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On an Optimal Control Problem for the Wave

Equation with Input on an Unknown Surface

By Bui An Ton

Abstract. An optimal control problem for the wave equation
with Dirichlet boundary conditions, initial data in L2(Ω) × H−1(Ω)
and input µ on an unknown interior surface,is studied.Using control
techniques and the generalized gradients, feedback laws for an approx-
imating system yielding the support of the Radon measure µ from
observed values of the solution in a fixed subregion, are established.

1. Introduction

The purpose of this paper is to study an optimal control problem for the

wave equation with an input on an unknown interior surface,i.e. one wishes

to identify an obstacle from the observations of far away reflected waves.

The problems have applications in geophysical explorations, oceanography,

medical diagnosis and reconnaissance. For known point sources, the anti-

noise problem for the wave equation was treated by J.L.Lions in [7]. For

unknown point sources, the one dimensional initial boundary value problem

has been treated by G.Bruckner and M.Yamamoto in [3], estimations of the

point sources have been studied by V.Komornik and M.Yamamoto in [5,6]

and the general case has been considered by A.El.Badia and T.Ha Duong

[4].

For unknown surface source the exact controllability of an initial bound-

ary problem for a nonlinear wave equation has been studied by the author

in [10]. In this paper we shall consider the case when the surface-source is

the support of a Radon measure.

The controllability of the Laplace equation observed on an interior curve

has been treated by A.Osses and J.Puel in [9] .
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Let Ω be a bounded open subset of R3, let u ∈ K

K =
{
u : u ≥ 0, ‖u‖H2(Ω)∩H1

0 (Ω) ≤ M
}

with M defined in Section 2. Consider the problem

y′′ − ∆y + µ = f in Ω × (0, T ),(1.1)

y = 0 on ∂Ω × (0, T ) and {y, y′} |t=0= α in Ω.

Here µ is a measure defined by

< µ,ϕ >=

∫
∂Ωa

gϕdσ ∀ϕ ∈ C0(Ω)

and

∂Ωa = {ξ : ξ ∈ Ω, u(ξ) = a}

where g is a given function with

g ∈ C(Ω), g ≥ 1,

with a ∈ (0,maxΩ u). Since u is positive and in Cλ(Ω) the boundary ∂Ωa is

non empty and Ωa is an interior subset of Ω as a is in the range of u.

Let χ be given and y be a solution with u, a, g and let J(µ, u, a) be the

cost function

J(µ, u, a) =

∫ T

0

∫
Ω̃
| y − χ | dxdt

where Ω̃ is an interior subset of Ω having an empty intersection with

supp(µ).

Given α in L2(Ω) ×H−1(Ω), one wishes to find

{ỹ, u, µ̃, ã} ∈ C(0, T ;L2(Ω)) × {H2(Ω) ∩H1
0 (Ω)} ×Mb(Ω) ×R+

with ∫ T

0

∫
Ω̃
| ỹ − χ | dxdt(1.2)

= inf
{
J(µ, u, a) : ∀{y, u, µ, a} such that

suppµ ∩ suppχ = ∅ , ∀a ∈ [a0,max
Ω

u], u ∈ K
}
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The set of all bounded Radon measures in Ω is denoted by Mb(Ω).

An approximating system for (1.1) is studied in Section 2. Feedback

laws for the approximating system are established in Section 4 and the main

result of the paper is proved in Section 5. Initial boundary value problems

for parabolic equations with given Radon measure sources have been studied

by H.Amman and P.Quinter [1], by L.Boccardo and T.Gallouet [2]. Elliptic

problems with a solution-dependent Radon measure were considered by the

author in [11].

Acknowledgment . The author is grateful to the referee for his insightful

comments and for calling his attention to references [5,6,9].

2. An Approximating System

In this section we shall

(i) construct functionals ψk , uniformly bounded in L1(Ω) with

ψk → µ in D′(Ω), supp(µ) = ∂Ωa

(ii) construct the unique weak transpose solution of an initial boundary

problem for the wave equation with L1(Ω)-source and show that it is the

sum of two functions, one being time-independent,

(iii) study the value function associated with the problem in (ii) and a

given cost functional.

Let Fk be a positive Lipschitz continuous function on R+ with

Fk(s) =

{
k if s = a

0 if s ≤ a− k−1 or if s ≥ a + k1

and ∫ a

−∞
Fk(s, a)ds = 1 =

∫ ∞

a
Fk(s, a)ds.

The Fk(s, a) approximate the Dirac delta function with mass at a. Let

u ∈ H2(Ω) ∩H1
0 (Ω), u ≥ 0, then u is in Cλ(Ω) and

Ωa =
{
ξ : ξ ∈ Ω, 0 < u(ξ) < a, 0 < a < max

Ω
u
}
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is an interior open subset of Ω with ∂Ωa ∈ Cλ.

We shall denote by E(f,α) the expression

E(f,α) = 1+ | Ω | +‖f‖L2(Q) + ‖α‖L2(Ω)×H−1(Ω)(2.1)

where Q = Ω × (0, T ).

Step 1. Let M be a constant with M ≥ E(f,α) and let

K =
{
v : ‖v‖H2(Ω)∩H1

0 (Ω) ≤ M, v = v+ ≥ 0 in Ω
}

(2.2)

then K is a compact convex subset of L2(Ω).

