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A Lower Bound for Dilatations of Certain Class of

Pseudo-Anosov Maps of Riemann Surfaces

By C. Zhang

Abstract. Let S be a Riemann surface of type (p, n) with 3p +
n > 4 that contains at least one puncture a. Let �p,n denote the set
of pseudo-Anosov maps of S that are isotopic to products of two Dehn
twists and are isotopic to the identity map on S̃ = S ∪ {a}. In this
article, we give a lower bound for dilatations of elements of �p,n. We

also estimate for any hyperbolic structure of S̃ the hyperbolic lengths
of those filling closed geodesics of S̃ stemming from the elements of
�p,n.

1. Introduction

Let S be a Riemann surface of type (p, n), where p is the genus and n

is the number of punctures of S. Assume that 3p + n > 4. An orientation-

preserving self-homeomorphism f0 of S is called pseudo-Anosov if there is

a pair (�h,�v) of transverse measured foliations on S and an algebraic

integer λ = λ(f0) > 1 such that f0(�h) = λ�h and f0(�v) = λ−1�v. The

number λ = λ(f0) is called the dilatation of f0. By abuse of language,

throughout this article a mapping class is called pseudo-Anosov if one of

its representative is pseudo-Anosov. Let f be a pseudo-Anosov mapping

class with its pseudo-Anosov representative f0. The dilatation λ(f) of f is

defined by λ(f0). It was shown in Penner [7] that for any pseudo-Anosov

mapping class f of S,

log λ(f) > log 2
12p−12+4n .

In [6] Leininger showed that for any pseudo-Anosov mapping class f of S

represented by a product of two Dehn twists,

log λ(f) > log λL ≈ 0.162..,(1.1)
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where λL is the Lehmer’s number that is the largest real root of the poly-

nomial x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1.

We assume that n ≥ 1 and let a be a fixed puncture of S. Denote

S̃ = S ∪ {a}. In this article we consider those pseudo-Anosov mapping

classes of S that are trivial on S̃ and are represented by finite products:∏
i

(tmi
1 ◦ tni

2 ) ,(1.2)

where mi and ni are non-zero integers, and t1 and t2 are positive Dehn

twists along any two simple closed geodesics α and β, respectively. Denote

�p,n the collection of these pseudo-Anosov mapping classes.

Theorem 1.1. Let S be a Riemann surface of type (p, n) with 3p+n >

4 and n ≥ 1. Then

(1) for any f ∈ �1,3 ∪ �0,5 ∪ �2,1, log λ(f) > 2.88727, and

(2) for any f ∈ �p,n with (p, n) �= (0, 5), (1, 3) or (2, 1),

log λ(f) > log h0 (2p + n− 2) ,

where h0(x) = 1 + x2 + x
√

2 + x2.

Remark 1.1. Theorem 1.1 gives a lower bound for dilatations of el-

ements in � that is the union of �p,n for all (p, n) with 3p + n > 4 and

n ≥ 1. That is, for any f ∈ �, we have log λ(f) > 2.29243 which occurs

when (p, n) = (1, 2).

One reason to study the set �p,n of pseudo-Anosov mapping classes is

that it is intimately linked to the length estimations of filling closed geodesics

of Riemann surfaces. To illustrate, we let f ∈ �p,n be a pseudo-Anosov

mapping class that is represented by a pseudo-Anosov map also denoted

by f , then there is an isotopy I : S̃ × [0, 1] → S̃ such that I(·, 0) = f

and I(·, 1) = id. Since f(a) = a, {I(a, t) : 0 ≤ t ≤ 1} traces out a closed

(self-intersecting) curve c′. By Theorem 2 of Kra [5], the curve c′ fills S̃.

Corollary 1.1. For any hyperbolic structure on S̃, we let c ∈ S̃ de-

note the filling closed geodesic freely homotopic to c′. Then the hyperbolic

length lS̃(c) > 2K, where K is the lower bound obtained from Theorem 1.1.
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Remark 1.2. In [10] we considered those special filling geodesics c

generated by two parabolic curves, and gave a better estimations for the

hyperbolic lengths of c for any hyperbolic structure on S̃.

The plan of this article is as follows. In Section 2 we introduce the

background material we shall need. In Section 3, we study elements of �p,n

through pairs of filling simple closed geodesics. In Section 4, we give some

estimates of lower bounds for dilatations of elements in various subsets of

�p,n. In Section 5, we estimate the minimal number of intersections of the

curves α and β that determine an element of �p,n. In Section 6, we prove

Theorem 1.1 and Corollary 1.1.

