J. Math. Sci. Univ. Tokyo
16 (2009), 199-230.

The Product Formula for Local Constants in

Torsion Rings

By Seidai YASUDA

Abstract. Let p be a rational prime and K a local field of residue
characteristic p. In this paper, we prove the product formula for local
eo-constants defined in [Y1].

1. Introduction

This paper is a continuation of the author’s article [Y1]. Let K be a com-
plete discrete valuation field whose residue field k is finite of characteristic
p (such a field will be called a p-local field). Let g denote the cardinal-
ity of k. Let Wg be the Weil group of K. In [Y1], we defined the local
constants g r(V,v¢) € R*, generalizing Deligne’s eo(V, 9, dz), for triples
(R, (p, V), ) where R is a strict p'-coefficient ring (cf. loc. cit.), (p, V) is an
object in Rep(Wk, R), and ¢ : K — R* is a non-trivial continuous additive
character.

In this paper we will concentrate on the case where char K’ = p. When
Ry is the ring of integers of a finite extension of QQ; for a prime £ # p, the
product formula of Deligne-Laumon describes the determinant of Frobenius
on the etale cohomologies of a smooth Rg-sheaf on a curve over k as a prod-
uct of local gp-constants. In this paper, we generalize the product formula
to the case where Ry is a pro-finite p’-coefficient ring, giving evidence that
our construction provides a good theory of local gp-constants.

Let us briefly review the contents of this paper. After recalling in § 3
some basic facts necessary in this paper, we give, in § 4, the statement of
the product formula which is the main result of this paper. The next four
sections are devoted to the proof of the product formula. In § 9, we give an
application of our product formula to Saito’s theorem in [Sal].
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2. Notation

Let Z, Q, R, and C denote the ring of rational integers, the field of
rational numbers, the field of real numbers, and the field of complex numbers
respectively.

Let Zsq (resp. Z>p) be the ordered set of positive (resp. non-negative)
integers. We also define Q>9, Q~0, R>09 and R in a similar way. For a
prime number £, let F, denote the finite field of ¢ elements. For a ring R,
let R* denote the group of units in R. For a finite extension L/K of fields,
let [L : K] denote the degree of L over K. For a subgroup H of a group G
of finite index, its index is denoted by [G : H].

Throughout this paper, we fix once for all a prime number p. We con-
sider a complete discrete valuation field K whose residue field k is finite of
characteristic p. We say such a field K is a p-local field.

For a p-local field K, let O denote its ring of integers, myx the maximal
ideal of Ok, and vk : K* — Z the normalized valuation. We also denote
by Wg the Weil group of K, by rec = recg : K* = W?(b the reciprocity
map in the local class field theory, which sends a prime element of K to a
lift of geometric Frobenius of k.

If L/K is a finite separable extension of p-local fields, let e, /K € Z,
fryk €2, Dy € Op/OF, dp i € (DK/(DIX<2 denotes the ramification index
of L/K, the residual degree of L/K, the different of L/K, the discriminant
of L/K respectively.

For a topological group (or more generally for a topological monoid) G
and a commutative topological ring R, let Rep(G, R) denote the category
whose object is a pair (p, V') of a finitely generated free R-module V and
a continuous group homomorphism p : G — GLr(V) (we endow GLg(V)
with the topology induced from the direct product topology of Endg(V)),
and whose morphisms are R-linear maps compatible with actions of G.

A sequence

0= (', V') = (p,V) = (0", V") = 0

of morphisms in Rep(G, R) is called a short exact sequence in Rep(G, R) if
0— V"=V — V" — 0is the short exact sequence of R-modules.
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In this paper, a noetherian local ring with residue field of characteristic #
p is called a p’-coefficient ring. Any p'-coefficient ring (R, mp) is considered
as a topological ring with the mg-preadic topology. A strict p'-coefficient
ring is a p’-coefficient ring R with an algebraically closed residue field such
that (R*)P = R*.

3. Review of Basic Facts

3.1. Ramification subgroups

Let K be a p-local field. We denote its residue field by k. We fix a
separable closure K of K, and denote by k the residue field of the valuation
field K. Let G = Wy denote the Weil group of K. Let G¥ = GNGal(K/K)V
and GV = GNGal(K /K)"" be the upper numbering ramification subgroups
of G. These subgroups have the following properties:

e GGV and GV are closed normal subgroups of G.
e GV D G D GY for every v,w € Q¢ with w > v.

e GV is equal to the closure of |-, G".

w>v

o G = Iy, the inertia subgroup of Wx. G°* = Py, the wild inertia
subgroup of Wi. In particular, G* for w > 0 and G¥* for w > 0 are
pro p-groups.

e For we Q, w> 0, G*/GYT is an abelian group which is killed by p.

3.2. Character sheaves

Let S be a scheme of characteristic p, (R, mg) a complete p’-coefficient
ring, and G a commutative group scheme over S. An invertible character
R-sheafon G is a smooth invertible R-sheaf (that is, a pro-system of smooth
invertible R/m'-sheaves) £ on G such that LKL = *L, where p : GxgG —
G is the group law. We have i*£ = L, where i : G — G is the inverse
morphism. If £y, Lo are two invertible character R-sheaf on G, then so is
L1 ®r Lo.

LeEmMMA 3.1 (Orthogonality relation). Suppose that S is quasi-compact
and quasi-separated, and that the structure morphism 7w : G — S is compact-
ifiable. Let L be an invertible character R-sheaf on G such that LQr R/mp
is non-trivial. Then we have RmL = 0.
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PrROOF. We may assume that R is a field. Since Rpr;(£L X L) =
(7*RmL)® L and Rpry(p*L) = 7*RmL, we have (7" R'm L) ® L = n* Rim L
for all i. Hence R'mL = 0 for all 5. O

The following lemma will be used in the subsequent paper [Y2]:

LEMMA 3.2. Suppose further that S and G are noetherian and con-
nected, and that R is a finite ring. Let L be a smooth invertible R-sheaf
on G. Then L is an invertible character R-sheaf if and only if there is a
finite etale homomorphism G' — G of commutative S-group schemes with a
constant kernel Hg and a homomorphism x : H — R* of groups such that
L is the sheaf defined by G' and x.

