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The Product Formula for Local Constants in

Torsion Rings

By Seidai Yasuda

Abstract. Let p be a rational prime and K a local field of residue
characteristic p. In this paper, we prove the product formula for local
ε0-constants defined in [Y1].

1. Introduction

This paper is a continuation of the author’s article [Y1]. Let K be a com-

plete discrete valuation field whose residue field k is finite of characteristic

p (such a field will be called a p-local field). Let q denote the cardinal-

ity of k. Let WK be the Weil group of K. In [Y1], we defined the local

constants ε0,R(V, ψ) ∈ R×, generalizing Deligne’s ε0(V, ψ, dx), for triples

(R, (ρ, V ), ψ) where R is a strict p′-coefficient ring (cf. loc. cit.), (ρ, V ) is an

object in Rep(WK , R), and ψ : K → R× is a non-trivial continuous additive

character.

In this paper we will concentrate on the case where charK = p. When

R0 is the ring of integers of a finite extension of Q� for a prime � �= p, the

product formula of Deligne-Laumon describes the determinant of Frobenius

on the etale cohomologies of a smooth R0-sheaf on a curve over k as a prod-

uct of local ε0-constants. In this paper, we generalize the product formula

to the case where R0 is a pro-finite p′-coefficient ring, giving evidence that

our construction provides a good theory of local ε0-constants.

Let us briefly review the contents of this paper. After recalling in § 3

some basic facts necessary in this paper, we give, in § 4, the statement of

the product formula which is the main result of this paper. The next four

sections are devoted to the proof of the product formula. In § 9, we give an

application of our product formula to Saito’s theorem in [Sa1].
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2. Notation

Let Z, Q, R, and C denote the ring of rational integers, the field of

rational numbers, the field of real numbers, and the field of complex numbers

respectively.

Let Z>0 (resp. Z≥0) be the ordered set of positive (resp. non-negative)

integers. We also define Q≥0, Q>0, R≥0 and R>0 in a similar way. For a

prime number �, let F� denote the finite field of � elements. For a ring R,

let R× denote the group of units in R. For a finite extension L/K of fields,

let [L : K] denote the degree of L over K. For a subgroup H of a group G

of finite index, its index is denoted by [G : H].

Throughout this paper, we fix once for all a prime number p. We con-

sider a complete discrete valuation field K whose residue field k is finite of

characteristic p. We say such a field K is a p-local field.

For a p-local field K, let OK denote its ring of integers, mK the maximal

ideal of OK , and vK : K× → Z the normalized valuation. We also denote

by WK the Weil group of K, by rec = recK : K× ∼=−→ W ab
K the reciprocity

map in the local class field theory, which sends a prime element of K to a

lift of geometric Frobenius of k.

If L/K is a finite separable extension of p-local fields, let eL/K ∈ Z,

fL/K ∈ Z, DL/K ∈ OL/O×
L , dL/K ∈ OK/O×2

K denotes the ramification index

of L/K, the residual degree of L/K, the different of L/K, the discriminant

of L/K respectively.

For a topological group (or more generally for a topological monoid) G

and a commutative topological ring R, let Rep(G,R) denote the category

whose object is a pair (ρ, V ) of a finitely generated free R-module V and

a continuous group homomorphism ρ : G → GLR(V ) (we endow GLR(V )

with the topology induced from the direct product topology of EndR(V )),

and whose morphisms are R-linear maps compatible with actions of G.

A sequence

0 → (ρ′, V ′) → (ρ, V ) → (ρ′′, V ′′) → 0

of morphisms in Rep(G,R) is called a short exact sequence in Rep(G,R) if

0 → V ′ → V → V ′′ → 0 is the short exact sequence of R-modules.
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In this paper, a noetherian local ring with residue field of characteristic �=
p is called a p′-coefficient ring. Any p′-coefficient ring (R,mR) is considered

as a topological ring with the mR-preadic topology. A strict p′-coefficient

ring is a p′-coefficient ring R with an algebraically closed residue field such

that (R×)p = R×.

3. Review of Basic Facts

3.1. Ramification subgroups

Let K be a p-local field. We denote its residue field by k. We fix a

separable closure K of K, and denote by k the residue field of the valuation

field K. Let G = WK denote the Weil group of K. Let Gv = G∩Gal(K/K)v

and Gv+ = G∩Gal(K/K)v+ be the upper numbering ramification subgroups

of G. These subgroups have the following properties:

• Gv and Gv+ are closed normal subgroups of G.

• Gv ⊃ Gv+ ⊃ Gw for every v, w ∈ Q≥0 with w > v.

• Gv+ is equal to the closure of
⋃

w>v G
w.

• G0 = IK , the inertia subgroup of WK . G0+ = PK , the wild inertia

subgroup of WK . In particular, Gw for w > 0 and Gw+ for w ≥ 0 are

pro p-groups.

• For w ∈ Q, w > 0, Gw/Gw+ is an abelian group which is killed by p.

3.2. Character sheaves

Let S be a scheme of characteristic p, (R,mR) a complete p′-coefficient

ring, and G a commutative group scheme over S. An invertible character

R-sheaf on G is a smooth invertible R-sheaf (that is, a pro-system of smooth

invertible R/mn
R-sheaves) L on G such that L�L ∼= µ∗L, where µ : G×SG →

G is the group law. We have i∗L ∼= L, where i : G → G is the inverse

morphism. If L1, L2 are two invertible character R-sheaf on G, then so is

L1 ⊗R L2.

Lemma 3.1 (Orthogonality relation). Suppose that S is quasi-compact

and quasi-separated, and that the structure morphism π : G → S is compact-

ifiable. Let L be an invertible character R-sheaf on G such that L⊗RR/mR

is non-trivial. Then we have Rπ!L = 0.
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Proof. We may assume that R is a field. Since Rpr1(L � L) ∼=
(π∗Rπ!L)⊗L and Rpr1(µ

∗L) ∼= π∗Rπ!L, we have (π∗Riπ!L)⊗L ∼= π∗Riπ!L
for all i. Hence Riπ!L = 0 for all i. �

The following lemma will be used in the subsequent paper [Y2]:

Lemma 3.2. Suppose further that S and G are noetherian and con-

nected, and that R is a finite ring. Let L be a smooth invertible R-sheaf

on G. Then L is an invertible character R-sheaf if and only if there is a

finite etale homomorphism G′ → G of commutative S-group schemes with a

constant kernel HS and a homomorphism χ : H → R× of groups such that

L is the sheaf defined by G′ and χ.

Proof. The if part is easy. We prove the only if part. Let L be an

invertible character R-sheaf on G, ρ : π1(G) → R× a representation of the

etale fundamental group π1(G) of G corresponding to L, and f : X → G

the finite etale Galois covering of G corresponding to Ker ρ. Let us define

a group law on X. Let e : S → G be the unit section. Since (L|e(S))
⊗2 ∼=

L|e(S), there exists a section e′ : S → X satisfying e = f ◦ e′. Since

L�L ∼= µ∗L, there exists a finite etale morphism X×SX → X×G,µ(G×SG)

over G ×S G. Then there exists a unique morphism µ′ : X ×S X → X

over S which is the composition of the above morphism, the projection

X ×G,µ (G ×S G) → X, and an automorphism X → X over G such that

µ′ ◦ (e′ × e′) = e′. Since i∗L ∼= L, there exists a unique isomorphism

i′ : X ×G,i G
∼=−→ X over G. It is a routine to check that (e′, µ′, i′) defines

a structure of a commutative S-group scheme on X. Hence the assertion

follows. �

4. Product Formula (Statement)

Let k be a finite field of characteristic p with q elements, X0 a proper

smooth connected curve over k, U0 ⊂ X0 a non-empty open subscheme of

X0, j0 : U0 ↪→ X0 the inclusion, X = X0 ⊗k k, U = U0 ⊗k k, j = j0 × id :

U ↪→ X, R a strict p′-coefficient ring, R0 ⊂ R a finite subring, and F a

smooth R0-flat R0-sheaf on U0.

