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The Growth of the Nevanlinna Proximity Function

By Atsushi Nitanda

Abstract. Let f be a meromorphic mapping from Cn into a com-
pact complex manifold M . In this paper we give some estimates of
the growth of the proximity function mf (r,D) of f with respect to
a divisor D. J.E. Littlewood [2] (cf. Hayman [1]) proved that every
non-constant meromorphic function g on the complex plane C satis-

fies lim supr→∞
mg(r,a)

log T (r,g) ≤ 1
2 for almost all point a of the Riemann

sphere. We extend this result to the case of a meromorphic mapping
f : Cn → M and a linear system P (E) on M . The main result is
an estimate of the following type: For almost all divisor D ∈ P (E),

lim supr→∞
mf (r,D)−mf (r,IB(E))

log TfE
(r,HE) ≤ 1

2 .

1. Introduction

J.E. Littlewood [2] (cf. [1]) proved that every non-constant meromorphic

function g on C satisfies

lim sup
r→∞

mg(r, a)

log T (r, g)
≤ 1

2

for almost all a ∈ C, where T (r, g) denotes the Nevanlinna characteristic

function of g. Our main aim is to generalize this result to the case of several

complex variables. Cf. A. Sadullaev [8], A. Sadullaev and P.V. Degtjar’ [9],

and S. Mori [2] for related results (see Remark at the end of §6).

Let L → M be a holomorphic line bundle over a compact complex

manifold M . Let Γ(M,L) be the vector space of all holomorphic sections

of L over M , and E ⊂ Γ(M,L) a vector subspace of dimension at least 2.

Then we have a natural meromorphic mapping

ρE : M → P (E∗),

where P (E∗) is the projective space of the dual E∗ of E. Let HE be the

hyperplane bundle over P (E∗) and B(E) ⊂ M the base of E. Let f : Cn →
2000 Mathematics Subject Classification. 32A22, 32H30, 30D35.
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526 Atsushi Nitanda

M be a meromorphic mapping such that f(Cn) �⊂ B(E). Then we have the

composite meromorphic mapping fE = ρE ◦ f : Cn → P (E∗).
Our main result is as follows (cf. section 2 for more notation):

Main Theorem. Let fE = ρE ◦ f : Cn → P (E∗) be as above. If

TfE (r,HE) → ∞ (r → ∞), then

lim sup
r→∞

mf (r,D) −mf (r, IB(E))

log TfE (r,HE)
≤ 1

2

for almost all divisor D ∈ P (E).

In section 4 we first prove the Main Theorem in the case where E =

Γ(M,L) and B(E) = φ. In section 5 we show an estimate of different type.

In section 6 we deal with the general case.

Acknowledgement . The author would like to express his sincere grat-

itude to Professor Junjiro Noguchi for his valuable advice and encourage-

ment.

2. Notation

Let z = (z1, . . . , zn) be the natural coordinate system of Cn. We set

‖z‖2 =

n∑
j=1

|zj |2, dc =
i

4π

(
∂ − ∂

)
,

α = ddc‖z‖2, η = dc log ‖z‖2 ∧ (ddc log ‖z‖2)n−1,

B(r) = {z ∈ Cn; ‖z‖ < r} , Γ(r) = {z ∈ Cn; ‖z‖ = r} .
Let M be a compact complex manifold and (L, h) a Hermitian holomor-

phic line bundle over M . For a meromorphic mapping f : Cn → M we

define the order function of f with respect to the Chern form ω of (L, h) by

Tf (r, ω) =

∫ r

1

dt

t2n−1

∫
B(t)

f∗ω ∧ αn−1

and we define the order function of f with respect to L by

Tf (r, L) = Tf (r, ω).
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Tf (r, L) is well-defined up to a bounded term. We denote the space of

holomorphic sections of L by Γ(M,L). We have the natural identification

P (Γ(M,L)) = {(σ); σ ∈ Γ(M,L) \ {0}},

where the notation (σ) stands for the effective divisor of σ. Let D ∈
P (Γ(M,L)). Then we may take an element σ ∈ Γ(M,L) which satisfies

D = (σ), ‖σ(x)‖ =
√
h(σ(x), σ(x)) ≤ 1.

