A Lower Bound for Dilatations of Certain Class of Pseudo-Anosov Maps of Riemann Surfaces

By C. Zhang

Abstract. Let S be a Riemann surface of type (p, n) with 3p + n > 4 that contains at least one puncture a. Let $\mathcal{G}_{p,n}$ denote the set of pseudo-Anosov maps of S that are isotopic to products of two Dehn twists and are isotopic to the identity map on $\tilde{S} = S \cup \{a\}$. In this article, we give a lower bound for dilatations of elements of $\mathcal{G}_{p,n}$. We also estimate for any hyperbolic structure of \tilde{S} the hyperbolic lengths of those filling closed geodesics of \tilde{S} stemming from the elements of $\mathcal{G}_{p,n}$.

1. Introduction

Let S be a Riemann surface of type (p, n), where p is the genus and n is the number of punctures of S. Assume that 3p + n > 4. An orientationpreserving self-homeomorphism f_0 of S is called pseudo-Anosov if there is a pair $(\mathcal{F}_h, \mathcal{F}_v)$ of transverse measured foliations on S and an algebraic integer $\lambda = \lambda(f_0) > 1$ such that $f_0(\mathcal{F}_h) = \lambda \mathcal{F}_h$ and $f_0(\mathcal{F}_v) = \lambda^{-1} \mathcal{F}_v$. The number $\lambda = \lambda(f_0)$ is called the dilatation of f_0 . By abuse of language, throughout this article a mapping class is called pseudo-Anosov if one of its representative is pseudo-Anosov. Let f be a pseudo-Anosov mapping class with its pseudo-Anosov representative f_0 . The dilatation $\lambda(f)$ of f is defined by $\lambda(f_0)$. It was shown in Penner [7] that for any pseudo-Anosov mapping class f of S,

$$\log \lambda(f) > \frac{\log 2}{12p - 12 + 4n}.$$

In [6] Leininger showed that for any pseudo-Anosov mapping class f of S represented by a product of two Dehn twists,

(1.1)
$$\log \lambda(f) > \log \lambda_L \approx 0.162...$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 32G15; Secondary 30C60, 30F60.

Key words: Riemann surfaces, pseudo-Anosov, Dehn twists, Dilatations, Mapping classes, Teichmüller spaces.

where λ_L is the Lehmer's number that is the largest real root of the polynomial $x^{10} + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1$.

We assume that $n \ge 1$ and let a be a fixed puncture of S. Denote $\tilde{S} = S \cup \{a\}$. In this article we consider those pseudo-Anosov mapping classes of S that are trivial on \tilde{S} and are represented by finite products:

(1.2)
$$\prod_{i} \left(t_1^{m_i} \circ t_2^{n_i} \right),$$

where m_i and n_i are non-zero integers, and t_1 and t_2 are positive Dehn twists along any two simple closed geodesics α and β , respectively. Denote $\mathscr{G}_{p,n}$ the collection of these pseudo-Anosov mapping classes.

THEOREM 1.1. Let S be a Riemann surface of type (p, n) with 3p+n > 4 and $n \ge 1$. Then

- (1) for any $f \in \mathcal{G}_{1,3} \cup \mathcal{G}_{0,5} \cup \mathcal{G}_{2,1}$, $\log \lambda(f) > 2.88727$, and
- (2) for any $f \in \mathcal{G}_{p,n}$ with $(p,n) \neq (0,5)$, (1,3) or (2,1),

 $\log \lambda(f) > \log h_0 \left(2p + n - 2\right),$

where $h_0(x) = 1 + x^2 + x\sqrt{2 + x^2}$.

REMARK 1.1. Theorem 1.1 gives a lower bound for dilatations of elements in \mathscr{G} that is the union of $\mathscr{G}_{p,n}$ for all (p,n) with 3p + n > 4 and $n \ge 1$. That is, for any $f \in \mathscr{G}$, we have $\log \lambda(f) > 2.29243$ which occurs when (p,n) = (1,2).

One reason to study the set $\mathscr{G}_{p,n}$ of pseudo-Anosov mapping classes is that it is intimately linked to the length estimations of filling closed geodesics of Riemann surfaces. To illustrate, we let $f \in \mathscr{G}_{p,n}$ be a pseudo-Anosov mapping class that is represented by a pseudo-Anosov map also denoted by f, then there is an isotopy $I : \tilde{S} \times [0,1] \to \tilde{S}$ such that $I(\cdot,0) = f$ and $I(\cdot,1) = \mathrm{id}$. Since f(a) = a, $\{I(a,t) : 0 \leq t \leq 1\}$ traces out a closed (self-intersecting) curve c'. By Theorem 2 of Kra [5], the curve c' fills \tilde{S} .

COROLLARY 1.1. For any hyperbolic structure on \tilde{S} , we let $c \in \tilde{S}$ denote the filling closed geodesic freely homotopic to c'. Then the hyperbolic length $l_{\tilde{S}}(c) > 2K$, where K is the lower bound obtained from Theorem 1.1.

REMARK 1.2. In [10] we considered those special filling geodesics c generated by two parabolic curves, and gave a better estimations for the hyperbolic lengths of c for any hyperbolic structure on \tilde{S} .

The plan of this article is as follows. In Section 2 we introduce the background material we shall need. In Section 3, we study elements of $\mathcal{G}_{p,n}$ through pairs of filling simple closed geodesics. In Section 4, we give some estimates of lower bounds for dilatations of elements in various subsets of $\mathcal{G}_{p,n}$. In Section 5, we estimate the minimal number of intersections of the curves α and β that determine an element of $\mathcal{G}_{p,n}$. In Section 6, we prove Theorem 1.1 and Corollary 1.1.

