (−ε,∞), u ∈ TxN and
v ∈ Tr(−ε,∞) = R. The required deformed Riemannian metric is defined
to be the pullback of the original Riemannian metric by φ̃ as a section
of the symmetric tensor product of T ∗M . The required deformed Clifford
module bundle W ′ is defined to be the pullback φ∗W . Note that we can also
construct a Riemannian manifold U ′ with a cylindrical end NU ×(0,∞) and
a fiber bundle π′ : V ′ → U ′. We define a Dirac-type operator D′

fiber acting
on Γ(W ′|V ′) by φ∗Dfiber. Then (U ′, π′, D′

fiber) is a translationally invariant
acyclic generalized real polarization on (M ′, V ′, W ′). For this structure the
local index is defined by Definition 5.5.

Definition 5.7. We define Ind (M, V, W ) to be the local index for
(M ′, V ′, W ′) with the translationally invariant acyclic generalized real po-
larization (U ′, π′, D′

fiber).

We have to show the local index is well-defined for the various choice of
our construction.

Lemma 5.8. Suppose we take two codimension-one closed submanifolds
NU and N ′

U in U so that M is divided in two ways. Then the local indices
defined by these data coincide.

Proof. Let K and K ′ be the compact parts of M divided by N =
π−1(NU ) and N ′ = π−1(N ′

U ) respectively. Then we can take another N ′′
U

so that the corresponding compact part K ′′ is contained in the intersection
of the interiors of K and K ′. It suffices to show that the local indices
coincide for K and K ′′. Deform the structures on neighborhoods of K and
K ′′ simultaneously to make the structures translationally invariant near K

and K ′′ respectively. Let M0, M
′
0 and M̂0 be the following manifolds with

cylindrical ends.

M0 = K ′′ ∪ (N ′′ × [0,∞))

M ′
0 = (N ′′ × (−∞, 0]) ∪ (K � K ′′) ∪ (N × [0,∞))

M̂0 = K ∪ (N × [0,∞))

On the cylindrical ends we have translationally invariant Clifford modules
W0, W

′
0 and Ŵ0, and translationally invariant acyclic generalized real polar-

izations. On M ′
0 the acyclic generalized real polarization is given globally.
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The sum formula of Lemma 5.6 implies Ind (M0, W0) + Ind (M ′
0, W

′
0) =

Ind (M̂0, Ŵ0). The vanishing of Lemma 5.3 implies Ind (M ′
0, W

′
0) = 0.

Therefore we have Ind (M0, W0) = Ind (M̂0, Ŵ0). This is the required equal-
ity. �

5.4. Excision
The well-definedness shown in Lemma 5.8 is the key point for the fol-

lowing formulation of excision property.

Theorem 5.9 (Excision property). Let W be a Z2-graded Clifford
module bundle over Cl(TM). Let V be an open subset of M with an acyclic
generalized real polarization (U, WU , π, Dfiber) such that M � V is compact.
Suppose U ′ is an open subset of U such that M ′ := V ′∪ (M �V ) is an open
neighborhood of M � V , where we put V ′ := π−1(U ′). Note that V ′ has the
restricted acyclic generalized real polarization. Then we have

Ind (M, V, W ) = Ind (M ′, V ′, W |M ′).

Proof. Take a codimension-one submanifold NU ′ in U ′ to define
Ind (M ′, V ′, W |M ′). Then NU ′ can be used to define Ind (M, V, W ). �

Proof of Theorem 4.5. We first note that when M is a closed
manifold the local index Ind (M, V, W ) defined by Definition 5.7 is equal
to the usual index Ind (M, W ) of a Dirac-type operator. Under the as-
sumption of Theorem 4.5 from the excision property we have Ind (M, W ) =
Ind (∪m

i=1Vi, W |∪m
i=1Vi), which implies the theorem. �

5.5. Proof of vanishing lemmas
In this subsection we show the vanishing lemmas Lemma 5.2 and

Lemma 5.3. Suppose V is an open subset of M with an acyclic general-
ized real polarization (U, π, Dfiber). Take any order-one formally self-adjoint
differential operator D̃ over W |V with degree one whose principal symbol is
given by the composition of the projection π∗ : TV → TU and the Clifford
action of TU on W |V . Then D̃ + Dfiber is a Dirac-type operator on W |V .