2. Pseudo-Anosov Maps Represented by Dehn Twists

To establish notation and terminology, we refer to [6, 9]. Let Homeo(S)

be the group of orientation-preserving homeomorphisms of S onto itself,

and Homeo0(S) the subgroup of Homeo(S) consisting of elements isotopic

to the identity. The group Homeo(S) naturally acts on the space �(S) of

conformal structures on S via pullbacks. The quotient space

�(S)/Homeo0(S)

is called the Teichmüller space T (S). The quotient group

Homeo(S)/Homeo0(S),

denoted by ModS , is the mapping class group of S and acts on T (S). The

subgroup Moda
S of ModS that consists of mapping classes fixing the puncture

a is called the a-pointed mapping class group. When a is filled in, there

defines a natural projection i : Moda
S → ModS̃ , where ModS̃ is the mapping

class group of S̃.

The mapping class group ModS is identified with the group of holomor-

phic automorphisms of T (S) when 3p + n > 4. T (S) is equipped with a

Teichmüller metric dT (S) so that ModS acts as a group of isometries.

Every quadratic differential φ on S defines a flat structure on S. That

is, away from each zero of φ we write φ = dw2 to obtain a local parameter

w up to a translation w 
→ ±w + c for a constant c. Note that for each

complex number z in the unit disk ∆ = {z : |z| < 1}, the form

νz = z φ̄/|φ|
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determines an equivalent class [νz] in T (S). We see that

∆ � z 
−→ [νz] ∈ T (S)

is an isometry of ∆ into T (S) with respect to the hyperbolic metric on ∆

and the Teichmüller metric dT (S) on T (S).

Let H denote the hyperbolic plane {z = x + iy ∈ C : y > 0} equipped

with the hyperbolic metric |dz|
Im z . We thus obtain an isometry

H ↪→ T (S).(2.1)

The image of (2.1) is called a Teichmüller disk and is denoted by Dφ. For

each such Dφ, we can consider its stabilizer Stab(Dφ) in ModS . Each el-

ement f ∈ Stab(Dφ) determines a Möbius transformation �(f) and the

collection of all �(f), where f ∈ Stab(Dφ), form a Fuchsian group Vφ. See

Veech [9] for more information about the group Vφ.

It is important to note, see Leininger [6] for example, that hyperbolic

elements �(f) in Vφ correspond to pseudo-Anosov elements f in ModS . The

isometry (2.1) yields that

λ(f) = exp
(
T
2

)
,(2.2)

where T denotes the translation length of �(f).

Assume that � = {α1, . . . , αu} and � = {β1, . . . , βv}, u, v ≥ 1, are col-

lections of disjoint and homotopically independent simple closed geodesics

on S that fills S in the sense that S − {�,�} consists of topological disks

and once punctured disks. Let t1 and t2 denote the positive multi twists

along some curves in � and some curves in �, respectively. Observe that

� ∪ � is regarded as a graph whose dual graph defines a complex �. From

the argument of Thurston [8] (see also Veech [9] and Leininger [6] for an ex-

position), � can be used to define a Euclidean cone metric on S. In this way,

we obtain a quadratic differential φ and a Teichmüller disc Dφ on which the

multi-twists t1 and t2 act invariantly. This means that, if we denote by �1

and �2 the corresponding Möbius transformations on H through the isom-

etry (2.1), then �1 and �2 ∈ Vφ are parabolic elements. Note that most

elements in the subgroup 〈�1,�2〉 generated by �1 and �2 are hyperbolic.

We see that most elements in 〈t1, t2〉 are pseudo-Anosov.

Following Leininger [6], we let N denote the u × v matrix whose (i, j)

entry is the minimal geometric intersection number i(αi, βj) of αi and βj
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Figure 1.

for αi ∈ � and βj ∈ �. Since (�,�) fills S, the u × u matrix NN t is

irreducible. Denote µ(NN t) the Perron-Frobenius eigenvalue of NN t, and

set µ =
√

µ(NN t). Then �1 and �2 can be represented by the following

2 × 2 matrices:

�1 =

(
1 µ

0 1

)
and �2 =

(
1 0

−µ 1

)
.(2.3)

Denote Γ = 〈�1, �2〉. If µ > 2, then Γ is a torsion free discrete subgroup of

Vφ. By Lemma 6.3 of Leininger [6], H/Γ is a twice punctured disk endowed

with a hyperbolic structure, and the smallest translation length T0 among

all hyperbolic elements of Γ is realized by the hyperbolic element

(�1�2)
±1 .