When f(Cn) �⊂ supp D (the support of D), the proximity function of f

with respect to D is defined by

mf (r,D) =

∫
z∈Γ(r)

log
1

‖σ ◦ f(z)‖η(z)

and we define the counting function of f∗D by

N(r, f∗D) =

∫ r

1

dt

t2n−1

∫
B(t)∩f∗D

αn−1,

where f∗D is the pullback of D by f . If L is non-negative, then we have

the First Main Theorem

Tf (r, L) = N(r, f∗D) + mf (r,D) + O(1).(1)

3. Lemma

Let M be a compact complex manifold and L → M a holomorphic line

bundle. Set

V = Γ(M,L), N + 1 = dim V.

Here we assume that the set B(V ) of base points of V is empty, i.e.,

B(V ) = {x ∈ M ; σ(x) = 0,∀σ ∈ V } = φ.

We fix a Hermitian inner product ( , ) in V . Let ({Uλ}, {sλ}) be a local

trivialization covering of L and {σ0, . . . , σN} an orthonormal base of V .

We identify V ∗ = CN+1 by the dual base of {σ0, . . . , σN}. We define a

holomorphic mapping ΦL from M into P (V ∗) = PN (C) by

ΦL(x) = [σ0λ(x) : . . . : σNλ(x)], x ∈ Uλ,
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where σjλ are holomorphic functions on Uλ with σj |Uλ = σjλsλ. If Uλ ∩
Uµ �= φ, there exists a holomorphic function Tλµ : Uλ ∩ Uµ → C \ {0} such

that sλ(x)Tλµ(x) = sµ(x) for x ∈ Uλ ∩ Uµ. Therefore, ΦL is well-defined.

Then it follows that L = Φ∗
LHV ∗ , where HV ∗ is the hyperplane bundle over

P (V ∗). Hence Fubini-Study metric in HV ∗ induces a Hermitian metric h in

L satisfying

h(sλ(x), sλ(x)) =
1∑N

j=0 |σjλ(x)|2
.(2)

We denote the Chern form of (L, h) by ω. Clearly, ω is non-negative. Hence

L is non-negative. Let ωV denote the Fubini-Study metric form on P (V )

induced by the Hermitian inner product ( , ). Since ωN
V = ∧NωV is a

volume element on P (V ), it is considered as positive measure µ. We define

a C∞-function Sx on P (V ) by

Sx(D) =

√
h(σ(x), σ(x))√

(σ, σ)
, D = (σ) ∈ P (V ).

We now prove the following key lemma.

Lemma 1. Let the notation be as above and X ⊂ P (V ) a Lebesgue

measurable subset with µ(X) > 0. Then,

∫
D∈X

log
1

Sx(D)
dµ(D) ≤ µ(X)

2

(
N + log

N

µ(X)

)

for all x ∈ M .

Proof. We identify P (V ) = PN (C) by the base {σ0, . . . , σN}. Then

we equate [z0 : . . . : zN ] ∈ PN (C) with a divisor
(∑N

j=0 z
jσj

)
. For x ∈ Uλ

and [z0 : . . . : zN ] ∈ PN (C) it follows from (2) that

Sx([z
0 : . . . : zN ]) =

∣∣∣∑N
j=0 z

jσjλ(x)
∣∣∣(∑N

j=0 |σjλ(x)|2
)1/2 (∑N

j=0 |zj |2
)1/2

.(3)
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Since B(V ) = φ, there exists a unitary matrix G = (gij) and a non-zero

constant a ∈ C such that


1

0
...

0


 = a tG




σ0λ(x)
...

σNλ(x)


 .

Let ρ : CN+1 \ {0} → PN (C) be the Hopf fibering. We define a biholomor-

phic mapping G by G(ρ(z)) = ρ(Gz), z = t(z0, . . . , zN ) ∈ CN+1. Since G

is unitary, we easily see by (3) that

Sx(G([z0 : . . . : zN ])) =
|z0|(∑N

k=0 |zk|2
)1/2

.(4)

We denote the characteristic function of a subset S ⊂ P (V ) by χS . Since

ωV is unitary invariant, it follows from (4) that∫
ρ(w)∈X

log
1

Sx(ρ(w))
ωN
V(5)

=

∫
ρ(w)∈PN (C)

χX(ρ(w)) log
1

Sx(ρ(w))
ωN
V

=

∫
ρ(z)∈PN (C)

G∗
(
χX(ρ(w)) log

1

Sx(ρ(w))
ωN
V

)

=

∫
ρ(z)∈PN (C)

χG−1(X)(ρ(z)) log
1

Sx(G(ρ(z)))
ωN
V

=

∫
ρ(z)∈G−1(X)

log

(∑N
k=0 |zk|2

)1/2

|z0| ωN
V .

