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A Construction of Pure Solutions for Degenerate

Hyperbolic Operators

By Yasuo Chiba

Abstract. For weakly hyperbolic operators whose characteristic
roots degenerate only on the initial hypersurface, we construct solu-
tions whose singularities are only just one of the characteristic roots.

1. Introduction

We consider the following analytic ordinary differential equation on R

with a large parameter τ which has an m-th turning point at x = 0:

P (x, ∂x, τ)u(x, τ) =

 m∑
j=0

aj(x, τ)∂m−j
x

u(x, τ) = 0,(1.1)

where ∂x = d/dx, aj(x, τ) =
∑j

k=0 ajk(x)τk, a00(x) = 1 and each ajk(x)

(k = 0, 1, · · · , j; j = 1, · · · ,m) is analytic in a neighborhood of x = 0.

The principal symbol σ(P ) of this operator P is decomposed as

σ(P )(x, ξ, τ) =
m∏
j=1

(ξ −
√
−1xλαj(x)τ)(1.2)

at the origin. Here λ is a positive integer and each αj(x) (j = 1, 2, · · · ,m)

is analytic in a neighborhood of the origin x = 0.

For such an equation with a large parameter, exact WKB analysis is a

prevailing method ([AKKT] etc). However, we will construct solutions for

such an equation according to microlocal analysis, that is, regarding a large

parameter τ as an operator ∂t(= ∂/∂t), we consider the following partial

differential equation with two variables on Rx × Rt:

P (x, ∂x, ∂t)u(x, t) =

 m∑
j=0

aj(x, ∂t)∂
m−j
x

u(x, t) = 0.(1.3)
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We impose this equation on some hypotheses.

Assumption 1 (Hyperbolicity). Each αj(x) (j = 1, 2, · · · ,m) is a

purely imaginary-valued function on x and αj(0) are mutually distinct.

Assumption 2 (Levi condition). For k = 0, 1, · · · , j; j = 1, 2, · · · ,m,

∂s
xajk(0) = 0, 0 ≤ s < k(λ + 1) − j.(1.4)

For the equation (1.3), microlocal solutions of boundary value problems

on {x ≥ 0} are said to be microfunctional solutions on x > 0 whose Neu-

mann data ∂k
xu(+0, t) (k = 0, 1, · · · ,m − 1) become microfunctions. Our

aim is to construct microfunctional solutions for a boundary value problem

as follows: {
P (x, ∂x, ∂t)u(x, t) = 0, 0 < x < ε, |t| < ε,

SS(u) ∩ {x > 0} ⊂ Hj , (∗)
(1.5)

where Hj := {(x, ∗;
√
−1ξ,

√
−1τ); ξ −

√
−1xλαj(x)τ = 0}. After [Y], we

call u(x, t) satisfying the condition (∗) j-pure solutions. In other words, our

main goal is to construct j-pure solutions concretely and to get boundary

values ∂k
xu(+0, t) (k = 0, 1, · · · ,m− 1).

There are many researches about such hyperbolic equations, for exam-

ple, Alinhac [Al], Takasaki [T], Amano–Nakamura [AN], etc. Among them,

Amano–Nakamura [AN] is the closest to ours. They analyze the Stokes

phenomena of complex ordinary differential equations for Cauchy problems

around x = 0 and construct asymptotic solutions. In the case of order

m = 2, they succeed to make solutions by essentially using second order

ordinary differential equations with irregular singularities.

Yamane [Y] treats a concrete example of m = 3, λ = 1. Uchikoshi [U]

gives some solvable conditions for boundary value problems in the case that

the index λ varies with j and that the Levi condition is not assumed on the

operator P . His construction needs pseudodifferential operators, while the

solutions are not j-pure.

As for ours, in the case of general order m, not using the Stokes analysis

of complex differential equations, we construct solutions with a fractional
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coordinate transform and a quantized Legendre transform based on Kataoka

[Kt3].

Specifically speaking, our construction is as follows.

To begin with, u is represented by a natural hyperfunction ũ(x, t) with

supp(u) ⊂ {x ≥ 0}. We identify ũ(x, t) as a solution of the equation

xmPũ(x, t) = 0

in a neighborhood of x = 0.

Secondly, by a fractional coordinate transform

y =
xλ+1

λ + 1
,

ũ(x, t) corresponds to a solution v(y, t) of the equation

Q(y, ∂y, ∂t)v(y, t) = 0,

where Q is a partial differential operator whose coefficients have fractional

power singularities with respect to y and v(y, t) is a microfunction which is

represented by a hyperfunction with support in {y ≥ 0}.
Lastly, we modify the operator Q by the quantized Legendre transform

at {τ > 0} (τ is a dual of t):

β ◦ ∗ ◦ β−1 :

{
∂y �→ −

√
−1w∂t, ∂t �→ ∂t,

y �→ −
√
−1∂w(∂t)

−1, t �→ t + ∂ww(∂t)
−1.

(1.6)

Then β[v](w, t) becomes a microfunction with a holomorphic parameter w

which can be analytically extended to a domain {w ∈ CP1; Im w < 0}. On

the other hand, the operator Q is transformed to

(1.7) (β ◦Q ◦ β−1)(w, ∂w, ∂t)

=

m∑
j=0

j∑
k=0

{−
√
−1(λ + 1)∂w∂

−1
t }

j
λ+1ajk

(
{−

√
−1(λ + 1)∂w∂

−1
t }

1
λ+1

)
∂k
t

×
m−j−1∏
l=0

(−(λ + 1)∂ww − l) .
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Here we note that the operator β ◦Q ◦ β−1 has fractional powers of ∂w.

Such an operator is not defined locally for the sections of microfunctions

with holomorphic parameter w, but is defined as an integral operator con-

cerning w; here we take a path of integration with w = ∞ as the initial point.

More precisely, we consider only sections of microfunctions with holomor-

phic parameter w over open sets with connected fibers in CP1 up to w = ∞.

Moreover, an admissible microfunction β[v](w, t) for these operators should

have the following form at w = ∞:

β[v](w, t) = w−1V (w− 1
λ+1 , t),

where V (z, t) is a microfunction with respect to (z, t) which is holomorphic

at z = 0. Hence a fractional derivative ∂
1/(λ+1)
w naturally operates on a

global section of such a microfunction with a holomorphic parameter. For

instance, in a neighborhood of w = ∞ ∈ CP1, we have

∂
m

λ+1
w (w−1− l

λ+1 f(t)) = e
mπ

√
−1

λ+1
Γ (1 + (l + m)/(λ + 1))

Γ (1 + l/(λ + 1))
w−1− l+m

λ+1 f(t)

for λ = 1, 2, · · · , l,m = 0, 1, 2, · · · , where Γ (·) is a gamma function. Indeed

this formula reduces a usual one when m/(λ + 1) is a positive integer.

Furthermore, in Section 6 we will show that the Taylor coefficients

(∂n
z V (0, t))m−1

n=0 for β[v](w, t) give the boundary values (∂n
xu(+0, t))m−1

n=0 at

(1.5).

By the Taylor expansion of ajk(x) at x = 0, what we consider becomes

β ◦Q ◦ β−1 =
∞∑
s=0

∑
0≤j≤m

0≤k≤(s+j)/(λ+1)

a
(s)
jk (0)

s!
{−

√
−1(λ + 1)}

s+j
λ+1∂

s+j
λ+1
w ∂

k− s+j
λ+1

t

×
m−j−1∏
l=0

(−(λ + 1)∂ww − l) .

For the sake of brevity, setting

ãjk(x) =

∞∑
l=0

a
(l)
jk (0)

l!
{−

√
−1(λ + 1)}

l+j
λ+1xj+l−(λ+1)k
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=
∞∑
l′=0

ãl
′
jkx

l′

with ãl
′
jk = (−

√
−1(λ + 1))

(λ+1)k+l′
λ+1 a

(l′+(λ+1)k−j)
jk (0)/(l′ + (λ + 1)k − j)! and

Ej =

m−j−1∏
l=0

(−(λ + 1)∂ww − l) ,

we have

β ◦Q ◦ β−1 =
∑
l′≥0

0≤k≤j≤m

ãl
′
jk∂

l′
λ+1

+k
w ∂

− l′
λ+1

t Ej .

The dominant part of β ◦ Q ◦ β−1 becomes an m-th ordinary differential

operator with polynomial coefficients which does not include neither ∂t nor

fractional derivatives:

L =
∑

0≤j≤m
j/(λ+1)≤k≤j

a
(k(λ+1)−j)
jk (0)

{k(λ + 1) − j}!{−
√
−1(λ + 1)∂w}kEj

=
∑

0≤k≤j≤m

ã0
jk∂

k
wEj .

The coefficients of the maximal term of the operator L is equal to

(constant) ·
m∏
j=1

(w + αj(0)).

Therefore the operator β ◦Q ◦ β−1 has regular singularities at

w = −α1(0),−α2(0), · · · ,−αm(0),∞.

Assumption 3. The characteristic exponents of the operator L at each

w = −αj(0) (j = 1, 2, · · · ,m) are not integers.

Under the assumptions above, we have the following main theorems.
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Main Theorem 1. We can construct j-pure solutions for (1.5). Pre-

cisely, for any j = 1, · · · ,m and any microfunction u0(t) at a point
◦
p =

(0, 0;±
√
−1) ∈ Rx ×

√
−1T ∗Rt, we have a unique mild microfunction solu-

tion u(x, t) ∈
◦
�{x=0}|{x≥0} of a microlocal boundary value problem at

◦
p:

P (x, ∂x, ∂t)u(x, t) = 0, x > 0 (in the sense of
◦
�{x=0}|{x≥0}),

u(+0, t) = u0(t),

supp(ext(u)(x, t)) ∩ {x > 0}
⊂ {(x, t;

√
−1(ξ, τ)); ξ −

√
−1xλαj(x)τ = 0}.

