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Spectra of Domains with Partial Degeneration

By Shuichi JIMBO and Satoshi KOSUGI

Abstract. We consider the eigenvalue problem of the Laplacian
(Neumann B.C.) in the domain which has a very thin subregion. We
give a detailed characterization of the asymptotics of the eigenvalues
and the eigenfunctions. The perturbation formulas take various forms
depending on the type of the eigenvalue and geometric situations (di-
mension, shape).

§1. Introduction

In this paper, we deal with a detailed characterization of the eigenvalues
of the Laplace operator (with Neumann B.C.) in the domain ©((), which has
an extremely thin subregion Q(¢) (see Fig.1-Fig.5 for typical examples). We
also analyze the behaviors of the corresponding eigenfunctions. The domain
Q(¢) C R™ takes the following form

(1.1) Q) =DUQR(C) (¢>0)

such that D is a bounded (fixed) domain and Q(() is a region which shrinks
to a lower dimensional set ) (dim @ = ¢) for ¢ — 0. We suppose that Q(()
is almost equal to the set Q@ x B(™)(¢). Here B(™)(() is a m—dimensional
ball of radius ¢ and ¢ +m = n. 9Q(() is sufficiently regular for each ¢ > 0.
The precise definition of ©(() is to be given in §2. For the domain Q((), we
consider the eigenvalue problem

AD+ud=0 in Q)

(1.2)
0®/0v =0 on 09Q(() (Neumann B.C.)

where A is the Laplace operator in R™ and v is the unit outward nor-
mal vector on 9€2(¢). It is known that the spectral set of the Laplacian
(with Neumann B.C.) in a bounded domain with a smooth boundary is
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a discrete sequence of nonnegative real numbers, which are eigenvalues of
finite multiplicity (cf.Courant-Hilbert [12], Edmunds-Evans [15], Mizohata
[39]). So we can denote the eigenvalues of (1.2) by ux(¢) (k = 1), which
are arranged in increasing order (with counting multiplicity). We will in-
vestigate the limitting behavior of py(¢) for ¢ — 0. We will show in later
sections (cf. Proposition 2.1 in §2 and its proof in §3) that, for each k, the
eigenvalue p(¢) has a limit value ( denoted by py ) for ¢ — 0 and the
set of all such values py (k= 1,2,3,--+) is equal to the union of two sets
{wr}e, and {A;}32 . Here wy, is the k—th eigenvalue of the Laplacian in D
(with Neumann B.C.) and )y, is the k-th eigenvalue of the (low-dimensional)
Laplacian in ) with Dirichlet B.C. on dQ. The main purpose of this paper
is to investigate detailed behaviors of the convergence

(1.3) Yim pux () = pux

in relation to the limit eigenvalue problems in D and ). We get a pertur-
bation formula of ux(¢) — pr (for ¢ — 0). Due to this result, we see the
accurate convergence rates and understand what kind of quantities of the
geometric situations are involved in the asymptotic behaviors of the eigen-
values. Here we introduce a notation to classify the limit set of eigenvalues,
by which we give more detailed statement of results. We decompose the set
{mr}72, into the following three subsets.

Er ={wetrzs \{ etz B = { ke \{wr iz,
Errr = {wrtrmr N {22y

We call elements of E; U Ejr non-resonant eigenvalues and those of Eyyr
resonant eigenvalues.

We describe several previous results on this problem. There have been
many important works on eigenvalue problems on such singularly perturbed
domains in these several decades. Among them, the pioneering work Beale
[7] studied the domain with a thin handle (like a Dumbbell shaped domain
but unbounded) from point of view of wave phenomena and gave a char-
acterization of the eigenfrequencies and scattering frequencies. This work
gives a method which is applicable to the proof of (1.3). Later there have
been several works on the analysis of the details of the convergence (1.3) for
the case of the Dumbbell shaped domain (cf. Fig.1, Fig.2, Fig.4). Arrieta
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Fig. 1. Dumbbell-shaped domain (2D)

Fig. 2. Dumbbell-shaped domain (3D)

[4], Fang [16], Jimbo -Morita [29], Jimbo [25], Gadylshin [21], Nazarov-
Plamenevskii [41] gave perturbation formulas of eigenvalues for this domain
(but in situations which are mutually different). We mention some of these
results.

(I) For the case n = 3, =1 and py € Ey, Jimbo [25] obtained
(14) Q) = e = (k) +0(¢"T)

(see also Arrieta [4], Fang [16], Jimbo and Morita [29], Kozlov-Maz’ya-
Movchan [34]).

(II-1) For the case n =2, =1 and pj, € Ery, Arrieta [4] obtained
(1.5) 1 () — pe = B(k)Clog(1/¢) + o(Clog(1/¢)).
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(II-2) For the case n = 3,¢ =1 and puy, € Err, Gadylshin [21] obtained

(1.6) 1(C) — s = B' (k)¢ + o(Q).

The coefficients a(k), B(k), 3 (k) in the above formulas are given in terms
of the eigenvalue problems of the limit domains (See §2 for details). On the
other hand, there has not been a result for the case of uy € Eyrr (even in the
case of Dumbbell shaped domains) as far as the authors know. We deal with
the non-resonant case E; and Ejy for / = dim @ = 2 as well as £ = 1 and
we also study the resonant eigenvalue p(¢) (the case pg € Errr) and prove
perturbation formulas. For u;, € Epjg, the corresponding eigenfunction @,
behaves like a mixture (or linear combination) of several modes coming
from both of {wy}32, and {A;}72, (this is why we call it resonant) and so
it makes difficulty for which we need harder analysis. We present the main
results (perturbation formula of eigenvalues) in Theorem 2.5 and Theorem
2.10-2.14 in §2 (cf. the list in Fig.8). As an important special case, we
have a perturbation formula for u(¢) for the domain (Doughnut+Pancake
shaped domain) in Fig.3 (i.e. n = 3,£ = 2,m = 1) (as a special case) as
follows.

a(k)C +o(¢) if € By
k() — i = < B1(k)¢log(1/¢) 4+ o(Clog(1/¢)) if € Erg
v, (k)2 + o(¢H/?) if € Eqpr

In this example, we can see that the properties of convergence of the eigen-
value are seriously dependent on situations (particularly on which of three
sets Er, Err, Errr, py, belongs to). This is one of the most interesting parts
of our main results. We can also deal with the case that Q(¢) and D are
not connected (cf. Fig.2, Fig.5).

There have been also analysis on the spectrum of totally thin domain
(cf. Ramm [49], Schatzman [55]). In [55], a similar perturbation formula
of the eigenvalue on a thin tubular domain around a manifold is studied.
On the other hand, there are other kinds of singularly perturbed domains
(besides thin or partially thin domains). One typical example of them is
a domain with a small hole (or impurities, cracks). That is the domain
like (¢) = @\ B(¢) where a thin set B(() shrinks to a lower dimen-
sional set. Note that this domain €'({) increases at the limit ¢ — 0 and
so it is an interesting contrast to that our domain €2({) decreases. This
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@

D

Fig. 3. Doughnut+Pancake domain (3D)

type of domains are also related with real physical phenomena and there
are a lot of works on their elaborate spectral analysis and perturbation
formulas of eigenvalues have been studied in many situations. See Bérard-
Gallot [8], Chavel-Feldman [9,11], Rauch-Taylor [50], Courtois [13], Flucher
[17], Ozawa [43,44,45,46], Swanson [56,57] and other literature in the ref-
erences. In either cases (2(¢) or €©'(¢)), the domain perturbation is sin-
gular in the sense that the domain can not be parametrized by a map
depending smoothly up to the limit ( = 0. Hence it can not be dealt with
a usual perturbation technique (fixing the domain by change of the vari-
able) and so we need to invent a method to overcome the difficulty. This
makes the problem more challenging and interesting. We refer to Jimbo-
Kosugi [30], Panasenko [47] for other type of singular perturbation problem
of elliptic eigenvalue problem. They study operators with the variable co-
efficients which degenerate in a subregion of the domain and there is a
difficulty of singular phenomena at the limit. They obtain the elaborate
characterization of the asymptotics of the eigenvalues. The results and dif-
ficulty of analysis are similar to those of the present paper. We briefly
mention the background of the research. Many mathematical subjects of
PDEs in singularly perturbed domains arise from phenomena of physics
and engineering, where singular properties of shape of materials or spaces
lead to the feature of the behavior of mathematical objects. Thus proper-
ties of solutions (or other quantities of PDEs) are studied with emphasis
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on each context (e.g. heat equations, wave equations, pattern formation in
reaction-diffusion equations, Ginzburg-Landau equations in complicated do-
mains ). See Dancer [14], Kosugi [32,33], Matano [36], Matano-Mimura [37],
Jimbo [26,27,28], Jimbo-Morita-Zhai [31], Morita [40], Vegas [58], Hale-
Vegas [23], Raugel [51], Rubinstein-Sternberg-Wolansky [53], Rubinstein-
Schatzman [52], Yanagida [59] and the references for related topics. We
think that our results are related with the sound wave phenomena in the
space with a sound hard boundary and we hope that they are applicable to

D

Fig. 4. Another Dumbbell-Shaped domain

Fig. 5. Doubledoughnut+2Pancakes domain
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elaborate analysis on many nonlinear PDE problems in future.

In the proof of the results (§3-§7) we often several notation including
the Landau’s symbols O and o (“large O” and “small O”). We give some of
them.

DEFINITION.

91(¢) = 0(g2(¢)) (¢ — 0) <= limsup¢_,, [g1(¢)/g2(C)
91(¢) = 0(g2(€)) (¢ — 0) <= lim¢—0[91(¢)/g2(¢)| =0
V =(9/0x1, -+ ,0/0xy,), V' =(0/0x1,---,0/0x)
= (0/0s,Vy) = (9/0s,0/0m, 0/, - - 3/3%) (z=(s,m))
= 0%/0x2 + 82/8952 A =09%/0z3 + -+ 0?02
AZ:82/352+82/8771 o+ 0%/0n?,

| < o0

§2. Formulation and the Main Results

We first formulate the domain Q(¢) C R™ (¢ > 0: small parameter). n =
2 is a natural number. Let ¢ be a natural number such that 1 £ ¢ < n and
put m = n—£. For x € R, we can express it as x = (2/,z") € R" = R‘ xR™,
where 2/ = (21,22, ,2¢) € R and 2" = (z441, -+ , ) € R™. Denote the
origins of R™, R, R™ by o, 0, 0", respectively. BNV (1) = {y e RN | |y| < t}
which is the ball in RY of radius t.

The domain Q(¢) has the following form:

(2.1) Q(¢) =DU)

where D and Q(() are specified below. Let D C R™ and @ C R’ be bounded
domains (or finite disjoint union of bounded domains) with C* boundaries,
respectively. We impose the following conditions on D and Q).

ASSUMPTION. There exists {5 > 0 such that
{Q x B(m (3(0)} U D is connected,
{Q x Bm (3@)} ND = dQ x B™(3¢,) c aD.

Although the first condition follows from the second one, we put it for
comprehensibility. We note that Q and Q are the boundary and the closure
of @ in R’, respectively and so dim (0Q) = £ — 1 and denote the outward
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unit normal vector at & € 9Q in R® by n = n(£). We define the subset
Q: C Qfort>0by Q= {2 € Q|dist(«/,0Q) > t}. For small t = 0 it is
written also as

Qi=Q\{{+sn(§ eR | £€aQ, —t < s <0}

For the definition of the shrinking region Q((), we prepare a positive con-
tinuous function q = q(s) € C*((—o0,0)) N C%((—o0,0]) such that

g(s)=1 (—oo<s=-1), dg/ds>0 (-1<s<0), q(0)=2
and the inverse function q~!(¢) (defined in the interval 1 < ¢ < 2) satisfies

lti%l(qu_l(t)/dtk) =0 for 1=k=4.

4,

Fig. 6. Graph of ¢ = q(s)

We define Q(¢) in the following form:
Q) =M QU™

where
QW () = Qa¢ x B™(¢) c R x R™,
Q) ={(¢+sn(&),n) eR xR™ [ -2¢ £ 5 0,
n| < Ca(s/C), € € 9Q}.

From the above conditions, Q(¢) is a bounded domain in R” with a C*
boundary 99(¢) for ¢ € (0, (o).
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We consider the eigenvalue problem (1.1) for the domain Q(() defined
above.

DEFINITION. Let {ux(¢)}32,; be the set of the eigenvalues of (1.1),
which are arranged in increasing order (with counting multiplicity) and let
{®r,c}72, be the corresponding complete system of eigenfunctions orthonor-
malized in L?(Q(¢)). Obviously, we have the following equation (of weak
form)

22) [ (VT u(ucW)dr =0 (¥ € HYR(O).
2(¢)

It is easy to see p11(¢) = 0 and the corresponding eigenfunction ®; () is a
constant function since €2(¢) is connected. Moreover we can put ®; ¢(z) =

/19012,

Q)

= B

K

Fig. 7. Decomposition of Doughnut+Pancake Domain n = 3,/ = 2

The purpose of this paper is to obtain an elaborate characterization of
the asymptotic behavior of u(¢) for ¢ — 0. The following result is so called
the 0—th order approximation and it is the first step toward our main results
in this paper.

PROPOSITION 2.1. For any k € N, there exists ui = 0 such that
(2.3) %i_r%uk(C) = (k21)
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and the set of all py (k 2 1) is characterized as

{hedizn = {watala VA1

Here {wq}3 and {\}72, are the eigenvalues which are arranged in increas-
ing order (with counting multiplicity ) of the following eigenvalue problems
(2.4) and (2.5), respectively,

(2.4) Ap+wp=0 in D, 0p/0v =0 on 0D,
(2.5) AYp+p=0 in Q, =0 on 0Q,

where A’ = Zle 0%/0x2. More precisely, {ux}3, is the sequence which is
obtained by rearranging {wq}q>, U{ A }22, in increasing order with counting
multiplicity. We can express pg explicitly as follows,

pr = max {min(w;, Ag—iy1) | 1 =1 Sk}
By the property 0 = w1 < A\ (in (2.4),(2.5)), we can also express py as
p1 =0, pr=min{max(w;, \p—;),wr | 1Si<k—1} (k=2).

It is easy to see that these two characterization of ui coincide. We use the
second one in the proof (in §3).

As well as the limit value of the eigenvalue ux((), we can characterize
the behavior of the corresponding eigenfunction ®, ..

PROPOSITION 2.2.  For any positive sequence {Cp}p2y with limy_. ¢y =
0, there exist a subsequence {op}>2, and ¥} € C*(D), ®), € C2(Q) such
that

Jm |®k,0, — Prllz2(p) = 0,
(2.6) pli_}ngo ( ,S}/l)peQ( | ’S(m)l/Qg;)n/Q@k’o.p () — Dp(2')| = 0,
r=(x',x op

lim sup |S(m)1/2U;n/2‘I>k,ap (z)] =0,
P—=0 xeD

@ 7) APp + pup®, =0 in D, 0P,/0v=0 on 0D,
‘ A/‘i)k + /J,k‘i)k =0 in Q, (/I\)k =0 on 0Q,
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(2.8)  (Ph, Pw)r2(p) + (Ph, i) r2(g) = 6(k, k) (kK 2 1),

where 6(k, k') is the Kronecker delta symbol define by

Sk k) =4+ (k=)
’ 0 (k#K)

and S(m) is the m-dimensional measure of the unit ball in R™. That
is, S(1) = 2, S(2) = 7, S(3) = 4n/3, S(4) = 72/2,...,S(m) = 7™/2/
I'((m/2) +1). Here T is the Gamma function, which is defined as I'(s) =
JoS et

The proofs of these propositions are to be given in §3.

REMARK 2.3. (i) From (2.8), either ®; or ®,, is non-zero for each k.
It is easy to see that if up € {wq}32; \ {\}72;, then ®, =0 in Q and if
pr € {32\ {wa}2,, then &, = 0 in D. However, for the case u; €
{wa}, N {\ )22, both &, # 0 (in D) and & # 0 (in Q) may hold
simultaneously. So @ ¢ plays an important role in both D and Q(¢) in this
case.
(ii) In Proposition 2.2, the sequence {(,};2; was arbitrary and so we can
assert

limsup [ ¢"/? sup | P ()] | < o0,
(=0 zeQ(C)

(2.9)
lim (Cm/Q sup |<I>k§(x)\> =0
=0 xeD

holds for any k£ = 1 (cf. (2.6)).
(iii) In addition to (2.6) we have the following property

i [ @0, — Peflcaep,) =0, m?fél Pl ®rcliosom,) < o0

for any t > 0 and 0 < 6 < 1. Here D; = {x € D | dist(z,0Q x {0"}) = t}.
This property is proved with the aid of elliptic regularity argument (cf.
Gilbarg-Trudinger [22]). Recall that 9D is C*.

We need to prepare several notation, constants and functions for the
statement of the results.
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DEFINITION. Let {¢q}32, C L*(D), {¢»}32, C L*(Q) be the corre-
sponding eigenfunctions of (2.4) and (2.5) to wy and A,, respectively. We
can assume, without loss of generality that they are real valued and or-
thonormal in L?(D) and L?(Q), respectively, i.e.

(¢d> bar)2(py = 6(d, d'),

(2.10) , , ,
(Vs V) 20y = O(ry ") (dyd'yryr” 2 1),

Notation. From Proposition 2.1, we can decompose the sequence
{1}, into the following three subsets

E;= {Wd}30:1 N2, Er={01200\ {wd}?lilv
Errr = {walge 0 {2

According to these sets, we decompose N into (mutually disjoint) three sets

Nr={keN|u, € Er}, Ny={keN]|ucEr},
Npr={keN| € Eqrr}.

We need to introduce a system for numbering the eigenvalues, which we
use to define several quantities for the main theorems.

DEFINITION. We define three increasing sequences of natural numbers
{d(5)}521, {r()}521, {k()}72, by induction.
d(1) =1, d(j+1)=min{d € N|wg > wg)}-
r(1)=1, r(j+1)=min{r e N[\ > X}
E(1)=1, k(j+1)=min{k e N| py > ,uk(j)}.
Let c/l\(j), (), 74:\(]) be the multiplicity of wg(;), Ar(j), Hi(j), respectively.

Namely,

o~ ~

d(j) =d(G +1) —d(G), 7)) =rG+1)—r(), k() =k({+1) k@)
It is easy to see the following properties.

If pp() = wajry € By, then k(j) = d(5").
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If ) = Ay € B, then BG) =7(77).
If B = Wd() = )‘r(j”) € Errr, then k(]) — (]/) + ?(]”)

As was mentioned in §1, the properties of the behavior py(¢) mainly
depend on the three cases up € E1or ux € Eyyor pug € Errr. The purpose of
this paper is to study elaborately these properties and dependencies. From
Proposition 2.1 and Proposition 2.2, the 7%(]) eigenvalues g (¢) for k(j) <
k < k(j+1) approach the value piy(jy = fig(j)+1 = Hr()+2 = = = Hi(j+1)—1
as ¢ — 0. We describe their behaviors with the aid of E( J) x %( Jj) matrices.
The results are to be given mainly in three different cases: wy;) € E,
L) € Err, p(gy € Errr (cf.Fig.8).

For the statement of the main results, we need to prepare several more
notation for the statement of the results. We will use three series of matrices

A(]) (fOI“ k‘(]) S N[), B(j) (fOI" k‘(]) € Nyy UN]H),
C(]) (fOI' k(]) S N[[[).

The first one of them is the following.

DEFINITION ( The matrix A(j) ). For k(j) € Ny, there exists a unique
j" € N such that ju;) = wq(jry. We define a real symmetric matrix A(j)

Case I (k € Ny)
Non-Resonant

Case II (k € Nyy)
Non-Resonant

m 2 1 : Theorem 2.5

m =1 : Theorem 2.10 m = 2 : Theorem 2.11

m2=3,T(g,m)>0:
Case IIT (k € Nyyp) m=1: m=2: Theorem 2.14-(i)
Resonant Theorem 2.12 | Theorem 2.13 m > 3,T(q,m) <0 :

Theorem 2.14-(ii)

Fig. 8. List of the main results
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~ ~

which is d(j') x d(j'). We put the quantity

oV,
a(p,q) = /862 8—;’(6) pq(€,0")dS’

for d(5') < p,q < d(j' + 1) where V,, € C?(Q) is the unique solution V of
(2.11) AV4wV =0 in Q V(& =0g¢y,&") for ¢e€0Q,

for d(j') £ p < d(j’' +1). Here dS’ is the ¢ — 1 dimensional measure on 9Q.
Put the matrix A(j) = [a(p, ¢)]a(j’) < p,g<d(j'+1)- Denote the eigenvalues
of S(m) A(j) by

a(k(j)) = a(k(j) +1) = -+ S alk(j+1) - 1).

Recall that S(m) is the volume of the unit ball in R™.

We note that A(j) depends on the choice of {¢g}acn, but that {a(k) |
k(j) £k < k(j+ 1)} does not depend on that choice. The characterization
of the behaviors of eigenvalues depends only on the geometric situation.

Thus we have the numbers a(k) for all £ € Nj.

REMARK 2.4. The unique existence of V in (2.11) is guaranteed by
wa(jy & {Ar}o2y- It is easy to see that a(p, ¢) is symmetric in p, g. Actually
it is also expressed (after partial integration) by

a(p,q) = / (VVpV'Vg = wp VpVy) da'.
Q
By (2.11), we defined V}, € C?(Q) for p such that w, € E;. It is convenient
in later sections to define V), also for the case w, € Erp7.

DEFINITION. For p € N such that w, € Eyr, let V,, be the unique
solution V' of the following equation

(2.12) AV =0 in Q, V() =a¢,&0d") for &£€0Q.
Thus the function V), has been defined for each p € N.

Now we are ready to present our first main result. Using these quantities,
we can describe the following characterization for asymptotics of uy(¢) for
k € Nj.
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THEOREM 2.5. Assume k € Ny, then we have,

() — e
(2.13) élir(l) —m a(k).

REMARK 2.6. For the case of Dumbbell shaped domain, this result
agrees to those in Jimbo [25] (n 2 3,m = n — 1), Gadylshin [21] (n =
3,m = 2), Arrieta [4] (n =2,m =1).

Harmonic function G = G(z) and Quantity 7'(q,m).

In the characterization of the eigenvalues of the latter cases (II),(III),
we need a characteristic quantity 7'(g,m) which is the function of q and
m = 2.

We define an unbounded domain H in R x R™. An element z € R x R™
is expressed as z = (s,17) = (s,1m1,M2, -+ ,Nm). H is given by

H=H,UHy; CRxR™
where H; and H are given by
Hy = (0,00) x R™, Hoy={(s,n) ERxR™| —00<s=0, |n| <gq(s)}
We will prepare a certain important harmonic function G(z) = G(s,n)

(which is particular to H) for the statement of the main results (and later
discussions and the proofs). Consider the equation,

(2.14) A.G=0 in H, 8G/0i=0 on OH,
where A, = 02/9s* + 0*/0n} + --- + 0%/0n?Z, and 7 is the unit outward

normal vector on 0H. The existence of a (non-trivial) solution G is given
in the following result.
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Fig. 9. H = H,UH> C R™"! (Left m = 1, Right m > 2)

ProPoOsITION 2.7.
(i) For m = 1, there exist a non-constant solution G = G(z) = G(s,n) of
(2.14) and constants k1 >0, 6 >0, ¢ > 0, ko € R such that
|G(2) — (k18 + K2)| + |0G(2)/0s + K1
+|VyG(2) £ e® (2= (s,m) € Hy),

'G@)—@nﬁﬂkglw§f3 (z € Hy),

|2|
z C
‘vgxz)—(—gﬂgwth gijg (z € Hy).

ii) For m 2 2, there exist a non-constant positive solution G = G(z) =
G(s,m) of (2.14) and constants k1 >0, 6 >0, co > 0, ko € R such that

G(2) = (=18 + Ka)| +[0G(2) /05 + K1
+[VyG(2)| S coe® (2= (s,1) € Ha),

25(m)k1 Co
F“*Xm—nm+nﬂm+mwmlgpw (z € H),

—25(m)Kk1z c
hﬁw%Xm+nﬂ;iﬁwm1§pﬁﬂ (z € H).

The outline of the proof of this proposition will be given in §8 Appendix.



Spectra of Domains 285

REMARK 2.8. We can have similar estimates for higher order deriva-
tives VLG for p = 2. The following rough estimates for G follow immediately
from the above Proposition 2.7. There exists ¢, > 0 such that

G(2)| £ ¢f(1+1
The casem =1 : G()] = col , ogl2]) (z € Hy,|z| 2 1),
IV2G(2)] = co/2]
G S / m—1
The casem = 2 : 1G(2) _CO/|,Z| . (2 € Hy).
IV:G(2)| = c/lz]

DEFINITION ( The constant T(g,m) ). For the case m = 2, we put
T(g,m) = Kk2/K1 for K1, ke which are obtained in Proposition 2.7-(ii). We
should note that 7'(g,m) depends on only g and m. This quantity was
first introduced in Gadylshin [21] for the study in the case of the Dumbbell
shaped domain n = 3,m = 2.

We prepare several more matrices.

DEFINITION ( The matrix B(j) ). Assume k(j) € Nyr or k(j) € Nygg.
Then, there exists a unique j/ € N such that Pr(j) = Arjry- We put the
quantity

oYy
oQ on

9q

(215)  blp.g) = ()51 dS" (1) S pa < (i’ +1).

Here dS" is the £—1 dimensional measure on Q. We define a real symmetric
matrix B(j) by B(j) = [b(p, @)]r(j7) < pg<r(i+1)-

LEMMA 2.9. In both cases k(j) € Nyr and k(j) € Nyjz, the matriz
B(j) defined above is invertible and all the eigenvalues of B(j) are positive.

PROOF OF LEMMA 2.9. Put g=r(j'+1)—r(j') =7(j') and take any
non-zero vector
w="(uy, - ,u,) € R
By a simple calculation, we have

2

1 Oy (i) —
(B(j)u, u)re = /8Q Zup%(g) ds’ >0

p=1
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which is non-negative. We will prove that this value is positive for any
nonzero vector u. Assume it attains zero for some nonzero vector u € RY.
Then the function

q
Y,Z)(IL'/) = Zup wp—‘,—r(j’)—l(x/) (J‘J € Q)
p=1

satisfies the Neumann B.C. on 9Q. However it is an eigenfunction of (2.5)
with respect to the eigenvalue A,(;y. Consequently, i satisfies both the
Dirichlet and the Neumann B.C. on 9@ and so ¥ = 0 in ). Since u is a non-
zero vector, this is contrary to that {t,} is linearly independent system (ac-
tually orthonormal) in L?(Q). Therefore the quadratic form (B(j)u,u)Rra
is positive definite. [

DEFINITION ( The matrix C(j)). For k(j) € Nyyz, there exist a unique
pair j' € N and j"” € N such that p;y = wagry and gy = Ay Put

(2.16) .0 = [ onle.d) GrE) dS’

~

for d(j/) < p < d(f’' +1),r7(5") £ g < r(3” + 1). Define the d(j") x 7(j")
matrix by

C(j) = [e(p; Dlag) < p<d(r+1),0 (") < g<r (7 +1) -

Now we present a result characterizing py(¢) approaching py € Err U
Errr.

Concerning the eigenvalues py(¢) approaching an element in Ej;, we
have two subcases m = 1 and m = 2.

THEOREM 2.10. Assume m =1 and k(j) € Ny;. Then we have,

@17) O g (or k) S k< kD),

where B1(k(7)) = B1(k(j) +1) = B(k(j) +2) = -~ = By(k(j + 1) — 1) are
the eigenvalues of the matrix

(=2/m)B(j)-



Spectra of Domains 287

For the case of Dumbbell shaped domain n = 2,/ = 1,m = 1 (Fig.1)
and simple eigenvalue, this result agrees to the one in Arrieta [4].