We put

V0 = {[z0 : . . . : zN ] ∈ PN (C); z0 �= 0}
and we set an affine coordinate system on V0 by

ζ = (ζ1, . . . , ζN ) =

(
z1

z0
, . . . ,

zN

z0

)
.
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Then by (5) we have ∫
ρ(w)∈X

log
1

Sx(ρ(w))
ωN
V

=

∫
ζ∈CN

χG−1(X)N ! log
(
1 + ‖ζ‖2

)1/2

(1 + ‖ζ‖2)N+1

N∧
k=1

(
i

2π
dζk ∧ dζk

)

=

∫
ζ∈CN

χG−1(X) log
(
1 + ‖ζ‖2

)1/2

(1 + ‖ζ‖2)N+1
αN .

Furthermore, µ(X) = µ(G−1(X)), so that it suffices to prove that

∫
ζ∈CN

χX log
(
1 + ‖ζ‖2

)1/2

(1 + ‖ζ‖2)N+1
αN ≤ µ(X)

2

(
N + log

N

µ(X)

)
(6)

for a Lebesgue measurable set X ⊂ CN . Set

Φ(r) =

∫
X∩{ζ∈CN ; ‖ζ‖>r}

ωN
V .

Then, Φ(r) is a continuous decreasing function on [0,∞) and 0 ≤ Φ(r) ≤
µ(X) ≤ 1. Moreover,

Φ(r) =

∫
{ζ∈CN ; ‖ζ‖>r}

χX

(1 + ‖ζ‖2)N+1
αN(7)

=

∫ ∞

r

{∫
Γ(t)

χX2Nt2N−1

(1 + t2)N+1
η

}
dt,

so that Φ(r) is an absolutely continuous function on [0, s] (s ∈ [0,∞)).

Therefore it follows that∫ s

0
log(1 + r2)1/2d(−Φ(r))(8)

=

∫ s

0
log(1 + r2)1/2

{∫
Γ(r)

χX2Nr2N−1

(1 + r2)N+1
η

}
dr

=

∫
ζ∈B(s)

χX log(1 + ‖ζ‖2)1/2

(1 + ‖ζ‖2)N+1
αN .
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On the other hand, we have∫ s

0
log(1 + r2)1/2d(−Φ(r)) =

∫ s

0

rΦ(r)

1 + r2
dr − Φ(s) log(1 + s2)1/2.(9)

The following convergence will be proved later:

Φ(s) log(1 + s2)1/2 → 0 (s → ∞).(10)

Hence by (8), (9), (10) the left side of (6) is∫
ζ∈CN

χX log(1 + ‖ζ‖2)1/2

(1 + ‖ζ‖2)N+1
αN =

∫ ∞

0

rΦ(r)

1 + r2
dr.(11)

To estimate (11), we put

Ψ(r) =

∫
{ζ∈CN ; ‖ζ‖>r}

ωN
V .

Then, Ψ(r) is a strictly decreasing and continuous function on [0,∞) such

that 0 ≤ Φ(r) ≤ Ψ(r) ≤ 1, Ψ(0) = 1, and limr→∞ Ψ(r) = 0.

We compute Ψ(r) as follows.

Ψ(r) =

∫
{ζ∈CN ; ‖ζ‖>r}

1

(1 + ‖ζ‖2)N+1
αN

=

∫ ∞

r

{∫
Γ(t)

2Nt2N−1

(1 + t2)N+1
η

}
dt

=

∫ ∞

r

2Nt2N−1

(1 + t2)N+1
dt

=
N∑
j=1

r2(j−1)

(1 + r2)j
.

Therefore we have

1

1 + r2
≤ Ψ(r) ≤ N

1 + r2
.(12)

We show (10) as follows.

0 ≤ Φ(s) log(1 + s2)1/2 ≤ Ψ(s) log(1 + s2)1/2
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≤ N

1 + s2
log(1 + s2)1/2 → 0 (s → ∞).

Because of µ(X) > 0 we can take a real number r1 ≥ 0 such that Ψ(r1) =

µ(X). By (12)

1

µ(X)
≤ 1 + r2

1 ≤ N

µ(X)
.(13)

Note that Φ(0) = µ(X), Φ(r) is decreasing, and that Φ(r) ≤ min{Ψ(r),

µ(X)}. Therefore, we get

∫ ∞

0

rΦ(r)

1 + r2
dr ≤

∫ r1

0

rµ(X)

1 + r2
dr +

∫ ∞

r1

rΨ(r)

1 + r2
dr

=
µ(X)

2
log(1 + r2

1) +

∫ ∞

r1

rΨ(r)

1 + r2
dr.

