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Abstract. The quantized enveloping algebra Uq is constructed
as a quotient of the generalized quantum double U≤0

q �τ U
≥0
q associ-

ated to a natural skew pairing τ : U≤0
q ⊗ U≥0

q → k. This double is
generalized by

D = (B(V )>��F )�τ (B(W )>��G),

where F , G are abelian groups, V ∈ F
FYD, W ∈ G

GYD are Yetter-
Drinfeld modules and B(V ), B(W ) are their Nichols algebras. We
prove some results on Hopf ideals of D, including a characterization of
what we call thin Hopf ideals. As an application we give an explicit
description of those minimal quasitriangular pointed Hopf algebras in
characteristic zero which are generated by skew primitives.

1. Introduction

Throughout the paper we work over a fixed field k.

To define the (standard) quantized enveloping algebra, Uq, Joseph [J]

adopted an effective way. That is

• first to construct a natural skew pairing

τ : U≤0
q ⊗ U≥0

q → k(1.1)

between the non-positive and the non-negative parts of Uq,

• then to use this τ to construct the generalized quantum double

U≤0
q �τ U

≥0
q ,(1.2)

which deforms only by its product, the Hopf algebra U≤0
q ⊗ U≥0

q of

tensor product, and
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• finally to divide this last double by some central grouplikes.

This construction can apply to all known analogues and generalizations

of Uq which include especially the Frobenius-Lusztig kernel uq, a finite-

dimensional analogue of Uq at roots of unity.

Recall from the works (including [AS1], [AS2]) by Andruskiewitsch and

Schneider that the notion of Nichols algebras gives a sophisticated viewpoint

to study quantized enveloping algebras. Let G be an abelian group, and let

W be an object in the braided tensor category G
GYD of Yetter-Drinfeld

modules over G. The Nichols algebra B(W ) of W (see [AS1]) is a braided

graded Hopf algebra in G
GYD which has a certain functorial property. The

bosonization of B(W ) by G forms an ordinary graded Hopf algebra, which

we denote by B(W )>��G; the graded Hopf algebra of this form is char-

acterized as a coradically graded pointed Hopf algebras generated by skew

primitives. We assume that W is of diagonal type in the sense that it is

a (direct) sum of one-dimensional subobjects. The Nichols algebra B(W )

generalizes the plus part U+
q of Uq, while B(W )>��G generalizes U≥0

q . (To

be more precise, we need to replace the Nichols algebra with the looser,

pre-Nichols algebra [M1], to include those Uq at roots of unity.) Let F be

another abelian group, and let V be an object in F
FYD of diagonal type. Let

τ0 : F ×G → k×(= k \0) be a bimultipicative map, and suppose that V and

W are, roughly speaking, dual to each other, compatibly with τ0. Then by

[M1], τ0 extends to a skew pairing

τ : (B(V )>��F ) ⊗ (B(W )>��G) → k

which fulfills some reasonable requirements; this generalizes the τ in (1.1).

This generalized τ deforms the tensor product of the Hopf algebras B(V )>��
F , B(W )>��G into

D = (B(V )>��F )�τ (B(W )>��G),

which generalizes the double given in (1.2). We call D the generalized quan-

tum double associated to τ .

Note that B(V )>��F generalizes U≤0
q , but B(V ) does not correspond to

the minus part U−
q , but to its image by the antipode. Thus, our construction

of D from a pair of Nichols algebras is more symmetric, compared with the

construction of the double (1.2) which treats with U±
q . This symmetry

makes arguments much simpler, I believe.
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If B(W )>��G is finite-dimensional, and τ0 is non-degenerate, then D
concides with the quantum double of B(W )>��G as Drinfeld originally de-

fined, which we denote by D(B(W )>��G). It is quite noteworthy that

in characteristic zero, Heckenberger [H] classified all objects W of diagonal

type such that B(W ) is finite-dimenstional. Also, when k is an algebraically

closed field of characteristic zero, Andruskiewitsch and Schneider [AS2] clas-

sified all finite-dimensional pointed Hopf algebras A, necessarily including

those of the form B(W )>��G, such that all prime divisors of the order

|G(A)| of grouplikes are greater than 7.

The detailed construction of D will be given in Section 3. The preced-

ing Section 2 is devoted to preliminaries on Yetter-Drinfeld modules and

(pre-)Nichols algebras. Our aim of this paper is to study Hopf ideals of D,

and accordingly its quotient Hopf algebras. Note that D is a pointed Hopf

algebra in which the group G(D) of all grouplikes equals F × G. Let C

be the subgroup of F ×G consisting of all central grouplikes in D, and let

Dc = D/(c − 1 | c ∈ C) denote the associated quotient Hopf algebra. In

Section 4, which is independent of the following sections, we assume that

F , G are finite groups with τ0 non-degenerate, and prove under some ad-

ditional mild restriction that D is isomorphic as an algebra to the tensor

product kC⊗Dc if and only if CP = F ×G, where P = C⊥ denotes the or-

thogonal subgroup (with F ×G identified with the dual group (F ×G)∧ via

τ0); see Theorem 4.2. These equivalent conditions are described in terms

of the associated Cartan matrix, when D is of a special form such that

Dc is closely related to the Frobenius-Lusztig kernel uq; see Corollary 4.3.

(These two results are generalized formulations of results by Leonid Krop

[Kr], and will be proved in the generalized situation with B(V ), B(W ) re-

placed by pre-Nichols algebras.) We say that a Hopf ideal a ⊂ D is thin

if V ∩ a = 0 = W ∩ a. In Section 5 we describe, under some mild as-

sumption, these thin Hopf ideals a ⊂ D and the corresponding quotient

Hopf algebras D/a; see Theorem 5.4. The result says that a is of the form

a = a(T,Z, ζ), parametrized by three data, T , Z, ζ; among these T is a

subgroup of C, and a(T, 0, 0) = (t− 1 | t ∈ T ) if Z, ζ are zero. This result

will be applied in the following two sections to prove Theorems 6.1 and

7.2. Theorem 6.1 tells us that if D satisfies a ‘conectedness’ assumption,

every Hopf ideal a of D is either so small that it is of the form a(T, 0, 0)

(see above), or so large that D/a is a group algebra. As an application
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we describe all Hopf ideals of the quantized enveloping algebra Uq associ-

ated to such a symmetrizable Borcherds-Cartan matrix that is irreducible;

see Example 6.2. Theorem 7.2 shows, assuming that k is an algebraically

closed field of characteristic zero, that if A is such a minimal quasitriangular

pointed Hopf algebra that is generated by skew primitives, then it is of the

form D/a(T,Z, ζ), where D is Drinfeld’s quantum double D(B(W )>��G)

of a finite-dimensional B(W )>��G. This formulation turns nicer, in virtue

of [AS2], if we assume that all prime divisors of |G(A)| are greater than

7; see Corollary 7.3. In the last Section 8, we reproduce from Theorem 7.2

Gelaki’s classification result [G] of minimal triangular pointed Hopf algebras

in characteristic zero.