(1.8)

Further, we have the equations

∂k
xu(+0, t) = Rjk(∂t)u0(t)

(j = 1, 2, · · · ,m; k = 0, 1, 2, · · · ,m− 1), where Rjk(∂t) is a microdiffer-

ential operator with fractional order at most k/(λ + 1).

Here
◦
�{x=0}|{x≥0} is a sheaf on {x = 0} ×

√
−1T ∗Rt of mild microfunc-

tions ([Kt1]) and ext :
◦
�{x=0}|{x≥0} � u(x, t) �→ u(x, t)Y (x) ∈ �Rx×Rt is the

canonical extension to x ≤ 0.

For an arbitrary solution u of the boundary value problem, we obtain

the following theorem as an application of Main Theorem 1.

Main Theorem 2. An arbitrary solution u(x, t) ∈
◦
�{x=0}|{x≥0} of the

boundary value problem at a point (0, 0;±
√
−1)

P (x, ∂x, ∂t)u(x, t) = 0, x > 0 (in the sense of
◦
�{x=0}|{x≥0})(1.9)

can be uniquely decomposed as a sum of j-pure solutions.

Example 1.1. In the case that

P = ∂2
x − x2∂2

t ,

the operator P is transformed to β ◦Q◦β−1 = (w2 +1)∂2
w +(7/2)w∂w +3/2,

which is the Gauß hypergeometric operator. Furthermore, the operator

P = ∂3
x − x2∂2

t ∂x + 2(a− b)∂t∂x + {2(a + b) − 3}x∂2
t
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becomes the Jordan–Pochhammer operator

β ◦Q ◦ β−1 = (w3 + w)∂3
w +

{
15

2
w2 −

√
−1(a− b)w + a + b +

3

2

}
∂2
w

+ {12w − 2
√
−1(a− b)}∂w + 3

(a and b satisfy suitable conditions). See more details in [Y].

2. Preliminaries

In this section, we construct a subsheaf ��∞
+ of a sheaf �� of micro-

functions with holomorphic parameters. Furthermore, we define fractional

derivatives and microdifferential operators with fractional filtration in ad-

vance.

2.1. Microfunctions

Let Rx × Rt ⊂ Rx × Cr ⊂ Cz × Cr with coordinates z = x +
√
−1x̃ ∈ C

and r = t +
√
−1 t̃ ∈ C.

To start with, we define a sheaf of hyperfunctions with holomorphic

parameters and of microfunctions with holomorphic parameters respectively

by

�x�r := �1
Rx×Cr

(�Cz×Cr) ⊗ or,

�x�r := µRx×Cr(�Cz×Cr)[1] ⊗ or,

where � is a sheaf of holomorphic functions, µRx×Cr(·) is a microlocalization

functor and or is an orientation sheaf defined in Kashiwara–Schapira [KS].

We often denote �� and �� instead of �x�r and �x�r respectively.

Analytically speaking, the sheaf �� is represented as follows:

�x�r = {f(t, t̃, x) ∈ �Rx×Rt×Rt̃
; ∂rf = 0},

where � is a sheaf of microfunctions.

We can show the isomorphism of the sheaf of microfunctions under the

quantized Legendre transform. This fact leads to the legitimacy of the

transform of the operator considered in Section 1. The following proposition

is valid ([SKK], [Kt1]).
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Proposition 2.1. Let W ε be a set {(y, t;
√
−1η,

√
−1τ) ∈√

−1T ∗(Ry × Rt); ετ > 0} for ε = ±1. We get the following isomorphism

as to the sheaf of microfunctions:

βε : �Ry×Rt |W ε
∼−→ (bε)−1�Rw×Rs |W ε ,

where bε is a contact transform associated with βε. Then the induced iso-

morphism of pseudodifferential operators are given as the following quantized

contact transform:{
βε ◦ ∂y ◦ (βε)−1 = −

√
−1εw∂s, βε ◦ y ◦ (βε)−1 = −

√
−1ε∂w(∂s)

−1,

βε ◦ ∂t ◦ (βε)−1 = ∂s, βε ◦ t ◦ (βε)−1 = s + ∂ww(∂s)
−1.

Remark 2.2. In this paper, we only treat ε = +1. We therefore ab-

breviate β+1 to β. Furthermore, since terms with respect to s do not appear

in our equation, we regard s = t.

For the reduced microdifferential equation in Section 1, we shall con-

struct solutions which are microfunctions with holomorphic parameters.

Because of Proposition 2.1, it is possible to make such solutions. Precisely

explaining, we show it as follows.

Set spaces

V = CP1
w × Rt ⊂ � = CP1

w × Cr

and a projection α as

Ṽ = T ∗
V � = CP1

w ×
√
−1T ∗Rt � (w, t;

√
−1τ)

α�→ (t;
√
−1τ) ∈

√
−1T ∗Rt,

where CP1 = C ∪ {∞} is the Riemann sphere. Then the sheaf ��V of

microfunctions with a holomorphic parameter w is a sheaf on Ṽ of relative

microfunctions:

��V = �V |�(= µV (��)[1] ⊗ or).

Hence a function βε[v](w, t) is regarded as a section in Γ (α−1(W ′)∩{Imw <

0}; ��V ) with a small neighborhood W ′ of (0;
√
−1

◦
τ) in

√
−1T ∗Rt.
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However there is an essential difficulty in treating sections of ��V . A

section g(w, t) ∈ Γ (α−1(W ′) ∩ {Imw < 0}; ��V ) does not always have a

boundary value

g(u−
√
−10, t) ∈ Γ (α−1(W ′) ∩ {Imw = 0}; q−1�S1

w×Rt
),

where S1
w = CP1

w ∩ {Imw = 0} and

q : Ṽ ∩ {Imw = 0} � (u, t;
√
−1τ)

↪→ (u, t; 0,
√
−1τ) ∈

√
−1T ∗(S1 × Rt).

We therefore give a definition with respect to microfunctions with parame-

ters so as to make them have boundary values.

Definition 2.3. A section

g(w, t)

∈ Γ
(
{(w, t;

√
−1τ); Imw < 0, |w − ◦

u| + |t−
◦
t| + |τ − ◦

τ | < δ}; ��V

)
is said to have a boundary value at (

◦
u,

◦
t;
√
−1

◦
τ) if and only if there exists a

section

G(w, t) ∈ Γ
(
{(w, t); Imw < 0, |w − ◦

u| + |t−
◦
t| < δ′}; ��V

)
with a smaller δ′ > 0 than δ such that we have [G(w, t)] = g(w, t) in a

domain

{(w, t;
√
−1τ); Imw < 0, |w − ◦

u| + |t−
◦
t| + |τ − ◦

τ | < δ′}.

Further, it is well-known that such a boundary value g(u−
√
−10, t) defined

by [G(u−
√
−10, t)] is uniquely determined only by a section g(w, t).

Thus a section β[v](w, t) =: g(w, t) is regarded as a section of

Γ (α−1(W ′)∩{Imw < 0}; ��V ) with a boundary value on S1
w×{(

◦
t;
√
−1

◦
τ)}.

Moreover, we define a sheaf ��∞
+ of microfunctions with holomorphic

parameters with boundary values, which plays an important role in the

following sections.
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Set the following spaces as follows;

V = CP1 × Rt = {(w, t) ∈ (C ∪ {∞}) × R},
V+ = CP1

+ × Rt = {(w, t) ∈ V ; Re w ≥ 0 or w = ∞},

Ṽ = CP1 ×
√
−1

·
T ∗Rt

= {(w, t;
√
−1τ) ∈ (C ∪ {∞}) × R × (

√
−1R\{0})},

Ṽ+ = CP1
+ ×

√
−1

·
T ∗Rt = {(w, t;

√
−1τ) ∈ Ṽ ; Re w ≥ 0 or w = ∞}.

Furthermore, we set the morphisms as follows:

Ṽ+
� � ��

π

��

Ṽ

π

��
V+

� � �� V

Int(Ṽ+)
� � λ ��

π

��

Ṽ+

π

��
Int(V+) � �

λ
�� V+,

where Int(Ṽ+) = Ṽ+ ∩ {Rew > 0, w �= ∞} and Int(V+) = V+ ∩ {Rew >

0, w �= ∞}.
Then a sheaf ��∞

+ on Ṽ+ is defined by

��∞
+ := Im

(
π−1λ∗(��|Int(V+)) → λ∗(��|

Int(Ṽ+)
)
)
,(2.1)

where Im(∗) stands for the image. A sheaf ��∞
+ coincides with a sheaf ��

on Int(Ṽ+), but we have ��∞
+ � λ∗(��|

Int(Ṽ+)
) on ∂Ṽ+. As a matter of fact,

the sections of ��∞
+ have boundary values.

In conclusion, we emphasize that a section of �� doesn’t have a bound-

ary value in the defined domain but have it in a smaller domain. We however

consider our equation with respect to β[v](w, t), where v(w, t) is a section

of ��V (details are due to Kataoka [Kt3]).

2.2. Definition of fractional derivatives

Fractional derivation calculus is studied by many mathematicians used

by the Riemann–Liouville integral (referred to Oldham–Spanier [OS],

Samko–Kilbas–Marichev [SKM]). We later extend formal norms, which are

introduced by Boutet de Monvel and Krée [BK], to the case of fractional

derivation.
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We define a derivation of fractional order α = p/q (p, q ∈ N, 0 < α < 1)

as the Riemann–Liouville integral for a function f(w) which is holomorphic

in {w ∈ C; Rew > c} for some c ∈ R with a finite limit limRew→+∞ f(w).

