The Growth of the Nevanlinna Proximity Function

By Atsushi Nitanda

Abstract

Let f be a meromorphic mapping from \mathbf{C}^{n} into a compact complex manifold M. In this paper we give some estimates of the growth of the proximity function $m_{f}(r, D)$ of f with respect to a divisor D. J.E. Littlewood [2] (cf. Hayman [1]) proved that every non-constant meromorphic function g on the complex plane \mathbf{C} satisfies $\lim \sup _{r \rightarrow \infty} \frac{m_{g}(r, a)}{\log T(r, g)} \leq \frac{1}{2}$ for almost all point a of the Riemann sphere. We extend this result to the case of a meromorphic mapping $f: \mathbf{C}^{n} \rightarrow M$ and a linear system $P(E)$ on M. The main result is an estimate of the following type: For almost all divisor $D \in P(E)$, $\lim \sup _{r \rightarrow \infty} \frac{m_{f}(r, D)-m_{f}\left(r, \mathcal{I}_{B(E)}\right)}{\log T_{f_{E}}\left(r, H_{E}\right)} \leq \frac{1}{2}$.

1. Introduction

J.E. Littlewood [2] (cf. [1]) proved that every non-constant meromorphic function g on \mathbf{C} satisfies

$$
\limsup _{r \rightarrow \infty} \frac{m_{g}(r, a)}{\log T(r, g)} \leq \frac{1}{2}
$$

for almost all $a \in \mathbf{C}$, where $T(r, g)$ denotes the Nevanlinna characteristic function of g. Our main aim is to generalize this result to the case of several complex variables. Cf. A. Sadullaev [8], A. Sadullaev and P.V. Degtjar' [9], and S. Mori [2] for related results (see Remark at the end of $\S 6$).

Let $L \rightarrow M$ be a holomorphic line bundle over a compact complex manifold M. Let $\Gamma(M, L)$ be the vector space of all holomorphic sections of L over M, and $E \subset \Gamma(M, L)$ a vector subspace of dimension at least 2 . Then we have a natural meromorphic mapping

$$
\rho_{E}: M \rightarrow P\left(E^{*}\right)
$$

where $P\left(E^{*}\right)$ is the projective space of the dual E^{*} of E. Let H_{E} be the hyperplane bundle over $P\left(E^{*}\right)$ and $B(E) \subset M$ the base of E. Let $f: \mathbf{C}^{n} \rightarrow$

2000 Mathematics Subject Classification. 32A22, 32H30, 30D35.
M be a meromorphic mapping such that $f\left(\mathbf{C}^{n}\right) \not \subset B(E)$. Then we have the composite meromorphic mapping $f_{E}=\rho_{E} \circ f: \mathbf{C}^{n} \rightarrow P\left(E^{*}\right)$.

Our main result is as follows (cf. section 2 for more notation):
Main Theorem. Let $f_{E}=\rho_{E} \circ f: \mathbf{C}^{n} \rightarrow P\left(E^{*}\right)$ be as above. If $T_{f_{E}}\left(r, H_{E}\right) \rightarrow \infty \quad(r \rightarrow \infty)$, then

$$
\limsup _{r \rightarrow \infty} \frac{m_{f}(r, D)-m_{f}\left(r, \mathcal{I}_{B(E)}\right)}{\log T_{f_{E}}\left(r, H_{E}\right)} \leq \frac{1}{2}
$$

for almost all divisor $D \in P(E)$.
In section 4 we first prove the Main Theorem in the case where $E=$ $\Gamma(M, L)$ and $B(E)=\phi$. In section 5 we show an estimate of different type. In section 6 we deal with the general case.

Acknowledgement. The author would like to express his sincere gratitude to Professor Junjiro Noguchi for his valuable advice and encouragement.

2. Notation

Let $z=\left(z^{1}, \ldots, z^{n}\right)$ be the natural coordinate system of \mathbf{C}^{n}. We set

$$
\begin{gathered}
\|z\|^{2}=\sum_{j=1}^{n}\left|z^{j}\right|^{2}, \quad d^{c}=\frac{i}{4 \pi}(\bar{\partial}-\partial), \\
\alpha=d d^{c}\|z\|^{2}, \quad \eta=d^{c} \log \|z\|^{2} \wedge\left(d d^{c} \log \|z\|^{2}\right)^{n-1}, \\
B(r)=\left\{z \in \mathbf{C}^{n} ;\|z\|<r\right\}, \quad \Gamma(r)=\left\{z \in \mathbf{C}^{n} ;\|z\|=r\right\} .
\end{gathered}
$$

Let M be a compact complex manifold and (L, h) a Hermitian holomorphic line bundle over M. For a meromorphic mapping $f: \mathbf{C}^{n} \rightarrow M$ we define the order function of f with respect to the Chern form ω of (L, h) by

$$
T_{f}(r, \omega)=\int_{1}^{r} \frac{d t}{t^{2 n-1}} \int_{B(t)} f^{*} \omega \wedge \alpha^{n-1}
$$

and we define the order function of f with respect to L by

$$
T_{f}(r, L)=T_{f}(r, \omega)
$$

$T_{f}(r, L)$ is well-defined up to a bounded term. We denote the space of holomorphic sections of L by $\Gamma(M, L)$. We have the natural identification

$$
P(\Gamma(M, L))=\{(\sigma) ; \sigma \in \Gamma(M, L) \backslash\{0\}\}
$$

where the notation (σ) stands for the effective divisor of σ. Let $D \in$ $P(\Gamma(M, L))$. Then we may take an element $\sigma \in \Gamma(M, L)$ which satisfies

$$
D=(\sigma), \quad\|\sigma(x)\|=\sqrt{h(\sigma(x), \sigma(x))} \leq 1
$$

When $f\left(\mathbf{C}^{n}\right) \not \subset$ supp D (the support of $\left.D\right)$, the proximity function of f with respect to D is defined by

$$
m_{f}(r, D)=\int_{z \in \Gamma(r)} \log \frac{1}{\|\sigma \circ f(z)\|} \eta(z)
$$

and we define the counting function of $f^{*} D$ by

$$
N\left(r, f^{*} D\right)=\int_{1}^{r} \frac{d t}{t^{2 n-1}} \int_{B(t) \cap f^{*} D} \alpha^{n-1}
$$

where $f^{*} D$ is the pullback of D by f. If L is non-negative, then we have the First Main Theorem

$$
\begin{equation*}
T_{f}(r, L)=N\left(r, f^{*} D\right)+m_{f}(r, D)+O(1) \tag{1}
\end{equation*}
$$