2. Preliminaries

2.1. Let J be a Hopf algebra with bijective antipode. The coproduct, the

counit and the antipode (for any Hopf algebra) are denoted by

∆(x) = x1 ⊗ x2, ε and S,(2.1)

respectively. Let V be a Yetter-Drinfeld module over J . This means that V

is a left J-module and left J-comodule, whose structures we denote by

x ⇀ v (x ∈ J, v ∈ V ), ρ(v) = v−1 ⊗ v0,(2.2)

and satisfies

ρ(x ⇀ v) = x1v−1S(x3) ⊗ (x2 ⇀ v0) (x ∈ J, v ∈ V ).

Let J
JYD denote the category of all Yetter-Drinfeld modules over J . This

naturally forms a braided tensor category.

Two objects V , W in J
JYD are said to be symmetric if the braidings

cV,W : V ⊗W
�−→W ⊗ V, v ⊗ w �→ (v−1 ⇀ w) ⊗ v0,

cW,V : W ⊗ V
�−→V ⊗W, w ⊗ v �→ (w−1 ⇀ v) ⊗ w0

are inverses of each other. One sees that V includes the largest subobject,

which we denote by V ′, such that V ′ and V are symmetric, We call V ′ the

commutant of V .
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By gradings we mean those by non-negative integers. Let V ∈ J
JYD.

The tensor algebra T (V ) on V , which is naturally a graded algebra, uniquely

turns into a braided graded Hopf algebra in J
JYD in which all elements of

V are supposed to be primitives. Since this T (V ) is pointed irreducible

as a coalgebra, its braided bi-ideal is necessarily a braided Hopf ideal. A

quotient algebra T (V )/a is called a pre-Nichols algebra [M1] of V , if a is

a homogeneous braided Hopf ideal of T (V ) such that a ∩ V = 0, or in

other words, V ⊂ T (V )/a. This is characterized as such a braided graded

Hopf algebra in J
JYD that includes V as a subobject consisting of degree 1

primitives, and is generated by V . A pre-Nichols albegra T (V )/a is called

the Nichols algebra (see [AS1], [AS2]) of V , if a is the largest possible, or

equivalently if V precisely equals the space P (T (V )/a) of all primitives in

T (V )/a. The Nichols algebra of V is uniquely determined by V , and is

denoted by B(V ). If two objects V , W in J
JYD are symmetric to each

other, then we have

B(V ⊕W ) = B(V )⊗B(W ),(2.3)

where ⊗ denotes the braided tensor product in J
JYD. This equation follows

since the relation

wv = (w−1 ⇀ v)w0 (v ∈ V,w ∈ W )

holds in B(V ⊕W ); see [AS1, Proposition 2.1], for example.

Given a braided (graded) Hopf algebra, e.g., a (pre-)Nichols algebra, R

in J
JYD, the bosonization (or the biproduct construction) due to Radford

[R1] gives rise to an ordinary (graded) Hopf algebra, which we denote by

R>�� J.(2.4)

We are mostly intersted in the special case when J is the group algebra

kG of an (abelian, in most parts) group G. In this case we will write G
GYD

for kG
kGYD, and R>��G for R>�� kG.

2.2. Let G be an abelian group, and let Ĝ = Hom(G, k×) denote the

dual group. Given arbitrary elements χ ∈ Ĝ, g ∈ G, we can construct a

one-dimensional object kv ∈ G
GYD by defining

h ⇀ v = χ(h)v (h ∈ G), ρ(v) = g ⊗ v.
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We will indicate these structures so as

kv = (kv;χ, g).(2.5)

Every one-dimensional object in G
GYD is of this form. An object V in G

GYD
is said to be of diagonal type [AS1], if it is a (direct) sum of one-dimensional

objects. If k is an algebraically closed field of characteristic zero, and G is

finite (abelian), then every object in G
GYD is of diagonal type.

Suppose that V (∈ G
GYD) is of diagonal type, or explicitly

V =
⊕
i∈I

(kvi;χi, gi)

for some χi ∈ Ĝ, gi ∈ G; the index set I may be infinite. Since the associated

braiding

ci,j : kvi ⊗ kvj
�−→ kvj ⊗ kvi

is the scalar multiplication by χj(gi), the commutant V ′ of V is given by

V ′ =
⊕
i∈I′

kvi,(2.6)

where

I ′ := {i ∈ I | χi(gj)χj(gi) = 1 for all j ∈ I}.(2.7)

We have

B(V ) =
⊗
i∈I′

B(kvi)⊗B(
⊕
i/∈I′

kvi).

Remark 2.1. If i ∈ I ′, then χi(gi)
2 = 1. It follows that if the char-

acteristic ch k of k is zero, the order |G| of G is odd and B(V ) is finite-

dimensional, then V ′ = 0. For one sees that if (kv;χ, g) ∈ G
GYD satisfies

χ(g)2 = 1, then

B(kv) =



k[X] if χ(g) = 1 and ch k = 0,

k[X]/(Xp) if χ(g) = 1 and ch k = p > 0,

k[X]/(X2) if χ(g) = −1 �= 1.
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2.3. Let A be a pointed Hopf algebra, and let G = G(A) denote the

(not necessarily abelian) group of all grouplikes in A. We let grA denote

the graded Hopf algebra associated to the coradical filteration kG = A0 ⊂
A1 ⊂ · · · in A. We have uniquely a braided, strictly graded Hopf algebra R

in G
GYD whose bosonization equals grA, or in notation

R>��G = grA.

Especially, R(0) = k, and R(1) equals the space P (R) of all primitives in

R. If R is generated by P (R), or equivalently if A is generated by skew

primitives, then R = B(P (R)). We define

YD(A) := P (R) (= R(1)),(2.8)

which we call the infinitesimal Yetter-Drinfeld module associated to A. We

see easily the following.

Lemma 2.2. YD(B) ⊂ YD(A) if B is a Hopf subalgebra of A.

We will study Hopf ideals of a certain pointed Hopf algebra D which will

be constructed in the following section. Recall that a bi-ideal of a pointed

Hopf algebra is necessarily a Hopf ideal.

3. The Generalized Quantum Double

Let F , G be (possibly infinite) abelian groups. We will write fg for the

element (f, g) in F ×G. Suppose that we are given a bimultiplicative map

τ0 : F ×G → k×(= k \ 0).

For f ∈ F , g ∈ G, define ĝ ∈ F̂ , f̂ ∈ Ĝ by

ĝ(f) = τ0(f, g) = f̂(g).

We will also write ĝf̂ for the element (ĝ, f̂) in F̂×Ĝ(= (F×G)∧). Let I(�= φ)

be a (possibly infinite) index set. Choose arbitrarily elements fi ∈ F, gi ∈ G

for each i ∈ I, and define Yetter-Drinfeld modules,

V =
⊕
i∈I

(kvi; ĝi, fi) in F
FYD, W =

⊕
i∈I

(kwi; f̂
−1
i , gi) in G

GYD.
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Suppose that we are given pre-Nichols algebras

R (∈ F
FYD), S (∈ G

GYD)

of V , W , respectively. Let

B = R>��F, H = S >��G(3.1)

denote their bosonizations. Thus, B, H are pointed Hopf algebras with

G(B) = F , G(H) = G, in which the coproducts ∆(vi),∆(wi) (i ∈ I) are

given by

∆(vi) = vi ⊗ 1 + fi ⊗ vi, ∆(wi) = wi ⊗ 1 + gi ⊗ wi.