2. Pseudo-Anosov Maps Represented by Dehn Twists

To establish notation and terminology, we refer to [6, 9]. Let $\operatorname{Homeo}(S)$ be the group of orientation-preserving homeomorphisms of S onto itself, and $\operatorname{Homeo}_0(S)$ the subgroup of $\operatorname{Homeo}(S)$ consisting of elements isotopic to the identity. The group $\operatorname{Homeo}(S)$ naturally acts on the space $\mathscr{J}(S)$ of conformal structures on S via pullbacks. The quotient space

 $\mathcal{J}(S)/\mathrm{Homeo}_0(S)$

is called the Teichmüller space T(S). The quotient group

 $\operatorname{Homeo}(S)/\operatorname{Homeo}(S),$

denoted by Mod_S , is the mapping class group of S and acts on T(S). The subgroup Mod_S^a of Mod_S that consists of mapping classes fixing the puncture a is called the a-pointed mapping class group. When a is filled in, there defines a natural projection $i : \operatorname{Mod}_S^a \to \operatorname{Mod}_{\tilde{S}}$, where $\operatorname{Mod}_{\tilde{S}}$ is the mapping class group of \tilde{S} .

The mapping class group Mod_S is identified with the group of holomorphic automorphisms of T(S) when 3p + n > 4. T(S) is equipped with a Teichmüller metric $d_{T(S)}$ so that Mod_S acts as a group of isometries.

Every quadratic differential ϕ on S defines a flat structure on S. That is, away from each zero of ϕ we write $\phi = dw^2$ to obtain a local parameter w up to a translation $w \mapsto \pm w + c$ for a constant c. Note that for each complex number z in the unit disk $\Delta = \{z : |z| < 1\}$, the form

$$\nu_z = z \phi / |\phi|$$

determines an equivalent class $[\nu_z]$ in T(S). We see that

$$\Delta \ni z \longmapsto [\nu_z] \in T(S)$$

is an isometry of Δ into T(S) with respect to the hyperbolic metric on Δ and the Teichmüller metric $d_{T(S)}$ on T(S).

Let **H** denote the hyperbolic plane $\{z = x + iy \in \mathbf{C} : y > 0\}$ equipped with the hyperbolic metric $\frac{|dz|}{\operatorname{Im} z}$. We thus obtain an isometry

$$(2.1) \mathbf{H} \hookrightarrow T(S).$$

The image of (2.1) is called a Teichmüller disk and is denoted by D_{ϕ} . For each such D_{ϕ} , we can consider its stabilizer $\operatorname{Stab}(D_{\phi})$ in Mod_S . Each element $f \in \operatorname{Stab}(D_{\phi})$ determines a Möbius transformation $\mathfrak{D}(f)$ and the collection of all $\mathfrak{D}(f)$, where $f \in \operatorname{Stab}(D_{\phi})$, form a Fuchsian group V_{ϕ} . See Veech [9] for more information about the group V_{ϕ} .

It is important to note, see Leininger [6] for example, that hyperbolic elements $\mathfrak{D}(f)$ in V_{ϕ} correspond to pseudo-Anosov elements f in Mod_S. The isometry (2.1) yields that

(2.2)
$$\lambda(f) = \exp\left(\frac{T}{2}\right),$$

where T denotes the translation length of $\mathfrak{D}(f)$.

Assume that $\mathcal{A} = \{\alpha_1, \ldots, \alpha_u\}$ and $\mathfrak{B} = \{\beta_1, \ldots, \beta_v\}, u, v \geq 1$, are collections of disjoint and homotopically independent simple closed geodesics on S that fills S in the sense that $S - \{\mathcal{A}, \mathcal{B}\}$ consists of topological disks and once punctured disks. Let t_1 and t_2 denote the positive multi twists along some curves in \mathcal{A} and some curves in \mathfrak{B} , respectively. Observe that $\mathcal{A} \cup \mathfrak{B}$ is regarded as a graph whose dual graph defines a complex \mathscr{C} . From the argument of Thurston [8] (see also Veech [9] and Leininger [6] for an exposition), \mathscr{C} can be used to define a Euclidean cone metric on S. In this way, we obtain a quadratic differential ϕ and a Teichmüller disc D_{ϕ} on which the multi-twists t_1 and t_2 act invariantly. This means that, if we denote by \mathfrak{D}_1 and \mathfrak{D}_2 the corresponding Möbius transformations on **H** through the isometry (2.1), then \mathfrak{D}_1 and $\mathfrak{D}_2 \in V_{\phi}$ are parabolic elements. Note that most elements in the subgroup $\langle \mathfrak{D}_1, \mathfrak{D}_2 \rangle$ generated by \mathfrak{D}_1 and \mathfrak{D}_2 are hyperbolic. We see that most elements in $\langle t_1, t_2 \rangle$ are pseudo-Anosov.

Following Leininger [6], we let N denote the $u \times v$ matrix whose (i, j)entry is the minimal geometric intersection number $i(\alpha_i, \beta_j)$ of α_i and β_j

Figure 1.

for $\alpha_i \in \mathcal{A}$ and $\beta_j \in \mathfrak{B}$. Since $(\mathcal{A}, \mathfrak{B})$ fills S, the $u \times u$ matrix NN^t is irreducible. Denote $\mu(NN^t)$ the Perron-Frobenius eigenvalue of NN^t , and set $\mu = \sqrt{\mu(NN^t)}$. Then \mathfrak{D}_1 and \mathfrak{D}_2 can be represented by the following 2×2 matrices:

(2.3)
$$\mathfrak{D}_1 = \begin{pmatrix} 1 & \mu \\ 0 & 1 \end{pmatrix}$$
 and $\mathfrak{D}_2 = \begin{pmatrix} 1 & 0 \\ -\mu & 1 \end{pmatrix}$.

Denote $\Gamma = \langle \mathfrak{D}_1, \mathfrak{D}_2 \rangle$. If $\mu > 2$, then Γ is a torsion free discrete subgroup of V_{ϕ} . By Lemma 6.3 of Leininger [6], \mathbf{H}/Γ is a twice punctured disk endowed with a hyperbolic structure, and the smallest translation length T_0 among all hyperbolic elements of Γ is realized by the hyperbolic element

$$(\mathfrak{D}_1\mathfrak{D}_2)^{\pm 1}$$
.

See Figure 1 (a) for an illustration.

More precisely, the translation length T_0 is given by $\log \varepsilon^2$, where ε is the larger root of the equation $x^2 + (2 - \mu^2)x + 1 = 0$. By applying Corollary 6.7 of [6], we assert that for any pseudo-Anosov map $f \in \langle t_1, t_2 \rangle$, its dilatation $\lambda(f) \geq \varepsilon$ and the equality holds if and only if $f = (t_1 \circ t_2)^{\pm 1}$ up to a conjugacy.

