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Local Constants in Torsion Rings

By Seidai Yasuda

Abstract. Let p be a rational prime and K a local field of residue
characteristic p. In this paper, generalizing the theory of Deligne [De1],
we construct a theory of local ε0-constants for representations, over a
complete local ring with an algebraically closed residue field of char-
acteristic �= p, of the Weil group WK of K.

1. Introduction

Let K be a complete discrete valuation field whose residue field k is

finite of characteristic p. In this paper, such a field is called a p-local field.

Let q denote the cardinality of k. Let WK denote the Weil group of K.

In [De1], Deligne defined the local constants ε(V, ψ, dx) and ε0(V, ψ, dx) for

triples (V, ψ, dx) where V is a complex or an �-adic representation of WK

of finite rank, ψ an additive character of K, and dx a Haar measure of K.

These local constants play an important role in the theory of L-functions

for representations of global Weil groups.

For a topological ring R, let Rep(WK , R) denote the category of con-

tinuous representations of WK on finitely generated free R-modules. A

strict p′-coefficient ring is a noetherian commutative local ring with an al-

gebraically closed residue field of characteristic �= p such that (R×)p = R×.

In this paper, we generalize the theory of Deligne to the representation

of WK over strict p′-coefficient rings. We consider a triple (R, (ρ, V ), ψ)

where R is a strict p′-coefficient ring, (ρ, V ) is an object in Rep(WK , R),

and ψ : K → R× is a non-trivial continuous additive character. The main

theorem of this paper is the following:

Theorem 1.1 (See Theorem 5.1 for the precise statements). Let K be

a p-local field. Then for each such triple (R, (ρ, V ), ψ) we can attach, in a

canonical way, an element

ε0,R((ρ, V ), ψ) ∈ R×
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which satisfy several properties including the following:

(1) For fixed R and ψ, the element ε0,R((ρ, V ), ψ) ∈ R× depends only on

the isomorphism class of (ρ, V ).

(2) Let (R, (ρ, V ), ψ) be such a triple, R′ a strict p′-coefficient ring, and

h : R → R′ a local ring homomorphism. Then we have

h(ε0,R(V, ψ)) = ε0,R′(V ⊗R R′, h ◦ ψ).

(3) Let (R, (ρ, V ), ψ) be such a triple. Suppose that R is a field. Then

ε0,R(V, ψ) = ε0(V, ψ, dx),

where dx is the R-valued Haar measure of K in the sense of Deligne

[De1, p. 554, 6.1] satisfying
∫
OK

dx = 1.

We call the element ε0,R(V, ψ) the local ε0-constant of the triple

(R, (ρ, V ), ψ).

For a fixed K, our local ε0-constants satisfy many properties analogous

to those of Deligne’s ε0-constants; for example additivity, formula for rank

one objects, formula for changes of ψ, and formula for unramified twists (see

§ 5, Theorem 5.1 for details). We also prove that the well-known formula

for local ε0-constants for induced representations also holds for our case:

Theorem 1.2 (Theorem 5.6). Let L be a finite separable extension of

K, let R be a strict p′-coefficient ring, and let ψ : K → R× be a non-trivial

continuous additive character. Then there exists an element

λR(L/K,ψ) ∈ R×

such that for every object V in Rep(WL, R), we have

ε0,R(IndWK
WL

V, ψ) = ε0,R(V, ψ ◦ TrL/K) · λR(L/K,ψ)rankV .

Furthermore, λR(L/K,ψ) is compatible with the base change by h : R → R′.

Let k be a finite field. When R0 is the ring of integers of a finite extension

of Q� for a prime � �= p, the product formula of Deligne-Laumon describes
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the determinant of Frobenius on the etale cohomologies of a smooth R0-sheaf

on a curve over k as a product of local ε0-constants. In the forthcoming

paper [Y], we generalize the product formula to the case where R0 is a pro-

finite p′-coefficient ring, giving evidence that our construction provides a

good theory of local ε0-constants.

1.1. The local ε conjecture

In [K2, p. 5, 1.8], Kato gives a conjecture concerning local ε-constants,

which he named as “local ε conjecture”. While Kato deals only with K = Qp

case, the formulation of the “� �= p”-part of his conjecture can be generalized

without any difficulty to the case where K is an arbitrary p-local field. Let

us briefly explain his conjecture. (We do not recall the exact form of his

conjecture in this introduction because it is rather lengthy. In § 5, we recall

his conjecture in a form slightly different from his original one.)