Lemma 5.10. The anticommutator DfiberD̃ + D̃Dfiber is an order-one
differential operator on W |V which contains only the derivatives along fibers,
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i.e, it commutes with the multiplication of the pullback of smooth functions
on U .

Proof. Recall that, the principal symbol of D̃ anti-commutes not only
with the symbol of Dfiber, but also with the whole operator Dfiber. The
claim follows from this property. It is straightforward to check it using local
description. Instead of giving the detail of the local calculation, however,
we here give an alternative formal explanation for the above lemma.

For x ∈ U let Wx be the space of sections of the restriction of W to the
fiber π−1(x). Then W =

∐
Wx is formally an infinite dimensional vector

bundle over U . We can regard Dfiber as an endmorphism on W. Then
Dfiber is a order-zero differential operator on W whose principal symbol
is equal to Dfiber itself. Then, as a differential operator on W, DfiberD̃ +
D̃Dfiber is an (at most) order-one operator whose principal symbol is given
by the anticommutator between the Clifford action by TU and Dfiber. This
principal symbol vanishes, which implies that the anticommutator is order-
zero as a differential operator on W, i.e., it does not contain derivatives of
U -direction. �

Proof of Lemma 5.2. Let f be a section of W . On each fiber of π

at x ∈ U , the second order elliptic operator D2
fiber is strictly positive. Since

DfiberD̃ + D̃Dfiber gives a first order operator on the fiber, a priori estimate
implies the estimate∣∣∣∣∣

∫
π−1(x)

((DfiberD̃ + D̃Dfiber)f, f)

∣∣∣∣∣ ≤ C

∫
π−1(x)

(D2
fiberf, f)

for some positive constant C. Since M is compact we can take C uniformly.
Therefore we have∫

M
((D̃ + tDfiber)2f, f) =

∫
(D̃2f, f) + t2

∫
(D2

fiberf, f)

+t

∫
((DfiberD̃ + D̃Dfiber)f, f)

≥
∫

(D̃2f, f) + (t2 − Ct)
∫

(D2
fiberf, f)

=
∫

M
|D̃f |2 + (t2 − Ct)

∫
M

|Dfiberf |2.
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In particular if t > C and (D̃ + tDfiber)f = 0, then Dfiberf is zero, which
implies f itself is zero. �

Proof of Lemma 5.3. The proof is almost identical to the above
one for the compact case. What we still need is to guarantee the valid-
ity of partial integration. This validity follows from the fact that when
(D̃ + tDfiber)f = 0 and f is in L2, then f and any derivative of f decay
exponentially on the cylindrical end of V . �

Note that the exponential decay in the above proof relies on the vanish-
ing lemma for compact case, so we had to separate the proof.

6. 2-Dimensional Case

Let Σ be a compact oriented surface with non-empty boundary ∂Σ. Let
L be a complex line bundle over Σ. Suppose a U(1)-connection is given
on the restriction of L to ∂Σ. When the connection is non-trivial on ev-
ery boundary component, we can define the local Riemann-Roch number
for the data as follows. Fix a product structure (−ε, 0] × ∂Σ on an open
neighborhood of the boundary. Then on the collar neighborhood of each
connected component of ∂Σ the projection onto (−ε, 0] is a circle bundle.
Extend the connection smoothly on the neighborhood of the boundary so
that we have a flat non-trivial connection on each fiber of the circle bundle.
Let V = V1 be the interior of Σ, and V∞ be the intersection of the open
collar neighborhood and V . Then we have the local Riemann-Roch num-
ber RR(V, L) (see Theorem 3.3). The deformation invariance of the local
Riemann-Roch number implies that it depends only on the initially given
data. We often write

[Σ] = RR(V, L).