3. Elements of $\mathcal{G}_{p,n}$ and Their Projections to \tilde{S}

In what follows we assume that u = v = 1; that is, $\mathcal{A} = \{\alpha\}$, $\mathfrak{B} = \{\beta\}$, and t_1 and t_2 are simple positive Dehn twists along α and β , respectively. In this case, $\mu = i(\alpha, \beta)$ and every $f \in \mathcal{G}_{p,n}$ can be generated by t_1 and t_2

for certain pair (α, β) of simple closed geodesics. This implies that $\{\alpha, \beta\}$ fills the surface S. Write f in the form (1.2). Let $\tilde{\alpha}$ and $\tilde{\beta}$ denote the simple closed geodesics on \tilde{S} homotopic to α and β , respectively if α and β are viewed as curves on \tilde{S} . Recall that there is a group epimorphism $i : \operatorname{Mod}_{S}^{a} \to \operatorname{Mod}_{\tilde{S}}$. From Theorem 1.2 of [12], either (i) $\tilde{\alpha}$ and $\tilde{\beta}$ are trivial, or (ii) $\tilde{\alpha}$ and $\tilde{\beta}$ are both nontrivial. If $\tilde{\alpha}$ and $\tilde{\beta}$ are trivial, then $i(t_1) = t_{\tilde{\alpha}}$ and $i(t_2) = t_{\tilde{\beta}}$ are trivial mapping classes. Thus the projection $i(\prod_i (t_1^{m_i} \circ t_2^{n_i}))$ is trivial for any integers m_i and n_i .

We consider the case that both $\tilde{\alpha}$ and $\hat{\beta}$ are nontrivial.

LEMMA 3.1. Let $f \in \mathcal{F}_{p,n}$ be of form (1.2). Assume that $\tilde{\alpha}$ and $\tilde{\beta}$ are nontrivial. Then there are integers m_i and n_j that take alternate signs.

PROOF. We assume that all m_i and n_i are positive (the negative case can be handled similarly). If $\tilde{\alpha} = \tilde{\beta}$, then

$$i(f) = t_{\tilde{\alpha}}^{\sum_{i}(m_i + n_i)}$$

is nontrivial. This is a contradiction. If $\tilde{\alpha}$ and $\tilde{\beta}$ are disjoint, then it is easy to see that

$$\prod_{i} (t_{\tilde{\alpha}}^{m_{i}} \circ t_{\tilde{\beta}}^{n_{i}}) = t_{\tilde{\alpha}}^{\sum_{i} m_{i}} \circ t_{\tilde{\beta}}^{\sum_{i} n_{i}}$$

is nontrivial. This again contradicts that i(f) is trivial. So $\tilde{\alpha}$ and β must intersect.

The Dehn twists $t_{\tilde{\alpha}}$ and $t_{\tilde{\beta}}$ can be lifted to $\tau_1, \tau_2 : \mathbf{H} \to \mathbf{H}$ so that for $i = 1, 2, \tau_i$ determines a simply connected region K_i whose complement $\mathbf{H} - K_i$ is a disjoint union of half-planes U_i (called maximal elements in the sequel) each of which is an invariant region under the lift τ_i .

The lift τ_i also determines a mapping class (denoted by τ_i^*) of S under a Bers isomorphism φ (Theorem 9 of Bers [2]). By Lemma 3.3 of [11], τ_i^* is represented by the Dehn twist t_i . See [11] and [12] for more detailed information on the lifts of Dehn twists obtained in this way.

Consider the map

(3.1)
$$\zeta = \prod_{i} \left(\tau_1^{m_i} \tau_2^{n_i} \right).$$

Let ζ^* denote the corresponding element of Mod_S^a under the isomorphism φ .

From (3.1) and (1.2) we obtain

 $(3.2) \qquad \qquad \zeta^* = f.$

From (1.2) again,

$$\prod_{i} \left(t_{\tilde{\alpha}}^{m_{i}} \circ t_{\tilde{\beta}}^{n_{i}} \right) = i \left(\prod_{i} (t_{1}^{m_{i}} \circ t_{2}^{n_{i}}) \right) = i(f).$$

That is to say, ζ is a lift of i(f). By hypothesis, $f \in \mathcal{F}_{p,n}$, i.e., i(f) is trivial. If we denote by $\varrho : \mathbf{H} \to \tilde{S}$ a universal covering with a covering group G, then this is equivalent to saying that ζ defined as (3.1) satisfies $\zeta|_{\mathbf{S}^1} = h|_{\mathbf{S}^1}$ for an element $h \in G$. A contradiction will be derived once Lemma 3.2 below is established. \Box

LEMMA 3.2. Let ζ be defined as (3.1). Assume that all m_i and n_i are positive integers. Then $\zeta|_{\mathbf{S}^1} \neq h|_{\mathbf{S}^1}$ for any element $h \in G$.

PROOF. It is trivial that $\zeta|_{\mathbf{S}^1} \neq id$. Recall that $\mathbf{H} - K_i$, i = 1, 2, is a disjoint union of maximal elements of τ_i . There are two cases to consider.

CASE 1. $K_1 \cap K_2 \neq \emptyset$. In this case, we note that every element of G is either parabolic or hyperbolic; it has at most two fixed points and at least one fixed point on \mathbf{S}^1 . Since $\zeta|_{K_1 \cap K_2} = \mathrm{id}$, if $(K_1 \cap K_2) \cap \mathbf{S}^1$ contains more than 3 points, then $\zeta|_{\mathbf{S}^1} \neq h$ for any nontrivial element $h \in G$.

Figure 2.

Suppose that $(K_1 \cap K_2) \cap \mathbf{S}^1$ contains no points. That is, $K_1 \cap K_2$ stays away from \mathbf{S}^1 . See Figure 2. As $m_i, n_i > 0$, we observe that the motion $\zeta|_{\mathbf{S}^1}$ is in the clockwise direction without any fixed points. This implies that $\zeta|_{\mathbf{S}^1} \neq h|_{\mathbf{S}^1}$ for any nontrivial element $h \in G$.