THEOREM 2.11. Assume m 2 2 and k(j) € Ny;. Then we have,

1 (C) — i
¢
are the eigenvalues of the matrix

(2.18) lim

lim = Bak) (KG) S k < k(G +1)),

—T(q,m)B(j).

For the case of Dumbbell shaped domainn = 3,0 =1,m =2 (Fig.2) and
simple eigenvalue, this result agrees to the one in Gadylshin [21].
We note that {B,,(k) | k(j) £ k < k(j + 1)} does not depend on the

choice of {¢r}reN, but on Q and q.

Concerning the eigenvalues py(¢) approaching an element in Er7, we
have three subcases m =1, m = 2 and m = 3.

THEOREM 2.12.  Assume m =1 and k(j) € Nyj;.

@19) i PG ) (k) Sk <G+ 1)

where v1(k(j)) = v1(k() +1) =71 (k(j) +2) = --- =71 (k(j +1) — 1) are
the eigenvalues of the matrix

0 V20()
(2.20) <\/§tC(j) o J ) .

THEOREM 2.13.  Assume m =2 and k(j) € Ny, then we have

(2.21) lim

tng P ) () S <R+ 1)

where

Y2(k(7)) = 7o k() +1) = 72(k(j) +2) = - S vo(k(G+1) = 1)
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are the eigenvalues of the matrix

0 VTC(j) )

(2.22) (ﬁ tc(j) -T(q,2)B(j))"

THEOREM 2.14. Assume m = 3 and k(j) € Nyj;.
The case (i): If T(g,m) > 0, we have

(2.23) Jim M =vm(k) (k) Sk <k(5) +7(")),
(2.24) limy w =y h(k) (k) +7(") £ k < k(j+ 1)),
where

(i-1) v (k) (k(j) £ k < k(j) +7(j")) are the eigenvalues of the matrix
—T(q, m)B(j).
(i-2) ;b (k) (k(J) +7(") S k <k(j +1)) are the eigenvalues of the matriz
(S(m)/T(g,m)) C(j) B(j)~" "C(j)-

The case (ii): If T(q,m) < 0, we have

em) POt k) £k <kG)+ )
@20)  tPOTIE () + () S k< kG + D)
where

~

(ii-1) ~,, (k) (k(j) £ k < k(j) 4+ d(j')) are the eigenvalues of the matric
(S(m)/T(g,m)) C(j) B(j)'C(j)-

(ii-2) v, (k) (k(j) +d(j") £ k < k(j + 1)) are the eigenvalues of the matriz
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We note that {~v (k) | k(j) £ k < k(j + 1)} does not depend on the
choice of {1 }reN and {¢q}aeN, but on Q, D and q.

The proofs of Theorem 2.5 and Theorem 2.10 — 2.14 are to be given in § 5
— § 7 after the preparation of some approximate eigenfunctions, comparison
functions with properties and a certain characterization of the eigenfunc-
tions.

§3. 0-th Order Approximation (Proof of Proposition 2.1 and
Proposition 2.2)

In this section we will prove Proposition 2.1 and Proposition 2.2 with
some auxiliary properties of eigenfunctions ® ..

ProoOF OF PROPOSITION 2.1 AND PROPOSITION 2.2. We will prove
that each ug(¢) approaches py which is defined by

p1 =0,

3.1
(3.1) pr = min {max(w;, \k—;), wi |1 =1,2,--- ,k—1} (k= 2).

The case k = 1 is trivial because p1(¢) = 0. So we assume k = 2 hereafter.

Recall that wy (d = 1) and A, (r = 1) are the eigenvalues in (2.4) and
(2.5), respectively. To obtain the behaviors of the eigenvalues p(¢), we
will construct (rough) approximate eigenfunctions by using {¢4}3>, and
{1y }92, in (2.4) and (2.5) (introduced in §2). We extend each ¢4 (d = 1)
as a C3 function to R™ and denote it also by ¢g. Let $d be the restriction
of ¢4 to Q(C) and it belongs to C3(Q(C)). For r > 1 we define ¢, () by

Jr(:c) =0 for z €D, Jr(i) = wr(x/) for x = ($/7IN) € Q(C)

Then ¢, € H(Q(¢)) NCO(Q(()) and it is C3 except at dD N IQ(C). Tt is
known that the eigenvalue is characterized through the following Max-Min
principle.

LEMMA 3.1 (Courant-Hilbert [12]). For any natural number k = 1
(3.2) puk(C) = sup inf{R¢[®] | ® € H'(Q(C)),

dimW=k—1,WCL2(Q(¢))
d L WinL*(Q(¢))}.
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Here the functional R¢[®] is defined by

(3.3) R[] = / |V®|2dx/ / |®|°dz  (Rayleigh quotient).
Q(¢) Q(¢)

W is a linear subspace of L*(Q(C)). In the expression (3.2), ® L Win
L2(2(Q)) implies (@, ¥) 120y = 0 for any ¥ € W. See also Edmunds-
Evans [15;Chap.XI].

Upper estimate of pux(()

First we prove that the limit-sup of ug(¢) is not greater than uy by
Lemma 3.1. From the definition of u, the following (i) or (ii) holds.

(i) there exist integers d,r = 1 such that d+r = k and pj, = max(wq, \r)

(ii) pr = wg.

We deal with only the case (i) because (ii) is similar. We take an arbi-
trary (k — 1)-dimensional subspace W C L?(2(¢)). Consider the following
finite dimensional subspace

W = L.H.[¢1, 2, , ba, 1, Ur] € LA(QQ)).

Here L.H.[X] is the linear subspace generated by the set X. Using (2.10),
we can easily show that dimW = k for small { > 0. From the dimension
theorem and the decomposition

W=Wnw)sWnwh),

we can take a non-zero element ® € W such that ® L W in L3(Q(¢)). We
can put

O =11+ Cad + -+ cada + (S(m) V2T (A + -+ )

(all the coefficients ¢;, ¢; depend on ¢ > 0 and W).

By multiplying a positive constant, we can assume || ®||z2(q()) = 1 with-
out changing the value R[®]. Using the properties of ¢;,1; (cf. (2.4),(2.5),
(2.10)), we calculate

34)  1=|®Tquy =G+ e+ () -+ ()
+ Z 1>Z>] C C; Cj

12ij<d
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+ Y RGO ad+ D k(3,440 ¢

1sisdlsjsr 1<i,j<r
Here we notice that x(1,4,7,() = O(C™), k(2,i,5,¢) = O(™?),
k(3,1,7,C ) O(() and these coefficients do not depend on the choice of

W and c¢;, ¢, but they depend on qbl, . ,qbd, ¢1,--- ,wr For example
k(1,4,75,¢) = fQ(C ngZ d>] dx. Substituting ® into R; we obtain

Re[®] = /D |V (e1 51 + "'+Cd$d)\2d$

+/ ]V(01$1+---+cd$d)
Q(Q)

+ (S(m) V2TV ( gy + -+ i) da
We use the properties of ¢; and ;.
Re[® =wi e+ +wacd+ M)+ -+ M\(c))?
+ Z '"(1,4,7,C) cicj + Z K'(2,1,5,¢) ¢i ¢

1sd,j<d 1sisdlsjsr

+Z '(3,4,7,0) 2

1<4ij<r

Here #/(1,1,,0) = O(C™), K'(2,4,4,¢) = O(C™?), K/(3,1, ,¢) = O(C) which
are also independent of W. We get

(3.5)  Re[®] < max(wa, Ar) (] + -+ ¢+ () +-- +(d)?)
+ ) @5 Ollellel + > 18204, 4,0 leil |

1=ij=d 1Sisdl1<j=<r

+ 3 K 3,15, 0l

1<45<r
Estimating the right hand side of (3.5) under the constraint (3.4), we get
R¢[®] = max(wg, Ar) + Kgmin(lvmﬂ)

for each k =2 1. K does not depend on choice of W and the coefficients
c¢i,¢; (1 =i =d,1 =j=r) Taking supremum for all choices W with
dimW =k — 1 in the above inequality with the aid of (3.2), we get

(36) ,U,k(C) é max(wd,)\r) + Kgmin(lﬂn/?) =y, + Kcmin(l,m/2)
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for each k 2 1 from (3.2). The second case (ii) can be dealt with similarly.
Actually, putting W = L.H.[¢1,- - , ¢x] and applying the similar argument
as in the proof of (3.6), we get

p1(C) < g + K ¢minttm/2),

Here K’ is a constant which depends only on k. In both cases (i) and (ii),
we have

(3.7) lir?sgpuk(é) S (k2 1).

Lower estimate of ;;(() and characterization of ®;

We take an arbitrary sequence of positive numbers {gp}gozl with
limy .00 ¢ = 0 and then we have (from (3.7))

0 = liminf pg(Cp) = limsup pg(Gp) = pr (k2 1).
p—0o0

p—00

To deal with the lower bound of ux(¢) with a characterization of the corre-
sponding eigenfunction ®;, ¢, we recall

1 (C) =/ !V¢k,c\2dx+/ V@) ¢|* d,
/ (I)]%C (I)k’,C dx + / (I)kﬁ (I)k/7< dr = 6(/€, k,) (k, 4 > 1).
D Q<)

We will consider the limit of @y ¢ for ¢ — 0 with the aid of an argument of
compactness. Using the upper estimate of p(¢) in (3.7) and (3.8), we have
the boundedness of {®k7C|D}C>0 in H1(D) for each k. We put

Q=QxB™M1) CR, Q) ={(,(1/Ox") | («',2") € QO)} C R™
@(C) D @ for ( > 0 and @ is expressed as

Q(¢) = (@ x B™(1))
U{(E+sn(),n) eR" |[£€0Q,-2C < s=0,|n <q(s/()}.
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We change the variable by 3/ = 2/, (y” = 2" and put

(3.9)  Prc(v,y") = SM)V2C™ 20y (v, Cy") for (y,y") € Q(C).

From (3.8) we have

Sen) ! [ [BrePayay < 1.
(3.10) N ,
S(m)_l/Q (IVy"Pk,cl2 + ?|Vy”¢'k74|2) dy'dy” < pi(¢) < pk + 1,

for small ¢ > 0.

Applying the Rellich’s theorem to the family {®x ¢, }7%; C HY(D) and
{@k(p o1 C H(Q) with the Cantor’s diagonal argument, we can take a
subsequence {0p}2%; C {(p};2; and a non-negative value yj, ® € H YD),
®), € H(Q) for all k = 1 such that

lim g, (0p) = pi < piis
p—00

( ) Py 5, weakly converges to @y, in HI(D) for p — o0,
3.11 ~ ~ ~
@45, weakly converges to @ in HY(Q) for p — oo,

[ i 1o, = Bellzp) =0, Jim 190, = Bella) =0

From (3.10) we have
/ [Vyr®ucPdy'dy” = O(6?),
Q

and that Cﬁk(y’ ,y") does not depend on the variable y” and so it can be re-
garded as a function in H'(Q). Applying Prop.8.3 to the family {®Pho, bpo1s
we conclude that ®; € C?(D) and ®,, satisfies the equation

(3.12) A®y + @, =0 in D, 0P,/0v=0 on 4ID.

(Note that if @5 # 0 in D, pj, € {wq}32 . But it is not always the case).
Next we consider the asymptotic behavior of @, in Q(op). For this
purpose we put

Uk o(w) = Phc(@) /| Prcllzeee) (z € QC))



294 Shuichi JIMBO and Satoshi KOSUGI

and consider its behavior in the sense of uniform convergence. Applying
Prop.8.1 (cf. Jimbo [26;Theorem 1] ) with the aid of the Cantor’s diagonal
argument, we have a subsequence of {o},}7°; (we still denote it by {0}, }7°)

and @, € C2(D), ®}, € C*(Q) such that
lim sup [, () — ()] = 0,
P—=®zeD

lim sup | Who, (2, 2") — @ (') = 0,
P00 (2! 2")eQ(op)

(3.14) A, +p, ¥, =0 in D, 09,/0v=0 on 9D,
(315) AT+ P =0 in Q, D) =By, 0") for £€0Q,

(3.13)

for all k 2 1. From || ¥, ||~ (@,)) = 1 and (3.13), we have

(3.16) mase (|10, 18 2)) = 1.

The second line of (3.8) yields

(317) 1Pk 170 (200 (H‘I’k,ap\lia(p) +op /Q Wk, (4 Upy”)\Qdy’dy”>
<1

and the following conditions immediately follow.

=1,

1950, 7. (020 ) | 2, 2

1260, [ @y 75" /@ Uk, (', opy") P dy'dy" < 1
Using (3.13), we get
1) %, e oy (12220 + 91(0)) < 1.
H(I)k,U;zH%OO(Q(ap))S(m)O']T (H(I);:H%z(Q) +gg(ap)> <1,

where g1 = ¢1((), g2 = ¢2(¢) are functions with lim, . gi1(op) = 0,
limy .00 g2(0p) = 0 as p — oo. Using (3.16), we have ||<I>§€H2L2(D) # 0 or

H@;H%Q(Q) # 0 and so in any case we conclude, for any k = 1,

(3.19) ||(pk,0'p||%°°((2(o'p))agl =0(1) as p— .
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Rewriting the second line of (3.8), we get
6(k> k/) = ((Dk:,apa (I)k’,ap)LZ(D) + S(m)_l(q)k,ap7 (I)k’,ap)Lz(Q)
+ 05 1 ®Pho [ F oo (020,
X / ko, (V' Y ) Uk, (¥ s oy )y dy”
Qop)\Q

for k, k' =2 1. As the measure of @(ap) \ Q goes to 0 as p — oo and
[WkcllLoeQ(e)) < 1 and so we get

(3.20) (‘I’k, (I)k’)LQ(D) + (El\)k, (/I\)k’)L2(Q) = 6(/€, k/) for k, /{7/ z 1.
Using Wy, ¢, we can rewrite (3.9) as

(3.21)  ®ro, (v, y") = S22 By o | 1o (920, )) Uhroy (Vs Ty,
(v, y") € Q(oyp).

We consider L2(Q)-norm of the both sides of (3.21) for the limit p — oco.
There are two possibility of cases (i) and (ii).

() IBrllzzig) > 0. (D) [1Bxllzaiq) = 0.

First we consider the case (i) to prove that ), satisfies the Dirichlet B.C.
on 0Q).

We assume (i) H(/I\)kHLQ(Q) > 0.

From (3.13), (3.19) and (3.21), we have HEI\>§€||L2(Q) > 0 and

S(m)' 2o 2| Bg, | Lo (60y) = 1Rkl 22(@) /|1 Rkl z2(@) > 0 (0 = 00)-

Hence we get ||® 4, [l Lo (0(s,)) — o0 and we conclude ) =0 in D by using
(3.13) and (3.17). From (3.15), @2 vanishes on dQ). Simultaneously we have

O (2’) = (|1 Prll2@) /I Pkl r2@) Pr(a) (2" € Q).
Hence, ®, vanishes on 8Q. From (3.13), (3.15) and (3.17), we have

(3.22) AN®p+ @, =0 in Q D=0 on 0Q,
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(3.23) Jim sup Pk, (1 y") — Bi(y')] = 0.
(y'y")€Q(0p)

On the other hand, for the case (ii), ||</Isk||L2(Q) = 0 implies that & = 0
in @ and so (3.22) trivially holds. From (3.12) and (3.22) with (3.20), we
conclude that

(3.24) py, € {watay U {102,

for each k. Using the orthonormality (3.20), we get pj, = py, for all k. Since
the choice {(,};2; was arbitrary and p; depends only on D, @, we obtain

lircnigfuk(é) = pe (k21

Using the inequality (3.7), we have
(3.25) 1l = s éif[l)uk(C) = [l

(3.25) agrees to the assertion of Prop.2.1. Now that we know (3.25) and
Prop.2.1, the assertions of Prop.2.2 follow from the arguments above. Ac-
tually (3.12), (3.20), (3.23),(3.25) imply (2.7), (2.9) and (2.8). The first and
second properties of (2.6) follow from (3.11) and (3.23), respectively. We
have completed the proof of Proposition 2.2. [J

Now we have established Proposition 2.1 and Proposition 2.2. Using the
above proof, we can deduce several properties for the eigenfunctions.

ProposITION 3.2. (i) If ux € Ey, then
(3.26) lil?j(l)lp 1@k ¢l Lo (0¢)) < +00.
(ii) If ux € Eqg, then
0 < liminf ™| ¢l L o))
(3.27) = lircnjélp @l oo eaicy) < +00,

li ) =0.
lim [Pk.cllz2(p)
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PROOF OF PROPOSITION 3.2. (i) Assume i € Er and that there ex-
ists a sequence of positive values {(p}72; with

(3.28) Jm G =0, Tim [Pk, | e ((c,)) = +00-
We carry out a similar argument for (3.13), (3.14), (3.15) on the function
Ui () = Prc(@) /[ PrcllLo o))

From Prop.8.1, there exists a subsequence {o,} and ®; € C*(D) and @;6 €
C?(Q) with (3.13), (3.14), (3.15), (3.16). We already know that p = .
From (3.16), (3.17), (3.28), we have ||®}]z2(p) = 0 and so &} # 0 in Q.
This means gy € {\,}>2,. This is contrary to ui € Er and concludes (i).
(ii) Assume py € Erp. As we have pj, = py in (3.12) and py, & {wa}32,
¢, = 0 in D and it implies the second line of the assertion. From (3.18),

Hq)k’apH%oo(Q(ap))agI is bounded when p — oco. Recall that the sequence

{Cp}p2y was taken arbitrarily and so we can assert that ||<I>k,gH%oo(Q(O)Cm is
bounded for small ¢ > 0. On the other hand, if, there exists a sequence of
positive values {(p},; with ||<I>k,<pH%oo(Q(Cp))C;” — 0 for p — co. We apply
the same argument as in the proof of Prop.2.1 (for the subsequence {o},}72
and the conditions (3.13)-(3.23)). Taking the limit p — oo for ( = o, in
(3.21) we have @, = 0 in @ and hence ®; % 0 in D (from (3.20)) which

implies p1, € {wq}3 . It is a contradiction and concludes (ii). O

PropoOSITION 3.3. Assume that there exists a positive sequence
{Cp}p2y and k € N such that

pllr& G =0, liprggolf ||(I)k,§pHL2(D) > 0.

Then we have

e € {wayZ,  and () — = O(G?)  (p— ).

PROOF OF PROPOSITION 3.3. Assume pj € {wq}32,; and then p €
Err. From Prop.3.2-(ii), we get the first assertion. For the second asser-
tion, we use the argument in the proof of Prop.2.1, Prop.2.2. Take any
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subsequence {ep}p2; C {(p}p2;, there exist a subsequence {o},}7°; and
®), € C2(D), ®, € C%(Q) with the same condition as (3.10), (3.11) and
(3.12). From the assumption and (3.11), &5 # 0 in D. &y is an eigen-
function in (3.12) corresponding to the eigenvalue py, € {wq}3>,. Extend
®;, € C?(D) as a C? function in R™ with a compact support. We denote
this function by ®j. Put ¥ = &, in (2.2) and carry out partial integration
and we get

(329) (pr(C) _ﬂk)/D(I)kg&)k de = /Q(C)(V(I)k,cva)k — 1k (C) B By ) da,

/Q(C) V&V da| < (V2o IVl 20
< 'U’k(ol/QHV&)kHLoo(Rn)\Q(C)‘lﬂ _ O(Cm/Q),
L BecBrs| < [l |BelienlQUOM = OC),

/ (I)k,ap&)k dx — H(I)k||%2(D) >0 (p — OO)
D

Put ( = o) in (3.29), we see that (p(op) —p,k)/agl/Q is bounded for p — co.
As {ep}p2; was taken arbitrarily as a subsequence of {(,}72;, we conclude

that (pr(Cp) — yk)/g‘},”/? is bounded for p — oo. The second assertion of the
proposition is proved. [

84. Approximate Eigenfunctions $d,< JT,C and Comparison Func-
tions @1 pa

In this section we will define several auxiliary functions (which are ap-
proximate eigenfunctions and some comparison functions) for investigating
the behavior of ®;, .. We prepare notation for several subregions of €2(¢) for
later arguments through this paper.

Notation. For positive parameters t1, ta, (, we define the following sets
(CR x R™).

S () = {(s,m) ERXR™ | 0 <5, 5>+ n” < 11},
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(C t2) ={(s,n) ERXR™| —ta < s <0, |n| <{q(s/¢)},
IH(t) ={(s,n) ERXR™[ 0< s, s° + [n* =3},

I™(C o) = {(Sm) ERXR™ | 5= —ty, In| <},
A(t1) = 7 (t1,21) USH(2t).

Notation. For positive parameters t1, ta, (, we define the following sets
(C R x R™ = R™).

SH(t) = {(§+sm(€),n) €R x R™ | (s,m) € T (1), € 9Q},
5S¢ t2) = {(§+sm(€),n) € RO X R™ | (s,m) € 57((,t2), € € 0Q},
I (t) = {(€+sn().n) ERE xR™ | (s,n) € TT(11).€ € 0Q},
I™(Ct2) = {(€+sn(),m) R X R™| (s,n) € T ((,12),€ € 0Q},

A(t) = 27 (t1,2t1) UST(2t)

(1)
P(Ctt)
I (1) ()
LOC, Ly, 1) N

Fig. 10. Section of the junction part C R x R™

4.1. Construction of the approximate eigenfunctions ggd,g and {/;“

We will construct the approximate eigenfunction &M e HY Q) N
C(Q(¢)) for d = 1.
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DEFINITION. For d = 1 we put

da(x) for z € D\ X7 (2¢),

Ngc(&,s,m) for z = (§+sn(£),n) € AQ)
=X7((,20) UEH(20),

Va(2') for z = (2/,2") € Q(¢) \ £7(¢, 2¢).

(A1) dacle) =

Here N = Ng¢(§,5,m) = Naec(s,m) € C2(A(¢)) is the unique solution (for
the parameter £ € 0Q,¢ € (0,(p)) of

(

PN N 0PN
97 2o
(4.2) § N(s,m) = ga(& + sn(&), m)for(s,n) € TH(2(),

N(s,m) = Va(€ + sn(€)) for(s,n) € T7((,2¢),

ON/On =0 ondA(C) \ (TT(2¢) UT™(¢,20)).

=0 for(s,n) € /NX(() = i_(C7 2¢) U §+(2C)7

Here m is the unit outward normal vector on 37&(() Recall that ¢4 was
given in §2-(2.4), (2.10). Since we assumed that 9Q,dD are C*, we have
pq € C39(D) (0 < 0 < 1). Vy was defined through (2.11) (in case wq € Ef)
and (2.12) (in case wg € Eyrr). In the case wy € Eqpy, (Zd’g is harmonic
in Q(¢) \ X7(¢,2¢). It is also true that Vy € C*9(Q) (0 < 0 < 1) and

Nagc(s,m) € C*(A(Q)).

We will construct the approximate eigenfunction ZZr,g c HY(Q) N
CY%(Q(C)) for r 2 1, which are given separately for m = 1 and m 2> 2.

DEFINITION. For the harmonic function G = G(z) in H in Proposition
2.7, we put

(4.3) G(z) = {””1 s+G(z) for z=(s,n) €H, 520,

B G(2) for z=(s,n) € H, s>0.

We recall that k1 > 0, kg are the constants in Proposition 2.7-(i) (m = 1)
and Proposition 2.7-(ii) (m = 2).
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DEFINITION. We prepare a positive (parameter) function h = h(() as
follows.

(4.4) h(¢) = (log ¢)?

This function h(¢) will appear in the definition of ZZr,g later. It is easy to
see that

lim h(¢) = lim ()% ¢% =0 for any 6; > 0,65 > 0.
m (€) = oo, i (€)"'¢ y 01 2

The case m = 1.
First we define the sets ¥*((,t),I"({,t) C R x R by

SHC ) ={z=(s,n) eRxR|G(=, )+2—logg>0 5> 0},

s n
¢'¢
2['{1
)+—1 ——O,S>O}.
¢'¢ ®¢
We can see that, for ¢ > 0, the set I* (¢,t) is a C*° simple curve whose
endpoints are located in the line {0} x R. This set I'*(¢,t) smoothly ap-
proaches 't (¢) for ¢ — 0 and the tangent vectors of I*((, ) at the endpoints
are perpendicular to the vertical line (cf. Fig.11). We can prove this prop-
erty by investigating the asymptotic behavior of G and V,G by Proposition
2.7-(1) with the aid of the implicit function theorem.

(¢, 1) = {z = (s,n) ERxR| G(5,

DEFINITION. For m = 1, we define

(4.5) S*(C.t) = {(E+sm(),n) eR XR | € € 0Q, (s,m) € T°(C,1)} C R™

For r € N, we define functions 11512 (x), vf) () in ¥7(¢, hQ)UE*(¢, 1), Q(C)\

7<
Y7 (¢, h(), respectively. First we put

o (@) = (=1/m) (00, /o) (&) (Gs/¢.n/C) + (201 /m)log(t/€) )
for @ = (¢+sn(&),m) € T7(GAG) UT(G, 1), € € 0Q.
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Fig. 11. lim¢ o T*(¢,t) =TT (1)

Here h = h(() is defined in (4.4). Let v = vfoQ)(x) € C?(Q(¢) \ X~ (¢, hQ))
be the unique solution of the equation,

Av(z) =0 in Q(¢)\ E7(¢, hQ),
(4.7) v(z) = v&) (x)forx € T (¢, h(),

v/ov =0 ond(Q(C) \ E7(¢,h¢)) \ T (¢, h¢).

We define an approximate eigenfunction Jr,( € HY(Q(0)) N C%Q(¢)), as
follows. By putting

v (z) for xeT7(C,h)UTHC, 1),
(48) orel) = ol (@) for @€ Q) \ (¢ ),

0 for xe€ D\ X*((,1),
we define
(4.9) Ure(@) = ¥r(2) + Cungla) (€ Q(Q)).
Recall / o
To(a) = {gm(:c) i;()x 2") € Q(Q),
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Fig. 12. Decomposition of the junction part (n =3,£=2,m = 1)

and

Q(0) = (B7(¢ A UET(C 1) U (QIO) N E7(C, Q) U (D E(( 1))

The case m = 2
For r € N, we define functions UT(,}C) (x), vfg (x), vﬁ?g)(a:) in ¥7(¢,h¢) U

(), Q(O) \ X7(¢, k), D\ X(t), respectively. First we put

(410) {“ﬁfc’ (2) = (—1/m0) (@00 /0m)(E)C(s/C, 1/C)
for 2= (&4 sn(f),n) € X7(¢, ) UET(1),€ € 0Q.

We define v = v € C2(Q(O)\ 5= ((, ), w = v’} € C*(D\ =¥(1)) by
the following equations,

Av(z) =0 in Q(C)\ E7(¢, h(),
(4.11) v(z) = v} (x)forz € T7(¢, hC),

dv/Ov =0 ond(Q(C) \ (¢, h¢)) \ T (¢, h),

Aw(z) =0 in D\ XT(t),
(4.12) w(z) = v} (2)forz € T (1),
dw/dv =0 ond(D\ X () \T*(t).
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t > 0 is a parameter. We put

(x) for xe€ X (¢, hC)UXT(L),

)

»V
¢

(4.13) vne(@) =0\ (x) for x€Q(C)\ V(¢ hO),
vﬁgg(x) for xe D\ XT(¢).

We define an approximate eigenfunction 1, € H'(€2(¢)) N C°(Q(C)) which
is piecewise smooth, as follows,

(4.14) Ure(@) = V(@) + Core(a) (2 € Q).
We recall
Q) = (Z7(¢hO) U™ (1) U (QIO\ET(¢,hE)) U (D\ZF(1)) -

We remark that the function Jn( involves positive parameters ¢ > 0 and
h =h(¢) > 0.

n D\ ET(7)

Q(Q \2/(@ n¢)

Fig. 13. Decomposition of the junction part (n =3,£=1,m = 2)

4.2. Coordinate system (&, s,n) around 9Q x {0"} in R™
For calculation and estimation of auxiliary functions, approximate eigen-
functions, we need a coordinate system (£, s) in some neighborhood O



Spectra of Domains 305

which is located around 9Q in R. A point 2/ € O is related to (¢,s) €
0Q x (—bo,6p) by the relation 2’ = £ + sn(§).