Let � be a rational prime different from p. We consider a triple

(Λ, (ρ, V ), ψ), where Λ = (Λ,mΛ) is a complete noetherian commutative

local ring whose residue field is finite of characteristic �, (ρ, V ) is an object

in Rep(WK ,Λ) and ψ : K → W (F�)
× is a non-trivial continuous additive

character.

Let (ρ, V ) be an object in Rep(WK ,Λ). Let r denote the Λ-rank of V .

Then the r-th exterior power of (ρ, V ) defines a continuous homomorphism

det(ρ) : W ab
K → Λ×.

We set

aV = a(ρ,V ) = det(ρ)(rec(�)) ∈ Λ×.

The ring Λ has a canonical structure of a Z�-algebra. Define ΛV = Λ(ρ,V )

by

Λ(ρ,V ) = {x ∈ Λ⊗̂Z�
W (F�) ; (1 ⊗ ϕ)(x) = (a(V,ρ) ⊗ 1)x}.

ΛV is a Λ-submodule of Λ ⊗Z�
W (F�) which is free of rank one.

The “� �= p part” of his conjecture ([K2, p. 5, Conj. 1.8]) predicts the

existence of a canonical basis εΛ,ψ(V ) of the invertible Λ-module

∆Λ(V ) = det ΛRΓ(Q�, V ) ⊗Λ ΛV ,

which satisfies certain conditions and has a connection with Deligne’s local

constants.

As a corollary of Theorem 1.1, we have

Corollary 1.3. The � �= p part of Kato’s local ε conjecture is true.
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1.2. Other results in this paper

In viewing the proof of “independence of φ0” which we have briefly de-

scribed above, we get a formula expressing tame ε0-constants as an integral

on the tame inertia group of K. By taking a prime element of K, we iden-

tify X0 with Gm,k. We set G = WK/(WK)0+ and I = (WK)0/(WK)0+. For

every positive integer n prime to p, let [n] : Gm,k → Gm,k denote the n-th

power map. By taking the projective limit of H1
c (Gm,k, [n]∗L̃′

φ0
), we get a

free R[[I]]-module Ŵ of rank one with a semi-linear action of G. Take a lift

F̃r ∈ G of the geometric Frobenius. The eigenvalue of the action of F̃r gives

a well-defined element u in the G-coinvariant (R[[I]]×)G. Then ε0,R(V, ψ)

has the following description:

Proposition 1.4 (Proposition 11.4). Take an arbitrary representative

û ∈ R[[I]] of u. We consider û as a measure on I. Let ψ : K → R× be an

additive character with conductor −1 satisfying

ψ(x) = φ0(rec
−1(F̃r

−1
)x)

for all x ∈ OK . Then for any tamely ramified object (ρ, V ) in Rep(WK , R),

we have

ε0,R(V, ψ) = det

(
1

q

∫
g∈I

ρ(g)−1dû(g)

)
.

This paper also deals with results (Proposition 10 and Proposition 8.3)

analogous to that in Deligne-Henniart [DH, p. 108, Thm. 4.2 and p. 110,

Thm. 4.6].

Let us explain the outline of our proof of Theorem 5.1. Let K be a

p-local field. Let be R be a strict p′-coefficient ring. For an object (ρ, V ) in

Rep(WK , R), let V = V 0 ⊕ V >0 be the decomposition of V into the tamely

ramified part V 0 and the totally wild part V >0. We construct the epsilon

constants ε0,R(V >0, ψ), ε0,R(V 0, ψ) for V >0, V 0 separately and then define

ε0,R(V, ψ) as the product ε0,R(V >0, ψ · ε0,R(V 0, ψ). Let mR ⊂ R denote the

maximal ideal of R. We construct ε0,R(V >0, ψ) by lifting ε0,R/mR
(V >0 ⊗R

R/mR, ψ)constructed by Deligne ([De1, p. 555-556, Thm. 6.5]) in a unique

way such that ε0,R(V >0, ψ) satisfies a version of Henniart’s formula (cf.

Theorem 5.3). The original Henniart’s formula in [He, Theorem] is a formula

for complex representations of WK , however, it can be stated as a formula



Local Constants in Torsion Rings 129

for ε0,R/mR
(V >0 ⊗R R/mR, ψ). We identify the tame quotient of WK with

that of the Weil group WK′ of the completion of A1
k at 0 and then construct

ε0,R(V 0, ψ) in the spirit of Laumon’s definition ([Lau1]) of ε0-constants for

�-adic representations of WK′ (cf. Theorem 5.4).