Consider the initial boundary problem

u′k − ∆uk + gFk((uk + v)+, a) = 1 in Q,(2.3)

uk = 0 on {∂Ω ∪ ∂Ωa} × (0, T ) , uk( ., 0) = 0 in Ω.

Lemma 2.1. Let {g, v} be in C(Ω) × K with infΩ g ≥ 1, then there

exists a unique solution uk of (2.3) with

‖uk‖L2(0,T ;H1
0 (Ω)) + ‖u′k‖L1(0,T ;(H1

0 (Ω)∩H2(Ω))∗) + ‖uk‖L∞(0,T ;L2(Ω))

+ ‖gFk((uk + v)+, a)‖L1(Q) ≤ 2cω‖g‖C(Ω)

where cω is the Poincare constant.

Proof. 1) First consider the problem

ũ′k − ∆ũk + gFk((ũk + v)+, a) = 1 in Ωa × (0, T ),

ũk = 0 on {∂Ω ∪ ∂Ωa} × (0, T ) , ũk( ., 0) = 0 in Ωa.

Since for fixed k, Fk is Lipschitz continuous there exists a unique solu-

tion of the problem and

{ũk, ũ′k} ∈ L2(0, T ;H1
0 (Ωa)) × L2(0, T ;H−1(Ωa)).
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2) We now consider the initial boundary problem

û′k − ∆ûk + gFk((ûk + v)+, a) = 1 in Ω/Ωa × (0, T ),

ûk = 0 on (∂Ω/Ωa) × (0, T ) , ûk( ., 0) = 0 in Ω/Ωa.

As above there exists a unique solution ûk of the problem with

{ûk, û′k} ∈ L2(0, T ;H1
0 (Ω/Ωa)) × L2(0, T ;H−1(Ω/Ωa)).

3) Set

uk(ξ, t) = ũk in Ωa × (0, T ) , uk = ûk in (Ω/Ωa) × (0, T ).

Then uk is a solution of (2.3) and

{uk, u′k} ∈ L2(0, T ;H1
0 (Ω)) × L2(0, T ;H−1

0 (Ω)).

Since Fk is Lipschitz continuous the solution is unique.

We now establish the estimate of the lemma.

We have

d

dt
‖uk + v‖2

L2(Ω) + 2‖∇(uk + v)‖2
L2(Ω) + 2(gFk((uk + v)+, a), uk + v)

≤ 2 | Ω |1/2 ‖uk + v‖L2(Ω)

≤ 2 | Ω |1/2 cω‖∇(vk + v)‖L2(Ω)

≤ ‖∇(uk + v)‖2
L2(Ω) + c2ω | Ω | .

Thus,

‖uk + v‖2
L∞(0,T ;L2(Ω)) + ‖∇(uk + v)‖2

L2(0,T ;L2(Ω))

+

∫ T

0
(gFk((uk + v), a), u+

k + v)dt ≤ c2ω | Ω | .

From the definition of the functional Fk we obtain

∫ T

0
(gFk((uk + v)+, a), uk + v)dt =

∫ T

0
(gFk((uk + v)+, a), (uk + v)+)dt.
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We have only to consider the set where

a− k−1 ≤ (uk + v)(ξ, t) ≤ a + k−1.

Take k > a/2 ≥ a0/2 > 0 and we get

a0

2
‖gFk((uk + v)+, a)‖L1(Q) ≤

∫ T

0
(gFk((uk + v)+, a), uk + v)dt

≤ T | Ω | c2ω
and the lemma is proved �

Set

ψk((uk + v)+, a) =

∫ T

0
gFk((uk + v)+, a)dt(2.4)

then,

‖ψk((uk + v)+, a)‖L1(Ω) ≤
2c2ω
a0

T | Ω | .(2.5)

With ψk as in (2.5) we now consider the elliptic boundary problem

−∆zk + ψk((uk + v)+, a) = 1 + ∆v in Ω, zk = 0 on ∂Ω.(2.6)

Lemma 2.2. Let uk, v be as in Lemma 2.1 and let ψk be as in (2.5).

There exists a unique solution zk in H1
0 (Ω) of (2.6) with

‖zk + v‖
W 1,r

0 (Ω)
≤ C(1+ | Ω | +

2c2ω
a0

T | Ω |) ∀r ∈ (6/5, 3/2)

where C is a constant independent of uk, v, k, a.

Proof. The existence of a unique solution zk in H1
0 (Ω) is known. We

now establish the estimate of the lemma. Since ψk is in L1(Ω),we obtain

by applying a result due to L.Boccardo and T.Gallouet [2]

‖zk + v‖
W 1,r

0 (Ω)
≤ C

{
1+ | Ω | +‖ψk((uk + v)+, a)‖L1(Ω)

}

≤ C
{
1+ | Ω | +

2c2ω
a0

T | Ω |
}
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for r ∈ (6/5, 3/2) and where C is a constant independent of k, v, uk, a �

Step 2. We now construct a weak transpose solution of a wave equa-

tion. Consider the problem

x′′k − ∆xk = f − 1 in Q,(2.7)

xk = 0 on ∂Ω × (0, T ) , {xk, x′k} |t=0= α− {zk + v, 0} in Ω.

With α− {zk, 0} in L2(Ω) ×H−1(Ω) we are led to the notion of weak

transpose solution of the wave equation.