As 0Q is a £ — 1 dimensional compact manifold in Rf, it is a union
of finite number of local patches, each of which has a local coordinate
(€1,&,-+ ,&-1) 1. By taking a small §y > 0, we choose

O={+sn(f)|£€dQ, -6y <s <} cR".

O is O3~ diffeomorphic to 9Q x (—&p,80). Using the local coordinate
(&1, ,&—1) of a patch in 0@, we introduce a local coordinate (&1, -+,
&—1,5). Denote the metric tensor of R’ with respect to the coordinate
(&1,-++ ,&—1,8) by g = (gij(€,5))ij. Here s corresponds to the component
1 = £. We have the following properties

gif(gvs) Egﬂi(fas) =0 (1 éZéé—l),
gu(€s)=1 (' =E&+sn(f) €0).

Under this coordinate system in O and the metric tensor (g;;(&,s)), we

can express the Laplacian A in terms of (1, - ,&—1,&,m) as follows,
- ) oV N
Varige )+ o (Vi )+ 5
Z e (00'55) + g (5. + 2
o—
9] OV 1 90\/gov 9*¥
4.15 — [
(4.15) Z::a <@9 ag) /G 0s 95 | 0%
Z e

M

We used the properties of the coefficients g;; in (4.15). Here n = (m1,---,
nm) € R™, g = det(gi;(&,5)). (99(£,s)) is the inverse matrix of (g;; (&, s)).
Remark that the functions g% = ¢/ (¢, s), gi; = gij (€, s), g = g(&, s) depend
on the choice of the local coordinate (£1,- - ,&—1) on Q.

For calculation and estimation of integration, we need some formula
concerning integration of functions (defined in X7 (¢,t2) and X1 (¢1)) with
respect to the variable (&, s, 7).

'A point £ in a local patch of OQ corresponds to (£1,---,&-1) € R*~! through a
local coordinate map.
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oQ

n(£)
§ + sn(§)

Fig. 14. Coordinate (¢,s) around dQ C R*

LEMMA 4.1. There exist continuous functions p1 = p1(&,s), p
p2(&, s) defined in OQ X (—bg, bg) with the conditions p1(£,0) =1, pa(&, )
1 (for £ € 0Q) such that

(4.16) / dm—/aQ/ (& + sn(€),n) p1(&,5)ds dndS’,

for a function ¥V in X. Here

(2,%) = (Z7(C 1), X7 (Co b)) or
(ST (0), SH (1) or (S7(C 1), 27(C 1))

(4.17) / z)dS = /aQ/ (€ + sn(€),n) pa(&, ) dS dS’,

for a function ¥ in I'. Here
(0,T) = (T (¢, t2), T ((o 1)) or
(TF(#), TH(t) or (TG 4), T*(¢ 1)),

The functions py = p1(&,8), p2 = p2(&,8) are well-defined and C?. They
are expressed as

P1 (&7 S) = (g(é-’ S)/g(f, 0))1/27
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pa(&,8) = (1 +sm(E))(1 + s72(€)) - - (1 + s70-1(E))-

Here 11(§),12(§), -+, 70—1(§) are principal curvature of Q) at & with respect
to the outward unit normal vector n(€). dS denotes the measure on a hyper-
surface T' (T is TH(t1) or I ((,ta) or I*((,t1) ) in R™, dS’ denotes the £—1
dimensional measure on 8@, dS denotes the measure on a hypersurface r
T is TH(ty) or T (C,ta) or T*(C,t1)). This result can be proved by a simple
calculation in geometry.

4.3. Some estimates for ¢dg and @ZJM
We will prove several properties of q§d < and ¢r ¢ Which are necessary in
later sections (§5-§7). First we deal with ¢d,<

LEMMA 4.2 (Estimates for gd,c). $d7< S CO(Q(C))QHI (Q(0)), V%M S
L>(Q(C)) for d = 1 and there exists ¢y > 0 which is independent of ¢ €
(0, Co] such that

sup |pac(z)| = c1,  ([VacllL=@e) =,

(4.18) =)
up [AGsc@)] € e
2eA(Q)
for 0 < ¢ = Go.

PROOF OF LEMMA 4.2. Recall that $d,<(x) = ¢4(z) in D\ X1 (2¢) and
bac(a,x") = Va(a') for (', 2") € Q(C)\ X (¢, 2¢). In view of the definition
of fgd,g in 37(¢,2¢) UXt(2(¢), we apply the maximum principle to (4.2)
(harmonic function with the boundary condition) and get

sup |Pac(z)] = sup |bac ()|
2€X(¢,20)UnH(20) 2€l~(¢,20)Ur+(2¢)

= max([|Vall (@), | ¢all Lo<(1))

These estimates yield the first inequality of (4.18). From the definition of
G, it is easy to see

sup  |Voac(@)| < sup [Vea(w)],
z€D\S+(20) zeD

sup V(@) < sup [V'Va(a))]
rEQIO\S(¢:20) v'€Q

(4.19)
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We estimate Vg,m and A&M in A(¢) = X7 (2¢)UX (¢, 2¢). For this purpose
we use the coordinate system in a neighborhood around 0Q x {0”}. For

T = (€+8 n(g)v 77) € A(<)7 gd,C(x) = Nd,C(ga S, 77) To estimate VNd,C(gv S, 77)
in A(¢), we change the scale of the variable. Define the function

(420) Ng (5) S, 77) = (1/O(Nd,4(§, Csv Cﬁ) - ¢d(€7 O”))
which satisfies the following equation for & € dQ, (s,n) € A(1) C R*™.

PNy Il 02N} B S 5
¢ ¢ _ == *
o7 + ; (977]2- =0 for (s,m)€A(l)=%"(1,2)UX"(2),

NE(E, s,m) = (¢a(€ + Csm(E),¢n) — da(&,0"))/¢

(4.21) for (s,n) € T7(2),
NE(&,s,m) = (Va(€ + Csn(E)) — Va(€)) /¢

for (s,n) eIl (1,2),
\%:0 on AA(1)\ (TH(2) Ul (1,2)).

Here we recall ¢q(¢,0") = Vy(€) for € € 0Q and Vy € C>9(Q), g € C39(D)
for any 6 € [0,1). 7 is outward unit normal vector on dA(1). We can
regard (4.21) as an equation with parameters ( > 0,& € 9Q. We apply the
regularity argument of elliptic BVP (cf. Gilbarg-Trudinger [22]). Note that
the quantities

[(Vale + ¢ 5m(E) = Val©)/Clno 10
H(@bd(é + CSTL(&), C"7) — al(&, 0H))/CH(]2,9(T+(2))

are bounded by a constant which does not depend on the parameter ¢ > 0
and £ € 0Q. So we have an estimate ||N<*HCQ,9(/~\(1)) < ¢ for a constant ¢
which does not depend on (,¢. Using the relation

(4.22)

ﬂ) 0 ONF s

VnNd,g(&Sﬂ?) = (V’V}NC*)(’& f? ’ &(Nd,C(fvsun)) = Os (57 - _)7

¢ ¢

we conclude that

N,
(4.23) sup (‘ O
r=(e+sn(e)mer) \| 08

+ |V77Nd7<|> is bounded in 0 < ¢ < (p.
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To prove the estimate of the derivatives of IV, Z with respect to the parameter
¢ € 0Q), we consider the following quantities

sup  [Ve(Va(€ + Csm(€) = Val©))],
£€0Q,(s,mel—(1,2)
sup IVE(Va(€ + ¢ sm(€)) — Va(9)],

£€0Q,(s,m)el—(1,2)
sup [Ve(¢a(€ + Csn(€),¢n) — dalé, 0",

£€0Q,(s,m)elt(2)

sup IVE(ha(€ + ¢ sn(€),¢n) — dalE))].

£€0Q,(s,mel*(2)

From the regularity of V; and ¢4, these quantities are bounded by a constant
which does not depend on the parameter ¢ > 0. Applying the maximum
principle to the equations which ¢ vaC* and ¢ VENC* (harmonic in 7\(1)
with Neumann B.C. on dA(1)\ (I (1,2) UTH(2))) satisfy, we have that the
derivatives up to 2nd order of { IV, Qi“ with respect to & are uniformly bounded
when ¢ > 0 is small. Therefore, by the aid of the relations

{ vad,C(ga S, 77) = v§(¢d(€a 0”) + CNE(£7 5/(#7/0%
VgNd7C(€, S, 77) = vg(qsd(fv O”) + CNg(é-a S/C’ TI/C)),

we conclude that

sup (IVeNac(& ) + [VENac(E 5,m)])
(4.24) =(E-+sn(£), M EA(Q)

is bounded in 0 < ¢ < (.

(4.23) and (4.24) imply the second estimate of (4.18).
Next we consider the behavior of ANg((&,s,n) in A(¢). Putting ¥ =
Nac(€,s,m) in (4.2) and using (4.15), we get

/-1

1 0 - ONy ¢ 1 8\/5 ONg¢
AN = — _— S - LN
4 \/ggzjl 06 (\/gg 9¢; ) * 5 0s os

We estimate the right hand side. From the estimates (4.23) and (4.24), it
follows that sup,ea ¢y [ANa ()] is bounded for 0 < ¢ = (p. This concludes
the proof of (4.18). O
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We deal with the estimates for the Jm in the following two lammas
(Lemma 4.3-(i) :m = 1 and Lemma 4.3-(ii): m = 2). We use same notation
c2, c3(t) for constants which appear in two lemmas, for simplicity, because
the results of two cases (m = 1 and m = 2) are used seperately and so there
will be no confusion.

LEmMMA 4.3-(i) (Estimates for Q)ch, m=1). Form=1,r 21, there
exist constants ca > 0, c3(t) > 0 (for t > 0) which are independent of
¢ € (0,Co] such that the following conditions hold.

U € COQO))NHYQ(C)), V¢r¢ € L*(Q(C)) and V{/JVT,C is continuous
at 0D N 0Q(C).

s _ (2 € 00(0)\ 95 (¢, 20).
(4.25) jod
% < e (z€d0C) NIS((,20))

Ltlog(1) for v € QIO UT* (20
(4.26)  Jupc(z) S ea gl + log \/W
for x = (§+sn(£),n) € Z*((, 1) \ BF(20)

for0<2¢ < t.

S o
|s=—h(+0

5 (12 smierm)

(4.27)

'& (v +sm(6),m) e (1 + log(t/())

|s=—h(—0

for @ = (€ +sm(€),m) €T(C,h0), 0 < (=6, 0< 2 £t
0
(4:28) ’& (v + S’n(ﬁ),n))' <o, |V (02 +sn©m)| S e

for x = (€4 sn(),n) € (¢, 1), 0 < C = Co-

(4.29) [0l (@) +]Avl (@)] £ e2(log(t/C) + (1/¢)e**/S)  (x € B7(C, hQ))
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(4.30)  [Vol(@)] + [av' (x)]

< (I/C) + 10g(t/C) (x c E+(2C))
- T Tlee agm (@ e TG\ ET(20)

LeEMMA 4.3-(ii) (Estimates for QZT,C, m = 2). Form 22, r 21, there
exist constants ca > 0, c3(t) > 0 (for t > 0) which are independent of
¢ € (0 Co] such that the following conditions hold.

Pre € COQO))NHYQ(C)), Ve € L2(C)) and Viby ¢ is continuous
at 0D N AQ(C).

% =0 (z € 90(0) \ I% (¢, 20)),
(4.31) ~
|3g;< < ¢ (2 € 9Q(¢) NIX™(¢,20))

¢ (52 + Inf2) om0

1 for z € Q(C) UET(2()
(4.32)  |upc(z)| =
for @ = (£ + sn(§),n) € B (1) \ ()

for0<2¢ < t.

< e
|s=—h(+0

(4.33)
§+sn )?7))

SCQ

]83 £+ 5n(6).n)
’ ls=—h¢—0| =

for x = (€-+ sn(€).m) € T(C.AQ), 0 < C £ G
0
130 | & (e sn@n)| Sen [V (o2 +sn©)n)| e

for z = (§+sn(§),n) € T7(1), 0 <( = (o

(4.35) Vol (@) + |80 (@)] € e2(1 + (1/Q)e™/C)  (x € (¢ hC))
N (@)] + a0 (@)
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<o {1/< (x € 2*(20))
Tl P (e B0\ B (0))
(437) @)+ Vol (@) S es()g™ (@ € D)

Here 6 > 0 is the constant in Proposition 2.7.

From (4.27), (4.33), we know the estimates of normal derivative of
o2, 0% at T (¢, hC).

PROOF OF LEMMA 4.3-(i): m = 1. The continuity and piecewise C*
of QZM in W is clear from the definition. We check the continuity of
VJT,C at 0D NOQ(C). From the definition, TZT,C satisfies the Neumann B.C.
on 092(¢) \ 9X7((,2¢). So we deal with the normal derivative of 1;,«,4 on
ON(C)NIX™(¢,2¢). From m = 1 and the definition of G, we have

Ur (@) = r(@) + (o (@)
SO (e) (G2 + 2 log L) for @ € T¥(C, 1),
= Q€+ sn() = 52 () — S5 (©) (G2 D) + 22 1og £
for x € ¥7(¢, hQ).

From the Dirichlet B.C. of 9,, ¥,(§) = 0 for £ € 0Q and from the Taylor’s
theorem,

Url6+ sm() 55 (6) = O[5,

s (e +mie) =5 52©)) = o),

n

(4.38)

uniformly in & € 0Q. Hence VZZT’C are continuous across 9D N 9Q(().
Note that the unit normal vector v on 9(¢) N 0% (¢, 2¢) has only (s,n)-
component. From (2.14), the term (0¢,/0n)(§)G(s/¢,n/¢) satisfies the

Neumann B.C. on 9Q(¢) N 90X~ (¢, 2¢). On the other hand, from (4.38), we
have

50 (e + an©) = 5219)) | = 000

sup
oQ(()NIX~(¢,2€)
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This estimate implies (4.25). We deal with (4.26). We have only to prove the

estimates of (4.26) in the region X7 (¢, h{) UXT(¢), because v(? is harmonic

in Q(¢)\X7 (¢, h¢) with the Neumann B.C. on 9(Q(¢)\X7(¢, h{))\I' (¢, hQ)
)

and the inequality (which follows from the maximum principle),

(4.39) swp @] S swp fol(@) = sup |ul(@)]

QIO\E~(¢he) I'=(¢,hQ) '~ (¢,hQ)

Eventually the proof of the estimate in Q(¢) \ £7({, h() reduces to the
following (4.40). Using the explicit expression, we estimate vﬁlc) on the set

%7(¢, ho),

D) < L sup |20
0 NS |G
><< sup !@(s/c,n/C)H?ﬁlog(t/O)
s<0,lnl<¢ i

A

1 ~ 2
— V"%l (@) (( sup|G(5,7) + %log@/c)) .

§7ﬁ)€H2
For z € ¥7(2¢), 0 < 2¢ < t,

1
— sup
K1 £€0Q

A

(1.41) [o(@)

) ((g (66D log<t/<>>

MELT(2)

A

9% - ok
s [GE) + T log(t/0) |
(5:m)

k1 eS+(2)

Note that G(5,7) = G(3,7) for (3,7) € Hy and also that G is bounded in
Hs. For z € ¥*(¢,t) \ 21 (2(), 0 < 2¢ < ¢,

(4.42) \v£}2<x>\= . awr H( ot :1 1ogﬁ>
+ 2y, g;
T2+ n?

1 awT 4 2

||/\

ol e et
32 + !77!2 i 5%+ nf?
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/
< IV'rll=(@) [ co N Qﬂlog 2t .
K1 2 7 V8% +[n)?

In the above calculation, Prop.2.7-(i) was used. These inequalities (4.38),
(4.39), (4.40), (4.41), (4.42) imply (4.26).

We deal with (4.27). From the definition of 7)7("1() , we have

9
(4.43) F20n (€ 5mE) Mjs=nic)c+0

= L O 0.8 (/¢ /) eenicrcs

ki On

L Oy

= " on (£)(9:G)(=h(C),n/C).

Here 8,G = dG/0s.
From Prop.2.7-(i) and (4.3), we have [(0sG)(s,n)| < coe?® (s < 0,n €
B(™)(1)). Thus we get

10.G(=h(C), n/C)] £ coe (O = gy =005 0)?

Substituting this estimate into (4.43), we get the first estimate of (4.27).
Next we consider the second part of (4.27). We estimate the boundary

derivative of vﬁ? at s = —h(()( =0 (z = (£ — h{n(),n) € I (¢, h()) by
the aid of a barrier function. For this purpose we consider the domain

UG, ) =37 (¢ 7))\ I (¢ h(0)C)
(2)

in which we make barrier functions to bound v, ¢ (x). 7 > 01is a constant to
be fixed later. Define the functions

(4.44)  ©xpr(x) = vl(€ — R(OCN(E),m) £ M {(7 — h(C)¢)? — (7 + 5)%}

for x = (£ + sn(§),n) € U(C, 7). It is easy to see

(4.45) Osn(w) = v (2) = vll(@) for €T (¢,h(C))

)
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since z = (£ + sn(&),n) € I (¢, h(¢)¢) implies s = —h(. Calculate

AO-u(z) = — > 9 (@gwa—vﬁ}g@ - h(C)Cﬂ(ﬁM))

for z = (£ + sn(€),n) €U, 7) (£ €0Q, —T < s < —=h(¢)¢, n € BM™(()).
We can take 7 > 0 small so that

1 0Vg(&s)| - 1
(4.46) 5 05 s 7 (€€9Q,~0 =550

and fix. Remark that g = g(¢, s) is a function in &, s and 7 depends only on

the geometry of 0Q. We will prove that if M > 0 is large then ©_;; and
(2)

©)r are a lower solution and an upper solution for v, 13 respectively. We

calculate
S R L0 (O,
(4.47) AOLy = VG % <\/§g ]a_gj (an (é)))
~ n 2K t
X <G<_h’(<)a Z) + Tl g Z)
1 09
+2M (1—’-% 88 (8+7’)>

In view of (4.47), we can take a large M;((,t) > 0 such that
(4.48) (£1)AO4Lp(z) <0 in U((,T)

for M = M;y(¢,t). In the above calculation we used a local coordinate
(&1, ,&—1) of a patch of 9Q. So we take the maximum of M after the
arguments for all patches (there are only finite numbers of local coordinate
patches). We can choose M;(¢,t) > 0 such that M;(¢,t) = O(log(t/¢)). On
the other hand we define My((,t) > 0 by

oIVl Lo () <
(

Ma(G,1) = 2r/2)

~ 2
sup |Gls, )| + —Llog(t/C) + 1)
S,?])GHQ ™
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A simple estimate on I'" (¢, 7) yields

(4.49) O_y(z) S vP(x) S Ou(z) on T7((.7)

for M =2 My((,t). Put M((,t) = max(M;(C,t), Ma(C,t)). We have (4.45),
(4.48) and (4.49) for ©4p7( ) and so we apply the maximum principle to
(2)

Ot nm(cr) (), v, ¢ in the region U(C, 7) and get

O_nmp() = vﬁ?(x) S Ouep () in UG,T)

for small ¢ > 0. Therefor we have

(2)
8@]\/[ 8UT
S2MG O —hOO = =55 S
A (%)

ST e =AM RO,

From this estimate, we have the second estimate of (4.27). (4.28) is a part
of (4.30). So we deal with (4.29) and (4.30).

00 = 2

= T o £)(95G
—1 9y

Vir (@) = oo G Oy

~—
—~
~—

N w
N3

)

N »
Nlo N3

—10v,
Verl)(2) = Ve (— b ey

K1 On

N———
D

~
s}
Q
o
QD
@

o (et (Se))

i, S4-1
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~ 5 M 2&
X(“cc“‘wl J

1 0Yy, 1 8\/_36?(3 77)

le on f 0s 0s (¢
In ¥7(¢, h¢) U X*(C,t), we have the estimate
W)\ < |!V'1/Jr||Loo(Q)( S s 1 )
Vo, é(@)] = e Crn !(@G)(C» C)‘ +1(Vy G)(C’ C)‘
V)24 Lo ~ 2 t
@ (1602, D1+ 20g ).
W < VPl < S5 M, 261 f)
|A7)T7C( )| =C K1 |G(<a C)| IOgC
IV'%r || oo () s
+C—CR1 (95 )(C’C”

c is a constant which is independent of ( and ¢. Using the properties of
G in Prop.2.7-(i), we have the estimates for |Vu, ¢(x)| and |Av,¢(z)| in
Y7(¢, h(€)C), X7(¢,h¢) and ¥*(¢,t). Thus (4.29) and (4.30) are proved.
We complete the proof of Lemma 4.3-(i). O

PROOF OF LEMMA 4.3-(ii): m = 2. All the properties ( (4.31)-(4.36) )
except for (4.37) can be proved similarly as the case Lemma 4.3-(i). We
need to be careful about that U( )
it does not have log-term) and we use Prop.2.7-(ii) (m 2 2) in place of
Prop.2.7-(i) (m = 1). So we briefly give the proof to each of (4.31)-(4.36).

The continuity and piecewise C'! of ¢r . is clear. Note the expression of v, ¢
in X7 (¢, h¢) UXT(t) is given by

takes a little different form (actually

(4.50) Ure(@) = $r() + (ol (x)

(—C¢/r1) B (€)G(s/¢,m/C) for @ € TH(1),
= (€ + 5n(€)) — 9 (6) — £ L (6)G(s/¢,n/C)
for x € X7((, h(Q).

Due to (4.38) and the property of G, the continuity of V{Er,g across 0D N
0Q(() and (4.31) are true. We can carry out a similar argument as in (4.26)
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with the aid of Prop.2.7-(ii) to |v,¢(x)|. Actually we have

(4.51) sup (@) = sup @) sup o).
Q(O\X~(¢,hC) '=(¢,h¢) %= (¢,hQ)
In £ (¢, hQ),
(1) 1 Oy ~S N
4.52 v, < — sup 19 sup |G(=,=
(4.52) @) S 5 sup | 50(0)| swp (GG )
194 | e o
< PO gup GG ).
k1 (3,7)€H>
In E+(2C),
1|9 s 1974 | oo _
(453) [ord@) < o v <£>\G<—,ﬁ>§—<@ sup  G(5,7)
| on ¢ ¢ KL st

for 0 < 2¢ <t. In 2H(¢) \ ©F(20),

Yy IV'%r L= (@) co¢™ !

1
(459) Jorl ()] < - |50 \ e P B (I e

18

for 0 < 2¢ < t. These inequalities imply (4.32). The first inequality of
(4.33) and (4.34) follow from (4.35) and (4.36). The second inequality of
(4.33) can be proved in similar way as the second one of (4.27). For that
proof we use the (upper and lower) barrier functions (as in (4.44))

O (x) = vI(E — h(Q)Cn(€),m) = M {(7 = h(()()? — (7 + 5)°}

for x = (€4 sn(&),n) e U((,7) = 27(¢,7) \ (¢, h(). Note that

l\J

Osu(a) = o (x) = o) on TGO,
On= =0 on UG\ (TR UT(C )

We can take an adequately small 7 > 0 and a large number M > 0 such
that

O_n(z) v (x) S Oum(z) on T7((,7),
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(£1)AO4Lp(z) <0 in UL, T).
From this condition we have
O_n(z) S v (z) £ Op(x) in UK,T).

Consequently we have the estimate

(8@]\4) . 81)(2)
0s |s=—h—0 88
|s=—h¢—0

8@M> _
< (¢, he).
= < Ds o on (¢, hC)

Calculate the values of the right and left sides of the above inequalities and
get an estimate for |(8/88)(U£,2<) (§ + sn(§),m)|s=—n¢—ol which leads to the
second inequality of (4.33). For the proof of (4.35) and (4.36), we need the
following explicit expressions of Vvﬁlc) , Av(l) in X7(¢,hC) UXT(E).

1, _ —10Y S T
Osv,. ¢ () = Cry On (5)(850)(5: Z)’
1) —1 Oy S M
Vo, (@) Try On (f)(an)(Zaz)
108, \ ~
Vel la) = Ve (1 r(©)) 6.
A = 1 ‘9( i 0 Ot )@fﬂ

1 31% 10
© =" 0.0),
Cfﬂ on 7" \/g Os ¢’ ¢
Estimating these expressions with the aid of Prop.2.7-(ii), we get the in-
equalities (4.35) and (4.36).
For the proof of (4.37), we define the function

(4.55) 73 (2) = ¢~ D) (a)

7).

which is a harmonic function in D\ ¥*(¢). This function v(gg)( ) satisfies
for the Neumann B.C. on (D \ £1(¢)) \ I'"(¢). On I'*(¢), we have

—1 3%

(™ 1lky On

456) (@) = ¢ (a) = <£>@<§, §>
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for @ = (&+sn(€),n) €T ().
From Prop.2.7-(ii), the function in the right hand side smoothly converges

to
Oy

25(m)
)

(m—1)(m+1)S(m+ 1)tm-1

on TIT(t)

when ( — 0. Due to this fact, we can prove that 5(32 (x) approaches the

T

smooth function 3°)(z) (in D\ £+ (¢)), which satisfies
AT (2) =0 in D\ZH(®), P /0v=0 on D\ SF())\ ()

with

- o 25(m)
7(@) =~ 5, © (m — 1)(m + 1)S(m + 1)m—1

(z = (£ +sn(&),n) € TH(1)).

From this convergence, the estimate (4.37) follows. We complete the proof
of Lemma 4.3-(ii). O

4.4. Comparison functions ¢1 ¢, ¢3¢ and some estimates for @

We recall some auxiliary functions ¢; ¢, @2 ¢ which were constructed in
Jimbo [26;Lem.2.7]. These functions play roles of barrier functions to bound
the behaviors of the eigenfunctions around the junction part. Define the set

J(Cota,t1) = X7 (¢, t2) UST (1)

for t1,t2 > 0. We give a statement for the existence and properties for these
auxiliary (barrier) functions in the following proposition.

PROPOSITION 4.4 ([26]). For M > 0, there exist t1,ta > 0, (1 > 0,
c4 >0, c5 > 0 and the positive functions

p1¢ Poc € H (J(C b2, t1)) N CO(J(C, t2, 1))
with the following properties (4.57)-(4.60).

(4.57) Cq § @1,{(33) g Cs (113 € J(C7t27t1))
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(i) Form =1,

(ci(—s+C log(1/¢)) < pac(x) € c5 (—s + Clog(1/C))
(& = (£ +5n(&),n) € 57(C, 1)),
0 < wac(x) < e5¢log(1/¢)
(4.58) (& = (€ +sm(€),n) € £H(20)),
0 < pacla) £ o5 ¢ (1+log(ta/ /5 + n?))
(@ = (€ +sm(€),n) € SH(1) \ BH(20)).

(il) For m = 2,

ca (=5 + Q) = pac(x) = c5(—5+C)
(z = (£ +sn(§),n) € X7(¢,t2)),
0 < pac(x) < esC

(4.59) (z = (£ +sn(f),n) € TF()),
Cm
0<pac(z)=cs (s2 + |n[2)(m=—1/2
{ (z = (£ +sn(£),n) € X7 (t1) \ 2¥(2)),

for 0 < ( £ (1 (The constant ¢ depends on only D and function g = q(s)).
Moreover, @1, w2 satisfy the following differential inequalities,

(4.60) Apic+ (M +1)pic = 0in J(( ta,t1),
‘ Opic/0v =10 on  QJ(C ta,t1) \ (TT(t1) UT™((, t2)),

for i =1,2. The meaning of the inequality in (4.60) is taken in the gener-
alized sense (cf. Gilbarg-Trudinger [22;Chap.8]).