PrROOF. The if part is easy. We prove the only if part. Let £ be an
invertible character R-sheaf on G, p : m1(G) — R* a representation of the
etale fundamental group 71(G) of G corresponding to £, and f: X — G
the finite etale Galois covering of G corresponding to Ker p. Let us define
a group law on X. Let e : S — G be the unit section. Since (5\6(5))@’2 =
L|c(s), there exists a section ¢ : S — X satisfying e = foe'. Since
LKL = 1* L, there exists a finite etale morphism X xgX — X x¢g ,(GxsG)
over G Xg G. Then there exists a unique morphism g’ : X xg X — X
over S which is the composition of the above morphism, the projection
X xgu (G xs G) — X, and an automorphism X — X over G such that
p oo (e x ¢ e/. Since *£ = L, there exists a unique isomorphism
i' : X Xxg; G — X over G. It is a routine to check that (¢, y/,4") defines
a structure of a commutative S-group scheme on X. Hence the assertion
follows. [J

2|l

4. Product Formula (Statement)

Let k be a finite field of characteristic p with ¢ elements, Xy a proper
smooth connected curve over k, Uy C Xy a non-empty open subscheme of
Xo, jo : Up — Xy the inclusion, X = Xg ®p E, U=Uy® E, j=jox1id:
U — X, R a strict p’-coefficient ring, Ry C R a finite subring, and F a
smooth Rp-flat Ry-sheaf on Uj.

Define the global e-constant g, (Uy, F) as

Ry (Uo, F) = det(—Fry; RT (U, F)) ™' = det(—Fry; RT (X, jo, F)) .
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Let w € I'(Uy, erfo/k) be a non-zero differential on U. Fix a non-trivial

additive character ¢ : k — Rj. For a closed point x € Xy, we denote
by k(x) the residue field at x, by ¢, = fx(z) the cardinality of k(x), by
K, the completion of the function field of Xy at x, by F, the isomorphism
class in Rep(Wk,, R) corresponding to the pull-back of F by the canonical
morphism Spec (K;) — U, and by ¢, , : K; — R* the additive character
given by

Yiona(@) = $(Try(y 1 (Resy (a)))

for a € K,. Here Res, is the residue homomorphism at x.

THEOREM 4.1 (Product formula for (Up, F,w)). In the above notation,
we have

eRo(Unyj:) = qéx(X)rank ) H EO,R(faﬁww,:C)v
xe€Xo—Up

where x(X) is the Euler number of X.

LEMMA 4.2.

(1) Let Voj C Uy be a open dense subscheme. Then the product formula
for (Up, F,w) is equivalent to that for (Vo, Flvy,w|v;)-

(2) Let W' € F(UO,QIIJO/k) be another non-zero differential on Uy. Then
the product formula for (Uy, F,w) is equivalent to that for (Uy, F,w').

(3) Let Yy be another proper smooth connected curve over k, f: Yy — X
a finite morphism such that the restriction Vo = Uy X x, Yo — Up of f
to Vo is etale, G a smooth Ry-flat Ry-sheaf on Vy. Then the product
formula for (Vy, G, f*w) is equivalent to that for (Up, (f|v)«G,w).

(4) Let R{ be another finite subring of R containing Ry. Then the product
formula for (Up, F,w) is equivalent to that for (Uy, F @r, Rf,w).

PRrOOF. (1) Let z € Uy — Vp. Since F is unramified at = and ), , has
conductor 0,

EO,R(]::rad)w,x) = (_1)rank.7-—z det(}})(Frx)



204 Seidai YASUDA

Let j' : Vj — Uy be the canonical inclusion. For x € Uy, let i, : x — Uy be
the canonical morphism. By the short exact sequence

04" F = F = @ iwsitF —0,
zeUp—Vo
we have
eRry(Uo, F) = €ro(Vo, Flvy) - H det(—Fry; Fu).
zeUp—Vo

Hence the lemma follows.
(2) By shrinking Uy if necessary, we may assume that there exists an
invertible element f € I'(Up, O, ) satisfying w’ = fw. For x € Xo, we have

EO,R(j:xa lpw’,m) = det(fw)(reCKz (f))Q:?:rd =(f )EO,R(‘FQH ww,x)-
Since det(Fy) = (det F), is unramified at € U, we have, by global class
field theory,

H det(Fy)(reck, (f H det(Fy)(reck, (f)) = 1.

zeXog—Uy z€Xo

Hence the lemma follows from

H ord =(f) H qord

xeXo—Up reXo

(3) Since (f[vy)« = (flvo )1, we have
RT(Vo @k k,G) = RT(U, (f1vy)«9)-

Hence er, (Uo, (f|vy)«9) = er,(Vo, G).
On the other hand, for € Xy, we have

()9 = @ Wdlg,
fly)=z
By [Y1, Thm. 5.6] we have

H e0,R(((f1v6)G)z Yw,p) = H €0 R(IndWK gy,% f( y))

xeXo—Up yeYo—Vo

= H 80,R(gy, ww,f(y) [¢) TrKy/Kf(y)) ( y/Kf ¢w f@) )rank]—'y‘
yEY07V0
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Since Py, f(y) © TrKy/Kf(y) = Y f+uy, We have

H EO,R(((f|V0)*g)x7ww,:c)

zeXo—Uoy

= H 507R(gy,'¢)f*w,y) . )\R(Ky/Kf(y)vww,f(y))rank}—y.
yeYo—Vo

To prove the lemma, it suffices to prove

1 1
q2xX) H AR(Ky/K (), Vo f) = ¢2x(¥),
yeYo—Vo

which follows from similar computation for trivial Q,-sheaf on Vj, where £
is the residue characteristic of R.
(4) is obvious. O

Therefore, to prove Theorem 4.1, we may assume that Xy = ]P’,{;, Uyg C
A}g, and that F is unramified at oco.

5. Key Proposition

Let K be a p-local field of characteristic p whose residue field is k. We
fix a prime element 7x in K. We identify X = Spec(@nezm?{/m}?l)
with Gy, via the canonical isomorphism €9, .;m%/mit! = k[r%']. Let
io : Spec (K) — X be the morphism whose associated homomorphism of
coordinate rings is given by the canonical inclusion

P mik /mipt = k[n] — k((nx)) = K.
neZ

Let Ry be a finite p’-coefficient ring which contains a primitive p-th root
of unity. For an object V' in Rep(Wx, Ry), let Fy be the canonical extension
of V (cf. [Kzl, p. 76, Thm. 1.4.1]). We exchange the roles of 0 and co in
[Kzl1]; the sheaf Fy is a smooth Ry-flat Rg-sheaf on X = G, which is
tame at oo such that ijFy is the sheaf on Spec (K) corresponding to V.

Fix a non-trivial additive character ¢ : ml_(1 /Ok — Rj and let £ = Ly,
be the Artin-Schreier sheaf on Spec (€D,,>o Mm%/ m; 1), and £ its restriction

to X. For an object V' in Rep(Wk, Ry), set F{, = Fy ®r, L.
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PrOPOSITION 5.1.  Suppose that V is totally wildly ramified. Let r =
rank V +sw(V). Forr' € Z>o, let 5, : Sym"/((}m;.C — Gy i be the morphism
induced by the product map s, : G;;k — Gy . Let &, be the v'-th sym-

,r,/

metric group and let 'y,

(Fi{,) denote the &,/ -invariant part of the direct
image of ]—""/&T/ under the quotient morphism GZL E Symr/(Gm’k. Then

(1) Forr' > r, we have R'svr/,!FZ;tf{/ = 0.