Concretely, we define(
d

dw

)α

f(w) :=
Γ (1 + α)

2π
√
−1

∫
γ

f(s)

(s− w)1+α
ds,(2.2)

where Γ (·) is a gamma function. Here the path γ is a proper integral contour

as

s(t) − w =


√
−1δ − t + π/2 (−∞ < t < π/2),

δe
√
−1t (π/2 ≤ t ≤ 3π/2),

−
√
−1δ + t− 3π/2 (3π/2 < t < +∞).

Here we take 0 < arg(s(t)−w) < 2π. Furthermore, by changing the integral

variable s to s̃ = s − w, it is easy to see that (d/dw)αf(w) is holomorphic

in {w ∈ C; Rew > c} with a finite limit limRew→+∞(d/dw)αf(w). We often

use the notation ∂α
w instead of (d/dw)α.

Proposition 2.4. Let 0 < α, β < 1, 0 < α + β < 1 and f(w) be

holomorphic in {w ∈ C; Rew > c} with a finite limit limRew→+∞ f(w).

Then the relation

∂α
w∂

β
wf(w) = ∂α+β

w f(w)(2.3)

is valid.

Proof. The formula (2.3) directly follows from the Fubini theorem

and the formula∫
γ

dτ

(τ − w)α+1(s− τ)β+1
=

2π
√
−1Γ (α + β + 2)

Γ (α + 1)Γ (β + 1)

1

(s− w)α+β+1
. �

3. Construction of Solutions by Iteration Scheme

In this section, we give how to construct solutions for the equation

(β ◦Q ◦ β−1)β[v] = 0. To begin with, we decompose β ◦Q ◦ β−1 as L+R ◦
mod �R

Rw×Rt
· ∂w, where L is an ordinary differential operator of the domi-

nant part of β◦Q◦β−1, which is got rid of fractional derivatives as in Section

1. We introduce a scheme for formal symbol solutions of microdifferential

operators.
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3.1. Iteration scheme

We shall construct a formal symbol type solution U(w, ∂t)f(t) for an

arbitrary microfunction f(t), where U(w, ∂t) is a pseudodifferential operator

with the following formal symbol:

U(w, τ) =
∞∑
j=0

Uj(w)τ−
j

λ+1 .(3.1)

Here the formal symbol U(w, τ) can be expressed as

U(w, τ) =
∞∑
j=0

ujw
−1− j

λ+1 τ−
j

λ+1

at w = ∞. We note that this U(w, τ) can be regarded as a WKB solution

with respect to a small parameter τ−1. Furthermore, we emphasize that

U(w, ∂t)f(t) becomes a section of ��∞
+ .

The equation we consider therefore reduces as follows:

(β ◦Q ◦ β−1)U(w, ∂t) =
∑
l′≥0

0≤k′≤k≤m

ãl
′
kk′∂

l′
λ+1

+k′

w ∂
− l′

λ+1

t EkU(w, ∂t) = 0.(3.2)

Here we recall that the dominant part of β ◦Q ◦ β−1 becomes an ordinary

differential operator of m-th order with polynomial coefficients which does

not include neither ∂t nor fractional derivatives:

L =
∑

0≤k′≤k≤m

ã0
kk′∂

k′
wEk.(3.3)

The coefficient of the maximal term of the operator L is

(constant) ·
m∏
j=1

(w + αj(0)).

Hence we know that the j-th component of the formal sum LU is

(LU)j = LUj =
∑

0≤k′≤k≤m

ã0
kk′∂

k′
w (EkUj).(3.4)
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We evaluate the rest of the equation defined above. Set

R(w, ∂w, ∂t) = (β ◦Q ◦ β−1)(w, ∂w, ∂t) − L(w, ∂w)(3.5)

=
∑
l′≥1

0≤k′≤k≤m

ãl
′
kk′∂

k′+ l′
λ+1

w ∂
− l′

λ+1

t Ek

with |ãl′kk′ | ∼ C l′+1 (C is a constant).

Then the j-th term (R ◦ U)j of R ◦ U becomes

(R ◦ U)j =
∑

0≤k′≤k≤m
j=j′+l′, l′≥1

ãl
′
kk′∂

k′+ l′
λ+1

w (EkUj′) mod �R
Rw×Rt

· ∂w.(3.6)

It is important that this R◦U becomes a formal symbol of order ≤ −1/(λ+

1).

We shall give an iteration scheme of successive approximation process

for the formal symbol U =
∑∞

j=0 Uj(w)τ−
j

λ+1 as follows:{
LU0 = 0,

LUk+1 = −R ◦ Uk mod �R
Rw×Rt

· ∂w (k = 0, 1, 2, · · · ).
(3.7)

This process is reduced to the equation

(L + R◦)U = 0 mod �R
Rw×Rt

· ∂w.(3.8)

4. Global Estimates as to Ordinary Differential Equations

As is seen in Section 3, fractional derivatives appear in our solution-

scheme. Fractional derivatives are globally determined by the path including

w = ∞ ∈ CP1. For the aim of arguing convergence of the scheme, we need

global estimates as to the differential equations in the scheme.

4.1. Construction of holomorphic solutions

We fix a path γ in the definition of fractional derivatives which passes

through ∞ enclosing s = w on CP1 once in the positive sense as avoiding

the singularities of the microdifferential equation (3.2).
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Before estimating solutions globally for the equation, we give a concrete

construction of the solutions of LU = F by using the homogeneous equation

LU = 0.

We recall that −αj(0) (j = 1, 2, · · · ,m) and a point at infinity ∞ are

singularities of the ordinary differential operator L. Furthermore, a solution

u of Lu = 0 is supposed to form O(|w|−1).

Definition 4.1. We define αj-pure solutions of a homogeneous equa-

tion Lu = 0 by the solutions satisfying that u can be holomorphically ex-

tended to each −αl(0) (l �= j) (u generally bifurcates at −αj(0)).

Theorem 4.2. There exists a basis {u1, u2, · · · , um} of a homogeneous

equation Lu = 0 such that each uj (j = 1, 2, · · · ,m) is an αj-pure solution.

Proof. Take fundamental solutions v1, v2, · · · , vm of the equation

Lu = 0. At each −αj(0), the solution space {u;Lu = 0} is spanned by

m − 1 regular solutions and 1 non-regular solution by the local theory of

Fuchsian equations because the characteristic exponent is not an integer at

−αj(0). Hence we have some constants (βj
1, · · · , β

j
m) ∈ Cm\{0} such that

c1v1+c2v2+· · · cmvm is holomorphic at w = −αj(0) ⇐⇒ βj
1c1+· · ·+βj

mcm =

0. Therefore we can find a non-zero αj-pure solution uj = cj1v1 + · · ·+ cjmvm
with coefficients (cj1, · · · , c

j
m) �= 0 satisfying the equations βk

1 c
j
1+ · · ·βk

mcjm =

0 (for any k �= j).

Take the αj-pure solutions u1, u2, · · · , um. A remaining problem is linear

independence. If a relation λ1u1 + λ2u2 + · · · + λmum = 0 holds, λ1u1 =

−λ2u2−· · ·−λmum becomes holomorphic at singular points −α1(0),−α2(0),

· · · ,−αm(0). On the other hand, at w = ∞, any solution of Lu = 0

has a growth order O(|w|−1) (see the beginning of Section 4.2). Hence we

have λ1 = 0 by Liouville’s theorem. In the same way, we conclude that

λ2 = · · · = λm = 0. �

Theorem 4.3. For the ordinary differential equation L(w,Dw)U(w) =

F (w), if F (w) is holomorphic at regular singular points w = −α2(0),

−α3(0), · · · ,−αm(0), then there exists a solution U(w), which is also holo-

morphic at w = −α2(0),−α3(0), · · · ,−αm(0).

Proof. By Theorem 4.2, we have a basis {ω1, · · · , ωm} of X = {u;

Lu = 0} such that each ωj is an αj-pure solution. Since the characteristic
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exponent at −αj(0) for L is not integer, by the local theory of Fuchsian

equations, we can find a holomorphic solution U j at w = −αj(0) to LU j = F

for any j �= 1. Therefore we have

U i − U j ∈ X, i, j = 2, · · · ,m.

Hence there exist some coefficients cijl (i, j = 2, · · · ,m; l = 1, · · · ,m) such

that

U i − U j =

m∑
l=1

cijl ωl, i, j = 2, · · · ,m.

Note that ciil = 0, cijl + cjkl + ckil = 0 for i, j, k = 2, · · · ,m and l =

1, · · · ,m. We set 
bi1 =

1

m− 1

m∑
q=2

ciq1 ,

bil =
1

m− 1

m∑
q=2

(ciql − clql ) (l �= 1).

Therefore we have bii = 0 and

bil − bjl =
1

m− 1

 m∑
q=2

ciql −
m∑
q=2

cjql

 = cijl .

Since bii = 0 (i = 2, · · · ,m), U := U i −
∑m

l=1 b
i
lωl does not depend on

i. Hence U is a holomorphic solution of LU = F at every w = −αi(0)

(i = 2, · · · ,m). �

4.2. Global estimates

We will prove Main Theorem 1 by constructing a 1-pure solution. Then,

without loss of generality, we may assume α1(x) ≡ 0, namely amm(x) ≡
0, after a suitable coordinate change x̃ = x, t̃ = t + h(x) with h(x) =∫ x
0

√
−1sλα1(s) ds (note that α1(x) is a purely imaginary-valued function).

Indeed we have

∂x̃ = ∂x − h′(x)∂t, ∂t̃ = ∂t.

Hence L has the following form:

L = �(w)

(
w∂m +

m∑
k=1

γk∂
m−k
w

)
,
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where �(w) is a non-zero holomorphic function and γk(w) is holomorphic at

w = 0 for every k = 1, · · · ,m
A fractional derivative is a non-local operator defined by an integral with

a path including a point at a infinity. We therefore need to evaluate the

solutions of ordinary differential equation in our scheme globally. To start

with, we introduce our solution space.

