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A Shintani-Type Formula for Gross–Stark Units over

Function Fields

By Samit Dasgupta and Alison Miller

Abstract. Let F be a totally real number field of degree n, and
let H be a finite abelian extension of F . Let p denote a prime ideal
of F that splits completely in H. Following Brumer and Stark, Tate
conjectured the existence of a p-unit u in H whose p-adic absolute
values are related in a precise way to the partial zeta-functions of
the extension H/F . Gross later refined this conjecture by proposing a
formula for the p-adic norm of the element u. Recently, using methods
of Shintani, the first author refined the conjecture further by proposing
an exact formula for u in the p-adic completion of H.

In this article we state and prove a function field analogue of this
Shintani-type formula. The role of the totally real field F is played
by the function field of a curve over a finite field in which n places
have been removed. These places represent the “real places” of F .
Our method of proof follows that of Hayes, who proved Gross’s con-
jecture for function fields using the theory of Drinfeld modules and
their associated exponential functions.

1. Introduction

Let F be a totally real number field of degree n, and let p be a prime ideal

of F . Let K be a finite abelian extension of F such that p splits completely

in K. Tate [10] stated an analogue of the rank one abelian Stark conjecture

that predicts the existence of a p-unit u ∈ K whose valuations at the places

above p are determined in a precise fashion by the values at 0 of the partial

zeta-functions of K/F (see Conjecture 3.1 below). He called the conjecture

the Brumer–Stark conjecture because it generalized Stark’s conjectures for

archimedean primes as well as work of Brumer on ideal class groups. Later,

Gross refined the Brumer–Stark conjecture by predicting a formula for the

image of the Stark unit u under the local reciprocity map of class field theory
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attached to certain auxiliary extensions L/F containing K [5]. Recently, the

first author stated a further refinement that proposes an exact formula for

u in the completion of K at a prime ideal lying above p ([2, Conjecture

3.21], restated as Conjecture 4.2 below). This formula was inspired by work

of Shintani, who used a geometry of numbers approach towards calculating

the special values of the partial zeta functions of F [9].

To be precise, suppose the n real embeddings of F are labelled ι1, . . . , ιn.

Define

ι : F → Rn(1)

by ι(x) = (ιi(x))ni=1. The group F× acts on Rn via application of ι and

componentwise multiplication. Let O be the ring of integers of F , and let

Q be the positive orthant (R>0)n ⊂ Rn. For any ideal f ⊂ O, the group

E(f) of totally positive units of O congruent to 1 modulo f acts properly

discontinuously on Q. Shintani proved that there exists a fundamental

domain D for the action of E(f) on Q that consists of a union of simplicial

cones. Let Hf be the narrow ray class field of F of conductor f, and let H be

the maximal subextension of F in which p splits completely. Conjecture 4.2

gives a p-adic formula for the Stark unit u ∈ H in terms of the Shintani

zeta functions attached to the domain D.

The main result of the present article is the proof of a function field

analogue of Conjecture 4.2. The Brumer–Stark conjecture itself was already

proven in the function field context by Deligne ([3], see also [10, Chapitre

V]), and Gross’s refinement was proven in this setting by Hayes [7].

Let F be the function field of a smooth projective algebraic curve over

Fq. Fix arbitrary places ∞1, . . . ,∞n of F , which will be viewed as the

“infinite places” of F .1 Let O be the ring of elements of F that are integral

away from ∞1, . . . ,∞n. Let f ⊂ O be an ideal and let Hf be the narrow

ray class field of F of conductor f, defined in Section 2 following Hayes [8].

1In many applications, one considers the function field Fq(T ) with the single infinite
place ∞ corresponding to the point at infinity on P1 and associated valuation

v∞(a) = − deg a.

One then lets F be a finite extension of Fq(T ) and chooses the infinite places ∞1, . . . ,∞n

to be the places of F lying above the place ∞ of Fq(T ). This family of examples is the
one most closely analogous to the case of number fields; however, the results in this article
are valid for any arbitrary choice of places at infinity.
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The field Hf is a finite abelian extension of F unramified outside f∞, where

∞ denotes the product of the infinite places. Let p be a prime ideal of O
not dividing f, and let H be the maximal subextension of Hf/F in which p

splits completely. Our analogue of Conjecture 4.2, stated in Theorem 5.2

below, is an explicit formula for the Stark unit u in H.

Let d∞i denote the degree of the infinite place ∞i. Let F∞i be the

completion of F at ∞i. Let O∞i be the ring of integers of F∞i and let k∞i

be its residue field. We normalize the absolute value on F∞i by

|x|∞i = q−d∞iv∞i (x),

where v∞i : F×
∞i

→ Z is the surjective valuation associated to ∞i. Choose

a uniformizer π∞i for F∞i . Define a sign function

sgn∞i
: F×

∞i
→ k×∞i

(2)

as the unique homomorphism such that the restriction sgn∞i
|O×

∞i
is the

reduction map

O×
∞i

→ k×∞i
,

and such that sgn∞i
(π∞i) = 1. We say that x ∈ F is totally positive and

write x � 0 if sgn∞i
(x) = 1 for each i. Let

ι : F× →
n∏

i=1

(R>0 × k×∞i
)(3)

denote the map given by ι(x) = (|x|∞i , sgn∞i
(x)). Note that here, unlike

in the number field setting, the map ι is not injective. Once again F×

acts on the codomain of ι through the application of ι and componentwise

multiplication. Let

Q :=
n∏

i=1

(R>0 × 1)

be the “positive orthant” inside
∏n

i=1(R
>0×k×∞i

). If E(f) denotes the group

of totally positive units of O congruent to 1 modulo f, then we define a

Shintani domain D to be a fundamental domain for the action of E(f) on

Q.
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Theorem 5.2 gives a formula for the Stark unit u in H in terms of the

Shintani zeta functions attached to D. Our method of proof is to relate the

p-adic integral appearing in this formula to the infinite products considered

by Hayes in [7]. These infinite products arise from the exponential functions

associated to certain rank one Drinfeld modules. Hayes had proven the

algebraicity of his infinite products using the algebraicity properties of the

special values of exponential functions, which in turn follow from the moduli

theory of Drinfeld modules.