Let us briefly review the contents of this paper. After recalling in § 3

some basic facts necessary in this paper, we recall, in § 4, basic properties

of Langlands-Deligne’s local ε-constants. Main results of this paper will be

given in § 5. After the preparation of λ-constants in § 6 and of Henniart and

Saito’s results on the description of local ε-constants in § 7, we give, in § 8,

the definition of the local ε0-constant ε0,R(V, ψ) for totally wild V . In § 9,

we give a proof of a formula of ε0,R for induced representations. In § 10, we

define ε0,R(V, ψ) for tamely ramified representations. In § 11, we prove that

the constant ε0,R(V, ψ) defined in § 10 does not depend on the choice of an

auxiliary parameter and completes the proof of the main results in § 5.
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2. Notation

Let Z, Q, R, and C denote the ring of rational integers, the field of

rational numbers, the field of real numbers, and the field of complex numbers

respectively.

Let Z>0 (resp. Z≥0) be the ordered set of positive (resp. non-negative)

integers. We also define Q≥0, Q>0, R≥0 and R>0 in the same way. For

α ∈ R, let �α	 (resp. 
α�) denote the maximum integer not larger than α

(resp. the minimum integer not smaller than α).

For a prime number �, we denote by F� the finite field of � elements.

For n ∈ Z>0, we let F�n denote the unique extension of F� of degree n. We

denote by F� a fixed algebraic closure of F�, by Z� = W (F�) (resp. by W (F�))

the ring of Witt vectors of F� (resp. F�), and by Q� the field of fractions
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Frac(Z�)) of Z�. Let ϕ : W (F�) → W (F�) be the Frobenius automorphism

of W (F�).

For a ring R, we denote by R× the group of units in R. For a positive

integer n ∈ Z>0, we denote by µn(R) the group of n-th roots of unity in R,

and by µn∞ the union ∪iµni(R).

For a finite extension L/K of fields, we let [L : K] denote the degree of

L over K. For a subgroup H of a group G of finite index, we denote its

index by [G : H].

For a finite field k of characteristic �= 2, we let
(
k

)
: k× → {±1} denote

the unique surjective homomorphism.

Throughout this paper, we fix once for all a prime number p. We con-

sider a complete discrete valuation field K whose residue field is finite of

characteristic p. Such a field K is called a p-local field.

For a p-local field K, we denote by OK its ring of integers, by mK

the maximal ideal of OK , by kK the residue field OK/mK of OK , and by

vK the normalized valuation K× → Z. We also denote by qK = 	kK the

cardinality of kK , by WK the Weil group of K, by rec = recK : K× ∼=−→ W ab
K

the reciprocity map given by the local class field theory, which sends a

prime element of K to a lift of the geometric Frobenius of k. We denote by

( , )K : K× ×K× → {±1} the Hilbert symbol (resp. the trivial biadditive

map) if charK �= 2 (resp. charK = 2). We often abbreviate kK and qK by

k and q respectively if there is no risk of confusion.

If L/K is a finite separable extension of p-local fields, we let eL/K ∈ Z,

fL/K ∈ Z, DL/K ∈ OL/O×
L , and dL/K ∈ OK/O×2

K denote the ramification

index of L/K, the residual degree of L/K, the different of L/K, and the

discriminant of L/K respectively.

For a topological group (or more generally for a topological monoid) G

and a commutative topological ring R, let Rep(G,R) denote the category

whose object is a pair (ρ, V ) of a finitely generated free R-module V and

a continuous group homomorphism ρ : G → GLR(V ) (we endow GLR(V )

with the topology induced from the direct product topology of EndR(V )),

and whose morphisms are R-linear maps compatible with actions of G.

A sequence

0 → (ρ′, V ′) → (ρ, V ) → (ρ′′, V ′′) → 0

of morphisms in Rep(G,R) is called a short exact sequence in Rep(G,R) if

0 → V ′ → V → V ′′ → 0 is the short exact sequence of R-modules.
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In this paper, a noetherian commutative local ring with residue field

of characteristic �= p is called a p′-coefficient ring. Any p′-coefficient ring

(R,mR) is considered as a topological ring with the mR-preadic topology. A

strict p′-coefficient ring is a p′-coefficient ring R with an algebraically closed

residue field such that (R×)p = R×.