Furthermore by (12) and (13) we see that

∫ ∞

0

rΦ(r)

1 + r2
dr ≤ µ(X)

2
log

N

µ(X)
+

∫ ∞

r1

rN

(1 + r2)2
dr

=
µ(X)

2
log

N

µ(X)
+

N

2(1 + r2
1)

≤ µ(X)

2

(
N + log

N

µ(X)

)
.

Therefore, (6) follows from (11). �

4. Growth of the Nevanlinna Proximity Function 1

We show the following theorem.

Theorem 2. Let M be a compact complex manifold and L → M a

holomorphic line bundle satisfying B(Γ(M,L)) = φ. Let f : Cn → M be a

meromorphic mapping such that Tf (r, L) → ∞ (r → ∞). Then we have

that for almost all divisor D ∈ P (Γ(M,L))

lim sup
r→∞

mf (r,D)

log Tf (r, L)
≤ 1

2
.
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Proof. Set V = Γ(M,L). Let ω, ωV and Sx be as in the section 3.

Then

Tf (r, ω) = Tf (r, L) + O(1).

Since Tf (r, L) → ∞ (r → ∞), for all positive integer m ∈ N we can choose

real number rm ∈ (1,∞) such that

Tf (rm, ω) = m.

Let β > 1/2 be an arbitrary real number and set

G(m,β) = {D ∈ P (V ); mf (rm, D) > β logm} .

We denote by I(f) the indeterminacy locus of f . Because the codimen-

sion of I(f) is greater than or equal to 2, it follows from lemma 1 that if

µ(G(m,β)) > 0, then

µ(G(m,β))β logm <

∫
D∈G(m,β)

mf (rm, D)ωN
V

=

∫
D∈G(m,β)

{∫
z∈Γ(rm)\I(f)

log
1

Sf(z)(D)
η(z)

}
ωN
V

=

∫
z∈Γ(rm)\I(f)

{∫
D∈G(m,β)

log
1

Sf(z)(D)
ωN
V

}
η(z)

≤
∫
z∈Γ(rm)\I(f)

µ(G(m,β))

2

(
N + log

N

µ(G(m,β))

)
η(z)

=
µ(G(m,β))

2

(
N + log

N

µ(G(m,β))

)
.

Hence we deduce that

µ(G(m,β)) <
NeN

m2β
.

We set

G(β) =

∞⋂
m0=1

∞⋃
m=m0

G(m,β).
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Because of β > 1/2 it follows that

µ(G(β)) ≤ lim
m0→∞

∞∑
m=m0

µ(G(m,β)) < lim
m0→∞

∞∑
m=m0

NeN

m2β
= 0.(14)

Note that the set X(f) defined by

X(f) = {D ∈ P (V ); supp D ⊃ f(Cn)}

has zero measure. Let D �∈ G(β) ∪ X(f). Then there exists an integer

mD ∈ N such that for all m > mD

mf (rm, D) ≤ β logm.(15)

We choose an arbitrary number s ≥ rmD and we take an integer ms ∈ N

satisfying rms ≤ s < rms+1. Then ms ≥ mD. Since ω ≥ 0 and D �∈ X(f),

we have by the First Main Theorem (1) and (15)

mf (s,D) = Tf (s, ω) −N(s, f∗D) + O(1)

≤ Tf (rms+1, ω) −N(rms , f
∗D) + O(1)

= Tf (rms , ω) −N(rms , f
∗D) + O(1)

= mf (rms , D) + O(1) ≤ β logms + O(1)

≤ β log Tf (s, ω) + O(1).

Therefore it follows that for an arbitrary D �∈ G(β) ∪X(f)

lim sup
r→∞

mf (r,D)

log Tf (r, ω)
≤ β.(16)

We set

G =

∞⋃
k=1

G

(
1

2
+

1

k

)
∪X(f).