3. Lemma

Let M be a compact complex manifold and $L \rightarrow M$ a holomorphic line bundle. Set

$$
V=\Gamma(M, L), \quad N+1=\operatorname{dim} V .
$$

Here we assume that the set $B(V)$ of base points of V is empty, i.e.,

$$
B(V)=\{x \in M ; \sigma(x)=0, \forall \sigma \in V\}=\phi .
$$

We fix a Hermitian inner product (,) in V. Let $\left(\left\{U_{\lambda}\right\},\left\{s_{\lambda}\right\}\right)$ be a local trivialization covering of L and $\left\{\sigma_{0}, \ldots, \sigma_{N}\right\}$ an orthonormal base of V. We identify $V^{*}=\mathbf{C}^{N+1}$ by the dual base of $\left\{\sigma_{0}, \ldots, \sigma_{N}\right\}$. We define a holomorphic mapping Φ_{L} from M into $P\left(V^{*}\right)=\mathbf{P}^{N}(\mathbf{C})$ by

$$
\Phi_{L}(x)=\left[\sigma_{0 \lambda}(x): \ldots: \sigma_{N \lambda}(x)\right], x \in U_{\lambda}
$$

where $\sigma_{j \lambda}$ are holomorphic functions on U_{λ} with $\sigma_{j} \mid U_{\lambda}=\sigma_{j \lambda} s_{\lambda}$. If $U_{\lambda} \cap$ $U_{\mu} \neq \phi$, there exists a holomorphic function $T_{\lambda \mu}: U_{\lambda} \cap U_{\mu} \rightarrow \mathbf{C} \backslash\{0\}$ such that $s_{\lambda}(x) T_{\lambda \mu}(x)=s_{\mu}(x)$ for $x \in U_{\lambda} \cap U_{\mu}$. Therefore, Φ_{L} is well-defined. Then it follows that $L=\Phi_{L}^{*} H_{V^{*}}$, where $H_{V^{*}}$ is the hyperplane bundle over $P\left(V^{*}\right)$. Hence Fubini-Study metric in $H_{V^{*}}$ induces a Hermitian metric h in L satisfying

$$
\begin{equation*}
h\left(s_{\lambda}(x), s_{\lambda}(x)\right)=\frac{1}{\sum_{j=0}^{N}\left|\sigma_{j \lambda}(x)\right|^{2}} \tag{2}
\end{equation*}
$$

We denote the Chern form of (L, h) by ω. Clearly, ω is non-negative. Hence L is non-negative. Let ω_{V} denote the Fubini-Study metric form on $P(V)$ induced by the Hermitian inner product (,). Since $\omega_{V}^{N}=\wedge^{N} \omega_{V}$ is a volume element on $P(V)$, it is considered as positive measure μ. We define a C^{∞}-function S_{x} on $P(V)$ by

$$
S_{x}(D)=\frac{\sqrt{h(\sigma(x), \sigma(x))}}{\sqrt{(\sigma, \sigma)}}, \quad D=(\sigma) \in P(V)
$$

We now prove the following key lemma.

Lemma 1. Let the notation be as above and $X \subset P(V)$ a Lebesgue measurable subset with $\mu(X)>0$. Then,

$$
\int_{D \in X} \log \frac{1}{S_{x}(D)} d \mu(D) \leq \frac{\mu(X)}{2}\left(N+\log \frac{N}{\mu(X)}\right)
$$

for all $x \in M$.
Proof. We identify $P(V)=\mathbf{P}^{N}(\mathbf{C})$ by the base $\left\{\sigma_{0}, \ldots, \sigma_{N}\right\}$. Then we equate $\left[z^{0}: \ldots: z^{N}\right] \in \mathbf{P}^{N}(\mathbf{C})$ with a divisor $\left(\sum_{j=0}^{N} z^{j} \sigma_{j}\right)$. For $x \in U_{\lambda}$ and $\left[z^{0}: \ldots: z^{N}\right] \in \mathbf{P}^{N}(\mathbf{C})$ it follows from (2) that

$$
\begin{equation*}
S_{x}\left(\left[z^{0}: \ldots: z^{N}\right]\right)=\frac{\left|\sum_{j=0}^{N} z^{j} \sigma_{j \lambda}(x)\right|}{\left(\sum_{j=0}^{N}\left|\sigma_{j \lambda}(x)\right|^{2}\right)^{1 / 2}\left(\sum_{j=0}^{N}\left|z^{j}\right|^{2}\right)^{1 / 2}} \tag{3}
\end{equation*}
$$

Since $B(V)=\phi$, there exists a unitary matrix $G=\left(g_{i j}\right)$ and a non-zero constant $a \in \mathbf{C}$ such that

$$
\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)=a^{t} G\left(\begin{array}{c}
\sigma_{0 \lambda}(x) \\
\vdots \\
\sigma_{N \lambda}(x)
\end{array}\right)
$$

Let $\rho: \mathbf{C}^{N+1} \backslash\{0\} \rightarrow \mathbf{P}^{N}(\mathbf{C})$ be the Hopf fibering. We define a biholomorphic mapping G by $G(\rho(z))=\rho(G z), z={ }^{t}\left(z^{0}, \ldots, z^{N}\right) \in \mathbf{C}^{N+1}$. Since G is unitary, we easily see by (3) that

$$
\begin{equation*}
S_{x}\left(G\left(\left[z^{0}: \ldots: z^{N}\right]\right)\right)=\frac{\left|z^{0}\right|}{\left(\sum_{k=0}^{N}\left|z^{k}\right|^{2}\right)^{1 / 2}} \tag{4}
\end{equation*}
$$