For a sufficiently small δ0, ε > 0, we set

Dj := {w ∈ C; |w + αj(0)| ≤ δ0} (j = 2, 3, · · · ,m),(4.1)

Ω1 := {w ∈ C;w �= 0, | argw| ≤ π − ε}.(4.2)

In view of circumstances at a point at infinity, we transform the microd-

ifferential operator β ◦Q ◦ β−1 by w = z−(λ+1).

Since

z−(λ+1) ·
m−j−1∏
l=0

(−(λ + 1)∂ww − l) · zλ+1 =

m−j−1∏
l=0

(−(λ + 1)w∂w − l)

=

m−j−1∏
l=0

(z∂z − l) = zm−j∂m−j
z ,

we have

z−(λ+1) ◦ (β ◦Q ◦ β−1) ◦ zλ+1

=
∞∑
s=0

m∑
j=0

j∑
k=0

a
(s)
jk (0)

s!
z−(λ+1){−

√
−1(λ + 1)∂w∂

−1
t }

s+j
λ+1 zλ+1∂k

t · zm−j∂m−j
z

=

∞∑
s=0

m∑
j=0

j∑
k=0

a
(s)
jk (0)

s!
{−

√
−1(λ + 1)}

s+j
λ+1 z−(λ+1)∂

s+j
λ+1
w zλ+1+m−j∂

k− s+j
λ+1

t ∂m−j
z .

We show that the term z−(λ+1)∂
(s+j)/(λ+1)
w (zλ+1+m−jv(z)) with a holo-

morphic function v(z) can be divided by zm at z = 0. In fact, by the

definition of fractional derivatives,

z−(λ+1)∂
s+j
λ+1
w (zλ+1+m−jv(z))

= w∂
s+j
λ+1
w (w−1−m−j

λ+1 v(w− 1
λ+1 ))
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=
Γ (1 + (s + j)/(λ + 1))

2π
√
−1

w

∫
γ1

τ−1−m−j
λ+1 v(τ−

1
λ+1 )

(τ − w)
s+j
λ+1

+1
dτ

=
Γ (1 + (s + j)/(λ + 1))

2π
√
−1

zm+s

∫
γ2

θ−1−m−j
λ+1

(θ − 1)
s+j
λ+1

+1
v((wθ)−

1
λ+1 )dθ

= −Γ (1 + (s + j)/(λ + 1))

2π
√
−1

zm+s

∫
γ3

p
m+s
λ+1

(1 − p)
s+j
λ+1

+1
v(zp

1
λ+1 )dp,

where we use transforms τ = wθ and p = θ−1 in this calculation and set

suitable integral paths γ1, γ2 and γ3. Since s ≥ 0, this proves the divisibility

by zm. Therefore the equation

(β ◦Q ◦ β−1)U(w, ∂t) = (L + R◦)U(w, ∂t) = 0

can be transformed to

zm(M + N◦)V (z, ∂t) = 0

with w = z−(λ+1) and V (z, ∂t) = wU(w, ∂w). Here M = z−(λ+1+m)Lz(λ+1)

is an m-th order non-characteristic operator at z = 0 with holomorphic

coefficients in z and N is a remaining integral operator as above which

preserves the analyticity at z = 0. In particular, any solution U(w) of

LU = 0 has the form

U(w) = w−1V (w− 1
λ+1 )

at w = ∞ with a holomorphic function V (z) at z = 0.

With these domains, we introduce a solution space

(4.3) X := {(F (w), G(z)) ∈ �w(Ω1) × �z(B(0; ε
1/(λ+1)
0 ));

wF (w) = G(z) with w = z−(λ+1), 0 < |z| < ε
1/(λ+1)
0 , | arg z| < π

2(λ + 1)
}

for a sufficiently small ε0 > 0 and its subspace

◦
X := {(F (w), G(z)) ∈ X;G(l)(0) = 0, l = 0, 1, 2, · · · ,m− 1} ⊂ X.(4.4)

For F ∈
◦
X, we shall solve the equation LU = F in the space X.
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Proposition 4.4. Operators ∂w, w∂w, ∂
l/(λ+1)
w (l = 1, 2, · · · ) naturally

act on elements of X. Further, these operators preserve
◦
X in X and L(X) ⊂

◦
X, (R◦)(X) ⊂

◦
X.

Proof. Take one (F,G) ∈ X. Since we have

F ′(w) = zλ+1

(
− 1

λ + 1
zλ+2G′(z) − zλ+1G(z)

)
,

it follows that (
F ′(w),− zλ+2

λ + 1
G′(z) − zλ+1G(z)

)
∈ X.

In a similar manner,(
wF ′(w),− z

λ + 1
G′(z) −G(z)

)
∈ X.

We lastly prove this proposition as to fractional derivatives. By the defini-

tion,

∂
l

λ+1
w F (w) =

Γ (1 + l/(λ + 1))

2π
√
−1

∫
γ1

F (w′)

(w′ − w)l/(λ+1)+1
dw′,

where γ1 is a contour from w′ = ∞ enclosing w′ = w. As F (w′) =

w′−1G(w′− 1
λ+1 ) in a neighborhood of [w,+∞) for a large positive w ∈ R,

we have

∂
l

λ+1
w F (w) = C

∫
γ1

w′−1G(w′− 1
λ+1 )

(w′ − w)l/(λ+1)+1
dw′

with a suitable C. Transforming as w′ = z−(λ+1)w′′ for any small positive

z = w−1/(λ+1) ∈ R, we finally obtain

∂
l

λ+1
w F (w) = Czl+λ+1

∫
γ2

w′′−1G(zw′′− 1
λ+1 )

(w′′ − 1)l/(λ+1)+1
dw′′,

where γ2 is a contour enclosing [1,∞). Setting

G̃(z) = Czl
∫
γ2

w′′−1G(zw′′− 1
λ+1 )

(w′′ − 1)l/(λ+1)+1
dw′′,
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we have (∂
l

λ+1
w F (w), G̃(z)) ∈ X. It is clear from the above explicit forms

that these operators preserve
◦
X in X. �

For estimating solutions for the equation LU = F , we introduce several

norms.

Definition 4.5. We define the following norms for F (w) ∈ �w(Ω1)

and G(z) ∈ �z(B(0; δ0)): for µ ∈ R and k = 0, 1, 2, · · · ,

‖F‖µ,k := max
0≤l≤k

sup
w∈Ω1

( |w|
1 + |w|

)µ+l−(k−1)+

|∂l
wF (w)|,(4.5)

‖G‖′k := max
0≤l≤k

sup
z∈B(0;δ0)

|[∂l
w]G(z)|,(4.6)

where

(k − 1)+ =

{
k − 1, k ≥ 1,

0, k = 0

and [∂k
w]G(z) stands for an operation on G(z) with respect to z =

w−1/(λ+1) in a neighborhood of z = 0, that is, with a viewpoint of w-plane,

we shall use [∂k
w]G(z) for estimations at a point at infinity w = ∞.

Definition 4.6. We define norms for a pair (F (w), G(z)) ∈ X:

‖(F,G)‖µ := ‖F‖µ,0 + ‖G‖′0,(4.7)

‖(F,G)‖µ,k := ‖F‖µ,k + ‖G‖′k.(4.8)

In addition, we define a norm with fractional derivatives as

‖(F,G)‖µ,l+ λ
λ+1

:=

(λ+1)l+λ∑
k=0

‖∂
k

λ+1
w (F,G)‖µ,k.(4.9)

When we abbreviate ‖(F,G)‖∗ to ‖F‖∗, this ‖F‖∗ stands only for a term

with respect to F .

Remark 4.7. We sometimes identify (F,G) with F because G is

uniquely determined by F .
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We use the following estimates in Kataoka–Sato [KtS].

Lemma 4.8 ([KtS]). Let S = w∂m
w +

∑m
k=1 γk(w)∂m−k

w . Set D = {w ∈
C; |w| ≤ 1} and Ω = {w ∈ C; 0 < |w| ≤ 1, | argw| ≤ π − ε} for an ε > 0.

Assume that γk is holomorphic on D with γ1(0) �= 0,−1,−2, · · · and set

A = 1 + sup
w∈D

m∑
k=1

|γk(w)| < ∞,

B = min{|p + γ1(0)|; p = 0, 1, 2, · · · } > 0.

Then there exists a positive constant C depending only on A and B such

that the following equations hold:

(1) regular case: for a function F (w) ∈ �(D), any solution U(w) ∈ �(D)

of the equation SU = F satisfies

sup
0≤j≤m
w∈D

|U (j)(w)| ≤ C

 sup
w∈D

|F (w)| +
m−2∑
j=0

|U (j)(0)|

 .(4.10)

(2) non-regular case: for a function F (w) ∈ �(Ω), any solution U(w) ∈
�(Ω) of the equation SU = F satisfies

sup
0≤j≤m
w∈Ω

|w|µ−m+1+j |U (j)(w)| ≤ C

sup
w∈Ω

|w|µ|F (w)| +
m−1∑
j=0

|U (j)(1)|

 ,(4.11)

with any µ ≥ A + m + 1.

Here we calculate a fractional derivative of G(z) defined in a neighbor-

hood of w = ∞. We have

∂
l

λ+1
w F (w) =

Γ (1 + l/(λ + 1))

2π
√
−1

∫
γ1

F (w̃)

(w̃ − w)1+l/(λ+1)
dw̃

= −(λ + 1)
Γ (1 + l/(λ + 1))

2π
√
−1

∫
γ2

z̃l+λG(z̃)

(1 − wz̃λ+1)1+l/(λ+1)
dz̃

= −(λ + 1)
Γ (1 + l/(λ + 1))

2π
√
−1

∫
γ3

zl+λ+1z̃l+λG(z̃)

(zλ+1 − z̃λ+1)1+l/(λ+1)
dz̃,
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where γ1 is a contour enclosing ∞ and w, γ2 is contour from z enclosing

z−(λ+1) and γ3 is from 0 enclosing 1.