Then by (14), (16) we see that

µ(G) ≤
∞∑
k=1

µ

(
G

(
1

2
+

1

k

))
+ µ(X(f)) = 0
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and that for D �∈ G

lim sup
r→+∞

mf (r,D)

log Tf (r, ω)
≤ 1

2
. �

In general, let M be a compact complex manifold with a Hermitian

metric form ω. Let f : Cn → M be a meromorphic mapping. Then the

order function of f with respect to ω is defined by

Tf (r, ω) =

∫ r

1

dt

t2n−1

∫
B(t)

f∗ω ∧ αn−1.

We define the order of f by

ρf = lim sup
r→∞

log Tf (r, ω)

log r
,

which is independent of the choice of the Hermitian metric form ω.

We easily deduce the following corollary from Theorem 2.

Corollary 3. Let M be a compact complex manifold and L a very

ample holomorphic line bundle over M . Let f : Cn → M be a meromorphic

mapping. Assume that the order of f is finite and Tf (r, L) → ∞ (r → ∞).

Then,

lim sup
r→∞

mf (r,D)

log r
≤ ρf

2

for almost all effective divisor D ∈ P (Γ(M,L)).

5. Growth of the Nevanlinna Proximity Function 2

We now define the projective logarithmic capacity of a subset in the

PN (C) (See Molzon-Shiffman-Sibony [3]). Let K be a compact subset of

PN (C). We denote by M(K) the space of positive Borel measures on K

with total mass 1. For x = [x0 : . . . : xN ] ∈ PN (C) and ν ∈ M(K) we set

uν(x) =

∫
[w0:...:wN ]∈K

log

(∑N
j=0 |xj |2

)1/2 (∑N
j=0 |wj |2

)1/2

∣∣∣∑N
j=0 x

jwj
∣∣∣ dν,
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and

V (K) = inf
ν∈M(K)

sup
x∈PN (C)

uν(x).

Define the projective logarithmic capacity of K by

C(K) =
1

V (K)
.

When V (K) = ∞, we set C(K) = 0. For an arbitrary subset E of PN (C)

we define the projective logarithmic capacity of E by

C(E) = sup
K⊂E

C(K),

where the supremum is taken over compact subsets K of E.

For real valued functions A(r) and B(r) on [1,∞) we write

A(r) ≤ B(r)||

if there is a Borel subset J ⊂ [1,∞) with finite measure such that A(r) ≤
B(r) for r ∈ [1,∞) \ J .

Let the notation be as in the previous section. We now show the follow-

ing theorem.

Theorem 4. Let M be a compact complex manifold, and L → M a

holomorphic line bundle with B(Γ(M,L)) = φ. Let f : Cn → M be a

meromorphic mapping. Let ϕ(r) > 0 be a Borel measurable function on

[1,∞) which satisfies ∫ ∞

1

dr

ϕ(r)
< ∞.

Then there exists a subset F of P (Γ(M,L)) such that C(F ) = 0 and that

mf (r,D) ≤ ϕ(r) + O(1)||

for an arbitrary divisor D ∈ P (Γ(M,L)) \ F .

Proof. We identify P (Γ(M,L)) = PN (C) by the base {σ0, . . . , σN}.
Then we equate [ζ0 : . . . : ζN ] ∈ PN (C) with a divisor

(∑N
j=0 ζ

jσj

)
. We

set

F =

{
D ∈ P (Γ(M,L));

∫ ∞

1

mf (r,D)

ϕ(r)
dr = ∞

}
.
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Assume that C(F ) > 0. Then there is a compact subset K of F with

C(K) > 0. Therefore there exists a ν ∈ M(K) such that

sup
x∈PN (C)

uν(x) < ∞.(17)

It follows from (3) and (17) that

∫
[ζ0:...:ζN ]∈K

{∫ ∞

1

mf (r, [ζ
0 : . . . : ζN ])

ϕ(r)
dr

}
dν

=

∫ ∞

1

1

ϕ(r)

{∫
z∈Γ(r)

{∫
K

log
1

Sf(z)([ζ0 : . . . : ζN ])
dν

}
η

}
dr

≤
∫ ∞

1

1

ϕ(r)

{∫
Γ(r)

sup
x∈PN (C)

uν(x)η

}
dr

=

∫ ∞

1

1

ϕ(r)
sup

x∈PN (C)

uν(x)dr < ∞.

On the other hand, by the definition of F we have

∫
[ζ0:...:ζN ]∈K

{∫ ∞

1

mf (r, [ζ
0 : . . . : ζN ])

ϕ(r)
dr

}
dν = ∞.