Define the global ε-constant εR0(U0,F) as

εR0(U0,F) = det(−Frq;RΓc(U,F))−1 = det(−Frq;RΓc(X, j0,!F))−1.
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Let ω ∈ Γ(U0,Ω
1
U0/k

) be a non-zero differential on U . Fix a non-trivial

additive character ψ : k → R×
0 . For a closed point x ∈ X0, we denote

by κ(x) the residue field at x, by qx = 
κ(x) the cardinality of κ(x), by

Kx the completion of the function field of X0 at x, by Fx the isomorphism

class in Rep(WKx , R) corresponding to the pull-back of F by the canonical

morphism Spec (Kx) → U , and by ψω,x : Kx → R× the additive character

given by

ψω,x(a) = ψ(Trκ(x)/k(Resx(aω)))

for a ∈ Kx. Here Resx is the residue homomorphism at x.

Theorem 4.1 (Product formula for (U0,F , ω)). In the above notation,

we have

εR0(U0,F) = q
1
2
χ(X)rank (F)

∏
x∈X0−U0

ε0,R(Fx, ψω,x),

where χ(X) is the Euler number of X.

Lemma 4.2.

(1) Let V0 ⊂ U0 be a open dense subscheme. Then the product formula

for (U0,F , ω) is equivalent to that for (V0,F|V0 , ω|V0).

(2) Let ω′ ∈ Γ(U0,Ω
1
U0/k

) be another non-zero differential on U0. Then

the product formula for (U0,F , ω) is equivalent to that for (U0,F , ω′).

(3) Let Y0 be another proper smooth connected curve over k, f : Y0 → X0

a finite morphism such that the restriction V0 = U0 ×X0 Y0 → U0 of f

to V0 is etale, G a smooth R0-flat R0-sheaf on V0. Then the product

formula for (V0,G, f∗ω) is equivalent to that for (U0, (f |V0)∗G, ω).

(4) Let R′
0 be another finite subring of R containing R0. Then the product

formula for (U0,F , ω) is equivalent to that for (U0,F ⊗R0 R
′
0, ω).

Proof. (1) Let x ∈ U0 − V0. Since F is unramified at x and ψω,x has

conductor 0,

ε0,R(Fx, ψω,x) = (−1)rankFx det(Fx)(Frx).
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Let j′ : V0 ↪→ U0 be the canonical inclusion. For x ∈ U0, let ix : x ↪→ U0 be

the canonical morphism. By the short exact sequence

0 → j′!j
′∗F → F →

⊕
x∈U0−V0

ix,∗i
∗
xF → 0,

we have

εR0(U0,F) = εR0(V0,F|V0) ·
∏

x∈U0−V0

det(−Frx ; Fx).

Hence the lemma follows.

(2) By shrinking U0 if necessary, we may assume that there exists an

invertible element f ∈ Γ(U0,O×
X0

) satisfying ω′ = fω. For x ∈ X0, we have

ε0,R(Fx, ψω′,x) = det(Fx)(recKx(f))qord x(f)
x ε0,R(Fx, ψω,x).

Since det(Fx) = (detF)x is unramified at x ∈ U , we have, by global class

field theory,∏
x∈X0−U0

det(Fx)(recKx(f)) =
∏
x∈X0

det(Fx)(recKx(f)) = 1.

Hence the lemma follows from∏
x∈X0−U0

qord x(f)
x =

∏
x∈X0

qord x(f)
x = 1.

(3) Since (f |V0)∗ = (f |V0)!, we have

RΓc(V0 ⊗k k,G) = RΓc(U, (f |V0)∗G).

Hence εR0(U0, (f |V0)∗G) = εR0(V0,G).

On the other hand, for x ∈ X0, we have

((f |V0)∗G)x ∼=
⊕

f(y)=x

Ind
WKx
WKy

Gy.

By [Y1, Thm. 5.6] we have∏
x∈X0−U0

ε0,R(((f |V0)∗G)x, ψω,x) =
∏

y∈Y0−V0

ε0,R(Ind
WKf(x)

WKy
Gy, ψω,f(y))

=
∏

y∈Y0−V0

ε0,R(Gy, ψω,f(y) ◦ TrKy/Kf(y)
) · λR(Ky/Kf(y), ψω,f(y))

rankFy .



The Product Formula 205

Since ψω,f(y) ◦ TrKy/Kf(y)
= ψf∗ω,y, we have∏

x∈X0−U0

ε0,R(((f |V0)∗G)x, ψω,x)

=
∏

y∈Y0−V0

ε0,R(Gy, ψf∗ω,y) · λR(Ky/Kf(y), ψω,f(y))
rankFy .

To prove the lemma, it suffices to prove

q
1
2
χ(X)

∏
y∈Y0−V0

λR(Ky/Kf(y), ψω,f(y)) = q
1
2
χ(Y ).

which follows from similar computation for trivial Q�-sheaf on V0, where �

is the residue characteristic of R.

(4) is obvious. �

Therefore, to prove Theorem 4.1, we may assume that X0 = P1
k, U0 ⊂

A1
k, and that F is unramified at ∞.

5. Key Proposition

Let K be a p-local field of characteristic p whose residue field is k. We

fix a prime element πK in K. We identify X = Spec (
⊕

n∈Zmn
K/mn+1

K )

with Gm,k via the canonical isomorphism
⊕

n∈Zmn
K/mn+1

K
∼= k[π±1

K ]. Let

i0 : Spec (K) → X be the morphism whose associated homomorphism of

coordinate rings is given by the canonical inclusion⊕
n∈Z

m
n
K/mn+1

K
∼= k[π±1

K ] ↪→ k((πK)) ∼= K.

Let R0 be a finite p′-coefficient ring which contains a primitive p-th root

of unity. For an object V in Rep(WK , R0), let FV be the canonical extension

of V (cf. [Kz1, p. 76, Thm. 1.4.1]). We exchange the roles of 0 and ∞ in

[Kz1]; the sheaf FV is a smooth R0-flat R0-sheaf on X = Gm,k which is

tame at ∞ such that i∗0FV is the sheaf on Spec (K) corresponding to V .

Fix a non-trivial additive character φ0 : m
−1
K /OK → R×

0 and let L = Lφ0

be the Artin-Schreier sheaf on Spec (
⊕

n≥0 mn
K/mn+1

K ), and L′ its restriction

to X. For an object V in Rep(WK , R0), set F ′
V = FV ⊗R0 L′.
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Proposition 5.1. Suppose that V is totally wildly ramified. Let r =

rankV +sw(V ). For r′ ∈ Z≥0, let s̃r′ : Symr′Gm,k → Gm,k be the morphism

induced by the product map sr′ : Gr′
m,k → Gm,k. Let Sr′ be the r′-th sym-

metric group and let Γr′
ext(F ′

V ) denote the Sr′-invariant part of the direct

image of F ′
V
�r′ under the quotient morphism Gr′

m,k → Symr′Gm,k. Then

(1) For r′ > r, we have Rs̃r′,!Γ
r′
extF ′

V = 0.

(2) The complex Rs̃r,!Γ
r
extF ′

V is supported on a closed point of Gm,k.

Lemma 5.2. Let (R,m) be a local ring, K• a complex of finitely gen-

erated free R-modules which is bounded above. Suppose that K ⊗R R/m is

acyclic. Then K is also acyclic.

Proof. Assume that K• is not acyclic. Let i be the maximal integer

such that Ki �= 0. If di−1 : Ki−1 → Ki is surjective, then Ker di−1 is a

finitely generated free R-module and the complex

· · · → Ki−2 → Ker di−1 → 0 → · · ·

is quasi-isomorphic to K•. Hence we may assume that di−1 is not surjective.

Since

0 = Coker (Ki−1 ⊗R R/m → Ki ⊗R R/m) ∼= (Coker di−1) ⊗R R/m,

we have Coker di−1 = 0. This is a contradiction. �

Since the geometric stalks of Rs̃r′,!Γ
r′
extF ′

V are bounded above and have

constructible cohomologies, we may assume, by the above lemma, that R0

is a finite field in proving Proposition 5.1.