We denote the characteristic function of a subset $S \subset P(V)$ by χ_{S}. Since ω_{V} is unitary invariant, it follows from (4) that

$$
\begin{gather*}
\int_{\rho(w) \in X} \log \frac{1}{S_{x}(\rho(w))} \omega_{V}^{N} \tag{5}\\
=\int_{\rho(w) \in \mathbf{P}^{N}(\mathbf{C})} \chi_{X}(\rho(w)) \log \frac{1}{S_{x}(\rho(w))} \omega_{V}^{N} \\
=\int_{\rho(z) \in \mathbf{P}^{N}(\mathbf{C})} G^{*}\left(\chi_{X}(\rho(w)) \log \frac{1}{S_{x}(\rho(w))} \omega_{V}^{N}\right) \\
=\int_{\rho(z) \in \mathbf{P}^{N}(\mathbf{C})} \chi_{G^{-1}(X)}(\rho(z)) \log \frac{1}{S_{x}(G(\rho(z)))} \omega_{V}^{N} \\
=\int_{\rho(z) \in G^{-1}(X)} \log \frac{\left(\sum_{k=0}^{N}\left|z^{k}\right|^{2}\right)^{1 / 2}}{\left|z^{0}\right|} \omega_{V}^{N} .
\end{gather*}
$$

We put

$$
V_{0}=\left\{\left[z^{0}: \ldots: z^{N}\right] \in \mathbf{P}^{N}(\mathbf{C}) ; z^{0} \neq 0\right\}
$$

and we set an affine coordinate system on V_{0} by

$$
\zeta=\left(\zeta^{1}, \ldots, \zeta^{N}\right)=\left(\frac{z^{1}}{z^{0}}, \ldots, \frac{z^{N}}{z^{0}}\right)
$$

Then by (5) we have

$$
\begin{gathered}
\int_{\rho(w) \in X} \log \frac{1}{S_{x}(\rho(w))} \omega_{V}^{N} \\
=\int_{\zeta \in \mathbf{C}^{N}} \frac{\chi_{G^{-1}(X)} N!\log \left(1+\|\zeta\|^{2}\right)^{1 / 2}}{\left(1+\|\zeta\|^{2}\right)^{N+1}} \bigwedge_{k=1}^{N}\left(\frac{i}{2 \pi} d \zeta^{k} \wedge d \overline{\zeta^{k}}\right) \\
=\int_{\zeta \in \mathbf{C}^{N}} \frac{\chi_{G^{-1}(X)} \log \left(1+\|\zeta\|^{2}\right)^{1 / 2}}{\left(1+\|\zeta\|^{2}\right)^{N+1}} \alpha^{N}
\end{gathered}
$$

Furthermore, $\mu(X)=\mu\left(G^{-1}(X)\right)$, so that it suffices to prove that

$$
\begin{equation*}
\int_{\zeta \in \mathbf{C}^{N}} \frac{\chi_{X} \log \left(1+\|\zeta\|^{2}\right)^{1 / 2}}{\left(1+\|\zeta\|^{2}\right)^{N+1}} \alpha^{N} \leq \frac{\mu(X)}{2}\left(N+\log \frac{N}{\mu(X)}\right) \tag{6}
\end{equation*}
$$

for a Lebesgue measurable set $X \subset \mathbf{C}^{N}$. Set

$$
\Phi(r)=\int_{X \cap\left\{\zeta \in \mathbf{C}^{N} ;\|\zeta\|>r\right\}} \omega_{V}^{N}
$$

Then, $\Phi(r)$ is a continuous decreasing function on $[0, \infty)$ and $0 \leq \Phi(r) \leq$ $\mu(X) \leq 1$. Moreover,

$$
\begin{align*}
\Phi(r) & =\int_{\left\{\zeta \in \mathbf{C}^{N} ;\right.} \frac{\chi_{X}}{\|\zeta\|>r\}} \tag{7}\\
& =\int_{r}^{\infty}\left\{\int_{\Gamma(t)} \frac{\chi_{X} 2 N t^{2 N-1}}{\left(1+\|\zeta\|^{2}\right)^{N+1}} \alpha^{N}\right\} d t
\end{align*}
$$

so that $\Phi(r)$ is an absolutely continuous function on $[0, s](s \in[0, \infty))$.
Therefore it follows that

$$
\begin{gather*}
\int_{0}^{s} \log \left(1+r^{2}\right)^{1 / 2} d(-\Phi(r)) \tag{8}\\
=\int_{0}^{s} \log \left(1+r^{2}\right)^{1 / 2}\left\{\int_{\Gamma(r)} \frac{\chi_{X} 2 N r^{2 N-1}}{\left(1+r^{2}\right)^{N+1}} \eta\right\} d r \\
=\int_{\zeta \in B(s)} \frac{\chi_{X} \log \left(1+\|\zeta\|^{2}\right)^{1 / 2}}{\left(1+\|\zeta\|^{2}\right)^{N+1}} \alpha^{N} .
\end{gather*}
$$

On the other hand, we have
(9) $\quad \int_{0}^{s} \log \left(1+r^{2}\right)^{1 / 2} d(-\Phi(r))=\int_{0}^{s} \frac{r \Phi(r)}{1+r^{2}} d r-\Phi(s) \log \left(1+s^{2}\right)^{1 / 2}$.

The following convergence will be proved later:

$$
\begin{equation*}
\Phi(s) \log \left(1+s^{2}\right)^{1 / 2} \rightarrow 0 \quad(s \rightarrow \infty) \tag{10}
\end{equation*}
$$

Hence by (8), (9), (10) the left side of (6) is

$$
\begin{equation*}
\int_{\zeta \in \mathbf{C}^{N}} \frac{\chi_{X} \log \left(1+\|\zeta\|^{2}\right)^{1 / 2}}{\left(1+\|\zeta\|^{2}\right)^{N+1}} \alpha^{N}=\int_{0}^{\infty} \frac{r \Phi(r)}{1+r^{2}} d r \tag{11}
\end{equation*}
$$

To estimate (11), we put

$$
\Psi(r)=\int_{\left\{\zeta \in \mathbf{C}^{N} ;\|\zeta\|>r\right\}} \omega_{V}^{N}
$$

Then, $\Psi(r)$ is a strictly decreasing and continuous function on $[0, \infty)$ such that $0 \leq \Phi(r) \leq \Psi(r) \leq 1, \Psi(0)=1$, and $\lim _{r \rightarrow \infty} \Psi(r)=0$.