Definition 2.1. Let
{
h,α

}
be in L2(Q) × L2(Ω) ×H−1(Ω), then

{
u, u′

}
∈ C(0, T ;L2(Ω)) × C(0, T ;H−1(Ω))

is said to be a weak transpose solution of

u′′ − ∆u = h in Q, u = 0 on ∂Ω × (0, T ), {u, u′} |t=0= α

if

(u′( ., t), ϕ( ., t)) − (α1, ϕ( ., 0)) −
∫ t

0
(u( ., s), ϕ′( ., s))ds

=

∫ t

0
(u, ∆ϕ)ds +

∫ t

0
(h, ϕ)ds

for all ϕ in C2(0, T ;H1
0 (Ω) ∩H2(Ω)).

Lemma 2.3. Let zk be as in Lemma 2.2 and let

{
f,α, v

}
∈ L2(Q) × {L2(Ω) ×H−1(Ω)} × K.

Then there exists a unique transpose solution xk of (2.7) with

‖xk‖C(0,T ;L2(Ω)) + ‖x′k‖C(0,T ;H−1(Ω)) ≤ C
{
E(f, α) +

2c2ω
a0

T | Ω |
}

where C is a constant independent of k, v, uk, xk.

Proof. Since zk is in W 1,r
0 (Ω) and 6/5 < r < 3/2, it follows from the

Sobolev imbedding theorem that W 1,r(Ω) ⊂ L2(Ω). Thus,

α− {zk + v, 0} ∈ L2(Ω) ×H−1(Ω).
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The existence of a unique weak transpose solution xk of (2.7) has been shown

by J.L.Lions and E.Magenes [8].The estimate is an immediate consequence

of those of Lemmas 2.1, 2.2 �

Step 3. The main result of the section is the following theorem.

Theorem 2.1. Let
{
f, g, v, α

}
be in

L2(Q) × C(Ω) ×K × {L2(Ω) ×H−1(Ω)}, inf
Ω

g ≥ 1.

Let uk be as in Lemma 2.1 and let ψk((uk + v)+, a) be as in (2.4), then

there exists a unique weak transpose solution of the initial boundary problem

y′′k − ∆yk + ψk((uk + v)+, a) = f in Q,(2.8)

yk = 0 on ∂Ω × (0, T ) ,
{
yk, y

′
k

}
|t=0= α in Ω.

Moreover

‖yk‖C(0,T ;L2(Ω)) + ‖y′k‖C(0,T ;H−1(Ω)) ≤ C
{
E(f, α) +

2c2ω
a0

T | Ω |
}

and

‖ψk((uk + v)+, a)‖L1(Ω) ≤
2c2ω
a0

T | Ω |

where C is a constant independent of k, uk, v, a.

Proof. Let xk, zk be as in Lemmas 2.1, 2.2 and set

yk = xk(ξ, t) + zk(ξ) + v(ξ).

It is trivial to check that yk is indeed a weak transpose solution of (2.8). As

in [8] the transpose solution is unique and with the estimates on xk, zk, v

we obtain the stated result �

We associate with (2.8) the cost functional

J(v, α, a) =

∫ T

0

∫
Ω̃
| yk − χ | dxdt(2.9)
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where χ is a given function in L1(0, T ;L1(Ω̃)), representing the observed

values of yk in Ω̃ × (0, T )with Ω̃ = {ξ : ξ ∈ Ω, 0 < v(ξ) < a0}.
We consider the value function associated with (2.8)-(2.9).

Theorem 2.2. Suppose all the hypotheses of Theorem 2.1 are satisfied.

There exists
{
ỹk, ỹ

′
k, ṽ, ã

}
in

C(0, T ;L2(Ω)) × C(0, T ;H−1(Ω)) ×K × [a0, inf
v∈K

(max
Ω

v)]

such that

Vk(α, 0) = J( ṽ, α, ã)(2.10)

= inf
{
J( v, α, a) : {yk, v} solution of (2.8)

∀v ∈ K, ∀a ∈ [a0, inf
v∈K

(max
Ω

v)]
}
.

Moreover

| Vk(α, 0) − Vk(β, 0) |≤ C‖α− β‖L2(Ω)×H−1(Ω) ∀α, β ∈ L2(Ω) ×H−1(Ω)

where C is a constant independent of k.

Proof. 1) Let
{
yk,n, vn, an

}
be a minimizing sequence of the optimal

problem (2.10) with

Vk(α, 0) ≤ J(vn, α, an) ≤ Vk(α, 0) + n−1.

For simplicity of notations we write yn for yk,n . With vn ∈ K , we get

by taking subsequences

vk → ṽ in H1
0 (Ω) ∩ (H2(Ω))weak, ṽ = ṽ+.

From the estimates of Lemma 2.1 we obtain for fixed k

{
uk,n, u

′
k,n

}
=

{
un, u

′
n

}
→

{
ũ, ũ′

}

in

{
(L2(0, T ;H1

0 (Ω))weak ∩ L2(0, T ;L2(Ω))
}
× (L2(0, T ;H−1(Ω)))weak.
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Since

‖gFk((un + vn)+, an)‖L1(Q) ≤
2c2ω
a0

T | Ω |

and for fixed k the function Fk is Lipschitz continuous, we get

gFk((un + vn)+, an) → gFk((ũ + ṽ)+; ã) in L1(Q).

We obtain

‖ψk((ũ + ṽ)+, ã)‖L1(Ω) ≤
∫ T

0
‖gFk((ũ + ṽ)+, ã)‖L1(Ω)dt

≤ 2c2ω
a0

T | Ω | .

