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The Growth of the Nevanlinna Proximity Function

By Atsushi NITANDA

Abstract. Let f be a meromorphic mapping from C" into a com-
pact complex manifold M. In this paper we give some estimates of
the growth of the proximity function my(r, D) of f with respect to
a divisor D. J.E. Littlewood [2] (cf. Hayman [1]) proved that every

non-constant meromorphic function g on the complex plane C satis-
mg(r,a)

ou T < 1 for almost all point a of the Riemann
og T (r,g)

sphere. We extend this result to the case of a meromorphic mapping

f:C" - M and a linear system P(E) on M. The main result is

an estimate of the following type: For almost all divisor D € P(E),
mf(r,D)fmf(r,IB(E)) < 1
longE(r,HE) — 2

fies limsup,_, o,

limsup,_, o
1. Introduction

J.E. Littlewood [2] (cf. [1]) proved that every non-constant meromorphic
function g on C satisfies

lim sup my(r, @)

—
r—oo logT'(r,g) —

1
2
for almost all @ € C, where T'(r,g) denotes the Nevanlinna characteristic
function of g. Our main aim is to generalize this result to the case of several
complex variables. Cf. A. Sadullaev [8], A. Sadullaev and P.V. Degtjar’ [9],
and S. Mori [2] for related results (see Remark at the end of §6).

Let L — M be a holomorphic line bundle over a compact complex
manifold M. Let I'(M, L) be the vector space of all holomorphic sections
of L over M, and E C I'(M, L) a vector subspace of dimension at least 2.
Then we have a natural meromorphic mapping

pE M — P(EY),

where P(E*) is the projective space of the dual E* of E. Let Hg be the
hyperplane bundle over P(E*) and B(E) C M the base of E. Let f : C" —
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526 Atsushi NITANDA

M be a meromorphic mapping such that f(C"™) ¢ B(FE). Then we have the
composite meromorphic mapping fg = pgo f: C" — P(E").
Our main result is as follows (cf. section 2 for more notation):

MAIN THEOREM. Let fp = pgo f : C* — P(E*) be as above. If
Ty, (r,Hg) — 00 (r — 00), then

i s my(r, D) —my(r,Zp))
r_,oop log Ty, (r, HE)

1
< Z
-2

for almost all divisor D € P(E).

In section 4 we first prove the Main Theorem in the case where E =
I'(M, L) and B(E) = ¢. In section 5 we show an estimate of different type.
In section 6 we deal with the general case.

Acknowledgement. The author would like to express his sincere grat-
itude to Professor Junjiro Noguchi for his valuable advice and encourage-
ment.

2. Notation
Let z = (21,...,2") be the natural coordinate system of C". We set
. i
2= P2, d°=— (-0
= S 1F, = 2 0-0),

a = dd’||z])?, 1= dlog|2]|* A (dd°log |=]*)" ",
B(r)={z€C" |zl <r}, T(r)={2€C% [z =r}.

Let M be a compact complex manifold and (L, ) a Hermitian holomor-
phic line bundle over M. For a meromorphic mapping f : C" — M we
define the order function of f with respect to the Chern form w of (L, h) by

Todt
Tr(r,w :/ —/ fro Aot
f(rw) | 2l B()

and we define the order function of f with respect to L by

Ty(r,L) =T¢(r,w).
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T¢(r, L) is well-defined up to a bounded term. We denote the space of
holomorphic sections of L by I'(M, L). We have the natural identification

P(I(M, L)) = {(0); o € (M, L) \{0}},

where the notation (o) stands for the effective divisor of o. Let D €
P(I'(M, L)). Then we may take an element o € I'(M, L) which satisfies

D =(0), llo(@)ll = h(o(z),0(x)) < 1.