We compute $\Psi(r)$ as follows.

$$
\begin{gathered}
\Psi(r)=\int_{\left\{\zeta \in \mathbf{C}^{N} ;\|\zeta\|>r\right\}} \frac{1}{\left(1+\|\zeta\|^{2}\right)^{N+1}} \alpha^{N} \\
=\int_{r}^{\infty}\left\{\int_{\Gamma(t)} \frac{2 N t^{2 N-1}}{\left(1+t^{2}\right)^{N+1}} \eta\right\} d t \\
=\int_{r}^{\infty} \frac{2 N t^{2 N-1}}{\left(1+t^{2}\right)^{N+1}} d t \\
=\sum_{j=1}^{N} \frac{r^{2(j-1)}}{\left(1+r^{2}\right)^{j}} .
\end{gathered}
$$

Therefore we have

$$
\begin{equation*}
\frac{1}{1+r^{2}} \leq \Psi(r) \leq \frac{N}{1+r^{2}} \tag{12}
\end{equation*}
$$

We show (10) as follows.

$$
0 \leq \Phi(s) \log \left(1+s^{2}\right)^{1 / 2} \leq \Psi(s) \log \left(1+s^{2}\right)^{1 / 2}
$$

$$
\leq \frac{N}{1+s^{2}} \log \left(1+s^{2}\right)^{1 / 2} \rightarrow 0 \quad(s \rightarrow \infty)
$$

Because of $\mu(X)>0$ we can take a real number $r_{1} \geq 0$ such that $\Psi\left(r_{1}\right)=$ $\mu(X)$. By (12)

$$
\begin{equation*}
\frac{1}{\mu(X)} \leq 1+r_{1}^{2} \leq \frac{N}{\mu(X)} \tag{13}
\end{equation*}
$$

Note that $\Phi(0)=\mu(X), \Phi(r)$ is decreasing, and that $\Phi(r) \leq \min \{\Psi(r)$, $\mu(X)\}$. Therefore, we get

$$
\begin{gathered}
\int_{0}^{\infty} \frac{r \Phi(r)}{1+r^{2}} d r \leq \int_{0}^{r_{1}} \frac{r \mu(X)}{1+r^{2}} d r+\int_{r_{1}}^{\infty} \frac{r \Psi(r)}{1+r^{2}} d r \\
\quad=\frac{\mu(X)}{2} \log \left(1+r_{1}^{2}\right)+\int_{r_{1}}^{\infty} \frac{r \Psi(r)}{1+r^{2}} d r
\end{gathered}
$$

Furthermore by (12) and (13) we see that

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{r \Phi(r)}{1+r^{2}} d r \leq \frac{\mu(X)}{2} \log \frac{N}{\mu(X)}+\int_{r_{1}}^{\infty} \frac{r N}{\left(1+r^{2}\right)^{2}} d r \\
= & \frac{\mu(X)}{2} \log \frac{N}{\mu(X)}+\frac{N}{2\left(1+r_{1}^{2}\right)} \leq \frac{\mu(X)}{2}\left(N+\log \frac{N}{\mu(X)}\right) .
\end{aligned}
$$

Therefore, (6) follows from (11).

4. Growth of the Nevanlinna Proximity Function 1

We show the following theorem.
ThEOREM 2. Let M be a compact complex manifold and $L \rightarrow M a$ holomorphic line bundle satisfying $B(\Gamma(M, L))=\phi$. Let $f: \mathbf{C}^{n} \rightarrow M$ be a meromorphic mapping such that $T_{f}(r, L) \rightarrow \infty \quad(r \rightarrow \infty)$. Then we have that for almost all divisor $D \in P(\Gamma(M, L))$

$$
\limsup _{r \rightarrow \infty} \frac{m_{f}(r, D)}{\log T_{f}(r, L)} \leq \frac{1}{2}
$$

Proof. Set $V=\Gamma(M, L)$. Let ω, ω_{V} and S_{x} be as in the section 3. Then

$$
T_{f}(r, \omega)=T_{f}(r, L)+O(1)
$$

Since $T_{f}(r, L) \rightarrow \infty \quad(r \rightarrow \infty)$, for all positive integer $m \in \mathbf{N}$ we can choose real number $r_{m} \in(1, \infty)$ such that

$$
T_{f}\left(r_{m}, \omega\right)=m
$$

Let $\beta>1 / 2$ be an arbitrary real number and set

$$
G(m, \beta)=\left\{D \in P(V) ; m_{f}\left(r_{m}, D\right)>\beta \log m\right\}
$$

We denote by $I(f)$ the indeterminacy locus of f. Because the codimension of $I(f)$ is greater than or equal to 2 , it follows from lemma 1 that if $\mu(G(m, \beta))>0$, then

$$
\begin{gathered}
\mu(G(m, \beta)) \beta \log m<\int_{D \in G(m, \beta)} m_{f}\left(r_{m}, D\right) \omega_{V}^{N} \\
=\int_{D \in G(m, \beta)}\left\{\int_{z \in \Gamma\left(r_{m}\right) \backslash I(f)} \log \frac{1}{S_{f(z)}(D)} \eta(z)\right\} \omega_{V}^{N} \\
=\int_{z \in \Gamma\left(r_{m}\right) \backslash I(f)}\left\{\int_{D \in G(m, \beta)} \log \frac{1}{S_{f(z)}(D)} \omega_{V}^{N}\right\} \eta(z) \\
\leq \\
\int_{z \in \Gamma\left(r_{m}\right) \backslash I(f)} \frac{\mu(G(m, \beta))}{2}\left(N+\log \frac{N}{\mu(G(m, \beta))}\right) \eta(z) \\
\quad=\frac{\mu(G(m, \beta))}{2}\left(N+\log \frac{N}{\mu(G(m, \beta))}\right) .
\end{gathered}
$$

Hence we deduce that

$$
\mu(G(m, \beta))<\frac{N e^{N}}{m^{2 \beta}}
$$

We set

$$
G(\beta)=\bigcap_{m_{0}=1}^{\infty} \bigcup_{m=m_{0}}^{\infty} G(m, \beta)
$$

Because of $\beta>1 / 2$ it follows that

$$
\begin{equation*}
\mu(G(\beta)) \leq \lim _{m_{0} \rightarrow \infty} \sum_{m=m_{0}}^{\infty} \mu(G(m, \beta))<\lim _{m_{0} \rightarrow \infty} \sum_{m=m_{0}}^{\infty} \frac{N e^{N}}{m^{2 \beta}}=0 \tag{14}
\end{equation*}
$$