It follows from the estimates of Theorem 2.1 and from Aubin’s theorem

that there exists a subsequence such that{
yn, y

′
n

}
→

{
ỹ, ỹ′

}
in

{C(0, T ;H−1(Ω)) ∩ (L∞(0, T ;L2(Ω)))weak∗} × (L∞(0, T ;H−1(Ω)))weak∗ .

It is trivial to check that ỹk is the unique transpose solution of (2.10)

and that

Vk(α, 0) = J(ṽ,α, ã).

2) Let α, β be in L2(Ω) ×H−1(Ω) , then we have

Vk(β, 0) − Vk(α, 0) ≤ Jk(ṽ,β, ã) − Jk(ṽ,α, ã)

≤ ‖yk − ỹk‖L1(Q).

On the other hand we have

(yk − ỹk)
′′ − ∆(yk − ỹk) = ψk((ũk + ṽk)

+, ã) − ψk((ũk + ṽk)
+, ã) = 0

yk − ỹk = 0 on ∂Ω × (0, T ) ,
{
yk − ỹk, y

′
k − ỹ′k

}
|t=0= α− β.

It follows that

‖yk − ỹk‖C(0,T ;L2(Ω)) ≤ C‖α− β‖L2(Ω)×H−1(Ω).

Hence

Vk(β, 0) − Vk(α, 0) ≤ C‖α− β‖L2(Ω)×H−1(Ω)

Reversing the role played by α ,β and we get the stated result �
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3. A Nonlinear Approximating System

In this section we shall establish the existence of a solution of a nonlinear

initial boundary problem for the wave equation. The result will play a

critical role in the feedback laws for the system (2.10).

Let S be the linear continuous mapping of H−1(Ω) into C(0, T ;L2(Ω))

given by

Sh = ϕ(3.1)

where ϕ is the unique solution of the initial boundary problem

ϕ′ − ∆ϕ = h in Q, ϕ = 0 on ∂Ω × (0, T ), ϕ( ., 0) = 0 in Ω.

Let Vk be as in Theorem 2.2. Since

| Vk(Sα0, Sα1, 0) − Vk(Sβ0, Sα1, 0) |≤ C‖Sα0 − Sβ0‖C(0,T ;L2(Ω))

for all {α0, β0, α1} in L2(Ω) × H−1(Ω), the generalized subgradient

∂Sα0Vk(Sα, 0) exists and is a set-valued mapping of L2(Q) into the closed

convex subsets of L2(Q). For simplicity of notations we shall write

∂0Vk(Sα, 0) for ∂Sα0Vk(Sα, 0) when there is no confusion possible.

We have

‖p(α)‖L2(Q) ≤ C ∀p(α) ∈ ∂0Vk(Sα, 0)

Since the image of ∂0Vk(Sα, 0) is a closed bounded convex subset of

L2(Q) , there exists a unique element of minimum L2(Q)-norm

‖p∗(α)‖L2(Q) ≤ ‖p(α)‖L2(Q) ∀p(α) ∈ ∂0Vk(Sα, 0).

Let

γ∗(h) = sup
{
(h, a)L2(Ω): ∀a∈[a0, inf[ v∈K(max

Ω
v)]

}
(3.2)

Then γ∗ is a l.s.c. convex mapping of L2(Ω) into R and its subgradient

∂γ∗ exists and is a set valued mapping of L2(Ω) into the closed subsets of

[a0, infv∈K(maxΩ v)] . Using a maximizing sequence we obtain

γ∗(h) = (h, q∗(h))L2(Ω)
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where q∗(h) is the unique element of minimum L2(Ω)-norm of the closed

convex set ∂γ∗(h). It is easy to check that ∂γ∗ is continuous from

(L2(Ω))weak to L2(Ω).

Let P be the projection of H−1(Ω) onto the compact convex subset K.

Then

‖v − Pv‖H−1(Ω) = inf{‖v − u‖H−1(Ω) : ∀u ∈ K
}

and Pv is uniquely defined. Moreover P is a non expansive mapping. Let

w be in L2(Q) and set

Pw = P (

∫ T

0
w(ξ, t)dt).(3.3)

The main result of the section is the following theorem.

Theorem 3.1. Suppose all the hypotheses of Theorem 2.1 are satis-

fied. Then there exists a weak transpose solution ỹk of the initial boundary

problem

ỹ′′k − ∆ỹk + ψk((ũk + Pp∗(ỹk, ỹ
′
k))

+, q∗(ỹk)) = f,{
ỹk, ỹ

′
k

}
|t=0= α , ỹk = 0 on ∂Ω × (0, T )(3.4)

with

ũ′k − ∆ũk + gFk((ũk + Pp∗(ỹk, ỹ
′
k))

+, q∗(ỹk)) = 1,

ũk( ., 0) = 0 in Ω , ũk = 0 on {∂Ω ∪ ∂Ωq∗(ỹk)} × (0, T ).(3.5)

Moreover

‖ỹk‖C(0,T ;L2(Ω)) + ‖ỹ′k‖C(0,T ;H−1(Ω))

+ ‖ψk((ũk + Pp∗(ỹk, ỹ
′
k))

+, q∗(ỹk))‖L1(Ω) ≤ M

with M as in Section 2.