When f(C") ¢ supp D (the support of D), the proximity function of f
with respect to D is defined by

1
my(r, D) = /zem) o8 155 7y ")

and we define the counting function of f*D by

* Todt n—1
N(r, f*D) = 2n—1 a- o,
1 B(t)Nnf*D

where f*D is the pullback of D by f. If L is non-negative, then we have
the First Main Theorem

(1) T¢(r,L) = N(r, f*D) +m¢(r,D) + O(1).
3. Lemma

Let M be a compact complex manifold and L — M a holomorphic line
bundle. Set
V=T(M,L), N+1=dim V.

Here we assume that the set B(V') of base points of V' is empty, i.e.,
B(V)={x € M; o(z) =0,Vo € V} = ¢.

We fix a Hermitian inner product (, ) in V. Let ({Ux}, {sa}) be a local
trivialization covering of L and {oy,...,on} an orthonormal base of V.
We identify V* = CN*! by the dual base of {0g,...,0n}. We define a
holomorphic mapping ®7, from M into P(V*) = PY(C) by

O (x) =[oga(x) : ... ona(z)], x € Uy,
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where o, are holomorphic functions on Uy with ¢;|Uy = ojasy. If Uy N
U, # ¢, there exists a holomorphic function Ty, : Uy N U, — C\ {0} such
that sy(z)Th,(z) = su(z) for x € Uy NU,. Therefore, @7, is well-defined.
Then it follows that L = ®; Hy«, where Hy« is the hyperplane bundle over
P(V*). Hence Fubini-Study metric in Hy+ induces a Hermitian metric h in
L satisfying

1

(2) h(sa(x),81(2) = =3~
ijo |(7j/\(55)|2

We denote the Chern form of (L, h) by w. Clearly, w is non-negative. Hence
L is non-negative. Let wy denote the Fubini-Study metric form on P (V)
induced by the Hermitian inner product ( , ). Since wi} = ANwy is a
volume element on P(V), it is considered as positive measure . We define

a C*°-function S, on P(V) by

We now prove the following key lemma.

LEMMA 1. Let the notation be as above and X C P(V) a Lebesgue
measurable subset with u(X) > 0. Then,

1 n(X) N
/Dex e gy P = Ty (N +log M(X))

for allx € M.

ProOF. We identify P(V) = P¥(C) by the base {0qg,...,0n}. Then
we equate [2° : ... : 2] € PV (C) with a divisor (Z;V:O zjaj). For z € Uy
and [0 :...: 2] € PN(Q) it follows from (2) that

PREENGI

(3) So([20:...:2N]) = 5 5
(EXolon@P) " (T l=1) "
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Since B(V) = ¢, there exists a unitary matrix G = (g;;) and a non-zero
constant @ € C such that

1

0 00,\(1')
=a'G :

6 UN)\(w)

Let p : CN*1\ {0} — PN(C) be the Hopf fibering. We define a biholomor-

phic mapping G by G(p(2)) = p(Gz), z = 1(2°,...,2¥) € CNFL. Since G
is unitary, we easily see by (3) that

0
(4) Sp(G([2°: ... 2N))) = Cal

(S 12+R)

We denote the characteristic function of a subset S C P(V) by xgs. Since
wy is unitary invariant, it follows from (4) that

1 wN
(5) /p<w)ex o8 5 )"

[ (201241
= og w
p(z)eEG1(X) |ZO| v
We put

Vo={[":...: 2N e PN(C); 2° £ 0}

and we set an affine coordinate system on Vj by

1 N
C= (.. Ny = (%L)

20
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Then by (5) we have

wN

1
log ———
/p(w)GX S:Jc(p(w)) v

1/2 .
o RN e

_ / Xo1x) log (1+[1¢[2) '
ceon (LN

Furthermore, p(X) = u(G~1(X)), so that it suffices to prove that

xxlog (14 ¢ v u(x) N
© /CeCN ™ = 2 <N+logﬂ<x>>

for a Lebesgue measurable set X € CV. Set

O(r) =

.