From the point of view of Stark’s conjectures, the introduction of places

at infinity is somewhat artificial in the function field context. Indeed, the

theorems of Deligne and Hayes work entirely at p and do not employ these

auxiliary places. The reason we have introduced the infinite places in this

article is to place ourselves in a setting of a function field extension H/F for

which Gross’s conjecture does not provide an explicit p-adic formula for the

Stark unit u in H. Rather, the group of units in E(f) provides a kernel in

the local reciprocity map, which thereby introduces an ambiguity in Gross’s

formula for u. The idea of introducing a domain D is used to eliminate this

ambiguity. Hayes considers certain extensions of F (denoted Km below) for

which Gross’s conjecture does provide a p-adic formula for the Stark unit

without ambiguity. In fact, his extensions Km contain our extensions H,

and one aspect of our method of proof is that the Stark unit for H arises

as the norm of the Stark unit from Km (see Proposition 3.2).

While we hope that the notion of Shintani domain for function fields may

have broader application for other problems in which places at infinity occur

naturally, our primary motivation has been to provide theoretical evidence

for Conjecture 4.2. We hope that the methods herein will shed some light

on the number field setting. In particular, analogues of Propositions 8.1

through 8.3 seem highly desirable.

We now outline the contents of the article. In Section 2 we define the

class fields that will play a role in this article. In Section 3 we state the

Brumer–Stark conjecture. In Sections 4 and 5 we state Shintani-type formu-

las for Stark units in the number field and function field cases, respectively.

In Section 6 we recall Hayes’s product formula for Stark units over Km, and

in Section 7 we derive an analogous formula over the subfield H. Finally,

in Section 8 we prove the Shintani-type formula for the Stark unit over H

in the function field setting using the product formula from Section 7.
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2. Definitions and Class Fields

In this section, we define the class fields that will play an important role

in this article. At the outset, F may be a totally real field or a function

field. In the former case, each real place ∞i gives rise to a canonical sign

homomorphism

sgn∞i
: F×

∞i
= R× → {±1}.

In the function field case, the sign homomorphism sgn∞i
defined in (2)

depends on a choice of uniformizer π∞i .

Let f ⊂ O be an ideal. For each place v of F , let Ov denote the ring of

integers of the completion Fv, and let Uv,f denote the group of elements of

O×
v that are congruent to 1 modulo fOv.

Definition. The narrow ray class field of conductor f is defined via

class field theory by

Gal(Hf/F ) = A×
F /(F

×∏
∞i

ker sgn∞i

∏
v|f

Uv,f

∏
v�∞f

O×
v ).(4)

The right side of (4) is canonically isomorphic to the narrow ray class

group

Cl+
f
(O) := If(O)/Pf(O),

where If(O) is the group of fractional ideals of O relatively prime to f, and

Pf(O) is the group of principal fractional ideals generated by totally positive

elements of O congruent to 1 modulo f.

Let p be a prime of O not dividing f. Let H = H(f; p) be the maximal

subextension of Hf/F in which p splits completely, with Galois group

Gal(H/F ) = A×
F /(F

×∏
∞i

ker sgn∞i

∏
v|f

Uv,f

∏
v�∞fp

O×
v × F×

p )(5)

∼= Cl+
f
(O)/〈p〉.
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If F is a totally real field, class field theory implies that any finite abelian

extension of F is contained in the narrow ray class field Hf for some ideal

f ⊂ O. Therefore every such extension in which p splits completely is

contained in some H(f; p). This is no longer true in the function field setting.

This is because
∏

∞i
ker sgn∞i

is the connected component of the identity

in A×
F in the number field setting, but there are abelian extensions not fixed

by
∏

∞i
ker sgn∞i

in the function field setting.

For example, let A be the ring of elements of F integral away from p.

Let m be an ideal of A. We define a finite abelian extension Km of F via

class field theory:

Gal(Km/F ) = A×
F /(F

×∏
v|m

Uv,m

∏
v�mp

O×
v × F×

p )(6)

∼= Im(A)/Pm(A),

where Im(A) is the group of fractional ideals of A relatively prime to m, and

Pm(A) is the group of principal fractional ideals of A generated by elements

congruent to 1 modulo m.

Each place of F outside the infinite places and p gives rise to both a

prime ideal of O and a prime ideal of A. Thus there is a canonical bijection

between the set of ideals of O relatively prime to p and the set of ideals of A

relatively prime to ∞. Furthermore, each infinite place ∞i corresponds to

a prime ideal of A. We may therefore consider the field Km with m = f∞.

Since the kernel of sgn∞i
contains U∞i,f∞, it follows that Kf∞ contains H.