Note that the set $X(f)$ defined by

$$
X(f)=\left\{D \in P(V) ; \operatorname{supp} D \supset f\left(\mathbf{C}^{n}\right)\right\}
$$

has zero measure. Let $D \notin G(\beta) \cup X(f)$. Then there exists an integer $m_{D} \in \mathbf{N}$ such that for all $m>m_{D}$

$$
\begin{equation*}
m_{f}\left(r_{m}, D\right) \leq \beta \log m \tag{15}
\end{equation*}
$$

We choose an arbitrary number $s \geq r_{m_{D}}$ and we take an integer $m_{s} \in \mathbf{N}$ satisfying $r_{m_{s}} \leq s<r_{m_{s}+1}$. Then $m_{s} \geq m_{D}$. Since $\omega \geq 0$ and $D \notin X(f)$, we have by the First Main Theorem (1) and (15)

$$
\begin{aligned}
& m_{f}(s, D)=T_{f}(s, \omega)-N\left(s, f^{*} D\right)+O(1) \\
& \leq T_{f}\left(r_{m_{s}+1}, \omega\right)-N\left(r_{m_{s}}, f^{*} D\right)+O(1) \\
& =T_{f}\left(r_{m_{s}}, \omega\right)-N\left(r_{m_{s}}, f^{*} D\right)+O(1) \\
& =m_{f}\left(r_{m_{s}}, D\right)+O(1) \leq \beta \log m_{s}+O(1) \\
& \quad \leq \beta \log T_{f}(s, \omega)+O(1)
\end{aligned}
$$

Therefore it follows that for an arbitrary $D \notin G(\beta) \cup X(f)$

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{m_{f}(r, D)}{\log T_{f}(r, \omega)} \leq \beta \tag{16}
\end{equation*}
$$

We set

$$
G=\bigcup_{k=1}^{\infty} G\left(\frac{1}{2}+\frac{1}{k}\right) \cup X(f)
$$

Then by (14), (16) we see that

$$
\mu(G) \leq \sum_{k=1}^{\infty} \mu\left(G\left(\frac{1}{2}+\frac{1}{k}\right)\right)+\mu(X(f))=0
$$

and that for $D \notin G$

$$
\limsup _{r \rightarrow+\infty} \frac{m_{f}(r, D)}{\log T_{f}(r, \omega)} \leq \frac{1}{2}
$$

In general, let M be a compact complex manifold with a Hermitian metric form ω. Let $f: \mathbf{C}^{n} \rightarrow M$ be a meromorphic mapping. Then the order function of f with respect to ω is defined by

$$
T_{f}(r, \omega)=\int_{1}^{r} \frac{d t}{t^{2 n-1}} \int_{B(t)} f^{*} \omega \wedge \alpha^{n-1}
$$

We define the order of f by

$$
\rho_{f}=\limsup _{r \rightarrow \infty} \frac{\log T_{f}(r, \omega)}{\log r}
$$

which is independent of the choice of the Hermitian metric form ω.
We easily deduce the following corollary from Theorem 2 .
Corollary 3. Let M be a compact complex manifold and L a very ample holomorphic line bundle over M. Let $f: \mathbf{C}^{n} \rightarrow M$ be a meromorphic mapping. Assume that the order of f is finite and $T_{f}(r, L) \rightarrow \infty \quad(r \rightarrow \infty)$. Then,

$$
\limsup _{r \rightarrow \infty} \frac{m_{f}(r, D)}{\log r} \leq \frac{\rho_{f}}{2}
$$

for almost all effective divisor $D \in P(\Gamma(M, L))$.

5. Growth of the Nevanlinna Proximity Function 2

We now define the projective logarithmic capacity of a subset in the $\mathbf{P}^{N}(\mathbf{C})$ (See Molzon-Shiffman-Sibony [3]). Let K be a compact subset of $\mathbf{P}^{N}(\mathbf{C})$. We denote by $\mathcal{M}(K)$ the space of positive Borel measures on K with total mass 1. For $x=\left[x^{0}: \ldots: x^{N}\right] \in \mathbf{P}^{N}(\mathbf{C})$ and $\nu \in \mathcal{M}(K)$ we set

$$
u_{\nu}(x)=\int_{\left[w^{0}: \ldots: w^{N}\right] \in K} \log \frac{\left(\sum_{j=0}^{N}\left|x^{j}\right|^{2}\right)^{1 / 2}\left(\sum_{j=0}^{N}\left|w^{j}\right|^{2}\right)^{1 / 2}}{\left|\sum_{j=0}^{N} x^{j} w^{j}\right|} d \nu
$$

and

$$
V(K)=\inf _{\nu \in \mathcal{M}(K)} \sup _{x \in \mathbf{P}^{N}(\mathbf{C})} u_{\nu}(x)
$$

Define the projective logarithmic capacity of K by

$$
C(K)=\frac{1}{V(K)}
$$

When $V(K)=\infty$, we set $C(K)=0$. For an arbitrary subset E of $\mathbf{P}^{N}(\mathbf{C})$ we define the projective logarithmic capacity of E by

$$
C(E)=\sup _{K \subset E} C(K)
$$

where the supremum is taken over compact subsets K of E.
For real valued functions $A(r)$ and $B(r)$ on $[1, \infty)$ we write

$$
A(r) \leq B(r) \|
$$

if there is a Borel subset $J \subset[1, \infty)$ with finite measure such that $A(r) \leq$ $B(r)$ for $r \in[1, \infty) \backslash J$.

Let the notation be as in the previous section. We now show the following theorem.

TheOrem 4. Let M be a compact complex manifold, and $L \rightarrow M a$ holomorphic line bundle with $B(\Gamma(M, L))=\phi$. Let $f: \mathbf{C}^{n} \rightarrow M$ be a meromorphic mapping. Let $\varphi(r)>0$ be a Borel measurable function on $[1, \infty)$ which satisfies

$$
\int_{1}^{\infty} \frac{d r}{\varphi(r)}<\infty
$$

Then there exists a subset F of $P(\Gamma(M, L))$ such that $C(F)=0$ and that

$$
m_{f}(r, D) \leq \varphi(r)+O(1) \|
$$

for an arbitrary divisor $D \in P(\Gamma(M, L)) \backslash F$.
Proof. We identify $P(\Gamma(M, L))=\mathbf{P}^{N}(\mathbf{C})$ by the base $\left\{\sigma_{0}, \ldots, \sigma_{N}\right\}$. Then we equate $\left[\zeta^{0}: \ldots: \zeta^{N}\right] \in \mathbf{P}^{N}(\mathbf{C})$ with a divisor $\left(\sum_{j=0}^{N} \zeta^{j} \sigma_{j}\right)$. We set

$$
F=\left\{D \in P(\Gamma(M, L)) ; \int_{1}^{\infty} \frac{m_{f}(r, D)}{\varphi(r)} d r=\infty\right\}
$$