The remaining cases are handled similarly. If $(K_1 \cap K_2) \cap \mathbf{S}^1$ contains only one point z, and if $\zeta|_{\mathbf{S}^1} = h|_{\mathbf{S}^1}$ for a nontrivial element $h \in G$, then his parabolic with fixed point z. Now we choose a maximal element U_1 of τ_1 and a maximal element U_2 of τ_2 so that $\partial U_1 \cap \partial U_2 \neq \emptyset$. Then for any point $z' \in (U_1 \cap U_2) \cap \mathbf{S}^1$, it is easily seen that the action of $\zeta|_{(U_1 \cap U_2) \cap \mathbf{S}^1}(z')$ is hyperbolic. So $\zeta|_{\mathbf{S}^1} \neq h|_{\mathbf{S}^1}$. This leads to a contradiction. If $(K_1 \cap K_2) \cap \mathbf{S}^1$ contains only two points z_1, z_2 , and if $\zeta|_{\mathbf{S}^1} = h|_{\mathbf{S}^1}$ for a nontrivial element $h \in G$, then h is hyperbolic that takes z_1 , say, as its attracting fixed point and z_2 as its repelling fixed point. Since all $n_i, m_i > 0$, the action of $\zeta|_{\mathbf{S}^1}$ is in the clockwise direction, whereas on the one side of z_1 , h is in the clockwise direction, and on the other side of z_1, h is in the counter clockwise direction. It follows that $\zeta|_{\mathbf{S}^1} \neq h|_{\mathbf{S}^1}$.

CASE 2. $K_1 \cap K_2 = \emptyset$. In this case, we can write $\zeta = g \circ \lambda$ for some $g \in G$ and some λ of form (3.1) with $K_1^* \cap K_2^* \neq \emptyset$, where K_1^* and K_2^* are complements of all maximal elements determined by λ . It follows that

(3.3)
$$\zeta|_{\mathbf{S}^1} = g\lambda|_{\mathbf{S}^1}.$$

From the discussion of Case 1, $\lambda|_{\mathbf{S}^1} \neq h|_{\mathbf{S}^1}$ for any $h \in G$. Assume that $\zeta|_{\mathbf{S}^1} = h_0|_{\mathbf{S}^1}$ for some element $h_0 \in G$. From (3.3), $\lambda|_{\mathbf{S}^1} = g^{-1}h_0|_{\mathbf{S}^1}$. This leads to a contradiction by the discussion in Case 1. Hence the lemma is proved. \Box

If (1.2) contains only one factor, we have the following result.

LEMMA 3.3. Let m, n be arbitrary nonzero integers and let $f = t_1^m \circ t_2^n$ be an element of $\mathcal{G}_{p,n}$. Then $\tilde{\alpha} = \tilde{\beta}$ and hence n + m = 0.

PROOF. Suppose that $\tilde{\alpha} \neq \tilde{\beta}$. Then either $\tilde{\alpha}, \tilde{\beta}$ are disjoint, or they intersect. The former case leads to that i(f) is a nontrivial multi-twist, contradicting that $f \in \mathcal{G}_{p,n}$. In later case, we use the assumption of $i(f) = \mathrm{id}$ to calculate that $i(t_1^{-m} \circ f) = t_{\tilde{\alpha}}^{-m}$. On the other hand, we also have

$$i(t_1^{-m} \circ f) = i(t_2^n) = t_{\tilde{\beta}}^n,$$

which leads to that $t_{\tilde{\alpha}}^{-m} = t_{\tilde{\beta}}^{n}$. But this is impossible since $\tilde{\alpha}$ and $\tilde{\beta}$ intersect.

We conclude that $\tilde{\alpha} = \tilde{\beta}$. But then $\mathrm{id} = i(f) = t_{\tilde{\alpha}}^{m+n}$, which occurs if and only if m + n = 0. \Box

4. Some Estimates with Respect to Intersection Numbers

We continue to assume that 3p + n > 4 and $n \ge 1$. Let $f \in \mathcal{G}_{p,n}$. Then f is of form (1.2). The aim of this section is to present some lower bounds for dilatations $\lambda(f)$ of elements f in various subsets of $\mathcal{G}_{p,n}$ in terms of the intersection number $i(\alpha, \beta)$. We assume that $\mu = i(\alpha, \beta) > 2$.

LEMMA 4.1. With the conditions above, assume that $\tilde{\alpha}$ and β are trivial loops. Then

$$\lambda(f) > h_1(i(\alpha,\beta)),$$

where $h_1(x) = \frac{1}{2} \left(x^2 - 2 + x \sqrt{x^2 - 4} \right).$

PROOF. Since $\tilde{\alpha}$ and $\tilde{\beta}$ are trivial, for arbitrary integers m_i and n_i , $t^m_{\tilde{\alpha}}$ and $t^n_{\tilde{\beta}}$ are trivial. So the shortest closed geodesic on \mathbf{H}/Γ is drawn in Figure 1 (a) which can be achieved when m = n = 1.

By Corollary 6.7 of [6], $\lambda(f) \geq \varepsilon$. Hence

(4.1)
$$\lambda(f) \ge h_1(\mu) \text{ for } \mu = i(\alpha, \beta). \square$$

LEMMA 4.2. Assume that $f \in \mathcal{G}_{p,n}$ is of form (1.2) with $i \geq 2$ and $\tilde{\alpha}, \tilde{\beta}$ are both nontrivial. Then

$$\lambda(f) > h_0(i(\alpha, \beta)),$$

where $h_0(x) = 1 + x^2 + x\sqrt{2 + x^2}$.

PROOF. Let $f \in \mathcal{G}_{p,n}$ be of form (1.2). Then (α, β) fills S and thus it determines a quadratic differential ϕ , which in turn defines a Teichmüller disk D_{ϕ} in T(S). Recall that the Dehn twists t_1 and t_2 determines two parabolic elements \mathfrak{D}_1 and \mathfrak{D}_2 that have representations (2.3) for $\mu =$ $i(\alpha, \beta)$. By Lemma 6.3 of [6], for $\mu > 2$, Γ is a torsion free Fuchsian group so that \mathbf{H}/Γ is a twice punctured disk.