Proposition 3.1. τ0 uniquely extends to such a skew pairing τ : B ⊗
H → k that satisfies

τ(vi, wj) = δij (i, j ∈ I),(3.2)

τ(f, w) = 0 = τ(v, g) (f ∈ F, g ∈ G, v ∈ V,w ∈ W ).(3.3)

We continue to denote this skew pairing by τ . By definition of skew

pairings, τ satisfies

τ(bc, h) = τ(b, h1)τ(c, h2),

τ(b, hl) = τ(b1, l)τ(b2, h),

τ(b, 1) = ε(b), τ(1, h) = ε(h),

where b, c ∈ B, h, l ∈ H.

Proof of Proposition 3.1. In the situation of [M1, Theorem 5.3],

we can suppose J , K to be our kF , kG. We can also suppose the λ in [M1]

to be such that λ(wj , vi) = δij . In this special case the first half of [M1,

Theorem 5.3] is precisely the proposition above. See also [RS1, Theorem

8.3], [RS2, Lemma 3.1]. �
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Proposition 3.2. The restriction τ |R⊗S : R⊗S → k is non-degenerate

if and only if R,S are both Nichols.

Proof. This follows by [M2, Proposition 2.6(1)], since our τ |V⊗W is

non-degenerate. �

By [DT, Proposition 1.5], the linear map σ : (B ⊗ H) ⊗ (B ⊗ H) → k

defined by

τ(b⊗ h, c⊗ l) = ε(b)τ(c, h)ε(l)

is a 2-cocyle for the Hopf algebra B ⊗H of tensor product. We let

D = B�τ H(3.4)

denote the cocyle deformation (B⊗H)σ of B⊗H by τ ; see [DT, Sect. 2].

Proposition 3.3. This D is the Hopf algebra which is defined on H⊗
B, uniquely so that it includes B = B⊗ k, H = k⊗H as Hopf subalgebras,

and satisfies the relations

gf = fg,(3.5)

gvi = τ0(fi, g)vig,(3.6)

wif = τ0(f, gi)fwi,(3.7)

wjvi = τ0(fi, gj)viwj + δij(figi − 1),(3.8)

where f ∈ F , g ∈ G, i ∈ I.

Proof. In the specialized situation described in the proof of Proposi-

tion 3.1, the second half of [M1, Theorem 5.3] is precisely the proposition

to be proven. �

We call D the generalized quantum double associated to τ .

Remark 3.4. Suppose that τ0 is non-degenerate, and that R, S are

both Nichols, so that R = B(V ), S = B(W ). By [M2, Corollary 2.4,

Proposition 2.6(1)], τ is then non-degenerate. Suppose in addition that

F or G is (then both are) finite, and that B(V ) or B(W ) is (then both

are) finite-dimensional. Then, H = B(W )>��G is a finite-dimensional Hopf
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algebra, and D is (isomorphic to) the quantum double of H as Drinfeld

originally defined. We denote this by D(H).

Let us return to the general situation before Remark 3.4. As is seen

from the proof of [M1, Theorem 5.3], one can construct a pointed (graded)

Hopf algebra, say E , just as the Hopf algebra D as described by Proposition

3.3, but replacing (3.8) by

wjvi = τ0(fi, gj)viwj (i, j ∈ I).

We see from that proof, moreover, the following.

Proposition 3.5.

(1) V , W turn into objects in F×G
F×GYD of diagonal type so that

V =
⊕
i∈I

(kvi; ĝif̂i, fi), W =
⊕
i∈I

(kwi; ĝ
−1
i f̂−1

i , gi).

The graded algebras R, S turn into pre-Nichols algebras of V , W in
F×G
F×GYD, respectively.

(2) The braided tensor product R⊗S in F×G
F×GYD is a pre-Nichols algebra

of V ⊕ W ; it is Nichols if the original R, S are both Nichols. The

bosonization (R⊗S)>��(F ×G) is precisely E.

(3) D is a cocycle deformation of E, too, whence D = E as coalgebras.

(4) D is a pointed Hopf algebra with G(D) = F × G, and the associated

infinitesimal Yetter-Drinfeld module YD(D) includes V ⊕W as a sub-

object. We have YD(D) = V ⊕W , if R, S are both Nichols.

It what follows we keep the notation

F, G, τ0, V, W, R, S, τ, D

as above. We also keep C denoting the subgroup of F ×G defined by

C = {fg | τ0(f, gi)τ0(fi, g) = 1 (i ∈ I)}.

Notice from (3.6), (3.7) that C consists of all grouplikes that are central in

D.
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4. Tensor Product Decomposition of D

Let

P = 〈figi | i ∈ I〉

denote the subgroup of F × G generated by all figi(i ∈ I). Note that all

c − 1(c ∈ C), being (central) skew primitives, generate a Hopf ideal in D.

Let

Dc = D/(c− 1 | c ∈ C)

denote the quotient Hopf algebra of D by that Hopf ideal.

Proposition 4.1. Consider the following three conditions.

(a) The natural group map C → F ×G/P is a split mono.

(b) The inclusion kC ↪→ D splits as a Hopf algebra map.

(c) There is an algebra isomorphism D � kC ⊗Dc.

Then we have (a) ⇒ (b) ⇒ (c).

Proof. (a) ⇒ (b). Assume (a), or equivalently that C ↪→ F ×G has a

retraction π : F ×G → C such that P ⊂ Kerπ. As is seen from Proposition

3.3, π can uniquely extend to a Hopf algebra retraction π : D → kC so that

π(vi) = 0 = π(wi) for all i ∈ I.

(b) ⇒ (c). Let π : D → kC be a retraction as assumed by (b). By

Radford [R1, Theorem 3], a (right Dc-comodule) algebra isomorphism D �
kC ⊗Dc is given by a �→ π(a1) ⊗ ā2. �

We are going to prove in our context two results due to Leonid Krop [Kr],

who worked in the situation of Remark 3.4; our formulation is generalized.

Theorem 4.2 (Krop). Assume that

F or G is finite, and(4.1)

τ0 : F ×G → k× is non-degenerate.(4.2)

(Note then |F | = |G| < ∞.)
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(1) We have

|C| |P | = |F | |G| ,

and the condition (a) above is equivalent to each of the following:

(a′) C → F ×G/P is monic/epic/isomorphic;

(a′′) The product map C × P → F ×G is monic/epic/isomorphic.

(2) Assume in addition that

for each i ∈ I, fi �= 1 or gi �= 1 (or in short, figi �= 1).(4.3)

Then the conditions (a), (a′), (a′′), (b), (c) above are equivalent to

each other.

Proof. (1) By (4.1), (4.2), τ0 induces an isomorphism F ×G
�−→(F ×

G)∧ . Compose this with the restriction map (F ×G)∧ → P̂ , which is epic

since by (4.1), (4.2), k contains a root of 1 whose order equals expF (=

expG), the exponent. The desired result follows since the kernel of the

composite is C.