In later sections, we make use of the above comparison functions to
estimate the behavior of the eigenfunctions.

LEMMA 4.5. For ;¢ (i = 1,2) for M 2 py, in Proposition 4.4, there
exist cg > 0,c7 > 0 such that

(4.61) !‘I’k,c(l‘)!é%( sup @k,c(y)) p1e()
yED\X+(t1)
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+¢7 < sup \‘I’k,c(y)l) P2,¢()

yGF* (<7t2)

for x € J(( ta,t1) = L7(C,t2) UST(ty) for 0 < ¢ < . Herety > 0,ty >
0,¢1 > 0 are constants given in Proposition 4.4 for M = uy.

Combining Proposition 4.4 and Lemma 4.5, we can prove some estimates
for (I)k,C in J(C, tg, tl).

REMARK 4.6. By replacing the constants cg,c; by larger ones in
Lemma 4.5, we also have the following estimates.

(i) Form =1,z = (£ 4+ sn(§),n) € J((,t2,t1) = X7 ((,t2) U 2_'_(751),

|Prc(x)| Seg sup | Prc(y)]
yED\X+ (t1)

+er o sup [ Ppe(y)| (—s+Clog(1/¢) in X7((,t2),
yEr= (¢ t2)

|Prc(x)| Seg sup | Prc(y)]
yED\X+ (11)

+cr sup [Prc(y)|Clog(1/¢) in XT(20),
yEF7(47t2)

|Prc(x)| Seg sup | Prc(y)]
yeD\Xt (1)

ver swp [Buc)lC (1+10g(t1/v/s + 0 )
yel = (C 2
in XF(t)\ 27T(20).
(11) For m Z 27 T = (& + 3"(5)777) € J(<7t27t1) = Z_(C7t2) U Z+(t1)7

|Prc(x)| Seg sup | Prc(y)]
yeD\SH (t1)

+ c7 sup |(I)k7C(y)| (_S + C) in X~ (Ca t2)7
YL~ (¢ t2)

Ppe(z)| Scg sup  |Pre(y)|+er sup [@pc(y)| ¢ in XH(2(),
yeD\Xt(t1) yel' = ({,t2)

[Pre(x)| Scs sup  [Ppe(y)
yED\S (1)

Cm
+er osup | Pre(y)l
ver-en) O (82 nf2)m=D/2

in Yt(t)\ Z7(20).
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In the inequalities of Lemma 4.5 and Remark 4.6, we can replace ® ¢
by €(¢)®p,¢ by the homogeneity. Here ¢(¢) is an arbitrary constant which
depends on (.

As an application of these estimates, we can prove that if k € Ny, @ ¢
decays to zero in D at a certain rapid rate. We state the estimates in the
forms which are useful in later sections. We put

Oy () = S(m) Y22y ()
for which we have the following estimates.

COROLLARY 4.7.
(i) For any k € Nyr and m = 1. Then there exists cg > 0 such that, for
x € X7 (¢, t2) UD

Clog(2t1/¢) + |s|
fOT‘ T = (5_'_ 3“(5)777) € 27(47t2)7
(log(2t1/¢)

(4.62) |®pc(2)| < s for @ =(&+sn(€),n) € SH(20),

(108 (o yfryra

for x=(£+sn(€),n) € T*((, 1) \ B(20),
¢ for xe€D\X*( t).

(ii) For any k € Ny; and m = 2, there exists cg > 0 such that, for x €
¥7(¢t2)UD

¢+ sl
fO’/“ Tr = (£ + 5”(5)777) € Z_(C7t2)7

(4.63) (Do) < s d° {Of = (€+sn(8),n) € Z7(20),

(s2+[n[2)(m=1)/2
for x=(£+sn(£),n) € XF(t1) \ B(2(),
¢™ for € D\XT(ty).

for 0 < 2¢ < ty. t1,te are constants given in Proposition 4.4 and Lemma
4.5 for M = py,.
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PRrROOF OF COROLLARY 4.7. From Prop.3.2-(ii), ® ¢ decays to 0 in
D for ¢ — 0 in L?-sense. This corollary are concerned with the pointwise
decay rate. We prove this corollary with the aid of Lem.4.5.

(i) First we prove

(4.64) lim sup ( sup |(I>k7g(x)]> /¢ < 0.
¢—0 D\X*(t1)

Assume the contrary. Then there exists a positive sequence {(,};2; such
that ¢, — 0 for p — oo and

(4.65) lim ( sup ycpk,cp(xn) /G2 = cc.

Peo \D\ZH ()
Define &)k,cp (z) = Pre,(x)/ (SUPyeD\Z+(t1) |Pr.c, (y)\) and then we have

(4.66) sup  [Dp g, () = 1.
z€D\Xt(t1)

On the other hand, from Lem.4.5-(4.61), we have

|Prc ()] < copre(r) + 7 ( sup  [Prc(y)]/  sup \‘I’k,c(y)!> P2.¢()
yel—((,t2) yeED\XZt(t1)

in J(C,t2,t1).

From Rem.2.3-(ii), there exists ¢ such that |®y¢(y)| < c¢~/2 in Q(C) (as
m = 1). Using this estimate we have

(4.67) | ®pc(x)| < coprc(x) + cr (CCI/Q/ sup \q)k,c!) (1/¢)p2,c(x)
D\SH(t1)

in  J((, t2,11).

Put ¢ = ¢, and take p — oo in (4.67), we have, from (4.57), (4.58), (4.65),
(4.66) that

limsup sup ‘&;kpr ()] < max(cgcs,1) for any € > 0,
pP—00 zeD\S+(e)
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lim sup @k,cp ()] £ max(cgcs,1) for z e D.

p—0o0

Using these estimates, we apply Prop.8.2 and we assert that a subsequence
of @y ¢, is convergent to a limit &y € C?(D) which satisfies

Ad, + ukék =0 in D, 8&3k/8u =0 on 9D,
(4.68) sup |<T>k(x)| =1, sup |<5k(x)] < max(cges, 1).
2€D\SH(t1) z€D

This implies py € {wq}g>; which leads to a contradiction because i, € Ery.
Using (4.64) in Rem.4.6-(i) and Rem.2.3-(2.9), we conclude (i).

(ii) can be proved similarly as (4.62). The only difference is that we
prove the following property

(4.69) lim sup ( sup \@kc(z)|> /¢ < 0.
(=0 \D\Z*(t1)

in place of (4.64) by the completely same argument. Using (4.69) and
Rem.2.3-(ii) in Rem.4.6-(ii), we get (4.63). O

COROLLARY 4.8. For any k € Ny, there exists cg > 0 such that

(4.70) sup [ Ppe(@) Seoh(Q)C (m21).
z€X(¢R()Q)

ProOF OF COROLLARY 4.8. This result directly follows from
Cor.4.7. 0

§5. The Case I: yy € E; (Proof of Theorem 2.5)

We will study the behavior of ux(¢) when uy € Er (i.e. k € Ny) for the
proof of Theorem 2.5. Assume k(j) € Ny, then there exists a unique natural
number j' such that gy ;) = wg(;)- Then we have k() = d(j") and g = wy
for d(j') = d < d(j’' + 1), k(j) £ k < k(j +1). From Proposition 2.1, the

eigenvalues pi(¢) (k(j) £ k < k(j + 1)) approach the value

Fr() = FRG)H1 = Hh(i) 42 = 0 = Hi(j1)-1
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for { — 0. From Proposition 3.1, we have

(5.1) limsup [ sup [®pc(x)] ] <oo for ke Nj.
(=0 \zeQ(Q)

We apply Proposition 2.2 in combination with Proposition 8.1 and see that
for an arbitrary sequence of positive values {(,};2; converging to 0 for
p — 00, there exist a subsequence {0},}5%; C {(,}52; and {®;}32, € C*(D)
and {5k}211 C C?(Q) satistying (2.6), (2.7), (2.8), (2.9). Moreover there
exists W € C%(Q) (for k(5) < k < k(j + 1)) such that

lim sup [P o, (7) — Pp(z)] =0,

P—=X reD
lim sup |Pro, () — Wi (z")] = 0,
p—00 z:(x/,l‘//)eQ(Up)

(53)  AWip+mW,=0 in Q, Wi(§) = ®4(§,0") for &€ 0Q.

(5.2)

From the properties (5.1) and (2.6), we have &, = 0 in Q (for k(j) < k <
k(j+1)) and consequently, we see that {®}(j) < k<i(j+1) is orthonormal in
L*(D) (cf.(2.8)). So it spans the same subspace as {@a}q(j) < d<a(j+1) and
it holds that

Py = Z (®k, dq) 12(D) Pg-

d(5') £ q<d(j’+1)
Hence we have

(5.4) Wi (') = > (Pr, Dg)r2(p)Va(2') (2" € Q)

d(j’) = q<d(j’+1)

for k(j) < k < k(j +1). This is obtained by comparing (2.11) and (5.3)
with the aid of the uniqueness of Wy in (5.3). The uniqueness is guaranteed

by pr & {wa}gs-
We start the analysis on p4(¢). The eigenfunction ® . satisfies (2.2)
which immediately leads to

65) [ (V0T Q) B W o
D\Z+(20)

+ /A( )(V@k,gV‘I’ — i (Q) Prc V) da
¢
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+ / (V@i VY — 1k (¢) Prc ¥) dx = 0
QO\E(¢,20)
for V¥ € H'(Q(C)).

We put ¥ = &M for d(j') < d < d(j7+ 1) in (5.5) and denote the three
terms by 11(C), 12(¢), I3(¢). That is,

Ii(¢) = / (VO Voac — 1i(C) Prc dac) da
D\X%+(2¢)
I(¢) = /A(O(V‘I’k,cvgd,c — 1 (Q) Bro Pac) da

I3(¢) = / (VO Véar — Q) Pre dac) da
QIO\XE(¢,2¢)

We evaluate each term I;(0;) after rewriting them in comprehensive forms.
By partial integration and the definition of ¢d > we get

0
65:6) 1O = | Brctds+ [ (= inl0) Bug dud
(D\X*(20)) V3 D\ZH(20)

We used Agpg = —pk ¢q in D (with the Neumann B.C. on 9D) for d(j') <
d<d(j +1),k(j) £k <k(j+1). v3 and vy are the outward unit vectors
on D\ ¥7(2¢) and X1 (2(¢), respectively. Note that v3 = —vy on I'"(2().
We calculate the first term of the above expression,

/ Oy 04 4
oD\ Ovs
:/ @k,c%dsz—/ q><8¢dd5:—/ Oy, %ds
r+0) - Ovs r+eo) - O ost2) OV
B d
—— [ @) - tnleo Glds - [ awe o) Gtds
9%+ (20) vy 9%+ (20) vy
B .
—— [ @)~ (6o s — [ div(@e o) Ve do
9x+(2¢) V4 2H(20)

We used the relation of the variables z,&,n which is z = (£ + sn(§),n),
¢ € 0Q in a neighborhood of 9Q x {0”}. Consequently, we have

6 Q= ) - @il o) S
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- [ (@0 Vo) da
H(20)
+ / (e — px(Q)) Pr ¢ Padz.
D\X+(20)
About I(¢), I3(¢), we calculate

(58) D)= /A o V(Ocle) ~ Bl o) e

+/ V&(€,0")Vdac dl’—/ 11 (C) ¢ Pac d
A(S) A(Q)

.
= [ (@) - auleo) Tl as
OA(C) g

/ (Bpc(x) — Pk(€,0")) Aday da
A(C)
+/ V&(€,0")Vdac dff—/ 1(C) @ dag d,
A(Q) A(Q)
-
69 o= [ e
I'=(¢,2¢) 2
+ (1~ () B Vi
QIO\E7(¢,2¢)

Here v and vy are the outward unit normal vector on JA(¢) and 9(Q(¢) \
¥7(¢,2(¢)), respectively. Vy is regarded as a function in Q(¢) \ X7((, 2¢) by
putting Vy(z', 2") to be Vy(a').

We take ¢ = 0, and evaluate each I;(o,) (j = 1,2,3). With the aid of
(5.1), (5.2) and Lemma 4.2, we get

(5.10) {Il(“p) = (1 = 1k (9p)) /D Dy, da dz + o(0™),
IQ(UP) - O(O-gl)a

8$d<7
5.11 I3(op) = D 5 2. dS + o(c™).
B By = [ B, TS ol

To evaluate the right hand side of I3(0,), we prepare the following lemma.
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LEMMA 5.1. Fork(j) Sk <k(j+1),d([") <d<d(j’+1), we have
8(sto'
5.12 O, b g
( ) /I‘(ap 20p) how vy
_ an ! __m m
= S0m) || Wi(e) (€4S o] +olo)

PrOOF OF LEMMA 5.1. We calculate the left hand side of (5.12).

qbda
= Do () — Wi(x 2ds
J o (@rale) = Wit e

T / (W€ + sm(©))(VVale + sm(©)), n(E))
r(

~(op,20p)

—W(€)(VVa(),n(€)) } dS
+ / / Wi(€)(V'Va(€), 1)) (p2(€, ~20,) — 1) diydS'
0Q Jn|<oyp

/ / £)(T'Va(€), n(€)) diy dS'
0Q Jn|<op

Applying (5.2) and Lem.4.2, we see that the right hand side of (5.13) equals
to

S(m) oy’ 0 Wi (&) (V'Va)(&),n(§)) dS" + o(ay").

Recall ®(&,0") = Wi(§) and p2(£,0) = 1 for £ € 9Q and so the above
expression coincides with the right hand side of (5.12). O

Substitute the result in Lemma 5.1 into I1(0p,) + I2(0p) + I3(0p) = 0 and
we conclude

(5.14) (ki (op) — Mk)/D‘I)k,apqﬁd dzx

—5(m) [ w2

[ W0 Gl ©dS' o) + olo)

p
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for d(j') £ d < d(j'+ 1), k(j) £k < k(j +1). We notice

lim @kﬁqu)ddw—/ @k(bddw
D D

p—00

and that for any k such that k(j) < k < k(j + 1), there exists d such that
d(j') = d < d(j’" + 1) and (P, pa)r2(py # 0, we conclude that there exists
the limit value

lim (i(0y) = /oy (for k(j) S k < h(j + 1))

We denote this value by o/(k). (5.14) is rewritten as

o () (B, 00) 20y = Sm) [ Wel©) D) dS' (' € Q)
oQ n

for d(j') £d <d(j’'+1),k(j) £k < k(j+1). From (5.4), the above equality
leads to

(5.15) a'(k‘) ((bk, ¢d)L2(D)
= X st [ VO 50 a8 @ is

d(j’) = g<d(j’+1)

We define the matrix

U= </ (;5(1 (I)k d.l?)
D d(j') = d<d(j'+1),k(j) = k<k(j+1)

and then from (5.15), we get
o (k(5))

& (k(j+1)-1)

This implies the conclusion a(k) = a'(k) for k(j) < k < k(j + 1) (See the
definition of a(k) in §2). Since the sequence {(,};2; (which approaches
zero) is arbitrary and a(k) depends only on D, @ and not depend on such
choice of sequence (see the definition of a(k) in §2), we get

im0 (0) = ) ¢ = k) (for k() £ k < k(G + 1))

It agrees to the assertion of Theorem 2.5. [J
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§6. The Case II : u; € Er; (Proof of Theorems 2.10, 2.11)

In this section we prove Theorem 2.10 and Theorem 2.11 which are con-
cerned with the eigenvalues py(¢) for k& € Nyr. Assume k(j) € Nyr and
then there exists a unique natural number j' such that Pk(j) = Ar(jry- Then

we have k(j) = 7(5") and = A if k(j) < k < k(j+1), 7(j’) < 7 < r(j'+1).
DEFINITION.  We put
Bpc(2) = S(m)V2¢" Py () (x € QQ)).

(/ﬁk,c is also a k—th eigenfunction of (1.1). From Remark 2.3 and Proposition
3.2, we have

(6.1) 0 <liminf | sup |EI\>k<(w)\ < limsup | sup |EI\>kC(w)\ < 0.
¢—0 z€Q(Q) ¢—0 z€Q(C)

Later we use these estimates for &\)k,( (k € Npp).

Now we use Proposition 2.1 and Proposition 2.2. Take any positive
sequence {Cp}z"zl with lim, .. ¢, = 0. Then, there exist a subsequence
{op}eey and {4}, C C2(D), {®1}2, C C2(Q) satisfying (2.6), (2.7),
(2.8), (2.9). Note that ®; =0 in D for k € Ny; and that {®y | K € Ny} is
orthonormal in L?(Q).

lim sup |i\)k,ap (z) — Bi(a’)] =0,
PO g=(a' ") eQ(op)

Pra) = Y (ke ti)iag¥i(@)

r(3") Sr<r(y’4+1)

(6.2)

for k(j) Sk <k(j+1).

We deal with the two cases m = 1 and m = 2, separately, because there
are technical differences. In the proofs below, the parameter ¢ is taken so
that 0 < ¢ £ (o and fixed. ‘i’k is a function defined in . We need to
regard it as a function on Q(¢) which is equal to 0 in D and to ®(a’) for
z = (2/,2") € Q(¢). We denote it by same notation ;. Under this notation
ADy, + pp®r =0 in Q(¢) and &, = 0 in D.



332 Shuichi JIMBO and Satoshi KOSUGI

6.1. Proof of Theorem 2.10 (m =1) _
In this case m = 1, @y c(z) = (20)/2®@4 ¢(z). By putting ¥ = ¢,.¢ in
(2.2) after multiplying by (2¢)/2, we have

(6.3) / VEI\)/.:;7§VJT7C dx + / V&\)kjgv{/)vng dx
QIONE=(¢RC) I (GROUE*(C)L)

- /Q o POBeclidr =0 (for 1) 7 <+ 1)

We note TZT,C =0in D\ X*(¢,t). Recall h = h(¢) = (log()?. By partial
integration we have

~ o ~ ~ ~
/ Li 5, YrcdS — / ¢ Athycda
' (¢,hQ) V2 QIO\E(¢,hQ)

~ Oy,
‘I’k,gﬁds

* 81/1

/3(E(C7hC)UE*(C¢))

— / (/I\)I&C A{/;T,C dr — / (/I\)k,C A{/;T‘,C dx
7 (GRC) (G0t

- / 1(C) R ¢ Wy d = 0.
QIOUE*(GY)

We used that V@r,g is continuos across 9D N 0Q(¢) and v, is harmonic
in Q(C)\ £ (C.hQ). From 9y /vs + 00 /0y = 0 (x € T(C,hQ)) and
wr,C =y + CUT,<7 we get

-9 ~ ~
/ Dy ¢ 8_(<UT’C) dsS — / Oy c A dx
I'=(¢,RQ) V2 QIO\ZT(hQ)

+

—~

-9
Ppc 5 (Cure) dS
~(che) O

~

0
(CUT’,C) dS

+ Dp e~
(o T om

~ 0
¢k7< 8
(B (GROUE* (G T (GROUT= (G ) g

EI\)k,C A(Jr + <,U7”’C) dr — / . a\)k’g A(’(Zr + Cvng) dx
X*(¢t

11(C) ‘/Isk,g(izr + Cup¢) do = 0.
(QUE*(G:t)

+

S— 5— 5—

U dS

|
S o

~(6hQ)
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Using A{bvr = —Mk& in Q(¢), we have

64 (un(Q) — ue) /Q o echeds

=~ ov r,C ~ 8%«(
:g/ ), dS+C/ &), 2 as
r(che) 0w Che) S om
~  Ovp¢
+ ¢ (I)k7 = dS
~ 00,
n / By o SC Png 4
A(Z~(GROUE(C,0))\ (T~ (¢,hOUT™* (¢ 1)) vy
—¢ By (Avp g + (o) da
%= (¢,hQ)
—¢ O ¢ (Avpe + pk(C) vp ) d
E*(¢,t)
— k() € By ¢ vr dav.

QIO\E™(¢:hQ)

To deal with the terms of the right hand side of (6.4), we prepare the
following estimates.

LEMMA 6.1. There exists a constant c1g > 0 such that

~ 8vr
B L 45| < 019 (1 -+ log(1/0)) (lo(1/0))%
I'=(¢,h¢) V2
(6.5)
R ar
Bjoe 20 48| < ey C2(log €)2,
rcng o Om
(6.6) / By, 2 48] < ero
. Ct k,C 5V1 106,
N d)?“C < 3
(6.7) Pr¢ —,,~ d5| = c10¢ log(1/¢),
(X~ (ChOUS* (C0)\ (I (¢hOUT* (C 1)) g
(6.8) / Bpo ¢ (A + 10(Q) vpe) da
5= (¢,h0)

< c10 ¢*(log ¢)*(1 + ¢(log ¢)* log (t/()),
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(6.9)

ey B (€ ) ] < a0+ Clog/O)C
(S
Jor0<C=G, 0<20=t =ty
PrROOF OF LEMMA 6.1. (6.5) follows from Lem.4.3-(i)-(4.27) and
Cor.4.8-(4.70). (6.6) follows from Lem.4.3-(i)-(4.28) and Cor.4.7-(4.62).

(6.7) follows from Lem.4.3-(i)-(4.25) and Cor.4.6-(4.62). From Cor.4.8-
(4.70) and Lem.4.3-(i)-(4.29), we have

/ B (2)] | Avy (2)] da
2=(¢,hQ)
t  eds/S
< h log — d
</ RCTOEE <og 2+ ) .

< E eés/( /
= /acg /i(C,hC)(CQCQ hQ) (10gC + c p1(&, 8)dsdndS
< c(h*¢*log(t/¢) + h¢?).

Similarly, from (4.26) and Cor.4.8-(4.70), we have

[ @l (el do £ 21+ log(t/<)).
Z7(¢,h¢)

Here ¢, ¢ are positive constants which are independent of the parameters.
These estimates imply (6.8). From Lem.4.3-(i)-(4.30), Cor.4.7, we have

/ B ()] | Avy ()] da
Z*(¢0t)

/ |<I>k,g| |Avy¢| da - / |&’k,<| |Avy¢| d
TH(CH\ET(20) ¥+(2¢)

cocg _—
‘ <t)\z+ (20) (52 + [n|2)1/2

( +1 2t ) d
O —F——F—5 775 Xz
T G

fg oo (%) (¢ vroeg)

A

X

_l’_
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< "(t¢ + ¢Plog(t/¢)),

Bl oz = [ Bl loncldo+ [ [Bugllunglds
H(20)

(Gt S¢S H(20)
2t1 ¢
/ e (log W) (1 *log W) de
[ Cereso1/0)%
S+ (20)
< (¢ + CClog(t/C)).

Here ¢, ¢"" are positive constants which are independent of the parameters.
These estimates imply (6.9). O

A \

Applying Lemma 6.1 to (6.4), we get
©10) (0O -m) [ Buchds
Q)
— ()¢ | By vl + (¢ Log(1/C)).
\Z~(¢h¢)

Put ( =0, (p 2 1) and h = h(o,), we evaluate the both sides of the above
expression (6.10).

LEMMA 6.2. We have

(6.11) / </15k,gp J,« dx = 20p/ ZISk U dx’ + o(op),
Q(op) Q

(6.12) By ) Vo, AT

/Q(Up)\z(gpah(ap)ap)

4 1 [ 0%y 1
Upl £ OV dS" + o(oplog —),
T ap 80 On on op

forr(jYSr<r(f +1), k() Sk<k(+1).

PROOF OF LEMMA 6.2. We first consider (6.11). From (6.2) we have

/ EI;k,o;ﬂZr dx = / i\)k {Er‘ dr + / ((/I\)k,ap - (/ﬁk) Jr dx
Q(op) Q(op) Q(op)
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— 9, / By, by da’ + O(02) + of0)
Q
which implies (6.11). Next we estimate

(6.13) Dk 0, Vro, dx

/Q(Up)\z_ (op,h(op)op)

~

(‘/I\)k,ap — @) vy g, dx

/C;(Up)\z_ (op,h(op)op)

+ / ‘T)k: Vr,o, dT.
Q(op)\E~ (op,h(op)op)

Denote the two terms of the right hand side by I;(o,) and I3(0y).

\Il(Up)lé/Q( N (o) |@s 0, (@) = P()] V1,0, (2)] da
Op ~(op,

< |Q(oy)] sup B, () — Bp(@)] [0, ()|
2€Q(op)\E~ (op,h(op)op)

Here |Q(0p)| is the volume of Q(op) and so |Q(0p)| = O(op). From (6.2)
and

sup |Vr0, ()| = c2 (1+1log(t/op)) (cf. Lem.4.3-(i)-(4.26)),
2€Q(op)\X~ (0p,h(0p)op)
we have
(6.14) lim Iy(op)/(0plog(1/op)) = 0.

p—00

Next we deal with I5(o},). Using AD), = (—1/p) Py in Q(op) and carrying
out partial integration, we have
1
Ir(op) = ——
Hk JQ(op)\E~ (0p,hop)
1 oD ~ Ov
- oy, — B 22 | dS
1k JT=(0pho,) \ OV2 vy
1

S —— </I;k Avy 5, dx
Hi Q(op)\E~ (0p,h(op)op)

A:I;k Vr,o, AT
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1 Dy, (—1) Oty <A s 0. 2K t)
= —— —k (2, Ly y 20
/'l'k F*(Jp,hap) { 81/2 K1 6” (5) (Up Up) T g(fp
-~ avra
_P e L g
Lar } S

We used Av,. = 0in Q(¢)\ X7 (¢, k() and the definition of v,.¢ in the above
calculation. We note that EI\Dk is a function in @ (with Dirichlet B.C. on 0Q)
and it can be regarded as a function in Q(¢) by ®x(2/,2”) = p(a’). We
also denote it by @k

(0.15) o) = 2 loglt/,) | Ok 90r (¢) as

D=0 h(op)oy) OV2 O

L {@(‘” Ol (6 G(—h(op), 1)

Hi Jr= (0, h(0p)0y) | Ov2 K1 On p

3 avr,ap
Dy ds

8u2

For z = (§—h(op)opn(€),n) € I (0p, h(op)op), € € 0Q), we see that vo(x) =
(n(£),0) and

(6.16) %(x) = (VO(2), 1) = (VD)) (& = h(op)opn(€)), m(€))

= (V'®x(€), n(€))

+ (VD) (& = h(op)opn(§)) — V'Br(€), n(€)).

(6.17)  |Br(x)| = [Br(€ — hapn(€)) — By(€)] < sup V'@, ()| h(op)0p,
(6.18)  [{(V'®1)(€ — h(op)opn(€)) — V'D4(E), ()]

< sup |(V')*®1(z')| h(0p) op,

' eQ
o ~
(6.19) sup 8—’“(:,;) < sup [V'®y ().
zel = (op,h(op)ap) | OV2 z'eq

With the aid of (6.16) and (6.18), we calculate the first term in the right
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hand side of I5(op).

(/I\) r (/I; T o
/ 0%k O0r () g5 = [ 0%k 90r (6 45 45"
= (op,h(op)op) OV2 OM 0Q JT=(op,h(op)oy) V2 ON

o TR O pale, ~hlo)oy) S
0Q (op,h(op)o
+ [ <<V'<I>k><s h(oy)oyn(©) — V'Bi(E). n(€) 2 (¢) ds
I~ (op,h(op)op) n
=20, [ (VBu(E). n(e) G (€) a5’

vy | (9B n(6) G (©) (2l6, ~hloy)ay) 1) dS

+ O(h(gp)%%)
=z awr

=2 '
7 [ (V.6 G
On the other hand, using Lem.4.3-(i)-(4.27), (6,17) and (6.19), we can prove

that the second term of the right hand side of Iz(op) in (6.15) is O(02).
Summing up these estimates, we get

0%, 0
aQ on on

Using I1(op) = o(oplog(1l/op)) (cf. (6.14)) in (6.13), we conclude (6.12). O

(&) dS’ + O(h(op)ag).

(6.20) In(c,) = %log(t/op) 45"+ 00 (log 0,)* log(t/ 7).