Since $i \geq 2$, by Lemma 3.1, there are at least one m_i and n_j that take alternate signs. For $\xi, \eta = 1, 2$ and $\eta \neq \xi$, we let \mathcal{M} denote the finite set consisting of elements

$$\mathfrak{D}_{\xi}^{-1}\mathfrak{D}_{\eta}\mathfrak{D}_{\xi}\mathfrak{D}_{\eta}, \quad \mathfrak{D}_{\xi}^{-1}\mathfrak{D}_{\eta}^{-1}\mathfrak{D}_{\xi}\mathfrak{D}_{\eta}, \quad \mathfrak{D}_{\xi}^{-1}\mathfrak{D}_{\eta}\mathfrak{D}_{\xi}^{-1}\mathfrak{D}_{\eta}$$

and their inverses. A simple calculation shows that

trace
$$\mathfrak{D}_{\xi}^{-1}\mathfrak{D}_{\eta}^{-1}\mathfrak{D}_{\xi}\mathfrak{D}_{\eta}\Big| = 2 + \mu^{4},$$

trace $\mathfrak{D}_{\xi}^{-1}\mathfrak{D}_{\eta}\mathfrak{D}_{\xi}\mathfrak{D}_{\eta}\Big| = \mu^{4} - 2,$

and

trace
$$\mathfrak{D}_{\xi}^{-1}\mathfrak{D}_{\eta}\mathfrak{D}_{\xi}^{-1}\mathfrak{D}_{\eta}\Big| = \mu^4 + 4\mu^2 + 2.$$

If $\mu > 2$, all these elements are hyperbolic and hence they define pseudo-Anosov maps of S. Note that the value $\mu^4 - 2$, which is larger than $2 + 2\mu^2$ for all $\mu \ge 2$, is the minimum value among all traces of elements in \mathcal{M} , and hence is the minimum value among all traces of elements in $\mathcal{G}_{p,n}$ with $i \ge 2$. Let T_1 denote the translation length of $\mathfrak{D}_{\xi}^{-1}\mathfrak{D}_{\eta}\mathfrak{D}_{\xi}\mathfrak{D}_{\eta}$. From Beardon [1], the translation length T_1 of the hyperbolic element trace $\mathfrak{D}_{\xi}^{-1}\mathfrak{D}_{\eta}\mathfrak{D}_{\xi}\mathfrak{D}_{\eta}$ satisfies

$$\cosh\left(\frac{T_1}{2}\right) = \frac{1}{2} \left| \operatorname{trace}\left(\mathfrak{D}_{\xi}^{-1}\mathfrak{D}_{\eta}\mathfrak{D}_{\xi}\mathfrak{D}_{\eta}\right) \right|.$$

Then by the process of cutting and pasting, for any element f in $\mathcal{G}_{p,n}$ with $i \geq 2$, the translation length T of $\mathfrak{D}(f)$ satisfies the inequality:

$$\cosh\left(\frac{T}{2}\right) \ge 1 + \mu^2.$$

From the isometry,

$$\lambda(f) = \exp\left(\frac{T}{2}\right).$$

It follows that

 $\lambda(f)$ > the larger root of $x^2 - (2 + 2\mu^2)x + 1 = 0$.

Hence

$$\lambda(f) > h_0(\mu).$$

This proves the lemma. \Box

A similar argument of Lemma 4.2 yields

LEMMA 4.3. Let 3p + n > 4 and $n \ge 1$. Let $f \in \mathcal{G}_{p,n}$ be of form (1.2). Assume that $\tilde{\alpha}, \tilde{\beta}$ are both nontrivial and the expression (1.2) contains only one single factor, that is, i = 1. Then

$$\lambda(f) > h(i(\alpha,\beta)),$$

where $h(x) = \frac{1}{2} \left(2 + x^2 + x\sqrt{4 + x^2} \right)$.

PROOF. Let f be as in Lemma 3.3. From Lemma 3.3, $\tilde{\alpha} = \tilde{\beta}$ and thus m + n = 0. By the same argument as in Lemma (4.2), we see that $\mathfrak{D}_1\mathfrak{D}_2^{-1}$ is hyperbolic and its axis projects to a geodesic c that is a closed self-intersecting geodesic and takes the shortest length among closed selfintersecting geodesics on \mathbf{H}/Γ . See Figure 1 (b). Let T_1 denote the translation length of $\mathfrak{D}_1\mathfrak{D}_2^{-1}$. Note that the absolute value of trace of $\mathfrak{D}_1\mathfrak{D}_2^{-1}$ is $2 + \mu^2$, where we continue to denote $\mu = i(\alpha, \beta)$. We can then prove the lemma by using the same argument of Lemma 4.2. Details are omitted. \Box

5. Intersections of Two Filling Geodesics

We first consider the case that $\tilde{\alpha}$ and $\tilde{\beta}$ are both trivial on \tilde{S} and (α, β) fills S. Then α and β are boundaries of twice punctured disks Δ_1 and Δ_2 with the puncture $a \in \Delta_1 \cap \Delta_2$. The deformation retracts of Δ_1 and Δ_2 are two paths γ_1 and γ_2 , where γ_i connects a and another puncture b_i of \tilde{S} without passing through any other punctures of \tilde{S} . Note that b_1 may be equal to b_2 .

By fattening a path we are able to reverse the above procedure to produce two filling simple curves α and β on S with minimum intersections. To illustrate, we use the construction of Lemma 5 of [10], which assets that there are two paths γ_1 and γ_2 connecting a and a puncture b_i i = 1, 2, with minimum intersection numbers such that $S - {\gamma_1, \gamma_2}$ consists of disks and once punctured disks.

Observe that γ_1 and γ_2 define two twice punctured disks Δ_1 and Δ_2 so that $a \in \Delta_1 \cap \Delta_2$. The two boundary curves $\partial \Delta_1$ and $\partial \Delta_2$ have the properties that (i) $(\partial \Delta_1, \partial \Delta_2)$ fills S and (ii) $i(\partial \Delta_1, \partial \Delta_2)$ is the minimum among all curves α and β with $\tilde{\alpha}$ and $\tilde{\beta}$ trivial. More specifically, the following lemma was proved in [10]:

LEMMA 5.1. With the above conditions, $\mu = i(\alpha, \beta) \ge 8p + 4n - 10$ if $n \ge 3$; $\mu \ge 8p + 2$ if n = 2; and $\mu \ge 8p + 1$ if n = 1.