This is a contradiction. Hence C(F ) = 0. For an arbitrary divisor D ∈
P (Γ(M,L)) we set

J(D) =

{
r ∈ [1,∞);

mf (r,D)

ϕ(r)
> 1

}
.

If D �∈ F , then we see∫
J(D)

dr <

∫
r∈J(D)

mf (r,D)

ϕ(r)
dr ≤

∫ ∞

1

mf (r,D)

ϕ(r)
dr < ∞.

Therefore for D ∈ P (Γ(M,L)) \ F

mf (r,D) ≤ ϕ(r) + O(1)||. �
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6. The General Case

In this section we deal with the growth of the proximity function with

respect to an effective divisor D ∈ P (E), where L → M be a holomorphic

line bundle and E is a linear subspace of Γ(M,L), and complete the proof

of the Main Theorem.

Let M be a compact complex manifold and I a coherent ideal sheaf of

the structure sheaf OM over M . Let {Vλ} be a finite open covering of M

and ηλj ∈ Γ(Vλ, I), j = 1, 2, . . ., be finitely many sections of which germs

ηλ1x
, ηλ2x

, . . ., generate the fiber Ix for all x ∈ Vλ. Following to [5], Chap. 2

or [7], §2, we let {ρλ} be a partition of unity associated with {Vλ} and set

dI(x) =
∑
λ

ρλ(x)


∑

j

|ηλj(x)|2



1/2

, x ∈ M.

Let f be a meromorphic mapping from Cn into M such that

f(Cn) �⊂ supp OM/I.

We define the proximity function of f for I by

mf (r, I) =

∫
z∈Γ(r)

− log dI ◦ f(z)η(z).

Next let L → M be a holomorphic line bundle and dim Γ(M,L) = N+1.

Let E be an (l+1)-dimensional linear subspace of Γ(M,L). We take a base

{σ0, . . . , σN} of Γ(M,L) and we identify Γ(M,L) ∼= CN+1 by {σ0, . . . , σN}.
Moreover we assume that E is spanned by {σ0, . . . , σl}. Let I denote the

coherent ideal sheaf of OM of which fiber over x ∈ M is generated by

{σx; σ ∈ E}. Then the base of E is defined by B(E) = OM/I. Thus we

write I = IB(E).

Let f : Cn → M be a meromorphic mapping. Suppose that

f(Cn) �⊂ supp B(E).

Let ({Uλ}, {sλ}) be a local trivialization covering of L. We define a mero-

morphic mapping ΦL : M → PN (C) by

ΦL(x) = [σ0λ(x) : . . . : σNλ(x)], x ∈ Uλ,
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where σjλ is a holomorphic function on Uλ such that σj |Uλ = σjλsλ. Let

(f0, . . . , fN ) be a reduced representation of ΦL ◦ f . We denote by fE the

meromorphic mapping from Cn into Pl(C) represented by (f0, . . . , f l). For

z ∈ (f |(Cn \ I(f)))−1(Uλ \ supp B(E))

fE(z) = [σ0λ ◦ f(z) : . . . : σlλ ◦ f(z)].

We denote by Hl hyperplane bundle over Pl(C). The following is known.

Proposition 5. Let the notation be as above. We have the following.

(i) If B(Γ(M,L)) = φ, then

Tf (r, L) ≥ TfE (r,Hl) + O(1).

(ii) (Cf. Noguchi [5].) For [ζ0 : . . . : ζ l] ∈ P (E)

mf

(
r,
(∑l

j=0 ζ
jσj

))
−mf (r, IB(E)) = mfE (r, [ζ0 : . . . : ζ l]) + O(1),

where mfE (r, [ζ0 : . . . : ζ l]) is the proximity function of fE with respect to a

hyperplane {[z0 : . . . : zl] ∈ Pl(C);
∑l

j=0 ζ
jzj = 0}.

Proof. (i) We assume that B(Γ(M,L)) = φ. Let (g0, . . . , gl) be a

reduced representation of fE . Then there is a holomorphic function g on

Cn such that (f0, . . . , f l) = (gg0, . . . , ggl). Since L = Φ∗
LHN it follows that

Tf (r, L) =

∫
z∈Γ(r)

log


 N∑

j=0

|f j(z)|2



1/2

η + O(1)

≥
∫
z∈Γ(r)

log


 l∑

j=0

|f j(z)|2



1/2

η + O(1)

≥
∫
z∈Γ(r)

log


 l∑

j=0

|gj(z)|2



1/2

η +

∫
z∈Γ(1)

log |g| η + O(1)

≥ TfE (r,Hl) + O(1).
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(ii) Let h be a Hermitian metric in L and || · || denote the norms on L.