Transforming z̃ = zθ, we get a fractional derivative at z = 0 (i.e. w = ∞)

[∂
l

λ+1
w ]G(z)(4.12)

= −(λ + 1)
Γ (1 + l/(λ + 1))

2π
√
−1

zl
∫
γ3

θl+λG(zθ)

(1 − θλ+1)1+l/(λ+1)
dθ

for l = 1, 2, · · · . In the case of l = 0, we define ∂
l/(λ+1)
w G(z) = G(z).

Lemma 4.9. For the equation LU = F ∈
◦
X, there exists a pair

(U, V ) ∈ X such that we have

‖(U, V )‖µ,m ≤ C‖(F,G)‖µ

with a positive constant C > 0 for any µ ≥ A + m + 1.

Proof. For each j = 2, 3, · · · ,m, take one solution U j ∈ �(Dj) for

the initial value problem{
LU j = F,

∂l
wU

j(−αj(0)) = 0, l = 0, 1, 2, · · · ,m− 2.

By virtue of Lemma 4.8, we have

sup
w∈Dj

0≤l≤m

|∂l
wU

j(w)| ≤ C1 sup
w∈Dj

|F (w)|

with a constant C1 > 0. By the Gronwall inequality, an analytic continu-

ation to a domain K := {w ∈ C; |w − 1| ≤ 1/2} ⊂ Ω1 leads the following

inequality:

sup
w∈K

0≤l≤m

|∂l
wU

j(w)| ≤ C2‖F (w)‖µ,0

with a constant C2 > 0. As is seen in Theorem 4.3,

U(w) := Ũ(w) = U j(w) −
m∑
j=1

bjlul(w)
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with an αl-pure solution ul(w) becomes independent of j and to be holo-

morphic on Ω1. Since bjl ’s are estimated by sup2≤j≤m,0≤l≤m |∂l
wU

j(1)|, by

(2) of Lemma 4.8 we get a positive constant C3 > 0 such that

sup
0≤l≤m
w∈Ω1

|w|≤(2/δ0)λ+1

( |w|
1 + |w|

)µ+l−m+1

|∂l
wU(w)| ≤ C3‖F (w)‖µ,0.

Secondly, we see the estimate at a point at infinity.

In a neighborhood of w = (2/δ0)
λ+1,

M(z, ∂z)V (z) = z−mG(z) ∈ �(B(0; δ0)),

where M(z, ∂z) is a non-characteristic operator in |z| < δ0 and V (z) =

wU(w) is holomorphic in a neighborhood of z = δ0/2. There exist constants

C4, C5 > 0 such that

max
0≤l≤m

|∂l
zV (

δ0
2

)| ≤ C4 max
0≤l≤m

|∂l
wU(

(
2

δ0

)λ+1

)| ≤ C5‖F (w)‖µ,0.

Using the maximum principle and the Gronwall inequality for M(z, ∂z), we

have

max
0≤l≤m

sup
z∈B(0;δ0)

|∂l
zV (z)| ≤ C6

(
max

0≤l≤m
|∂l

zV (
δ0
2

)| + sup
z∈B(0;δ0)

|z−mG(z)|
)

≤ C7

(
‖F (w)‖µ,0 +

1

δm0
sup

z∈B(0;δ0)
|G(z)|

)

with constants C6, C7 > 0. It follows that we have

‖(U, V )‖µ,m ≤ C‖(F,G)‖µ

with a positive constant C > 0. �

Proposition 4.10. For the equation LU = F ∈
◦
X with

‖(F,G)‖µ, λ
λ+1

< ∞, there exists a pair (U, V ) ∈ X such that

‖(U, V )‖µ,m+ λ
λ+1

≤ C‖(F,G)‖µ, λ
λ+1



A Construction of Pure Solutions for Degenerate Hyperbolic Operators 483

with a positive constant C > 0 for any µ ≥ A + m + 1.

Remark 4.11. We can uniquely determine U more explicitly as fol-

lows. For an α1-pure solution u1(w), we take a sufficiently large w0 ∈
R which satisfies a condition u1(w0) �= 0. As there exists Ũ = U j −∑m

l=1 b
j
lul(w) ∈ X (j �= l), we set U − Ũ = cu1 with some constant c

for LU = F . We set U with additional condition U(w0) = c for LU = F as

U(w) = Ũ(w) +
c− Ũ(w0)

u1(w0)
u1(w).

Therefore we have the following estimate

‖(U, V )‖µ,m ≤ C(‖(F,G)‖µ + |U(w0)|)

for any similar solution (U, V ) ∈ X of LU = F .

Proof of Proposition 4.10. We have

L(∂
l

λ+1
w U) = [L, ∂

l
λ+1
w ]U + ∂

l
λ+1
w F,

where [·, ·] stands for a commutator. By virtue of Lemma 4.9, it follows that

‖∂
l

λ+1
w (U, V )‖µ,m(4.13)

≤ C1

(
‖∂

l
λ+1
w (F,G)‖µ,0 + ‖[L, ∂

l
λ+1
w ](U, V )‖µ,0 + |∂

l
λ+1
w U(w0)|

)

with a positive constant C1 > 0 because ∂
l

λ+1
w (F,G) ∈

◦
X.

Lemma 4.12. For 0 ≤ l ≤ λ, there is a positive constant C ′ such that

|∂
l

λ+1
w U(w0)| ≤ C ′‖(U, V )‖µ,1.

Proof. In virtue of integration by parts, we obtain

Γ (1 + l/(λ + 1))

2π
√
−1

∫
γ1

U(w̃)

(w̃ − w)1+l/(λ+1)
dw̃
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=
Γ (l/(λ + 1))

2π
√
−1

∫
γ1

U ′(w̃)

(w̃ − w)l/(λ+1)
dw̃

=
Γ (l/(λ + 1))

2π
√
−1

∫
γ2

U ′(t + w)

tl/(λ+1)
dt (w̃ = t + w)

=
Γ (l/(λ + 1))

2π
√
−1

∫ ∞

0
(−1 + e−2π

√
−1l/(λ+1))t−l/(λ+1)U ′(t + w)dt,

where γ1 is a contour from ∞ enclosing w and γ2 is also a contour from ∞
enclosing 0.

In particular, we have

|∂
l

λ+1
w U(w0)| ≤ C2

{(∫ N

0
t−

l
λ+1

)
‖U‖1 +

∫ ∞

N
N− l

λ+1 |U ′(w + t)|dt
}

with a constant C2 > 0. Since U ′(w) = −w−2V (w− 1
λ+1 ) −

w−2− 1
λ+1V ′(w− 1

λ+1 )/(λ + 1), there is a constant C3 > 0 such that∫ ∞

N
N− l

λ+1 |U ′(w + t)|dt ≤ C3‖V ‖′1.

This completes the proof of this lemma. �

A sequel to the proof of Proposition 4.10. From now on, we take a solution

U ∈ X satisfying U(w0) = 0.

In order to evaluate a part of a commutator, we may calculate [wp∂q
w,

∂
l/(λ+1)
w ]U (p ≤ q) because the operator L consists of wp∂q

w.

Here we note that

wp∂q
w

(
Γ (1 + l/(λ + 1))

2π
√
−1

∫
γ1

U(w̃)

(w̃ − w)1+l/(λ+1)
dw̃

)
= wpΓ (1 + l/(λ + 1))

2π
√
−1

∫
γ1

U(w̃)
dq

dwq

(
(w̃ − w)−1− l

λ+1

)
dw̃

= wpΓ (1 + l/(λ + 1))

2π
√
−1

∫
γ1

U (q)(w̃)
dw̃

(w̃ − w)1+l/(λ+1)
.

Hence we have

|[wp∂q
w, ∂

l
λ+1
w ]U | =

∣∣∣∣Γ (1 + l/(λ + 1))

2π
√
−1

∫
γ1

U (q)(w̃)
wp − w̃p

(w̃ − w)1+l/(λ+1)
dw̃

∣∣∣∣
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=

∣∣∣∣Γ (1 + l/(λ + 1))

2π
√
−1

∫
γ1

U (q)(w̃)
wp−1 + wp−2w̃ + · · · + w̃p−1

(w̃ − w)l/(λ+1)
dw̃

∣∣∣∣
≤ C(l)

∫ ∞

0
|U (q)(w + t)|t−

l
λ+1

p−1∑
r=0

|w|p−1−r|w + t|rdt

with a positive constant C(l). We show the boundedness of the integral in

this right-hand side in three cases as follows:

(i) in the case of |w| < N , 0 ≤ t ≤ 2N . The ‖ · ‖µ,0-norm of the cor-

responding part of this integral is easily estimated by ‖U (q)(w)‖µ,0 since

supt>0,w∈Ω1 |w|/|w + t| < ∞.