Now we consider that $\tilde{\alpha}$ and $\tilde{\beta}$ are both nontrivial on \tilde{S} . We have

LEMMA 5.2. With the above hypothesis, (1) $i(\alpha, \beta) \ge 2p + n - 2$, and (2) if $\tilde{\alpha} = \tilde{\beta}$, then

$$\mu = i(\alpha, \beta) \ge \max\{4, 4p + 2n - 6\}.$$

PROOF. (1) Observe that the union $\alpha \cup \beta$ is regarded as a 4-valence graph on S. Let \overline{S} denote the comtactification of S, and let V, E, F denote the vertices, edges and faces of the graph, respectively. Then its Euler characteristic

(5.1)
$$2 - 2p = \chi(\overline{S}) = V + F - E$$

Since $\alpha \cup \beta$ is of 4-valence, $V = i(\alpha, \beta)$ and E = 2V. Note that $\alpha \cup \beta$ fills $S, F \ge n$. Hence

$$i(\alpha,\beta) \ge 2p - 2 + n.$$

This proves (1).

(2) Assume now that $\tilde{\alpha} = \tilde{\beta}$. This implies that α intersects β in an even number of intersections. Since (α, β) fills S, $i(\alpha, \beta) > 0$.

Our first goal is to prove

$$(5.2) i(\alpha,\beta) \ge 4.$$

Indeed, if $i(\alpha, \beta) = 2$, then α and β bound an *a*-punctured bigon *B* as shown in Figure 3.

In Figure 3, β is the union of two smaller arcs c_0 and c_1 . Let $P_1, P_2 \in \beta$ be two points near B. By replacing c_1 with a segment $\overline{P_1P_2}$ connecting P_1 and P_2 , we obtain a curve $\beta' = c_0 \cup \overline{P_1P_2}$.

Then α and β' bound a cylinder \mathfrak{P} . Let $\mathfrak{P}_0 = \mathfrak{P} \cup B$. Observe that

(5.3)
$$S - \mathcal{P}_0 \cong \tilde{S} - \{\tilde{\alpha}\}.$$

If S is of type (p, n) with 3p + n > 4, $n \ge 1$, then \tilde{S} is of type (p, n - 1)and $\tilde{S} - {\tilde{\alpha}}$ always contains at least one nontrivial loop. It follows from

Figure 3.

(5.3) that $S - \mathcal{P}_0$ contains at least one nontrivial loop. Hence (α, β) does not fill S, which leads to a contradiction. We see that if (α, β) fills S and $\tilde{\alpha} = \tilde{\beta}$, then (5.2) holds.

We conclude that $i(\alpha, \beta) \geq 4$. Let B_0 be the innermost *a*-punctured bigon formed by α and β , and let P_1, P_2 be the vertices of B_0 . Let δ_1 and δ_0 be the boundary curves of B_0 , where δ_1 is the segment of α connecting P_1 and P_2 . Since $i(\alpha, \beta) > 3$, the segment σ_1 of β starting from P_1 must also intersect α at a point Q_1 that is different from P_1 and P_2 . Likewise, the segment σ_2 of β starting from P_2 must also intersect α at a point Q_2 that is different from all P_1, P_2 , and Q_1 . The segment of α connecting Q_1 and Q_2 is denoted by δ_2 .

Let 2 denote the quadrilateral formed by $\{\delta_1, \delta_2; \sigma_1, \sigma_2\}$. Since β is simple, either δ_1 and δ_2 are disjoint or or $\delta_1 \subset \delta_2$. The two cases are depicted in Figure 4(a) and Figure 4(b) depending on whether $\delta_1 \cap \delta_2 = \emptyset$ or $\delta_1 \subset \delta_2$.

In particular, when α bounds a disk that contains not only *a* but also more than one punctures of \tilde{S} , Figure 4 (a) can be drawn as Figure 5.

If \mathfrak{D} contains a segment σ of β , as shown by dotted lines in Figure 4(a), Figure 4(b) and Figure 5, then since β is simple, it intersects δ_2 at two points.

Let B_1 denote the bigon formed by σ and δ_2 (B_1 is shown but is not labeled in these figures). Then B_1 does not include any puncture of \tilde{S} . Otherwise, β can not be deformed to α , and this would be a contradiction. So without loss of generality we may assume by pushing σ to leave \mathfrak{Q} that \mathfrak{Q} does not contain any segment of β .

We also claim that \mathfrak{Q} does not contain any puncture of \tilde{S} . Indeed, when

C. Zhang

Figure 4.

a is filled in, *S* becomes \tilde{S} and δ_0 is pushed to δ_1 , and thus β is deformed through B_0 to a curve β' . If \mathfrak{D} contains punctures of \tilde{S} , then β' cannot be deformed to α . This again contradicts that $\tilde{\alpha} = \tilde{\beta}$.

From the above discussion, a pair $\{P_1, P_2\}$ of vertices of $\alpha \cup \beta$ determines a quadrilateral 2 that does not contain any punctures of \tilde{S} . Then we can push 2 to the next quadrilateral 2' that is determined by the pair $\{Q_1, Q_2\}$. From the same argument as above, 2' does not contain any punctures of \tilde{S} . Since $2' \neq 2$, 2' - 2 consists of some quadrilaterals that do not contain any punctures of \tilde{S} .

All intersections of α and β are grouped in terms of vertices of quadrilaterals all of which do not include any punctures of \tilde{S} . By induction, one proves that there are at least $\frac{i(\alpha,\beta)}{2} - 1$ quadrilaterals that do not contain any punctures of \tilde{S} .

Recall that $\alpha \cup \beta$ can be thought of as a 4-valence graph on \overline{S} . The Euler characteristic calculation yields that (5.1) holds.