3. Review of Basic Facts

3.1. Ramification subgroups

Let K be a p-local field with residue field k. Take a separable closure K

(resp. k) of K (resp. k) and let G = WK denote the Weil group of K. Let

Gv = G∩Gal(K/K)v and Gv+ = G∩Gal(K/K)v+ be the upper numbering

ramification subgroups of G. They have the following properties:

• Gv and Gv+ are closed normal subgroups of G.

• Gv ⊃ Gv+ ⊃ Gw for every v, w ∈ Q≥0 with w > v.

• Gv+ is equal to the closure of
⋃

w>v G
w.

• G0 = IK , the inertia subgroup of WK . G0+ = PK , the wild inertia

subgroup of WK . In particular, the group Gw for w > 0 and the group

Gw+ for w ≥ 0 are pro p-groups.

• For w ∈ Q with w > 0, the group Gw/Gw+ is an abelian group which

is killed by p.

3.2. Herbrand’s function ψL/K

For a finite separable extension L/K of p-local fields, let ψL/K : R≥0 →
R≥0 denote the Herbrand function (cf. [Se1, IV, §3], [Lan2], [De5] and [FV,

Chap. III, 3]). The function ψL/K has the following properties:

• ψL/K is continuous, strictly increasing, piecewise linear, and convex

function on R≥0.

• For sufficiently large w, the function ψL/K(w) is linear with slope

eL/K .

• We have ψL/K(0) = 0.

• We have ψL/K(Z≥0) ⊂ Z≥0 and ψL/K(Q≥0) = Q≥0.
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Proposition 3.1. We set G = WK and H = WL. Then for w ∈ Q≥0,

we have Gw ∩H = HψL/K(w) and Gw+ ∩H = HψL/K(w)+. Furthermore, the

slope of ψL/K at w is equal to
eL/K

[Gw:H
ψL/K (w)

]
.

Proof. If L/K is Galois, the first assertion is essentially in [Se1], The

first assertion in general case follows from Galois case by [Se1, IV, §3, Prop.

15]. The second assertion is found in [DH, p.103, (3.2.1)]. �

Corollary 3.2. Let v0 ∈ Q≥0 be a non-negative rational number.

Then the function ψL/K(v) is linear for v ≥ v0 if and only if WL contains

W v+
K .

Let m ∈ Z>0 be a positive integer. Put n = ψL/K(m). We have

NL/K(1 + mn
L) ⊂ 1 + mm

K and NL/K(1 + m
n+1
L ) ⊂ 1 + m

m+1
K . Let αL/K,m :

mn
L/m

n+1
L → mm

K/mm+1
K be the homomorphism given by 1 + αL/K,m(x) =

NL/K(1 + x) mod 1 + m
m+1
K for all x ∈ mn

L.

Lemma 3.3. Suppose that ψL/K(v) is linear for v ≥ v0. Then for any

integer m > v0, the map αL/K,m is surjective and is equal to the trace map

TrL/K : m
ψL/K(m)

L /m
ψL/K(m)+1

L → mm
K/mm+1

K .

Proof. Let L̃ be the Galois closure of L/K. Let v0 ∈ Q≥0 be the

minimal rational number such that ψL/K(v) is linear for v ≥ v0. Then WL

contains W v+
K . Since W v+

K is a normal subgroup of WK , the group W
L̃

also

contains W v+
K . Hence ψ

L̃/K
(v) is linear for v ≥ v0 and ψ

L̃/L
(v) is linear for

v ≥ ψL/K(v0). Hence we may assume that L/K is Galois. Since the lemma

for L/K and that for M/L imply that of M/L, we may assume that L/K

is cyclic of prime degree. Then the lemma follows from the discussion in

[Se1, V, §3]. �

Lemma 3.4. Let L and K ′ be two finite separable extensions of K (in

a fixed separable closure K of K). Suppose that there exist v1, v2 ∈ Q≥0

with v1 < v2 such that ψL/K(v) = v for 0 < v < v2 and that ψK′/K(v) is

linear for v > v1. Let L′ = L ·K ′ be the composite field. Then

(1) ψL′/K′(v) = v for 0 < v < ψK′/K(v2).

(2) ψL′/L(v) is linear for v > v1.
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Proof. We use Proposition 3.1.