Let Ep(f) denote the group of totally positive p-units of O congruent to 1

modulo f. We have:

Proposition 2.1. There is a canonical isomorphism

Gal(Kf∞/H) ∼= (ι(F×) ∩Q)/ι(Ep(f)).

Proof. By inspecting (5) and (6), we observe that any element of

Gal(Kf∞/H) has an adelic representative of the form {xv}, where x∞i ∈
ker sgn∞i

for each i and xv = 1 for v � ∞. We map this representative to∏
∞i

|x∞i |∞i × 1 ∈ ι(F×) ∩Q.(7)
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The element in (7) is well-defined modulo ι(Ep(f)). The resulting map

Gal(Kf∞/H) → (ι(F×) ∩Q)/ι(Ep(f))

is surjective since the x∞i can be chosen to have arbitrary absolute value,

and is easily checked to be injective. �

Proposition 2.1 will be useful in calculating the norm of the Stark unit

from Kf∞ to H.

3. Stark’s Conjecture

As in the previous section, let F be either a totally real number field

or a function field. Let K be an abelian extension of F such that p splits

completely in K. Let S be a set of primes of F that contains ∞1, . . . ,∞n, p,

and all primes ramifying in K/F . Assume that #S ≥ 3 and let R = S−{p}.
For an ideal a ⊂ O relatively prime to R, denote by σa the Frobenius element

attached to a in Gal(K/F ). Let Na = [O : aO]. In the function field setting

we have

Na = qdeg∞ a,

where

deg∞(a) :=
∑
q�∞

dqvq(a).

Here the sum runs over all places q of F not equal to one of the ∞i. For an

element α of O, we have the equality

deg∞(αO) = −
n∑

i=1

d∞iv∞i(α)

from the product formula. We write simply Nα = N(αO).

Definition. For each σ ∈ Gal(K/F ), define the partial zeta-function

ζR(K/F, σ, s) =
∑

(a,R)=1
σa=σ

Na
−s(8)
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for Re s ≥ 1. The function ζR(K/F, σ, s) extends by analytic continuation

to a meromorphic function on the entire complex plane, with only a simple

pole at s = 1.

Observe that

ζS(K/F, σ, s) = (1 − Np
−s)ζR(K/F, σ, s),(9)

and in particular

ζS(K/F, σ, 0) = 0.(10)

It is known that the special value ζR(K/F, σ, 0) is always rational. In

order to obtain a special value that is integral at 0, we introduce an auxiliary

prime ideal η ⊂ O. In the number field case, assume that the residue

characteristic of η is at least 2 more than the absolute ramification index of

p. Define the “shifted zeta function”

ζR,η(K/F, σ, s) = ζR(K/F, σση, s) − Nη1−sζR(K/F, σ, s).(11)

The values ζR,η(K/F, σ, 0) are integral. The shifted zeta function ζS,η(K/F,

σ, s) is obtained by replacing R with S in (11).

Remark. Our definition of the shifted zeta function agrees with that

of [7] and differs with that of [2], where σ is replaced by σσ−1
η in the right

side of (11). This difference is merely notational.

Fix a prime P of K above the prime p of F . The following is Gross’s

formulation of the Brumer–Stark conjecture [5, Conjecture 7.4], which was

originally stated by Tate in [10].

Conjecture 3.1 (Brumer–Stark–Tate). There exists a unique ele-

ment uK,η ∈ K such that:

• |uK,η|P′ = 1 for all places P′ of K not above p, including archimedean

P′.

• For all σ ∈ Gal(K/F ), we have log |uσK,η|P = −ζ ′S,η(K/F, σ, 0).

• uK,η ≡ 1 (mod Q) for every prime Q of K lying above the prime η of

F .
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Using (9), the second condition of Conjecture 3.1 can be reformulated

as

vP(uσK,η) = ζR,η(K/F, σ, 0).(12)

The following norm-compatibility relation of Stark units is well-known and

easy to verify:

Proposition 3.2. Let K ′ be a finite abelian extension of F containing

K. Suppose that K ′/F is unramified outside S and that p splits completely

in K ′. If Conjecture 3.1 is true for K ′/F , then it is true for K/F as well

and we have

uK,η = NK′/K(uK′,η).

4. A Conjectural Formula for Stark’s Unit

In this section, F denotes a totally real number field of degree n. We

recall the conjectural formula for the Stark unit uH,η presented in [2]. Here

H = H(f; p) as in (5).

We first give some preliminaries on p-adic integrals. Recall that Op

denotes the ring of integers of the completion Fp.

Definition. A Z-valued measure on Op is a function µ from the set of

compact open subsets of Op to Z such that for disjoint compact open sets

U and V , we have µ(U ∪ V ) = µ(U) + µ(V ). If X ⊂ Op is a compact open

subset, f : X → F×
p is a continuous map, and a µ is a Z-valued measure on

Op, we define the multiplicative integral

×
∫
X
f dµ = lim

m→∞

∏
x∈F×

p /Up,pm

xµ(f−1(x)) ∈ F×
p .(13)

The products inside the limit are all finite by the compactness of X, and

the limit converges because the sequence of products is evidently Cauchy.

We now define a particular measure using methods of Shintani [9] and

Cassou-Nogues [1]. Recall that Q denotes the positive orthant (R>0)n.
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Definition. For linearly independent vectors v1, . . . , vr in Q, define

the simplicial cone C(v1, . . . , vr) ⊂ Q by

C(v1, . . . , vr) =

{
r∑

i=1

civi | ci ∈ R>0

}
.(14)

When all the vi belong to ι(F )∩Q, the simplicial cone C(v1, . . . , vr) is called

a Shintani cone. A Shintani set is a subset of Q that can be written as a

finite disjoint union of Shintani cones.