Consequently, we substitute (6.11), (6.12) into (6.10) and we get

0:21) (loy) — ) | Bovrda’ = —3( 0% 00 dS’) oplog
Q

7T aQ an 8n O'p

1
+ o(op log —)
Op

for k(j) £ k <k(j+1), r(j) < r <r(j’+1). Here we note that both of

{CI)k}k )< k<k(j+1) and {0y },(j1) < r<p(jr41) are orthonormal systems in L?(Q)
and span the same subspace (see (6.2)). So we can define the following
square matrix (orthogonal) of size k(j) = 7(j')

< / by <I>kdx> .
(7') S r<r(i 1) k() < k<k(j+1)
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Using that the matrix U is invertible in (6.21), we see that the limit value

lim (pur(0p) — pr)/(oplog(1l/op))

p—o0

exists for k(j) £ k < k(j + 1). We denote this limit value by B'(k). Using
(6.21), we have

2 [ O 0%

= /
7 Jag On On ds

ﬁﬂqéw@mfz—

for k(j) S k < k(j+ 1), r(j') < r < r(j’ +1). Using (6.2) we get the
following matrix relation,

B (k(j))

) B'(k(j)+1

LT (k(7) +1)

s

k(G +1)—1)

This matrix equation implies 3'(k) = B(k) for k(j) £ k < k(j + 1) (See
the definition of (k) in § 2). The choice of {(,},2; was arbitrary and B(k)
depends only on @), D. So we conclude

%ig(l)(uk(o — )/ (Clog(1/C)) = B(k) (for k(j) =k <k(j+1))
which is the assertion of Theorem 2.10.

6.2. Proof of Theorem 2.11 (m = 2)
We carry out a similar argument as 6.1. Let k(j) = k < k(j + 1),
r(j) Sr<r(j’+1) and put ¥ =, ¢ in (2.2), we have

L(C)(v¢k,Cer7C — 11 (C) ¢ Pr¢) da = 0

which leads to

V& Vi do + / V& Vi da

/Q(C)\E(C’hﬁ) E(GROUET (1)

+ / Vb Vi do — / 1 (C) Bpc g dir = 0.
D\X+(t) Q(¢)
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Using </15k7< = S(m)1/2§m/2¢k,< and carrying out partial integration, we have
/ Oy, gf - O Aty da
I'=(¢,h¢) V2 QIO\E=(GRQ)
+ o %C ds + / Op Png 4
e o rre O

/ Oy w““ds / O Ay da
S (CHOUSHONT-(ChOUT (@) O (¢.hC)

— / ZI;k,C A{/;T,C dr + / (/I\)ka% dsS — / /Lk(C)(/I\)k,C {/;7“,( dr = 0.
() I+() V3 2(0)

_l’_

We used AJT’C =0in D\ X" (¢). Using Jr,g =, + Cure, Ay = —pptby in
Q(C), Othr /Ov1+0vy [Ovy = 0 on ' (¢, k() and Avrc = 0in Q()\E7 (¢, h¢)
and that Vi), ¢ is continuous across 9D N 9Q((), we get

¢ / By € g5 / Op, ¢ Ay da
= (¢,h¢) vy QIO (¢,hC)
~  Oupe
—I—C/ Dy, = dS
“chey S om
= 8 T, a~r
(T~ (ChOUET (1) \(I'~ (¢,hG)UT (1)) V1

— / <I>k,< A, + Cup ) dw — / By e Ay + Cupc) dx
%= (¢,hQ) DH(t)

+¢ By,
I+ ()

o

dS

v, o
k¢ 5 < ds - i (C) Ppo¢c Ve dz =0
3 Q(¢)

and then we have

= 0 T = = 0 T
¢ Bpo e o S +¢ Bpo e ol S +¢ By =8 48
r-he) o O r+ vy

ai .
+/ v has’S ds — / Dy ¢ AUT,C dr
I(Z~(CROUET ())\(I'~ (CAGUIT (2)) 6V1 E7(¢,hCQ)

R ~ v,
— C/ (I)k,C AUT,C dx + C/ (I)k’g Urg dsS
() I+(t) v
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(€ — ) /Q o B~ Q) / a0

Consequently, we get

622)  (u(C) — u) /Q Bt e

~  Oupg ~  Oupg
:g/ P — dS+C/ Pr¢ o= dS
rche rhe - om

+ / Dy ¢
A(E~ (C,hOUSH )\ (CROUT (1)) oy

— C/ (i)kaC Av, e dx — ¢ (i)kaC Av, ¢ dx
27(¢,h¢) ()

~  Ovu, ~
+¢ Prc 8—C dS — ¢ pk(¢) / Ppc vr ¢ d
+(t) v3 DUZ~(¢,hC)

— 1k(€) ¢ / ‘/I;k,c Uy ¢ dx.
QIO\ET(¢hC)

We prepare some estimates for terms which appear in (6.22).

LEMMA 6.3. There exists c11 > 0 and c12(t) > 0 such that

~ O,
|/ Pr¢ I 48| < eq1(log €)2¢™H,
= (¢,hC) vy

(6.23) 8
Py ¢ e dS| < c11(log ¢)*¢™ T,
r-(che) - On
~ O,
(6.24) / Bjp e 28 48| < ey ¢2mt e,
+(t) oy
(6.25) / Oy 9re s < ¢qq (M2
A(3 (GRC)USH()\(T (¢hC)UT (1)) o
/ Oy (Avy e da| < epp (log €)% ¢,
== (,h¢)
(6.26) \
R log(t —9
/ Buc Avpedz| < et Glog(t/¢)  (m=2),
S () ¢t (m 2 3),
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(6.27) < epo(t) ML,

/ (/I\>k7< Uy ¢ dx
D\Z*(t)

/ B¢ —%W ds
I+ (t) V3

for0< (< (G, 0<2¢ < t.

(6.28) g Clg(t) CQm_l,

PrROOF OF LEMMA 6.3. From Lem.4.3-(ii)-(4.33), Cor.4.8-(4.70), we
have

~

o 8”“\ < coh(Q)Cxes on T~(C,hO)
81/2

5. . 9vr¢

‘I’k,ca—yl Scgh(¢)Cxca on T7((, hQ)

and |[I'"((,hC)] = O(¢™) and we get (6.23). From Lem.4.3-(ii)-(4.34),
Cor.4.7-(4.63), we have

R bl m m—1
o UT’C‘ < g ¢ X c26 on TT(t)
tm—l m

k»c 81/1

and [T (¢)] = O(t™) and so we get (6.24). (6.25) follows from Lem.4.3-(ii)-
(4.31), Cor.4.7-(4.63). We deal with (6.26). From Cor.4.8-(4.71), Lem.4.3-
(ii)-(4.35), we have

P 1

[ Bdlanddes [ el OO+ 2 ds

BT (R0 5 (GhC) ¢
< ch() ¢,

¢ is a constant which is independent of the parameters. This implies the
first estimate of (6.26). From Cor.4.7-(4.63), Lem.4.3-(ii)-(4.36), we have

L. el da = [ Bl A do
() EFONET(20)

+ / B c| |Avy.c| da
£+ (2¢)

cgC™ ¢! /
dx + cgC(ca/C) dx
/z+(t)\z+(2<) (82 4 [n|?)(m=1)/2 (52 4- |n|2)m/2 SH(20) (c2/¢)

A




Spectra of Domains 343

A
v

Lot mz),
¢Plog(t/¢) (m=2).
The constant ¢ > 0 is independent of the parameters. These inequalities

imply the second estimate of (6.26). (6.27) and (6.28) follow from Lem.4.3-
(i1)-(4.37) and Cor.4.7-(4.63). O

3
2

Using the estimates in Lemma 6.3 and m = 2 in (6.22), we have

(629)  (u(O) — ue) /Q o Becheds

=~ (¢) C/ P vr.c dw + o(C™H).
QIONE=(¢,hQ)
We evaluate both sides of the above expression.

LEMMA 6.4. We have

(6.30) /Q o

P

Bpp, Ty dr = S(mm) o /Q By 1y da’ + o(0™).

(6.31) / By Ur g, At
Qop)\E~ (op,h(op)op)
1 ody, Oy
— T m Tk m
oy Tlasm) Smyap | S ds' + ofop),

fork(H) Sk<k(j+1),r({)Sr<r(@ +1).

PrROOF OF LEMMA 6.4. The left hand side of (6.30) is

| B drde= [ (@, @0 - Bala) G di'a”
Q(O';n) Q(Up)

+ / </15k JT da'dx"” .
Q(op)

From (6.2), it is easy to see that the first term of the above expression is
o(o}") and the second term is

S(m) ol </Q Oy, 1y da’ +0(1))
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and so we conclude (6.30). Next we consider the left hand side of (6.31).
Hereafter we denote h = h(o)) for simplicity.

(6.32) / </I\>k7op Uy o, AT
Qop)\E(

Q(op)\E~ (op,hop)

/ &)k Vr,o, A
Qop)\E™ (op,hap)

Here we note h = h(op). Denote the two terms of the right hand side of
(6.32) by I1(0p) and Iz (0p).

(6.33) (11 (op)| = / Pk, () = ()| [Vr0, ()] da
Q(op)\E~ (0p,hop)

From Lem.4.3-(ii)-(4.32) and (6.2), we have
(6.34) lim I(0p)/0," = 0.
p—00
Next we evaluate Iy(op). Using the equalities o), = (—1/,uk)A</15k and
Avyg, =0 in Q(op) \ X7 (0p, h(0p)op), we have

1 ~
Ig(Up) = —— A@k Ur,ap dx

Mk Q(op)\E~ (op,hop)

1 0P ~ v,
_ —kvr,gp _ @kh ds
Bk Jr=(ap,hoy) \ OV2 vy

1

- — @k Avm,p dx
Mk Q(op)\X~ (op,hop)
1 dy, (—1) Oy ~ ~ OUpg
- 9% (1) Y G(—h(ap),i)—ékh ds
Kk JT—(op,hop) Oy K1 On Op Ovo

and so we get

_ 1 O Mr 4\
(6.35) hoy) = /F o T g Gl Tyas
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1 ~ Ov
+— o, —7 45S.
Pk JT= (0 hop) vy

From Lem.4.3-(ii)-(4.33) we have

sup < co.

z€l'~ (op,h(op)op)

Ovg

vy o, . ‘

From the Dirichlet B.C. of @k on 0Q), we have

sup |®4(z)| < sup |V'®x(z")| h(0p) 0.
z€l'~ (op,h(op)op) z'eqQ

Thus we have

/ &\)k avr,ap dS av’r ,0p
el (ophlop)ay)  OV2

(6.36) ds

< / ||
z€l ™ (op,h(op)op)

< ch(op) U;’H'l.

Ovy

Here ¢ > 0 is a constant which is independent of the parameters. This gives
the estimate for the second term of Iy(0,). We deal with the first term of
I>(op). From Prop.2.7-(ii),

(6.37) sup |(A¥(s,77) — ko| = sup |G(s,n) — (—k1 s+ k)| S coe?® (s £L0).
Inl<1 Inl<1

For x = (£ — h(op)opn(§),n) € I (op, h(op)op), & € 0Q, we have vp(z) =
(n(£),0) and

%@) = (V'8 (€ — h(op)opn(&)), n(€)).
So we have
(6.38) / § )gq;;“ %‘:(5)0(_ U—p)ds

/BQ / oy (T PO

x%‘f;@)& b 1) (6,9 a5 s




346 Shuichi JIMBO and Satoshi KOSUGI

+ /0@ /(s,n) (V'®L)(E — h(op)opn(€)) — V'®(£), n(E))

€l (op,hop)
3% ~
« 2 6) G (o),

= S o, ~ o
= K2 /(’)Q /(S’n)ef‘—( (V q)k(§)7 n(é» on (f) pl(f, 5) ds dSs

op,hop)

+ / / R )
0Q J(s,n)€T = (op,hop)

« I gy (é(—h(a,,), Ui) - ,4,2> p1dSds'

L) py (€, 5)dS dS'

Op

+O(h(op)ay™)

=y Sm) oy [ (TB,n0) 515 +olo])

o / / ) (V'B1(), n(€))
0Q J (s,n)el~(op,hap)

Oy ~
206 (pr(,9) 1) dS d
+0(e0187)*) L O(h(ap)om )
01, 04,
8Q on on

X

= Kk2S(m) dS'a) + o(ay?).

Here h = h(op). Therefore, using T'(q, m) = ka/K1, we have

1 Dy Oy ~
/ 9%y, Y G(i i)dg
'~ (op,h(op)

9y
K1k op) Ov2 O oy, oy

0%y

=Tla.m) stm) | ZHT

dS" o) + o(a})").

Substituting these estimates (6.34), (6.35), (6.36), (6.37), (6.38) into (6.32),
we have (6.31). O

From (6.29), (6.30) and (6.31) we get

(639) (uloy) — ) [ Buds = ~T(q.m) | Ok OVt 151 7, + ofcy)

3Q8—n an
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for k(j) < k < k(j+ 1), r(j') < r < r(’ +1). Here we note that both
of {@k}z(jlji% and {wr}:(:grall;—l are orthonormal systems in L2(Q) and
they span the common subspace. So we can define the following orthogonal

matrix of size k(j) = 7(j')

</ wr (bk dx ) .
r(§") Sr<r(i’+1),k() S k<k(j+1)

This implies that there exists the limit

Jinn (i (o) = ) /op

for k(j) < k < k(j + 1). We denote this value by 3'(k).

31/1r aq)k

!
a0 On on ds

(6.40) B'(k) /Q Uy By de’ = ~T(g,m)

which leads to

Bk +1)—1)

This implies 3'(k) = B(k) for k(j) £ k < k(j + 1) (See the definition of
B(k) in § 2). The choice of {(,}72; was arbitrary and B(k) depends only
on @, D, g, m. So we conclude

g%(uk(é) —m)/C=B(k) (for k(j) =k <k(j+1))

which is the assertion of Theorem 2.11.
§7. The Case III : u; € Err; (Proof of Theorem 2.12, 2.13, 2.14)

We consider the behavior of the eigenvalue u(¢) which approaches
pr € Errr. This resonant case (the case IIT) is more complicated than
non-resonant ones ( case I, case II ), because the corresponding eigenfunc-
tion @y, » behaves like a superposition of eigenfunctions of two non-resonant
types (I) and (IT) (but it is still interesting). Let k(j) € Nyjz, there exists



348 Shuichi JIMBO and Satoshi KOSUGI

a unique pair (j/,7") € N x N such that p;y = wqgry =
that up = wg = A\ for k(j) < k < k(j+ 1), d(j’) £ d
r(j") S v <r(j" + 1) and k() = d(7') +7(5").

We take an arbitrary positive sequence {Cp}p:1 which approaches 0 for
p — 00. Applying Proposition 2.1 and Proposition 2.2, we have a subse-
quence {o,}52; C {(}52; and &, € C*(D), ®;, € C2(Q) which satisfy (2.6)-
(2.9) for k =2 1. To analyze the eigenvalues ug(¢) (for k(j) = k < k(5 + 1)),
we need to know more about behaviors of the eigenfunctions ¢, .. We divide
the problem into 3 cases m = 1,m = 2 and m = 3.

)\T(j”)‘ Note
< d@j' +1),

7.1. Proof of Theorem 2.12 (m =1)
First we prepare some estimates for a bound of ®, ¢ around D.

LEMMA 7.1. Form =1, we have for anyt >0 and k € N,

(7.1) lim sup sup |Prc(x)] ] <oo (k21).
¢—0 x€DUZ~(¢,t¢1/2)

PROOF OF LEMMA 7.1. Using m = 1 and Rem.2.3 -(iii) and (2.9) in
Rem.4.6-(i), we get (7.1). O

We put ¥ = ggdg in (2.2) for d(j) !
integration by parts in each region Q(()

D\ £%(2¢) and we have,

d(j' + 1) and carry out

<d
\ET (, ¢), 7(¢,2¢) U XF(20),

(7.2) (e (€) = #k)/ O ¢ pac dr
D\S+(20)
0
1 (0) / q>k¢¢d¢dx+/ O g)dCdS
Q(OUSH(2() €20 92

o -
+ / Oy O s — / O ¢ Aday da
o5 (C20UE+20)). O - << 20)

$+(20) I'+(20) vy

We note that as wy(; € Errr, %d,g is harmonic in Q(¢) \ £7(¢, 2¢) with the
Neumann B.C. on 9(Q(¢) \ £7(¢,2¢)) \ I'" (¢, 2¢) above.
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Similarly as in § 6, we put ¥ = @brg for r(j") < r < r(77 +1

)
(2.2) and carry out integration by parts in each region Q(C) \ X7(¢, h(),
Y7(¢,hC) UXE*(C,t), D\ X*(¢,t) and we have

(73) Q) — ) /Q o el

8vr¢ avrg
—¢ / o, s + ¢ / By =mC S
rche) O r(che) O Om

a’UT ¢
+ ¢ (I)k’ =S
O,
+ / ayc 2 g5
(= (¢ROUE*(C,0)\ (T~ (¢hOUT* (¢ 1)) vy
—¢ Oy ¢ (Avpe + () vr ) do
%= (¢,hQ)

— C/ P ¢ (Avpe + pi(Q) vre) da
E*(¢,t)

— Cur(Q) / D ¢ v ¢ da.
QIO\E~(¢hC)

We used v, = 0in D\ ¥*((,t). We prepare several estimates for evaluation
of the terms in (7.2).

LEMMA 7.2.  There ezists c13 > 0 such that, we have , for k(j) < k <
k(G +1), di') = d<d(j’ + 1),

< C13 Cv

(7.4)

oy, qzSd%zs

/ <5 < a3,
(X~ (¢,20)Un+(20)) g

2
é Cl3< )

(7.5) / By e Aycd
==(¢,20)

< e3¢, / ‘bk,cAgd,Cdx
%+(20)
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o3
/ q)k,g%ds < 3¢,
I +(20) v3

O pacdr| < c13 ¢

/E (¢:2QUx*(20)

PROOF OF LEMMA 7.2. The estimates follow from (7.1), m = 1 and
Lem.4.2-(4.18). O

LEMMA 7.3. Fork(j) Sk <k(j+1) andd(j') < d < d(j’ +1), it holds
that

(77) / \ +( ) ¢k,0p (’Ed,dp d.f[) = / @k ¢d d,’L‘ + 0(1)’
D\YXT(20p I
(7.8) / B, Do,
Q(op)\X (0p,20p)
—V2 [ 0P
N K aQ 8—75(5) ¢d(§7 0/,) ds,a;/2+0(0'11/2)7

for p — .
PrROOF OF LEMMA 7.3. At first we have
(7.9) / Do, Py, AT = (D, — P, égd,ap)m(p\zﬂzgp))
D\S+(20)
+ (Pks d.oy) 12(D\SH(20,))-
Using (2.6), Lem.4.2, we have
Jim |bd,e, — dall Lo () = O, Jm [®k.0, — Prll2(p) = 0,

and we see that the right hand side in (7.9) approaches (®, ¢q)r2(p) for
p — oo and (7.7) is proved. Next we consider the left hand side of (7.8).

(710) (I)k,ap gd,ap dx

‘/Q(Up)\z (op,20p)

= (20'p)1/2 / (20'p)71 (i)k gdﬁp dx
Q(op)\E~ (0p,20p)
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+ (2%)1/2/ (20,) " (Bh5, — B1) a0, dz
Q(op)\X~ (0p,20p)

= (—1/p) (20,)1? / (20,) " ADy o, de
Q("p)\E (Up720'p)
+ 0(0[1,/2)

Remark that (2.6) was used above. Carrying out partial integration and
using that ¢4, is harmonic in Q(oy) \ ¥~ (0y, 20,) (as we are dealing with
the resonant case and wy € Err), we have

(7.11) —— /
2Up Q(op)\X~ (0p,20p)

1 (8@’%% 3, ¢dap> 49
)

AZI;k &fd,(,p dx

20p Jr=(0p,20p vy

1 S 0%,
=5 <<V¢k7V2>¢d,ap Dy, G p) ds

20p Jr-(0,,20p) Ovo

<I)
/ / D% (€) dule, ) dnas’
2% 0Q Jnl<o,

acpk ,
2ap /aQ /m% €) pa(&,0") (p2(§, —20p,) — 1) dn dS

2op/aQ/ (T = 20m(0) = (VB (6)

x ¢a(€,0") p2(&; —20,) dndS’

o L / o (Ble—20m(6) - 8(0)

8¢d,0'p
>< _—

) ',
B0 p2(&, —20,) dndS

Here we used 1»5(§) = (n(£),0) for z = (£ — 20,n(&),n) € I'"(0p,20,) and
the Dirichlet B.C. of ®; on 9Q. As for the first term it is clear from m = 1,
that

8‘1)k " / a(l)k 1/ /
(7.12) dndS = as’.
s o Gm@ e dnas = [ S aue o)
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From Lem.4.2, we see that
sup [ (€ — 20,m(€)) — B(6)] < (20) | V' Bl ()
€€dQ

gs%% [(V'®r) (€ = 20,m(€)) — (V'®1)(E)] £ (20) (V)2 Pil Lo ()
(S
a(gd,op
sup —
z€l'~ (op,20p) I ( )‘

A

C1.

Using the estimates in (7.11) and (7.12), we substitute them into (7.10) and
we have (7.8). O

Applying Lemma 7.2 and Lemma 7.3 to (7.2), we get

(7.13)  (pw(op) — pr) /D O g dz = (20,)"/? o %(&) ba(&,0")dS’

+ 0(05/2)

for p — oo.
Next we prepare several estimates for evaluation of the terms of (7.3).

LEMMA 7.4. There exists c14 > 0 such that, for k(j) = k < k(j +
1),r(j") <r<r(f” +1), we have

o0,
[ G as] < cuc(i+los(t/c),
= (Gh0) V2

(7.14)

(7.15) / Oy 0 g
(S~ (CROUS* ()N (T (CROUT (¢,8)) O

2
< a7

/ q)k,C (AUT,C + Mk(()vr,g) dx
E7(¢h0)

(7.16)
< 14 ¢ (14 Clog(t/€) (log ()?)

(7.17) / B¢ vpc de| < c1a V7 (1 + log(t/0)
QN (RO
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PrOOF oOrF LEMMA 7.4. (7.14), (7.15), (7.16) follow from (7.1)
and Lem.4.3-(1)-(4.27), (4.25), (4.29), respectively. Remark that
[@rcllzoiy = OC™Y%) as m = 1 and Rem.2.3-(2.9). Using Lem.4.3-
(1)-(4.26), we have (7.17). O

LEMMA 7.5. We have

(7.18) /Q( )(I)k,ap TZr dx = (QO-p)l/Q/QEI\)k Uy dx’+0(a;)/2).
Op

There exist c15 > 0 such that the functions Y1(k,r,(,t), Yo(k,r,(,t) defined
through the relations

(7.19) / D 2l gg — o / B1(6,0") 2V (€)dS' + Y1k, r G, 1),
F*(C,t) 87/1 8Q 8”

(7.20) /E oy BB O Q) de = (ko )
(¢t

fork(j) Sk <k(+1),r(") =r<r(j” +1), satisfy the estimates

(721) limsup|T1(k:,r, O-p’t)| é c15t, limsup |Y2(k,7“,€,t)| é c1st.

p—00 ¢—0

PROOF OF LEMMA 7.5. From Prop.2.2, (7.18) is clear. We deal with
(7.19). We get an expression of Yi(k,r, 0p,t) which is comprehensive for
estimation. For x = (£ + sn(§),n) € ¥*(0p, 1),

Oy o
7.22 / Do (2) =272 48
(722 I (op,t) ko (2) on

Or.o,

= Pp(€,0") =22 ds
/F*(Upvt) k( ) 61/1

OV &
+ / (Bu(z) — By(€, ")) 202 g
T (0pt) 9

141
s @@ Bi(a)) 2 as
ko, (X) — ®p(z)) 2 dS.

T opt) Oy

We calculate the first term in the right hand side of (7.22) carefully. From
the definition of v, ¢ in 3*((, 1),

1 0y ~ 5N 2K1 t
vrc(z) = *m—la—n(ﬁ) (G(Zv E) + Tlog Z)
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(z = (£ +sn(§),n) € X°(C, 1))
Hereafter we denote V.G = (0G/s, Vné). We have

8 T ]- a T ].
(123) G @)= a‘i V-GG D) ¢
_8% 1 awr oy 1 2I<.',1
= on E_n_lan ( Ggg’1><+m>

for z = (§ + sn(§),n) € I'*((,t). Here vy is the outward unit normal vector
on I'*((,t). Therefore we have

8U1

oY,
— d —dS
L B G

_ // iawr
Lo 860 G ®

(v j) ) -+ 2 ) as

P Op t

/aQ/*U " %f:(i)—p dsS ds’

b 100,
/F oy PHE GO

X (<<vzé><i, Ty oy Ly —2m> a5
Op Op Op Tt
/! a T !
=2 [ ae.d) Grds

8 T,0
(7.24) / B(€,0") or g g
™ (op )

v 2 (|f*<ap,t>\ - \f+<t>|) / Q«bk(a o) 2 (€) s’

a% /
/BQ/ (opit 871, (&) 7Tt( 2—1)d5d5'

1oy,
-/ W)m(a ) G (©)

< (.02 Ly -+ 2 Y as

Op Op Op Tt
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Here dS is the measure on f*(ap, t). Substituting (7.24) into (7.22), we have
(7.19) by putting

(129) Tilhori .0 = (lf*<<,t>r S ) [ auted) S ieas
) 9 -
/8Q/*Ct) an (f)%(ﬂ?(&s)—l)deS

7 iaq/)r s 1 } ﬁ
- /F*mwf,o)m (@) (v B Dy 7+ 22 Y as

v,
4 / (@) — Bi(€, o)) 2 s
T*(C.) vy

vy ¢

—|—/ D (x) — Op(x ds.
(e~ ot

In view of (2.6) and the inequality

< % (z=(s,n) € H) (cf. Prop.2.7-(i))

2"61,2

(V-6)(:/0) +

:

we have

(7.26) limsup |Y1(k,7, 0p,1)]

p—00

gnmsup// (e |]8¢’" ]—|p25,>—1d§ds’
0Q JT*(op,t)

p—0o0

Ur,op

dS

+hmsup/ 19(0) — (e |}
T*(op,t

Pp—00

< timswp [ / wi(6.0") 2 ) ' 2 |pa(e.s) — 1] dSds’
p—0o0  JOQ JT*(op,t
+ co lim sup ( sup |‘I)k($) - q)k(gaoll)‘> |F*(Up7t)‘
p—00 z=(&+sn(E),n)€r* (op,t)
oY,
o [ fmuien? (s)' as s Ipsles) — 1]
00 n £€0Q,(s,n)el+(t)

+ ¢ sup | (z) — Pr(&,0")| [T (1)] £ ct.
z=({+sn(§)n)elt(t)
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¢ > 0 is a positive constant which is independent of the parameters. This
(7.26) implies the first part of (7.21). Next we deal with (7.20).

(7.27) | Yok, 7, ¢, 1)

/ Broc (Avge + u(C) vrng) d
X*(¢,t)

= [|®k.cll Lo (D) </z » |Avr,ddx+ﬂk(o/2 « )|Uv~,<|dfﬂ> :
* R * 7t

We note that ||® || (p) is bounded for small ¢ > 0 (cf. (7.1)). We use
Lem.4.3-(i) to estimate terms involving vy .

(7.28) / Avyc| do
z*(¢0t)
< / / (/O (e, s) dsdndS’
oQ J (s,meXt(2()

1 t
. R
0Q J (s, eSH+(20)\ S+ (20) (\/ s? + [n]? 52 + In\2>
x p1(&,s)dsdndS’
SAC+)  (0<2¢<t<ty).

