The Maximal Number of Singular Points on Log del Pezzo Surfaces

By Grigory Belousov

Abstract. We prove that a del Pezzo surface with Picard number one has at most four singular points.

1. Intoduction

A log del Pezzo surface is a projective algebraic surface X with only quotient singularities and ample anticanonical divisor $-K_X$.

Del Pezzo surfaces naturally appear in the log minimal model program (see, e. g., [7]). The most interesting class of del Pezzo surfaces is the class of surfaces with Picard number 1. It is known that a log del Pezzo surface of Picard number one has at most five singular points (see [8]). In [1] the author proved there is no log del Pezzo surfaces of Picard number one with five singular points. In this paper we give another, simpler proof.

Theorem 1.1. Let X be a log del Pezzo surface and Picard number is 1. Then X has at most four singular points.

Recall that a normal complex projective surface is called a rational homology projective plane if it has the same Betti numbers as the projective plane \mathbb{P}^2 . J. Kollár [9] posed the problem to classify rational homology \mathbb{P}^2 's with quotient singularities having five singular points. In [4] this problem is solved for the case of numerically effective K_X . Our main theorem solves Kollár's problem in the case where $-K_X$ is ample.

The author is grateful to Professor Y. G. Prokhorov for suggesting this problem and for his help. The author also would like to thank the referee for useful comments.

²⁰⁰⁰ Mathematics Subject Classification. 14J26, 14J45, 14J50. The work was partially supported by grant N.Sh.-1987.2008.1.

2. Preliminary Results

We work over complex number field \mathbb{C} . We employ the following notation:

- (-n)-curve is a smooth rational curve with self intersection number -n.
- K_X : the canonical divisor on X.
- $\rho(X)$: the Picard number of X.

THEOREM 2.1 (see [8, Corollary 9.2]). Let X be a rational surface with log terminal singularities and $\rho(X) = 1$. Then

$$\sum_{P \in X} \frac{m_P - 1}{m_P} \le 3,$$

where m_P is the order of the local fundamental group $\pi_1(U_P - \{P\})$ (U_P is a sufficiently small neighborhood of P).

So, every rational surface X with log terminal singularities and Picard number one has at most six singular points. Assume that X has exactly six singular points. Then by (*) all singularities are Du Val. This contradicts the classification of del Pezzo surfaces with Du Val singularities (see, e. g., [3], [10]).

2.2. Thus to prove Theorem 1.1 it is sufficient to show that there is no log del Pezzo surfaces with five singular points and Picard number one. Assume the contrary: there is log del Pezzo surfaces with five singular points and Picard number one. Let $P_1, \ldots, P_5 \in X$ be singular points and $U_{P_i} \ni P_i$ small analytic neighborhood. By Theorem 2.1 the collection of orders of groups $\pi_1(U_{P_1} - P_1), \ldots, \pi_1(U_{P_5} - P_5)$ up to permutations is one of the following:

2.2.1.
$$(2,2,3,3,3), (2,2,2,4,4), (2,2,2,3,n'), n'=3,4,5,6,$$

2.2.2.
$$(2,2,2,2,n'), n' \ge 2.$$

- REMARK 2.3. According to the classification of del Pezzo surfaces with Du Val singularities we may assume that there is a non-Du Val singular point. The case 2.2.1 is discussed in [4, Remark 4.2 and Section 6]. Thus it is sufficient to consider case 2.2.2.
- **2.4.** Notation and assumptions. Let X be a del Pezzo surface with log terminal singularities and Picard number $\rho(X)=1$. We assume that we are in case 2.2.2, i. e. the singular locus of X consists of four points P_1, P_2, P_3, P_4 of type A_1 and one non Du Val singular point P_5 with $|\pi_1(U_{P_5}-P_5)|=n'\geq 3$. Let $\pi\colon \bar{X}\to X$ be the minimal resolution and let $D=\sum_{i=1}^n D_i$ be the reduced exceptional divisor, where the D_i are irreducible components. Then there exists a uniquely defined effective \mathbb{Q} -divisor $D^{\sharp}=\sum_{i=1}^n \alpha_i D_i$ such that $\pi^*(K_X)\equiv D^{\sharp}+K_{\bar{X}}$.
- LEMMA 2.5 (see, e. g., [13, Lemma 1.5]). Under the condition of 2.4, let $\Phi \colon \bar{X} \to \mathbb{P}^1$ be a generically \mathbb{P}^1 -fibration. Let m be the number of irreducible components of D not contained in any fiber of Φ and let d_f be the number of (-1)-curves contained in a fiber f. Then
 - (1) $m = 1 + \sum_{f} (d_f 1)$, where f run only over the fibres with $d_f \ge 1$.
 - (2) If $d_f = 1$ and E is the only (-1)-curve in f, then its coefficient in f is at least two.