Theorem 4.1 (Shintani, [9]). There exists a Shintani set D that is a

fundamental domain for the action of E(f) on Q.

Definition. A Shintani domain is a Shintani set D as in Theorem 4.1.

We now define the zeta functions associated to Shintani sets. First we

state some technical conditions that are needed to ensure that the Shintani

zeta functions have integral special values at s = 0.

Definition. Let η be a prime ideal of O such that Nη = � is a prime

number with � ≥ n + 2. Then η is good for a Shintani cone C if C can be

written C = C(v1, . . . , vr) with each vi ∈ O, vi 
∈ η. The prime η is good

for a Shintani set D if D can be decomposed as the finite disjoint union of

Shintani cones C such that η is good for each C.

Let D be a Shintani set (not necessarily a Shintani domain) such that η

is good for D. Assume that no prime of S has residue characteristic �. Let

b be a fractional ideal of F relatively prime to S. For each compact open

subset U ⊂ Op, define a zeta function ζR(b,D, U, s) by

ζR(b,D, U, s) = Nb
−s

∑
α

Nα−s,(15)

where the sum ranges over all α ∈ b−1 ∩ U such that

α ≡ 1 (mod f), ι(α) ∈ D, and (α,R) = 1.

It follows from [9, Proposition 1, §1.1] that the function ζR(b,D, U, s)

extends to a meromorphic function on C (see [2, Proposition 6.1]). Define
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a shifted zeta function

ζR,η(b,D, U, s) = ζR(bη,D, U, s) − Nη1−sζR(b,D, U, s).(16)

If b is a fractional ideal of F of the form aη−1 where a is relatively

prime to S and to � = Nη, and η is good for D, then the special value

ζR,η(b,D, U, 0) is an integer [2, Proposition 6.1]. Hence we can define a

Z-valued measure ν(b,D) on Op by

ν(b,D, U) = ζR,η(b,D, U, 0).(17)

Let e denote the order of 〈p〉 in Cl+
f
(O). Write pe = (π) with π totally

positive and congruent to 1 modulo f. Let O = Op− πOp. Define

ε(b,D, π) =
∏

ε∈E(f)

εν(b,εD∩π−1D,Op).(18)

The product in (18) can be shown to be finite using a compactness argument.

The chosen place P of H above p naturally gives rise to an embedding

H ⊂ HP
∼= Fp. The following conjecture was proposed in [2].

Conjecture 4.2. Let D be a Shintani domain such that η is good for

D. For any fractional ideal b of O such that bη is relatively prime to S and

to �, let

uη(b,D) = ε(b,D, π) · πζR,η(Hf/F,b,0) ×
∫
O
x dν(b,D, x) ∈ F×

p .

We have:

• uη(b,D) depends only on the class of b in Cl+
f
(O)/〈p〉, and in partic-

ular not on D.

• uη(b,D) ∈ H× and |uη(b,D)|P′ = 1 for every P′ not lying above p,

including archimedean places P′.

• uη(b,D) ≡ 1 (mod Q) for every prime ideal Q of H lying above η.

• (Shimura reciprocity law) For any fractional ideal a relatively prime

to S and to �, we have

uη(ab,D) = uη(b,D)σa.



426 Samit Dasgupta and Alison Miller

It is proven in [2, Proposition 3.3] that Conjecture 4.2 implies the

Brumer–Stark conjecture (Conjecture 3.1) and that

uη(b,D) = uσb

H,η.

Furthermore, it is proven in [2, Theorem 3.22] that the element uη(1,D) ∈
F×

p satisfies the analytic properties of Gross’s conjectures ([4, Conjecture

2.12 and Proposition 3.8] and [5, Conjecture 7.6]).

5. Shintani Zeta Functions in Function Fields

Let F be a function field with places ∞1, . . . ,∞n at infinity. In (3) we

defined a map

ι : F× →
n∏

i=1

(
R>0 × k×i

)

by ι(x) = (|x|∞i , sgn∞i
(x)). The group F× acts on

∏n
i=1(R

>0×k×i ) through

the application of ι and componentwise multiplication. We defined the

totally positive orthant

Q =
n∏

i=1

(
R>0 × 1

)
⊂

n∏
i=1

(
R>0 × k×i

)
,

which contains the images under ι of all totally positive elements of F×.

Definition. A Shintani domain is a fundamental domain D for the

action of Ef on Q.

Remark. A striking feature of the function field setting is that we

need not specify the form of the fundamental domain D. One may take a

union of simplicial cones in Q, but this is not necessary. This is related to

the fact that ι is not injective in the function field case. In the number field

setting, if we are given totally positive elements a, b ∈ F×, then the points

ι(a + nb) ∈ Q for integer n ≥ 0 form a discrete set of points lying on a line

in Rn. Therefore, it is natural to consider simplicial cones when defining a

fundamental domain D. However, in the function field setting, it is possible

for the elements a + nb to map to the same point under ι, so the shape of

the fundamental domain D becomes irrelevant.
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We now define Shintani zeta functions for F in a manner analogous to the

number field setting. Let D be a subset of Q, and let b be an integral ideal of

O. Let η 
∈ S be any prime ideal of O, and define zeta functions ζR(b,D, U, s)

and ζR,η(b,D, U, s) from equations (15) and (16) without change. At the

end of this section we prove:

Proposition 5.1. For any integral ideal b of O relatively prime to

S and to η, and any compact open subset U ⊂ Op, the zeta function

ζR,η(b,D, U, s) is a finite Dirichlet series in s with integral coefficients. In

particular, its value at 0 is an integer.