(2) The complex Rs, L't JFi, is supported on a closed point of Gy, .

LEMMA 5.2. Let (R,m) be a local ring, K*® a complex of finitely gen-
erated free R-modules which is bounded above. Suppose that K @ R/m is
acyclic. Then K is also acyclic.

PROOF. Assume that K*® is not acyclic. Let ¢ be the maximal integer
such that K% # 0. If &' : K"~ — K’ is surjective, then Kerd'~! is a
finitely generated free R-module and the complex

5 K2 S Kerd™ ' 50— -

is quasi-isomorphic to K*®. Hence we may assume that d*~! is not surjective.
Since

0 = Coker (K" ' @p R/m — K' ® R/m) = (Cokerd" ') @ R/m,
we have Coker d*~! = 0. This is a contradiction. O

Since the geometric stalks of Rgrf’!l"g;t}'{, are bounded above and have
constructible cohomologies, we may assume, by the above lemma, that Ry
is a finite field in proving Proposition 5.1.

PROOF OF PROPOSITION 5.1 (1). We may assume that Ry is a
field. Assume that RS, T7 F/, # 0. Take the minimum i satisfying
R, T Fl, # 0 and put H = R [ F,. Since RI.(G

ext ext m,k>

RS T0Fl,) = A HMG, ) = 0, we have H)G, -, H) =
HXG, 7, H) = 0. We see that H is a smooth Rg-sheaf on G,,  which
is tame both at 0 and oco. In fact, there exists a non-empty open subscheme

U C Gy, such that H|y is smooth. Take the maximum such U and let
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R be the rank of H|y. By the Grothendieck-Ogg-Shafarevich formula, we
have

dimp, H2(G,, 7. H) =— > (R—dimg,Hz) — Y swa(H[v)).
zeGm,ka Z‘E]P)I{:—U

Hence U = Gy, and swo(H) = swoo(H) = 0. By replacing k by its finite ex-
tension, we may assume that the representation of Wl(Gm’k) corresponding
to H is abelian. By replacing Ry by its finite extension, there exists an in-
vertible smooth Ro-subsheaf W of H. Let M = W~L. Since s’ M = M™",
we have 5%, M = I'_ M. Hence, by replacing F{, by F{, ® M, we have
RU(G,, 7 R3,\TL (Fl, @ M)) # 0. This is a contradiction. [J

The following lemma is proved in the same way as in the proof of [DH,
p. 101, Prop. 2.2].

LEMMA 5.3. Let K be a p-local field, Ry a finite field of characteristic
# p, V a totally wild object in Rep(Wg, Ry). Then there exist a finite
extension R}, of Ry, finitely many finite separable extensions Ly, ..., Ly,
of K, integers ni, ... , Ny, € Z, and wild object x; in Rep(Wy,, R()) of rank
one such that
V= Z nﬂnd%i Xi
(]

in the Grothendieck group of objects in Rep(Wg, Ry)).

LEMMA 5.4. Let k =k be an algebraically closed field of characteristic
p, Y a smooth irreducible affine curve overk, Y — Y the smooth completion
of Y. Suppose that Y —Y consists of more than or equal to two points. We
set Y =Y = {q1,... ,qm}. Let Ry be a finite p'-coefficient ring, and F a
smooth invertible Rg-sheaf on'Y which is wild at all points q1, ... ,qm. Let
g(Y) denote the genus of Y. Set s; := swg,(F) > 0 for each i and put

r:=29(Y) -2+ Z(l + si).

Define an effective divisor mg on'Y as

mp = Z[Qi]-

(2
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Let Jm, be the generalized Jacobian of Y with modulus my. Take a closed
point P on'Y and let h : Sym"Y — Jm, be the morphism given by D —
D —r[P]. Then RMIL F is supported on a closed point on Juy, .

ext

Proor. We set

me= 31+ ) g

7

Let Jm (resp. Jm-m,) be the generalized Jacobian of Y with modulus m
(resp. m—my). We write the morphism A : Sym"Y — Jy, as the composition
By the geometric class field theory, there exists a character sheaf G on Ji
such that F = h*G. Furthermore, the restriction of G on the kernel of
Jm — Jm_[q;) 1s non-trivial for every 1.

Define the reduced closed subschemes K, K/ C Jy with K/ C K as

K :={div(w) + m — r[P] ; Supp(div(w) +m) C Y},

and by
K':={div(w) + m—r[P] € K ; > Resgw = 0}.

By [Se3, V, §1, 2] and Riemann-Roch theorem [Se3, IV, §2, 6. Thm. 1],
g Y (Jm— K) — Jm— K is a vector bundle of rank g(Y) — 1, g7 (K — K’)
is empty and g~!(K’) — K’ is a vector bundle of rank g(Y). We have
R(h" o h'),G = 0 by the orthogonality relation. Hence to prove the lemma,
it suffices to show that

R(W" o W[ )(Glk) =0

and that
R(W" o 1|k )1(G k)

is supported on a closed point of Jyy,.

Since K is a translation of a sub k-group of Jy which contains the
kernel of h” o b/, the first assertion follows from the orthogonality relation
of character sheaves (§ 3.2). We prove the second assertion.
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Take prime elements 7y, ..., 7, of (977 e ,(’)77 o Take a mero-

morphic differential wy on Y such that

for all i.
Then K and K’ are the translations of the sub k-group scheme

Cm = ([[(Og g /mE2)%) /G i

7

= {div(f) € Jm; Supp(div(f)) C Y}

of Jiy and the sub k-scheme
S; )
{(Z bijm.)i € Cm ; Z bis; = 0}
=0 i

of Cm by the class of div(wp) + m — r[P].
The image h/(K) is the translation of the sub k-group scheme

Cmmy = (H(qui/m%

7

= {div(f) € Jm-m, ; Supp(div(f)) C Y}

of Jm—m, by the class of div(wg) + m — r[P].
Let

)G

)

s;i—1

Q = div(wo) +m—r[P]+ (D bijm] )i
=0

be a closed point in &/ (K), Q € K be the lift of Q defined as

Si—l
@ = diV(u)o) +m— T[P] + z bi,jﬂgi + 0)1
j=0

Then the fiber K’ N (h')~1(Q) of h'|x+ at Q is equal to the translation of

{(1+bis,m5)i € Cms Y bigbis, =0}
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by Q.

It is easy to see that there is a unique closed point (b} ); € (G /G
such that R(W|x)i1(G|x)q = 0 for Q € h'(K) as above with (b;0): # (b o)i-
This completes the proof. [J

In view of the proof of the above lemma, we have:

COROLLARY 5.5. In the notation of the above lemma, suppose that
there exists a finite subfield ko of k such that Y is the base change of a
smooth curve Yy over kg, that q1 comes from a ko-rational point of the com-
pletion Yo of Yo, and that F is defined on Yy. Let Yo — Yy = {q},- - G}
Fiz a non-trivial additive character v : kg — R . Take a non-zero mero-
morphic differential wy on Y. For each i, let qu be the completion of the
function field of Yy at q,. Take a non-zero meromorphic function f on Yo
such that for every i, the class of f in qu/l + qug is equal to the refined

swan conductor I'SWQZJHJO’(/1 (fqi)

Then RhI'L F 1is supported on the closed point on Ju, corresponding
to the divisor div(wgy) — div(f) +m — r[P].