(2) Assume (c). We wish to prove that the product map C×P → F ×G

is epic. Given an algebra A, let n(A) denote the number of all algebra maps

A → k. By (c),

n(D) = n(kC)n(Dc) = |C|n(Dc).(4.4)

Let ϕ : D → k be an algebra map. By (3.6), (3.7), (3.8), (4.2) and (4.3), we

see

ϕ(vi) = 0 = ϕ(wi) (i ∈ I), ϕ(P ) = {1},

which implies n(D) = |F ×G/P | = |C|. By (4.4), ϕ must coincide with the

counit if ϕ(C) = {1}. We have shown that a group map F × G → k× is

trivial if it vanishes on CP . This implies CP = F ×G, as desired. �

Suppose that I is finite, and A = (aij)i,j∈I is a Cartan matrix of finite

type, which is symmetrized by a diagonal matrix D = diag(· · · di · · · )i∈I ,

where di ∈ {1, 2, 3}, in the standard way. Let l > 1 be an odd integer. We
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assume that l is not a multiple of 3 if A contains an irreducible component of

type G2. Suppose that k contains a primitive lth root q of 1. Suppose F = G,

and that G is the finite abelian group which is generated by Ki (i ∈ I), and

is defined by K l
i = 1 (i ∈ I). Choose fi, gi, τ0 so that

fi = gi = Ki, τ0(Ki,Kj) = q−diaij (i, j ∈ I).

Let T be the subgroup of G×G defined by

T = {(g, g−1) | g ∈ G} (=
〈
(Ki,K

−1
i ) | i ∈ I

〉
).

Note T ⊂ C. Let

Dt = D/(Ki ⊗ 1 − 1 ⊗Ki | i ∈ I)

denote the quotient Hopf algebra of D corresponding to T . If ch k = 0 and R,

S are both Nichols, then Dt coincides with that quotient Hopf algebra of the

Frobenius-Lusztig kernel uq (see [L], [Mu]) which is obtained by replacing

the relations K2l
i = 1 (i ∈ I) for uq with K l

i = 1 (i ∈ I).

Corollary 4.3 (Krop). In the situation above, the following (i)-(iv)

are equivalent to each other.

(i) T = C;

(ii) C ∩ P = {1};

(iii) τ0 is non-degenerate;

(iv) l is prime to det A (by the known values of the determinants, this

condition is equivalent to that A does not contain any irreducible com-

ponent of type An of rank n such that n + 1 is not prime to l, and if

l is a multiple of 3, A does not contain an irreducible component of

type E6 either).

If these equivalent conditions are satisfied, then Dt = Dc and the following

(v), (vi) hold true.

(v) kC ↪→ D splits as a Hopf algebra map.

(vi) D is isomorphic to kC ⊗Dc, as a right (or left) Dc-comodule algebra.
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Proof. The equivalence follows since one sees that each of (i)-(iv) is

equivalent to that for arbitrary integers ni,∑
i

nidiaij ≡ 0 mod l (∀j ∈ I)

implies ni ≡ 0 mod l (∀i ∈ I). As for (iv), note from the assumption on

l that each di is prime to l. By the proof of Theorem 4.2(2), (ii) and (iii)

imply (v), (vi). �

5. Skinny and Thin Hopf Ideals of D

Throughout this section we assume that R, S are both Nichols, so that

R = B(V ), S = B(W ).

Given a subgroup T of C, the ideal (t − 1 | t ∈ T ) generated by all

t− 1 (t ∈ T ) is a Hopf ideal.

Definition 5.1. A Hopf ideal a of D is said to be skinny , if a = (t−1 |
t ∈ T ) for some subgroup T ⊂ C. We say that a is thin, if

V ∩ a = 0 = W ∩ a.

Let T ⊂ C be a subgroup, and set

Γ = F ×G/T.

Let

IT = {i ∈ I | figi ∈ T},

and set

VT =
⊕
i∈IT

kvi, WT =
⊕
i∈IT

kwi.

Note that if T = C, then

IC = {i ∈ I | τ0(fi, gj)τ0(fj , gi) = 1 (j ∈ I)},
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VC = V ′, WC = W ′,

where V ′, W ′ denote the commutants; see (2.6). Therefore,

VT ⊂ V ′, WT ⊂ W ′.(5.1)

We can naturally regard ĝif̂i as an element in Γ̂, and V , W as diagonal type

objects in Γ
ΓYD. Choose arbitrarily

Z ⊂ VT , ζ : Z ↪→ WT

so that Z ⊂ VT is a subobject, and ζ : Z ↪→ WT is a mono, both in Γ
ΓYD.

Let

a = a(T,Z, ζ)(5.2)

denote the ideal of D generated by all t− 1, z − ζ(z), where t ∈ T , z ∈ Z.

Proposition 5.2. This a is a thin Hopf ideal of D. In particular, a

skinny Hopf ideal of D is thin.

Proof. The second statement follows from the first, by choosing Z, ζ

so as to be zero.

To prove the first statement, set

V c
T =

⊕
i/∈IT

kvi, W c
T =

⊕
i/∈IT

kwi.

We can choose compliments X, Y of Z, ζ(Z) in VT , WT , respectively, so

that

V = V c
T ⊕X ⊕ Z, W = ζ(Z) ⊕ Y ⊕W c

T in Γ
ΓYD.

By (5.1), the six direct summands above are pairwise symmetric. One sees

that

α : Z ⊕ ζ(Z) → ζ(Z), α(z, ζ(z′)) = ζ(z + z′)

is a split epi in Γ
ΓYD, whose kernel Kerα consists of z − ζ(z) (z ∈ Z).

Therefore, α induces a split epi

α̃ : B(Z)⊗B(ζ(Z)) → B(ζ(Z))
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of braided graded Hopf algebras, whose kernel Ker α̃ is generated by Kerα.

Set

U :=
V ⊕W

Kerα
(� V c

T ⊕X ⊕ ζ(Z) ⊕ Y ⊕W c
T ).(5.3)

Then,

B(U) = B(V c
T )⊗B(X)⊗B(ζ(Z))⊗B(Y )⊗B(W c

T ).

Let f̄i, ḡi denote the natural image of fi, gi in Γ. To continue the proof we

need the next lemma, which follows by [M1, Theorem 4.10].

Lemma 5.3. The bosonization B(U)>�� Γ is deformed by a 2-cocycle

into a Hopf algebra so that for all i, j ∈ I \ IT , the original relations

wjvi = τ(fi, gj)viwj

are deformed to

wjvi = τ0(fi, gj)viwj + δij(f̄iḡi − 1).

We denote this deformed Hopf algebra by

A = A(T,Z, ζ).(5.4)

Note that A = B(U)>�� Γ as coalgebras, and the first two components of

the thus coradically graded coalgebra A are given by

A(0) = kΓ, A(1) = U ⊗ kΓ.(5.5)

Proof of Proposition 5.2 (continued). Since f̄iḡi − 1 = 0 for i ∈
IT , one sees from Proposition 3.3 that the natural projections F ×G → Γ,

V ⊕ W → U induce a Hopf algebra epi π : D → A. Since π is the tensor

product of α̃, the projection k(F ×G) → kΓ and the identity maps of four

Nichols algebras, we see that Kerπ is generated by t− 1 (t ∈ T ) and Ker α̃.