In this section we calculate [Σ] explicitly for several examples (Theorem 6.7).
We also show that the local Riemann-Roch number for a non-singular Bohr-
Sommerfeld fiber in symplectic case is equal to one (Theorem 6.11). Let us
first recall our convention of orientation for boundary. We use the conven-
tion for which Stokes theorem holds with positive sign. In other words: Sup-
pose X̂ is an oriented manifold, and f is a smooth real function on X̂ with
0 a regular value. The orientations of X = f−1((−∞, 0]) and Y = f−1(0)
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are related to each other as follows. If ωX and ωY are non-vanishing top-
degree forms on X and Y compatible with their orientations, then we have
ωX |Y = ρ df ∧ ωY for some positive smooth function ρ on Y .

6.1. Type of singularities
6.1.1 BS type singularities

For a positive number ε let Aε be the annulus [−ε, ε] × S1 with the
orientation given by dx ∧ dθ/2π,where x is the coordinate of [−ε, ε]. The
projection map (x, θ) �→ x gives a circle bundle structure of Aε. Let L be a
complex line bundle over Aε, and ∇ a U(1)-connection on L. Let e

√
−1h(x)

be the holonomy along the circle of {x} × S1 for the orientation given by
dθ. Suppose h(x) is continuous and h(0) = 0.

Definition 6.1 (positive/negative BS). When h(x) > 0 for x > 0 and
h(x) < 0 for x < 0, we call the fiber at 0 a positive BS type. When h(x) < 0
for x > 0 and h(x) > 0 for x < 0, we call the fiber at 0 a negative BS type.
See Figure 1.

6.1.2 Disk type singularities
Let D2 be an oriented disk. Choose a polar coordinate r and θ so that

D2 becomes a unit disk and the orientation of D2 is compatible with dr∧dθ

outside the origin. In particular the orientation of the boundary ∂D2 is
compatible with dθ. The projection map (r, θ) �→ r gives a circle bundle
structure on neighborhood of the boundary of D2.

Let L be a complex line bundle over D2, and ∇ a U(1)-connection on
L. Let e

√
−1h(r) be the holonomy along the circle of radius r centered in the

origin. The orientation of the circle is defined as the boundary of the disk
of radius r centered in the origin. We can take h(r) continuous with limit
value limr→0 h(r) = 0.

Definition 6.2 (positive/negative disk). When h(r) > 0 for small
r > 0 we call the singularity positive-disk type. When h(r) < 0, then
we call it negative-disk type. See Figure 2.

6.1.3 Pants type singularities
Let Σ be a genus 0 oriented surface with three holes, i.e., Σ is a pair

of pants. For each boundary component its collar is diffeomorphic to the
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x

h(x)

x

h(x)

BS+ BS−

x x

θ θ

Fig. 1. positive/negative BS

product of a circle and an interval. The projection onto the interval gives a
circle bundle structure near the boundary.

Let L be a complex line bundle over Σ, and ∇ a U(1)-connection on L.
Suppose ∇ is flat and its holonomy along each component of the boundary of
Σ is non-trivial. Let e

√
−1hk (k = 1, 2, 3) be the three holonomies along the

three components of the boundary of Σ. The orientations of the boundary
components are defined as the boundary of the oriented manifold Σ. Then
the product of these three holonomies is equal to 1. We can take hk satisfying
0 < hk < 2π.

From our assumption, there is no Bohr-Sommerfeld fiber in the collar
neighborhood of the boundary.

Definition 6.3 (small/large pants). When h1 +h2 +h3 = 2π, we call
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θ

x

h(r) h(r)

D−

x

θ

D+

Fig. 2. positive/negative disk

Σ a small pants. When h1 + h2 + h3 = 4π, we call Σ a large pants.

6.2. Examples
Example 6.4 (a torus over a circle with degree n line bundle). Let x

and y the coordinate of R2. Let ∇̂ be the U(1)-connection on the trivial
complex line bundle over R2 with connection form −

√
−1xdy.