The following lemma is a consequence of the Cone Theorem.

LEMMA 2.6 (see, e. g., [13, Lemma 1.3]). Under the condition of 2.4, every curve on \bar{X} with negative selfintersection number is either (-1)-curve or a component of D.

DEFINITION 2.7. Let (Y, D) be a projective log surface. (Y, D) is called the weak log del Pezzo surface if the pair (Y, D) is klt and the divisor $-(K_Y + D)$ is nef and big.

For example, in the above notation, (\bar{X}, D^{\sharp}) is a weak del Pezzo surface. Note that if (Y, D) is a weak log del Pezzo surface with $\rho(Y) = 1$ then divisor $-(K_Y + D) = A$ is ample and Y has only log terminal singularities. Hence, Y is a log del Pezzo surface.

LEMMA 2.8 (see, e. g., [1, Lemma 2.9]). Suppose (Y, D) is a weak log del Pezzo surface. Let $f: Y \to Y'$ be a birational contraction. Then $(Y', D' = f_*D)$ is also a weak log del Pezzo surface.

3. Proof of the Main Theorem: The Case where X has Cyclic Quotient Singularities

In this section we assume that X has only cyclic quotient singularities. The following lemma is very similar to that in [5]. For the convenience of the reader we give a complete proof.

LEMMA 3.1. Under the condition of 2.4, suppose that P_5 is a cyclic quotient singularity. Then there exists a generically \mathbb{P}^1 -fibration $\Phi: \bar{X} \to \mathbb{P}^1$ such that $f \cdot D \leq 2$, where f is a fiber of Φ .

PROOF. Let $\nu: \hat{X} \to X$ be the minimal resolution of the non Du Val singularity and let $E = \sum E_i$ be the exceptional divisor. By [12, Corollary 1.3] or [8, Lemma 10.4] we have $|-K_X| \neq \emptyset$. Take $B \in |-K_X|$. Then we can write

$$K_{\hat{X}} + \hat{B} = \nu^* (K_X + B) \sim 0,$$

where \hat{B} is an effective integral divisor. We obviously have $\hat{B} \geq E$.

Run the MMP on \hat{X} . We obtain a birational morphism $\phi: \hat{X} \to \tilde{X}$ such that \tilde{X} has only Du Val singularities and either $\rho(\tilde{X}) = 2$ and there is a generically \mathbb{P}^1 -fibration $\psi: \tilde{X} \to \mathbb{P}^1$ or $\rho(\tilde{X}) = 1$. Moreover, ϕ is a composition

$$\hat{X} = X_1 \xrightarrow{\phi_1} X_2 \xrightarrow{\phi_2} \dots \xrightarrow{\phi_n} X_{n+1} = \tilde{X},$$

where ϕ_i is a weighted blowup of a smooth point of X_{i+1} with weights $(1, n_i)$ (see [11]).

Assume that $\rho(\tilde{X}) = 1$, then every singular point on \tilde{X} is of type A_1 . By the classification of del Pezzo surfaces with Du Val singularities and Picard number one (see, e. g., [3], [10]) we have $\tilde{X} = \mathbb{P}^2$ or $\tilde{X} = \mathbb{P}(1, 1, 2)$.

Assume that $\rho(\tilde{X}) = 1$ and $\tilde{X} = \mathbb{P}(1,1,2)$. Note that ϕ contracts $\rho(\hat{X}) - 1 = \#E$ curves, where #E number of irreducible component of E. Since $\phi_*(\hat{B})$ has at most two components and $\hat{B} \geq E$, we see that ϕ contracts at most two curves K_1 and K_2 that are not components of E.

Since X has four singular points of type A_1 , we see that \tilde{X} has at least two singular points, a contradiction.

Assume that $\rho(\tilde{X}) = 1$ and $\tilde{X} = \mathbb{P}^2$. Since $\phi_*(\hat{B})$ has at most three components, as above, we see that ϕ contracts at most three curves K_1 , K_2 and K_3 that are not components of E. Since X has four singular points of type A_1 , we see that \tilde{X} has at least one singular point, a contradiction.