See Figure 1 (a) for an illustration.

More precisely, the translation length T0 is given by log ε2, where ε

is the larger root of the equation x2 + (2 − µ2)x + 1 = 0. By applying

Corollary 6.7 of [6], we assert that for any pseudo-Anosov map f ∈ 〈t1, t2〉,
its dilatation λ(f) ≥ ε and the equality holds if and only if f = (t1 ◦ t2)±1

up to a conjugacy.

3. Elements of �p,n and Their Projections to S̃

In what follows we assume that u = v = 1; that is, � = {α}, � = {β},
and t1 and t2 are simple positive Dehn twists along α and β, respectively.

In this case, µ = i(α, β) and every f ∈ �p,n can be generated by t1 and t2
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for certain pair (α, β) of simple closed geodesics. This implies that {α, β}
fills the surface S. Write f in the form (1.2). Let α̃ and β̃ denote the

simple closed geodesics on S̃ homotopic to α and β, respectively if α and

β are viewed as curves on S̃. Recall that there is a group epimorphism

i : Moda
S → ModS̃ . From Theorem 1.2 of [12], either (i) α̃ and β̃ are trivial,

or (ii) α̃ and β̃ are both nontrivial. If α̃ and β̃ are trivial, then i(t1) = tα̃ and

i(t2) = tβ̃ are trivial mapping classes. Thus the projection i (
∏

i(t
mi
1 ◦ tni

2 ))

is trivial for any integers mi and ni.

We consider the case that both α̃ and β̃ are nontrivial.

Lemma 3.1. Let f ∈ �p,n be of form (1.2). Assume that α̃ and β̃ are

nontrivial. Then there are integers mi and nj that take alternate signs.

Proof. We assume that all mi and ni are positive (the negative case

can be handled similarly). If α̃ = β̃, then

i(f) = t
∑

i(mi+ni)
α̃

is nontrivial. This is a contradiction. If α̃ and β̃ are disjoint, then it is easy

to see that ∏
i

(tmi
α̃ ◦ tni

β̃
) = t

∑
i mi

α̃ ◦ t
∑

i ni

β̃

is nontrivial. This again contradicts that i(f) is trivial. So α̃ and β̃ must

intersect.

The Dehn twists tα̃ and tβ̃ can be lifted to τ1, τ2 : H → H so that for

i = 1, 2, τi determines a simply connected region Ki whose complement

H−Ki is a disjoint union of half-planes Ui (called maximal elements in the

sequel) each of which is an invariant region under the lift τi.

The lift τi also determines a mapping class (denoted by τ∗i ) of S under

a Bers isomorphism ϕ (Theorem 9 of Bers [2]). By Lemma 3.3 of [11], τ∗i
is represented by the Dehn twist ti. See [11] and [12] for more detailed

information on the lifts of Dehn twists obtained in this way.

Consider the map

ζ =
∏
i

(τmi
1 τni

2 ) .(3.1)

Let ζ∗ denote the corresponding element of Moda
S under the isomorphism

ϕ.
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From (3.1) and (1.2) we obtain

ζ∗ = f.(3.2)

From (1.2) again,

∏
i

(
tmi
α̃ ◦ tni

β̃

)
= i

(∏
i

(tmi
1 ◦ tni

2 )

)
= i(f).

That is to say, ζ is a lift of i(f). By hypothesis, f ∈ �p,n, i.e., i(f) is trivial.

If we denote by � : H → S̃ a universal covering with a covering group G,

then this is equivalent to saying that ζ defined as (3.1) satisfies ζ|S1 = h|S1

for an element h ∈ G. A contradiction will be derived once Lemma 3.2

below is established. �

Lemma 3.2. Let ζ be defined as (3.1). Assume that all mi and ni are

positive integers. Then ζ|S1 �= h|S1 for any element h ∈ G.

Proof. It is trivial that ζ|S1 �= id. Recall that H −Ki, i = 1, 2, is a

disjoint union of maximal elements of τi. There are two cases to consider.

Case 1. K1 ∩K2 �= ∅. In this case, we note that every element of G is

either parabolic or hyperbolic; it has at most two fixed points and at least

one fixed point on S1. Since ζ|K1∩K2 = id, if (K1 ∩K2) ∩ S1 contains more

than 3 points, then ζ|S1 �= h for any nontrivial element h ∈ G.