COROLLARY 5.6.  Proposition 5.1 (2) holds if V is of the form V =
Indvv‘[;fx for a finite separable totally ramified extension L of K and a rank
one wild object x in Rep(Wr, Ryp).

Proor. Let f:Y — G, be the finite etale extension corresponding
to L/K by the theory of canonical extension. Let Y < Y be its smooth
compactification, let ? Y — IP’,lC be the morphism induced by f. Since
L/K is totally ramified, Y is geometrically irreducible and f_l(()) consists
of one k-rational point ¢;. Set (Y —Y)(k) = {q1,42, .. , ¢m }. There exists a
smooth invertible Ryp-sheaf 71 on Y which is wildly ramified at ¢; and tame
at qa,...qm such that Fyy = £, F. ThenY, Y, q1,... ,¢m, and F = Fi@f*L
satisfy the conditions of the above lemma.

Let Jum, be the generalized Jacobian as in the above lemma. Take a point

P € Y (k) such that f(P) =1 € G, ;. By using P, there is a canonical
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morphism Sym"Y — Ju,. We have a commutative diagram:

Sym"Y Sym'f, Sym" Gy,

| |

Jn10 — Gm’k.

Hence the assertion follows from the above lemma and T F{ =
(Sym” f). T 7. U

Therefore, to prove Proposition 5.1 (2), it suffices to prove the following
lemma:

LEMMA 5.7.

(1) Let
0=V -V -V"-0

be an exact sequence of totally wild objects in Rep(Wg, Ro). If Propo-
sition 5.1 (2) holds for two of V, V' and V", then it holds for all of
V, V' and V".

(2) Let K'/K be a finite unramified extension, V a totally wild object in
Rep(Wp, Ro). If Proposition 5.1 (2) holds for V', then it holds for all
of Indj X V.
K

Proor. We prove only the assertion 1. The assertion 2 is obtained by
a similar method.

We set 7 := sw(V)4rank V, 1’ := sw(V') +rank V', and " := sw(V") +
rank V”. The sheaf I'{,( F{, has a natural filtration, whose graded pieces are
equal t0 Vy, ry s (Do Fi K T02 Fyw) for some r1, 79 € Zso with 71 + 179 =7,
where V., 5, : Sym" Gy, 1 X Sym™G,, , — Sym" Gy, . is the canonical map.

We have the following commutative diagram :

Sym" Gy, X Sym" Gy, ), —— Sym" Gy,

Gm,k X Gm,k ’ m,k>
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where p : Gy, 1, X Gy, — Gy 1 is the multiplication map. By Proposition 5.1
1, we have

R3,\T" Flr 2 Run(R3T0 Firs & RS T Flon).

X

Hence the assertion follows from simple computation. [
This completes the proof of Proposition 5.1. [J

REMARK 5.8. In view of Corollary 5.5 and the proof of Proposition 5.1,
we have the following refinement of Proposition 5.1 (2): in the notation of
Proposition 5.1, fix a non-trivial additive character ¢ : k — Rj. Take
a non-zero meromorphic differential w on G,, ;. Let Ky and K, be the
completions of the function field of G, at 0 and oo, respectively. We
identify Ko with K by the morphism ig. Take a non-zero meromorphic
function f € k(mg)”™ on Gy, such that the class of f in K /1 + mg,
and K /1+mg_, are equal to the refined Swan conductors rswy,, (V') and
(rswy, o (L)%Y respectively. Let g(mx) € k(mx)* be a rational function
such that

div(g) = div(wp) — div(f) + m — r[1]

Then Rs, It Fi is supported on the k-rational point % € kX =

6. Determinant of Fj,

Let the notation be the same as in the beginning of § 5. Fix a non-
trivial additive character ¢ : k — R . Let ¢ : K — R be the continuous
additive character given by ¥ (x) = Qﬁg(Res(xCZr—g)). Let 5 € k™ be the
unique element satisfying gbo(%) = Yo(—px) for all x € k.

PROPOSITION 6.1.  Let V and (p, W) be two objects in Rep(Wk, Rp).
Suppose that V' is totally wild and that W is tamely ramified. Then we have

det(—Fr; RT(Flrgw))
= det(—Fr; RT(F(,)) ™ W . det W (rec(rswy, (V) - (Brg )™k V)).
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REMARK 6.2. Let Koo = k(7)) and let 9o 1 Koo — Ry be the

s
continuous additive character given by ¥ (x) = 19 (Res(:vcif—}f)). Then we

have rSW¢w(£OO) = 6717‘—[_{1‘ Hence rSWyJOO((f\I/)oo) — IBfrankVﬂ.[—(rankV'

Therefore, we have

det (Fiy)oo(reck (1swy ((Fir)oo))) = det(Fiw)oo(reck., (8 - ) kY
= det W (rec(3 - mg )™k VY,

PrROOF. We set G = mi™ (G, 1), I = ﬂ{m(Gm7E), and I,, = I/I™. For
every integer m which is prime to p, let 7, : Gy — Gy i be the m-th
power map, W,, = H!} (G, 7> (T« Ro) ®Ry Fir). Wiy s a free R[I,]-module
of rank r with a semi-linear action of G, where r = rank V +sw (V). If n,m
are two positive integers which are prime to p with m|n, the canonical map
W, — W,, induces an isomorphism

W O Ry [I,] Ro[I] = W,

Let W = lim ,,, W, be the projective limit of Wp,. W is a free Ry[[I]]-module
of rank r with a semi-linear action of G.

Consider the maximal exterior power detg W= /\EO[[ 1] W of W. Tt
is a free Ry[[I]]-module of rank one with a semi-linear action of G. We note
that the action of I C G on det g W does not necessarily coincide with
the action of I C Ry[[I]]*.

Take a lift ﬁq € G of the geometric Frobenius Fr,. An argument similar
to that in [Y1, Remark 11.3] shows that the eigenvalue of f‘rq on det gy (7] 1%
gives a well-defined element u € (Ry[[I]]*)¢ in the G-coinvariant. Asin [Y1,
§ 11.2], we have

LEMMA 6.3. The determinant of det(Fry; H} (G, 7, {/®ROW)) is
equal to

det(Fr, ; W) - det < / p(g)—lda(g)> .