/XQ{CGCN; <li>r}

Then, ®(r) is a continuous decreasing function on [0,00) and 0 < ®(r) <
uw(X) < 1. Moreover,

XX N
7 a(r) = T
@ ) /{ceCN; elsry (Lt RN

o XXZNtQNil
- NESRAL2
. r@ (L+2)NF
so that ®(r) is an absolutely continuous function on [0, s] (s € [0,00)).
Therefore it follows that

(8) /0 Tlog(1 + %) /2d(~d(r))

s IN-1
_ 211/2 Xx2Nr d
[ty [ R} o

/ xx log(1+ ||<]I*)!? y
ceBs) (LHI[CHNF?
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On the other hand, we have

(9) /0 Tlog(1 + r2)M2d(—(r)) = /0 " re(r)

el ®(s)log(1 + s2)1/2.

The following convergence will be proved later:
(10) ®(s)log(1+ )2 =0 (s — o).

Hence by (8), (9), (10) the left side of (6) is

xxlog(+ [CDY2 [ rd(r)
) foo CTE R = ) T

To estimate (11), we put

U(r) :/ Wi
{¢ceCN; |IClI>r}

Then, ¥(r) is a strictly decreasing and continuous function on [0, c0) such
that 0 < ®(r) < U(r) <1, ¥(0) =1, and lim, o, ¥(r) = 0.
We compute ¥(r) as follows.

1
U(r) :/ ———a’
fcee™; Jiei>ry (1+ [N

o 2Nt2N—1
B /T /I‘(t) (1+ )N+t a

o) 2Nt2N_1
:/T 1+ )N+ dt
= 2
= (1+72)
Therefore we have
1 N
12 <y <
(12) 1472 (7“)_14—7"2

We show (10) as follows.

0 < ®(s)log(l+ s*)/2 < W(s)log(1 + s2)'/?
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2\1/2
< 1+8210g(1+5)/ —0 (s — o0).

Because of u(X) > 0 we can take a real number r; > 0 such that ¥(r;) =
n(X). By (12)

(13) L o142 N

—— < r{ < ——.

(X) P uX)
Note that ®(0) = u(X), ®(r) is decreasing, and that ®(r) < min{¥(r),
u(X)}. Therefore, we get

/OO ro(r) . < /” TM(X)dT+/°° rer) ;.
; 0 "

1472 1+ 72 1+ 72

_ u(X) > /°° ro(r)
== log(1 + 1) + . 1+T2d7’.

Furthermore by (12) and (13) we see that

© rd(r) pu(X) N /00 rN
dr < =2log ——+ | ————dr
/0 1+ = 2 Buon T )L T

Wx), N N px) (

- 1 <
> BLX) T T 2

Therefore, (6) follows from (11). O
4. Growth of the Nevanlinna Proximity Function 1
We show the following theorem.

THEOREM 2. Let M be a compact complex manifold and L — M a
holomorphic line bundle satisfying B(I'(M,L)) = ¢. Let f : C" — M be a
meromorphic mapping such that Ty(r,L) — oo (r — 00). Then we have
that for almost all divisor D € P(I'(M, L))

D
lim sup m;(r, D)

e =

1
5
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PrROOF. Set V =T(M,L). Let w, wy and S, be as in the section 3.
Then

Ty(r,w) =T¢(r,L) + O(1).
Since T'4(r, L) — oo (r — o0), for all positive integer m € N we can choose
real number r,, € (1,00) such that
Ty (rm,w) =m.
Let 5 > 1/2 be an arbitrary real number and set

G(m,B) ={D € P(V); ms(rm,D) > Blogm}.