K1 ∩K2

�

�

	



� �

Figure 2.
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Suppose that (K1 ∩K2)∩S1 contains no points. That is, K1 ∩K2 stays

away from S1. See Figure 2. As mi, ni > 0, we observe that the motion

ζ|S1 is in the clockwise direction without any fixed points. This implies that

ζ|S1 �= h|S1 for any nontrivial element h ∈ G.

The remaining cases are handled similarly. If (K1 ∩ K2) ∩ S1 contains

only one point z, and if ζ|S1 = h|S1 for a nontrivial element h ∈ G, then h

is parabolic with fixed point z. Now we choose a maximal element U1 of τ1
and a maximal element U2 of τ2 so that ∂U1 ∩ ∂U2 �= ∅. Then for any point

z′ ∈ (U1 ∩ U2) ∩ S1, it is easily seen that the action of ζ|(U1∩U2)∩S1(z′) is

hyperbolic. So ζ|S1 �= h|S1 . This leads to a contradiction. If (K1 ∩K2)∩S1

contains only two points z1, z2, and if ζ|S1 = h|S1 for a nontrivial element

h ∈ G, then h is hyperbolic that takes z1, say, as its attracting fixed point

and z2 as its repelling fixed point. Since all ni,mi > 0, the action of ζ|S1 is

in the clockwise direction, whereas on the one side of z1, h is in the clockwise

direction, and on the other side of z1, h is in the counter clockwise direction.

It follows that ζ|S1 �= h|S1 .

Case 2. K1 ∩ K2 = ∅. In this case, we can write ζ = g ◦ λ for some

g ∈ G and some λ of form (3.1) with K∗
1 ∩K∗

2 �= ∅, where K∗
1 and K∗

2 are

complements of all maximal elements determined by λ. It follows that

ζ|S1 = gλ|S1 .(3.3)

From the discussion of Case 1, λ|S1 �= h|S1 for any h ∈ G. Assume that

ζ|S1 = h0|S1 for some element h0 ∈ G. From (3.3), λ|S1 = g−1h0|S1 . This

leads to a contradiction by the discussion in Case 1. Hence the lemma is

proved. �

If (1.2) contains only one factor, we have the following result.

Lemma 3.3. Let m,n be arbitrary nonzero integers and let f = tm1 ◦ tn2
be an element of �p,n. Then α̃ = β̃ and hence n + m = 0.

Proof. Suppose that α̃ �= β̃. Then either α̃, β̃ are disjoint, or they

intersect. The former case leads to that i(f) is a nontrivial multi-twist,

contradicting that f ∈ �p,n. In later case, we use the assumption of i(f) = id

to calculate that i(t−m
1 ◦ f) = t−m

α̃ . On the other hand, we also have

i(t−m
1 ◦ f) = i(tn2 ) = tn

β̃
,
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which leads to that t−m
α̃ = tn

β̃
. But this is impossible since α̃ and β̃ intersect.

We conclude that α̃ = β̃. But then id = i(f) = tm+n
α̃ , which occurs if

and only if m + n = 0. �

4. Some Estimates with Respect to Intersection Numbers

We continue to assume that 3p + n > 4 and n ≥ 1. Let f ∈ �p,n. Then

f is of form (1.2). The aim of this section is to present some lower bounds

for dilatations λ(f) of elements f in various subsets of �p,n in terms of the

intersection number i(α, β). We assume that µ = i(α, β) > 2.

Lemma 4.1. With the conditions above, assume that α̃ and β̃ are trivial

loops. Then

λ(f) > h1(i(α, β)),

where h1(x) = 1
2

(
x2 − 2 + x

√
x2 − 4

)
.

Proof. Since α̃ and β̃ are trivial, for arbitrary integers mi and ni,

tmα̃ and tn
β̃

are trivial. So the shortest closed geodesic on H/Γ is drawn in

Figure 1 (a) which can be achieved when m = n = 1.

By Corollary 6.7 of [6], λ(f) ≥ ε. Hence

λ(f) ≥ h1(µ) for µ = i(α, β). �(4.1)

Lemma 4.2. Assume that f ∈ �p,n is of form (1.2) with i ≥ 2 and α̃, β̃

are both nontrivial. Then

λ(f) > h0(i(α, β)),

where h0(x) = 1 + x2 + x
√

2 + x2.