Since $\alpha \cup \beta$ fills \tilde{S} , each face must contain at most one puncture of \tilde{S} . As discussed above, there are at least $\frac{i(\alpha,\beta)}{2} - 1$ quadrilaterals that do not contain any punctures of \tilde{S} . Hence from (5.1),

$$F \ge \frac{i(\alpha,\beta)}{2} + n - 1.$$

It follows that

$$i(\alpha,\beta) \ge 4p + 2n - 6.$$

This proves Lemma 5.2. \Box

6. Proof of the Results

We need several elementary calculations.

LEMMA 6.1. Assume that 2p + n < 6 and 3p + n > 4 with $n \ge 1$. Then (p, n) = (1, 2), (0, 5), (1, 3) or (2, 1).

In what follows, we set

$$\nu = 4p + 2n - 6, \ \sigma = 2p + n - 2,$$

and

$$\mu = 8p + 4n - 10$$
 if $n \ge 3$; and $\mu = 8p + n$ if $1 \le n \le 2$.

Then $\nu = 2\sigma - 2$.

LEMMA 6.2. Let h(x) and $h_0(x)$ be defined as in Lemmas 4.3 and 4.2, respectively. Then

$$(6.1) h(\nu) > h_0(\sigma)$$

for $(p, n) \neq (1, 2), (0, 5), (1, 3)$ or (2, 1).

PROOF. Since $\nu < \sqrt{4 + \nu^2}$ and $\sigma < \sqrt{2 + \sigma^2}$, the inequality (6.1) follows from

(6.2)
$$1 + \nu^2 > 3 + 2\sigma^2.$$

Notice that $\sigma^2 - 4\sigma + 1 > 0$ for $\sigma \ge 4$ or $2p + n \ge 6$. It follows from Lemma 6.1 that for $(p, n) \ne (1, 2), (0, 5), (1, 3)$ or (2, 1), the inequality (6.1) holds. \Box

LEMMA 6.3. Let h(x) and $h_1(x)$ be defined as in Lemmas 4.3 and 4.1, respectively.

(1) If
$$(p, n) = (1, 2)$$
, then $\mu = 8p + n = 10$ and

$$h_1(\mu) = h_1(10) > h(4) \approx 17.94427...$$

(2) If
$$3p + n > 4$$
, $n \ge 1$, then

(6.3)
$$h_1(\mu) > h(\nu).$$

PROOF. (1) The proof that $h_1(10) > h(4)$ is a direct calculation.

(2) Notice that for any positive real number x, we have $x < \sqrt{4 + x^2}$; and for any $x \ge 4$, $x - 4 < \sqrt{x^2 - 4}$. From these inequalities, we assert that (6.3) follows from the inequality

(6.4)
$$\mu^2 - 2\mu > 4 + \nu^2.$$

So it suffices to establish (6.4) in various cases.

CASE 1. $n \ge 3$. Then $\mu = 8p + 4n - 10$ and $\nu = 4p + 2n - 6$. Set u = 2p + n. By hypothesis, 3p + n > 4 and $n \ge 1$. This implies that

$$u = 2p + n > \frac{n+8}{3} \ge 3.$$

Hence $u \ge 4$. Denote

$$h_2(x) = (2x-5)^2 - (x-3)^2 - 2x + 4.$$

When $x \ge 3$, $h'_2(x) = 6x - 16 > 0$, and the function $h_2(x)$ is increasing when $x \ge 3$. But $h_2(4) = 4$. Hence $h_2(u) > 0$ for $u \ge 4$. It follows that

$$(4u - 10)^2 - 8u + 20 > 4 + 4(u - 3)^2$$
 for $u \ge 4$.

This says that (6.4) is satisfied.

CASE 2. $1 \le n \le 2$. In this case, $\mu = 8p + n$ and $\nu = 4p + 2n - 6$. If n = 1, then since $48p^2 + 32p - 21 > 0$ for all $p \ge 1$, which is equivalent to

$$(8p+1)^2 - 2(8p+1) > 4 + 16(p-1)^2$$
.

It follows that (6.4) is satisfied. If n = 2, then $\mu = 8p + 2$ and $\nu = 4p - 2$. Observe that $6p^2 + 4p - 1 > 0$ for all $p \ge 1$, we see that

$$(8p+2)^2 - 2(8p+2) > 4 + 4(2p-1)^2.$$

That is, (6.4) holds.

From the discussions of the two cases, we conclude that (6.4) holds for all pairs (p, n) with 3p + n > 4 and $n \ge 1$. \Box

PROOF OF THEOREM 1.1. Every element $f \in \mathcal{G}_{p,n}$ can be written in the form (1.2) for m_i, n_i being nonzero integers and (α, β) being a pair of filling simple closed geodesics of S. Then by Theorem 1.2 of [12], either $\tilde{\alpha}, \tilde{\beta}$ are trivial loops on \tilde{S} , or $\tilde{\alpha}, \tilde{\beta}$ are both nontrivial on \tilde{S} . First we assume that $(p, n) \neq (1, 2), (0, 5), (1, 3)$ or (2, 1).

If $\tilde{\alpha}$ and β are trivial, then Lemma 4.1 and Lemma 5.1 yield

$$\lambda(f) > h_1(8p + 4n - 10)$$

if $n \geq 3$; and

$$\lambda(f) > h_1(8p+n)$$

if $1 \le n \le 2$. From Lemma 6.3 and Lemma 6.2, we obtain the following inequalities:

$$h_1(8p + 4n - 10) > h_0(2p - 2 + n)$$

and

$$h_1(8p+n) > h_0(2p-2+n).$$

It follows immediately that

(6.5)
$$\lambda(f) > h_0(2p - 2 + n)$$

so long as f is represented as (1.2) for $\tilde{\alpha}$ and $\tilde{\beta}$ being trivial.