1

Proor. Take a sufficiently divisible m which is prime to p such that
the restriction 7, Fy is geometrically constant. By the same argument as
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in [Y1, § 11.1] we have H}(G, 7, ‘I/®R0W) = (Wi @ry W)i1,,- The lemma
follows from an argument similar to that in [Y1, § 11.1]. O

Let us go back to the proof of Proposition 6.1. We consider Wk / ij
as a subgroup of GG in a canonical way. Then fr; lies in W/ WI()(+. The
element rswy, (V) - (B )%V in K* /1 +mg and rec_l(ﬁrg) € K*/14+mg
only differ by an element in £* which we denote by S k>, that is

rswy (V) - (B )k = gy rec_l(fr;).

We consider a; ., as an element in I/17! C (Ro[[I]])§ by the canonical

Ferw
isomorphism /1971 = kX, Then it suffices to prove that

U= ag, - det(Fry; HY(G,, 7, Fy)) in (Ro[[1]])e-

By the same way as in [Y1, § 11.3], we have
et gy[(n)W = i m RTe(G,, . (W, Ro) @y B3 T 7))

By Proposition 5.1, Rs, I'{ is supported on a closed point P in G, . By
computation of rank, P is a k-rational point, R'S, It F{, = 0 for i # r,
and the geometric stalk R'S, ', F{, at P is a free Rp-module of rank one.
Hence there exists a prime element 7} in K such that for every positive
integer m with (m,p) = 1, det g, (7;s] Wi is isomorphic to the free Rp-module

P Ro| ®r, det g, H:(G,, 5. 7)),

m—/
xz 77TK

endowed with the canonical action of G. Hence there exists an element
a € I/I7! such that @ = o - det(Fry; HY(G,, 7, F{,)) in (Ro[[I]]*)q. It
suffices to prove that o’ = fy, This assertion follows from Remark 5.8. [

COROLLARY 6.4. Let R be a strict p’-coefficient ring which contains
Ry, V a totally wild object in Rep(Wg, Ry). Then the product formula
holds for F{, ®g, R.

ProoF. By Lemma 3 and [Y1, Prop. 9.14], we may assume that V'
is of the form V = Vi ®pg, V2, where V; is a tamely ramified object in
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Rep(Wik, Rp) and V3 is the base change of an object in Rep(Wrk, Ry)) by a
local ring homomorphisms R{, — Ry, where Ry, is a p’-coefficient ring which
is a complete discrete valuation ring with a finite residue field whose field
of fractions is of characteristic zero. By [Lau2, p. 187, Thm. 3.2.1.1], the
product formula holds for V5. Since V3 is totally wild, the product formula
also holds for V by [Y1, Prop. 8.3] and Proposition 6.1. [J

7. Fourier Transforms
7.1. Deligne-Laumon’s global Fourier transform F(0.00)

Let k be a finite field of characteristic p, Ry a finite p’-coefficient ring,
U a non-empty open subscheme of the affine line A,lf.

Take a non-trivial additive character ¢ : k — R;. Let £, be the Artin-
Schreier sheaf on A} associated to ¢. Let (,) : Al x, Al — A} be the
product map. According to [Lau2, p. 148, 1.4.1], let us denote the sheaf
(,Y*Lson Al x, Al by Ls(zz"). We also use the notation Ly (s.2'), Ly(z.s)
and Ly((z — s).2’) in [Lau2, p. 148-149, 1.4.2, and p. 195]. Let L4(zz’) be
the extension by zero of L4(zz’) by the canonical inclusion A} xj A} —
P} xy, Pr.

For a smooth Rg-flat Ry-sheaf F on U which is at most tamely ramified
at oo € P} — Ay, define the global Fourier transform FT s 7 (F) of F as

FT,u(F) := R'pry) (priF @ (Lo(wa’)|ux,,.)),

where pry : U X Gy, — U and pry : U X Gy, — Gy, i are projections.
LEMMA 7.1. FTyy(F) is a smooth Ry-flat Ry-sheaf on Gy, .

PROOF. It is easy to see that FT, (F) is a Ro-flat Ro-sheaf on G,,,
whose all geometric fibers are of a same rank. To prove the smoothness
of FTy y(F), we may assume that Ry is a field. Let G be the extension
by zero of the sheaf priF @ (ﬁqg(xx,)‘(]x@mk) on U x G, i, to IP’,lg X G k-
Then (P} X Gy, G, pry) is universally locally acyclic by [Laul, p. 186, Thm.
2.1.1]. Hence FTy ¢7(F) is smooth. [J

Let a: U — IP’/,lC be the inclusion map, and Dy the henselizations of IP’/,lC
at 0. Let pry : P! x Dy — P!, pry : P! x Dy — Dy be projections. Let 7
be the generic point of Dy. Let us consider the vanishing cycle

R®y,_, (bt} (aF) ® (Lg(22")[prxpy, ) € DB X 0y, Ro)
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for the projection pry.
The following lemma is proved in a manner similar to that in [Lau2,

p. 160, Prop. 2.3.2.1]:

LEMMA 7.2.
(1) The restriction of R®, , (pT](anF) @ L) to U X ny is zero.

(2) For any closed point s € ]P’]lg, let's denote a geometric point of ]P’,l€ over
s. Then for i # —1,

Riq)ﬁol (pri(aF) ® L")(@’ﬁ’)
18 2Zero.

(3) We have a canonical distinguished triangle

RU(U @ , F) = FTyu(Fgy — B g, (57} (uF) ® £) ) AL

Let Dy be the henselizations of IP’/,l€ at oco. Let pry : P! x Door — P!,
pry : P x Doos — Dy be projections. Let 7. be the generic point of D..
Let us consider the vanishing cycle

R®,_, (pTi(anF) @ (Ly(ea)|prup,,)) € D(P' X noer, Ro)
for the projection pry.
LEMMA 7.3.

(1) The restriction of R®;_,(pri(anF) @ L) to U X 1o is zero.

(2) For any closed point s € ]P’,lg, let 5 denote a geometric point of ]P’/ll€ over
s. Then for s € IP’,IC —U and fori# —1,

Riq)ﬁoo, (Pri(anfF) @ L) 5

18 zero.
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(3) For any closed point s on a curve C over k, let G5 denote the absolute
Galois group of the fraction field of the henselization of C' at s. Then
we have

G/ — S
FTou(Fln, = @ dg  R7'q , (011(F) ® L))
se]P’ka

REMARK 7.4. We will see later that
R_lfI)ﬁm, (ﬁT (O{[}-) X [:)(g’@/)
18 zero.

PROOF. The assertion (1) follows from [KL, 2.4]. The assertions (2)
and (3) are proved in a manner similar to that in [Lau2, p. 161, Prop.
2.3.3.1]. O

7.2. Laumon’s local Fourier transform F(0:>°")

Let K be a p-local field of characteristic p with residue field &k, mx a prime
element in K. Since the subring N, (K)P" of K is canonically isomorphic
to k, the field K has a canonical structure of k-algebra. Let (’)?( be the
henselization of k[mx](r,), K" = Frac (O%). Let Ry be a finite local ring

on which p is invertible. For an object V' in Rep(Wk, Ry), let V denote
the etale Rg-sheaf on Spec (K") corresponding to V. Let jg : Spec (K"*) —

Spec ((’)?() be the canonical inclusion. We consider the Rg-sheaf j K’I‘N/ on
Spec (O%).