For any D ⊂ Q, define as before a measure ν(b,D, U) by equation (17).

Define ε(b,D, π) by (18). Because we have not specified the shape of the

set D, the compactness argument used in the number field setting to show

that all but finitely many of the sets εD∩π−1D appearing in (18) are empty

no longer applies. However, we show in Corollary 5.5 that all but finitely

many exponents in (18) equal 0, so the product is well-defined. We can

now formulate a function field analogue of Conjecture 4.2. Once again,

the chosen place P of H above p naturally gives rise to an embedding

H ⊂ HP
∼= Fp.

Theorem 5.2. Let D be a Shintani domain. For any integral ideal b

of O that is relatively prime to S and to η, let

uη(b,D) = ε(b,D, π) · πζR,T (H/F,b,0) ×
∫
O
x dν(b,D, x) ∈ F×

p .

We have:

• uη(b,D) depends only on the class of b in Cl+
f
(O)/〈p〉, and in partic-

ular not on D.

• uη(b,D) ∈ H× and |uη(b,D)|P′ = 1 for every P′ not lying above p.

• uη(b,D) ≡ 1 (mod Q) for every prime ideal Q of H lying above η.

• (Shimura reciprocity law) For any ideal a relatively prime to S and to

η, we have

uη(ab,D) = uη(a,D)σb.
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We will prove Theorem 5.2 in Section 8. We now proceed to a proof of

Proposition 5.1.

Definition. Let D be a subset of Q. Let AN (b,D) denote the set

of totally positive elements α ∈ b−1f + 1 relatively prime to R such that

ι(α) ∈ D and deg∞(α) = N . Let

SN (b,D) =
⋃

m≤N

Am(b,D).

For U ⊂ Op, let aN (b,D, U) = #AN (b,D) ∩ U and sN (b,D, U) =

#SN (b,D) ∩ U. If D ⊂ Q is given, we will often drop it from the nota-

tion.

Grouping terms by degree, we can rewrite ζR(b,D, U, s) as

ζR(b,D, U, s) = Nb
−s

∞∑
N=− deg∞ b

aN (b, U)q−Ns

=
∞∑

N=− deg∞ b

aN (b, U)q−(N+deg∞ b)s(19)

We will need the following lemma, which is a version of the Riemann-Roch

theorem:

Lemma 5.3. Let g denote the genus of F and let {q} denote a finite set

of places of F . For each q choose an integer rq such that M :=
∑

rqdq >

2g − 2. For each q, let xq be an element of Fq, and let Bq(xq,−rq) denote

the q-adic ball

{x ∈ Fq | x− xq ∈ q
−rqOq}.

Define a subset A ⊂ AF by

A =
∏
q

Bq(xq,−rq)
∏

v �∈{q}
Ov.(20)

Then F ∩ A has qM−g+1 elements.
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Proof. Let

L =
∏
q

q
−rqOq

∏
v �∈{q}

Ov.

Since A is a coset of the Fq-vector space L, it follows that F ∩ A is a

coset of the Fq-vector space F ∩L, provided that F ∩A is nonempty. Since

M > 2g−2, the Riemann-Roch theorem implies that the dimension of F ∩L
over Fq is M − g + 1. Hence F ∩A has qM−g+1 elements if it is nonempty.

To show that F ∩A is nonempty, let sq = max{−vq(xq), rq}, and define

L′ =
∏
q

q
−sqOq

∏
v �∈{q}

Ov.

The quotient F ∩ L′/F ∩ L of Fq-vector spaces injects into the quotient

L′/L ∼=
∏
q

q
−sq/q−rq.

The dimension of the latter vector space is
∑

(sq− rq)dq, and by Riemann-

Roch on F ∩ L′ and F ∩ L, the dimension of F ∩ L′/F ∩ L is exactly the

same. Hence we have a bijection F ∩ L′/F ∩ L → L′/L, and the preimage

under this map of the image of
∏

xi in L′/L is exactly F ∩A. Hence F ∩A
is nonempty. �

This lemma is the key fact available in function fields that enables the

following proof.

Proof of Proposition 5.1. Every compact open U ⊂ Op can be

written as a finite disjoint union of p-adic balls

Bp(a, r) = a + p
rOp,

so it suffices to prove the result when U is such a ball. We have

ζR,η(b,D, U, s)(21)

=
∞∑

N=− deg∞(bη)

(aN (bη, U) − Nη · aN (b, U))q−(N+deg∞(bη))s.
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The coefficients of this Dirichlet series are manifestly integral, so it remains

to show that for N sufficiently large, we have

aN (bη, U) = Nη · aN (b, U).

Partition the set AN (b) ∩ U as follows. Let q1, q2, . . . , qm be the non-

infinite places of R. For every n-tuple of integers w = (w1, . . . , wn) with∑
i d∞iwi = N , and every sequence x = (x1, . . . , xm) of elements xj ∈ k×qj =

(Oqj/qjOqj )
×, let

AN,w,x(b) = {α ∈ AN (b) | v∞i(α) = −wi for i = 1, . . . , n and

α ≡ xj (mod qj) for j = 1, . . . ,m}.