(ii) in the case of |w| ≥ N or t ≥ 2N . Since supt>0,w∈Ω1(|w| + t)/|w + t| =

supw∈Ω1(|w|+1)/|w+1| < ∞, we have |w+t| → +∞ as t → +∞. Therefore

|U (q)(w+t)| =

∣∣∣∣( d

dw

)q

(w′−1V )
∣∣
w′=w+t

∣∣∣∣ ≤ C4 sup
z∈B(0;δ0)

0≤l≤q

|V (l)(z)| · |t+w|−q−1

with a constant C4 > 0. Hence we obtain an estimation of the ‖ · ‖µ,0-norm

of the corresponding part of the integral by

C4

∫ ∞

2N
|t + w|−q−1 sup

z∈B(0;δ0)
0≤l≤q

|V (l)(z)|t−
l

λ+1

p−1∑
r=0

|w|p−1−r|w + t|rdt

= C4 sup
z∈B(0;δ0)

0≤l≤q

|V (l)(z)|
∫ ∞

2N

p−1∑
r=0

t−
l

λ+1
|w|p−r−1

|t + w|q−r+1
dt

≤ C5 sup
z∈B(0;δ0)

0≤l≤q

|V (l)(z)|
∫ ∞

2N

p−1∑
r=0

t−
l

λ+1
−2dt < ∞

with a positive constant C5 > 0.

Since 0 ≤ p ≤ q ≤ m, we have

‖[wp∂q
w, ∂

l
λ+1
w ]U‖µ,0 ≤ C6

 sup
z∈B(0;δ0)

0≤l≤q

|V (l)(z)| + ‖U (q)(w)‖µ,0


≤ C7‖(U, V )‖µ,m ≤ C8‖(F,G)‖µ
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with some constants C6, C7, C8 > 0.

A remaining problem in this proposition is an estimate with respect to

the commutator at a point at infinity. This term is calculated as follows:

[L∂
l

λ+1
w − ∂

l
λ+1
w L]V = [L]([∂

l
λ+1
w ]V ) − [∂

l
λ+1
w ]([L]V ).

By the same arguments above, all we have to calculate here is as follows:

[(w∂w)p]([∂
q+ l

λ+1
w ]V ) − [∂

l
λ+1
w ]([(w∂w)p][∂q

w]V )

= [(w∂w)p]([∂
l

λ+1
w ]([∂q

w]V )) − [∂
l

λ+1
w ]([(w∂w)p][∂q

w]V ).

Since [(w∂w)p] = z−(λ+1){−z∂z/(λ + 1)}pzλ+1 = {−z∂z/(λ + 1) − 1}p,
setting G = [∂q

w]V , we have only to evaluate zk∂k
z ([∂

l/(λ+1)
w ]G) −

[∂
l/(λ+1)
w ](zk∂k

zG).

By the definition (4.12) of fractional derivation on G, we obtain

2π
√
−1

Γ (1 + l/(λ + 1))

{
zk∂k

z ([∂l/(λ+1)
w ]G) − [∂l/(λ+1)

w ](zk∂k
zG)

}
= C(l)

(
zk∂k

z · zl
∫
γ3

θl+λG(zθ)

(1 − θλ+1)1+l/(λ+1)
dθ

−zl
∫
γ3

θl+λ(zθ)kG(k)(zθ)

(1 − θλ+1)1+l/(λ+1)
dθ

)

= C(l)

∫
γ3

θl+λ

(1 − θλ+1)1+l/(λ+1)

×
{

k∑
s=0

(
k

s

)
l!

(l − k + s)!
zl+sθsG(s)(zθ) − zl+kθkG(k)(zθ)

}
dθ

= C(l)

∫
γ3

θl

l

d

dθ
((1 − θλ+1)−l/(λ+1))

k−1∑
s=0

(
k

s

)
l!

(l − k + s)!
zl+sθsG(s)(zθ)dθ

= −C(l)

k−1∑
s=0

(
k

s

)
(l − 1)!

(l − k + s)!
zl+s

∫
γ3

(1 − θλ+1)−l/(λ+1) d

dθ
(θl+sG(s)(zθ))dθ

= −C(l)
k−1∑
s=0

(
k

s

)
(l − 1)!

(l − k + s)!
zl+s
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×
∫ 1

0
(1 − e−2π

√
−1l/(λ+1))

(1 − θ)−l/(λ+1)

(1 + θ + · · · + θλ)l/(λ+1)

d

dθ
(θl+sG(s)(zθ))dθ.

As the last term is integrable, there exists a constant, all of which is on

behalf of C > 0, such that

sup
z∈B(0;δ0)

|[L∂
l

λ+1
w − ∂

l
λ+1
w L]V | ≤ C‖G‖′k ≤ C‖G‖′p ≤ C‖V ‖′p+q ≤ C‖V ‖′m

≤ C‖(F,G)‖µ.
This completes the proof of this proposition. �

5. Estimations by Formal Norms

This section gives the proof of the convergence of the solution operator

appears in a successive approximation process. For this aim, we define some

formal norms similar to [BK], which determine microdifferential operators.

5.1. Formal norms

To prove the convergence of the scheme, we introduce our formal norms.

Definition 5.1. Let U =
∑∞

j=0 Uj(w)τ−j/(λ+1) be a formal symbol

such that Uj(w) is a holomorphic function on Ω1 with (Uj(w), Vj(z)) ∈ X

for j = 0, 1, 2, · · · (Vj(z) = wUj(w)). Then a formal norm Nµ
m′(U, V ;T )

with respect to indefinite T for each m′ = 0, 1, 2, · · · for µ ≥ A+m′ + 1 (A

is defined in Lemma 4.8) is defined by

Nµ
m′(U, V ;T )(5.1)

:=
∞∑

j,l=0

T 2j+l

( j+l
λ+1)!

{
‖∂

l
λ+1
w Uj(w)‖

µ+ j+l
λ+1

,m′ + ‖[∂
l

λ+1
w ]Vj(z)‖′m′

}
,

where ( j+l
λ+1)! = Γ ( j+l

λ+1 + 1). When we write Nµ
m′(U ;T ), this formal norm

stands for a norm only for a term with respect to U of Nµ
m′(U, V ;T ).

Remark 5.2. In Boutet de Monvel-Krée [BK], the monstrous coef-

ficients of the formal norms defined above further require the term with

respect to j because of justification of the composition of microdifferential

operators. However we only treat convergence of microdifferential operators

with fractional order and hence we do not give such terms with respect to

j.
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5.2. Estimations of the dominant part

Taking these formal norms, we are going to estimate the operators which

appear in the approximation process in the previous section.

Before evaluating the formal norm, we prepare the following lemma for

the estimates of some commutators between L and fractional derivatives of

higher order.

Lemma 5.3. We obtain the following estimate as to Ek =∏m−k−1
i=0 (−(λ + 1)∂ww − i): for k′ = 0, 1, 2, · · · and l = 0, 1, 2, · · · , λ,

|∂k′+ l
λ+1

w (EkUj)| ≤ Mm

∑
0≤p′≤p≤q≤m

(l + 1)p
′ |w|p−p′ |∂

l
λ+1

+q−p′

w Uj |(5.2)

with a positive constant Mm > 0, which does not depend on j, l = 0, 1, 2, · · · .

Proof. Since ∂k′
wEk has a form

∂k′
wEk =

∑
0≤p≤q≤m

αk′k
pq wp∂q

w

with some αk′k
pq , it follows that

|∂k′+ l
λ+1

w (EkUj)| =

∣∣∣∣∣∣
∑

0≤p≤q≤m

αk′k
pq ∂

l
λ+1
w (wp∂q

wUj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

0≤p′≤p≤q≤m

αk′k
pq

1

p′!

p!

(p− p′)!
wp−p′

p′−1∏
i=0

(
l

λ + 1
− i

)
∂

l
λ+1

−p′+q
w Uj

∣∣∣∣∣∣
≤

∑
0≤p′≤p≤q≤m

|αk′k
pq |

(
p

p′

)
(l + 1)p

′ |w|p−p′ |∂
l

λ+1
−p′+q

w Uj |. �

(1) Estimates of higher order derivatives of U .

We shall evaluate the ordinary differential equation LU = F .

(1-1) Estimates on Ω1.

To begin with, we estimate the equation LU = F on Ω1. Setting U =∑∞
j=0 Uj(w)τ−

j
λ+1 and F =

∑∞
j=0 Fj(w)τ−

j
λ+1 with Uj , Fj ∈

◦
X, we consider

the equation LUj = Fj for their components.
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Let w0 be a large positive number chosen in Remark 4.11 concerning the

1-pure solution u1(w) of LU = 0.

Lemma 5.4. If U(w0) = 0, we have an estimate with respect to the

equation LUj = Fj ∈
◦
X in Ω1 as follows:

‖∂
l

λ+1
w Uj(w)‖

µ+ j+l
λ+1

,m
(5.3)

≤ C

(
‖∂

l
λ+1
w Fj(w)‖

µ+ j+l
λ+1

,0
+ |∂

l
λ+1
w Uj(w0)|

+ M

m∑
q=1

(l + 1)q‖∂
l−(λ+1)q

λ+1
w Uj(w)‖

µ+
j+l−(λ+1)q

λ+1
,0

)

with some constants C,M > 0, for l ≥ 1.

Proof. Since

L(∂
l

λ+1
w Uj) = [L, ∂

l
λ+1
w ]Uj + ∂

l
λ+1
w Fj ,

we have the following estimate by Lemma 4.9 (and Remark 4.11) for some

constant C1 > 0;

‖∂
l

λ+1
w Uj(w)‖

µ+ j+l
λ+1

,m
≤ C1

(
‖∂

l
λ+1
w Fj(w)‖

µ+ j+l
λ+1

,0
+ |∂

l
λ+1
w Uj(w0)|

+ ‖[L, ∂
l

λ+1
w ]Uj(w)‖

µ+ j+l
λ+1

,0

)
.