Proof of Proposition 5.1 (1). We may assume that R0 is a

field. Assume that Rs̃r′,!Γ
r′
extF ′

V �= 0. Take the minimum i satisfying

Ris̃r′,!Γ
r′
extF ′

V �= 0 and put H = Ris̃r′,!Γ
r′
extF ′

V . Since RΓc(Gm,k,

Rs̃r′,!Γ
r′
extF ′

V ) =
∧r′ H1

c (Gm,k,F ′
V ) = 0, we have H0

c (Gm,k,H) =

H1
c (Gm,k,H) = 0. We see that H is a smooth R0-sheaf on Gm,k which

is tame both at 0 and ∞. In fact, there exists a non-empty open subscheme

U ⊂ Gm,k such that H|U is smooth. Take the maximum such U and let
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R be the rank of H|U . By the Grothendieck-Ogg-Shafarevich formula, we

have

dimR0 H
2
c (Gm,k,H) = −

∑
x∈Gm,k−U

(R− dimR0 Hx) −
∑

x∈P1
k−U

swx(H|U )).

Hence U = Gm,k and sw0(H) = sw∞(H) = 0. By replacing k by its finite ex-

tension, we may assume that the representation of π1(Gm,k) corresponding

to H is abelian. By replacing R0 by its finite extension, there exists an in-

vertible smooth R0-subsheaf W of H. Let M = W−1. Since s∗r′M ∼= M�r,

we have s̃∗r′M ∼= Γr
extM. Hence, by replacing F ′

V by F ′
V ⊗ M, we have

RΓc(Gm,k, Rs̃r′,!Γ
r′
ext(F ′

V ⊗M)) �= 0. This is a contradiction. �

The following lemma is proved in the same way as in the proof of [DH,

p. 101, Prop. 2.2].

Lemma 5.3. Let K be a p-local field, R0 a finite field of characteristic

�= p, V a totally wild object in Rep(WK , R0). Then there exist a finite

extension R′
0 of R0, finitely many finite separable extensions L1, . . . , Lm

of K, integers n1, . . . , nm ∈ Z, and wild object χi in Rep(WLi , R
′
0) of rank

one such that

V =
∑
i

niIndWK
WLi

χi

in the Grothendieck group of objects in Rep(WK , R′
0).

Lemma 5.4. Let k = k be an algebraically closed field of characteristic

p, Y a smooth irreducible affine curve over k, Y ↪→ Y the smooth completion

of Y . Suppose that Y −Y consists of more than or equal to two points. We

set Y − Y = {q1, . . . , qm}. Let R0 be a finite p′-coefficient ring, and F a

smooth invertible R0-sheaf on Y which is wild at all points q1, . . . , qm. Let

g(Y ) denote the genus of Y . Set si := swqi(F) > 0 for each i and put

r := 2g(Y ) − 2 +
∑
i

(1 + si).

Define an effective divisor m0 on Y as

m0 :=
∑
i

[qi].
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Let Jm0 be the generalized Jacobian of Y with modulus m0. Take a closed

point P on Y and let h : SymrY → Jm0 be the morphism given by D �→
D − r[P ]. Then Rh!Γ

r
extF is supported on a closed point on Jm0.

Proof. We set

m :=
∑
i

(1 + si)[qi].

Let Jm (resp. Jm−m0) be the generalized Jacobian of Y with modulus m

(resp. m−m0). We write the morphism h : SymrY → Jm0 as the composition

SymrY
g→ Jm

h′
→ Jm−m0

h′′
→ Jm0 .

By the geometric class field theory, there exists a character sheaf G on Jm

such that F = h∗G. Furthermore, the restriction of G on the kernel of

Jm→ Jm−[qi] is non-trivial for every i.

Define the reduced closed subschemes K,K ′ ⊂ Jm with K ′ ⊂ K as

K := {div(ω) + m − r[P ] ; Supp(div(ω) + m) ⊂ Y },

and by

K ′ := {div(ω) + m − r[P ] ∈ K ;
∑
i

Resqiω = 0}.

By [Se3, V, §1, 2] and Riemann-Roch theorem [Se3, IV, §2, 6. Thm. 1],

g−1(Jm−K) → Jm−K is a vector bundle of rank g(Y ) − 1, g−1(K −K ′)
is empty and g−1(K ′) → K ′ is a vector bundle of rank g(Y ). We have

R(h′′ ◦ h′)!G = 0 by the orthogonality relation. Hence to prove the lemma,

it suffices to show that

R(h′′ ◦ h′|K)!(G|K) = 0

and that

R(h′′ ◦ h′|K′)!(G|K′)

is supported on a closed point of Jm0 .

Since K is a translation of a sub k-group of Jm which contains the

kernel of h′′ ◦ h′, the first assertion follows from the orthogonality relation

of character sheaves (§ 3.2). We prove the second assertion.
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Take prime elements πq1 , . . . , πqm of OY ,q1
, . . . ,OY ,qm

. Take a mero-

morphic differential ω0 on Y such that

ω0

dπqi
∈ 1

π1+si
qi

+ OY ,qi

for all i.

Then K and K ′ are the translations of the sub k-group scheme

Cm = (
∏
i

(OY ,qi
/m1+si

Y ,qi
)×)/Gm,k

∼= {div(f) ∈ Jm ; Supp(div(f)) ⊂ Y }

of Jm and the sub k-scheme

{(
si∑
j=0

bi,jπ
j
qi)i ∈ Cm ;

∑
i

bi,si = 0}

of Cm by the class of div(ω0) + m − r[P ].

The image h′(K) is the translation of the sub k-group scheme

Cm−m0 = (
∏
i

(OY ,qi
/msi

Y ,qi
)×)/Gm,k

∼= {div(f) ∈ Jm−m0 ; Supp(div(f)) ⊂ Y }

of Jm−m0 by the class of div(ω0) + m − r[P ].

Let

Q = div(ω0) + m − r[P ] + (

si−1∑
j=0

bi,jπ
j
qi)i

be a closed point in h′(K), Q̃ ∈ K be the lift of Q defined as

Q̃ = div(ω0) + m − r[P ] +

si−1∑
j=0

bi,jπ
j
qi + 0)i.

Then the fiber K ′ ∩ (h′)−1(Q) of h′|K′ at Q is equal to the translation of

{(1 + bi,siπ
si
qi )i ∈ Cm ;

∑
i

bi,0bi,si = 0}
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by Q̃.

It is easy to see that there is a unique closed point (b′i,0)i ∈ (Gm+1
m,k )/Gm,k

such that R(h′|K′)!(G|K′)Q = 0 for Q ∈ h′(K) as above with (bi,0)i �= (b′i,0)i.
This completes the proof. �

In view of the proof of the above lemma, we have:

Corollary 5.5. In the notation of the above lemma, suppose that

there exists a finite subfield k0 of k such that Y is the base change of a

smooth curve Y0 over k0, that q1 comes from a k0-rational point of the com-

pletion Y 0 of Y0, and that F is defined on Y0. Let Y 0 −Y0 = {q′1, · · · , q′m′}.
Fix a non-trivial additive character ψ : k0 → R×

0 . Take a non-zero mero-

morphic differential ω0 on Y 0. For each i, let Kq′i
be the completion of the

function field of Y0 at q′i. Take a non-zero meromorphic function f on Y 0

such that for every i, the class of f in Kq′i
/1 + mKq′

i
is equal to the refined

swan conductor rswψω0,q
′
1
(Fq′1

).

Then Rh!Γ
r
extF is supported on the closed point on Jm0 corresponding

to the divisor div(ω0) − div(f) + m − r[P ].

Corollary 5.6. Proposition 5.1 (2) holds if V is of the form V =

IndWK
WL

χ for a finite separable totally ramified extension L of K and a rank

one wild object χ in Rep(WL, R0).