Suppose further that there exists a non-trivial additive character ¢ :
F, — R}. Let A = A} = Spec (k[t]) be the affine line over k, £, be the
smooth etale Rgp-sheaf on A defined by the Artin-Schreier equation s? —

s =t and ¢. Let E((bo’oo/) be the pull-back of L, by the morphism from

Spec (O%) x . Spec (K™) to A whose associated homomorphism of coordinate
Téé?,{l, and set Zfﬁo’oo ) = (id x jK)!Eg)’OO,). Let us

consider the vanishing cycle

rings is given by t +—

X[ . 7 —(0, !
Rléﬁ/(prl(]K!V) @Ry E((;s * ))

relative to pr, : Spec (O%) xj Spec (O%) — Spec (O%).
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DEFINITION 7.5. For an object V' in Rep(Wx, Ro), let

’ %7 . ~ —(0,00’
PO )(V) = qu)ﬁ’ (pri(Jx,V) ®r, L‘é ))Z’Z’a

where ¢ = 7 is the spectrum of an algebraic closure of the residue field
at the closed point of Spec (O%). Then F()(V) is also an object in
Rep(Wk, Ro).

We also define objects F(°0)(V) and F(>)(V) in Rep(Wx, Ry) in
a manner similar to that in [Lau2, p. 163, Defn. 2.4.2.3]. The objects
FON (1), (000 (V) and F(°) (V) in Rep(Wg, Rp) are called the local
Fourier transforms of V.

The following lemma is easily checked:

LEMMA 7.6 (cf. [Lau2, 2.4.2.1]). Let 7 : Spec(O%) — A and 7' :
Spec (K") — A denote the morphisms whose associated homomorphisms of
coordinate rings are given by t — g, and t — é, respectively. Then for
any smooth Rg-sheaf F on a nonempty open subscheme U C A such that
™oy F =2 jK,!‘Z where a1 U — ]P’}C 1s the canonical inclusion, we have

FOSNV) = (7 x 7')* R, (BT (W F ®r, L) g7
Similar statements hold for F(Y) gnd F(°0:0)

As a corollary, we have the exactness of the three functors F (0,007
F(00) and F(o0:00),

PROPOSITION 7.7 (cf. [Lau2, p. 165, 2.5.3]). Let V € Rep(Wk, Ry) be
a tamely ramified object. Then we have

(1) FONVY is a tamely ramified object with the same rank as V.

(2) FOOUNVY is a tamely ramified object with the same rank as V. If V
is unramified, then F(>0) (V) =V (-1).

(3) Fleo) (V) = 0.

PrROOF. There exists a smooth Ryp-flat Rg-sheaf 7 on G, ; which is
tamely ramified both at 0 and at oo such that the geometric stalk of F at ng
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can be identified with V. Then global Fourier transform FTy g, , (F) of F
is a smooth Rp-sheaf on G, whose geometric stalks are free Rp-modules
of rank rank V. Take any element a € k* and let ¢, : Gm,E — Gm,% be the
translation by a. It is easy to check that t;(FTy g, , (F )]ij) is isomorphic

to FT4G,, . (F)lg, . for any a € k. By [V, p. 336, Prop. 1.1], FT, G, , (F) is

m,k

also tamely ramified both at 0 and at oo. Hence (2) follows from Lemma 7.2
(3).

By Lemma 7.3 (3), FO)(V) @ F(°°7°°/)(]:ﬁoo) is a tamely ramified
object with the same rank as V. Hence to complete the proof of the propo-
sition, it suffices to prove that F(°%) (V) = 0.

Let 1 € Rep(Wk, Rp) be the trivial representation. By considering the
constant sheaf Ry on G, — {1}, we have 2rank F(0>)(1) 4
rank F(°°)(1) = 2. Hence F(>>>')(1) = 0. For general V, there ex-
ists a smooth Rg-sheaf 7’ on G, — {1} such that ]—"%oo trivial and that

F5, 1s isomorphic to V. Using this ', we have rank F° 0.0(V) = rank V.

Hence the assertion follows. [J

COROLLARY 7.8. Let V be an object in Rep(Wk, Rp). Then
rank () (V) = rank V + sw(V) and sw(F©O®)(V)) = sw(V).

PrROOF. We have F(0:) =~ (FT4.G,.(Fv))7.,- Applying the
Grothendieck-Ogg-Shafarevich formula to Fy, we have rank F’ (0700/)(1/) =
rank V +sw(V). By Proposition 7.7, FTy G,, , (Fv) is tamely ramified at (/.
Since

RFC(G’H’L,E7 FT¢7Gm,k (fv))
o RFC(Gm’E X Gm’g,fv ® (£¢($$/)|Gm,kXGm,k))[1]
=~ RTUA(G,_ 7, Fv),

m,k>

the second assertion follows from the Grothendieck-Ogg-Shafarevich for-
mula. [

Let U be a non-empty open subscheme of A, F a smooth Ry-flat Ry-
sheaf on U which is unramified at oo, o : U — ]P’,lC the canonical inclusion.
Let k{t} be the henselization of k[t]. For any closed point s € A, let
Py(t) € k[t] be the unique monic irreducible polynomial which vanishes at
s. Let A(,) be the henselization of A at s, 7 the generic point of A,). Let
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s : A(s) — Spec (k{t}) be the morphism whose associated homomorphism
of coordinate rings is given by t — Ps(t).

PRrROPOSITION 7.9 (cf. [Lau2, p. 194, Thm. 3.4.2]). Let S =A—U be
the complement of U. Then

(1) Foralls €S,
det(F(O’ool)(Ws,*(~7'—|ns)))

1s tamely ramified.

(2) ,
) det(FO) (m, o (Fln,)))

ses

18 unramified and is isomorphic to

det(RT (U @ k, F)) ' @ det(Fss(—1)).