Define AN,w,x(bη) likewise. The sets AN,w,x(b) and AN,w,x(bη) partition

AN (b) and AN (bη), respectively. Hence it suffices to show that for N suffi-

ciently large, we have

#AN,w,x(bη) ∩Bp(a, r) = Nη · #AN,w,x(b) ∩Bp(a, r).(22)

Note that the two conditions that v∞i(α) = −wi and that α is positive

at ∞i are equivalent to the single condition α ≡ π−wi∞i
(mod π−wi+1

∞i
). Thus

we can write

AN,w,x(b) ∩Bp(a, r) = F ∩ A

where A ⊂ AK is the elementary open subset

A = Bp(a, r)
n∏

i=1

B∞i(π
−wi
∞i

,−wi + 1)
m∏
j=1

Bqj (xj , 1)
∏
q�∈S

Bq(1, vq(b
−1

f)).

Lemma 5.3 implies that there exists M such that for N ≥ M

#(AN,w,x(b) ∩Bp(a, r))

= q−rdp+
∑ n

i=1(d∞i (wi−1))−
∑ m

i=1 dqi−deg∞(b−1f)−g+1

= qN+deg∞ b−κ,

(23)

where κ is an integer independent of N , w, x and b. Likewise,

#(AN,w,x(bη) ∩Bp(a, r)) = qN+deg∞(bη)−κ
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for the same κ. Since Nη = qdeg∞ η, we obtain (22) as desired. �

We note that the integer M defined in the proof of the previous propos-

tion depends on R, η, b, and U , but not on the Shintani domain D. The

following corollary then follows immediately, using equation (21).

Corollary 5.4. There exists an integer M not depending on D such

that for all N ≥ M ,

ζR,η(b,D, U, 0) = sN (bη,D, U) − Nη · sN (b,D, U).

Corollary 5.5. Let D be a Shintani domain. For all but finitely

many ε ∈ E(f), we have

ν(b, εD ∩ π−1D,Op) = 0.

Proof. Corollary 5.4 implies that there exists an M such that

ν(b, εD ∩ π−1D,Op) = sN (bη, εD ∩ π−1D,Op)(24)

− Nη · sN (b, εD ∩ π−1D,Op)

for all N ≥ M and all ε ∈ E(f). Fix an N such that N ≥ M . The sets

SN (bη, π−1D) and SN (b, π−1D) are finite, so the right hand side of (24) is

nonzero for only finitely many ε. �

6. Hayes’s Construction of Stark Units

The Brumer–Stark conjecture (Conjecture 3.1) was proven in the func-

tion field setting by Deligne using the theory of 1-motives ([3], see also [10,

Chapitre V]). Hayes gave an alternate approach using the theory of Drinfeld

modules and their associated exponential functions [6]. This point of view

allowed him to prove Gross’s refinement of the Brumer–Stark conjecture [7].

Hayes’s formulas for the Stark unit will serve as the starting point for the

proof of Theorem 5.2.

Let Cp denote the completion of an algebraic closure of Fp. Let � ∈ Fp

be a uniformizer and let sgnp : F×
p → k×p be the associated sign function.
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Let b and m be relatively prime ideals of the ring A of elements integral

outside p. The quotient Cp/b
−1m gives rise to Drinfeld A-module φb−1m

over Cp with associated exponential function

eb−1m : Cp/b
−1

m → Cp

defined by

eb−1m(z) = z
∏

α∈b−1m−{0}

(
1 − z

α

)
.(25)

Hayes defined a notion of when the Drinfeld module φb−1m is normalized

with respect to sgnp, and proved that there exists a ξ ∈ Cp such that the

Drinfeld module φξb−1m is sign-normalized [7, Section 5]. Let

λ(b) = ξ · eb−1m(1).(26)

The moduli and reduction theory of sign-normalized Drinfeld modules allows

one to deduce that λ(b) lies in a certain specific finite abelian extension of

F that is unramified outside m and p (see [7, Section 4] or [8, Section 16]).

We therefore define

uKm,η(b) = λ(b)ση−Nη.(27)

The constant ξ is defined uniquely only up to a root of unity, so the same

is true of λ(b). However, the element uKm,η(b) is uniquely well-defined.

Theorem 6.1 (Hayes). The elements uKm,η(b) lie in the field Km.

The element uKm,η(1) is a Stark unit for Km/F and furthermore satisfies

Gross’s refinement of Stark’s conjecture. We have the Shimura Reciprocity

Law:

uKm,η(ab) = uKm,η(b)σa.

Our statement of Theorem 6.1 combines the results of [6, §5] with [7,

Theorems 4.17 and 5.10]. Central to the proof of Theorem 6.1 is the prod-

uct formula for uKm(b) given in Lemma 6.2 below, which Hayes proved by

manipulating the product in (25).
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Definition. Let ΣN (b,m) denote the set of all elements z ∈ b−1m+1

such that z is relatively prime to R and degpz ≤ N .

Lemma 6.2 ([7], Theorem 5.10). For any ideal b of A that is relatively

prime to m, we have

uKm,η(b) = lim
N→∞


 ∏

z∈ΣN (bη,m)

z /
∏

z∈ΣN (b,m)

zNη


 .(28)

7. A Product Formula for the Stark Unit over H

We now apply the results of the previous section with m = f∞. We will

take the norm from Kf∞ to H of equation (28) to provide a product formula

for the Stark unit uH,η and its conjugates. Recall the explicit description

of Gal(Kf∞/H) given in Proposition 2.1. Let T be a set of elements of F×

whose images under ι are coset representatives for the finite group (ι(F×)∩
Q)/ι(Ep(f)). By strong approximation, we may choose the elements of T to

lie in the ring A and such that they are congruent to 1 modulo f.