1. The curvature F∇̂ of ∇̂ is −
√
−1dx ∧ dy. In particular

√
−1
2π

F∇̂ =
1
2π

dx ∧ dy

2. The holonomy along the straight line from the point (x, 0) to (x, y) is
equal to exp(

√
−1xy).
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3. The connection is invariant under the action of (m, 2πn) ∈ Z ⊕ 2πZ

given by
(x, y, u) �→ (x + m, y + 2πn, e

√
−1myu).

For a positive integer N let T 2
N be the quotient of R2 divided by the subgroup

NZ⊕2πZ, on which we have the quotient complex line bundle LN with the
quotient connection ∇N . Then (

√
−1/2π)F∇N

gives a symplectic structure
on T 2

N . The projection onto the first factor T 2
N → R/NZ is a Lagrangian

fibration. The holonomy along the fiber at x mod N is e2π
√
−1x. The Bohr-

Sommerfeld fibers are the fibers at x ∈ Z/NZ, and all of them are positive
BS singuralities. The degree of LN is equal to N and the Riemann-Roch
number is N from the Riemann-Roch theorem and it is equal to the number
of positive BS singularities.

Example 6.5 (a sphere with degree-zero line bundle). Let D+ and D−

be disks, and L+ and L− complex line bundles over D+ and D− with U(1)-
connections such that the connections are flat near the boundaries, respec-
tively. Suppose D+ and D− are a positive disk and a negative disk respec-
tively, and the holonomies along the boundaries are e

√
−1ε and e−

√
−1ε for a

small positive number ε. Patch (D+, L+) and (D−, L−) together to obtain a
complex line bundle over an oriented sphere with a U(1)-connection. Since
the degree of the U(1)-bundle is zero, the Riemann-Roch number is 1.

Example 6.6 (a surface with a pants decomposition with a flat line bun-
dle). Let ε be a small positive number. Let PS be a pair of pants with
a flat U(1)-bundle whose holonomies along the boundary components are
e
√
−1(π−ε), e

√
−1(π−ε), and e

√
−12ε. Let PL be a pair of pants with a flat U(1)-

connection whose holonomies along the boundary components are e
√
−1(π+ε),

e
√
−1(π+ε), and e−

√
−12ε. Then PS is a small pants and PL is a large pants.

For an integer g ≥ 2, take (g−1) copies of PS and (g−1)-copies of PL, and
patch them together to obtain a flat connection on a closed oriented surface
with genus g. The Riemann-Roch number is 1 − g.

6.3. Local Riemann-Roch numbers
Let [BS+] and [BS−] be the contribution of a positive and negative

BS respectively. Let [D+] and [D−]be the contribution of a positive and
negative disk respectively. Let [PS ] and [PL] be the contribution of a small
and large pants respectively.
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Theorem 6.7.

[BS+] = 1, [BS−] = −1, [D+] = 1, [D−] = 0,

[PS ] = 0, [PL] = −1

Proof. These are consequences of Lemma 6.8 and Lemma 6.9 be-
low. �

Lemma 6.8. [PL] + [BS+] = [PS ], [BS−] + [BS+] = 0, [D−] +
[BS+] = [D+].

Proof. The three relations are shown in a similar way. We just show
the first relation. Let ε be a small positive number. Let PS and PL be the
small pants and the large pants in Example 6.6. Let A be an oriented annu-
lus with U(1)-connection such that the connection is flat near the boundary.
Suppose A is positive-BS type and both the holonomies of the two bound-
ary components are e

√
−12ε for the orientation as boundary of A. Patch PL

and A together along the boundary components with holonomies e−
√
−12ε

and e
√
−12ε to obtain an another pair of pants with a U(1)-connection. The

glued U(1)-connection can be deformed to a flat U(1)-connection isomor-
phic to the one on PS without changing the connection near boundary
components. �

Lemma 6.9. [BS+] = 1, [PS ] + [PL] = −1, [D+] + [D−] = 1.