This implies Kerπ = a, whence D/a � A. (Therefore, A does not depend,
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up to isomorphism, on choice of X, Y .) Since D/a (� A) includes V , W

(even B(V ), B(W )), a is a thin Hopf ideal. �

Theorem 5.4. Assume that R = B(V ), S = B(W ), and in addition,

for each i ∈ I, f̂i �= 1 or ĝi �= 1 (or in short, ĝif̂i �= 1).(5.6)

Then a thin Hopf ideal of D is necessarily of the form a(T,Z, ζ) for some

T,Z, ζ.

Proof. Let a ⊂ D be a Hopf ideal. Set A = D/a, and let π : D → A

denote the quotient map. Let

T = {t ∈ F ×G | π(t) = 1},

and set Γ = F × G/T . Then Γ = G(A). Assume that a is thin. Then V ,

W are embedded into A via π. From the relations

(fg)vi = τ0(fi, g)τ0(f, gi)vi(fg) (f ∈ F, g ∈ G, i ∈ I)

in D, we see T ⊂ C. Therefore, V , W can be naturally regarded as objects

in Γ
ΓYD, as before. Set the sum

U := V + W in A.(5.7)

This is stable under Γ-conjugation, and does not contain any non-zero Γ-

invariant by (5.6). Therefore, U ∩ kΓ = 0. This implies that U is naturally

embedded into grA(1), or more specifically into YD(A), which is the neutral

component of the right kΓ(= grA(0))-comodule grA(1). Note that by this

embedding U ↪→ Y D(A), U is a subobject in Γ
ΓYD, and is indeed a sum of

the two objects V , W in Γ
ΓYD. For each γ ∈ Γ, Uγ is embedded into the

γ-component in grA(1). Hence we have
⊕

γ∈Γ Uγ ↪→ grA(1), and so

(k ⊕ U) ⊗ kΓ ↪→ A(5.8)

via the product map.

Let Z be the pullback (π |V )−1(V ∩ W ) of V ∩ W (⊂ U) along the

embedding π |V . There exists a unique mono ζ : Z → W in Γ
ΓYD such

that π |Z= π |W ◦ ζ. We wish to prove

Z ⊂ VT , ζ(Z) ⊂ WT .(5.9)
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To prove the first inclusion, let z =
∑

i civi ∈ Z with ci ∈ k. Choose

arbitrarily j ∈ I such that cj �= 0. We may suppose that z spans a simple

object, so that if ci �= 0, then π(fi) = π(fj), ĝif̂i = ĝj f̂j . Then we have

wjz − τ0(fj , gj)zwj = cj(fjgj − 1)

in D. By applying π, we have

wjζ(z) − τ0(fj , gj)ζ(z)wj = cj(π(fjgj) − 1).(5.10)

But, since (5.8) implies that the natural map B(W )>�� Γ → A is monic (see

[Mo, 5.3.1 Theorem]), both sides of (5.10) must be zero, whence fjgj ∈ T ;

this proves the first inclusion of (5.9). The second follows similarly, by using

the fact, which follows from (5.8), that B(V )>�� Γ → A is monic.

From T , Z, ζ above, construct the Hopf algebra A = A(T,Z, ζ); see

(5.4). Note that the U given by (5.3) and the U given by (5.7) are now

identified canonically. We see that π induces a Hopf algebra epi A → A

which is identical on Γ and U . It is indeed an isomorphism by (5.5), (5.8).

This proves the theorem. �

Remark 5.5. As is easily seen, we must assume R = B(V ), S =

B(W ), to have the conclusion of Theorem 5.4. We must assume (5.6), too,

as will be seen below. In fact, we have an example for which there exists an

i ∈ I such that

τ0(fi, gj) = 1 = τ0(fj , gi) (j ∈ I),(5.11)

fi /∈ T,(5.12)

where T = 〈figi〉, the subgroup of F × G generated by figi. By (5.11),

T ⊂ C, but f̂i = 1 = ĝi, breaking (5.6). Note that vi and Γ := F × G/T

generate a central Hopf subalgebra in D/(figi − 1). Then one sees that

a = (vi − (fi − 1), figi − 1)

is a thin Hopf ideal by (5.12), but cannnot be of the form (5.2) since vi ∈ kΓ

in D/a.
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6. All Hopf Ideals of D with Connectedness Assumption

Distinct i, j in I are said to be adjacent to each other if kvi and kvj (or

kwi and kwj) are not symmetric, or namely if

τ0(fi, gj)τ0(fj , gi) �= 1.(6.1)

Theorem 6.1. Assume that R, S are both Nichols, and assume one of

the following.

(i) I consists of only one element, say 1, so that I = {1}, and τ(f1, g1)
2 �=

1.

(ii) |I| > 1, and I is connected in the sense that if i �= j in I, there

exists a finite sequence i = i0, i1, · · · , ir = j in I such that for each

0 ≤ s < r, is and is+1 are distinct and adjacent.

Then every Hopf ideal a of D

(a) is skinny (see Definition 5.1), or

(b) contains all vi, wi, figi − 1 (i ∈ I).

This result together with its proof directly generalizes those of Chin and

Musson [CM, Theorem C], and of Müller [Mu, Theorem 4.2]; see also [A,

Lemma A.2].

Proof. Let a ⊂ D be a Hopf ideal. We will work first in Case (ii),

and then in Case (i).

Case (ii). First, suppose that for a specific i ∈ I, a contains vi, wi, or

figi − 1. In any case, figi − 1 ∈ a by (3.8). Choose j(�= i) which is adjacent

to i. Then the relation

(figi)vj = τ0(fi, gj)τ0(fj , gi)vj(figi)(6.2)

in D implies vj ∈ a. Similarly, wj ∈ a, whence fjgj − 1 ∈ a. This argument

implies (b) above.

Next, suppose that a does not contain any figi − 1. Suppose that v =∑
j cjvj(∈ V ) is in a, where cj ∈ k. Then for each i, a contains g−1

i wiv −
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vg−1
i wi, which equals ciτ(fi, gi)g

−1
i (figi − 1). This implies ci = 0 for all i,

whence V ∩ a = 0. Similarly, W ∩ a = 0. By (ii), (5.6) is now satisfied, and

V ′ = 0 = W ′. Theorem 5.2 then implies (a).

Case (i). Suppose f1g1 − 1 ∈ a. Then the relation (6.2) with i = j = 1,

together with an analogous one, proves v1 ∈ a, w1 ∈ a, whence we have (b).

Suppose f1g1 − 1 /∈ a. Then (3.8) with i = j = 1 implies v1 /∈ a, w1 /∈ a.

Since (5.6) is satisfied and V ′ = 0 = W ′, Theorem 5.2 again implies (a). �

Example 6.2. Suppose k = Q(q) with q transcendental over Q. Let Uq

denote the quantized enveloping algebra, as defined by Kang [K], associated

to a symmetrizable Borcherds-Cartan matrix A and a sequence m of positive

integers. We will use the same notation as used in [M2, Sect.4]. In partic-

ular, U0 denotes the group algebra spanned by the grouplikes qh(h ∈ P∨),

and we have the two objects

V =
⊕
j,l

kf ′
jl, W =

⊕
j,l

kejl in U0

U0YD,

where (j, l) runs through the index set

I = {(j, l) | j ∈ I, 1 ≤ l ≤ mj}.