PrOOF. (1) Consider the global Fourier transform
F' =FT4u(F)
of F. The sheaf F’ is a smooth Rp-flat Rg-sheaf on G, . There exists a
distinguished triangle

RUo(U @k, F)[1] = Fpy — Fas(—1) Ny

Hence det(F’) is unramified at 0 and

(j. det(F"))y = det(RL(U @ k, F)) ™" @ det(Fos (—1)),

where j' : Gy — A.
(2) Since

F 2P mdl, (R 0 (M(F))); 5

Gs X oo’ ER
seS

(R™'®q, (M(F)))s 5
®R, (R @q, (bT" (rF) @ Lo((z — 5).2")) )5 57,

g?
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we have

det(F)q., = Lo(6F.2 )n, @R, R det(F> (g (Flp,))),
seS

where
o = Z(rank]—"—!— sws(F)) - Tr(s) € k.
s€S

Hence, L(—6r.2")®7, det(F’) is a smooth invertible Ry-sheaf on A which
is tamely ramified at co. By the global class field theory, £(—ér.2") ®
Jji det(F’) must be geometrically constant. Therefore

&) det(F O (my(Fly, )
s€S

is an unramified object which is isomorphic to
det(RT (U @1 k, F)) ! @ det(Fss(—1)).
Hence the proposition follows. [

8. End of Proof

DEFINITION 8.1. Let ¢ : K — R} be a non-trivial continuous ad-
ditive character. Let a € K* be the unique element satisfying ¥ (x) =
¢(Try/r,(Res(axdrg))) for every z € K. Define the & p -constant

0.r, (Vs , 6, 7) € Ry as

86,Ro (V7 ), P, 7TK) = (_1)1‘ank V4swV

-det V (rec(a))q"c (@ det(FO) (V) (rec(n)),

PROPOSITION 8.2. Let A = Speck[t], U and F be as above. In the
notation of Theorem 4.1, suppose that Xg = IP’}C, Uy =U, w= —dt and
F=F. Forxe A—Uy, let my = P,(t) and let moo = % Then we have

ery (U, F) = q2x(Xrank (F) H £t o (Fas Yy 6 72).
zeXo—Uy
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Proor. It follows from Proposition 7.9 (2). O

Hence to prove Theorem 4.1, it suffice to prove the following proposition:

PROPOSITION 8.3.  For any object V in Rep(Wg, Ro) and for any non-
trivial continuous additive character 1 : K — R(, we have

e0,r(V ®r, R, %) = 0 g, (V, 9, ¢, 7).

LEMMA 8.4. Proposition 8.3 holds for (V,¢) if V is a tamely ramified
object.

PrRoOOF. We may assume that the character v is of the form

U(@) = O(Tryyp, (Res(a X)),
TK
Let V be a tamely ramified object in Rep(Wg, Ryp), and Fy the canonical
extension sheaf on G, corresponding to V. Consider the global Fourier
transform FTy g, , (Fv).
Then for every closed point x in G, i, we have, by [Y1, Thm. 10.5] and
[Y1, Thm. 5.6]

det(Fr, ; FT4,G,, (Fv)) = det(Fra; Fv) - (¢~ co.r(V R, R, 1)1

Hence det(FTyG,, ,(Fv)) @R, det(Fy)®~ ! is geometrically constant. The
lemma follows by comparing the traces of the geometric Frobenius at 1 and
at 0o on det(FTy G, , (Fv)) ®r, det(Fy)®~ 1. O

COROLLARY 8.5. Let ¢ : k — R} be a non-trivial character and x :
W[“(b — R be the character given by

A(ree(z)) = p(Res(-25)).

TKI

Then Proposition 8.3 holds for (V,¢) if V is of the form V. =W ® x for a
tamely ramified object W in Rep(Wg, Ry).

Proor. This follows from the definition of e r(W, ). O
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PROOF OF PROPOSITION 8.3. By Lemma 8.4, we may assume that V'
is totally wild. Let us consider the sheaf F{,. By Corollary 6.4, the product
formula holds for F{, ® g, R. Hence the assertion follows from Proposition 8.2
and Corollary 8.5. [J

This completes the proof of Theorem 4.1. [J
9. Application to Saito’s Formula

Let k be a finite field of ¢ elements with characteristic p, X/k a smooth
projective variety of pure dimension n, and U C X an open subscheme such
that D = X — U is a divisor with simple normal crossing.

Let cx, be the element in 7™ (U)% which is introduced and is called
the relative canonical cycle in [Sal, p. 402]; the prime-to-p part of cx  is
equal to

(—1)"cn (2, (log D), Res) € H*'(X mod D, Z/(n))

= H H*™(U, 5Zi(n)v),
l#p

where j : U < X is the canonical inclusion and ¢, (€ /k(log D),Res) is
the relative top chern class for the partially trivialized locally free sheaf
(Qﬁ(/k(log D), Res) which is introduced in [Sal, p. 391], and the p-part of
cxu is the image of usual chern class (—1)”cn(9§/k(log D)) by the reci-
procity map C Ho(X) — 71 (X)®.

Let Ry be a finite p’-coefficient ring, ¢ : k — R a non-trivial additive
character. Let Z/(1) be the group

Z/(1) o= lim o (K'),

where k' runs over all finite extensions of k in a fixed algebraic closure
of k, and the projective limit is taken with respect to the norm maps.
Let Ci be the exact category of object V in Rep(i’ (1), Ry) which satisfies
¢V 2V, where ¢*V is the pull-back of V by the g-power map 2’(1) =
Z!(1). For each object V in C;, we define an element 7(V, ) € R{ in the
following way: take a triple (R, 17, 1), where R is a strict p’-coefficient ring
containing Ry, Visa tamely ramified object in Rep(Wjy(()), ) such that
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14

Reswﬁ((t>> is identified with V ®pg, R via the canonical isomorphism A (1)
k((£))

W,?((t)) / W,S(J(rt)), and v : k((t)) — R* is a continuous additive character of

conductor —1 whose restriction to k[[t]] induces vo. We put 7(V, o) :

(—q)rankveo,R(V,lp). Then 7(V, 1)) belongs to R} and is independent of

the choice of (R, V,1).

LEMMA 9.1 (cf. [Sal, p. 400401, Lem. 1 (1)]). Let k" be a finite exten-
ston of k and r € Z~q be a positive integer. Let r = ms be the decomposition
of r into the prime-to-p part m and the p-part s. For an object V in Cys, let
Ind V' be the object in Ci defined as

[k':k]—1

mdV = P (¢)*(nd,V),
=0

where Ind, V' is the induced representation of V' by the multiplication-by-r
map 7' (1) — Z'(1). Then we have

T(Ind V7 ¢0) = (det V)(m)T(V7 w(()s) o Trk//k) . (Tk7m7w0)[k/:k}'rankv.