Proof. The three relations are consequences of Example 6.4, Exam-
ple 6.5, and Example 6.6 respectively. �

Remark 6.10. It is possible to show [BS+] = 1 directly without ap-
pealing the Riemann-Roch theorem in the following way. We put M :=
R × S1 and consider the Hermitian structure (g, J) on it, which is defined
by

g(a1∂x + b1∂θ, a2∂x + b2∂θ) = a1a2 + b1b2,

J(∂x) = ∂θ, J(∂θ) = −∂x.

Let TfiberM be the tangent bundle along fibers of the first projection.
Then, as complex vector bundles, TfiberM ⊗R C is identified with (TM, J)
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by

TfiberM ⊗R C → (TM, J), ∂θ ⊗R (x +
√
−1y) �→ x∂θ + yJ∂θ.(1)

Let L = M ×C be the trivial complex line bundle on M . For 0 < ε < 1
let ρ(x) be a smooth increasing function on R with ρ(0) = 0, ρ(x) ≡ ε for
sufficiently large x and ρ(x) ≡ −ε for sufficiently small x. Consider the
U(1)-connection on L of the form ∇ = d −

√
−1ρ(x)dθ.

Let W := ∧•(TM, J) ⊗C L be the Z/2-graded Cl(TM)-module bundle
over M whose Cl(TM)-module structure is defined by [13, pp.38, (5.25)].
We take a Dirac-type operator D acting on Γ(W ) to be the Dolbeault op-
erator. Under the identification (1) we also take Dfiber to be the family
of de Rham operators along fibers. It is easy to check that Dfiber sat-
isfies the fourth property in Definition 4.3. Then the deformed operator
Dt = D + tDfiber is written in the following way

Dts =∂x ⊗
(
∂xs0 +

√
−1(1 + t)∂θs0 + (1 + t)ρ(x)s0

)
−

(
∂xs1 −

√
−1(1 + t)∂θs1 − (1 + t)ρ(x)s1

)
for s = s0+∂x⊗s1 ∈ Γ(W ), where s0 ∈ Γ(L) and ∂x⊗s1 ∈ Γ((TM, J)⊗CL)
are even and odd parts of s, respectively.

For an L2-section s0 of L, we first solve the equation

0 = ∂xs0 +
√
−1(1 + t)∂θs0 + (1 + t)ρ(x)s0.(2)

By taking the Fourier expansion of s0 with respect to θ, s0 is written as

s0 =
∑
n∈Z

an(x)e
√
−1nθ.

Then, s0 satisfies (2) if and only if each an is of the form

an(x) = cn exp
(

(1 + t)
∫ x

0
n − ρ(x)dx

)

for some constant cn. Since ρ(x) ≡ ±ε for sufficiently large, or small x and
since s is a L2-section, it is easy to see that cn = 0 except for n = 0. This
implies that the kernel of the even part of Dt is one-dimensional.

Next we solve the equation

0 = ∂xs1 −
√
−1(1 + t)∂θs1 − (1 + t)ρ(x)s1.
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By the similar argument we can show that cn = 0 for all n ∈ Z. This implies
that the kernel of the odd part of Dt is zero-dimensional. Thus, we have
[BS+] = 1.

By similar arguments we can also show that [BS−] = −1, [D+] = 1, and
[D−] = 0.

6.4. Higher dimensional Bohr-Sommerfeld fibers
We show the following.

Theorem 6.11. In symplectic formulation, the local Riemann-Roch
number of a non-singular connected Bohr-Sommerfeld fiber is one.

Proof. It is known that the neighborhoods of two Bohr-Sommerfeld
fibers are isomorphic to each other together with prequantizing line bun-
dle with connection: Recall that the fibers in a neighborhood of a Bohr-
Sommerfeld fiber are parameterized by their periods. If we fix a local La-
grangian section, and a trivialization of the first homology group of the local
fibers, then we can write down a canonical coordinate. Therefore it suffices
to give one example for which the claim is satisfied. An example of a La-
grangian fibration with exactly one n-dimensional Bohr-Sommerfeld fiber is
given by the product of n-copies of the fiber bundle structure of the torus
T 2

N for N = 1 in Example 6.4. In this case our convention of the orientation
for the symplectic manifold coincides with the product orientation. The
Riemann-Roch number is equal to one because it is equal to the n-th power
of RR(T 2

1 ) = 1. �

As a corollary we have the following, which is already shown by J. E. An-
dersen by using index theorem.