Proof. Let f ∈ �p,n be of form (1.2). Then (α, β) fills S and thus it

determines a quadratic differential φ, which in turn defines a Teichmüller

disk Dφ in T (S). Recall that the Dehn twists t1 and t2 determines two

parabolic elements �1 and �2 that have representations (2.3) for µ =

i(α, β). By Lemma 6.3 of [6], for µ > 2, Γ is a torsion free Fuchsian group

so that H/Γ is a twice punctured disk.
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Since i ≥ 2, by Lemma 3.1, there are at least one mi and nj that take

alternate signs. For ξ, η = 1, 2 and η �= ξ, we let � denote the finite set

consisting of elements

�−1
ξ �η�ξ�η, �−1

ξ �−1
η �ξ�η, �−1

ξ �η�−1
ξ �η

and their inverses. A simple calculation shows that∣∣∣trace �−1
ξ �−1

η �ξ �η

∣∣∣ = 2 + µ4,∣∣∣trace �−1
ξ �η �ξ �η

∣∣∣ = µ4 − 2,

and ∣∣∣trace �−1
ξ �η�−1

ξ �η

∣∣∣ = µ4 + 4µ2 + 2.

If µ > 2, all these elements are hyperbolic and hence they define pseudo-

Anosov maps of S. Note that the value µ4 − 2, which is larger than 2 + 2µ2

for all µ ≥ 2, is the minimum value among all traces of elements in �, and

hence is the minimum value among all traces of elements in �p,n with i ≥ 2.

Let T1 denote the translation length of �−1
ξ �η�ξ�η. From Beardon [1], the

translation length T1 of the hyperbolic element trace �−1
ξ �η�ξ�η satisfies

cosh
(
T1
2

)
= 1

2

∣∣∣trace
(

�−1
ξ �η�ξ�η

)∣∣∣ .
Then by the process of cutting and pasting, for any element f in �p,n with

i ≥ 2, the translation length T of �(f) satisfies the inequality:

cosh
(
T
2

)
≥ 1 + µ2.

From the isometry,

λ(f) = exp
(
T
2

)
.

It follows that

λ(f) > the larger root of x2 − (2 + 2µ2)x + 1 = 0.

Hence

λ(f) > h0(µ).

This proves the lemma. �
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A similar argument of Lemma 4.2 yields

Lemma 4.3. Let 3p + n > 4 and n ≥ 1. Let f ∈ �p,n be of form (1.2).

Assume that α̃, β̃ are both nontrivial and the expression (1.2) contains only

one single factor, that is, i = 1. Then

λ(f) > h(i(α, β)),

where h(x) = 1
2

(
2 + x2 + x

√
4 + x2

)
.

Proof. Let f be as in Lemma 3.3. From Lemma 3.3, α̃ = β̃ and

thus m + n = 0. By the same argument as in Lemma (4.2), we see that

�1�2
−1 is hyperbolic and its axis projects to a geodesic c that is a closed

self-intersecting geodesic and takes the shortest length among closed self-

intersecting geodesics on H/Γ. See Figure 1 (b). Let T1 denote the trans-

lation length of �1�2
−1. Note that the absolute value of trace of �1�2

−1

is 2 + µ2, where we continue to denote µ = i(α, β). We can then prove the

lemma by using the same argument of Lemma 4.2. Details are omitted. �

5. Intersections of Two Filling Geodesics

We first consider the case that α̃ and β̃ are both trivial on S̃ and (α, β)

fills S. Then α and β are boundaries of twice punctured disks ∆1 and ∆2

with the puncture a ∈ ∆1 ∩ ∆2. The deformation retracts of ∆1 and ∆2

are two paths γ1 and γ2, where γi connects a and another puncture bi of

S̃ without passing through any other punctures of S̃. Note that b1 may be

equal to b2.

By fattening a path we are able to reverse the above procedure to pro-

duce two filling simple curves α and β on S with minimum intersections.

To illustrate, we use the construction of Lemma 5 of [10], which assets that

there are two paths γ1 and γ2 connecting a and a puncture bi i = 1, 2, with

minimum intersection numbers such that S − {γ1, γ2} consists of disks and

once punctured disks.

Observe that γ1 and γ2 define two twice punctured disks ∆1 and ∆2

so that a ∈ ∆1 ∩ ∆2. The two boundary curves ∂∆1 and ∂∆2 have the

properties that (i) (∂∆1, ∂∆2) fills S and (ii) i(∂∆1, ∂∆2) is the minimum

among all curves α and β with α̃ and β̃ trivial. More specifically, the

following lemma was proved in [10]:
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Lemma 5.1. With the above conditions, µ = i(α, β) ≥ 8p + 4n− 10 if

n ≥ 3; µ ≥ 8p + 2 if n = 2; and µ ≥ 8p + 1 if n = 1.