(1) Let w ∈ Q>0 be a rational number satisfying v1 < w < v2. Let

v = ψK′/K(w). Since WK′ ⊃ (WK)w, we have

[L′ : K ′] ≥ [W v
K′ : W

ψL′/K′ (v)
L′ ] = [WK′ ∩Ww

K : WL′ ∩ (WK)w]

= [Ww
K : WL ∩WK′ ∩Ww

K ]

= [Ww
K : WL ∩Ww

K ] = [Ww
K : W

ψL/K(w)

L ]

= [L : K].

Hence the assertion follows.

(2) Let v ∈ Q>0 be a rational number satisfying v1 < v < v2. Since

WK′ ⊃ W v
K , we have

W
ψL′/L(v)

L′ = WL′ ∩W v
K = WL ∩WK′ ∩W v

K = WL ∩W v
K = W v

L.

Hence the assertion follows. �

3.3. Refined different (See [K1, p. 321, §2] and [Sa2, p. 2])

Let L/K be a finite separable extension of p-local fields. The refined

different D̃L/K is the unique element in L×/1 + mL satisfying

TrL/K(D̃−1
L/KOL) ⊂ OK and TrL/K(D̃−1

L/KmL) ⊂ mK which makes the fol-

lowing diagram commutative:

D̃−1
L/KOL

TrL/K−−−−→ OK

D̃L/K×
� � mod mK

OL

TrkL/kK−−−−−→ kK .

If M is a finite separable extension of L, we have D̃M/K = D̃M/LD̃L/K . If

L/K is at most tamely ramified, then D̃L/K = eL/K .

Lemma 3.5. Suppose that ψL/K(v) is linear for v ≥ v0. Then we have

ψL/K(v) = eL/Kv − vL(D̃L/K). In particular vL(D̃L/K) = vL(DL/K) + 1 −
eL/K . Furthermore for any integer m > v0, αL/K,m is equal to the composite

m
ψL/K(m)

L /m
ψL/K(m)+1

L

D̃L/K−−−→ m
eL/Km

L /m
eL/Km+1

L
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∼= (mm
K/mm+1

K ) ⊗kK kL
1⊗TrkL/kK−−−−−−−→ m

m
K/mm+1

K .

Proof. This follows from Lemma 3.3. �

Proposition 3.6. Let L and K ′ be two finite separable extensions of K

(in a fixed separable closure K of K). Suppose that there exist v1, v2 ∈ Q≥0

with v1 < v2 such that ψL/K(v) = v for 0 < v < v2 and that ψK′/K(v) is

linear for v > v1. Let L′ = L ·K ′ be the composite field. Then we have

D̃K′/K = NL′/K′(D̃L′/L) = D̃
[L:K]
L′/L .

Proof. The assertion is clear if K ′/K is at most tamely ramified.

We may assume that K ′/K is totally wildly ramified. Take a sufficiently

large integer N with p � N , so that there exist an integer m ∈ Z satisfying

Nv1 < mNv2. Let K1/K a totally ramified extension whose ramification

index eK1/K is equal to N . Put L1 = K1 ·L, K ′
1 = K1 ·K ′ and L′

1 = K1 ·L′.
For n ∈ Z>0, let K1,n denote the unique unramified extension of K1

of degree n. Define L1,n, K ′
1,n and L′

1,n in similar ways. Then we have
αK′

1,n/K1,n,m ◦ αL′
1,n/K

′
1,n,ψK′

1/K1
(m) = αL1,n/K1,n,m ◦ αL′

1,n/L1,n,m, By taking

direct limit, we get the following commutative diagram:

m
ψL′/K(m)

L′
1

/m
ψL′/K(m)+1

L′
1

⊗k k
α̃L′

1/K′
1,ψ

K′
1/K1

(m)

−−−−−−−−−−−−→ m
ψK′

1/K1
(m)

K′
1

/m
ψK′

1/K1
(m)+1

K′
1

⊗k k

α̃L′
1/L1,m

� α̃K′
1/K1,m

�
mm

L1
/mm+1

L1
⊗k k

α̃L1/K1,m−−−−−−→ mm
K1

/mm+1
K1

⊗k k.

If we take k-bases for mm
K1

/mm+1
K1

⊗k k, mm
L1
/mm+1

L1
⊗k k, m

ψK′
1/K1

(m)

K′
1

/

m
ψK′

1/K1
(m)+1

K1
⊗k k, and mm

K1
/mm+1

K1
⊗k k, all the morphisms in the above

diagram are represented by additive polynomials with coefficients in k. The

above diagram remains commutative if we replace all the morphisms by the

highest degree parts of them. In particular we have the following commu-
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tative diagram

m
ψL′/K(m)

L′
1

/m
ψL′/K(m)+1

L′
1

NL′
1/K

′
1−−−−−→ m

ψK′
1/K1

(m)

K′
1

/m
ψK′

1/K1
(m)+1

K′
1

×D̃L′
1/L1

� ×D̃K′
1/K1

�
mm

L1
/mm+1

L1

NL1/K1−−−−−→ mm
K1

/mm+1
K1

⊗k k.