Let

B =
{
x : ‖x‖C(0,T ;L2(Ω)) + ‖x′‖C(0,T ;H−1(Ω)) ≤ M

}
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with M as in Step 1 of Section 2. Consider the initial boundary problem

ûk − ∆ûk + gFk((ûk + Pp∗(x))+, q∗(x)) = 1 in Q,

ûk = 0 on {∂Ω ∪ ∂Ωq∗(x)} × (0, T ), ûk( ., 0) = 0 in Ω(3.6)

where for simplicity of notations we write p(x) for p(x, x′). From Lemma

2.1 we know that there exists a unique solution of (3.6) and that

‖ûk + Pp∗(x)‖L2(),T ;H1
0 (Ω)) + ‖(ûk + Pp∗(x))′‖L1(0,T ;(H1

0 (Ω)∩H2(Ω))∗)

+ ‖gFk((ûk + Pp∗(x))+, q∗(x))‖L1(Q) ≤ M.

Consider the initial boundary problem

ŷ′′k − ∆ŷk + ψk((ûk + Pp∗(x))+, q∗(x)) = f in Q,

ŷk = 0 on ∂Ω × (0, T ),
{
ŷk, ŷ

′
k

}
|t=0

= α.(3.7)

From Theorem 2.1 we know that there exists a unique weak transpose

solution of (3.7) and that ŷk ∈ B. Let

A(x) = ŷk.(3.8)

The nonlinear mapping A of B, considered as a compact convex subset

of L2(0, T ;H−1(Ω)) into L2(0, T ;H−1(Ω)) is well defined. To prove the

theorem it suffices to show that A has a fixed point.

Lemma 3.1. Let xn ∈ B and suppose that xn → x in L2(0, T ;

H−1(Ω)), then

{
p∗(xn), q∗(xn)

}
→

{
p∗(x), q∗(x)

}
in L2(Q) ×R.

Proof. 1) Since xn ∈ B and since p∗(xn) is uniformly bounded in

L2(Q)-norm, we get by taking subsequences

{
xn, x

′
n, p∗(xn)

}
→

{
x, x′, p̃

}
in

{C(0, T ;H−1(Ω)) ∩ (L∞(0, T ;L2(Ω))))weak∗} × (L2(0, T ;H−1(Ω)))weak

× (L2(Q))weak
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with x ∈ B. From the definition of subdifferentials we have

Vk(Sα0, Sx
′
n, 0) − Vk(Sxn, Sx

′
n, 0) ≥

∫ T

0
(p∗(xn), Sα0 − Sxn)dt.

Since

| Vk(Sα0, Sx
′
n, 0) − Vk(Sα0, Sx

′, 0) |≤ C‖Sx′n − Sx′‖L2(0,T ;L2(Ω))

we deduce that

Vk(Sα0, Sx
′, 0) − Vk(Sx, Sx

′, 0) ≥
∫ T

0
(p̃, Sα0 − Sx)dt ∀α0 ∈ L2(Ω)

and hence p̃ ∈ ∂SxVk(Sx, Sx
′, 0).

2) We now show that p̃ = p∗(x, x′), i.e. is the unique element of mini-

mum L2(Q)-norm of ∂SxVk(Sx, Sx
′, 0). Let

Bε =
{
xε : ‖xε − x‖C(0,T ;L2(Ω)) + ‖x′ε − x′‖C(0,T ;H−1(Ω)) ≤ ε

}
Then ⋂

ε

∂SxεVk(Sxε, Sx
′
ε, 0) ⊂ ∂SxVk(Sx, Sx

′, 0)

as xn ∈ Bε(x) for all n ≥ n0. Thus we have

‖p(xn‖L2(Q) ≤ ‖p(x)‖L2(Q) ∀p(x) ∈ ∂SxVk(Sx, Sx
′, 0).

Therefore

‖p̃‖L2(Q) ≤ ‖p(x)‖L2(Q) ∀p(x) ∈ ∂SxVk(Sx, Sx
′, 0)

and thus, p∗(x) = p̃. Similarly for q∗.

Lemma 3.2. Suppose all the hypotheses of Lemma 3.1 are satisfied.

Then

Ωq∗(x) =
⋂
n

Ωq∗(xn)

with

Ωq∗(xn) =
{
ξ : ξ ∈ Ω, Pp∗(xn) < q∗(xn)

}
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Proof. 1) Since P is a non expansive mapping of L2(0, T ;H−1(Ω))

into H−1(Ω) we get

‖Pp∗(xn) − Pp∗(x)‖H−1(Ω) ≤ ‖p∗(xn) − p∗(x)‖L2(0,T ;H−1(Ω)).

Since Pp∗(xn) ∈ K it follows from Lemma 3.1 that

Pp∗(xn) → Pp∗(x) in H1
0 (Ω) ∩H2−ε(Ω) ∩ Cλ(Ω).

2) We have

Ω{Pp∗(x)<q∗(x)−2ε} ⊂ Ω{Pp∗(xn)<q∗(x+n)} ⊂ Ω{Pp∗(x)<q∗(x)+2ε}

The Ω{Pp∗(x)<q∗(x)} are decreasing and we obtain

Ωq∗(x) =
⋃
ε

Ω{Pp∗(x)<q∗(x)−2ε} ⊂
⋂
n

Ωq∗(xn) ⊂
⋂
ε

Ω{Pp∗(x)<q∗(x)+2ε}

= Ωq∗(x).