It remains to consider the possibility that $\tilde{\alpha}$ and $\tilde{\beta}$ are nontrivial. If in the expression (1.2) i = 1, that is, $f = t_1^m \circ t_2^n$ for some integers m and n. Then by Lemma 3.3, we must have that $\tilde{\alpha} = \tilde{\beta}$ and m + n = 0. From Lemma 5.2 and Lemma 4.3, we get that

(6.6)
$$\lambda(f) > h(4p + 2n - 6).$$

From Lemma 6.2, we conclude that

$$h(4p + 2n - 6) > h_0(2p + n - 2).$$

Together with (6.6) we see that

(6.7)
$$\lambda(f) > h_0(2p+n-2).$$

Next, we assume that $i \geq 2$. It is not clear whether $\tilde{\alpha} = \tilde{\beta}$. In this situation we apply Lemma 4.2 and Lemma 5.2 to obtain

4.0 111 1

(6.8)
$$\lambda(f) > h_0(2p - 2 + n).$$

Finally we consider some special cases. (1, 2)

(a)
$$(p, n) = (1, 2)$$
. In this case, $\nu = 2$, $\sigma = 2$, $\mu = 10$. We have
 $\lambda(f) > \min \{h(4), h_1(\mu), h_0(\sigma)\} = h_0(2) = 5 + 2\sqrt{6} \approx 9.89898$.
(b) $(p, n) = (1, 3)$. In this case, $\nu = 4$, $\sigma = 3$, $\mu = 10$. We have
 $\lambda(f) > \min \{h(\nu), h_1(\mu), h_0(\sigma)\} = h(4) = 9 + 4\sqrt{5} \approx 17.9443$.
(c) $(p, n) = (0, 5)$. In this case, $\nu = 4$, $\sigma = 3$, $\mu = 10$. We have
 $\lambda(f) > \min \{h(\nu), h_1(\mu), h_0(\sigma)\} = h(4) = 9 + 4\sqrt{5} \approx 17.9443$.
(d) $(p, n) = (2, 1)$. In this case, $\nu = 4$, $\sigma = 3$, $\mu = 17$. We have
 $\lambda(f) > \min \{h(\nu), h_1(\mu), h_0(\sigma)\} = h(4) = 9 + 4\sqrt{5} \approx 17.9443$.

This completes the proof of Theorem $1.1.\Box$

To prove Corollary 1.1, we recall that

$$i: \operatorname{Mod}_{S}^{a} \to \operatorname{Mod}_{\tilde{S}}$$

is the natural projection defined by forgetting the puncture a. From Theorem 4.1 and Theorem 4.2 of Birman [3] (see also Theorem 10 of Bers [2]), ker(i) is a normal subgroup of Mod_S^a and is isomorphic to the covering group G (for the covering map $\varrho : \mathbf{H} \to \tilde{S}$). For every element $h \in G$, the corresponding element in ker(i) is denoted by h^* .

Kra showed, see [5], that ker(i) contains infinitely many pseudo-Anosov maps which form a subset $\mathscr{G}_{p,n}^*$ of ker(i). Note that

$$\mathcal{G}_{p,n} \subset \mathcal{G}_{p,n}^*$$

Although by a theorem of Hubert–Lanneau [4], there exist pseudo-Anosov maps of S that can not be represented by any finite products of two Dehn twists along filling simple closed geodesics, it is not known whether $\mathscr{G}_{p,n} = \mathscr{G}_{p,n}^*$.

PROOF OF COROLLARY 1.1. Let $c \subset \tilde{S}$ be a filling geodesic that stems from an element $g^* \in \mathcal{G}_{p,n}$. This means that, if we denote by c_g the axis of the corresponding essential hyperbolic element g of G (under the Bers isomorphism), then $c = \varrho(c_g)$, where $\varrho : \mathbf{H} \to \tilde{S}$ is the universal covering map with the covering group G.

Under the isometry (2.1), the pseudo-Anosov mapping class g^* corresponds to a Möbius transformation $\mathfrak{D}(g^*)$ in the Veech group V_{ϕ} . Let T_1 denote the translation length of $\mathfrak{D}(g^*)$. From (2.2),

(6.9)
$$\log \lambda(f)^2 = T_1.$$

Let T_g denote the translation length of g. Then Proposition 7 of Kra [5] and (6.9) yield

(6.10)
$$T_q \ge T_{1/2} = \log \lambda(f).$$

From (6.10), we obtain

$$l_{\tilde{S}}(c) = T_g \ge K,$$

where K is the lower bound obtained from Theorem 1.1.

This proves the corollary. \Box

Acknowledgment. I am grateful to the referees for their insightful reading of the manuscript; and for their valuable comments and suggestions.

References

- Beardon, A., The geometry of Discrete groups, Springer-Verlag, NY Heidelberg Berlin, 1983.
- Bers, L., Fiber spaces over Teichmüller spaces, Acta Math. 130 (1973), 89– 126.
- [3] Birman, J. S., Braids, Links and Mapping class groups, Ann of Math. Studies, No. 82, Princeton University Press, 1974.
- [4] Hubert, P. and E. Lanneau, Veech group without parabolic elements, Duke Math. J. 133(2) (2006), 335–346.
- [5] Kra, I., On the Nielsen–Thurston–Bers type of some self-maps of Riemann surfaces, Acta Math. **146** (1981), 231–270.
- [6] Leininger, C. J., On groups generated by two positive multi-twists: Teichmüller curves and Lehmer's number, Geometry and topology 8 (2004), 1301–1359.
- [7] Penner, R. C., Bounds on least dilatations, Proc. Amer. Math. Soc. 113(2) (1991), 443–450.
- [8] Thurston, W. P., On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), 417–431.
- [9] Veech, W. A., Teichmüller curves in moduli space, Einstein series and an application to triangular billiards, Invent. Math. **97** (1989), 553–583.
- [10] Zhang, C., Hyperbolic lengths of some filling geodesics on Riemann surfaces with punctures, Osaka J. Math. 45 (2008), 773–787.
- [11] Zhang, C., Pseudo-Anosov maps and fixed points of boundary homeomorphisms compatible with a Fuchsian group, Osaka J. Math. **46**(3) (2009).
- [12] Zhang, C., Pseudo-Anosov mapping classes and their representations by products of two Dehn twists, Chinese Ann. Math. Ser. B 30(3), May (2009), 281–292.

(Received April 23, 2009) (Revised August 5, 2009)

> Department of Mathematics Morehouse College Atlanta, GA 30314, USA E-mail: czhang@morehouse.edu