We denote by I(f) the indeterminacy locus of f. Because the codimen-
sion of I(f) is greater than or equal to 2, it follows from lemma 1 that if
1(G(m, B)) > 0, then

u(G(m, B))Flogm < /D oy Metrm DI

1
= log ——==1(2) p i)
/DGG(m,[B) {/zGF(Tm)\I o S (D) '

1
- log ——=wlf b n(2)
/zef(v"m)\l(f) {/DEG(m,B) S52)(D) }

(G (m, B)) o N s
= /zGF(rm)\I(f) 2 (N +log M(G(m,ﬁ))> ()

:M@mﬁDCVH%

o)
2 w(G(m,B))/) "

Hence we deduce that

NN
H(Gm. B)) < — o

We set

G = U Gmp.

mo=1m=myg
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Because of 5 > 1/2 it follows that

[e’e) o0 eN
(14)  p(OE) < Tm > p(@me) < m S Nei—o

m=myo m=mo
Note that the set X (f) defined by
X(f)={D e P(V); supp D D f(C")}

has zero measure. Let D ¢ G(8) U X(f). Then there exists an integer
mp € N such that for all m > mp

(15) myg(rm, D) < Blogm.

We choose an arbitrary number s > r,,, and we take an integer my € N
satisfying 7,,, < s < ryp.4+1. Then mgs > mp. Since w > 0 and D ¢ X(f),
we have by the First Main Theorem (1) and (15)

my(s, D) = Ty(s,w) = N(s, [ D) + O(1)
< Ty(rme1,w) = N(rm,, f*D) + O(1)
= T§(rm,,w) = N(rm,, f*D) + O(1)
— g (rm,, D) + O(1) < Blogm, + O(1)
< BlogTy(s,w)+ O(1).
Therefore it follows that for an arbitrary D ¢ G(5) U X (f)

. mg(r, D)
16 | _—
(1) )

We set -
1 1
G:HG<§+E> UX(f).

Then by (14), (16) we see that
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and that for D ¢ G

D
lim sup my(r, D)

—0— <
r—too 108 Ty (1, w)

1
—. O
2

In general, let M be a compact complex manifold with a Hermitian
metric form w. Let f : C* — M be a meromorphic mapping. Then the
order function of f with respect to w is defined by

todt . n—
Tf(r,w):/1 75271—_1/3(15)]”@;/\04 L

We define the order of f by

. log T (r, w)
= limsup ————=
Pt r_mp logr
which is independent of the choice of the Hermitian metric form w.
We easily deduce the following corollary from Theorem 2.

COROLLARY 3. Let M be a compact complex manifold and L a very
ample holomorphic line bundle over M. Let f : C" — M be a meromorphic
mapping. Assume that the order of f is finite and T¢(r, L) — oo (r — 00).
Then,

lim sup my(r, D) < Pt
r—00 10g7° 2

for almost all effective divisor D € P(I'(M,L)).
5. Growth of the Nevanlinna Proximity Function 2

We now define the projective logarithmic capacity of a subset in the
PY(C) (See Molzon-Shiffman-Sibony [3]). Let K be a compact subset of
PY(C). We denote by M(K) the space of positive Borel measures on K

with total mass 1. For x = [20: ... : 2] € PV(C) and v € M(K) we set
CN1/2 C\1/2
(Zoled?) ™ (S0 lw?)
uy () :/ log dv,
[w©

. N N 0 0d
..... wN|eK ‘ijox]uﬂ’
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and

V(K)= inf v(T).
9= i ey ™

Define the projective logarithmic capacity of K by

1

) = iy

When V(K) = oo, we set C(K) = 0. For an arbitrary subset E of PY¥(C)
we define the projective logarithmic capacity of E by

C(E) :;%%C(K),

where the supremum is taken over compact subsets K of E.
For real valued functions A(r) and B(r) on [1,00) we write

A(r) < B(r)]]

if there is a Borel subset J C [1,00) with finite measure such that A(r) <
B(r) for r € [1,00) \ J.

Let the notation be as in the previous section. We now show the follow-
ing theorem.

THEOREM 4. Let M be a compact complex manifold, and L — M a
holomorphic line bundle with B(I'(M,L)) = ¢. Let f : C* — M be a
meromorphic mapping. Let o(r) > 0 be a Borel measurable function on

[1,00) which satisfies
[
1 p(r)

Then there exists a subset F' of P(I'(M, L)) such that C(F) =0 and that
my(r, D) < ¢(r) + O(1)]|
for an arbitrary divisor D € P(I'(M, L)) \ F.
Proor. We identify P(I'(M, L)) = PV (C) by the base {oq,...,on}.