Lemma 3.3. The mapping A of B, considered as a subset of L2(0, T ;

H−1(Ω)) into L2(0, T ;H−1(Ω)) is continuous.

Proof. Let xn ∈ B, yn = Axn with A be as in (3.8).

1) Let un be the solution of (3.6) given by Lemma 2.1, then we have

uk → u in (L2(0, T ;H1
0 (Ω))weak ∩ (L∞(0, T ;L2(Ω)))weak∗

and for fixed k
{
un, u

′
n

}
→

{
u, u′

}
inC(0, T ;L2(Ω)) × (L2(0, T ;H−1(Ω)))weak.

Since Fk(s) has mass at q∗(x) we have

Fk((un + Pp∗(xn))+, q∗(xn))

= Fk((un + Pp∗(xn))+ + q∗(x) − q∗(xn), q∗(x)).

For fixed k, Fk is Lipschitz continuous and thus

Fk((un + Pp∗(xn))+, q∗(xn))

→ Fk((u + Pp∗(x))+, q∗(x)) in L2(Q) ∩ (L∞(Q))weak∗ .
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Hence

ψk((un + Pp∗(xn))+, q∗(xn)) → ψk((u + Pp∗(x))+, q∗(x)) in L2(Ω).

2) Since Ωq∗(x) =
⋂

Ωq∗(xn) we get

lim

∫
Ωqn/Ωq∗

(unDjϕ− ϕDjun)dx = 0 = lim

∫
∂Ωq∗

unνjϕdσ

=

∫
∂Ωq∗

uνjϕdσ ∀ϕ ∈ H1
0 (Ω).

Take ϕ = νjΦ/
∑3

k=1 ν
2
k with Φ ∈ H1

0 (Ω) ∩H2(Ω), then
∫
∂Ωq∗

uΦdσ = 0 ∀Φ ∈ H1
0 (Ω) ∩H2(Ω).

We deduce that u = 0 on ∂Ωq∗ and u is the solution of (3.6).

3) Let yn be the solution of (3.7). From the estimate of Theorem 2.1

we obtain subsequences such that

{
yn, y

′
n

}
→

{
y, y′

}
in

{L∞(0, T ;L2(Ω)))weak∗ ∩ C(0, T ;H−1(Ω))} × (L∞(0, T ;H−1(Ω)))weak∗ .

It is trivial to check that y is the unique transpose solution of (3.7) and

hence Ax = y �

Proof of Theorem 3.1. Since A satisfies all the hypotheses of the

Schauder fixed point theorem there exists ŷk such that Aŷk = ŷk �

4. Feedback Laws

We shall now give the feedback laws for (2.8).

Theorem 4.1. Suppose all the hypotheses of Theorem 2.1 are satisfied

and let Vk(α, 0) be as in Theorem 2.2. Then

Vk(α, 0) =

∫ T

0

∫
Ω̃
| ŷk − χ | dξdt
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where ŷk is a solution of (3.4) given by Theorem 3.1.

Proof. Let ŷk be a solution of the nonlinear problem (3.4) given by

Theorem 3.1.Let v ∈ K and consider the initial boundary problem

y′′k − ∆yk + ψk((uk + v)+, a) = f in Ω × (t, T ),(4.1)

yk = 0 on ∂Ω × (t, T ) ,
{
yk, y

′
k

}
|s=t=

{
ŷk( ., t), ŷ

′
k( ., t)

}
with

u′k − ∆uk + gFk((uk + v)+, a) = 1 in Ω × (t, T ),

uk = 0 on {∂Ω ∪ ∂Ωa} × (t, T ) , uk( ., t) = 0 in Ω(4.2)

where a ∈ [a0, inf [ v ∈ K(maxΩ v)].

Since
{
ŷk, ŷ

′
k

}
is in C(0, T ;L2(Ω)) × C(0, T ;H−1(Ω)) there exists a

unique solution
{
yk, uk

}
of (4.1)-(4.2). From Theorem 2.2 we get

Vk(ŷk, ŷ
′
k, t) = J(v∗, {ŷk, ŷ′k}, a∗, t) =

∫ T

t

∫
Ω̃
| y∗ − χ | dξds

with
{
y∗, u∗, v∗, a∗

}
being the solution of (4.1)-(4.2). The dynamic pro-

gramming principle gives

Vk(ŷk, ŷ
′
k, t) = inf

{
Vk(yk, y

′
k, t + h) +

∫ t+h

t

∫
Ω̃
| y − χ | dξds

= ∀{y, u} solution of (4.1) − (4.2), ∀v ∈ K,

∀a ∈ [a0, inf
v∈K

(max
Ω

v)]
}

Thus,

Vk(ŷk, ŷ
′
k, t) = J(v∗, {ŷk, ŷ′k} |s=t, t)

≤ J( v∗, {ŷk, ŷ′k} |s=t, a∗, t + h)

+

∫ t+h

t

∫
Ω̃
| y∗ − χ | dξds

From the definition of the cost function we deduce that
∫ T

t+h

∫
Ω̃
| y∗ − χ | dξds ≤ Vk(y∗( ., t + h), y′∗( ., t + h), t + h)
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and hence

Vk(y∗( ., t + h), y′∗( ., t + h), t + h) =

∫ T

t+h

∫
Ω̃
| y∗ − χ | dξds.