Continuing to estimate, we have

‖∂
l

λ+1
w Uj(w)‖

µ+ j+l
λ+1

,m

≤ C1

{
‖∂

l
λ+1
w Fj(w)‖

µ+ j+l
λ+1

,0
+ |∂

l
λ+1
w Uj(w0)|

+ sup
w∈Ω1∩{|w|≤w0}

∑
1≤p′≤p≤q≤m
0≤k′≤k≤m

|ã0
k′k||αk′k

pq |
(
p

p′

)
|w|p−p′

×
p′−1∏
i=0

(
l

λ + 1
− i

)
‖∂

l
λ+1

−p′+q
w Uj‖0
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≤ C1

{
‖∂

l
λ+1
w Fj‖µ+ j+l

λ+1
,0

+ |∂
l

λ+1
w Uj(w0)|

+M
m−1∑
q=0

(l + 1)m−q‖∂
l

λ+1
+q

w Uj‖µ+ j+l
λ+1

−q,0


with a positive constant M > 0. �

From now on, we often abbreviate weight terms of the norms for brevity’s

sake.

In the case of l/(λ+1)−q ≥ m, this lemma leads the following inequality

with respect to our formal norm:

Nµ
m(U ;T ) �

∑
j≥0, l≥0

T 2j+l

( j+l
λ+1)!

C{‖∂
l

λ+1
w Fj‖0 + |∂

l
λ+1
w Uj(w0)|

+M

m∑
k=1

(l + 1)k max
0≤k′≤m

‖∂
l−(λ+1)k

λ+1
w U

(k′)
j ‖0}

� CNµ
0 (F ;T ) + C

∑
j≥0, l≥0

T 2j+l

( j+l
λ+1)!

max
0≤k′≤m

‖∂
l−m(λ+1)

λ+1
+k′

w Uj‖0

+C1

∑
j,l≥0

1≤k≤m

T 2j+l

( j+l−(λ+1)k
λ+1 )!

max
0≤k′≤m

‖∂
l−(λ+1)k

λ+1
w U

(k′)
j ‖0}

� CNµ
0 (F ;T ) + CNµ

m(U ;T )Tm(λ+1) + C1N
µ
m(U ;T )

m∑
k=1

T (λ+1)k

with some constants C,C1 > 0.

In the case of l/(λ + 1) − q < m, we have

sup
w∈Ω1∩{|w|≤w0}

|[∂
l

λ+1
w , L]Uj |

≤ C sup
w∈Ω1∩{|w|≤w0}

∑
1≤p′≤p≤q≤m−k+k′

l≥1

(l + 1)p
′ |w|p−p′ |∂

l
λ+1

−p′+q
w Uj |

≤ C2 sup
w∈Ω1∩{|w|≤w0}

∑
1≤p′≤p≤q≤m−k+k′

l≥1

|∂
l

λ+1
−p′+q

w Uj | ≤ M‖∂0
wUj‖m
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with positive constants C2,M > 0 because (l + 1)p
′

is bounded and 0 ≤
l/(λ + 1) − p′ + q ≤ m. As regards a formal norm, we have

Nµ
m(U ;T ) �

∑
j≥0, l≥0

T 2j+l

( j+l
λ+1)!

C{‖∂
l

λ+1
w Fj‖0 + |∂

l
λ+1
w Uj(w0)| + M‖∂0

wUj‖m}

� CNµ
0 (F ;T ) + CNµ

m(U ;T )Tm(λ+1) + C3N
µ
m(U ;T )

m(m−1)(λ+1)∑
l=1

T l

with a constant C3 > 0.

(1-2) Estimates at a point at infinity.

As is seen in Section 4.2, we have obtained

‖∂
l

λ+1
w (U, V )‖m

≤ C4

(
‖∂

l
λ+1
w (F,G)‖0 + ‖[L, ∂

l
λ+1
w ](U, V )‖0 + |∂

l
λ+1
w U(w0)|

)
with a positive constant C4 > 0. At a point at infinity, we only estimate

the commutative term.

In the case of |w| > w0, there exists a positive C5 > 0 such that

sup
w∈Ω1∩{|w|>w0}

|[∂
l

λ+1
w , L]Uj |

= sup
w∈Ω1∩{|w|>w0}

∣∣∣∣∣∣∣∣w
−1

∑
0≤k′≤k≤m−1
1≤p′≤p≤q≤m

(
p

p′

)
ã0
k′kα

k′k
pq

p′−1∏
i=0

(
l

λ + 1
− i

)

×[wp−p′∂m
w ]([∂

l
λ+1

+q−p−m
w ]Vj(z))

∣∣∣∣
≤ C5

m∑
q̃=1

(l + 1)q̃‖[∂
l−(λ+1)q̃

λ+1
w ]Vj(z)‖′m.

In addition, at a point at infinity, we get

sup
w∈Ω1∩{|w|>w0}
|z|<w

−1/(λ+1)
0

|[[∂
l

λ+1
w , L]]Vj(z)| = |w[∂

l
λ+1
w , L]Uj(w)|
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= sup
w∈Ω1∩{|w|>w0}
|z|<w

−1/(λ+1)
0

∣∣∣∣∣∣∣∣w
∑

0≤k′≤k≤m−1
1≤p′≤p≤q≤m

ã0
k′kα

k′k
pq

(
p

p′

) p′−1∏
i=0

(
l

λ + 1
− i

)

× wp−p′∂
l

λ+1
+q−p′

w Uj

∣∣∣∣
= sup

w∈Ω1∩{|w|>w0}
|z|<w

−1/(λ+1)
0

∣∣∣∣∣∣∣∣
∑

0≤k′≤k≤m−1
1≤p′≤p≤q≤m

ã0
k′kα

k′k
pq

(
p

p′

) p′−1∏
i=0

(
l

λ + 1
− i

)

× w(wp−p′∂m
w )w−1[∂

l
λ+1

+q−p′−m
w ]Vj(z)

∣∣∣∣
≤ C6

m∑
q̃=1

(l + 1)q̃‖[∂
l−(λ+1)q̃

λ+1
w ]Vj(z)‖′m

with a positive constant C > 0 because w(wp−p′∂m
w )w−1 is a bounded oper-

ator.

Proposition 5.5. If each component Fj and Uj of F =∑∞
j=0 Fj(w)τ−

j
λ+1 and U =

∑∞
j=0 Uj(w)τ−

j
λ+1 is holomorphic on Ω1 and

Uj , Vj ∈ X, Fj , Gj ∈
◦
X, we have

Nµ
m(U, V ;T ) � Ψ(T )Nµ

0 (F,G;T ),

where Ψ(T ) is a convergent power series of T with non-negative coefficients

independent of F and U .

5.3. Estimations of the operator with fractional derivatives

In this subsection, we lastly estimate the rest of the scheme R ◦ U .

We recall that

(R ◦ U)j =
∑

0≤k′≤k≤m
j=j′+l′, l′≥1

ãl
′
k′k∂

k′+ l′
λ+1

w (EkUj′) mod �R
Rw×Rt

· ∂w.(5.4)
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Proposition 5.6. There exists a convergent power series φ(T ) of T

with positive coefficients with value 0 at T = 0 such that we have the fol-

lowing estimates:

Nµ
0 (R ◦ (U, V );T ) � φ(T )Nµ

m(U, V ;T ).(5.4)

Proof. In the case of a finite domain |w| ≤ w0, we get the following

inequality by Lemma 5.3:

sup
w∈Ω1∩{|w|≤w0}

|∂k′+ l
λ+1

w (EkUj)|

≤ sup
w∈Ω1∩{|w|≤w0}

∑
0≤p′≤p≤q≤m

M ′(l + 1)p
′ |w|p−p′

× max
0≤k′≤m

‖∂
l−(m−q+p′)(λ+1)

λ+1
w U

(k′)
j ‖0

≤ M ′wm
0

∑
0≤K≤m

‖∂
l−(λ+1)K

λ+1
w U

(K)
j ‖0

with a positive constant M ′.
For (l+ l′)/(λ+1)−k ≥ m, the formal norm of order 0 can be estimated

as follows:

Nµ
0 (R ◦ U ;T ) �

∑
j=j′+l,j′≥0

l≥1

T 2j′+(l+l′)+l′

( j
′+l+l′
λ+1 )!

C l′+1M ′wm
0

m∑
k=0

(l + l′ + 1)k

× max
0≤k′≤m

‖∂
l+l′−(λ+1)k

λ+1
w U

(k′)
j′ ‖0

� M ′wm
0

∑
l′≥1

0≤k≤m

C l′+1T
2j′+(l+l′)−(λ+1)k+l′+(λ+1)k

( j
′+(l+l′−(λ+1)k)

λ+1 )!

× max
0≤k′≤m

‖∂
l+l′−(λ+1)k

λ+1
w U

(k′)
j′ ‖0

� Nµ
m(U ;T ) ·M ′wm

0

∑
l′≥1

0≤k≤m

C l′+1T l′+(λ+1)k
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with a positive constant C > 0.

On the other hand, in the case of (l + l′)/(λ + 1) − k < m, the same

calculation of the dominant part leads the following estimate:

‖∂
l+l′
λ+1

−k
w Uj‖0 ≤ C1‖∂0

wUj‖m

with a positive constant C1 > 0.

Introducing a formal norm, we have

Nµ
0 (R ◦ U ;T ) � Nµ

m(U ;T ) ·M
(λ+1)m(m−1)∑

l′=1

T 2l′+l

with a positive constant M > 0.

At a point at infinity, there is a constant C2 > 0 such that

sup
|z|<w

−1/(λ+1)
0

|([∂
l

λ+1
w ][R◦]V )j | = sup

w∈Ω1∩{|w|≤w0}
|w((∂

l
λ+1
w R◦)U)j |

≤ sup
w∈Ω1∩{|w|≤w0}

∑
0≤q̃≤m
l′≥1

∣∣∣∣∣C l′+1
2 (l + l′ + 1)q̃wp−p′+1∂m

w ∂
l+l′−(λ+1)q̃

λ+1
w Uj′

∣∣∣∣∣
≤ sup

|z|<w
−1/(λ+1)
0

∑
0≤q̃≤m
l′≥1

∣∣∣∣∣C l′+1
2 (l + l′ + 1)q̃[wp−p′+1∂m

w w−1][∂
l+l′−(λ+1)q̃

λ+1
w ]Vj′

∣∣∣∣∣
≤

∑
0≤q̃≤m
l′≥1

C l′+1
2 (l + l′ + 1)q̃‖[∂

l+l′−(λ+1)q̃
λ+1

w ]Vj′‖′0.