Then we equate [¢° : ... : (V] € PY(C) with a divisor (Z;'V:o Cjaj). We

* F= {DGP(F(M,L)); /100 %dr:oo}.
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Assume that C(F) > 0. Then there is a compact subset K of F' with
C(K) > 0. Therefore there exists a v € M(K) such that

(17) sup  uy(z) < oo.
zePN (C)

It follows from (3) and (17) that

- /100 90(17”) {/Zer(r) {/Klog Sf(Z)([CO 1 cel CN])dU} 77} o
<[ L,

:/ ! sup  uy(z)dr < oco.
1 @(7) sepN(C)

On the other hand, by the definition of F' we have

This is a contradiction. Hence C(F) = 0. For an arbitrary divisor D €
P(I'(M, L)) we set

J(D) = {re [1,00); % > 1}.

If D & F, then we see

J(D) reJ(D) o(r) 1 o(r)

Therefore for D € P(I'(M, L)) \ F

my(r, D) < o(r) + O(1)]|. O
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6. The General Case

In this section we deal with the growth of the proximity function with
respect to an effective divisor D € P(FE), where L — M be a holomorphic
line bundle and F is a linear subspace of I'(M, L), and complete the proof
of the Main Theorem.

Let M be a compact complex manifold and Z a coherent ideal sheaf of
the structure sheaf Oy over M. Let {V)} be a finite open covering of M
and ny; € I'(V),Z), j = 1,2,..., be finitely many sections of which germs
AL, A2, - - - generate the fiber Z; for all z € V). Following to [5], Chap. 2
or [7], §2, we let {p)} be a partition of unity associated with {V)\} and set

1/2

dr(z) = pa(z) [ D Im(@)? , r€M.
By i

Let f be a meromorphic mapping from C” into M such that

f(C™) ¢ supp Op/Z.

We define the proximity function of f for 7 by

m(r, 1) = / —logdz o f(2)n(2).
zel'(r)

Next let L — M be a holomorphic line bundle and dimI'(M, L) = N+1.
Let E be an (I + 1)-dimensional linear subspace of I'(M, L). We take a base
{00,...,0n} of T'(M, L) and we identify I'(M, L) = CN*1 by {00,...,0n}.
Moreover we assume that E is spanned by {oy,...,0;}. Let Z denote the
coherent ideal sheaf of Oy of which fiber over x € M is generated by
{o,; 0 € E}. Then the base of E is defined by B(E) = Op;/Z. Thus we
write 7 = IB(E)

Let f: C" — M be a meromorphic mapping. Suppose that

f(C") & supp B(E).

Let ({Ux},{sr}) be a local trivialization covering of L. We define a mero-
morphic mapping ®7, : M — PN (C) by

Oy (x) = [oga(x) i ... ona(z)], =€ Uy,
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where o) is a holomorphic function on Uy such that ai|Uy = ojxsy. Let
(f° ..., V) be a reduced representation of ® o f. We denote by fr the
meromorphic mapping from C" into P!(C) represented by (f°,..., f!). For

z € (F(C™\ I(f)))" (Ux \ supp B(E))
fe(z) =looro f(2) : ... om0 f(2)]
We denote by H; hyperplane bundle over P!(C). The following is known.

PROPOSITION 5. Let the notation be as above. We have the following.
(i) If BOD(M, L)) = 6, then

Ty(r, L) = Ty, (r, Hy) + O(1),

(ii) (Cf. Noguchi [5].) For [¢°:...: ('] € P(E)
mf (7”, (Zé‘:o CjO'j>) — mf(r,IB(E)) = me(T’, [CO PP ClD + 0(1),

where my, (r, [C0: ... : ¢Y) is the prozimity function of fr with respect to a
hyperplane {[z" : ... : 2] € P{(C); Zé‘:o 2 =0}