We have

Vk(y∗( ., t), y
′
∗( ., t), t) = Vk(ŷk( , t), ŷ

′
k( ., t), t)

as
{
ŷk, ŷ

′
k

}
|s=t=

{
y∗, y

′
∗
}
|s=t in Ω.

Therefore

Vk(y∗( ., t + h), y′∗( ., t + h), t + h) − Vk(y∗( ., t), y
′
∗( ., t), t)

= −
∫ t+h

t

∫
Ω̃
| y∗ − χ | dξds.

It follows that

d

ds

{
Vk(y∗( ., s), y

′
∗( ., s), s)

}
= −

∫
Ω̃
| y∗( ., t) − χ | dξ

= −
∫

Ω̃
| ŷk( ., t) − χ | dξ.

An integration yields

Vk(y∗( ., 0), y′∗( ., 0), 0) = Vk(α, 0) =

∫ T

0

∫
Ω̃
| ŷk − χ | dξdt

and the theorem is proved �

5. Main Results

In this section we shall prove the existence of the input control µ and

its support. First we have

Theorem 5.1. Suppose all the hypotheses of Theorem 2.1 are satisfied

and let v ∈ K, then there exists a solution

{
y, y′, µ

}
∈ C(0, T ;L2(Ω)) × C(0, T ;H−1(Ω)) ×Mb(Ω)
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of the initial boundary problem

y′′ − ∆y + µ = f in Q , y = 0 on ∂Ω × (0, T ),{
y, y′

}
|s=0= α , < µ, ϕ > =

∫
∂Ωa

gϕdσ ∀ϕ ∈ C0(Ω)(5.1)

with ∂Ωa =
{
ξ : ξ ∈ Ω, v(ξ) = a

}
. Furthermore

‖y‖C(0,T ;L2(Ω)) + ‖y′‖C(0,T ;H−1(Ω)) + ‖µ‖Mb(Ω) ≤ C

where C is a constant independent of v, a.

Remark. The key assertion of the theorem is that the estimate is

independent of both v and a. It is crucial as we wish to consider µ as an

input control.

The main result of the paper is the following theorem.

Theorem 5.2. Suppose all the hypotheses of Theorem 2.1 are satisfied

and let Vk(α, 0) be as in Theorem 4.1

Vk(α, 0) = J(ŷk,Ppk∗, α, qk∗ ).

Then
{
ŷk, ŷ

′
k, p

k
∗, q

k
∗
}
→

{
ŷ, ŷ′, p̂, q̂

}
in

{C(0, T ;H−1(Ω)) ∩ (L∞(0, T ;L2(Ω)))weak∗} × (L∞(0, T ;H−1(Ω)))weak

× (L2(Q))weak × L∞(R)

with q̂ ∈ [a0, infv∈K(maxΩ v)]. Moreover
{
ŷ, ŷ′, µ̂

}
is a solution of the

initial boundary problem

ŷ′′ − ∆ŷ + µ̂ = f in Q , ŷ = 0 on ∂Ω × (0, T ),{
ŷ, ŷ′

}
|t=0= α , < µ̂, ϕ > =

∫
∂Ωq̂

gϕdσ ∀ϕ ∈ C0(Ω)(5.2)

with ∂Ωq̂ =
{
ξ : ξ ∈ Ω, (P p̂))ξ) = q̂

}
. Furthermore

V (α, 0) = inf
{
Vk(α, 0) : ∀k ≥ k0

}
=

∫ T

0

∫
Ω̃
| ŷ − χ | dξdt.
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Thus the unknown surface is ∂Ωq̂.

Proof of Theorem 5.1. 1) Let
{
yk, uk

}
be as in Theorem 2.1.

From the estimates of the theorem we obtain by taking subsequences

{
yk, y

′
k, ψk((uk + v)+, a)

}
→

{
y, y′, µ

}
in

{C(0, T ;H−1(Ω)) ∩ (L∞(0, T ;L2(Ω)))weak∗}
× (L∞(0, T ;H−1(Ω)))weak∗ ×D′(Ω)

with µ ∈ Mb(Ω). It is clear that

y′′ − ∆y + µ = f in Q, y = 0 on ∂Ω × (0, T ), {y, y′} |t=0= α.

2) We now show that supp(µ) = ∂Ωa.

• We prove that

supp(µ) ⊂
{
ξ : ξ ∈ Ω, Pv(ξ) < a

}
.

Let ϕ ∈ C0(Ω) with supp(ϕ) ⊂
{
ξ : ξ ∈ Ω,Pv(ξ) < a

}
. Since Pv ∈ K,

it belongs to Cλ(Ω) and vsup = maxΩ Pv exists. Let

η > {a− vsup}/2 > 0.

From Lemma 2.1 we get

uk + Pv → u + Pv in C(0, T ;L2(Ω)).

Thus we have for all t and almost all ξ

(u + Pv)(ξ, t) − η ≤ (uk + Pv)(ξ, t) ≤ (u + Pv)(ξ, t) + η.

Since u + Pv = u+ + Pv − u− , we get (u + Pv)+ = u+ + Pv and we

have

{
ξ : ξ ∈ supp(ϕ), 0 < u + Pv < a + k−1

}
⊂

{
ξ : ξ ∈ supp(ϕ), 0 < uk + Pv ≤ a + k−1 − {a− vsup}/2

}
⊂

{
ξ : ξ ∈ Ω, 0 < uk + Pv ≤ k−1 + {a + vsup}/2

}
⊂

{
ξ : ξ ∈ Ω, uk + Pv ≤ a− k−1

}
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with 0 < 4k−1 < a− vsup.