Therefore, $\rho(\tilde{X}) = 2$ and there is a generically \mathbb{P}^1 -fibration $\psi : \tilde{X} \to \mathbb{P}^1$. Let $g : \bar{X} \to \hat{X}$ be the minimal resolution of \hat{X} . Let $\Phi' = \psi \circ \phi$ and let f' be a fiber of Φ' . Then $f' \cdot E \leq f' \cdot \hat{B} = -K_{\hat{X}} \cdot f' = 2$. Set $\Phi = \Phi' \circ g$. \square

- **3.2.** Let f be a fiber of Φ . By Lemma 3.1 we have the following cases:
- **3.2.1.** f meets exactly one irreducible component D_0 of D and $f \cdot D_0 = 1$. Let L be a singular fiber of Φ . By Lemma 2.5 (1) the fiber L contains exactly one (-1)-curve F. By Lemma 2.5 (2) F does not meet D_0 . Then F meets at most two components of D. Blowup one of the intersection points of F and D. We obtain a surface Y. Let $h: Y \to Y'$ be a contraction of all curves with selfintersection number at most -2. Note that Y' has only log terminal singularities but not of type 2.2.2, a contradiction.
- **3.2.2.** f meets exactly two irreducible components D_1 , D_2 of D and $D_1 \cdot f = D_2 \cdot f = 1$.

By Lemma 2.5 (1) there exists a unique singular fiber L such that L has two (-1)-curves F_1 and F_2 . Note that one of these curves, say F_1 , meets D at one or two points. Blowup one the intersection points of F_1 and D. We obtain a surface Y. Let $h: Y \to Y'$ be a contraction of all curves with selfintersection number at most -2. Note that Y' has only log terminal singularities but not of type 2.2.2, a contradiction.

3.2.3. f meets exactly one irreducible component D_0 of D and $f \cdot D_0 = 2$. Let A be a connected component of D containing D_0 .

By Lemma 2.5 (1) every singular fiber of Φ contains exactly one (-1)-curve. Note that every singular fiber of Φ either contains two connected components of $A - D_0$ or the coefficient of a unique (-1)-curve in this fiber is equal to two. If a singular fiber L contains exactly one (-1)-curve with coefficient two, then the dual graph of L is the following:

$$(**) \qquad \qquad \stackrel{-2}{\circ} \stackrel{-1}{-} \stackrel{-2}{\circ}$$

Since X has five singular points with orders of local fundamental groups (2,2,2,2,n), we see that Φ has two singular fibers L_1 , L_2 of type (**) and possibly one more singular fiber L_3 . Note that L_3 contains both connected component of $A - D_0$. Let $\mu : \bar{X} \to \mathbb{F}_n$ be the contraction of all (-1)-curves in fibers of Φ , where \mathbb{F}_n is the Hirzebruch surface of degree n (rational ruled surface) and n = 0, 1. Denote $\tilde{D_0} := \mu_* D_0$. Note that $\tilde{D_0} \sim 2M + kf$, where $M^2 = -n$ and $M \cdot f = 1$. Since we contract at most five curves that meet D_0 , and $D_0^2 \le -2$, we see that $0 < \tilde{D_0}^2 \le 3$. Hence, $0 < -4n + 4k \le 3$. This is impossible, a contradiction.

4. Proof of the Main Theorem: The Case where *X* has a Non-Cyclic Quotient Singularity

Under the condition of 2.4, assume X has a non-cyclic singular point, say P. Then there is a unique component D_0 of D such that $D_0 \cdot (D - D_0) = 3$ (see [2]).

LEMMA 4.1. There is a generically \mathbb{P}^1 -fibration $\Phi : \bar{X} \to \mathbb{P}^1$ such that Φ has a unique section D_0 in D and $D_0 \cdot f \leq 3$, where f is a fiber of Φ .

PROOF. Recall that P is not Du Val. Let $h: \bar{X} \to \hat{X}$ be a contraction of all curves in D except D_0 . Let $\hat{D_0} = h_*(D_0)$ then \hat{X} has seven singular points, $\rho(\hat{X}) = 2$ and there is $\nu: \hat{X} \to X$ such that $K_{\hat{X}} + a\hat{D_0} = \nu^*K_X$. Note that (\hat{X}, aD_0) is a weak log del Pezzo. Let R be the extremal rational curve different from \hat{D} . Let $\phi: \hat{X} \to \tilde{X}$ be the contraction of R.

4.2. There are two cases:

4.2.1. $\rho(\tilde{X}) = 1$. Then, by Lemma 2.8, \tilde{X} is a del Pezzo surface. If the number of singular points of \hat{X} on R is at most two, \tilde{X} has at least five singular points and all points are cyclic quotients. Thus assume that there is at least three singular points of \hat{X} on R, say P_1 , P_2 , P_3 . Let $R_1 = \sum_i R_{1i}$, $R_2 = \sum_i R_{2i}$ and $R_3 = \sum_i R_{3i}$ be the exceptional divisors on \bar{X} over P_1 , P_2 and P_3 , respectively. Let \bar{R} is the proper transformation of R on \bar{X} . Since \bar{R} is not component of D, we see that $\bar{R}^2 \geq -1$. Indeed, this follows from Lemma 2.6. Note that matrix of intersection of component $\bar{R} + R_1 + R_2 + R_3$ is not negative definite. Hence, $\bar{R} + E_1 + E_2 + E_3$ can not be contracted, a contradiction.