Corollary 6.12 ([1]). For a Lagrangian fibration without singular
fibers over a closed symplectic manifold with a prequantizing line bundle,
the number of Bohr-Sommerfeld fibers is equal to the Riemann-Roch num-
ber.

Remark 6.13. It would be expected that, if we use appropriate bound-
ary condition, then it would be possible to define a local Riemann-Roch
number for the product D+ × PL, and moreover it would be equal to the
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product [D+][PL], i.e., −1. A crucial problem here is that there is no La-
grangian fibration structure on the whole neighborhood of the boundary of
D+ ×PL. In fact it is possible to extend our formulation to such cases. We
will discuss this elsewhere [4].

7. Comments

It is possible to extend our construction for various situations.

1. Isotropic fibrations: When we have a integrable system which is not
necessary completely integrable, if all the orbits are “periodic” and
form tori, we can extend our argument. It would be an interesting
problem to investigate the case when the orbits are not periodic.

2. Manifolds with boundaries and corners: Our definition of the local
index is related to manifolds with boundaries. For manifolds with
coners, it is possible to extend our construction.

3. Equivariant and family version: Our constructin is natural, so if a
compact Lie group acts and preserves the data, then everything is
formulated equivariantly. Similarly we have a family version of our
construction.

4. Equivariant mod-2 indices: A modification of the localization property
explained in this paper can be applied to define G-equivariant mod-2
indices valued in R(G)/RO(G) or R(G)/RSp(G) for even dimensional
G-spinc-manifolds with G-spin structures on its end [8].

We will discuss them elsewhere [4, 5].

A. Spinc-Structures

In this appendix we recall our convention for spinc-strctures on oriented
manifolds. (See [6, pp.54] and [13, pp.131-132].) A spinc structure is usu-
ally defined for an oriented Riemannian manifold. In this paper we take
a convention of spinc structures which do not need any Riemannian met-
rics. In fact a spinc structure itself is defined at the principal bundle level
as follows. Let GL+

m(R) be the group of orientation preserving linear au-
tomorphisms of Rm. Since GL+

m(R) has the same homotopy type as that
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of SOm(R), there is a unique non-trivial double covering of GL+
m(R) when

m > 1. We denote it by p : G̃L+
m(R) → GL+

m(R). When m = 1, we define

G̃L+
1 (R) := GL+

1 (R) × (Z/2Z) and p to be the projection onto the first
factor.

Consider the diagonal action of Z/2Z on G̃L+
m(R)×C×, where the action

on the first factor is the deck transformation and the action on the second
factor is defined by z �→ −z. Let G̃L+

m(R) ×Z/2Z C× be the quotient group
by this diagonal action. Note that there is a canonical homomorphism
p̂ : G̃L+

m(R) ×Z/2Z C× → GL+
m(R) defined by

p̂ : [g̃, z] �→ p(g̃).

Definition A.1. Let M be an oriented manifold and PM the associ-
ated frame bundle over M , which is a principal GL+

m(R)-bundle. A spinc-
structure on M is a pair (P̃M , qM ) satisfying the following two conditions.

1. P̃M is a principal G̃L+
m(R) ×Z/2Z C×-bundle over M .

2. qM is a bundle map from P̃M to PM which is equivariant with respect
to the canonical homomorphism p̂.

Remark A.2. Though a spinc structure can be defined without any
Riemannian metric, we need to fix a Riemannian metric to define a Clifford
module bundle over an oriented manifold.

Remark A.3. The natural embedding GLn(C) ↪→ GL+
2n(R) induces a

homomorphism GLn(C) → G̃L+
2n(R) ×Z/2 C×. This means that an almost

complex manifold has a canonical spinc structure in our convention.
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