Assume that $C(F)>0$. Then there is a compact subset K of F with $C(K)>0$. Therefore there exists a $\nu \in \mathcal{M}(K)$ such that

$$
\begin{equation*}
\sup _{x \in \mathbf{P}^{N}(\mathbf{C})} u_{\nu}(x)<\infty . \tag{17}
\end{equation*}
$$

It follows from (3) and (17) that

$$
\begin{gathered}
\int_{\left[\zeta^{0} \ldots: \ldots \zeta^{N}\right] \in K}\left\{\int_{1}^{\infty} \frac{m_{f}\left(r,\left[\zeta^{0}: \ldots: \zeta^{N}\right]\right)}{\varphi(r)} d r\right\} d \nu \\
=\int_{1}^{\infty} \frac{1}{\varphi(r)}\left\{\int_{z \in \Gamma(r)}\left\{\int_{K} \log \frac{1}{S_{f(z)}\left(\left[\zeta^{0}: \ldots: \zeta^{N}\right]\right)} d \nu\right\} \eta\right\} d r \\
\leq \int_{1}^{\infty} \frac{1}{\varphi(r)}\left\{\int_{\Gamma(r)} \sup _{x \in \mathbf{P}^{N}(\mathbf{C})} u_{\nu}(x) \eta\right\} d r \\
=\int_{1}^{\infty} \frac{1}{\varphi(r)} \sup _{x \in \mathbf{P}^{N}(\mathbf{C})} u_{\nu}(x) d r<\infty
\end{gathered}
$$

On the other hand, by the definition of F we have

$$
\int_{\left[\zeta^{0}: \ldots: \zeta^{N}\right] \in K}\left\{\int_{1}^{\infty} \frac{m_{f}\left(r,\left[\zeta^{0}: \ldots: \zeta^{N}\right]\right)}{\varphi(r)} d r\right\} d \nu=\infty
$$

This is a contradiction. Hence $C(F)=0$. For an arbitrary divisor $D \in$ $P(\Gamma(M, L))$ we set

$$
J(D)=\left\{r \in[1, \infty) ; \frac{m_{f}(r, D)}{\varphi(r)}>1\right\}
$$

If $D \notin F$, then we see

$$
\int_{J(D)} d r<\int_{r \in J(D)} \frac{m_{f}(r, D)}{\varphi(r)} d r \leq \int_{1}^{\infty} \frac{m_{f}(r, D)}{\varphi(r)} d r<\infty
$$

Therefore for $D \in P(\Gamma(M, L)) \backslash F$

$$
m_{f}(r, D) \leq \varphi(r)+O(1) \|
$$

6. The General Case

In this section we deal with the growth of the proximity function with respect to an effective divisor $D \in P(E)$, where $L \rightarrow M$ be a holomorphic line bundle and E is a linear subspace of $\Gamma(M, L)$, and complete the proof of the Main Theorem.

Let M be a compact complex manifold and \mathcal{I} a coherent ideal sheaf of the structure sheaf \mathcal{O}_{M} over M. Let $\left\{V_{\lambda}\right\}$ be a finite open covering of M and $\eta_{\lambda j} \in \Gamma\left(V_{\lambda}, \mathcal{I}\right), j=1,2, \ldots$, be finitely many sections of which germs $\underline{\eta_{\lambda 1}}, \underline{\eta_{\lambda 2}}, \ldots$, generate the fiber \mathcal{I}_{x} for all $x \in V_{\lambda}$. Following to [5], Chap. 2 or $[7], \S 2$, we let $\left\{\rho_{\lambda}\right\}$ be a partition of unity associated with $\left\{V_{\lambda}\right\}$ and set

$$
d_{\mathcal{I}}(x)=\sum_{\lambda} \rho_{\lambda}(x)\left(\sum_{j}\left|\eta_{\lambda j}(x)\right|^{2}\right)^{1 / 2}, \quad x \in M
$$

Let f be a meromorphic mapping from \mathbf{C}^{n} into M such that

$$
f\left(\mathbf{C}^{n}\right) \not \subset \operatorname{supp} \mathcal{O}_{M} / \mathcal{I}
$$

We define the proximity function of f for \mathcal{I} by

$$
m_{f}(r, \mathcal{I})=\int_{z \in \Gamma(r)}-\log d_{\mathcal{I}} \circ f(z) \eta(z)
$$

Next let $L \rightarrow M$ be a holomorphic line bundle and $\operatorname{dim} \Gamma(M, L)=N+1$. Let E be an $(l+1)$-dimensional linear subspace of $\Gamma(M, L)$. We take a base $\left\{\sigma_{0}, \ldots, \sigma_{N}\right\}$ of $\Gamma(M, L)$ and we identify $\Gamma(M, L) \cong \mathbf{C}^{N+1}$ by $\left\{\sigma_{0}, \ldots, \sigma_{N}\right\}$. Moreover we assume that E is spanned by $\left\{\sigma_{0}, \ldots, \sigma_{l}\right\}$. Let \mathcal{I} denote the coherent ideal sheaf of \mathcal{O}_{M} of which fiber over $x \in M$ is generated by $\left\{\underline{\sigma}_{x} ; \sigma \in E\right\}$. Then the base of E is defined by $B(E)=\mathcal{O}_{M} / \mathcal{I}$. Thus we write $\mathcal{I}=\mathcal{I}_{B(E)}$.