The Nichols algebras of V , W are made into U≤0, U≥0 by bosonization.

We have a non-degenerate skew pairing τ : U≤0 ⊗ U≥0 → k, due to Kang

and Tanisaki [KT], as given on Page 2214, lines -4 to -1 of [M2]. These

fit in with our situation of Section 3, supposing kF = kG = U0, H =

U≤0 , B = U≥0; note that the R and the S are then both Nichols. The

associated, generalized quantum double U≤0 �τ U
≥0, divided by the Hopf

ideal generated by qh ⊗ 1 − 1 ⊗ qh(h ∈ P∨), turns into Uq. Since U0 coacts

on the basis elements f ′
jl, eij so that f ′

jl �→ Kj ⊗ f ′
jl, ejl �→ Kj ⊗ ejl, the

condition (6.1) now reads

q−2siaij = τ(Ki,Kj)τ(Kj ,Ki) �= 1,

which is equivalent to aij �= 0. Note that the grouplike qh ⊗ 1 (or 1⊗ qh) in

U≤0 �τ U
≥0 is central if and only if

q−αj(h) = τ(qh,Kj) = 1 (or αj(h) = 0)
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for all j ∈ I. In view of this, we set

N = {h ∈ P∨ | αj(h) = 0 (j ∈ I)}.(6.3)

Recall that the number |I| of I, finite or countably infinite, equals the size

of the matrix A. Assume

(i) |I| = 1 and A �= 0, or

(ii) |I| > 1 and A is irreducible (or the Dynkin diagram of A is connected).

Then we see from Theorem 6.1 that every Hopf ideal of Uq

(a) is generated by all qh − 1, where h runs through a certain additive

subgroup of N (see (6.3)), or

(b) contains all ejl, fjl,K
2
j − 1, where j ∈ I, 1 ≤ l ≤ mj .

7. Minimal Quasitriangular Pointed Hopf Algebras in Charac-

teristic Zero

We assume that k is an algebraically closed field of characteristic ch k is

zero, unless otherwise stated.

Suppose that we are in the situation of Remark 3.4 so that D = D(H),

Drinfeld’s quantum double of H = B(W )>��G.

Remark 7.1. In particular, we suppose S = B(W ), and that it is

finite-dimensional. By the assumption ch k = 0, we see from Remark 2.1

the following.

τ0(fi, gi) �= 1 (i ∈ I).(7.1)

If |G| is odd, τ0(fi, gi) �= −1 (i ∈ I), whence W ′ = 0.(7.2)

Note that (7.1) implies (5.6). Recall that D = D(H) has a canonical R-

matrix with which D is a minimal quasitriangular (in the sense of Radford

[R2]) pointed Hopf algebras. Choose arbitrarily a thin Hopf ideal a of D,
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which is necessarily of the form a(T,Z, ζ) (see (5.2)) by Theorem 5.4. Set

A = D/a. Note that

F ∩ C = {1} = G ∩ C,

since τ0 : F × G → k× is supposed to be non-degenerate. It follows by

the proof of Theorem 5.4 that A is of the form A(T,Z, ζ) (see (5.4)), and

it includes B = B(V )>��F , H = B(W )>��G. By [R2, Theorem 1], we

conclude that A is a minimal quasitriangular pointed Hopf algebra with

respect to the R-matrix inherited from D = D(H). Note that A is generated

by skew primitives.

Theorem 7.2. Conversely, every minimal quasitriangular pointed

Hopf algebra that is generated by skew primitives is of the form D(H)/

a(T,Z, ζ), where H = B(W )>��G.

Proof. We will use Lemmas 7.5 and 7.6 which will be formulated and

proved later.

Let A be a minimal quasitriangular Hopf algebra. By [R2, Theorem 2],

we have a Hopf algebra quotient

π : D(H) = B�τ H → A(7.3)

of some quantum double D(H) such that π |B, π |H are both embeddings.

Here we suppose that D(H) is constructed by some finite-dimensional Hopf

algebras B, H and a non-degenerate skew pairing τ : B ⊗H → k; see [DT,

Sect. 2]. Let

τ l : Bcop �−→H∗, τ l(b)(h) = τ(b, h),(7.4)

τ r : H
�−→(Bcop)∗, τ r(h)(b) = τ(b, h),(7.5)

denote the Hopf algebra isomorphisms associated to τ .

Assume that A is pointed. Then, B and H are pointed, too. Set F =

G(B), G = G(H). Then the kernel of the restriction map H∗ → (kG)∗

is the Jacobson radical of H∗, in which τ l(f − 1) cannot be contained if

1 �= f ∈ F , since f − 1 cannot be nilpotent. Therefore, τ l induces a Hopf

algebra mono kF ↪→ (kG)∗. Similarly, τ r induces a mono kG ↪→ (kF )∗.
The two monos, being dual to each other, must be isomorphisms. Hence, F
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and G are abelian, and τ restricts to a non-degerate pairing F × G → k×.

Since the maps

B
�−→
τ l

H∗−→
res

(kG)∗, H
�−→
τr

B∗−→
res

(kF )∗,

combined with the isomorphisms just obtained, give Hopf algebra retrac-

tions B → kF , H → kG, we see from [R1, Theorem 3] that

B = R>��F, H = S >��G,

where R, S are local irreducible braided Hopf algebras in F
FYD, G

GYD, re-

spectively. Set

V = P (R) (= YD(B)), W = P (S) (= YD(H)).

These are of diagonal type by our assumption on k. Since the augmentation

ideals R+, S+ are nilpotent, we have

τ(f, s) = ε(s), τ(r, g) = ε(r) (f ∈ F, g ∈ G, r ∈ R, s ∈ S).

It follows by Lemma 7.6 (1) that in D(H), V and W are stable under

conjugation by G, F , respectively, so that

gvg−1 = τ(v−1, g)v0 (g ∈ G, v ∈ V ),(7.6)

fwf−1 = τ(f−1, w−1)w0 (f ∈ F,w ∈ W ).(7.7)

Set Γ = FG in A. Then, Γ = G(A). By (7.6), (7.7), V and W , embedded

into YD(A) (see Lemma 2.2), are stable under Γ-action.

Assume that A is generated by skew primitives. By the Γ-stability shown

above, Lemma 7.5 implies that R, S are generated by V , W , respectively.

By Lemma 7.6 (2), (3), R and S are Nichols, and τ |V⊗W : V ⊗ W → k is

non-degenerate. It follows that D(H) is so as given at the begininng of this

section. Theorem 7.2 now follows by Theorem 5.4. �

Corollary 7.3. If A is a minimal quasitriangular pointed Hopf alge-

bra such that the prime divisors of |G(A)| are all greater than 7, then it is

of the form D(H)/a(T,Z, ζ) with H = B(W )>��G, in which a(T,Z, ζ) is

skinny, that is, Z and ζ are zero.
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Proof. As was proved by Andruskiewitsch and Schneider [AS2, The-

orem 5.5], A is necessarily generated by skew-primitives under the assump-

tion. Hence the conclusion follows by Theorem 7.2 and (7.2). �

The referee kindly pointed out that our proof of Theorem 7.2 answers in

the positive a folklore question, as is formulated by the following corollary,

under the hypothesis of generation by skew-primitives.