In the case of |w| ≤ w0, we have an estimate with a positive constant

C3 > 0:

sup
w∈Ω1∩{|w|≤w0}

|w|µ+ j+l
λ+1 |∂

l
λ+1
w (R ◦ U)j |

≤ sup
w∈Ω1∩{|w|≤w0}

∑
0≤p′≤p≤q≤m

l′≥1

|ãlk′kαk
pq|
(
p

p′

)
(l + 1)p

′

×|w|µ+ j+l
λ+1

+p−p′ |∂
l+l′−(λ+1)(m−(q−p′))

λ+1
+m

w Uj′ |
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≤ sup
w∈Ω1∩{|w|≤w0}

∑
l′≥1

0≤q̃≤m

(l + l′ + 1)q̃C l′+1
3 |w|µ+ j′+l+l′

λ+1 |∂
l+l′−(λ+1)q̃

λ+1
+m

w Uj′ |

≤
∑
l′≥1

0≤q̃≤m

(l + l′ + 1)q̃C l′+1
3 ‖∂

l+l′−(λ+1)q̃
λ+1

w Uj‖µ+
j+l+l′−(λ+1)q̃

λ+1
,m
.

On the other hand, in the case of |w| > w0, there is a constant C > 0 such

that

sup
w∈Ω1∩{|w|>w0}

|∂
l

λ+1
w (R ◦ U)j |

≤ sup
w∈Ω1∩{|w|>w0}

∑
0≤p′≤p≤q≤m

l′≥1

C l′+1
4

(
p

p′

)
(l + l′ + 1)p

′

×wp−p′∂m
w |∂

l+l′−(λ+1)(m−(q−p′))
λ+1

w Uj′ |

≤ sup
w∈Ω1∩{|w|>w0}
|z|<w

−1/(λ+1)
0

∑
0≤q̃≤m
l′≥1

C l′+1
4

(
p

p′

)
(l + l′ + 1)p

′

×
∣∣∣∣∣w−1[wp−p′∂m

w ]([∂
l+l′−(λ+1)(m−(q−p′))

λ+1
w ]Vj′)

∣∣∣∣∣
≤

∑
0≤q̃≤m
l′≥1

C l′+1(l + l′ + 1)q̃‖[∂
l+l′−(λ+1)q̃

λ+1
w ]Vj′‖′m.

Adding these two inequalities, we have

‖∂
l

λ+1
w (R ◦ U)j‖

≤
∑

0≤q̃≤m
l′≥1

C l′+1
5 (l + l′ + 1)q̃

×
(
‖∂

l+l′−(λ+1)q̃
λ+1

w Uj‖µ+
j+l+l′−(λ+1)q̃

λ+1
,m

+ ‖[∂
l+l′−(λ+1)q̃

λ+1
w ]Vj′‖′m

)

with a positive constant C5 > 0.
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Lastly, there is a constant C6 > 0 such that

sup
|z|<w

−1/(λ+1)
0

|([∂
l

λ+1
w ][R◦]V )j | = |w((∂

l
λ+1
w R◦)U)j |

≤ sup
w∈Ω1∩{|w|>w0}

∑
0≤q̃≤m
l′≥1

∣∣∣∣∣C l′+1
6 (l + l′ + 1)q̃wp−p′+1∂m

w ∂
l+l′−(λ+1)q̃

λ+1
w Uj′

∣∣∣∣∣
≤ sup

|z|<w
−1/(λ+1)
0

∑
0≤q̃≤m
l′≥1

∣∣∣∣∣C l′+1
6 (l + l′ + 1)q̃[wp−p′+1∂m

w w−1][∂
l+l′−(λ+1)q̃

λ+1
w ]Vj′

∣∣∣∣∣
≤

∑
0≤q̃≤m
l′≥1

C l′+1
6 (l + l′ + 1)q̃‖[∂

l+l′−(λ+1)q̃
λ+1

w ]Vj′‖′0.

Introducing our formal norm, we have a desired estimate. This completes

the proof of this proposition. �

5.4. Convergences of the solutions

Because of the estimations in the previous propositions, we get the fol-

lowing theorem.

Theorem 5.9. Let U0 ≡ U00 be an arbitrary holomorphic solution of

LU0 = 0 in Ω1. We have a series Uk (k = 1, 2, · · · ) of a successive process

such that each Uk =
∑0

j=−∞ Ujk is a formal symbol satisfying

∂l
wUk|w=0 = 0 (l = 0, 1, 2, · · · ,m− 1; k ≥ 1).

Then U =
∑∞

k=0 Uk converges in Nµ
m(U, V ;T )-norm uniformly and it is a

solution of the microdifferential equation

(L + R◦)U = 0 mod �R
Rw×Rt

· ∂w.

Proof. By the argument above, we finally obtain the following in-

equality:

Nµ
m(Uk+1, Vk+1;T )



A Construction of Pure Solutions for Degenerate Hyperbolic Operators 497

� Φ(T )Nµ
0 (R ◦ (Uk, Vk);T )

� Φ(T )φ(T )Nµ
m(Uk, Vk;T )

� · · · � {Ψ(T )φ(T )}k+1Nµ
m(U0, V0;T ).

Hence the infinite sum
∑∞

k=0 N
µ
m(Uk, Vk;T ) converges

(1 − Ψ(T )φ(T ))−1Nµ
m(U0, V0;T ). �

6. Solutions for the Boundary Value Problem

In the last of this paper, we give j-pure solutions of the boundary value

problem (1.5). We obtain the following main result.

Theorem 6.1. We can construct j-pure solutions for (1.5). Precisely,

for any j = 1, · · · ,m and any microfunction u0(t) at a point
◦
p = (0, 0;

±
√
−1) ∈ Rx ×

√
−1T ∗Rt, we have a unique mild microfunction solution

u(x, t) ∈
◦
�{x=0}|{x≥0} of a microlocal boundary value problem at

◦
p:

P (x, ∂x, ∂t)u(x, t) = 0, x > 0 (in the sense of
◦
�{x=0}|{x≥0}),

u(+0, t) = u0(t),

supp(ext(u)(x, t)) ∩ {x > 0}
⊂ {(x, t;

√
−1(ξ, τ)); ξ −

√
−1xλαj(x)τ = 0}.

(6.1)

Further, we have the equations

∂k
xu(+0, t) = Rjk(∂t)u0(t)

(j = 1, 2, · · · ,m; k = 0, 1, 2, · · · ,m−1), where Rjk(∂t) is a microdifferential

operator with fractional order at most k/(λ + 1).

Proof. By virtue of Section 5.4, we can construct a microdifferential

equation (L + R◦)U = 0 mod �R
Rw×Rt

· ∂w. Furthermore, the solutions by

the iteration scheme (3.7) become αj-pure by means of Theorems 4.2 and

4.3. Hence we can construct j-pure solutions for (1.5) in the (x, t)-plane.

Secondly, we give a relationship between boundary values and the coef-

ficients of w in the space after the two transforms.
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According to Kataoka [Kt1], we have the following properties of a quan-

tized Legendre transform:

β(f(t)δ(y)) =
1

2π
∂tf(t),

β ◦ ∂y ◦ β−1 = −
√
−1w∂t.

The trace map

◦
�{x=0}|{x≥0} � u(x, t) �→ u(+0, t) ∈ �{x=0}

is represented as follows:

β(u(+0, t)
y

k
λ+1
+

Γ ( k
λ+1 + 1)

) = β(u(+0, t)∂
−( k

λ+1
+1)

y δ(y))

= β ◦ ∂−( k
λ+1

+1)
y ◦ β−1 ◦ β(u(+0, t)δ(y))

= (−
√
−1w∂t)

−( k
λ+1

+1) · 1

2π
∂tu(+0, t).

Transforming y = xλ+1/(λ + 1), we obtain

β(u(+0, t)
(λ + 1)−

k
λ+1

Γ ( k
λ+1 + 1)

(x+)k)

=
1

2π
(−

√
−1)−( k

λ+1
+1)w−( k

λ+1
+1)∂

− k
λ+1

t u(+0, t).

It follows that boundary values u(+0, t), ∂xu(+0, t), · · · , ∂m−1
x u(+0, t) be-

come coefficients of w−1, w−1− 1
λ+1 , · · · , w−1−m−1

λ+1 after the quantized Leg-

endre transform. This completes the proof. �

We obtain the following theorem as an application of Theorem 6.1.

Theorem 6.2. An arbitrary solution u(x, t) ∈
◦
�{x=0}|{x≥0} of the

boundary value problem at a point (0, 0;±
√
−1)

P (x, ∂x, ∂t)u(x, t) = 0, x > 0 (in the sense of
◦
�{x=0}|{x≥0})(6.2)

can be uniquely decomposed as a sum of j-pure solutions.
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Proof. By virtue of Theorem 4.2, we can take U0 = c1u1 + c2u2 +

· · · + cmum as a linear sum of αj-pure solutions (j = 1, 2, · · · ,m) for the

equation LU0 = 0. Using Theorem 4.3, a solution U1 of the scheme LU1 =

−R ◦ U0 becomes αj-pure. Similarly to this procedure, each Uk of U =∑∞
k=0 Uk(w)τ−

k
λ+1 can be decomposed as a sum of αj-pure. This implies

that the solution u(x, t) can be decomposed as a sum of j-pure in the (x, t)-

plane. �
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