Proof. Let f : Y → Gm,k be the finite etale extension corresponding

to L/K by the theory of canonical extension. Let Y ↪→ Y be its smooth

compactification, let f : Y → P1
k be the morphism induced by f . Since

L/K is totally ramified, Y is geometrically irreducible and f
−1

(0) consists

of one k-rational point q1. Set (Y −Y )(k) = {q1, q2, . . . , qm}. There exists a

smooth invertible R0-sheaf F1 on Y which is wildly ramified at q1 and tame

at q2, . . . qm such that FV
∼= f∗F1. Then Y , Y , q1, . . . , qm, and F = F1⊗f∗L

satisfy the conditions of the above lemma.

Let Jm0 be the generalized Jacobian as in the above lemma. Take a point

P ∈ Y (k) such that f(P ) = 1 ∈ Gm,k. By using P , there is a canonical
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morphism SymrY → Jm0 . We have a commutative diagram:

SymrY
Symrf−−−−→ SymrGm,k

h

	 	s̃r

Jm0 −−−→ Gm,k.

Hence the assertion follows from the above lemma and Γr
extF ′

V
∼=

(Symrf)∗Γr
extF . �

Therefore, to prove Proposition 5.1 (2), it suffices to prove the following

lemma:

Lemma 5.7.

(1) Let

0 → V ′ → V → V ′′ → 0

be an exact sequence of totally wild objects in Rep(WK , R0). If Propo-

sition 5.1 (2) holds for two of V , V ′ and V ′′, then it holds for all of

V , V ′ and V ′′.

(2) Let K ′/K be a finite unramified extension, V a totally wild object in

Rep(W ′
K , R0). If Proposition 5.1 (2) holds for V , then it holds for all

of IndWK

W ′
K
V .

Proof. We prove only the assertion 1. The assertion 2 is obtained by

a similar method.

We set r := sw(V )+rankV , r′ := sw(V ′)+rankV ′, and r′′ := sw(V ′′)+

rankV ′′. The sheaf Γr
extF ′

V has a natural filtration, whose graded pieces are

equal to ∨r1,r2,∗(Γ
r1
extF ′

V ′ � Γr2
extFV ′′) for some r1, r2 ∈ Z≥0 with r1 + r2 = r,

where ∨r1,r2 : Symr1Gm,k × Symr2Gm,k → SymrGm,k is the canonical map.

We have the following commutative diagram :

Symr1Gm,k × Symr2Gm,k −−−→ SymrGm,k

s̃r1×s̃r2

	 	s̃r

Gm,k × Gm,k
µ−−−→ Gm,k,



212 Seidai Yasuda

where µ : Gm,k×Gm,k → Gm,k is the multiplication map. By Proposition 5.1

1, we have

Rs̃r,!Γ
r
extF ′

V
∼= Rµ!(Rs̃r′Γ

r′
extF ′

V ′ �Rs̃r′′Γ
r′′
extF ′

V ′′).

Hence the assertion follows from simple computation. �

This completes the proof of Proposition 5.1. �

Remark 5.8. In view of Corollary 5.5 and the proof of Proposition 5.1,

we have the following refinement of Proposition 5.1 (2): in the notation of

Proposition 5.1, fix a non-trivial additive character ψ : k → R×
0 . Take

a non-zero meromorphic differential ω on Gm,k. Let K0 and K∞, be the

completions of the function field of Gm,k at 0 and ∞, respectively. We

identify K0 with K by the morphism i0. Take a non-zero meromorphic

function f ∈ k(πK)× on Gm,k such that the class of f in K×
0 /1 + mK0

and K×
∞/1+mK∞ are equal to the refined Swan conductors rswψω,0(V ) and

(rswψω,∞(L))rankV , respectively. Let g(πK) ∈ k(πK)× be a rational function

such that

div(g) = div(ω0) − div(f) + m − r[1]

Then Rs̃r,!Γ
r
extF ′

V is supported on the k-rational point g(0)
g(∞) ∈ k× =

Gm,k(k).

6. Determinant of F ′
V

Let the notation be the same as in the beginning of § 5. Fix a non-

trivial additive character ψ0 : k → R×
0 . Let ψ : K → R×

0 be the continuous

additive character given by ψ(x) = ψ0(Res(xdπK
πK

)). Let β ∈ k× be the

unique element satisfying φ0(
x
πK

) = ψ0(−βx) for all x ∈ k.

Proposition 6.1. Let V and (ρ,W ) be two objects in Rep(WK , R0).

Suppose that V is totally wild and that W is tamely ramified. Then we have

det(−Fr ; RΓc(F ′
V⊗W ))−1

= det(−Fr ; RΓc(F ′
V ))−rankW · detW (rec(rswψ(V ) · (βπK)rankV )).
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Remark 6.2. Let K∞ = k(( 1
πK

)) and let ψ∞ : K∞ → R×
0 be the

continuous additive character given by ψ∞(x) = ψ0(Res(xdπK
πK

)). Then we

have rswψ∞(L∞) = β−1π−1
K . Hence rswψ∞((F ′

V )∞) = β−rankV π−rankV
K .

Therefore, we have

det(FW )∞(recK∞(rswψ∞((F ′
V )∞))) = det(FW )∞(recK∞(β · πK))−rankV

= detW (rec(β · πK))rankV .

Proof. We set G = πtm
1 (Gm,k), I = πtm

1 (Gm,k), and Im = I/Im. For

every integer m which is prime to p, let πm : Gm,k → Gm,k be the m-th

power map, Wm = H1
c (Gm,k, (πm,∗R0)⊗R0 F ′

V ). Wm is a free R[Im]-module

of rank r with a semi-linear action of G, where r = rankV +sw(V ). If n,m

are two positive integers which are prime to p with m|n, the canonical map

Wn → Wm induces an isomorphism

Wn ⊗R0[In] R0[Im] ∼= Wm.

Let Ŵ = lim←−mWm be the projective limit of Wm. Ŵ is a free R0[[I]]-module

of rank r with a semi-linear action of G.

Consider the maximal exterior power detR0[[I]] Ŵ =
∧r

R0[[I]] Ŵ of Ŵ . It

is a free R0[[I]]-module of rank one with a semi-linear action of G. We note

that the action of I ⊂ G on detR0[[I]] Ŵ does not necessarily coincide with

the action of I ⊂ R0[[I]]
×.

Take a lift F̃rq ∈ G of the geometric Frobenius Frq. An argument similar

to that in [Y1, Remark 11.3] shows that the eigenvalue of F̃rq on detR0[[I]] Ŵ

gives a well-defined element û ∈ (R0[[I]]
×)G in the G-coinvariant. As in [Y1,

§ 11.2], we have

Lemma 6.3. The determinant of det(Frk;H
1
c,et(Gm,k,F ′

V⊗R0
W )) is

equal to

det(F̃rq ; W )r · det

(∫
I
ρ(g)−1dû(g)

)
.

Proof. Take a sufficiently divisible m which is prime to p such that

the restriction π∗
mFW is geometrically constant. By the same argument as
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in [Y1, § 11.1] we have H1
c (Gm,k,F ′

V⊗R0
W ) ∼= (Wm ⊗R0 W )Im . The lemma

follows from an argument similar to that in [Y1, § 11.1]. �

Let us go back to the proof of Proposition 6.1. We consider WK/W 0+
K

as a subgroup of G in a canonical way. Then F̃r
r

q lies in WK/W 0+
K . The

element rswψ(V ) · (βπK)rankV in K×/1+mK and rec−1(F̃r
r

q) ∈ K×/1+mK

only differ by an element in k× which we denote by a
F̃rq ,ψ

∈ k×, that is

rswψ(V ) · (βπK)rankV = a
F̃rq ,ψ

· rec−1(F̃r
r

q).

We consider a
F̃rq ,ψ

as an element in I/Iq−1 ⊂ (R0[[I]])
×
G by the canonical

isomorphism I/Iq−1 ∼= k×. Then it suffices to prove that

û = a
F̃rq ,ψ

· det(Frk ; H1
c (Gm,k,F ′

V )) in (R0[[I]]
×)G.

By the same way as in [Y1, § 11.3], we have

detR0[[I]]Ŵ ∼= lim←−mRΓc(Gm,k, (πm,∗R0) ⊗R0 Rs̃r,!Γ
r
extF ′

V )[r].