Corollary 7.4. Let A be a finite-dimensional pointed Hopf algebra

whose dual A∗ as well is pointed. Then A and A∗ are both bosonizations of

Nichols algebras by finite abelian groups, provided that they are generated

by skew-primitives.

Proof. This indeed follows by the proof of Theorem 7.2 since we may

replace the H and the B of the proof with the present A and (A∗)cop. �

For the following Lemmas 7.5 and 7.6, which we have used above, k may

be an arbitrary field.

Lemma 7.5. Let A be a pointed Hopf algebra with U = YD(A) (∈
G(A)
G(A)YD). Assume that U is semisimple in

G(A)
G(A)YD; this holds true if ch k =

0 and G(A) is finite. Let B ⊂ A be a Hopf subalgebra with V = YD(B)

(∈ G(B)
G(B)YD); then V ⊂ U (see Lemma 2.2). Assume that V is stable in U

under the G(A)-action. If A is generated by skew primitives, then B is, too.

Proof. We may replace A, B with the associated graded Hopf alge-

bras, so that

A = B(U)>��G(A), B = S >��G(B),

where S is a braided graded Hopf algebra in
G(B)
G(B)YD such that S(0) = k,

S(1) = V . Note that V generates the Nichols algebra B(V ) in S. We need

to prove B(V ) = S.

By the assumptions given above, V is a subobject of U in
G(A)
G(A)YD,

and we have a retraction U → V , which uniquely extends to a retraction

τ : B(U) → B(V ) of braided graded Hopf algebras. Note that Radford’s

Theorem [R1, Theorem 3] can be proved, by rephrasing his proof word
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by word, in the genralized, braided context. Apply the thus generalized

theorem to B(V ) ⊂ S with the retraction π |S : S → B(V ). Then we obtain

an isomorphism

S � Q>�� B(V ).(7.8)

Regarded just as a coalgebra, the right-hand side of (7.8) denotes the

smash coproduct in the braided context, associated to a braided left B(V )-

comodule coalgebra Q (= S/SB(V )+) in
G(B)
G(B)YD. If B(V ) � S or k � Q,

then Q contains a non-zero primitive, say u, on which the irreducible B(V )

coacts trivially. This u is a primitive in S which is not contained in V ; this

is absurd. Therefore, B(V ) = S. �

Lemma 7.6. Let J , K, be Hopf algebras with bijective antipode. Let

R (∈ J
JYD), S (∈ K

KYD) be braided Hopf algebras. Let

τ : (R>�� J) ⊗ (S >��K) → k

be a skew pairing, and let

D = (R>�� J)�τ (S >��K)

denote the associated generalized quantum double, which is constructed just

as the D in (3.4); see [DT, Sect. 2]. Set

V = P (R) (∈ J
JYD), W = P (S) (∈ K

KYD).

(1) Assume that

τ(a, s) = ε(a)ε(s) (a ∈ J, s ∈ S),(7.9)

τ(r, x) = ε(r)ε(x) (x ∈ K, r ∈ R).(7.10)

Then in D, V and W are stable under conjugation by K, J , respec-

tively, so that

x1vS(x2) = τ(v−1, x)v0 (x ∈ K, v ∈ V ),

a1wS(a2) = τ(S(a), w−1)w0 (a ∈ J,w ∈ W ).

See (2.1), (2.2) for the notation used above.



570 Akira Masuoka

(2) Assume (7.9), (7.10). Let

∆(t) = t(1) ⊗ t(2) (t ∈ R or t ∈ S)

denote the coproducts of the braided coalgebras R, S. Let S̄ denote the

composite-inverse of the antipode S of R>�� J . Then,

τ(r, ss′) = τ(r(1), s
′)τ(r(2), s),(7.11)

τ(S̄(r)S̄(r′), s) = τ(S̄(r), s(1))τ(S̄(r′), s(2)),(7.12)

τ(S̄(r)a, sx) = τ(S̄(r), s)τ(a, x),(7.13)

where a ∈ J , x ∈ K, r ∈ R, s ∈ S. Moreover, τ is non-degenerate if

and only if the restrictions

τ |J⊗K : J ⊗K → k, τ |R⊗S : R⊗ S → k

are both non-degenerate.

(3) Assume that R, S are generated by V , W , respectively, and that

τ(a,w) = 0 = τ(v, x) (a ∈ J, x ∈ K, v ∈ V,w ∈ W ).(7.14)

If τ |J⊗K is non-degenerate, then the following are equivalent to each

other:

(a) τ |R⊗S is non-degenerate;

(b) τ |V⊗W is non-degenerate, and R, S are both Nichols (or more

precisely, the inclusions V ↪→ R, W ↪→ S uniquely extend to

isomorphisms, B(V )
�−→R, B(W )

�−→S);

(c) τ |R̄⊗S is non-degenerate, where R̄ = S̄(R);

(e) τ is non-degenerate.

Proof. (1) This is directly verified.

(2) Set B = R>�� J , H = S >��K. We can prove, in the present situation,

the same formulae as those given in [M2, Lemma 2.2], which includes (7.11),

just in the same way. The result can apply to the skew pairing

H ⊗B → k, h⊗ b �→ τ−1(b, h),(7.15)
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where τ−1 denotes the convolution-inverse of τ . Obtained are the same

formulae as those given in [M2, Lemma 2.3], which include (7.12), (7.13).

We see from (7.13) that τ is non-degenerate if and only if τ |J⊗K and

τ |R̄⊗S are both non-degenerate, where R̄ = S̄(R). Apply this result to the

skew pairing (7.15), using τ−1(b, h) = τ(b,S(h)). Then we see that τ−1 is

non-degenerate if and only if τ |J⊗K , τ |R⊗S are so. The desired equivalence

follows since τ and τ−1 are non-degenerate at the same time.

(3) We remark that (a)-(c) above are the same as those given in [M2,

Proposition 2.6(1)], in which these conditions together with another (d)

are proved to be equivalent, in a more restricted situation, but without

assuming that τ |J⊗K is non-degenerate. By the proof of (2) above, we see

(a) ⇔ (c) ⇔ (e). Note that if v ∈ V , then S̄(v) = −v0S̄(v−1), and so

τ(S̄(v), s) = −τ(v, s) for s ∈ S; see [M2, (2.12)]. Then we see from (7.11),

(7.12) that (a) (or (c)) implies that τ |V⊗W is non-degenerate.

Since τ |V⊗W satisfies [M2, (2.1), (2.2)], it follows by [M2, Proposition

2.1] that τ |J⊗K , τ |V⊗W uniquely extend to such a skew pairing

τ̃ : (T (V )>�� J) ⊗ (T (W )>��K) → k

that satisfies the same assumption as (7.14). Obviously, τ̃ factors through

our τ . Assume that τ |V⊗W (= τ̃ |V⊗W ) is non-degenerate. It then follows by

[M2, Proposition 2.6(1), (b) ⇒ (a)] that the radicals of τ̃ |T (V )⊗T (W ) coincide

the ideals defining B(V ), B(W ). Therefore, (a) ⇒ (b). The converse is

proved in [M2]. �

8. Gelaki’s Classification of Minimal Triangular Pointed Hopf

Algebras

We will reproduce from our Theorem 7.2 Gelaki’s classification results

[G, Theorem 4.4, Theorem 5.1] of minimal triangular pointed Hopf algebras

in characteristic zero.