(7.29) / o ¢ |d
SNI%)

é/ / (L +1og(t/Q)) pi(&, 5) dsdndS’

0Q J(s,m)est(20)
// ¢z (1 +log(t/v/s? + [n]?)) p1 (&, ) ds dn dS'
9Q

(s,m)€SH(2H)\SF(20)
<N HtY) (0<2¢ <t <)

c and ¢’ are positive constants which are independent of the parameters
These estimates (7.27), (7.28), (7.29) imply the second part of (7.21). O

Using (7.3) with Lemma 7.4 and Lemma 7.5, we have

. = O- —
(7.30) limsup (@, ¥r) 2 () (%)
p

p—00
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/! a¢7‘ !

1
= — limsup(Yy(k,r, 0p, t) — Yok, 7, 0p,1)),
\/5 oo p p

(7.31) lim inf (P, ) r2(Q) (Mﬂ(apl—)/g_%)
Op

V2 [ e 2 ) ds

— 7 hprgggf('rl(ap,t) — To(op, t)).

As the left hand side of (7.30) and (7.31) are independent on the variable ¢
and so are the right hand sides. Moreover we know, from (7.21),

limsup |Y1(k, 7, 0p,t)| < c15t, limsup |Ya(k,7,0p,t)| = ci5t.

p—0o0 p—00

So the right hand sides of (7.31) and (7.32) are zero and we can conclude

(7.32)  lim M(@kﬂ%)m @ = \/—/ G 8% (€)dS'.

p—00 1/2 an

We consider (7.13) and (7.32) to deduce the conclusion. We recall the
orthogonality condition (2.9) and see that

{(@x, ®x) € LX(D) x L*(Q) | k(j) £ k < k(j + 1)}
span the same subspace as

{(¢4,0),(0,%4) € L*(D) x L*(Q) | d(j") £ d < d(j’ + 1),
r(j") <r<r(”+ 1)}

Hence, for each k (k(j) £ k < k(j + 1)), at least one of the following two
conditions holds.
(i) There exists some d such that (@, ¢q)r2(py # 0, d(j') = d < d(j' +1).
(ii) There exists some r such that (a\)k,’L/JT)LQ(Q) £0,r(j")=r<r(G"+1).
From (7.13) and (7.32) we conclude that the limit value
lim (s (r,) — i) /2

p—0o0
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exists for k(j) < k < k(j + 1). We denote this value by +} (k). Simultane-
ously we have

133 A [ oo so)de =2 [ Ok ) 5o, dS,

o on
T30 ) | Bl vl s, [ oo Gras.

for k(j) Sk <k(j+1),dy)sd<dy’ +1),r(F") Sr<r(’"+1).
Substituting

Py = > (Pks ba) 120y Pas Pk = > (Pkr ) r2() Yr

d(y’) £ d<d(5’'+1) r(5") = r<r(f”th)

into (7.33) and (7.34), we have

Hw) [ Buoado
~ o, I '
V2 Y @ /8 U €) gule, o) d

T(j”) é T<7"(j”+1)

"(k) | Dy, da’
71<>/Q e d
=v2 Y (@ /¢d aqf);(f)dsl-

d(j’) = d<d(j’'+1)

Define d(j') x k(j) matrix E, 7(j”') x k(j) matrix F and k(j) x k(j) matrix
U by and put

E = ((da; <I)’“)L"’(m)d(j’) < d<d(j'+1),k(j) < k<k(j+1)’ (E)
F= ((wraa\)k)Lz(Q)) '

r(§") S r<r(j+1)k(j) < k<k(j+1)
Remark that two families

[(@.34) [ k() Sk <K +1)}.
{(64,0), (0,4,) | d(j") £ d < d(j +1),r(j") v <r(" +1)}
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are orthonormal in L?(D) x L?(Q), respectively and span the identical sub-
space and so U is an orthogonal matrix and
0 VicG)),
V2IC(j) O
Y1 (k(5))
Yi(k(G) +1)

Yi(k(G+1) = 1)

This implies v} (k) = v, (k) for k € Nyyr for k(j) £ k < k(j + 1) (See the
definition of v, (k) in §2). The choice of the sequence {(,}72; was arbitrary
and -, (k) depends only on D, @, q,m. So we have

c(C) — e N < :
which is the conclusion of Theorem 2.12.

7.2. Proof of Theorem 2.13 (m = 2)
For the case m = 2, we carry out a similar argument as the case m = 1
(in 7.1). First we note the following estimates around D.

LEMMA 7.6. Assume m = 2 and then for any t > 0 and k € N, we
have

lim sup ( sup |<Pk<(x)]> < oo (k=1),
¢—0 zeX—((,t D
(7.35) X (¢ U

lim sup ( sup ]@k,g(xﬂ/h(g’)) <oo(k21).
(=0 \zex~(Gr(<)<)

PROOF OF LEMMA 7.6. Both estimates follow from Rem.4.6-(ii) and
the estimates Rem.2.3-(ii), (iii). O

Putting ¥ = di,g in (2.2) for d(j') £ d <
a partial integration in each region, Q(¢) \ X~
D\ ©%(2¢), we have

(7.36)  (ur(C) — p) / P ¢ Pac dv

D\EH(2()

d(j' + 1) and carrying out
(¢:20), 7(¢,20), BH(20),



360 Shuichi JIMBO and Satoshi KOSUGI

:—Iuk(C)/ (I)k,CdiyCdx"i_/ 7% k¢ gdcds
QOUTH(20) = (¢,2¢) V2
+ / k,{ ¢d C dS / (I)k‘,C A(Zd,C dx
(=~ (C20ust(0) T I (C20)USH(20)
+ / L ¢d§ ds.
1"+(2c) 8V3

Putting ¥ = 1%74 in (2.2) for 7(j”) < r < r(4”+1) and carrying out a partial

integration in each region Q(¢)\ X7 (¢, h¢), X7(¢, hC), TH(t), D\ XT(t), we
have

(7.37) (O =) [ ubda
Q)
o, vy,
:g/ Ot ds+¢ By, 200€ g
0 o3 Pche O
a’UTC 81}7{
+ By, S + ¢ / q» ds
‘ rhe C om "¢ o

0 r
+ / Dy v e as
DS (COUSHONT- (CROUTH (1) o OV

- C/ P (Avp e + px () vy ) da
z(¢,hQ)

- C/ 1k (C) P ¢ vp ¢ d
Q(O\E=(¢,hC)

—¢ P ¢ (Avye + pi(Q) vre) da.
(1)

Here h = h(¢). We prepare the the estimates for the terms in (7.36).

LEMMA 7.7. There exists a constant cig > 0 such that, for k(j) < k <
k(5 +1),d(j) £d<d(j +1), we have

Dy 2018 45| < s .

r-2) . O

(7.38)

B
B o 2L s ds| <
(S~ (C,20)USH(20)) on
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/ Dy Adac dr| < 165,
(7.39) 27(¢,2¢)
/ Oy ¢ Adgcdr| < 16 ¢,
z+(2¢)
o3
(7.40) / Oy 99dc g < ¢16 (2.
I+(2¢) dvs

PROOF OF LEMMA 7.7. (7.38),(7.39),(7.40) follow from m = 2 and
Lem.7.6-(7.35), Lem.4.2-(4.18). O

LEMMA 7.8. Fork(j) Sk <k(j+1),d([") <d<d(j’+1), we have

(7.41) / Br, i, d = / By, b d + o(1),
D\S+(20p) D

(742) / q)kpp Q’gdpp dx = _ﬁ &(g) @bd(é? O//) ds/ Op + O(Jp)‘
Qo) i Joq On

PROOF OF LEMMA 7.8. It is easy to see that (7.41) immediately follows
from (2.6), Lem.7.6-(7.35) and lim¢_,g sup,cp |¢a,c(z) —pa(x)| = 0. Next we
deal with (7.42).

(7.43) / Dy P, dx = (VT0,) ™! / By o, P, AT
Q(Up) Q(Up)

= (ﬁgp)_l / EI\)lc gd,ap dx

Q(op)\E~ (0p,20p)

(Vo) / By bu, da

X (O'P72UP)

+ (ﬁap)_l/ ((/I\)k,cp — Oy $d,a,, dx
Q(Up)

= (~1/ ) (1/ V7o) / ABy, b, do
Q(Up)\z_ (Up72‘7p)
+0(02) + o(op)
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_ 0Py, ~ ~ 0 ~
= ( 1)/(Mkﬁ0p) /F(O'p,20'p) <8U2 ¢d o — Pk o (;5d7gp> dS
+o(op).

We used m = 2 and that ggdw is harmonic in Q(op) \ £~ (0p, 20;,) with the
Neumann B.C. on 9(Q(op) \ X7 (0p,20,)) \I'~(0p, 20p) (because wq € Eyyy,
d(j) £d < d(j'+ 1)) above.

We estimate each term of the right hand side of (7.43). We use Lem.4.2
and the Dirichlet B.C. of &), on 8Q. For z = (&—=20pn(§),n) € ' (0p, 20p),

sup  [(9daq, /) (@) S e (p2 1),

z€l~ (0p,20p)
Bue)| < 20, sup [VBL()| (& € T (0 203)).
' eQ

Using these estimates we get

(7.44) / @ki bd,0, dS
I (0p20,) OV
< (27TUZ’) c1 sup \V'(/I;k(x')]/ p2(&, —20,) dS’,
oQ
P
(7.45) / ng)d -, dS
I'=(op,20p) vy

_ / , <(v'<1>k)(§ 20,m(8)), n(€)) Pa(é, o) dS

-/ / (V'B)(€ ~ 20m(6). n(6)
oQ Jn|<op
X ¢d(§7 //) p2(§7 _zap) d77 dS/

- / / (V'B4(6), E)) dul€, o) dnds’
oQ Jn|<op

T /8 ) /M%«V'cbk)(g 20, (6)). n(E))
% Bal€, ") (pa(€,—20,) — 1) dn dS’
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“f /M«v B0)( — 20,m(0)) — VB, n(0))
X ¢g(&,0") dndS’
— ro? /8 VB () dul6s ) S+ O())
Substituting (7.44), (7.45) into (7.43), we get (7.42). O

We put ( = 0, and take p — oo in (7.36) with using Lemma 7.7 and
Lemma 7.8, we get

(7.46) (ke (op) — pk) /D Dp., P da

o
=V [ G (€)0ul€, o) S+ olcr).
We prepare some estimates to deal with (7.37).

LEMMA 7.9. There exists a constant c17 > 0 such that for k(j) < k <
k(7 +1), r(j") =r <r(i”+1), we have

)
aUrC < 2 2
¢ dsS c17 ¢ (log(1/¢))7,
(7.47) o C’ v
8”7“( 2 2
Dy ¢ 3 dS| = c17 ¢ (log(1/¢))",
r=(¢,he) 91
(7.48) / Py ¢ Qg dS| < 17 %,
(S~ (¢ hQ)USH(ED\ (T (C,hCO)UT (£)) o
(7.49) / g B (B (O ) | £ exe (1o

ProOOF OF LEMMA 7.9. (7.47) follows from Lem.7.6-(7.35) and
Lem.4.3-(ii)-(4.33). (7.48) follows from Lem.7.6-(7.35) and Lem.4.3-(ii)-
(4.31). We deal with (7.49). From Lem.4.3-(ii)-(4.35) and (7.35), we es-

timate

/ B¢ (Avrg + 1 (C) vre) da
2= (¢h0)
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< / 1Bc] [Avnc|di + 1 (C) / B [onc| de
2= (¢,hC) ¢,h¢)

0
< h 1+ (1 6s/¢ , ds d dSI
B /8Q /—h(oc /In|<4q(s/C) (2 (14+(1/Q ™) &, 5) ds

0
+ h ,S)dsd ds’ < 1 2,
(©) /8 ) / - /Wq(s/o ()2 pr(€, 5) ds dndS' < e (log )

¢ > 0 is a constant which is independent of the parameters. These estimates
imply (7.49). O

LEMMA 7.10. We have, for k(j) £ k < k(j+1), r(57) <r <r(j"+1),

(7.50) /Q( )(I)k#fp {/;r dxr = \/EO'p (/Q &\)k Yy da’ + 0(1)> ,

(7.51) / (I)kygp Ur¢ dx
Q(op)\X~ (0p,hop)

1 0%y, . Ny /
- —T(a.2V7, ( o O s +o<ap>) .

The functions Ys(k,r,,t), Ta(k,r,(,t), Y5(k,r,(,t) are defined through the
following (7.52),(7.53),(7.54)

1 0Py, 0P ¢
¢ Jrrq Ovs

1
(753)  TalkrCot) = & / Broc (Avng + pr(C) vpc) da,
¢ Js+)

7.54 / i ds
(7.54) e T

[ ante.o) Gr©as + xak )

(7.52) Ys(k,r, ¢, t) = Uy ¢ dS,

(h = h(op)) and they satisfy the estimates

limsup |Y4(k,r, (,t)| < cist,
(7.55) 0

lim sup ‘Tj(kﬂna Upvt)| =< cist (] =3, 5)

p—00
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for k(j) =k <k(+1), r(j") =r<r(j" +1).

ProOOF oF LEMMA 7.10. (7.50) follows directly from (2.6). We deal
with (7.51).

(I)k,ap ,Uﬁap dx = (ﬁUp)_l / (I)k,ap ’UT70-p dx

/Q(Up)\z(gp’hgp) Q(op)\E~ (op,hop)

= (V7op) ™! / oy, Ur,, A

Q(op)\X~ (0p,hop)
+ (\/7_r0p)_1/ (&\)k,‘,p — </15k) Uy, AT
Q(op)\X~ (op,hap)
(= Il(ap) + I2(Up))

Note h = h(op) = (logop)? (cf. (4.4)).

(7.56) |I2(0p)| = (ﬁap)_l/ [k, (7) — Pp()[ [y ()] o
Q(op)\E~ (op,hop)

< (Vo) ' Q(op)le2
x sup |Pr.0, () = Pi()][Vr,0, ().
2€Q(op)\X (op,hop)
Hence lime—|Q(¢)]/¢? = m|Q|, (2.6) and Lem.4.3-(ii)-(4.32) yield
limy, oo I2(0p)/0p = 0.

(T57)  L(oy) = (=1/) (vaoy) ™" / Ady vy, do
Q(op)\E~ (op,hop)

= (=1/m) (Vmop) ™

o = a T,0
x/ @Un%_q}kh ds
'~ (op,hop) I %)

(=1 /) (Vo) / (Vb 12) V1, S
I'=(op,hop)

+ (1) (Vo)™

~ OUpg
X / P, a—’p dsS (E Il,l(o'p) + ILQ(O’p))
'~ (op,hop) V2
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From Lem.4.3-(ii)-(4.33) and supr-(, n(s,)o,) 1Dy (2)| = O(h(op)op), we
have

(7.58) I 2(0p) = O(h(ap)ag) = O((log crp)2012)).
As vo(x) = (n(§),0) for x = (£ — h(op)opn(§),n) € I~ (0p, h(op)op)

(7.59) Il 1(O'p)

/ / (V'®1)(€ — h(op)a,m(€)), n(£))
0Q Jn|<op

Hk\/7_”7p
- (—’%%@Z (§)> é(_h(gp) n/op)p1(&, —h(op)op) dndsS’
Mk\/7_”7p /E)Q /n|<ap /(I)k &)
NECa -
—1
" [/ T
x /a ) / (VB = opoyn(©) = VB n(6))
ni<op
9 (—%%ﬁ (©) Gl-hloy).n/oy) (&, ~hloy)oy) dnds
1 0y,
- /aQ / i<V ( 1 On “))
x (G( (0p),1/0p) — K2) p1(§; —h(op)ay) dndS’
, 1 0,
Mk\/_Up /8Q /n<ap (Ve ( K1 On (§)>

% G(=h(a):n/ap) (pr (€, —~h(0p)a) — 1) dn .

Using T'(q,2) = k1/K2, we have the following expression.

T(q7 Q)ﬁgp ES oY, '
om /BQW 1) (€),n(&)) 5 - (€)) dS" + 0(p).

I1(op) =

From this asymptotic expression for I 1(o,) with (7.56), (7.58), we have
(7.51).
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We deal with (7.53).

(7.60) [ Ta(k, 7, ¢ 1)

1

:_/ D¢ (Avp e + pk(C) vr o) do
¢ s+

1

1
<7 L oncl1Bencl e+ ) L, 1ol lungldo
g ¢ £H(1)

From (4.32) and (4.36), we have

(7.61) / |Avy ¢ | dx
S (D)

< ds dndS'’
< o) el mEs) dsan

02(: !
p1(&,s) dsdndS
/acg /87] €S+ \S+(20) (3 + [nl?)

gz(@/g)(zw(zg)?>/3/a 148 + /aQ/< 7247” drds’

(32”5252 + 8meal(t — 2()) /8 , 1dS’

<¢ (3255 + 87rt> e 10|

(7.62) / o] d
S

< / / ¢ p1(€, 5) ds dn dS'
0Q J(smeSt(2¢)
+ / / (@R TR pi(E,s) dsdndS’
oQ (8,77)62Jr \E+ 2C

§2C2(2w(2g)3/3/ 1dS’ + // 2y w12 dr ds’
oQ ol T
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2
_¢ (3“4 —|—47rt2> e 10Q).

Substituting (7.61) and (7.62) into (7.60) we get

limsup | Yy4(k,r, ¢, t)] < <limsup ‘@k’CHLoo(D)) (87t 4 4ppmt?) 2 |0Q)|.
¢—0 ¢—=0

From Lem.7.6, limsup,_,q [Pk ¢|[z(p) is finite. The first part of (7.55) is
verified.

Next we deal with (7.52). Recall Prop.2.7-(ii) for the case of m = 2 and
we know,

K1 < COC2 _
( /C) 2‘ ’ | |2 (Z—(Svﬁ)EHl),
(7.63) Leicel  end?
10 (V-0):/0) - JHE| <5 (o= (s < 1)

Therefore we know that the function

1 0Y,, 1~
gle) = = GO ECT) (on THE)
smoothly approaches
1 8¢r K1 o _i 877Z)7" K1 o 1 3% +
ml on 2,/s2 + |n|? KL On (&) o 2t On () (on I™(#))

for ¢ — 0. Therefore we have

-1 0%y, 9,
(764) pll{gors(k " Up?t) - 2t /F*(t) 81/3 8’)’1, (f) dS

/ / vy §+ n(£),n) 8¢T(f)02(§,s)d§d5.
0Q JT n

+(t) 81/3

Here dS is the measure on f*(t). Estimating the right hand side with
[T+ (¢)| = O(t?), we conclude the second part of (7.55) for j = 3. Next we
deal with (7.54). First we look into dv, /vy on I'"(¢).

81)“ . 1 awr
o Ky On Y O

2@,
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for z = (£ + sn(£),n) e T (1).

avm- 1 67/)r

(7.65) oy K1 On
1 3%

" k1 On | ‘

Using (7.63) we have
K1(
GR
1 *ng
>E_ 2¢2

= <(1/H1)£Sé%%|(3¢r/3n)(€)|) (coG®/t%) (z € TH(1)).

and consequently we get

(%7’( 1 0y co ¢ O,
for = (§ + sn(£),n) € I (1)
vy ¢ ( Qv ¢ (%TC)
o £48 = By, S 4 (g — D) =S ) dS
/I"+(t) MO0 T+ (t) " o (®rc k) o
_ 1 O F1C
-/ ﬂt){cpk(m )
81}7“,( 1 0y, K1G 81}7“74
T ( o K1 On (&) ﬁ) + (Prg — i) o S
Therefore we have
1 a T,
(7.67)  — B g 170 1
p Jr+ () %
Oy
= D —— —dS
/F+(t) *on (&) 2t2
1 0vry, Oy 1
* /r+( D) B <Up ov,  On © 2_t2> 5
1 OV
Dy y — D i
+/ (P wgp oo g
31/1r ,
£ —deS
/(‘BQ /F+ (t) ( ) 2t2
Oy ,
+ [ (Pr(x) p2(&,5) — (€, 0")) (f)—zdeS
0Q JT+(b) on 2t
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1 Ovge, Oy
(0] LA
- /p+() g <ap o on © 2t2> a5
1 0vp e
+ D, — @) ——24dS.
/p+(t)( ko k) op Ovy

Since m = 2 and f'[”r(t) 1dS = 2rt?, we have

/BQ/F+ 8W(§)ﬁd5d5’—w/anbk(g,o”) aalf:(f)dS’.
From
Ys5(k,r, op,t) = (1/70p) /H(t) Bpoo, 3;r :fp dS — /862 By (£, o) 88%: (€)ds.
we get
5(k, 7, 0p,t)

3% ,

1 Ovg o,
— P, | — —E — ds
+ T /F‘*(t) K (O'p 81/1 8n (g) 2t2>
+1/ (® <I>)1avr’””dS—I(t)+I( t) + Is(0p, 1)
. k,op k o Gul = 13 4\0p, 5(0p,1).

We denoted three terms in the right hand side of Y5(k,r,0p,t) by I3(t),

Iy(0p,t), Is(0p, ).
From (7.65) we have

1
Iy(op, t f—/
monni= [

1 coap/ oYy
- d ds .
P E F+(t)l k()] (Ei%% \ o €3]

1 Ovpg, Oy 1
B (0_p o, on © ﬁ) ‘ d5

A

We conclude

lim I4(op,t) =0 for 0 <t <,

p—00
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1 1
Is(op,t g—/ B, — By — |22
OIS 2 [ 10, — il

1 1 |0v
<0t @)] sup |Pro,(x) — Pp(2)] [ sup — | =222
SO s (0, (2) — i) (s |5
1
ST sup [y, () ~ 04()

z€l+(t)

1 o Op oY,
. (ztz * mﬁ.) ;g%\ an )|
Thus we get
lim |Is(0p,t)] =0 for 0<tE= o,

[ 15(1)

/ / (DR(€ + sm(E), 1) pa(&, 5) — Dr(£,0"))
0Q JITt(t

Oy /
xS (g)ﬁdeS

(@6 + 5n€)1) pa(6,5) — Bu(6,) 7 (6)

IA
3|~

sup
£€0Q,(s,m) eF+(t)

/ / dS ds’
0Q JT+(t) 2
N,

(O -+ 5n(©)1) a(625) ~ Bu(6.) G (6).

= 2[0Q| sup
£€0Q,(sm)ETT (1)
This estimate yields |I3(t)| = O(t).
Summing up all the results for I3(t), [4(op, ), Is(0p, t), we conclude that
there exists a constant ¢ > 0 such that
lim |Y5(k,r, 0p,t)] < ct.
p—00
We verified the second part of (7.55) for j = 5. O

We put ¢ = 0, in (7.40) and divide it by \/7?02 and take limsup and
liminf for p — co. From Lemma 7.9 and Lemma 7.10, we get the following
relations.

(7.68) lim sup (“’"(U—)“’“) (B, ¥r) 1200

p—00 Op
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=V ([ aeon Greas))

0Pk, Dby .\
T2 [ GO G s

1
+ lim sup (ﬁ'ﬁ(l{:,r, op,t) — TT4(k,r, ap,t)> ,
™

p—00

(7.69) lim inf (M) Bk, ) r2(Q)

p—00 Op

v (] o) (e as')

Oy, Oy

T2 [ o5,

+ lim inf <\/7_T’I'5(k,r, op,t) — % Yalk,r, ap,t)> :
™

p—00

() ds’

The left hand sides of (7.68) and (7.69) are independent of ¢ > 0 and so we
can take ¢ — 0 in the right hand side in view of the condition (7.55) and we
conclude

Jm Ma@i)p_uk (Pr, ¥r)12(Q)
_ 1" Oy / aEI;k Oy '
~va ([ mteon G as) 1) [ FrO G s

It is rewritten as

(7.70) ((o) — ) /Q By i’

= Vo, ([l Gorie)as')

9%y, .. 0Py
_T(q’Q)O-p 20 an (5) an

(€)dS’ + o(o})

for k() Sk <k(j+1),r({") <r <r(”+1). To deduce the conclusion,
we consider (7.46) and (7.70). We recall the orthogonality condition (2.8)
and that

{(®, @) € LX(D) x L*(Q) | k(j) Sk <k(j+1)}
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span the same subspace as

{(¢4,0),(0,%¢) € L*(D) x L*(Q) | d(j') < d < d(j' + 1),
r(j") Sr<r(”+ 1)}

Hence, for each k (k(j) < k < k(j + 1)), at least one of the following two
conditions hold,
(i) There exists some d such that (®y, pa)r2(py # 0 and d(j') = d < d(j'+1

(4" +1),
(ii) There exists some r such that ((/Iskﬂ/fr)LQ(Q) # 0 and r(j”) < r <
)
Therefore, by the aid of (7.46) and (7.70), we conclude

(7.71) lim #ik(op) — pr

p—0oo Op

exists for k(j) < k < k(j + 1). We denote this value by ~4 (k). Simultane-
ously, we have

(772) (k) / By badz = /7 / Ok () bule, o) S’
for k(j) < k < k(j + 1), d(j') < d < d(j' +1).

(7.73) (k) / Bida’ = /7 / Bu(e af’“(@dS/

20 on ' on

- T(qv 2) (S)dsl

for k(j) Sk <k(j+1),r(f") sr<r(y”+1).
Substituting

Py, = > (Pr, ba)12(D) bas Pk = > (ke tq) r2(@) Vg

d(j’) £ d<d(5’+1) r(j") £ q<r(j"+1)

we get

(7.74) k) /D By bade

=V > (@1, %r)12(Q) 0 8%(5)%(5 o")ds’,

r(G") e+
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(7.75) (k) /Q By oy da’

oY, ,
=T > (Prs Gd) 12(D) /BQ $a(€,0") v (&) dsS

. 4 on
d(j") £ d<d(j’'+1)

- Moy, My
@2 Y @Gueo [ 2O 9 as

on
T(j//)§q<r(j//+1) BQ

Define d(j') x k(j) matrix E, 7(j"") x k(j) matrix F and k(j) x k(j) matrix
U by

E = ((¢a, (I”“)L“D))d(f)§d<d(j'+1>,k(j>§k<k<j+1> ’ <E>
F = ((%,‘i’k)L?(Q))

r(§") Sr<r(i 1) k() £ k<k(+1)
It is written in the following simple form.
( O VrC(j) ) I
V'C(j) —T(q.2) B(j)

Y5 (k(4))
Yo (k(4) +1)

Yo(k(j+1)—1)

This implies v5(k) = v4(k) for k € Nyyr for k(j) < k < k(j + 1) (See the
definition of v, (k) in §2). The choice of the sequence {(,};2; was arbitrary
and so we conclude

g =% ) — ).

which is the conclusion of Theorem 2.13.
7.3. Proof of Theorem 2.14 (m = 3)

We deal with the case m = 3 and k € Nj;;. We use the following scaled
eigenfunctions.

DEFINITION.
{ Opc(x) = S(m) 22 @y (x)  (z € QL))
®f (7)) = (Prc(a) (2 € Q(C))
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We start with the following estimates.
LEMMA 7.11. There exist c19 > 0 such that
[@rc(@)] S c1g(C—5)  (z= (€ +sn(&),n) € T7(( 1)),
[@rc(@)] S 19 (@ € BF(20)),
& < m/2 "
|Pr¢(2)] < e <C T |n|2)(m—1)/2)
(z € XF(t1) \ 2% (20)).

(7.76)

limsup sup |</Isk,<(x)|/c<oo,
¢—0 zeXt(2)

(7.77) limsup sup |Bye(x)|/C™? < oo (for any t>0),
(—0 zeD\S+(t)

limsup  sup @k((xﬂ/h(g')( < 0.
[ =0 wex-(Ch(0)0)

PrOOF OF LEMMA 7.11. (7.76) follows from Rem.4.6-(ii) and Rem.2.3-
(ii). Note m = 3. The first estimate of (7.77) follows from Rem.2.3-(iii) and
the definition of </I;k7<. The second and third estimates of (7.77) follow from
Rem.4.6-(ii). O

We can carry out a similar calculation as in 7.2. Putting ¥ = &S/d,g in
(2.2) for d(j') £ d < d(j' + 1), we have

(778) () — ue) / Bic fac de

D\ZH(20)
~ 8~
= _F”k(C) ‘I)k7§ ¢d,§ dr + / (I)kyC ({;bdaC ds
QIOUET(20) I'=(¢,2¢) vy
03
+ / By 209¢ 4
8(3(¢,20)US+(2¢)) v

- 96
Dy ¢ Agf)d,C dx + / Dy ¢ M ds.