By Proposition 5.1, Rs̃r,!Γ
r
ext is supported on a closed point P in Gm,k. By

computation of rank, P is a k-rational point, Ris̃r,!Γ
r
extF ′

V = 0 for i �= r,

and the geometric stalk Ris̃r,!Γ
r
extF ′

V at P is a free R0-module of rank one.

Hence there exists a prime element π′
K in K such that for every positive

integer m with (m, p) = 1, detR0[Im]Wm is isomorphic to the free R0-module ⊕
xm=π′

K

R0

⊗R0 detR0H
1
c (Gm,k,F ′

V ),

endowed with the canonical action of G. Hence there exists an element

a′ ∈ I/Iq−1 such that û = a′ · det(Frk ; H1
c (Gm,k,F ′

V )) in (R0[[I]]
×)G. It

suffices to prove that a′ = a
F̃rq ,ψ

. This assertion follows from Remark 5.8. �

Corollary 6.4. Let R be a strict p′-coefficient ring which contains

R0, V a totally wild object in Rep(WK , R0). Then the product formula

holds for F ′
V ⊗R0 R.

Proof. By Lemma 3 and [Y1, Prop. 9.14], we may assume that V

is of the form V = V1 ⊗R0 V2, where V1 is a tamely ramified object in
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Rep(WK , R0) and V2 is the base change of an object in Rep(WK , R′
0) by a

local ring homomorphisms R′
0 → R0, where R′

0 is a p′-coefficient ring which

is a complete discrete valuation ring with a finite residue field whose field

of fractions is of characteristic zero. By [Lau2, p. 187, Thm. 3.2.1.1], the

product formula holds for V2. Since V2 is totally wild, the product formula

also holds for V by [Y1, Prop. 8.3] and Proposition 6.1. �

7. Fourier Transforms

7.1. Deligne-Laumon’s global Fourier transform F (0,∞′)

Let k be a finite field of characteristic p, R0 a finite p′-coefficient ring,

U a non-empty open subscheme of the affine line A1
k.

Take a non-trivial additive character φ : k → R×
0 . Let Lφ be the Artin-

Schreier sheaf on A1
k associated to φ. Let 〈 , 〉 : A1

k ×k A1
k → A1

k be the

product map. According to [Lau2, p. 148, 1.4.1], let us denote the sheaf

〈 , 〉∗Lφ on A1
k×kA1

k by Lφ(xx
′). We also use the notation Lψ(s.x′), Lψ(x.s′)

and Lψ((x− s).x′) in [Lau2, p. 148–149, 1.4.2, and p. 195]. Let Lφ(xx
′) be

the extension by zero of Lφ(xx
′) by the canonical inclusion A1

k ×k A1
k ↪→

P1
k ×k P1

k.

For a smooth R0-flat R0-sheaf F on U which is at most tamely ramified

at ∞ ∈ P1
k − A1

k, define the global Fourier transform FTφ,U (F) of F as

FTφ,U (F) := R1pr2,!(pr∗1F ⊗ (Lφ(xx
′)|U×Gm,k

)),

where pr1 : U × Gm,k → U and pr2 : U × Gm,k → Gm,k are projections.

Lemma 7.1. FTφ,U (F) is a smooth R0-flat R0-sheaf on Gm,k.

Proof. It is easy to see that FTφ,U (F) is a R0-flat R0-sheaf on Gm,k

whose all geometric fibers are of a same rank. To prove the smoothness

of FTφ,U (F), we may assume that R0 is a field. Let G be the extension

by zero of the sheaf pr∗1F ⊗ (Lφ(xx
′)|U×Gm,k

) on U × Gm,k to P1
k × Gm,k.

Then (P1
k×Gm,k,G,pr2) is universally locally acyclic by [Lau1, p. 186, Thm.

2.1.1]. Hence FTφ,U (F) is smooth. �

Let α : U ↪→ P1
k be the inclusion map, and D0′ the henselizations of P1

k

at 0. Let pr1 : P1 ×D0′ → P1, pr2 : P1 ×D0′ → D0′ be projections. Let η0′

be the generic point of D0′ . Let us consider the vanishing cycle

RΦη∞′ (pr∗1(α!F) ⊗ (Lφ(xx
′)|P1×D0′

)) ∈ D(P1 × η0′ , R0)
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for the projection pr2.

The following lemma is proved in a manner similar to that in [Lau2,

p. 160, Prop. 2.3.2.1]:

Lemma 7.2.

(1) The restriction of RΦη0′ (pr∗1(α!F) ⊗ L) to U × η0′ is zero.

(2) For any closed point s ∈ P1
k, let s denote a geometric point of P1

k over

s. Then for i �= −1,

RiΦη0′ (pr∗1(α!F) ⊗ L)
(∞,0

′
)

is zero.

(3) We have a canonical distinguished triangle

RΓc(U ⊗k k,F) → FTφ,U (F)η0′ → R−1Φη0′ (pr∗1(α!F) ⊗L)
(∞,0

′
)

+1−→ .

Let D∞′ be the henselizations of P1
k at ∞. Let pr1 : P1 × D∞′ → P1,

pr2 : P1 ×D∞′ → D∞′ be projections. Let η∞′ be the generic point of D∞′ .

Let us consider the vanishing cycle

RΦη∞′ (pr∗1(α!F) ⊗ (Lφ(xx
′)|P1×D∞′ )) ∈ D(P1 × η∞′ , R0)

for the projection pr2.

Lemma 7.3.

(1) The restriction of RΦη∞′ (pr∗1(α!F) ⊗ L) to U × η∞′ is zero.

(2) For any closed point s ∈ P1
k, let s denote a geometric point of P1

k over

s. Then for s ∈ P1
k − U and for i �= −1,

RiΦη∞′ (pr∗1(α!F) ⊗ L)(s,∞′)

is zero.
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(3) For any closed point s on a curve C over k, let Gs denote the absolute

Galois group of the fraction field of the henselization of C at s. Then

we have

FTφ,U (F)η∞′ =
⊕

s∈P1
k−U

Ind
G∞′
Gs×k∞′R

−1Φη∞′ (pr∗1(α!F) ⊗ L)(s,∞′).

Remark 7.4. We will see later that

R−1Φη∞′ (pr∗1(α!F) ⊗ L)(∞,∞′).

is zero.

Proof. The assertion (1) follows from [KL, 2.4]. The assertions (2)

and (3) are proved in a manner similar to that in [Lau2, p. 161, Prop.

2.3.3.1]. �

7.2. Laumon’s local Fourier transform F (0,∞′)

Let K be a p-local field of characteristic p with residue field k, πK a prime

element in K. Since the subring ∩n(K)p
n

of K is canonically isomorphic

to k, the field K has a canonical structure of k-algebra. Let Oh
K be the

henselization of k[πK ](πK), K
h = Frac (Oh

K). Let R0 be a finite local ring

on which p is invertible. For an object V in Rep(WK , R0), let Ṽ denote

the etale R0-sheaf on Spec (Kh) corresponding to V . Let jK : Spec (Kh) →
Spec (Oh

K) be the canonical inclusion. We consider the R0-sheaf jK,!Ṽ on

Spec (Oh
K).

Suppose further that there exists a non-trivial additive character φ :

Fp → R×
0 . Let A = A1

k = Spec (k[t]) be the affine line over k, Lφ be the

smooth etale R0-sheaf on A defined by the Artin-Schreier equation sp −
s = t and φ. Let L(0,∞′)

φ be the pull-back of Lφ by the morphism from

Spec (Oh
K)×kSpec (Kh) to A whose associated homomorphism of coordinate

rings is given by t �→ πK⊗1
1⊗πK

, and set L(0,∞′)
φ = (id × jK)!L(0,∞′)

φ . Let us

consider the vanishing cycle

R1Φη′(pr∗1(jK,!Ṽ ) ⊗R0 L
(0,∞′)
φ )

relative to pr2 : Spec (Oh
K) ×k Spec (Oh

K) → Spec (Oh
K).
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Definition 7.5. For an object V in Rep(WK , R0), let

F (0,∞′)(V ) := R1Φη′(pr∗1(jK,!Ṽ ) ⊗R0 L
(0,∞′)
φ )t,t′ ,

where t = t
′

is the spectrum of an algebraic closure of the residue field

at the closed point of Spec (Oh
K). Then F (0,∞′)(V ) is also an object in

Rep(WK , R0).