Let $f: \mathbf{C}^{n} \rightarrow M$ be a meromorphic mapping. Suppose that

$$
f\left(\mathbf{C}^{n}\right) \not \subset \operatorname{supp} B(E)
$$

Let $\left(\left\{U_{\lambda}\right\},\left\{s_{\lambda}\right\}\right)$ be a local trivialization covering of L. We define a meromorphic mapping $\Phi_{L}: M \rightarrow \mathbf{P}^{N}(\mathbf{C})$ by

$$
\Phi_{L}(x)=\left[\sigma_{0 \lambda}(x): \ldots: \sigma_{N \lambda}(x)\right], \quad x \in U_{\lambda},
$$

where $\sigma_{j \lambda}$ is a holomorphic function on U_{λ} such that $\sigma_{j} \mid U_{\lambda}=\sigma_{j \lambda} s_{\lambda}$. Let $\left(f^{0}, \ldots, f^{N}\right)$ be a reduced representation of $\Phi_{L} \circ f$. We denote by f_{E} the meromorphic mapping from \mathbf{C}^{n} into $\mathbf{P}^{l}(\mathbf{C})$ represented by $\left(f^{0}, \ldots, f^{l}\right)$. For $z \in\left(f \mid\left(\mathbf{C}^{n} \backslash I(f)\right)\right)^{-1}\left(U_{\lambda} \backslash \operatorname{supp} B(E)\right)$

$$
f_{E}(z)=\left[\sigma_{0 \lambda} \circ f(z): \ldots: \sigma_{l \lambda} \circ f(z)\right] .
$$

We denote by H_{l} hyperplane bundle over $\mathbf{P}^{l}(\mathbf{C})$. The following is known.
Proposition 5. Let the notation be as above. We have the following. (i) If $B(\Gamma(M, L))=\phi$, then

$$
T_{f}(r, L) \geq T_{f_{E}}\left(r, H_{l}\right)+O(1)
$$

(ii) (Cf. Noguchi [5].) For $\left[\zeta^{0}: \ldots: \zeta^{l}\right] \in P(E)$

$$
m_{f}\left(r,\left(\sum_{j=0}^{l} \zeta^{j} \sigma_{j}\right)\right)-m_{f}\left(r, \mathcal{I}_{B(E)}\right)=m_{f_{E}}\left(r,\left[\zeta^{0}: \ldots: \zeta^{l}\right]\right)+O(1)
$$

where $m_{f_{E}}\left(r,\left[\zeta^{0}: \ldots: \zeta^{l}\right]\right)$ is the proximity function of f_{E} with respect to a hyperplane $\left\{\left[z^{0}: \ldots: z^{l}\right] \in \mathbf{P}^{l}(\mathbf{C}) ; \sum_{j=0}^{l} \zeta^{j} z^{j}=0\right\}$.

Proof. (i) We assume that $B(\Gamma(M, L))=\phi$. Let $\left(g^{0}, \ldots, g^{l}\right)$ be a reduced representation of f_{E}. Then there is a holomorphic function g on \mathbf{C}^{n} such that $\left(f^{0}, \ldots, f^{l}\right)=\left(g g^{0}, \ldots, g g^{l}\right)$. Since $L=\Phi_{L}^{*} H_{N}$ it follows that

$$
\begin{gathered}
T_{f}(r, L)=\int_{z \in \Gamma(r)} \log \left(\sum_{j=0}^{N}\left|f^{j}(z)\right|^{2}\right)^{1 / 2} \eta+O(1) \\
\geq \int_{z \in \Gamma(r)} \log \left(\sum_{j=0}^{l}\left|f^{j}(z)\right|^{2}\right)^{1 / 2} \eta+O(1) \\
\geq \int_{z \in \Gamma(r)} \log \left(\sum_{j=0}^{l}\left|g^{j}(z)\right|^{2}\right)^{1 / 2} \eta+\int_{z \in \Gamma(1)} \log |g| \eta+O(1) \\
\geq T_{f_{E}}\left(r, H_{l}\right)+O(1)
\end{gathered}
$$

(ii) Let h be a Hermitian metric in L and $\|\cdot\|$ denote the norms on L. Let $\left\{\tau_{\lambda}\right\}$ be a partition of unity associated with $\left\{U_{\lambda}\right\}$. For $x \in U_{\nu}$ we set

$$
\begin{gathered}
k(x)=\log \frac{\left(\sum_{j=0}^{l}\left|\zeta^{j}\right|^{2}\right)^{1 / 2}}{\left\|\sum_{j=0}^{l} \zeta^{j} \sigma_{j}(x)\right\|}-\log \frac{\left(\sum_{j=0}^{l}\left|\sigma_{j \nu}(x)\right|^{2}\right)^{1 / 2}\left(\sum_{j=0}^{l}\left|\zeta^{j}\right|^{2}\right)^{1 / 2}}{\left|\sum_{j=0}^{l} \sigma_{j \nu}(x) \zeta^{j}\right|} \\
\quad+\log \sum_{\lambda} \tau_{\lambda}(x)\left(\sum_{j=0}^{l}\left|\sigma_{j \lambda}(x)\right|^{2}\right)^{1 / 2}
\end{gathered}
$$

Since

$$
\left\|\sum_{j=0}^{l} \zeta^{j} \sigma_{j}(x)\right\|=\left|\sum_{j=0}^{l} \sigma_{j \nu}(x) \zeta^{j}\left\|\mid s_{\nu}(x)\right\|\right.
$$

we see

$$
k(x)=\log \frac{\sum_{\lambda} \tau_{\lambda}(x)\left(\sum_{j=0}^{l}\left|\sigma_{j \lambda}(x)\right|^{2}\right)^{1 / 2}}{\left\|s_{\nu}(x)\right\|\left(\sum_{j=0}^{l}\left|\sigma_{j \nu}(x)\right|^{2}\right)^{1 / 2}}
$$

We take an arbitrary point $y \in M$ and ν such that $\tau_{\nu}(y)>0$. Then there are a relatively compact neighborhood $V \subset U_{\nu}$ of y and positive constant $C_{1}, C_{2}, C_{3}>0$ such that for $x \in V$

$$
k(x) \leq \log \frac{\sum_{\lambda} C_{1} \tau_{\lambda}(x)\left(\sum_{j=0}^{l}\left|\sigma_{j \nu}(x)\right|^{2}\right)^{1 / 2}}{\left\|s_{\nu}(x)\right\|\left(\sum_{j=0}^{l}\left|\sigma_{j \nu}(x)\right|^{2}\right)^{1 / 2}}=\log \frac{C_{1}}{\left\|s_{\nu}(x)\right\|} \leq \log C_{2},
$$

and

$$
k(x) \geq \log \frac{\tau_{\nu}(x)}{\left\|s_{\nu}(x)\right\|} \geq \log C_{3}
$$

Since M is compact there exists a positive constant C such that for an arbitrary $x \in M$

$$
|k(x)|<C
$$

This finishes the proof of (ii).
Let μ_{E} denote the positive measure induced by Fubini-Study metric on $P(E)=\mathbf{P}^{l}(\mathbf{C})$.