We have used the fact that −η < −{a+vsup}/2 in the above calculations.

By construction

Fk(s, a) = 0 for s < a− k−1

and hence

∫
Ω
ψk((uk + Pv)+, a)ϕdξ =

∫ T

0

∫
Ω
Fk((uk + Pv)+, a)ϕdξdt = 0

It follows that

< µ,ϕ >= 0 ∀ϕ ∈ C0(Ω), supp(ϕ) ⊂
{
ξ : ξ ∈ nΩ, Pv < a

}

and we get

supp(µ) ⊂
{
ξ : ξ ∈ Ω,Pv > a

}
.

• Let ϕ ∈ C0(Ω), supp(ϕ) ⊂
{
ξ : ξ ∈ Ω, Pv > a

}
. Set

vinf = min
{
Pv(ξ) : ξ ∈ supp(ϕ)

}
≥ a− ε.

We have for all t and almost all ξ

{
ξ : ξ ∈ supp(ϕ), u + Pv > vinf − k−1

}
⊂

{
ξ : ξ ∈ supp(ϕ), uk + Pv > (a + vinf )/2 − k−1

}
⊂

{
ξ : ξ ∈ Ω, uk + Pv > a + k−1

}

for 2k−1 < vinf − a. From the definition of Fk we obtain

∫
Ω
ψk((uk + Pv)+, a)ϕdξ =

∫
Ω

∫ T

0
gFk((uk + Pv)+, a)gϕdξdt = 0.

Therefore supp(µ) ⊂
{
ξ : ξ ∈ Ω,Pv < a

}
. Combining the two parts

and we obtain

supp(µ) ⊂
{
ξ : ξ ∈ Ω, Pv = a

}
.
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• Suppose that S =
{
ξ : ξ ∈ Ω,Pv = a

}
/supp(µ) is non-empty. Let ϕ

be in C0(Ω) with supp(ϕ) ⊂ S. Then

< µ,ϕ >= 0 = lim
k

∫ T

0

∫
Ω
gFk((uk + Pv)+, a)ϕdξdt

=

∫
{ξ: ξ∈Ω,u+Pv=a}

gϕdσ

and we have a contradiction. It is clear that

< µ,ϕ >=

∫
∂Ωa

gϕdσ ∀ϕ ∈ C0(Ω)

and the theorem is proved �

Proof of Theorem 5.2. 1) Let
{
ŷk, ŷ

′
k, p

k
∗, q

k
∗
}

be as in Theorem

4.1. From the estimates of the theorem we obtain a subsequence such that

{
ŷk, ŷ

′
k, p

k
∗, q

k
∗
}
→

{
ŷ, ŷ′, p∗, q∗

}
in

{C(0, T ;H−1(Ω)) ∩ (L∞(0, T ;L2(Ω)))weak∗} × (L∞(0, T ;H−1(Ω)))weak∗

×(L2(Q))weak × L∞(R).

Furthermore

ψk((uk + Ppk∗)
+, qk∗ ) → µ̂ in D′(Ω)

with µ̂ ∈ Mb(Ω) and q∗ ∈ [a0, infv∈K(maxΩ v)]. A proof as done in Theorem

5.1 shows that

ŷ′′ − ∆ŷ + µ̂ = f in Q , ŷ = 0 on ∂Ω × (0, T ),{
ŷ, ŷ′

}
|t=0= α , < µ̂, ϕ >=

∫
∂Ωq∗

gϕdσ(5.3)

for all ϕ ∈ C0(Ω) with ∂Ωq∗ =
{
ξ : ξ ∈ Ω, Pp∗ = q∗

}
.

2) From Theorem 4.1 we get

Vk(α) =

∫ T

0

∫
Ω̃
| ŷk − χ | dξdt
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and thus,

V (α) = inf
{
Vk(α) :, ∀k

}
≥

∫ T

0

∫
Ω̃
| ŷ − χ | dξdt.

On the other hand

Vk(α) ≤ J(yk, v,α, a) ∀v ∈ K, ∀a ∈ [a0, inf
v∈K

(max
Ω

v)]

where
{
yk, v, a

}
is the solution of (2.8) given by Theorem 2.1. From the

estimate of Theorem 2.1 and as in Theorem 5.1 we have

{
yk, y

′
k, ψk((uk + v)+, a)

}
→

{
y, y′, µ

}

in

{(L∞(0, T ;L2(Ω)))weak∗ ∩ C(0, T ;H−1(Ω))}
× (L∞(0, T ;H−1(Ω)))weak∗ ×D′(Ω)

and
{
y, µ

}
is a solution of (5.1). We have

V (α) ≤ Vk(α) ∀k
≤ J(y, v,α, a) ∀v ∈ K, ∀a ∈ [a0, inf

v∈K
(max

Ω
v)].

Hence

V (α) = inf
{
J(y, v,α, a) : {y, µ} solution of (5.1),

∀v ∈ K,∀a ∈ [a0, inf
v∈K

(max
Ω

v)]
}
.

It follows that

V (α) = J(ŷ,Pp∗,α, q∗)

= inf
{
J(y, v,α, a) : {y, µ} solution of (5.1) ∀v ∈ K,

∀a ∈ [a0, inf
v∈K

(max
Ω

v)]
}

and the theorem is proved �
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