Hence the proposition follows. �

3.4. Break decomposition and refined break decomposition

Let K be a p-local field and let G = WK denote the Weil group of K.

Let (R,mR) be a p′-coefficient ring.

Let V be an R[G]-module. We say that V is tamely ramified or pure of

break 0 if G0+ acts trivially on V . V is called totally wild if V G0+
= {0}.

For v ∈ Q>0, we say that V is pure of break v if the Gv-fixed part V Gv
of

V is 0 and if Gv+ acts trivially on V .

Let (ρ, V ) be an object in Rep(G,R). Then for any v ∈ Q≥0, there exists

a unique maximal sub R[G]-module V v of V which is pure of break v. We

have V v = {0} except for a finite number of v and we have a decomposition

V =
⊕

v∈Q≥0

V v

in Rep(G,R). For v ∈ Q≥0, the object V v in Rep(G,R) is called the break-

v-part of (ρ, V ). The assignment V �→ V v gives a functor from Rep(G,R)

to itself which preserves short exact sequences. When we consider such

functors for various R’s, they are compatible with the base changes of the

representations by a local ring homomorphism R → R′.

Definition 3.7. Let (ρ, V ) be an object in Rep(G,R), and let V =⊕
v∈Q≥0

V v be its break decomposition. We define the Swan conductor

sw(V ) of V as

sw(V ) =
∑

v∈Q≥0

v · rankV v.

Since sw(V ) = sw(V ⊗R R/mR), we have sw(V ) ∈ Z≥0.
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Assume further that the ring R contains a primitive p-th root of unity.

Let v ∈ Q>0, and let (ρ, V ) be an object in Rep(G,R). Let (ρv, V v) denote

the break-v-part of (ρ, V ). We have a decomposition

V v =
⊕

1 �=χ∈Hom(Gv/Gv+,R×)

Vχ

of V v by the sub R[Gv/Gv+]-modules Vχ on which Gv/Gv+ acts by χ. The

group G acts on the set Hom(Gv/Gv+, R×) by conjugation : (g.χ)(h) =

χ(g−1hg). The action of g ∈ G on V v induces an R-linear isomorphism

Vχ
∼=−→ Vg.χ. Let Xv denote the set of G-orbits in the G-set of the non-

trivial homomorphisms from Gv/Gv+ to R×. For any Σ ∈ Xv, the direct

sum V Σ =
⊕

χ∈Σ Vχ is a sub R[G]-module of V v and thus we have the

decomposition

V = V 0 ⊕
⊕

v∈Q>0

⊕
Σ∈Xv

V Σ

in Rep(G,R), which we call the refined break decomposition of V . The

object V Σ in Rep(G,R) is called the refined-break-Σ-part of (ρ, V ). We

say that (ρ, V ) is pure of refined break Σ if V = V Σ. The assignment

V �→ V Σ gives a functor from Rep(G,R) to itself which preserves short

exact sequences. When we consider such functors for various R’s, they are

compatible with the base changes of the representations by a local ring

homomorphism R → R′.

Lemma 3.8. Let (ρ, V ) be a non-zero object in Rep(G,R) which is pure

of refined break Σ ∈ Xv. Choose χ ∈ Σ and let Vχ ⊂ ResGGvV denote the

χ-part of ResGGvV . Let Hχ ⊂ G denote the stabilizing subgroup of χ.

(1) Hχ is a subgroup of G of finite index.

(2) Vχ is stable under the action of Hχ on V .

(3) V is, as an object in Rep(G,R), isomorphic to IndG
Hχ

Vχ.

Proof. Obvious. �

Remark 3.9. Finiteness of [G : Hχ] also follows from the explicit de-

scription of the homomorphism Hom(Gv/Gv+, R×) given in [Sa2, p. 3, Thm.