THEOREM 6. Let M be a compact complex manifold and $L \rightarrow M$ a holomorphic line bundle. Let $1 \leq l \leq N$ be an integer and E an ($l+1$)dimensional linear subspace of $\Gamma(M, L)$. Let $f: \mathbf{C}^{n} \rightarrow M$ be a meromorphic mapping such that $f\left(\mathbf{C}^{n}\right) \not \subset \operatorname{supp} B(E)$. If $T_{f_{E}}\left(r, H_{l}\right) \rightarrow \infty \quad(r \rightarrow \infty)$, then for almost all divisor $D \in P(E)$

$$
\limsup _{r \rightarrow \infty} \frac{m_{f}(r, D)-m_{f}\left(r, \mathcal{I}_{B(E)}\right)}{\log T_{f_{E}}\left(r, H_{l}\right)} \leq \frac{1}{2}
$$

Otherwise for almost all divisor $D \in P(E)$

$$
m_{f}(r, D)-m_{f}\left(r, \mathcal{I}_{B(E)}\right)=O(1)
$$

Proof. Set

$$
\begin{aligned}
I=\{ & {\left[\zeta^{0}: \ldots: \zeta^{l}\right] \in P(E) ; } \\
& \left.\quad \limsup _{r \rightarrow \infty} \frac{m_{f}\left(r,\left(\sum_{j=0}^{l} \zeta^{j} \sigma_{j}\right)\right)-m_{f}\left(r, \mathcal{I}_{B(E)}\right)}{\log T_{f_{E}}\left(r, H_{l}\right)}>\frac{1}{2}\right\} .
\end{aligned}
$$

Because of Proposition 5 we have that for $\left[\zeta^{0}: \ldots: \zeta^{l}\right] \in I$

$$
\frac{1}{2}<\limsup _{r \rightarrow \infty} \frac{m_{f_{E}}\left(r,\left[\zeta^{0}: \ldots: \zeta^{l}\right]\right)}{\log T_{f_{E}}\left(r, H_{l}\right)}
$$

Hence, if $T_{f_{E}}\left(r, H_{l}\right) \rightarrow \infty \quad(r \rightarrow \infty)$, then we have $\mu_{E}(I)=0$ by Theorem 2 . We assume that $T_{f_{E}}\left(r, H_{l}\right)=O(1)$. Then f_{E} is a constant mapping. Hence by Proposition 5 (ii)

$$
m_{f}(r, D)-m_{f}\left(r, \mathcal{I}_{B(E)}\right)=O(1)
$$

By making use of the methods in the proofs of Proposition 5 and Theorem 4 one may also deduce the following:

THEOREM 7. Let M be a compact complex manifold and $L \rightarrow M a$ holomorphic line bundle. Let $1 \leq l \leq N$ be an integer and E an $(l+1)$ dimensional linear subspace of $\Gamma(M, L)$. Let $f: \mathbf{C}^{n} \rightarrow M$ be a meromorphic
mapping. Let $\varphi(r)>0$ be a Borel measurable function on $[1, \infty)$ which satisfies

$$
\int_{1}^{\infty} \frac{d r}{\varphi(r)}<\infty
$$

Then there exists a subset F of $P(E)$ such that $C(F)=0$ and that for all $D \in P(E) \backslash F$

$$
m_{f}(r, D)-m_{f}\left(r, \mathcal{I}_{B(E)}\right) \leq \varphi(r)+O(1) \|
$$

Remark. S. Mori [4] proved that for a non-constant meromorphic mapping $f: \mathbf{C}^{n} \rightarrow \mathbf{P}^{N}(\mathbf{C})$, the set

$$
\left\{H \in \mathbf{P}^{N}(\mathbf{C})^{*} ; \limsup _{r \rightarrow \infty} \frac{m_{f}(r, D)}{\sqrt{T_{f}\left(r, H_{N}\right)} \log T_{f}\left(r, H_{N}\right)}>0\right\}
$$

is of projective logarithmic capacity zero. Moreover, A. Sadullaev [8] showed that this set forms a polar set.

Note the differences between these results and our Theorems 2 and 7.

References

[1] Hayman, W. K., Value Distribution and Exceptional Sets, in Lectures on Approximation and Value Distribution, pp. 79-147, Univ. Montreal Press, 1982, Montreal.
[2] Littlewood, J. E., Mathematical notes (11): On exceptional values of power series, J. London Math. Soc. 5 (1930), 82-89.
[3] Molzon, R. E., Shiffman, B. and N. Sibony, Average growth estimates for hyperplane sections of entire analytic sets, Math. Ann. 257 (1981), 43-59.
[4] Mori, S., Elimination of defects of meromorphic mappings of \mathbf{C}^{m} into $\mathbf{P}^{n}(\mathbf{C})$, Ann. Acad. Sci. Fenn. Math. 24 (1999), 89-104.
[5] Noguchi, J., Nevanlinna Theory in Several Complex Variables and Diophantine Approximation (in Japanese), Kyoritsu Publ. Co., Tokyo, 2003.
[6] Noguchi, J. and T. Ochiai, Geometric Function Theory in Several Complex Variables, Transl. Math. Monogr. Vol. 80, Amer. Math. Soc., 1990.
[7] Noguchi, J., Winkelmann, J. and K. Yamanoi, The second main theorem for holomorphic curves into semi-abelian varieties II, Forum Math. 20 (2008), 469-503.
[8] Sadullaev, A., Defect divisors in the sense of Valiron, Mat. Sb. 108 (150) (1979), 567-580; English transl. in Math. USSR Sb. 36 (1980), 535-547.
[9] Sadullaev, A. and P. V. Degtjar', Approximation divisors of a holomorphic mapping and defects of meromorphic functions of several variables (Russian), Ukrain. Mat. Zh. 33 (1981), 620-625, 716; English transl. Ukrainian Math. J. 33 (1981), no. 5, 473-477 (1982).
(Received July 15, 2009)
(Revised December 8, 2009)
Mathematical Systems, Inc.
10F Four Seasons Bldg.
2-4-3 Shinjuku, Shinjuku-ku
Tokyo 160-0022, Japan
E-mail: nitanda_atsushi@msi.co.jp