Now we consider that α̃ and β̃ are both nontrivial on S̃. We have

Lemma 5.2. With the above hypothesis, (1) i(α, β) ≥ 2p + n − 2, and

(2) if α̃ = β̃, then

µ = i(α, β) ≥ max {4, 4p + 2n− 6} .

Proof. (1) Observe that the union α ∪ β is regarded as a 4-valence

graph on S. Let S denote the comtactification of S, and let V,E, F denote

the vertices, edges and faces of the graph, respectively. Then its Euler

characteristic

2 − 2p = χ(S) = V + F − E(5.1)

Since α ∪ β is of 4-valence, V = i(α, β) and E = 2V . Note that α ∪ β fills

S, F ≥ n. Hence

i(α, β) ≥ 2p− 2 + n.

This proves (1).

(2) Assume now that α̃ = β̃. This implies that α intersects β in an even

number of intersections. Since (α, β) fills S, i(α, β) > 0.

Our first goal is to prove

i(α, β) ≥ 4.(5.2)

Indeed, if i(α, β) = 2, then α and β bound an a-punctured bigon B as shown

in Figure 3.

In Figure 3, β is the union of two smaller arcs c0 and c1. Let P1, P2 ∈ β

be two points near B. By replacing c1 with a segment P1P2 connecting P1

and P2, we obtain a curve β′ = c0 ∪ P1P2.

Then α and β′ bound a cylinder 	. Let 	0 = 	 ∪B. Observe that

S − 	0
∼= S̃ − {α̃}.(5.3)

If S is of type (p, n) with 3p+ n > 4, n ≥ 1, then S̃ is of type (p, n− 1)

and S̃ − {α̃} always contains at least one nontrivial loop. It follows from
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P1

P2

c0

α

�
a

B

c1 c0

Figure 3.

(5.3) that S − 	0 contains at least one nontrivial loop. Hence (α, β) does

not fill S, which leads to a contradiction. We see that if (α, β) fills S and

α̃ = β̃, then (5.2) holds.

We conclude that i(α, β) ≥ 4. Let B0 be the innermost a-punctured

bigon formed by α and β , and let P1, P2 be the vertices of B0. Let δ1 and

δ0 be the boundary curves of B0, where δ1 is the segment of α connecting

P1 and P2. Since i(α, β) > 3, the segment σ1 of β starting from P1 must

also intersect α at a point Q1 that is different from P1 and P2. Likewise,

the segment σ2 of β starting from P2 must also intersect α at a point Q2

that is different from all P1, P2, and Q1. The segment of α connecting Q1

and Q2 is denoted by δ2.

Let 
 denote the quadrilateral formed by {δ1, δ2;σ1, σ2}. Since β is

simple, either δ1 and δ2 are disjoint or or δ1 ⊂ δ2. The two cases are

depicted in Figure 4(a) and Figure 4(b) depending on whether δ1 ∩ δ2 = ∅
or δ1 ⊂ δ2.

In particular, when α bounds a disk that contains not only a but also

more than one punctures of S̃, Figure 4 (a) can be drawn as Figure 5.

If 
 contains a segment σ of β, as shown by dotted lines in Figure 4(a),

Figure 4(b) and Figure 5, then since β is simple, it intersects δ2 at two

points.

Let B1 denote the bigon formed by σ and δ2 (B1 is shown but is not

labeled in these figures). Then B1 does not include any puncture of S̃.

Otherwise, β can not be deformed to α, and this would be a contradiction.

So without loss of generality we may assume by pushing σ to leave 
 that


 does not contain any segment of β.

We also claim that 
 does not contain any puncture of S̃. Indeed, when
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a is filled in, S becomes S̃ and δ0 is pushed to δ1, and thus β is deformed

through B0 to a curve β′. If 
 contains punctures of S̃, then β′ cannot be

deformed to α. This again contradicts that α̃ = β̃.

From the above discussion, a pair {P1, P2} of vertices of α∪β determines

a quadrilateral 
 that does not contain any punctures of S̃. Then we can

push 
 to the next quadrilateral 
′ that is determined by the pair {Q1, Q2}.
From the same argument as above, 
′ does not contain any punctures of S̃.

Since 
′ �= 
, 
′−
 consists of some quadrilaterals that do not contain any

punctures of S̃.