8.1. In this subsection, k may be arbitrary. Let A be a minimal qua-

sitriangular Hopf algebra with R-matrix R. Then we have as in (7.3), a

quotient

π : D(H) = B�τ H → (A,R)
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of some quantum double D(H) such that π |B, π |H are embeddings. Assume

that π |B: B → A, π |H : H → A are isomorphisms. This assumption is

necessarily satisfied if (A,R) is minimal triangular. Let us identify B, H

both with A via the isomorphisms. Then the non-degenerate skew pairing

τ : A ⊗ A → k is a co-quasitriangular structure on A, whence the element

τ∗ in A∗ ⊗ A∗ is an R-matrix of A∗. Moreover the Hopf algebra map [G,

p.3]

fR : (A∗, τ∗) → (Acop,R21), fR(p) = (p⊗ id)(R)

arising from R is an isomorphism with inverse τ l; see (7.4). From this the

next lemma follows.

Lemma 8.1. (A,R) is triangular if and only if

τ(a1, b1)τ(b2, a2) = ε(a)ε(b) (a, b ∈ A)

8.2. In what follows we assume that k is an algebraically closed field of

characteristic zero. Let (A,R) be a minimal triangular pointed Hopf al-

gebra. By [AEG, Theorem 6.1], A is generated by skew primitives. Since

it is in particular quasitriangular, it follows by Theorem 7.2 that (A,R)

is isomorphic to some D(H)/a(T,Z, ζ), where H = B(W )>��G. Here we

suppose as before that D(H) is presented as a generalized quantum double

D(H) = (B(V )>��F )�τ (B(W )>��G),(8.1)

for which the index set I as well as the abelian groups F , G are supposed

to be finite, and the skew-pairing τ to be non-degenerate.

Let D(H), a(T,Z, ζ) be as above. We wish to know the conditions

under which D(H)/a(T,Z, ζ) is indeed finite-dimensional and triangular.

As is seen from the argument in Section 8.1, we may suppose by replacing

τ0(= τ |F×G) that F = G, the non-degenerate bimultiplicative map τ0 :

G×G → k× is skew-symmetric in the sense

τ0(f, g) = τ0(g, f)−1 (f, g ∈ G),(8.2)

and the T in a(T,Z, ζ) is given by

T = {(g−1, g) ∈ G×G | g ∈ G}.
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In order that T ⊂ C, we require

fi = g−1
i (i ∈ I).

By (8.2), we have IT = I, whence VT = V , and we can take V as the Z

in a(T,Z, ζ), as we should. Note that Γ = G × G/T is naturally identified

with G. Then one sees that as objects in Γ
ΓYD,

V =
⊕
i∈I

(kvi; ĝ
−1
i , g−1

i ), W =
⊕
i∈I

(kwi; ĝi, gi),(8.3)

where ĝi = τ0(gi, ); see Proposition 3.5. Note that τ0(gi, gi) = ±1 by (8.2).

In order that B(V ), B(W ) are finite-dimensional, we require

τ0(gi, gi) = −1 (i ∈ I);

see Remark 7.1. Let

Iτ0 = {g ∈ G | τ0(g, g) = −1},

as in [G] (in which our τ0, Iτ0 are denoted by F , IF ). For each g ∈ Iτ0 , let

Ig = {i ∈ I | gi = g}, ng = |Ig| (≥ 0),

Vg =
⊕
i∈Ig

(kvi; ĝ
−1
i , g−1

i ), Wg =
⊕
i∈Ig

(kwi; ĝi, gi).

Note that B(Wg) equals the exterior algebra
∧

(Wg) of Wg, whence

H = B(W )>��G = (
⊗
g∈Iτ0

∧
(Wg))>��G.(8.4)

One sees from (8.3) that there exists an isomorphism ζ : V
�−→W in

Γ
ΓYD if and only if

ng = ng−1 (g ∈ Iτ0),(8.5)

which we now assume to hold. Such an isomorphism ζ is precisely a direct

sum of linear isomorphisms Mg : Vg
�−→Wg−1 , where g ∈ Iτ0 . We under-

stand that Mg is represented as an ng × ng invertible matrix with respect

to the bases (vi | i ∈ Ig), (wi | i ∈ Ig−1).

Proposition 8.2. Suppose Z = V , and that ζ is given by Mg (g ∈
Iτ0). Set a = a(T, V, ζ). We already know that D(H)/a, given the R-matrix

inherited from D(H), is a minimal quasitriangular Hopf algebra.
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(1) D(H)/a is triangular if and only if

Mg−1 = tMg (g ∈ Iτ0).(8.6)

(2) (Gelaki) Every minimal triangular pointed Hopf algebra is of this form

D(H)/a with (8.6) satisfied.

Proof. (1) One sees from Lemma 8.1 that D(H)/a is triangular if and

only if

τ(vi, ζ(vj)) + τ(g−1
j , gi)τ(vj , ζ(vi)) = 0 (i, j ∈ I).

This last condition is equivalent to (8.6).

(2) This follows from (1) and the argument above. �

Remark 8.3. Keep the notation as above.

(1) D(H)/a is, as a Hopf algebra, isomorphic to the one given in (8.4).

The latter is precisely Gelaki’s H(D) which is associated to the data,

denoted by D in [G], consisting of G, τ0, (ng) (our Wg is denoted by Vg

in [G]). Part 2 of the preceding proposition essentially coincides with

Gelaki’s classification [G, Theorem 5.1] of minimal triangular pointed

Hopf algebras.

(2) Let B = B(V )>��G, H = B(W )>��G. By (1), H = D(H)/a = H(D)

as Hopf algebras. We see by modifying the argument above that the

minimal triangular structures on H are in 1-1 correspondence with the

pairs (ϕ, (Mg)) consisting of such a group isomorphism ϕ : G
�−→G

and linear isomorphisms Mg : Vg
�−→Wg−1 that satisfy (8.6) and

ϕ(gi) = gi (i ∈ I), τ0(f, ϕ(g)) = τ0(ϕ(f), g) (f, g ∈ G).

To such a pair is associated the structure which is inherited from

D(H) = B�τ H via the Hopf algebra map π : B�τ H → H deter-

mined by

π |H= idH , π(g ⊗ 1) = ϕ(g) (g ∈ G), π(v) = Mgv (v ∈ Vg).
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Interpret this result by regarding ϕ, Mg as isomorphisms Ĝ
�−→G,

W ∗
g

�−→Wg−1 via the identifications G = Ĝ, Vg = W ∗
g given by τ l.

The obtained result coincides with Gelaki’s classification [G, Theo-

rem 4.4] of minimal triangular structures on H(D). We see from our

construction that if we fix ϕ, two systems (Mg), (M ′
g) of linear isomor-

phisms give isomorphic minimal triangular structures on H = H(D).
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