Let {τλ} be a partition of unity associated with {Uλ}. For x ∈ Uν we set

k(x) = log

(∑l
j=0 |ζj |2

)1/2

||
∑l

j=0 ζ
jσj(x)||

− log

(∑l
j=0 |σjν(x)|2

)1/2 (∑l
j=0 |ζj |2

)1/2

|
∑l

j=0 σjν(x)ζj |

+ log
∑
λ

τλ(x)


 l∑

j=0

|σjλ(x)|2



1/2

.

Since

||
∑l

j=0 ζ
jσj(x)|| = |

∑l
j=0 σjν(x)ζj |||sν(x)||,

we see

k(x) = log

∑
λ τλ(x)

(∑l
j=0 |σjλ(x)|2

)1/2

||sν(x)||
(∑l

j=0 |σjν(x)|2
)1/2

.

We take an arbitrary point y ∈ M and ν such that τν(y) > 0. Then there

are a relatively compact neighborhood V ⊂ Uν of y and positive constant

C1, C2, C3 > 0 such that for x ∈ V

k(x) ≤ log

∑
λC1τλ(x)

(∑l
j=0 |σjν(x)|2

)1/2

||sν(x)||
(∑l

j=0 |σjν(x)|2
)1/2

= log
C1

||sν(x)|| ≤ logC2,

and

k(x) ≥ log
τν(x)

||sν(x)|| ≥ logC3.

Since M is compact there exists a positive constant C such that for an

arbitrary x ∈ M

|k(x)| < C.

This finishes the proof of (ii). �

Let µE denote the positive measure induced by Fubini-Study metric on

P (E) = Pl(C).
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Theorem 6. Let M be a compact complex manifold and L → M a

holomorphic line bundle. Let 1 ≤ l ≤ N be an integer and E an (l+1)-

dimensional linear subspace of Γ(M,L). Let f : Cn → M be a meromorphic

mapping such that f(Cn) �⊂ supp B(E). If TfE (r,Hl) → ∞ (r → ∞), then

for almost all divisor D ∈ P (E)

lim sup
r→∞

mf (r,D) −mf (r, IB(E))

log TfE (r,Hl)
≤ 1

2
.

Otherwise for almost all divisor D ∈ P (E)

mf (r,D) −mf (r, IB(E)) = O(1).

Proof. Set

I =

{
[ζ0 : . . . : ζ l] ∈ P (E);

lim sup
r→∞

mf (r, (
∑l

j=0 ζ
jσj)) −mf (r, IB(E))

log TfE (r,Hl)
>

1

2

}
.

Because of Proposition 5 we have that for [ζ0 : . . . : ζ l] ∈ I

1

2
< lim sup

r→∞

mfE (r, [ζ0 : . . . : ζ l])

log TfE (r,Hl)
.

Hence, if TfE (r,Hl) → ∞ (r → ∞), then we have µE(I) = 0 by Theorem 2.

We assume that TfE (r,Hl) = O(1). Then fE is a constant mapping. Hence

by Proposition 5 (ii)

mf (r,D) −mf (r, IB(E)) = O(1). �

By making use of the methods in the proofs of Proposition 5 and The-

orem 4 one may also deduce the following:

Theorem 7. Let M be a compact complex manifold and L → M a

holomorphic line bundle. Let 1 ≤ l ≤ N be an integer and E an (l+1)-

dimensional linear subspace of Γ(M,L). Let f : Cn → M be a meromorphic
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mapping. Let ϕ(r) > 0 be a Borel measurable function on [1,∞) which

satisfies ∫ ∞

1

dr

ϕ(r)
< ∞.

Then there exists a subset F of P (E) such that C(F ) = 0 and that for all

D ∈ P (E) \ F

mf (r,D) −mf (r, IB(E)) ≤ ϕ(r) + O(1)||.

Remark. S. Mori [4] proved that for a non-constant meromorphic

mapping f : Cn → PN (C), the set{
H ∈ PN (C)∗; lim sup

r→∞

mf (r,D)√
Tf (r,HN ) log Tf (r,HN )

> 0

}

is of projective logarithmic capacity zero. Moreover, A. Sadullaev [8] showed

that this set forms a polar set.

Note the differences between these results and our Theorems 2 and 7.
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