All intersections of α and β are grouped in terms of vertices of quadri-

laterals all of which do not include any punctures of S̃. By induction, one

proves that there are at least i(α,β)
2 − 1 quadrilaterals that do not contain

any punctures of S̃.

Recall that α ∪ β can be thought of as a 4-valence graph on S. The

Euler characteristic calculation yields that (5.1) holds.

Since α ∪ β fills S̃, each face must contain at most one puncture of S̃.

As discussed above, there are at least i(α,β)
2 − 1 quadrilaterals that do not

contain any punctures of S̃. Hence from (5.1),

F ≥ i(α,β)
2 + n− 1.
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It follows that

i(α, β) ≥ 4p + 2n− 6.

This proves Lemma 5.2. �

6. Proof of the Results

We need several elementary calculations.

Lemma 6.1. Assume that 2p+n < 6 and 3p+n > 4 with n ≥ 1. Then

(p, n) = (1, 2), (0, 5), (1, 3) or (2, 1).

In what follows, we set

ν = 4p + 2n− 6, σ = 2p + n− 2,

and

µ = 8p + 4n− 10 if n ≥ 3; and µ = 8p + n if 1 ≤ n ≤ 2.

Then ν = 2σ − 2.

Lemma 6.2. Let h(x) and h0(x) be defined as in Lemmas 4.3 and 4.2,

respectively. Then

h(ν) > h0(σ)(6.1)
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for (p, n) �= (1, 2), (0, 5), (1, 3) or (2, 1).

Proof. Since ν <
√

4 + ν2 and σ <
√

2 + σ2, the inequality (6.1)

follows from

1 + ν2 > 3 + 2σ2.(6.2)

Notice that σ2 − 4σ+1 > 0 for σ ≥ 4 or 2p+n ≥ 6. It follows from Lemma

6.1 that for (p, n) �= (1, 2), (0, 5), (1, 3) or (2, 1), the inequality (6.1) holds. �

Lemma 6.3. Let h(x) and h1(x) be defined as in Lemmas 4.3 and 4.1,

respectively.

(1) If (p, n) = (1, 2), then µ = 8p + n = 10 and

h1(µ) = h1(10) > h(4) ≈ 17.94427...

(2) If 3p + n > 4, n ≥ 1, then

h1(µ) > h(ν).(6.3)

Proof. (1) The proof that h1(10) > h(4) is a direct calculation.

(2) Notice that for any positive real number x, we have x <
√

4 + x2;

and for any x ≥ 4, x− 4 <
√
x2 − 4. From these inequalities, we assert that

(6.3) follows from the inequality

µ2 − 2µ > 4 + ν2.(6.4)

So it suffices to establish (6.4) in various cases.

Case 1. n ≥ 3. Then µ = 8p + 4n − 10 and ν = 4p + 2n − 6. Set

u = 2p + n. By hypothesis, 3p + n > 4 and n ≥ 1. This implies that

u = 2p + n > n+8
3 ≥ 3.

Hence u ≥ 4. Denote

h2(x) = (2x− 5)2 − (x− 3)2 − 2x + 4.



Dilatations of Pseudo-Anosov Maps 457

When x ≥ 3, h′2(x) = 6x − 16 > 0, and the function h2(x) is increasing

when x ≥ 3. But h2(4) = 4. Hence h2(u) > 0 for u ≥ 4. It follows that

(4u− 10)2 − 8u + 20 > 4 + 4 (u− 3)2 for u ≥ 4.

This says that (6.4) is satisfied.

Case 2. 1 ≤ n ≤ 2. In this case, µ = 8p + n and ν = 4p + 2n − 6. If

n = 1, then since 48p2 + 32p− 21 > 0 for all p ≥ 1, which is equivalent to

(8p + 1)2 − 2 (8p + 1) > 4 + 16 (p− 1)2 .

It follows that (6.4) is satisfied. If n = 2, then µ = 8p + 2 and ν = 4p− 2.

Observe that 6p2 + 4p− 1 > 0 for all p ≥ 1, we see that

(8p + 2)2 − 2 (8p + 2) > 4 + 4(2p− 1)2.

That is, (6.4) holds.

From the discussions of the two cases, we conclude that (6.4) holds for

all pairs (p, n) with 3p + n > 4 and n ≥ 1. �

Proof of Theorem 1.1. Every element f ∈ �p,n can be written in

the form (1.2) for mi, ni being nonzero integers and (α, β) being a pair of

filling simple closed geodesics of S. Then by Theorem 1.2 of [12], either α̃, β̃

are trivial loops on S̃, or α̃, β̃ are both nontrivial on S̃. First we assume

that (p, n) �= (1, 2), (0, 5), (1, 3) or (2, 1).