Here det V is considered as a character of Z/(1)/(q—1)Z' (1) = k* and 1/1(()5)
is the additive character of k given by w(()s)(x) = o(z*), and

_ :{ (F) () () o)™ ifp#2,
I €O ifp=2,
Here (%)/ = (—l)mQS_I'[k:FQ]'

PROOF. We may assume that s = 1. Let L = k/((t)) and K =
k((t™)) c L. Take a triple (R,V,), where R is a strict p’-coefficient
ring containing Ro, V is a tamely ramified object in Rep(Wp, R) such that
Res%ﬁ is identified with V ®pg, R, and ¢ : K — R* is a continuous additive
charaéter of conductor —1 whose restriction to O induces 9. Then we
have 7(Ind V, 1) = (—q)rankI“dV€07R(Ind%f‘7,w) and 7(V,1po o Try i) =
(—q)F'kIrankV (det V) (m) ~Leg r(V, YoTrr k). By [Y1, Thm. 5.6], it suffices
to prove that

(/K] (—q)k':kIm

Thmao = (A AR(L/K, ).
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Let Ly = k'((t™)) be the maximal unramified subextension of L/K. By
[Y1, Prop. 6.5 (5)] we have

AR(L/K ) = Ar(Lo/K, %)™ - Ar(L/ Lo, o Trpy k)
= (=1)(FF=Dm N (L/Lo, % 0 Trp i)

By [Y1, Lem. 6.7], we have

AR(L/Los9p o Trry /)
m—1
q*mTfl[k':k] ((_Uk#) if m is odd and p # 2,

m—1r1./ m? =1 (s
moL ;k]<_1)Tl[k ] if m is odd and p = 2,

pu— q_
m_q
1)2 %

qi%[k/:k}TR(L/Lo,Q/JOLO/K) <(_)T> if m is even.
Hence the assertion follows. O

Let V be an object in Rep(mi™(U ),R ). We define 7p /5 (V,40) € Ry
in the following way (cf. [Sal, p. 403]). Let (D;);er denote the family of
irreducible components of D. For i € I, et k; be the constant field of
D;, ¢; € Z the Euler number of (D; — |, it Djr) ®g, ki, and V; € Ck, the
restriction of V by the morphism Z/(1 Vg — m (U)tm
defined up to conjugacy. Then we put

o6 (Vatbo) := [ [ 7k (Vi tbo © T i)
el

which is canonically

PRrROPOSITION 9.2 (cf. [Sal, p. 403, Thm. 1]). Assume that p #
2. Let F be the smooth Rg-sheaf on U corresponding to an object V in
Rep(mi™(U), Ro). Then the global £o-constant

0.7, (U/k,F) = det(~Fry; RT.(U @1 k, F)) "' € R
satisfies

EO,RO(U/kaf) = det V(_CX,U) . TD/k(V7 ) - EO,RO(U/]C, RO)rankV'
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Let K be a p-local field with the residue field k, X a proper flat generi-
cally smooth Og-scheme which is regular of dimension n as a scheme, and
U C X an open subscheme contained in X ®p, K. Assume that the com-
plement D = X — U is a divisor with simple normal crossing of X. Let
(D;);er be the family of irreducible components of D and let Iy C I be the
subset of ¢ € I such that D; C X ®p, k. Let r; be the multiplicity of of
X ®o, k at D; and m; be the prime-to-p part of ;. For a subset J C I, let
Dj = Nies Di. We assume that Djx = (;c; Di ®o, K is smooth over K
for all J C I and that (X,U) is tame over Ok in the sense of [Sal, p. 404],
that is, the Ox-module Qﬁ(/ox (log D/log k) of differentials with logarith-
mic poles is locally free. We define (the tame part of) the relative canonical
cycle

cxv/ox € HE (X mod D,Z'(n))

in the following way (cf. [Sal, p. 404]). For i € I, let D} = D; — ,1; Dy
For i € Iy, we also denote, by abuse of notation, by cp,, p; the prime-

to-p part in H2"2(D; mod D,Z (n — 1)) of the relative canonical cycle
¢p;,pr € mm(U)%. Then we put

cx /0 =ix(— Y miUcp, pr) € HYL(X mod D,Z (n)),

i€1lp

where i, : @,;c;, H**1(D; mod D,Z/(n)) — H)Q(’i (X mod D,Z(n)) is as
in [Sal, p403], and m; € Z is considered as an element in H'(D; mod D,
Z(1)).

Let h : Ry — R be a local ring homomorphism from Ry to a strict p'-
coefficient ring R, ¢ : K — R* a non-trivial continuous additive character
with ordy = —1, and ¢y : k — R* the character given by the restriction
Y|o,- For an object (p, V) in Rep(mi™(U), Ry), we define To/k(p; o) € Ry
in a manner similar to that in [Sal, p. 404], that is,

To/k(p, o) = H Tk (P, Yo © Try, /1),
ielf

where I} = {i € In; p{r;}.
In view of the proof of [Sal, p. 403, Thm. 1] given in [Sal, p. 409-415],
to prove Proposition 9.2, it suffices to prove the following proposition:
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PROPOSITION 9.3 (cf. [Sal, p. 405, Thm. 2]). Assume thatp # 2. Let
F be the the smooth Ry-sheaf on U corresponding to (p,V'). Then the local
€o-constant

EQ7R(U/K,.7:,¢) = 80,R(RFC(U XK F,f) X Rg R,l/)) € R”

is equal to the image by h of
det p(—CX7U/(9K)TD/k(p7 o)
N us(Tr_\\ rank V'
(100 () ((B) 7 (1) ) 0Oy

(e (%)'qé<xc<Uf>—xz<Uf>>>”“kV ifp=2.

where x.(Uz) and x:(Ug) are as in [Sal, p. 405, Thm. 2].

PrOOF. We fix a subset J C I and a connected component E of D
and study the restriction R¥F|g+ of the complex of the nearby cycles RUF
on B* = E —|J;c;D;. Fori e J,let I; and P; ..... a; : I;) P — 7t™(U).
We may assume that the image of «; is commutative to each other. Let
Jo=J NIy and M be the complex concentrated on degree 0 and —1:

770 S 75 ej— 1.
Then the canonical morphism

i: [ L/P — Ix/Pk
i€Jg
is canonically identified with yu ® id,, (1)
In view of the proof of [Sal, p. 405, Thm. 2| given in [Sal, p. 405-408],

in order to prove the proposition, it suffices to prove the following analogue
of [Sal, p. 407, Cor. 1]. O

LEMMA 9.4 (cf. [Sal, p. 407, Cor. 1]). On each stratum E*, RUF|g«
s a successive extension of bounded complexes of smooth Ry-flat Rg-sheaves
which is tamely ramified along the boundary E — E*. If J = {i} for some

i € Iy, then RIVF|g« = 0 for ¢ # 0 and ROVF|g: = IndiK/ngi as a
representation of I/ Pk . If J otherwise, we have

[RUF|p] =0
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in the Grothendieck group of the smooth Rg-flat Ro-sheaves on E* which is
tamely ramified along the boundary E — E*.

PROOF. We use the notation in the proof of [Sal, p. 405-406, Prop.
6]. Let Ro[[G]] = lim 4Ro[Gy4]. Consider the Ro[[G]]-sheaf (¢41¢5F)a. Since

F 2 (pa103F)a @op1cy Ros

we have
RUF|p- 2 (Fulp- @n, Indfngxdeo,Ud)d it Fo-

Hence there exists a filtration on RUF|g« such that each graded piece is
isomorphic to

q
(Fale+ ®ry Indfﬁd Ro)a @iy iy Bo @R, /\ Hom(H1(M)(1), Ry).
Hence the lemma follows. O

This completes the proof of Proposition 9.2. [J
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