_/E(<,2<>u2+(2o r+eo) 0 Ovs

Putting ¥ = Jn( in (2.2) for r(5”) = r < r(j”+1) and carry out integration
by parts in each region Q(¢) \ X7 (¢, h¢), X7(¢, hC) UXT(t), D\ X1 (t) and
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multiply it by S(m)/2¢"/2, we have

(7.79) (1 (C) — 1) /Q o s

Oy ¢ -
:g/ TR e dS + ¢ By,
v Ovs rche) O

+ ¢ 2131.374 = dS + C/ (/I\)k,f
T+ (1)

ny O
O(E~(GROUET W)\ (CAQUT (1)) o

- C/ O ¢ (Avp e + pr(C) vy o) da
%= (¢,hQ)

— 1k (¢) € / D¢ Uy da
QO\E~(¢hQ)

—¢ O (Avpe + pi(C) vy ) da.
St (1)

We first deal with evaluation of the terms of (7.79). For this purpose, we
need the following estimates.

LEMMA 7.12. There exists a constant cag > 0 and co1(t) > 0 such that

~  Ovu, m
/ Cre 5 € dS| < eplog €)™,
= (¢,h¢) V2

(7.80)
~  Ov
/ D¢ 8“ dS| < e (log ¢)*¢™
= (¢,h0) Y1

(7.81) / B e 29 48| < eon (1) cBm/D1,

T+ (1) o

~ O,

(7.82) / D¢ ﬂdS < e (™,

B (CROUSH (H)\(I~ (GOUTH (1)) O
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< c90 (log ¢)*¢™H,

/ EI\)k,C A'Ur,( dx
(G0

(7.83)
/ EI\)k,C Avr,( dx § C20 (tC(Sm/Q)—l + Cm—H),
()
o
(7.84) / 5 BC e dS| < e (t) CO™A,
r+() OV

PrOOF oF LEMMA 7.12. (7.80) follows from Lem.4.3-(ii)-(4.33) and
Lem.7.11-(7.77). (7.81) follows from Lem.7.11-(7.77) and Lem.4.3-(ii)-
(4.36). (7.82) follows from Lem.4.3-(ii)-(4.31) and Lem.7.11-(7.77). We
estimate the left hand side of (7.83). Using Lem.7.11, we have

/ (/I;kr,C Avr,g dx
(9]

< +00) [ g U IO i 5) ds s

< / B ()] | Avyc (2)| da
2= (¢R(€)C)

0
<9 h 1+ (1/0)e/¢Y ds dn dS’
< 2e19(C + h(O)C)es /8 ) / . /lnmm( T (1/0)e/S) ds dn
< ¢(log ¢)*¢"™ .

c is a positive constant which is independent of the parameters.

/ (/I;k:,c AUT}C dx
SH(t)

4 / B (2)] | Avyc (2)| de
TH()\XT(20)

< / Brc ()] |Avpc ()] da
2+(2¢)

< /z+(2¢) (c19€) (c2/¢) d

Cm o C(mfl)
+ / c (gm/2+ ) dx
S &+ )2 ) (2 + (22
gcl(§m+l+tg(3m/2)—1).

We used m = 3. ¢ is a positive constant which is independent of the
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parameters. From Lem.7.11,
1Pl oo (DAt 2y = O(C™?)
for any small ¢t >. Using elliptic estimates,
IV@iclz oy = OC™)

for any small ¢ > 0. (7.84) follows from this estimate and Lem.4.3-(ii)-
(4.37). O

LEMMA 7.13. Fork(j) Sk <k(j+1), (") Sr<r(y”+1), it holds
that

(7.86) / B1o0, U dz = S(m) / By, da’ o7 + o(o™),
Q(op) Q
(7.87) / By Vg, dT
Q(op)\X~ (op,h(op)op)
1 0Dy, Oy .,
S— S il A e m
" (g,m) S(m) oo o on P +o(0,"),
for p — oo.

PrROOF OF LEMMA 7.13. (7.86) follows from Prop.2.2-(2.6). Next we
prove (7.87). The proof is similar to the one in Lem.7.4.

(7.88) / @k,gp Vr.g, dT
Q(op)\E~ (op,h(op)op)

~

= / ((igk’gp — @) vy g, dx
Q(op)\E~ (op,h(op)op)

/ (T)k Vr,o, dT.
Q(op)\E~ (op,h(op)op)

Denote the two terms in the right hand side of (7.88) by Is(c), I7(0p). From
Lem.4.3 -(ii) -(4.32) and Prop.2.2, we have

(789)  |Ioloy)| < / B, — B(2)] [0rry ()|
Q(op)\X~ (0p,hap)
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< 2|Q(op)| sup [P, (x) — Dp(z)| = o(0]").
z€Q(0p)

Using the definition of v, ,, and A(I;k = —uk(/f)k in Q(op), we have

1

(7.90) Ir(op) = =~ AD, Ur,g,, di
Bk JQ(op)\E (op,hap)
P ~ 0 r,o
:_i &Ur,ap_ kh)dS
Bk Jr=(op,hoy) OV2 e
1 03, —10%, ~ :
T o, N G(=h(o ,—
Hk Fi(gpahgp) { 81/2 K1 8” (é)) < < p) o_p)
&\) 81)7«1010 dS
F 81/2
1 0%y, Oy~ .
N o G _h g y dS
K1 /p—(ap’hgp) vy On ()G (=h(op) Up)
~ 0 r,o.
+o By e g,
Hk ' (op,hop) 81/2

From Lem.4.3-(ii)-(4.33) and the Dirichlet B.C. of ®; on dQ, we have

sup [ @p(x)] £ h(op) 0 | V']l o)
z€l~ (op,h(op)op)
sup \(81},‘7% /O0vs)(x)| £ ca.

€'~ (op,h(op)op)

Due to these inequalities, the second term of the right hand side of (7.90)
is estimated as follows.

= 8 T,0
/ 3, 9rov 1s
P (oph(op)oy) 02

< S(m) o7 h(op) 0p|| V' B || L= () €2 = o(0™).

(7.91)

We deal with the first term of the right hand side of (7.90). By the aid of

G(s,m) — ka| = |G(s,n) — (—K1 8 + Ka)| < coe®
(s <0,|n] <1) (cf. Prop.2.7-(ii)),
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k(@) = (VB(E ~ hloy)oyn() m(6))

(z = (§ = hlop)opn(§),m) € T (op, h(op)ap)),

we calculate

1 8:15 0 r ~
o2) / 9%k 0 (¢ G
K1k JT=(0p,h(0p)op)

o
K1tk JoaqQ J|

o (G(=1(0y), Dypa€ —hoy) d dS'
1

K /aQ /W%W 1)(§ = hoyn()), n(€))

x 5 (&) k2 pa(&, —hoy) dn dS'
1

K1k /8Q /|77|<Up<(V/q)k)(£ - hO'p’n(g))’n(g»

L O

o (OC(h, 1) = k2)pa(6 ~hoy) dn S’
T(q,m)

Sty [ (VB©.n() GO ds'

HE 20
T(g,m) =
L[] (e ) (TR (@), i)

_l’_

~(VB(E). () T (€ dnds’
1

n

K1 b /8Q /|W|<Up<(v,q)k)(§ — h(ap)apn(g))’n(g»

oYy ~ /
< G (€ (G, ) Ra)pal, ~hoy) dndS
T(g,m) S(m) 0y, P,

- ds’ ol my.
Kk a0 on on %p +0(0p)

_l’_

Note h = h(op). Substituting (7.91) and (7.92) into (7.90) with (7.89), we
have (7.87). O
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Applying Lemma 7.12 and Lemma 7.13 to (7.79), we get

0%,
ag On On

(7.93) (ui(oy) — ue) /Q $inde’ = —T(q,m) 0, 45" + o{a)

for k(j) £ k < k(7 + 1), r(”) = r < r(§” +1). Here the orthogonality
condition in Proposition 2.2 implies

dim LH[(‘I)k(]), EI\)]C(])), (q)k(j)—i—l? EI;/{:(j)-Fl)a ((I)k(j)+27 </I;]“3(J')'~‘2)’
o (@ri+0) =15 Pri+1—1)],
=k(j+1) = k() =k() in L*D)x L*Q).
It follows that
dim L. H.[®4j), Priiyi1s Pr(yr2s > Prgin)—1)
=d(j +1) —d(j) =d(j) in L*(D),
dim L.H.[&)k(j), EI\)]g(jH-la (/I\)k:(j)+2> SR (/I\)k(j—l—l)—l]
=r(j"+1)—r(") =74") in L*Q),

because k(j) = d(j') + 7(j").
Now we can take a subset K C {k € N| k(j) = k < k(j + 1)} such that
4(K) = 7(j") and

LH[{® € L*(Q) | k € K} = LH[{¢, € Q) | r(j") £ r < r(j" + 1)}

Hence we see that, for any k € K, there exists r such that (@k, ¢T)L2(Q) #0,
r(j”) < r < r(3” 4+ 1). Therefore, due to (7.93), there exists the limit

phlgo(ﬂk(gp) —p)/op  (for k€ K).
Denoting this value by v/, (k) (k € K), we have,

Oy, Dp,

!
— K

(794) (k) /Q Bpda’ = ~T(q,m)
by (7.93). Using

O = > (®r, )2 q (k€ K)

") Sq<r(+1)
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we get
(7.95) Y (k) (P, ) 120
= —T(q,m) > (®k, %) 12(Q)

") Sg<r(+D)

g 0Py

— ds’
8Q on on

for k € K. Define the matrix U (invertible) by

U=</ sz@kdx') ,
Q r(§) Sr<r(j+1), ke K

we have

(7.96) —T(q.m)B(j)U

Y (q(F(5")))

where the numbers ¢(1) < ¢(2) < --- < ¢(r(j”)) are elements of K. This
matrix equation (7.96) implies that the values v/, (k) (k € K) agree to the
eigenvalues of —T'(q, m)B(j). As B(j) is a positive definite real symmetric
matrix, the sign of —v} (k) agrees to the sign of the real number T'(q, m).
Particularly, ~,,(k) # 0 (k € K) since T(g,m) # 0 (This is one of the
assumptions of Thm.2.14).

Next we deal with py(¢) for k € K’ where K’ is defined as

K,:{k(j)vk(j)"i_lv"' k(G+1) -1\ K.

LEMMA 7.14. ®p(x) =0 in D for k € K and @k/(z’) =0 in Q for
K e K'.

PROOF OF LEMMA 7.14. Assume k € K and |[®g[|z2(py > 0. Then
Prop.3.3 implies
pe(op) — e = O(a ).
Asm 2 3, (ur(op) — pu)/op — 0 for p — oco. This is contrary to ~.. (k) # 0.
Therefore ®;, = 0 in D for k € K. Hence, {®; | k € K} is orthonormal in
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L2(Q). From these properties combined with (2.9) and that {(0,®;) | k €
K} span the 7(j”) dimensional subspace, we conclude that & = 0 in @ for
KeK.O

We have established the following situation. That is, for k(j) < k <
k(G +1),

ke K < u(op) — = O(op”?),
|k (op) — i < 00

(7.97) ke K li}l;ri)sotip o) ;
. Op
lim sup Q.

— <
p—oo |1k (0p) — k]

So in this case (m = 3, resonant, T'(g,m) # 0), the order of smallness
of pp(op) — pu clearly depends on whether k € K or k € K'. As v/, (k) (for
k € K) have a common sign. We also see the following property of K and
K'. That is, if T'(gq, m) > 0, then

K= {k(])v k(ﬂ) +1, k(]) +2,.. 7k(]) +7/:(j”) - 1}7
K' ={k(j) +70G"), kG) +7(G") +1,... k(i +1) -1}

On the other hand,if T'(q,m) < 0,

K= {k(j), k() + 1, k(j) +2,...,k(5) + d(5") — 1},

K ={k(G)+d("), k(G) +d(G) +1,... k(j+1) — 1}.

Thus it has been proved that K and K’ are determined uniquely. That is,
K, K’ do not depend on the choice of {(,}52; (and {0},}72,), but they are
determined only by the sign of T'(q, m).

To investigate the detailed asymptotics of the resonant eigenvalues, we
need to know more properties of the behaviors of the eigenfunction @ ¢ for
k € K and k € K’, respectively.

LEMMA 7.15. For t > 0, there exists caa(t) > 0 such that, for any
k € K, it holds that

(7.98) [Pk oy | oo (D54 (1)) S €22(t) {7
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PrROOF OF LEMMA 7.15. First we prove
(7.99) nﬂsogp [(®rry s Ga) p2(y| /oS P 7 < o0

(for ke K, d(j") <d<d(j +1)).

We extend ¢g to be a C? function in R” (independent of ¢ > 0), which we
also denote by ¢4. Putting ¥ = ¢, in (2.2) and get

/ (V@ho,Voa — pr(op) Pro, ¢a) dv
D
+ / (Vs Vb — () P, ) it = 0
Q(C’p)
which leads to
(pr(op) — Mk)/ P o, Pa dr = /( )(V‘I’k,opvéf)d — p1k(0p) Pi,o, Pa) div.
D Q(op

Therefore we have

(7.100) |

—~

Pko,s Pd)12(D)l

HVQIC’JP HLQ(Q(UP)) Hv¢d‘lLQ(Q(ap))+“k(JP)Hq)k,crp HLQ(Q(UP)) H(deLQ(Q(O'p))
|Hk(‘7p)*ﬂk\ .

[IA

Using the following properties

lim w:’y’m(/@)#O for keK,
p—o0 op
IVall £2(@(oy)) = Olon?), Ipall 2o,y = O,

1/2
)

IV, | L2(Q(e)) = Hr(0p) [Pk, | L2( Qo)) = 1

in (7.100), we get (7.99). To prove (7.98), we assume that there exists a
subsequence {¢,}72 C {o,}72; and t € (0,%9) such that

(7.101) limsup sup |‘I’k,ep(y)|/6§,m/2)71200.
p—00 yeD\S+(t)

Define a function EI;;{;’C by

By o(2) = Ppc()/ ( sup !‘Dk,c(y)!) (z € Q(C)).

yeD\X* (1)
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Then we have sup,c p\si+(#) @kg(x)\ = 1. This is also an eigenfunction for

the eigenvalue py(¢). Using Lem.4.5, we have an estimate for E)k,g which
follows from Rem.4.6.

yED\XT(t1)

@k,c(x)’ < ¢ ( sup |&)k,4(y)|>

yeri(QtQ)

+ ¢7 < sup |‘T’k,c(y)|> ¢ (zeXT(20)),

yED\ZT (t1)

@k,c(x)’ =< ¢ ( sup |&)k,4(y)|>

~ Cm
+c7 sup P c(y
<yer(c,t2)| ot ”) 2+ )07

(x = (£+sn(€),n) € TF(t1) \ XT(2¢)) where c¢g > 0,¢7 > 0, t; > 0,12 > 0
are constants in Lem.4.5.

Here we assume 0 < ¢ < t; without loss of generality, because we can
replace t by ¢; if ¢ > ¢;. Remark that (7.101) still holds when t > 0 is
replaced by a smaller one. D\ ¥1(¢1) C D\ 1 (¢) implies

sup  [Prc(y)| S 1.
yED\ZH (1)

‘We have

SUPyer—(¢.ta) | P (V)] ¢m
supyep\s+ (1) [ Prc(y)] (52 + [n|?)m=D/2

i ()] £ c6 + er (x € =*(1)).

We use the estimate || ¢|| L)) = ™2 for k() £ k < k(j + 1) (cf.
Rem.2.3). ¢ is a positive constant which is independent of the parameters.
Put ¢ = ¢, in the above inequality and use (7.101) and we see that there

exists a constant ¢ > 0 such that

dep
ERTRICEE

(7.102) |, ()] < 6+ in X1,

Applying the regularity argument in the elliptic BVP (cf. Prop. 8.2) with
the estimate (7.102), we can show that there exists a subsequence {¢, } such
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that &Dk,ep, which approaches @, € C2(D) in C2(D \ ©*(k)) for any k > 0
with

A:}Ek—l—,uk d,=0 in D, 8&%/81/ =0 on 0D, sup |<T>k(y)| =1.
yeD\ZF(t)

From (7.102) we know that |&>k€p(as)| (p 2 1) is uniformly bounded by
an integrable function in D from (7.102) and so we apply the Lebesgue’s
convergence theorem and get

lim (‘ik,ep/>¢d)L2(D) = (D, $a) 12(D)-

p'—o0

However, from (7.99), (7.101), we have

(Pre,» ) L2(0) |

= (I@keyn 00) 2l /527 (€z(>m/2)_1/ sup "I”kﬁp@)’) o

z€D\SH (1)
for p — oo and we obtain
(Pry ba)r2(py =0 for d(j') <d < d(j’ +1).

This property is a contradiction, because i € {Wd}d(j/)§d<d(j'+1) and so

@, belongs to the linear hull of {#da}agy <d<d(j+1) and so @ = 0 in D

holds. This is contrary to supp\s+(;) |®x| = 1. The estimate (7.98) has
been verified. [

Next we look into the behavior of @ ¢ for k € K'.
LEMMA 7.16. There exists ca3 > 0 such that, for k' € K', it holds that
(7.103) O'pH(bk’,apHLoo(Q(ap) é C23,

(7.104) {”‘I’k’v%”LW(Duz(ap,zap)) < c3,

(1/h(0p) 1Pk 0, | Lo (5 (0 h(0p)op)) = C23-
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PROOF OF LEMMA 7.16. We will prove the estimates (7.103), (7.104)
with the aid of the following property (7.105). The orthogonality conditions
((I)k%C’ (I)k’,C)LQ(Q(C)) =0 (k? €K, S K,) yields

(7.105) / (I)k7g (I)k/7§ dr = —/ ‘I)k7c (I)k’,C dx (k e K, K e K/).
Q) D

For any k' € K’, put

Qg(k/) = sup [P ¢(x)| > 0.
z€Q(¢)

Take any subsequence {e,}>2; C {o,};2; such that

(7.106) lim o, (k") = oo.

p—0o0

If there is not such subsequence, (7.103) and (7.104) are trivially true and
there is nothing to prove. Here we put

By o (x) = Py () /0 (K)

and we have supg) ]&)klg(x)\ = 1. From Prop.8.1, there exists a subse-
quence {7,}72; C {€p},2; and ®*, € C2(Q) such that, for k' € K’

lim sup |y, (2, 2”) — B (a)] = 0,
P00 p=(a! ,2")€Q(7p)

(7.107) AP+ pup®, =0 in Q, =0 on 9Q,
lim sup |y, (x)] =0, sup @} (z')| = 1.
P—X 2D z’'eqQ

We used
14 e, 122(Dy = 19k, | 120y / 06, (K') < 1/ 06, (k) = 0 (p — 00)

(due to (7.106)). Since ®%, belongs to the linear hull of the orthonormal
system {®;}rer in L2(Q) (from (7.107)), we have

~Z'(ﬂ7/) = Z x (K, k?)‘i)k(iﬂl) (' € Q), where
keK

X(K k) = (B}, Pr) 2y (k € K).
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Here note that Y, x(K',k)? > 0. (7.105) gives
(7.108) > XK B)(®rr, Prr,) £2(0())
keK

= - Z XK' k) (g r, Prr 7)) 12( D) -
keK

First we denote the left hand side of (7.108) by I (k’, 7).

L, m) = X(k’,k)/ O By d

keK Q(mp)

e Qrp(k/) Z X(k/, k‘)/ (I)k:,Tp &Dk/,fpdx

keK Q(7p)
= 0n, () " XK, ) / S(m) V228, &y da
kek Q(7p)

= 0r, Y X(K,k)S(m) =27/
keK

y / (BeBys + (Br.r, — Bg) B+ B, (B, — D) )
Q(Tp)
Hence we have

B, 7) = o () Y XK RS0 2 [ B

keK Q@
= 0n, (K) S S(m) 127/ / b7 da
ik QUrp)\(@X B (7))
+0n, () Y X(K k)S(m) V20, m/2

keK
X / (((/I\)k,Tp - ZI;k) &)z/ + EI\)k,Tp (‘5k177p - ZIV)Z/)) dx
Q(7p)
and we get from (2.6), (7.107)

0(7p) = L1 (K1) /07, (K)7;% = S(m)' 2 Y~ X (K, k)* = 0 (p — o0)
keK

which implies

(7.109) or, (K72 = Li(K',7p) .
T S(m)Y2Y ek XK, k)2 4 6(7p)
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Denote the right hand side of (7.108) by I2(k’,7,). We use Rem.4.6 to esti-
mate Oy (k € K) and @ ¢ (K’ € K') by applying Rem.4.6 and Lem.7.15
and

< cg—m/Q’

(Q(0) = @4 cllLoo(Dr\2t (1)) = € (81)-

We have

|, ()] S g can(tr) o™+ ereo, ™2 (2 € £F(20,)),
m/2

C7COp
(52 + [n|?) (=172
(z € X7(1) \ 57 (20y)),

(@0, ()] £ c con(tr) oD +

for k € K and
(| ®p 0, (2)| < 6 (t1) + 7 00, (k) (—5 + 0p)
(33' € Z_(Upv h(O’p)),
[®pr 5, ()| S 6 (t1) + cr00,(K )0y (x € E7(20y)),

(7.110) (k/) -
Qo 9
) ! o S C C, t + c 2 p
\ (w S E*(tl)\2+(2ap)),
for ¥ € K'.

Here = (£ + sn(€),n) in X7 (0p, h(op)op) UXT(#1). Using these esti-
mates, we have, for k € K, k' € K’,

|@%pp¢wngaDﬂ§u/ (B, | [Br | da
D\X+ (1)

+/ B, | [P, | e
+(20p)

+/ B | [y |
EF(t)\XT(20p)

§/ ng(tl) (m/2) 1 cdx
D\X*(t1)
+/’ (o canltr) o0 4 ey cgl=tm2)
2+ (20p)

x (cgc (t1) + c7 Oo, (k') op) da
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m/2
C7COp
—I—/ cgcao(t1) +
S+ (t)\ S (20) ( senlh) oy |n|2><m—1>/2>

’ C?Qap(k/)o—;n
X <C66 (t1) + (ot [ m-D2 dx

< (1) (0§D + g, ).

As I1(K',1p) = I2(K', 7p) (i.e. (7.108)) and {7,} is a subsequence of {o,}, we
combine (7.109) and this inequality

Iy(K', )|
- (K72 = [Io(K', 7p
% p( )Tp S(m)1/2 ZkeK (K, k)2 + Q(Tp)
S 00" 4
SR ek X (K K) + 0(y)

We get
>oher ¢ (t) 1+ 07, 77)

T S G . + 007y

which leads to
limsup o, (k)7 < oo (K € K').

p—0oo

Since {e,} was an arbitrary subsequence of {0}, the above estimate implies

limsup og, (k")op, <00 (K € K)

p—0oo

which implies (7.103). (7.104) follows immediately from (7.103) and
(7.110). O

Recall EI\)ZC({E) = (Pp¢(z). Then, due to (7.77) and Lemma 7.16, we
have

(7.111) limsup sup |'/1\>}’;/U (r)| <0 (K€K,
p—0o0  zeQ(op) oy
(7.112) lim sup |0 (z)| =0 (K € K).
p_’OOxED P

About the behavior of ‘/13,";, o (x) in Q(op), we have the following result.
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LEMMA 7.17.  There exists a subsequence {€p}>°1 C {op}y2 and @Z, €
C?(Q) (k' € K') such that for k' € K’

(7.113) lim sup [Py (2',2") — @5, (2)] = 0,
P09 (a7 2" €Q(ep)
(7.114) AN+ pp®h =0 in Q, ®L =0 on Q.

Proor orF LEMMA 7.17. These results follow from the condition
(7.111) and Prop. 8.1. O

_ We use the equations (7.78) and (7.79) to deduce a relation between @y,
o7, (K € K'). Put ( = ¢, in (7.78) for ¥’ € K',d(j') = d < d(j'+ 1) and
use ®pr = e;lsz,ﬁp in (7.78) and we get

(7.115) (e (ep) — uk/)/ (I)k’,epgd,epd-r
D\SH(26p)

= (et / B By
Qep)\X (ep,2¢p)

= Mk'(ﬁp)/ q)k’,epgd,epdx
Y (ep,2€p)UET (2¢p)

a(gd,e
+/ Dpr e, £y 2dS
r (6P726P) 2

agd,ep

Dy
“r 8y1

s

v
(X~ (ep,2€p)ULT(2¢p))

- / (Dk’,epAgd,epdx
2 (ep,2€p)UTT (2¢p)

Oa,c
+ / Oy, Vi g,
I+ (2¢,) v

To evaluate both sides of this expression, we need several estimates.

LEMMA 7.18. There exists a constant coq > 0 such that

+1

(7.116) @k/,6p$d75p dz| < coy EZZ ,

/Z— (ep,2€p)UET(2¢p)
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(7.117) / D e, Adae, dz| < cog el
S (ep,2€p) ULt (2¢p)
Oa.c
(7.118) / (I)k’,ep& ds g C24 G;n,
r- (Ep72€1’)) 8V2
Opa,c
(7.119) / q>k,7€p& dS| < eas e,
A~ (ep,2€p)UTH(2¢p)) Oy
Oa.c
(7.120) / Oy, ey 4 < o el
I'+(2¢,) v
fork' € K'.

PrROOF OF LEMMA 7.18. (7.116)-(7.120) follow from Lem.4.3-(ii) and
Lem.7.16.

LEMMA 7.19. For k' € K' and d(j') £ d < d(j' + 1), it holds that

(7.121) / By o, bae,dr = / Py g da + o(1),
D\Z+(2¢p) D
(7.122) / O . Gae,dx
Q(ep)\ X~ (ep,2¢p)
1 oo, . .
= (_E)S(m) 20 on (5) ¢d(€7 0//) dS/ €p + O(ep )a
for p — .

PROOF OF LEMMA 7.19. (7.121) is clear from the definition of ad@
and Lem.7.16. We deal with (7.122).

/ 8o Gue, dv
Q(ep)\X (€p,2€p)

_ / B5 Bue, d + / @ — B1) du, do
Q(ep)\X™ (€p,2¢p) Q(ep)\X~ (€p,2¢p)
1 o~
= ( ) Aq)k/ ¢)d,6p d.T

Hi Q(ep)\X™ (€p,2¢p)

4 / @~ ®1) ey dr (= Di(e) + Bley).
Q(Ep)\27(5p72€p)
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In this calculation we used that &m is harmonic in Q(ep) \ X7 (€p, 2¢p). Due

to the property (7.113), we have

(7.123)  |La(ep)| =

sup \<I>k,

z€Q(ep)

I1(ep) is calculated as follows.