We also define objects F (∞,0′)(V ) and F (∞,∞′)(V ) in Rep(WK , R0) in

a manner similar to that in [Lau2, p. 163, Defn. 2.4.2.3]. The objects

F (0,∞′)(V ), F (∞,0′)(V ) and F (∞,∞′)(V ) in Rep(WK , R0) are called the local

Fourier transforms of V .

The following lemma is easily checked:

Lemma 7.6 (cf. [Lau2, 2.4.2.1]). Let π : Spec (Oh
K) → A and π′ :

Spec (Kh) → A denote the morphisms whose associated homomorphisms of

coordinate rings are given by t �→ πK , and t �→ 1
πK

, respectively. Then for

any smooth R0-sheaf F on a nonempty open subscheme U ⊂ A such that

π∗α!F ∼= jK,!Ṽ , where α : U ↪→ P1
k is the canonical inclusion, we have

F (0,∞′)(V ) = (π × π′)∗RΦη′0
(pr∗1(α)!F ⊗R0 Lφ)(t,t′).

Similar statements hold for F (∞,0′) and F (∞,∞′).

As a corollary, we have the exactness of the three functors F (0,∞′),

F (∞,0′), and F (∞,∞′).

Proposition 7.7 (cf. [Lau2, p. 165, 2.5.3]). Let V ∈ Rep(WK , R0) be

a tamely ramified object. Then we have

(1) F (0,∞′)(V ) is a tamely ramified object with the same rank as V .

(2) F (∞,0′)(V ) is a tamely ramified object with the same rank as V . If V

is unramified, then F (∞,0′)(V ) ∼= V (−1).

(3) F (∞,∞′)(V ) = 0.

Proof. There exists a smooth R0-flat R0-sheaf F on Gm,k which is

tamely ramified both at 0 and at ∞ such that the geometric stalk of F at η0
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can be identified with V . Then global Fourier transform FTφ,Gm,k
(F) of F

is a smooth R0-sheaf on Gm,k whose geometric stalks are free R0-modules

of rank rankV . Take any element a ∈ k× and let ta : Gm,k → Gm,k be the

translation by a. It is easy to check that t∗a(FTφ,Gm,k
(F)|Gm,k

) is isomorphic

to FTφ,Gm,k
(F)|Gm,k

for any a ∈ k. By [V, p. 336, Prop. 1.1], FTφ,Gm,k
(F) is

also tamely ramified both at 0 and at ∞. Hence (2) follows from Lemma 7.2

(3).

By Lemma 7.3 (3), F (0,∞′)(V ) ⊕ F (∞,∞′)(Fη∞) is a tamely ramified

object with the same rank as V . Hence to complete the proof of the propo-

sition, it suffices to prove that F (∞,∞′)(V ) = 0.

Let 1 ∈ Rep(WK , R0) be the trivial representation. By considering the

constant sheaf R0 on Gm,k − {1}, we have 2 rankF (0,∞′)(1) +

rankF (∞,∞′)(1) = 2. Hence F (∞,∞′)(1) = 0. For general V , there ex-

ists a smooth R0-sheaf F ′ on Gm,k − {1} such that F ′
η∞

trivial and that

F ′
η0

is isomorphic to V . Using this F ′, we have rankF (0,∞′)(V ) = rankV .

Hence the assertion follows. �

Corollary 7.8. Let V be an object in Rep(WK , R0). Then

rankF (0,∞′)(V ) = rankV + sw(V ) and sw(F (0,∞′)(V )) = sw(V ).

Proof. We have F (0,∞′) ∼= (FTφ,Gm,k
(FV ))η∞′ . Applying the

Grothendieck-Ogg-Shafarevich formula to FV , we have rankF (0,∞′)(V ) =

rankV +sw(V ). By Proposition 7.7, FTφ,Gm,k
(FV ) is tamely ramified at 0′.

Since

RΓc(Gm,k,FTφ,Gm,k
(FV ))

∼= RΓc(Gm,k × Gm,k,FV ⊗ (Lφ(xx
′)|Gm,k×Gm,k

))[1]

∼= RΓc(Gm,k,FV ),

the second assertion follows from the Grothendieck-Ogg-Shafarevich for-

mula. �

Let U be a non-empty open subscheme of A, F a smooth R0-flat R0-

sheaf on U which is unramified at ∞, α : U ↪→ P1
k the canonical inclusion.

Let k{t} be the henselization of k[t](t). For any closed point s ∈ A, let

Ps(t) ∈ k[t] be the unique monic irreducible polynomial which vanishes at

s. Let A(s) be the henselization of A at s, ηs the generic point of A(s). Let
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πs : A(s) → Spec (k{t}) be the morphism whose associated homomorphism

of coordinate rings is given by t �→ Ps(t).

Proposition 7.9 (cf. [Lau2, p. 194, Thm. 3.4.2]). Let S = A− U be

the complement of U . Then

(1) For all s ∈ S,

det(F (0,∞′)(πs,∗(F|ηs)))
is tamely ramified.

(2) ⊗
s∈S

det(F (0,∞′)(πs,∗(F|ηs)))

is unramified and is isomorphic to

det(RΓc(U ⊗k k,F))−1 ⊗ det(F∞(−1)).

Proof. (1) Consider the global Fourier transform

F ′ = FTφ,U (F)

of F . The sheaf F ′ is a smooth R0-flat R0-sheaf on Gm,k. There exists a

distinguished triangle

RΓc(U ⊗k k,F)[1] → F ′
η′0

→ F∞(−1)
+1−→ .

Hence det(F ′) is unramified at 0 and

(j′∗ det(F ′))
0
′ ∼= det(RΓc(U ⊗k k,F))−1 ⊗ det(F∞(−1)),

where j′ : Gm,k ↪→ A.

(2) Since

F ′
η∞′

∼=
⊕
s∈S

IndGs
Gs×k∞′(R

−1Φη∞′ (M(F)))s,∞′ ,

where

(R−1Φη∞′ (M(F)))s,∞′

∼= Lφ(s.x
′)η∞′ ⊗R0 (R−1Φη∞′ (pr∗(α!F) ⊗ Lφ((x− s).x′)))s,∞′ ,
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we have

det(F)η∞′
∼= Lφ(δF .x

′)η∞′ ⊗R0

⊗
s∈S

det(F 0,∞′
(πs,∗(F|ηs))),

where

δF =
∑
s∈S

(rankF + sws(F)) · Tr(s) ∈ k.

Hence, L(−δF .x′)⊗j′∗ det(F ′) is a smooth invertible R0-sheaf on A which

is tamely ramified at ∞. By the global class field theory, L(−δF .x′) ⊗
j′∗ det(F ′) must be geometrically constant. Therefore⊗

s∈S
det(F (0,∞′)(πs(F|ηs)))

is an unramified object which is isomorphic to

det(RΓc(U ⊗k k,F))−1 ⊗ det(F∞(−1)).

Hence the proposition follows. �

8. End of Proof

Definition 8.1. Let ψ : K → R×
0 be a non-trivial continuous ad-

ditive character. Let a ∈ K× be the unique element satisfying ψ(x) =

φ(Trk/Fp(Res(axdπK))) for every x ∈ K. Define the ε′0,R0
-constant

ε′0,R0
(V, ψ, φ, πK) ∈ R×

0 as

ε′0,R0
(V, ψ, φ, πK) := (−1)rankV +swV

· detV (rec(a))qvK(a) det(F (0,∞′)(V ))(rec(πK)),

Proposition 8.2. Let A = Spec k[t], U and F be as above. In the

notation of Theorem 4.1, suppose that X0 = P1
k, U0 = U , ω = −dt and

F = F . For x ∈ A− U0, let πx = Px(t) and let π∞ = 1
t . Then we have

εR0(U0,F) = q
1
2
χ(X)rank (F)

∏
x∈X0−U0

ε′0,R0
(Fx, ψω,x, φ, πx).
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Proof. It follows from Proposition 7.9 (2). �

Hence to prove Theorem 4.1, it suffice to prove the following proposition:

Proposition 8.3. For any object V in Rep(WK , R0) and for any non-

trivial continuous additive character ψ : K → R×
0 , we have

ε0,R(V ⊗R0 R,ψ) = ε′0,R0
(V, ψ, φ, πK).