From Proposition 3.2 we have the following formula for the Stark unit

over H:

uσb

H,η = NKm/H(uKm,η(b))

=
∏
x∈T

uKm,η(xb).(29)

By the definition of T and the injectivity of ι on Ep(f), any totally positive

α ∈ F× can be written uniquely as

α = xα · π−dα · ε−1
α · βα,(30)

where xα ∈ T , dα ∈ Z, εα ∈ E(f), and βα ∈ ker ι. Define an equivalence

relation ∼ on F× ∩ ι−1(Q) by α ∼ α′ if xα = xα′ . The following lemma

is easy to verify. We write simply ΣN (xb) for ΣN (xbA, f∞), where xbA

denotes the ideal of A corresponding to xb.

Lemma 7.1. Fix x ∈ T . For any ideal b ⊂ O relatively prime to pf∞,

the map

α �→ βα
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induces a bijection between {α ∈ SN (b) ∩ O | xα = x} and ΣN (xb).

Lemma 7.2. We have

uσb

H,η = lim
N→∞


 ∏

α∈SN (bη)∩O

απdαεα /
∏

α∈SN (b)∩O

(απdαεα)Nη


 .

Proof. For each x ∈ T , the change of variables in Lemma 7.1 shows

that the limit

lim
N→∞


 ∏

α∈SN (bη)∩O
α∼x

απdαεα /
∏

α∈SN (b)∩O
α∼x

(απdαεα)Nη


(31)

is equal to

lim
N→∞


 ∏

β∈ΣN (xbη)

xβ /
∏

β∈ΣN (xb)

(xβ)Nη


 .(32)

The exponent of x inside the limit of (32) is equal to

#ΣN (xbη) − Nη · #ΣN (xb).(33)

By Corollary 4.15 of [7], or by using an argument similar to the derivation

of Corollary 5.4 with O replaced by A, we see that for N large enough the

value of (33) is equal to ζS,η(Km/F, σxb, 0). This zeta value is 0 by (10),

so the x terms may be removed in (32) and the expression simplifies to the

formula for uKm(xb) given in Lemma 6.2. Taking the product of (31) over

all x and applying (29) gives the desired result. �

8. Proof of the Shintani-Type Conjecture over Function Fields

Theorem 5.2 follows by combining Lemma 7.2 with the following three

formulae for the terms appearing in the definition of uη(b,D).

Proposition 8.1. We have

×
∫
O
x dµb = lim

N→∞


 ∏

α∈SN (bη)∩O

α /
∏

α∈SN (b)∩O

αNη


 .(34)
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Proposition 8.2. For N large enough, we have

ζR,η(Hf/F, σb, 0) =
∑

α∈SN (bη)∩O

dα − Nη
∑

α∈SN (b)∩O

dα.

Proposition 8.3. For N large enough, we have

ε(b,D, π) =
∏

α∈SN (bη)∩O

εα /
∏

α∈SN (b)∩O

εNη
α .(35)

From Proposition 8.2 we obtain

πζR,η(Hf/F,σb,0) = lim
N→∞

π
∑

α∈SN (bη)∩O dα−Nη
∑

α∈SN (b)∩O dα .(36)

Multiplying (34), (35), and (36), and combining with Lemma 7.2, we obtain

uη(b,D) = uσb

H,η,

thereby completing the proof of Theorem 5.2 (with the Shimura reciprocity

law following from the corresponding law in Theorem 6.1).

Proof of Proposition 8.1. Recall that we have chosen a uni-

formizer � for the local field Fp. Any element of O can be written uniquely

as �ix with 0 ≤ i ≤ e − 1 and x ∈ O×
p . We convert our multiplicative

integral to a limit.

×
∫
O
x dµb = lim

r→∞

e−1∏
i=0

∏
x∈(O/pr)×

(�ix)ν(b,D,B(�ix,i+r)).(37)

By Corollary 5.4, the product in (37) can be written

e−1∏
i=0

∏
x∈(O/pr)×

(�ix)sN (bη,B(�ix,i+r))−Nη·sN (b,B(�ix,i+r))(38)

for N large enough, depending on r. If we collect the powers of � in this

product, the resulting exponent is

C :=

e−1∑
i=0

i ·
(
sN (bη,�iO×

p ) − Nη · sN (b, �iO×
p )

)
(39)
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for N large enough, not depending on r.

For any α ∈ B(�ix, i + r), the value �−iα is a p-adic unit, and is

congruent to x modulo pr. This yields the following congruence:

e−1∏
i=0

∏
x∈(O/pr)×

xsN (b,B(�ix,i+r))

=

e−1∏
i=0

∏
x∈(O/pr)×

∏
α∈SN (b)∩B(�ix,i+r)

x

≡
e−1∏
i=0

∏
x∈(O/pr)×

∏
α∈SN (b)∩B(�ix,i+r)

�−iα (mod p
r)

≡
e−1∏
i=0

∏
α∈SN (b)∩�iO×

p

�−iα (mod p
r),(40)

since every α ∈ SN (b) ∩ �iO×
p belongs to exactly one of the congruence

classes B(�ix, i + r).