1] (See also § 7).
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4. Deligne’s Local Constant ε0(V, ψ, dx)

Let K be a p-local field with residue field k. In this section we recall

the basic properties of ε0(V, ψ, dx). Let R be a discrete commutative ring

on which p is invertible. Assume that there exists a non-trivial continuous

additive character ψ : K → R×. Take such a character ψ and an R-

valued Haar measure dx of K. (We use the terminology “R-valued Haar

measure” to indicate an R-valued Haar measure in the sense of Deligne

[De1, p. 554, 6.1].) The conductor of ψ, denoted by ordψ, is the unique

integer n ∈ Z satisfying ψ|m−n = 1 and ψ|m−n−1 �= 1. For a ∈ K×, let ψa

be the additive character of K defined by ψa(x) = ψ(ax). Then we have

ordψa = ordψ + vK(a). If L is a finite separable extension of K, then we

have ord (ψ ◦ TrL/K) = eL/Kordψ + vL(DL/K).

For a continuous multiplicative quasi-character χ : K× → R× of K×

(we endow R with discrete topology), the ε-constant ε(χ, ψ, dx) ∈ R of χ is

defined by the following integral:

ε(χ, ψ, dx) =

{
qordψχ(πordψ)

∫
OK

dx, if χ: unramified,∫
K× χ−1(x)ψ(x)dx, if χ: ramified.

For an object (ρ, V ) in Rep(WK , R) with rankRV = 1, we define the

ε-constant ε(V, ψ, dx) = ε((ρ, V ), ψ, dx) of (ρ, V ) by

ε(ρ, ψ, dx) = ε(ρ ◦ rec, ψ, dx).

When R = C with discrete topology, Langlands [Lan2] defines, after the

pioneering work of Dwork [Dw], the local ε-constant ε(ρ, ψ) for any object

(ρ, V ) in Rep(WK ,C), generalizing ε(V ⊗ ω1/2, ψ, dxK) discussed above for

(ρ, V ) with rankRV = 1, where ω1/2 : W ab
K → C× is an unramified quasi-

character defined by ω1/2(x) = q
−vK(rec−1(x))/2
K , and dxK is the self-dual

Haar measure of K (see [W, Chap. VII, §2] for the definition of self-dual

Haar measure). It is not difficult to construct a candidate of ε(ρ, ψ) by

using Brauer’s theorem, however the proof of the well-definedness of ε(ρ, ψ)

given in [Lan2] is much complicated.

In [De1], Deligne discusses Langlands’ result and gives a simpler proof

of the well-definedness of ε-constants. Deligne uses the terminology

“ε(V, ψ, dx)”. For any (ρ, V ) in Rep(WK ,C), Langlands’ ε(ρ, ψ) is equal
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to Deligne’s ε(V ⊗ ω1/2, ψ, dxK). In this paper, we use Deligne’s terminol-

ogy for local constants, since it has the advantage that we can generalize the

theory of Deligne’s ε(V, ψ, dx) to the case where R �= C. For example, the

proof of [De1, p. 555, Théoréme 6.5] shows that we can define ε(V, ψ, dx)

without much effort for (ρ, V ) in Rep(WK , R) when

(4.1) R is an arbitrary discrete field of characteristic zero

in such a way that most properties of ε(V, ψ, dx) for (ρ, V ) in Rep(WK ,C)

(for example, the properties (1), (3), (6), (7), (8), (9) in Theorem 5.1 below)

are automatically satisfied by ε(V, ψ, dx) for (ρ, V ) in Rep(WK , R). As we

can see from [De1, p. 572, 8.12], we can define ε(V, ψ, dx) for (ρ, V ) in

Rep(WK , R) even when

(4.2) R is the topological field Q� for � �= p and and V is defined over a

finite extension of Q�.

Under the assumption (4.1) or (4.2), Deligne [De1, p. 548, 5.1] also

defines ε0-constants ε0(V, ψ, dx) which satisfies

ε0(V, ψ, dx) = ε(V, ψ, dx) det(−Frk|V IK ).

There are several properties that the ε-constants and the ε0-constants satisfy

(cf. [De1, p. 535, thm 4.1. and p. 548, 5.1.] and [Lau1, p. 187]). In [De1,

p. 555–556, Thm. 6.5.], Deligne also considers ε0 of representations of WK

over fields of characteristic �= p, which satisfies additivity, a formula for a

change of dx, an induction formula, an explicit formula in rank one case,

the compatibility with inclusions of coefficient fields, and the compatibility

with reduction of the coefficients from a complete discrete valuation ring to

its residue field.