PrOOF. (i) We assume that B(I'(M,L)) = ¢. Let (¢°...,4") be a
reduced representation of fp. Then there is a holomorphic function g on
C" such that (f°,..., f') = (g¢°...,gg"). Since L = &% Hy it follows that

1/2

N .
Ty(r, L) = / R go PR n+o

1/2

l
> 1 I(2)|? O(1
_/Zem og ;Olf @] a+oq)

1/2

l
> / og (Sl 0+ / log 9| 7+ O(1)
zel(r) =0 z€l'(1)

> Ty, (r, Hy) + O(1).
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(ii) Let h be a Hermitian metric in L and || - || denote the norms on L.
Let {7)} be a partition of unity associated with {Uy}. For z € U, we set

o) g ) (Shotewol) " (S0 l)
1) o) 1y o5 ()C]
! 1/2
+log Z () Z loja(2)]?
A j=0
Since
15550 (@)l = [ g o (@) [[su(@)]],

we see

San@) (S lon@)?)
o)l (Shoolosnt@)?)

We take an arbitrary point y € M and v such that 7,(y) > 0. Then there
are a relatively compact neighborhood V' C U, of y and positive constant
C1,C9,C3 > 0 such that for x € V

k(x) = log

l S\ 1/2
k(o) < log > 2 C17a(2) (ijo |0 ()] 122 g m < log Oy,
s (@)1 (Shco o (@)12) v
and
k(xz) > log HZEU;;H > log Cs.

Since M is compact there exists a positive constant C' such that for an
arbitrary x € M
|k(z)] < C.

This finishes the proof of (ii). O

Let pup denote the positive measure induced by Fubini-Study metric on
P(E) = P{(C).
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THEOREM 6. Let M be a compact complex manifold and L — M a
holomorphic line bundle. Let 1 < 1 < N be an integer and E an (l1+1)-
dimensional linear subspace of T'(M, L). Let f : C" — M be a meromorphic
mapping such that f(C") ¢ supp B(E). If Ty, (r, H)) — oo (r — 00), then
for almost all divisor D € P(E)

. my(r, D) = my(r, Ipp))
7"—>oop log TfE (T’, Hl)

1
< -
2

Otherwise for almost all divisor D € P(E)

mg(r,D) = my(r,. Ipm) = O(1).
PROOF. Set
I = {[CO:...:CZ] € P(E);

lim su > —
Tﬁoop log T, (r, H;) 2

mg(r, (Zé’:o oj)) —my(r, IpmE) 1 }

Because of Proposition 5 we have that for [¢°:...: ¢! €T

: m, (r, [0 1 (1))
— < limsu .

Hence, if T, (r, H) — oo (r — 00), then we have g(/) = 0 by Theorem 2.
We assume that T, (r, H;) = O(1). Then fg is a constant mapping. Hence
by Proposition 5 (ii)

my(r, D) — mf(r,IB(E)) =0(1). O

By making use of the methods in the proofs of Proposition 5 and The-
orem 4 one may also deduce the following:

THEOREM 7. Let M be a compact complex manifold and L — M a
holomorphic line bundle. Let 1 < 1 < N be an integer and E an (I1+1)-
dimensional linear subspace of U'(M, L). Let f : C™ — M be a meromorphic
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mapping. Let p(r) > 0 be a Borel measurable function on [1,00) which
satisfies
/Oo dr -
—— < 0
1 p(r)

Then there exists a subset F' of P(E) such that C(F) = 0 and that for all
DeP(E)\F

my(r, D) —mg(r,Ipg)) < ¢(r) + O1)]].

REMARK. S. Mori [4] proved that for a non-constant meromorphic
mapping f : C" — PV (C), the set

{H e PY(C)*; limsup my(r, D) ) > O}

r—00 \/Tf(T, HN) log Tf(?“, HN

is of projective logarithmic capacity zero. Moreover, A. Sadullaev [8] showed
that this set forms a polar set.
Note the differences between these results and our Theorems 2 and 7.
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