If α̃ and β̃ are trivial, then Lemma 4.1 and Lemma 5.1 yield

λ(f) > h1(8p + 4n− 10)

if n ≥ 3; and

λ(f) > h1(8p + n)

if 1 ≤ n ≤ 2. From Lemma 6.3 and Lemma 6.2, we obtain the following

inequalities:

h1(8p + 4n− 10) > h0(2p− 2 + n)

and

h1(8p + n) > h0(2p− 2 + n).
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It follows immediately that

λ(f) > h0(2p− 2 + n)(6.5)

so long as f is represented as (1.2) for α̃ and β̃ being trivial.

It remains to consider the possibility that α̃ and β̃ are nontrivial. If in

the expression (1.2) i = 1, that is, f = tm1 ◦ tn2 for some integers m and

n. Then by Lemma 3.3, we must have that α̃ = β̃ and m + n = 0. From

Lemma 5.2 and Lemma 4.3, we get that

λ(f) > h(4p + 2n− 6).(6.6)

From Lemma 6.2, we conclude that

h(4p + 2n− 6) > h0(2p + n− 2).

Together with (6.6) we see that

λ(f) > h0(2p + n− 2).(6.7)

Next, we assume that i ≥ 2. It is not clear whether α̃ = β̃. In this

situation we apply Lemma 4.2 and Lemma 5.2 to obtain

λ(f) > h0(2p− 2 + n).(6.8)

Finally we consider some special cases.

(a) (p, n) = (1, 2). In this case, ν = 2, σ = 2, µ = 10. We have

λ(f) > min {h(4), h1(µ), h0(σ)} = h0(2) = 5 + 2
√

6 ≈ 9.89898.

(b) (p, n) = (1, 3). In this case, ν = 4, σ = 3, µ = 10. We have

λ(f) > min {h(ν), h1(µ), h0(σ)} = h(4) = 9 + 4
√

5 ≈ 17.9443.

(c) (p, n) = (0, 5). In this case, ν = 4, σ = 3, µ = 10. We have

λ(f) > min {h(ν), h1(µ), h0(σ)} = h(4) = 9 + 4
√

5 ≈ 17.9443.

(d) (p, n) = (2, 1). In this case, ν = 4, σ = 3, µ = 17. We have

λ(f) > min {h(ν), h1(µ), h0(σ)} = h(4) = 9 + 4
√

5 ≈ 17.9443.
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This completes the proof of Theorem 1.1.�

To prove Corollary 1.1, we recall that

i : Moda
S → ModS̃

is the natural projection defined by forgetting the puncture a. From Theo-

rem 4.1 and Theorem 4.2 of Birman [3] (see also Theorem 10 of Bers [2]),

ker(i) is a normal subgroup of Moda
S and is isomorphic to the covering

group G (for the covering map � : H → S̃). For every element h ∈ G, the

corresponding element in ker(i) is denoted by h∗.
Kra showed, see [5], that ker(i) contains infinitely many pseudo-Anosov

maps which form a subset �∗
p,n of ker(i). Note that

�p,n ⊂ �∗
p,n.

Although by a theorem of Hubert–Lanneau [4], there exist pseudo-Anosov

maps of S that can not be represented by any finite products of two Dehn

twists along filling simple closed geodesics, it is not known whether �p,n =

�∗
p,n.

Proof of Corollary 1.1. Let c ⊂ S̃ be a filling geodesic that stems

from an element g∗ ∈ �p,n. This means that, if we denote by cg the axis

of the corresponding essential hyperbolic element g of G (under the Bers

isomorphism), then c = �(cg), where � : H → S̃ is the universal covering

map with the covering group G.

Under the isometry (2.1), the pseudo-Anosov mapping class g∗ corre-

sponds to a Möbius transformation �(g∗) in the Veech group Vφ. Let T1

denote the translation length of �(g∗). From (2.2),

log λ(f)2 = T1.(6.9)

Let Tg denote the translation length of g. Then Proposition 7 of Kra [5]

and (6.9) yield

Tg ≥ T1/2 = log λ(f).(6.10)

From (6.10), we obtain

lS̃(c) = Tg ≥ K,
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where K is the lower bound obtained from Theorem 1.1.

This proves the corollary. �
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