Lemma 8.4. Proposition 8.3 holds for (V, ψ) if V is a tamely ramified

object.

Proof. We may assume that the character ψ is of the form

ψ(x) = φ(Trk/Fp(Res(x
dπK
πK

))).

Let V be a tamely ramified object in Rep(WK , R0), and FV the canonical

extension sheaf on Gm,k corresponding to V . Consider the global Fourier

transform FTφ,Gm,k
(FV ).

Then for every closed point x in Gm,k, we have, by [Y1, Thm. 10.5] and

[Y1, Thm. 5.6]

det(Frx ; FTφ,Gm,k
(FV )) = det(Frx ; FV ) · (q · ε0,R(V ⊗R0 R,ψ))deg(x).

Hence det(FTφ,Gm,k
(FV )) ⊗R0 det(FV )⊗−1 is geometrically constant. The

lemma follows by comparing the traces of the geometric Frobenius at 1 and

at ∞ on det(FTφ,Gm,k
(FV )) ⊗R0 det(FV )⊗−1. �

Corollary 8.5. Let φ : k → R×
0 be a non-trivial character and χ :

W ab
K → R×

0 be the character given by

χ(rec(x)) = φ(Res(
dx

πKx
)).

Then Proposition 8.3 holds for (V, ψ) if V is of the form V = W ⊗ χ for a

tamely ramified object W in Rep(WK , R0).

Proof. This follows from the definition of ε0,R(W,ψ). �
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Proof of Proposition 8.3. By Lemma 8.4, we may assume that V

is totally wild. Let us consider the sheaf F ′
V . By Corollary 6.4, the product

formula holds for F ′
V ⊗R0R. Hence the assertion follows from Proposition 8.2

and Corollary 8.5. �

This completes the proof of Theorem 4.1. �

9. Application to Saito’s Formula

Let k be a finite field of q elements with characteristic p, X/k a smooth

projective variety of pure dimension n, and U ⊂ X an open subscheme such

that D = X − U is a divisor with simple normal crossing.

Let cX,U be the element in πtm
1 (U)ab which is introduced and is called

the relative canonical cycle in [Sa1, p. 402]; the prime-to-p part of cX,U is

equal to

(−1)ncn(Ω1
X/k(logD),Res) ∈ H2n(X mod D, Ẑ′(n))

:=
∏
l �=p

H2n(U, j!Zl(n)U ),

where j : U ↪→ X is the canonical inclusion and cn(Ω1
X/k(logD),Res) is

the relative top chern class for the partially trivialized locally free sheaf

(Ω1
X/k(logD),Res) which is introduced in [Sa1, p. 391], and the p-part of

cX,U is the image of usual chern class (−1)ncn(Ω1
X/k(logD)) by the reci-

procity map CH0(X) → π1(X)ab.

Let R0 be a finite p′-coefficient ring, ψ0 : k → R×
0 a non-trivial additive

character. Let Ẑ′(1) be the group

Ẑ′(1) := lim←− k′(k
′)×,

where k′ runs over all finite extensions of k in a fixed algebraic closure

of k, and the projective limit is taken with respect to the norm maps.

Let Ck be the exact category of object V in Rep(Ẑ′(1), R0) which satisfies

q∗V ∼= V , where q∗V is the pull-back of V by the q-power map Ẑ′(1)
∼=−→

Ẑ′(1). For each object V in Ck, we define an element τ(V, ψ0) ∈ R×
0 in the

following way: take a triple (R, Ṽ , ψ), where R is a strict p′-coefficient ring

containing R0, Ṽ is a tamely ramified object in Rep(Wk((t)), R) such that
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Res
Wk((t))

W 0
k((t))

is identified with V ⊗R0 R via the canonical isomorphism Ẑ′(1) ∼=
W 0

k((t))/W
0+
k((t)), and ψ : k((t)) → R× is a continuous additive character of

conductor −1 whose restriction to k[[t]] induces ψ0. We put τ(V, ψ0) :=

(−q)rankV ε0,R(Ṽ , ψ). Then τ(V, ψ0) belongs to R×
0 and is independent of

the choice of (R, Ṽ , ψ).

Lemma 9.1 (cf. [Sa1, p. 400–401, Lem. 1 (1)]). Let k′ be a finite exten-

sion of k and r ∈ Z>0 be a positive integer. Let r = ms be the decomposition

of r into the prime-to-p part m and the p-part s. For an object V in Ck′, let

IndV be the object in Ck defined as

IndV =

[k′:k]−1⊕
i=0

(qi)∗(IndrV ),

where IndrV is the induced representation of V by the multiplication-by-r

map Z̃′(1) → Z̃′(1). Then we have

τ(IndV, ψ0) = (detV )(m)τ(V, ψ
(s)
0 ◦ Trk′/k) · (τk,m,ψ0)

[k′:k]·rankV .

Here detV is considered as a character of Ẑ′(1)/(q− 1)Ẑ′(1) = k× and ψ
(s)
0

is the additive character of k given by ψ
(s)
0 (x) = ψ0(x

s), and

τk,m,ψ0 =

{ (
m
k

) ((
2
k

)
τk

((
k

)
, ψ0

))m−1
if p �= 2,(

m
k

)′
q

m−1
2 if p = 2,

Here
(
m
k

)′
= (−1)

m2−1
8

·[k:F2].

Proof. We may assume that s = 1. Let L = k′((t)) and K =

k((tm)) ⊂ L. Take a triple (R, Ṽ , ψ), where R is a strict p′-coefficient

ring containing R0, Ṽ is a tamely ramified object in Rep(WL, R) such that

ResWL

W 0
L

is identified with V ⊗R0 R, and ψ : K → R× is a continuous additive

character of conductor −1 whose restriction to OK induces ψ0. Then we

have τ(IndV, ψ0) = (−q)rank IndV ε0,R(IndWK
WL

Ṽ , ψ) and τ(V, ψ0 ◦ Trk′/k) =

(−q)[k
′:k] rankV (detV )(m)−1ε0,R(V, ψ◦TrL/K). By [Y1, Thm. 5.6], it suffices

to prove that

τ
[k′:k]
k,m,ψ0

=
(−q)[k

′:k]m

(−q)[k′:k]
· λR(L/K,ψ).
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Let L0 = k′((tm)) be the maximal unramified subextension of L/K. By

[Y1, Prop. 6.5 (5)] we have

λR(L/K,ψ) = λR(L0/K,ψ)m · λR(L/L0, ψ ◦ TrL0/K)

= (−1)([k
′:k]−1)m · λR(L/L0, ψ ◦ TrL0/K).

By [Y1, Lem. 6.7], we have

λR(L/L0, ψ ◦ TrL0/K)

=


q−

m−1
2

[k′:k]

(
(−1)

m−1
2 m

k′

)
if m is odd and p �= 2,

q−
m−1

2
[k′:k](−1)

m2−1
8

[k′:F2] if m is odd and p = 2,

q−
m
2

[k′:k]τR(L/L0, ψ◦L0/K)

(
(−1)

m
2 −1 m

2
k′

)
if m is even.