Applying (40) twice in the expression (38), we obtain

e−1∏
i=0

∏
x∈(O/pr)×

(�ix)ν(b,D,B(�ix,i+r)) ≡
∏

α∈SN (bη)∩O α∏
α∈SN (b)∩O αNη

(mod p
r+C).(41)

Taking the limit first as N → ∞ and then as r → ∞ and using (37) yields

the desired result. �

Before proceeding to the proof of Proposition 8.2, we record the following

convenient formula, obtained from (30):

dα =
deg∞(x) − deg∞(α)

deg∞(π)
.(42)

Proof of Proposition 8.2. We have

ζR(Hf/F, σb, s) =
∑
a⊂O

(a,R)=1
σa=σb on Hf

1

Nas
=

1

Nbs

∑
α∈b−1/E(f)
α
0,(α,R)=1
α≡1 (mod f)

1

Nαs
,(43)
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where the second equality uses the change of variables a = (α)b, and α is

well-defined modulo E(f). Any element of the quotient b−1/E(f) can be

represented by an element of the form απm where α ∈ b−1 ∩ O and m is

a non-negative integer. Furthermore, α is well-defined modulo E(f), and is

specified uniquely after imposing the condition ι(α) ∈ D. This allows us to

rewrite (43) by applying the formula for the sum of a geometric series, as

follows:

ζR(Hf/F, σb, s) =
Nb−s

1 − Nπ−s

∑
α∈b−1∩O, ι(α)∈D

α
0,(α,R)=1
α≡1 (mod f)

1

Nαs
.(44)

Equation (44) yields the following expression for the shifted zeta function:

ζR,η(Hf/F, σb, s)(45)

=
N(bη)−s

1 − Nπ−s




∑
α∈b−1η−1∩O, ι(α)∈D

α
0,(α,R)=1
α≡1 (mod f)

1

Nαs
− Nη

∑
α∈b−1∩O, ι(α)∈D

α
0,(α,R)=1
α≡1 (mod f)

1

Nαs


 .

By Proposition 5.1, this is a finite Dirichlet series equal to

N(bη)−s

1 − Nπ−s


 ∑

α∈SN (bη)∩O

1

Nαs
− Nη

∑
α∈SN (b)∩O

1

Nαs


(46)

for N large enough. The term in parenthesis in (46) and the denominator

1 − Nπ−s both vanish at s = 0, so we apply L’Hôpital’s rule to obtain

ζR,η(Hf/F, σb, 0) = −
∑

α∈SN (bη)∩O

deg∞(α)

deg∞(π)
+ Nη

∑
α∈SN (b)∩O

deg∞(α)

deg∞(π)
.(47)

Equation (42) implies that deg∞(α)
deg∞(π) + dα depends only on the equivalence

class of α with respect to ∼. Furthermore, for a given x ∈ T , we saw in the

proof of Lemma 7.2 that

#{α ∈ SN (bη) ∩ O | α ∼ x} − Nη · #{α ∈ SN (b) ∩ O | α ∼ x} = 0(48)
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for N large enough. This implies that, after possibly increasing N , we can

change all the −deg∞(α)/deg∞(π) terms to dα in (47) without affecting

the sum. Therefore, for N large enough, we have

ζR,η(Hf/F, σb, 0) =
∑

α∈SN (bη)∩O

dα − Nη
∑

α∈SN (b)∩O

dα

as desired. �

Proof of Proposition 8.3. Recall from the proof of Corollary 5.5

that there exists an M not depending on ε such that equation (24) holds for

all N ≥ M and all ε ∈ E(f). Fix such an N . For each totally positive β ∈ F

define υ(β) to be the unique ε ∈ E(f) such that ι(β) ∈ εD. Equations (18)

and (24) imply

ε(b,D, π) =
∏

β∈SN (bη,π−1D)

υ(β) /
∏

β∈SN (b,π−1D)

υ(β)Nη.(49)

For each x ∈ T , let rx be the unique integer such that

N < deg∞(xπrx) ≤ N + deg∞ π,(50)

and let υx = υ(xπrx). From (42) and (50) we have for each totally positive

α ∈ F with xα = x the equality⌊
N − deg∞ α

deg∞ π

⌋
= dα + rx − 1.(51)

For each β ∈ SN (b, π−1D), let i denote the unique exponent such that

βπ−i ∈ O. Let ε = υ(βπ−i). Equation (51) implies that the map φ(β) =

(βπ−iε−1, i) induces a bijection between SN (b, π−1D) and the set of pairs

(α, i) such that α ∈ SN (b,D) ∩ O and 0 ≤ i ≤ dα + rx − 1. Indeed, if for

each α ∈ SN (b,D) ∩ O we define εi = υ(πiα)−1, then the inverse map to φ

is given by (α, i) �→ β = εi+1π
iα. Furthermore, we have υ(β) = εi+1ε

−1
i for

0 ≤ i < dα + rx − 1. In particular,

εdα+rx =

dα+rx−1∏
i=0

υ(φ−1(α, i)).(52)
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Since it follows from (30) that εα = εdα+rxυx, equation (52) states that

υ−1
x εα is equal to the product of υ(β) as β ranges over the dα + rx elements

to which α correponds under the bijection φ. Therefore equation (49) yields

ε(b,D, π) =
∏

α∈SN (bη)∩O

(υ−1
x εα) /

∏
α∈SN (b)∩O

(υ−1
x εα)Nη.(53)

We saw in equation (48) that the exponent of υx for each x ∈ T in (53) is

zero; this gives the desired result. �
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