(7.124)  Iy(ep)

(7.125)

1
HE Jr- (ep,2€p)

- 0~
<<V®k/, V2> d’d,ep - q)k’a—yz¢d,5p> ds

1

Bk JT—(ep,2¢p)

1

bE Jr- (ep,2€p)

b

0%, ~
vy

(@) — D ()]

Q(ep)

~, 0 ~
§bd J€p (I)k/ a—V2¢d,ep> ds

<<<V'<f>*,><s = 9em(E)), n(6)) dule,o”)

Rk
—d7,

0 ~
87/2 ¢d,€p) dS

(V'®(€),n(€)) dal€, 0") dS

’uk F7(€I7725P)

1

(V'@}) (€ - 26,m(¢))

Bk JT=(ep,2¢p)

1
4+ —

— V'8, (€),n(€)) pal€, 0") dS

o,

Kk JT=(ep,2¢p)

1

0 ~
—@ge dS
Oy ¢d’ P

(V'®} (), 1(6)) pal€, ") dS + O(emth)

Bk JT=(ep,2¢p)

/ (V85 (), n(€)) pal€. o) dS
I'— 2€p

(ep,
“Je
_ /d )

Inl<ep

Inl<ep

acpz,

aqn;;,

€) ¢a(&,0") p2(&, —2€,) dndS’

() a(&,0") dndS’

|Pdc, | dx = o(€').
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0%, § o /
! /8Q /|n|<ep on (&) a(&,0") (p2(&, —2€p) — 1) dn dS

o®%,
= S(m) el —=
[ sme L

(€) ¢a(€, 0") dS" + O ™)
From (7.123), (7.124), (7.125), we get (7.122). O

Applying Lemma 7.18 and Lemma 7.19 we have
(7.126) (n(er) =) [ B Gada

oD%,

= S(m
m [

(&) pa(&,0")dS e+ o(e )

ford(j') < d <d(j’+ 1),k € K.
As {Pw brexr and {@q}q(jry < d<d(j+1) span the common subspace and
hence, for any k' € K’ there exists d with d(j') < d < d(j' + 1) and
(®wr, da)r2(py # 0. By using (7.126), we have the existence of the following

limit
i P (&) — pow

m—1
€p

(for k' € K').

p—00
By denoting this value by ., (k") for ¥’ € K', we have

oD,
Q 8’)’L

(7.127) 'y’m(k:/)/Dtbk/ ¢ddx:S(m)/a (&) pa(§,0") dS’

K eK' dj)<d<d(' +1) from (7.126).

On the other hand, substituting ®/ = (1/0&;2’@ into the first, second
and the last term of the right hand side of (7.79), we have the following
relation by a simple calculation.

(7.128)  (uelC) — ue) /Q o D

. ow, ~ v,
:/ by s dS+/ br S ds
= (C,h¢) vy = (C,h¢) on

+¢ D ¢
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+ / Oy D ds
DS (COUSHON - (GROUT+H(B) o OV

— C (I)k,f A’Ung dr — C:/ (I)k7cAUT7<dl‘
7 (GRE) (@)

0Py, ¢
5 e dS — up(C)C P ¢ vrcda
rHe) Ovs SHEUS (GRC)

— pr(€) / @,’;C Oy ¢ da.
QIONET(GhO)

In the above calculation, we used

3 vy
/ Bpe =L dS = / div(® Vo) do = / Vo, Vo, da
T+ (t) ¢ v D\S+(t) D\S+(t)

)
= / 9 s (e dS — ACI)]“C Up¢ dx
r+) Ovs D\s+ (1)

+<

0P
_ / k¢ Uy ¢ ds + Mk(C) / q)k7< (e dx.
r+@ Ovs D\S+ (1)

To evaluate the terms in (7.128) for ¢ = ¢,, we need the following esti-

mates.

LEMMA 7.20. There exists a constant co5 > 0 such that, for k' € K’,
we have the following estimates.

(7.129) @k/ o rdz| < cos ot
= a 7,0
Br o T 48| < eg5 (log o) >0,
F (op;h(op)op) g 81/2
(7.130)
o, vy dS| < c95 (log o) %0t
F (op,h(op)op) wan ayl : P 7
O o
(7.131) / . Yray 49
~(op,h(ap)op)UET(O)\(I'™ (op,h(0p)op)UT (1)) I
< x50,
(7.132) / Pit 6, AV, dx| = 25 (log ap)4agl+2,
S~ (op;h(op)op)
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4 _m—+2

(7.133) / Ppr o, Vrop, dx| = 25 (logop)” o))
= (op,h(op)op)

PrROOF OF LEMMA 7.20. (7.129) is obvious from Lem.7.16. (7.130)
follows from Lem.4.3-(ii) and Lem.7.17. (7.131) follows from Lem.4.3-(ii)-
(4.31) and Lem.7.16. We deal with (7.132). From (7.104) in Lem.7.16, we
note that

|Ppr o, ()] = ch(op) (2 € X7 (0p, h(op)op))

for some constant ¢ > 0. (7.132) is estimated as follows.
(I)k/ Op Avr Op dx

< / B | | Aty | d
~(op,h(op)op) B~ (op,h(op)op)

/ / chlop) ez (1+ (1/0p)e™7) pi(&, 5) ds dn dS’
0Q JE~ (op,h(op)op)

< 2ch(op) e 1/0,)e’/7) ds dn dS’
») P
oQ ~(op,h(op ‘710)

c h(O'p)2 m—+1

A

for some constant ¢’ > 0. This estimate leads to (7.132). (7.133) follows
from Lem.4.3-(ii)-(4.32) and Lem.7.16-(7.104). O

To estimate other terms in (7.128) we prepare the followings estimates.

LEMMA 7.21. We have

(7.134) Pjy e, Vre, d

/Q(%)\E(Epah(fp)ep)
_ T(qm)S(m) [ 0By 0,
N m oo On on

/I m m
dS" e, +o(e,").
There exists a constant cae > 0 such that the functions Y;(k,r,0p,t) (i =
6,7,8,9) defined by

Oy & 8’¢)
7.135 By —2 48 =8 / (€, 0" =L(€)dS o™t
w135) [ e m) [ @eie )G Eas's;

+ Tﬁ(k7 T, O0p, t)a
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T?(ka r,Op, t) = /
P
To(kry0p,t) = /
P
1

(7.137)  To(k,r, opt) = _/
Op JT+(t)

(I>k’,0'p Avr,ap dl‘7
()
(7.136)
Oy ¢ Vp g, d,
()
OBy,
31/3

Vpg, S

satisfy the property

Ti kv ) 7t .
(7.138) lim sup m—_?)‘ S et (i=6,7,8,9).
p—00 Op

PrROOF OF LEMMA 7.21. We can deal with (7.134) similarly as
Lem.6.4-(6.25). So we omit its proof. We calculate (7.135).

81)7"’5
/ cI)k’,Up 81/1p ds

*181/)1" ~, S N ~
/{)Q /F+ " vy (K,_l on (f)G(J—pa U_p)> p1(§,s5)dS dS

31% oG, s n ~ )
N /E)Q/F+ L on f)%(_ U—)pl(f, s)dS dndS

me Op Op
3% aG S ,
- Cfpm /aQ/p D (6,0 5 6) 5 (s ) 4SS
a¢r oG, s n - ,
- dyy oG .
apnl /BQ/H(t w(€0") 5 (&) 81/(% Op)(m(&, s) —1)dSdS

- opkl /8Q /1'““+(t (®r (& + sm(8)m) = (&, 07))
8¢r g (9G S ’17

awr 8G S n - ,
opk1 /8Q /ﬂ(t)(@k/,ap — ®pr) on (f)%(a—p U—p)pl(f7 5)dSdS

Note that @(E,?]) = G(s,n) for (s,n) € Hy. From Prop.8.5, we have

(7.139) /Tﬂt) (I)k/(fjoll) oy (€) E(i7 i)dg

on ov o, 0p
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= 1 S(m) o B (6, o) 7 (6)

Using the calculation (7.139) in the first term of the right hand side, we
have the relation (7.135) by putting

Te(k, rap,

= 6¢T 0G | s n - ,
%Hl /¢9Q/1“+ Cp(€,07) 5 ~(6) 5= (= =) (p1(€,5) — 1) dS dS

Up Op

B Opk1 /(9Q /f‘+ ((I)k:’ (E + S’I’L(f), 77) - q)k' (5’ O”))

x () T (5, L) pi(e, ) dS s’

Op Op
3% 8G S n ~ ,
(Ppr 5, — Ppr oL s 1N ‘
apml /3Q/F+ K op ) on 3 8y( )p1(€,8)dSdS

P
We estimate Yg(k,r, 0p, ).

|T6(k T, 0p,t |/0m 1

8 r 8G s
Op K1 JaQ JT+(1) v 0'p ap

* o oo o [ @) B,
‘awr Haa s

)| |p1(€,5) — 1| dS s’

Qgq!
LS )| p1(€, s)dS dS
1 0y G s n ~
by 5 — D — dsd
o W LT O ay%,, ) nlens) a5
From Prop.2.7 we have
G, s n s Ty oy
7.140 IZ 2 I < v.e) 2, | < _
( ) 8v(ap ap) = ’(V )(o'p op’| = (2 + |n2)m/? m

for z = (£ + sn(€),n) € T (t). Moreover there exists ¢ > 0 such that

p1(&,8) — 1] = et (z = (£ +sn(§),n) €TT(1)),
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|(I)k’ (& + Sn(§)7 77) - (I)k’ (57 0//)’

S VO | ooy (z = (£ + sn(£),n) e I (1)),
1/2 = p1(&:s) =2 (x = (£ +sn(f),n) € TT(1)).
We get

[To(k, 7, 0p, 1)l /o~

_‘th/"L/ | (€ Wawr %;d§ds’
8Q JT+(t

&b
+ VBl / / q
F+
1
+ — sup ’q)k’crp (I>k/ ‘/ /
K1 zer+(1) 0Q JTH(t)

Due to [T (¢)[/t™ = (1/2)(m + 1)S(m + 1) for ¢ > 0 and the property

lgfgdes'

3%

‘ngdeS’

lim sup [Qp 4, (z) — Py (2)] =0

P00 peT+(2)
we have

limsup |Ye(k,r, Upvt)‘/agl_l
p—0o0
ct(m+1)S(m+1

- 2K

2t
+ m_lnvq)k’HLOO(D)||VQ/JQHL°°(Q)|8Q|-

This concludes (7.138) for ¢ = 6. Next we deal with (7.136).

’T7(k7 T, Op, t)‘

< / B, || Aty |
(1)

Jmfl
< B o || oo ,/ “_JL__M+/ 2/ op)k
9% 0, Il (D)( S O\ 2y 2 (52 [P E+(20'p)< /o
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’T7('I€7 T, Op, t)‘

m—1
Op

< (o / C—2dx+/ ¢/o™)dx
S [P 0, oo (D) ( S (\E* (20, (52 + [1[2)72 Z+(2%)( /oy")

limsup |Y7(k,r, gp,t)\/af_l

p—00

C

< || o || 1o / —————dx =0(t
(7.138) for i = 7 is valid. We can deal with Yg(k,r, 0p,t) in (7.136) similarly.

Tg(k’,?", O'p,t) . L/ aq)k’,op
I+ (t)

m—1 - m
op op Ovs

00} op 1\ o0, S 1
= [ T (L) S et t) iy
T+ (t) V3 K1 n Op Op 0Op
0Py, 1\ o0y, s 7 1
= — | —— G(—,— dsS
/I‘+(t) 8V3 ( Hl) on (5) (O'p Op) O';,n_l

6(@;6/,%—(1),6/) 7i %
+/F+(t) 6y3 ( K,l) on (5)

aq)k’ 8¢r
o |0 49

(P 5, — Prr)
8V3

Vp,o, dS

1
K1

|T9(l€,7’,0’p,t)| S/
m—1 = T (1)

Op
+ .
I+(t)

lim sup Motk r, 0, ) <
p—00 O';)n_l TR

We get
IV @ | oo () Vgl Lo () ITF (£)] /87

for some constant ¢ > 0. Since [I'F ()| = O(t™), Yo(k,r,0p,t) satisfies the
condition (7.138) for i = 9. O

Applying Lemma 7.20 and Lemma 7.21 to (7.128), we have the following
relation

oYy

7.141
( ) aQ an

(&) Ry (8,0") dS oy
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0B;, I,
oQ on on

—T(g,m) ds’ U}’,” + Yio(k, 7, 0p,t) =0

such that limsup, . [T10(k,7,0p,t)|/0p" = O(t). Divide (7.141) by o
and consider the limit ¢ | 0. Eventually we can conclude that
limyo0 T10(k,7,0p,t) /0" = 0 for t > 0. Therefore we have the follow-
ing result (recall (7.127)).

LEMMA 7.22. Forke K',d(j') < d<d(’'+1), r(j") =r <r(j"+1),
we have

/ _ 8(/52 /! !
1192) ) [ Begude=Sm) [T oule, o as
Oy "o 0%
(7.143) oo I (§) x(§,0")dS" =T(q,m) 2o On on ds’.
Substitute
D = > (P, ¢d) 12(D) P

d(j") = d<d(j'+1)

into the above equation (7.142) and define the following matrices by

E= ((¢d7 @k)L2(D))d(j/) <d<d(j'+1),keK’’

F = T (/I;*
((w k>L2(Q)>T(]’//)§r<7‘(j//+1)7k€K/

gl vm — S(m)CG)F, 'C(j) E = T(g,m) B(j) F.
keK'’

Since B(j) is invertible, we have F' = (1/T(q,m)) B(j)~'C(j) E and get

A — (S(m)/T(q.m)) C(j) Bj)'C(j) E

keK’
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This implies that the values v, (k) (k € K') are the eigenvalues of the
matrix

(S(m)/T(q,m)) C(5) B(j)~" *C(j).
Therefore we conclude v/, (k) = ~,,(k) for k € K'.

If T(gq,m) >0, then K = {k(j),k(5) +1,--- ,k(j) +7(j") — 1} and
K'={k(j) +7(5"), k(5) +7(5") + L, k(j +1) — 1}.

~

If T(q,m) <0, then K’ = {k(j),k(j) + 1,- -+, k(j) +d(j’) — 1} and

K ={k(j) +d(5"), k(j) +d(j") + 1, k(G +1) = 1}.

The sets K and K’ and the ~,,(k) do not depend on the choice of
{Cp}p21- So we have the conclusion of Theorem 2.14.

88. Appendix

In this section we prepare several auxiliary results which are necessary
in the proofs of the main theorems in the paper.

8.1. Several results for convergence of eigenfunctions

First we recall the main results in Jimbo [26], which are concerned with
behaviors of solutions of elliptic equations (with Neumann B.C.) in ©(¢) for
¢ — 0. Let us consider the following elliptic equation in Q(¢) (¢ > 0),

(8.1) Au+ Ce(z)f(u) =0 in Q((), ou/dv =0 on 09Q(C),

where f = f(s) is a C! map from R into R and C¢, C, C are given functions
in Q(¢), D, Q, respectively such that

Cc € CYQ(), CecY D), CeciQ),
lim sup [C¢(z) — C(z)| =0, lim sup Ce(a!,2") — Cla')] = 0.
¢—04eD =0 2=(2’,2")€Q(()

For this equation we recall the following result.

PROPOSITION 8.1 ([26]). Assume that {(p},2 is a sequence of positive

values which converges to 0 for p — oo and uc, € C*(Q((p)) is a solution

of (8.1) for ( = (, with

(8.2) sup sup |ug,(7)| < +oo.
p=1z2€Q(lp)
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Then there exist a subsequence {op}o°; C {(p}o2; and w € C*(D) and
V € C*(Q) such that

Aw+C(z) flw)=0 in D, g—llj =0 on 0D,
AV + (3(:1:’) fV)y=0 in Q, V(@)=w('d) for 2'€dQ,

lim sup |ug, (z) — w(z)| =0, lim sup  |ug, (2, 2") =V (a")| = 0.
P—0 xeD P00 (1 2 eQ(op)

In this paper this result is frequently used in §3-§7. We use it for the
case of linear equation such that f(u) = u and C¢(x) = pi(¢). We also use
similar results for behaviors of eigenfunctions in particular local portion of
2(¢). We prepare some results for such purposes.

Let J be a regular manifold in R™ such that dim(J) £ n — 2 and
J C 0D. Define a set which is located around J as follows,

J(t) = {z € D | dist(z,7) < t.

In the proofs of the main results (§3-§7), we use the following results for the
case

J =0Q x {0"}

which is (£ — 1)-dimensional manifold. Note that £ —1 < n — 2. In this case
J C 0D and J(t) is equal to the set X7 ().

Let {Cp};i1 be a sequence of positive values which converges to 0 for p —
0o. Assume that (¢) is a constant depending on ¢ > 0 and lim;, o 1£(¢p) =
p. Let ue, € C?(D) satisfy the condition

(8.3) Aug, + (G)ue, =0 in D,
) du¢,/0v =0 on 8D\m’ (»=1).

Then we have the following result.

PROPOSITION 8.2. Assume

(8.4) sup/ ]u<p|2da: < 400 forany t>0.
p21JD\J(t)
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Then there exist a subsequence {o,}5% C {(p}o2) and w € C*(D\ J) such
that

Aw+pw=0 1in D, 8—w:O on 0D\ J,

(8.5) _ ov
plggo [te, = W2\ 70y =0 for any ¢>0.

SKETCH OF THE PROOF OF PROPOSITION 8.2. The proof is carried
out by the aid of the compactness due to Schauder estimates in Gilbarg-
Trudinger [22] and the Cantor’s diagonal argument. [J

We remark that w may have singularity on J. If we assume a stronger
condition in place of (8.4), we can prove that J is a removable singular set.

PROPOSITION 8.3. Assume

(8.6) sup/ (|Vu<p|2 + \uCplz) dr < +o0.
D

p=1
Then there exist a subsequence {op}p2) C {(p}p2; and w € C%*(D) with

(8.7) Aw+pw =0 in D, g—z}:O on 0D.

SKETCH OF THE PROOF OF PROPOSITION 8.3. Using Prop.8.2, we
have a subsequence {o,}72; and w € C?(D \ J) with the property (8.5).
From the condition (8.6) and the Rellich’s theorem, u,, weakly converges
to w in H'(D) and strongly converges to w in L?(D) for p — oo. Take
any t > 0 and an arbitrary ¥ € C?(D) which vanishes identically in J(¢).
Multiplying ¥ by the equation of (8.5) and carrying out partial integration,
we get

(8.9) /D (VWY — pw ) da = 0.

On the other hand, the set

{¥ € C*(D) | supp(¥) N J = 0}
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is dense in H'(D) as the codimension of 7 is equal or greater than 2 (cf.
Chavel-Feldman [9]). Therefore (8.8) holds for any ¥ € H'(D). This implies
that w is a classical solution of the equation means (8.7) (The regularly
theory of weak solutions of elliptic equations applies. See Mizohata [39]).
w satisfies the Neumann B.C. on the whole boundary 0D. [J

We can prove another type of removable singularity theorem.

PROPOSITION 8.4. Assume that w € C?(D \ J) satisfies the equation

0
(8.9) Aw+pw=0 in D, 8—7;):0 on 0D\ J,
with the condition
(8.10) sup |w(x)| < oo,

zeD

then w € C%(D) and Ow/0v =0 on OD.

PROOF OF PROPOSITION 8.4. Since J C 9D and dimJ < n — 2,
we can take two sequences of positive values {71(p)};2; , {m2(p)};2; and a
family of functions {¥,}>°; C C?(D) such that

0<7i(p) <mp) (p=1), lim 7 (p) =0, lim m(p) =0,

Up(z) =0 in J(n(p)),
¢p() =1 in D\ J(r2(p)),

lim [ |[V¥,[*dz=0.
D

p—00

0¥, <1 in D,

That is, J is (1,2)— polar set (or the capacity of 7 is zero. See Edmunds-
Evans [15], Chavel-Feldman [9] for this property.
Multiply the equation (8.9) by \Iff,w and integrate it on D and get

/ (VwV(\IJZw) — pw? \IJIQ,) dx =0,
D

/D(|Vw|2 \1112) + 2w ¥, VI,V — pw? \1’127) dx =0,
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/ |Vwl? \11127 dr = / (=2 (¥, Vw) (wVV,) + pw? \IJIQ)) dx
D D
< /[)((1/2) |Vw|? \1112) +2w? |V, |2 + pw? \1112,) dz,
From this inequality, we get a bound for [, |[Vw|? \IJZQ9 dx which is
/ Vw|? U2 do < / (4w VO, * + 2 | w? U2) da.
D D

The right hand side of the above inequality is bounded by a constant
which is independent of p > 1. Taking p — oo and we conclude w € H'(D).
Applying the arguments in Prop.8.2, Prop.8.3, we get the conclusion. [

8.2. Harmonic function in H

In this subsection we prove Proposition 2.7. First we prepare several
notation for the proofs. For the domain H = Hy U Hy C R™*! (cf. §2), we
define for R > 0,

Hi(R) ={(s,n) € Hi | s*+n> < R*},
Hy(R)={(s,n) € Hy| s > —R}

and put H(R) = Hi(R) U Ha(R). The boundary 0H(R) is divided into 3
parts,
OH(R) =Ti(R)UT,(R) UT5(R)

where each set is written as follows

Ty(R) = {(s,n) € H | s>+ n* = R?, 5 > 0},
Tr(R) = {(s,n) € H | s = =R},
T3(R) = {(s,n) € 0H | —R < s = 0}.

OUTLINE OF THE PROOF OF PROPOSITION 2.7-(i) (m = 1). For the
case m = 1, H is a domain in R?. To construct G, we apply the method
of conjugate harmonic function. We construct an approximate conjugate
harmonic function in H(R). As m = 1, T3(R) has two components T4 (R)
which can be written as follows,

TE(R) = {(s,n) € T3(R) | +n > 0}.
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Hy(R) H>(R)
N\ Hi(R)

Fig. 15. Hi(R)U H2(R) : Left m =1, Right m =2

Let ®r be the unique solution of the equation,

A,®=0 in H(R), ®=1 on T3 (R), ®=-1 on Ty (R),
D(s,m) = (20/7) ((s,m) = (Rcosd, Rsinf) € Ty (R), —m/2 < 0 < x/2),
@(_Ran) =7 ((_Ran) € T2(R)7 -1 § n é 1)
This is the Laplace equation with a given data on the boundary and so it
has the unique solution ®p(s,n). Note that ®r(s,n) is odd in n. Taking
the limit R — oo, we can argue the convergence of ®r and get the unique
limit ® which is a harmonic function with
_1§(I)§ 1, q)(sa_n):_q)(san) in H,
®=1onTy(0), ®=-1o0nT; (c0).

Let ¥ = ¥(s,n) be the conjugate harmonic function to ® = ®(s,n), that is,

0% /05 + OW /o = 0,

0% /0y — OV /95 — 0, H (Cauchy-Riemann equation).

This is derived from the condition that ¥(s,n) + ®(s,n) is holomorphic in
the variable z = s + ni. From this equation we obtain ¥ by

500, , ; ToP N oo
Vo) = [ G0~ [P i () € ),
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¥ is harmonic in H with the Neumann B.C. on H and it is even in the vari-
able n. We can also consider the expansion ®, ¥ in fundamental harmonic
functions in each region Hy; and H,. Taking into the boundary condition
and the behavior at infinity, we have the following expansions.

(i) (s,m) € H

(s, ) = (2/7)0 — Z ,stkQ
((s,n):(TCOSH,TsmH)€H1,723,s>0),

- 2k0

0 — (2/m) log T — K ) COS 28U

(o) = @/m)og7 W+ 3
((s,n) = (rcosB,Tsinf) € Hy,7 = 3,s > 0),

(ii) (s,m) € Hy

O(s,m) =n+ Y _ cpsin(kmn) exp(krs) ((s,n) € H, s < ~2),
k=1

o
U(s,n) =s—Kk+ ch cos(kmn) exp(kmws) ((s,m) € H, s £ =2).
k=1
Putting G = — W, we can prove the desired properties in the conclusion of
Proposition 2.7-(i).

OUTLINE OF THE PROOF OF PROPOSITION 2.7-(ii) (m = 2).
We make use of the method of an upper-lower solution pair to construct
a desired harmonic function G in H. First, we consider the following equa-
tions,
A,N=0 in H(2),
(8.11) N=1 on T52), N=0 on Ti(2),
ON/On =0 on T3(2)
where 1 is the unit outward vector on 0H(2).
It is easy to see that (8.11) has a unique (smooth) solution N(z) and
from the maximum principle that there exist 63 = 6; > 0 such that
- 62 § 8N/8ﬁ é —51 on Tl(Q),

(8.12) /
61 é 8N/8n § 52 on T3(2)
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Define two positive functions ¥*(z) as follows

;

T for ze Hy\ H(2),
UF(2) = { 2N (2) + s for ze€ H(2),
\7(7;”—7512)51(3—%2)4—%—#27%1 for ze€ Hy\ H(2),
(M% for ze Hy\ H(2),
U™ (2) = § B3 N(2) + g for ze H(2),
4;@—%@4—2)4—%4—# for ze€ Hy\ H(2).

We easily see that U~ and W' are a sub-harmonic function and a super-
harmonic function (with Neumann B.C. on 0H) with the property

(8.13) 0< U (2) < ((62/81)* +1) Ut (2) in H.

By applying the comparison existence theorem to the lower-solution ¥~ and
the upper-solution (63/61)?¥*(z), we get a harmonic function ¥(z) between
these functions. That is,

(8.14)

U (2) S () € (5o/61)° + 1) UH() i,
A, =0 in H, o¥V/On=0 on OH.

From the inequality in (8.14), we have the decay estimate at oo in H; and
grow estimate of ¥(z) at co in Hy is verified. That is

U(z)=0(1/|z|™ ) at |z|/=o0c0 in Hy,
U(z)/|z|=0(1) at |z|=00 in Ha.

We consider more elaborate behavior of ¥(z) at co. We use Fourier’s method
to express ¥ by the fundamental harmonic functions in H;. With the aid
of the polar coordinate (7,0) (z is expressed as i.e. z=76, 7 >0, 0 € S™),
we can consider those solutions in the form of W (#).J(7). Making the linear
combination of such solutions, we can express ¥ in the form of infinite series

oo (k)
(8.15) U(2) =Y ny Wip(0) 7™

k=0 p=1
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in Hy. Here Wy, (k2 0,1 < p < (k)) are complete system of eigenfunc-
tions of the following eigenvalue problem,
ASrn¢+Agb:0 in S_T,

(8.16)
0¢/0v =0 on 0SY (Neumann B.C.)

where Agm is the standard Laplace-Beltrami operator in S™ and S is the
half sphere which is defined as

ST ={(s,n) eR™ |2+ n? =1, s >0}

It is known that (8.16) has the eigenvalues Ay = k(k —1+m) (k =2 0)
with its multiplicity ¢(k). From the smoothness of ¥, the infinite series is
convergent in sufficiently strong topology. On the other hand, we study the
behavior of of ¥ in Hy. Hs \ H(2) is a cylinder region and so we also use
Fourier’s method to to expand V¥ in the fundamental harmonic functions.
We consider the a solution of Laplace equation in the form of J(s)W(n) and
make the linear combination, we have

oo (k)
(8.17) U(z)=—Kis+Ka+ D Y, exp (\/ A 8) Plep(1)

k=1 p=1
(z=(s,n) € Hy).
We took account of the behavior of U at co. Here
{MpplB20,1=p=d(R)} {dr,(n) [ k20,1=p=d(k)}
are the eigenvalues and their corresponding eigenfunctions of
(8.18) A,¢' +AN¢' =0 in B™(1), 9 /ov=0 on IBM™(1).

Note that the first eigenvalue of (8.18) A{j = 0 while other ones are all
positive. The infinite series in (8.17) is convergent in sufficiently strong
topology. By putting ¥ = G, we can prove the properties of Prop.2.7-(ii)
with the aid of this expression. [

PROPOSITION 8.5. Form = 2, the solution G of (2.14) in Proposition
2.7-(ii) satisfies

(8.19) / 9C 15— _kyS(m) (R23),
T1(R) v
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where U(s,1) = (s,1)/(s> + In*)!/2.

PROOF OF PROPOSITION 8.5. By integrating the equation A,G = 0
in the set Hi(R) U Ha(7), we get

0G ~ / oG
9748 = T2~ ) dn.
/Tl(R) ov Inl<1 38( )

Using that (0G/s)(—7,n) converges to —k; uniformly in n € B(™ (1) for
T — 00, we get (8.19). O
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