4.2.2. $\tilde{X} = \mathbb{P}^1$. Let $g : \bar{X} \to \hat{X}$ be the resolution of singularities. Then $\Phi = \phi \circ g : \bar{X} \to \mathbb{P}^1$. Note that there is a unique horizontal curve D_0 in D. Let f be a fiber of Φ . Denote coefficient of D_0 in D^{\sharp} by α . Then

$$0 > (K_{\bar{X}} + D^{\sharp}) \cdot f = -2 + \alpha (D_0 \cdot f).$$

Hence, $D_0 \cdot f < \frac{2}{\alpha}$. Since P is not Du Val, we see that $\alpha \geq \frac{1}{2}$. Hence, $D_0 \cdot f \leq 3$. \square

By Lemma 2.5 (1) every singular fiber of Φ contains exactly one (-1)-curve. Let B be the exceptional divisor corresponding to the non-cyclic singular point. Note that B contains D_0 .

- **4.3.** Consider the following three cases.
- **4.3.1.** $D_0 \cdot f = 1$. Then every singular fiber of Φ contains exactly one connected component of $B D_0$. On the other hand, $B D_0$ contains three connected components. Hence X has at most four singular points, a contradiction.
- **4.3.2.** $D_0 \cdot f = 2$. Let F_1 , F_2 , F_3 be a connected components of $B D_0$. We may assume F_1 is (-2)-curve (see [2]). Let L_1 be a singular fiber of Φ . Assume that L_1 contains F_1 . Then L_1 is of type (**) and L_1 contain F_2 . Hence, F_2 is a (-2)-curve. Let L_2 be a singular fiber of Φ . Assume that L_2 contains F_3 and let E be a unique (-1)-curve in L_2 . By blowing up the intersection point of E and E_3 , we obtain a surface E_3 . Let E_3 be a contraction of all curves with selfintersection number at most E_3 . Note that E_3 has only log terminal singularities but not of type 2.2.2, a contradiction.
- **4.3.3.** $D_0 \cdot f = 3$. Since every component of D B is a (-2)-curve, we see that every singular fiber of Φ contains a connected component of $B D_0$. Note that $B D_0$ contains three connected components. Hence X has at most four singular points, a contradiction.

This completes the proof of Theorem 1.1.

References

- [1] Belousov, G. N., Del Pezzo surfaces with log terminal singularities, Mat. Zametki 83 (2008), no. 2, 170–180 (Russian), English translation Math. Notes. 83 (2008), no. 2, 152–161.
- [2] Brieskorn, E., Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1968), 336–358.
- [3] Furushima, M., Singular del Pezzo surfaces and analytic compactifications of 3-dimensional complex affine space C^3 , Nagoya Math. J. **104** (1986), 1–28.
- [4] Hwang, D. and J. Keum, The maximum number of singular points on rational homology projective planes, arXiv:math.AG/0801.3021, to appear in J. Algebraic Geometry.
- [5] Hacking, P. and Yu. Prokhorov, Smoothable del Pezzo surfaces with quotient singularities, arXiv:math.AG/0808.1550, to appear in Compositio Math.
- [6] Kawamata, Y., Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces, Ann. of Math. **127** (1988), 93–163.
- [7] Kawamata, Y., Matsuda, K. amd J. Matsuki, Introduction to the minimal model program, Adv. Stud. Pure Math. 10 (1987), 283–360.
- [8] Keel, S. and J. McKernan, Rational curves on quasi-projective surfaces, Memoirs AMS 140 (1999), no. 669.
- [9] Kollar, J., Is there a topological Bogomolov-Miyaoka-Yau inequality?, Pure and Applied Math. Quarterly 4 No. 2 (2008), 203–236.
- [10] Miyanishi, M. and D.-Q. Zhang, Gorenstein log del Pezzo surfaces of rank one, J. Algebra. 118 (1988), 63–84.
- [11] Morrison, D., The Birational Geometry of Surfaces with Rational Double Points, Math. Ann. **271** (1985), 415–438.
- [12] Prokhorov, Yu. G. and A. B. Verevkin, The RiemannRoch theorem on surfaces with log terminal singularities, J. Math. Sci. (N. Y.) **140** (2007), no. 2, 200–205.
- [13] Zhang, D.-Q., Logarithmic del Pezzo surfaces of rank one with contractible boundaries, Osaka J. Math. **25** (1988), 461–497.

(Received November 2, 2008)

Department of Higher Algebra
Faculty of Mechanics and Mathematics
Lomonosov Moscow State University
Vorob'evy Gory, Main Building
MSU, Moscow 119899, Russia
E-mail: belousov_grigory@mail.ru