Hence the assertion follows. �

Let V be an object in Rep(πtm
1 (U), R0). We define τD/k(V, ψ0) ∈ R×

0

in the following way (cf. [Sa1, p. 403]). Let (Di)i∈I denote the family of

irreducible components of D. For i ∈ I, let ki be the constant field of

Di, ci ∈ Z the Euler number of (Di −
⋃

i′ �=iDi′) ⊗ki ki, and Vi ∈ Cki the

restriction of V by the morphism Ẑ′(1)ki → π1(U)tm which is canonically

defined up to conjugacy. Then we put

τD/k(V, ψ0) :=
∏
i∈I

τki(Vi, ψ0 ◦ Trki/k)
ci .

Proposition 9.2 (cf. [Sa1, p. 403, Thm. 1]). Assume that p �=
2. Let F be the smooth R0-sheaf on U corresponding to an object V in

Rep(πtm
1 (U), R0). Then the global ε0-constant

ε0,R0(U/k,F) = det(−Frk ; RΓc(U ⊗k k,F))−1 ∈ R×
0

satisfies

ε0,R0(U/k,F) = detV (−cX,U ) · τD/k(V, ψ0) · ε0,R0(U/k,R0)
rankV .
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Let K be a p-local field with the residue field k, X a proper flat generi-

cally smooth OK-scheme which is regular of dimension n as a scheme, and

U ⊂ X an open subscheme contained in X ⊗OK
K. Assume that the com-

plement D = X − U is a divisor with simple normal crossing of X. Let

(Di)i∈I be the family of irreducible components of D and let I0 ⊂ I be the

subset of i ∈ I such that Di ⊂ X ⊗OK
k. Let ri be the multiplicity of of

X ⊗OK
k at Di and mi be the prime-to-p part of ri. For a subset J ⊂ I, let

DJ =
⋂

i∈J Di. We assume that DJ,K =
⋂

i∈J Di ⊗OK
K is smooth over K

for all J ⊂ I and that (X,U) is tame over OK in the sense of [Sa1, p. 404],

that is, the OX -module Ω1
X/OK

(logD/ log k) of differentials with logarith-

mic poles is locally free. We define (the tame part of) the relative canonical

cycle

cX,U/OK
∈ H2n

Xk
(X mod D, Ẑ′(n))

in the following way (cf. [Sa1, p. 404]). For i ∈ I, let D∗
i = Di −

⋃
i′ �=iDi′ .

For i ∈ I0, we also denote, by abuse of notation, by cDi,D∗
i

the prime-

to-p part in H2n−2(Di mod D, Ẑ′(n − 1)) of the relative canonical cycle

cDi,D∗
i
∈ πtm

1 (U)ab. Then we put

cX,U/OK
= i∗(−

∑
i∈I0

mi ∪ cDi,D∗
i
) ∈ H2n

Xk
(X mod D, Ẑ′(n)),

where i∗ :
⊕

i∈I0 H
2n−1(Di mod D, Ẑ′(n)) → H2n

Xk
(X mod D, Ẑ(n)) is as

in [Sa1, p403], and mi ∈ Z is considered as an element in H1(Di mod D,

Ẑ(1)).

Let h : R0 → R be a local ring homomorphism from R0 to a strict p′-
coefficient ring R, ψ : K → R× a non-trivial continuous additive character

with ordψ = −1, and ψ0 : k → R× the character given by the restriction

ψ|OK
. For an object (ρ, V ) in Rep(πtm

1 (U), R0), we define τD/k(ρ, ψ0) ∈ R×
0

in a manner similar to that in [Sa1, p. 404], that is,

τD/k(ρ, ψ0) =
∏
i∈It0

τki(ρi, ψ0 ◦ Trki/k)
ci ,

where It0 = {i ∈ I0 ; p � ri}.
In view of the proof of [Sa1, p. 403, Thm. 1] given in [Sa1, p. 409–415],

to prove Proposition 9.2, it suffices to prove the following proposition:
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Proposition 9.3 (cf. [Sa1, p. 405, Thm. 2]). Assume that p �= 2. Let

F be the the smooth R0-sheaf on U corresponding to (ρ, V ). Then the local

ε0-constant

ε0,R(U/K,F , ψ) = ε0,R(RΓc(U ⊗K K,F) ⊗R0 R,ψ) ∈ R×

is equal to the image by h of

det ρ(−cX,U/OK
)τD/k(ρ, ψ0)

×


(
(−1)χc(UK)

(
M
k

) ((
2
k

)
τk

((
k

)
, ψ0

))χc(UK)−χs
c(UK)

)rankV
if p �= 2,(

(−1)χc(UK)
(
M
k

)′
q

1
2
(χc(UK)−χs

c(UK))
)rankV

if p = 2,

where χc(UK) and χs
c(UK) are as in [Sa1, p. 405, Thm. 2].

Proof. We fix a subset J ⊂ I and a connected component E of DJ

and study the restriction RΨF|E∗ of the complex of the nearby cycles RΨF
on E∗ = E −

⋃
i∈J Di. For i ∈ J , let Ii and Pi ..... αi : Ii/Pi → πtm

1 (U).

We may assume that the image of αi is commutative to each other. Let

J0 = J ∩ I0 and M be the complex concentrated on degree 0 and −1:

ZJ0 → Z ; ei �→ ri.

Then the canonical morphism

µ̂ :
∏
i∈J0

Ii/Pi → IK/PK

is canonically identified with µ⊗ id
Ẑ′(1)

.

In view of the proof of [Sa1, p. 405, Thm. 2] given in [Sa1, p. 405–408],

in order to prove the proposition, it suffices to prove the following analogue

of [Sa1, p. 407, Cor. 1]. �

Lemma 9.4 (cf. [Sa1, p. 407, Cor. 1]). On each stratum E∗, RΨF|E∗

is a successive extension of bounded complexes of smooth R0-flat R0-sheaves

which is tamely ramified along the boundary E − E∗. If J = {i} for some

i ∈ I0, then RqΨF|E∗ = 0 for q �= 0 and R0ΨF|E∗ = Ind
IK/PK

Ii/Pi
ρi as a

representation of IK/PK . If J otherwise, we have

[RΨF|E∗ ] = 0
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in the Grothendieck group of the smooth R0-flat R0-sheaves on E∗ which is

tamely ramified along the boundary E − E∗.

Proof. We use the notation in the proof of [Sa1, p. 405–406, Prop.

6]. Let R0[[G]] = lim←− dR0[Gd]. Consider the R0[[G]]-sheaf (ϕd,!ϕ
∗
dF)d. Since

F ∼= (ϕd,!ϕ
∗
dF)d ⊗L

R0[[G]] R0,

we have

RΨF|E∗ ∼= (Fd|E∗ ⊗R0 IndIK
IKd

RΨdR0,Ud
)d ⊗L

R0[[G]] R0.

Hence there exists a filtration on RΨF|E∗ such that each graded piece is

isomorphic to

(Fd|E∗ ⊗R0 IndIK
IKd

R0)d ⊗L
R0[[G]] R0 ⊗R0

q∧
Hom(H1(M)(1), R0).

Hence the lemma follows. �

This completes the proof of Proposition 9.2. �
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[De3] Deligne, P., Les constantes des équations fonctionnelles des fonctions L,
Seminaire a l’IHES (1980).

[DH] Deligne, and G. Henniart, Sur la variation, par torsion, des constantes
locales d’équations fonctionnelles de fonctions L, Invent. Math. 64 (1981),
no. 1, 89–118.

[Dr] Drinfeld, V. G., Two-dimensional �-adic representations of the funda-
mental group of a curve over a finite residue field and automorphic forms
on GL(2), 85–114.

[He] Henniart, G., Galois ε-factors modulo roots of unity, Invent. Math. 78
(1984), 117–126.



The Product Formula 229

[K1] Kato, K., Swan conductors with differential values, in Galois represen-
tations and arithmetic algebraic geometry (Kyoto, 1985/Tokyo, 1986),
315–342, Adv. Stud. Pure Math. 12, North-Holland, Amsterdam-New
York (1987).

[Kz1] Katz, N. M., Local-to-global extensions of representations fundamental
groups, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 4, 69–106.

[KL] Katz, N. M. and G. Laumon, Transformation de Fourier et majoration de
sommes exponentielles, Inst. Hautes Études Sci. Publ. Math. 62 (1985),
361–418.
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