5. Statements of the Main Results

Theorem 5.1. Let K be a p-local field. Then for each triple

(R, (ρ, V ), ψ) where R is a strict p′-coefficient ring, (ρ, V ) is an object in

Rep(WK , V ), and ψ : K → R× is a non-trivial continuous additive charac-

ter, we can attach, in a canonical way, an element

ε0,R((ρ, V ), ψ) ∈ R×

which satisfy the following properties:
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(1) For fixed R and ψ, the element ε0,R((ρ, V ), ψ) ∈ R× depends only on

the isomorphism class of (ρ, V ).

(2) Let (R, (ρ, V ), ψ) be a triple as above, R′ a strict p′-coefficient ring,

and h : R → R′ a local ring homomorphism. Then we have

h(ε0,R(V, ψ)) = ε0,R′(V ⊗R R′, h ◦ ψ).

(3) Let (R, (ρ, V ), ψ), (R, (ρ′, V ′), ψ) and (R, (ρ′′, V ′′), ψ) be three triples

as above with common R and ψ. Suppose that there exists an exact

sequence

0 → V ′ → V → V ′′ → 0

in Rep(WK , R). Then we have

ε0,R(V, ψ) = ε0,R(V ′, ψ) · ε0,R(V ′′, ψ).

(4) Let (R, (ρ, V ), ψ) be a triple as above. Suppose that R is a field. Then

ε0,R(V, ψ) = ε0(V, ψ, dx),

where dx is the R-valued Haar measure of K satisfying
∫
OK

dx = 1.

(5) Let R0 be a complete discrete valuation ring with a finite residue

field of characteristic �= p. We denote by F0 the field of fractions

Frac (R0) of R0, by F the completion of the maximal unramified ex-

tension of F0, and by R the ring of integers in F . Let (R, (ρ, V ), ψ) be

a triple as above. Suppose that (ρ, V ) is isomorphic to the base change

(ρ0, V0) ⊗R0 R of an object (ρ0, V0) in Rep(WK , R0). Then

ε0,R(V, ψ) = ε0(V0 ⊗R0 F0, ψ, dx),

where dx is the R0-valued Haar measure of K satisfying
∫
OK

dx = 1.

(6) Let (R, (ρ, V ), ψ) be a triple as above with rankV = 1, then ε0,R(V, ψ)

coincides with ε0(ρ ◦ rec, ψ, dx) defined in [De1, p. 555, 6.4], where dx

is the R-valued Haar measure of K satisfying
∫
OK

dx = 1.

(7) Let (R, (ρ, V ), ψ) be a triple as above. Let a ∈ K× and let ψa : K →
R× be the additive character defined by ψa(x) = ψ(ax). Then we have

ε0,R(V, ψa) = det(V )(rec(a))q
vK(a)·rankV
K ε0,R(V, ψ).
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(8) Let (R, (ρ, V ), ψ) be a triple as above. Let W be an object in

Rep(WK , R) on which WK acts via WK/W 0
K

∼= Z. Let Fr ∈ WK/W 0
K

be the geometric Frobenius. Then we have

ε0,R(V ⊗W,ψ) = detW (Frsw(V )+rankV ·(ordψ+1))ε0,R(V, ψ)rankW .

(9) Let (R, (ρ, V ), ψ) be a triple as above. Suppose that the coinvariant

(V )W 0
K

is zero. Let V ∗ be the R-linear dual of V . Then we have

ε0,R(V, ψ) · ε0,R(V ∗, ψ) = detV (rec(−1)) · qsw(V )+rankV ·(2ordψ+1).

Remark 5.2. A partial result for the uniqueness of ε0-constants is

given in Corollary 9.17.

Here we give an outline of the proof of Theorem 5.1. Let K be a p-local

field.

Let be R be a strict p′-coefficient ring. For an object (ρ, V ) in

Rep(WK , R), let V = V 0 ⊕ V >0 be the decomposition of V into the tamely

ramified part V 0 and the totally wild part V >0. By § 3.4, for a short exact

exact sequence 0 → V ′ → V → V ′′ → 0 in Rep(WK , R), 0 → (V ′)0 → V 0 →
(V ′′)0 → 0 and 0 → (V ′)>0 → V >0 → (V ′′)>0 → 0 are also exact sequences.

We divide Theorem 5.1 into the following two theorems:

Theorem 5.3. For each triple (R, (ρ, V ), ψ) where R is a strict p′-
coefficient ring, (ρ, V ) is a totally wild object in Rep(WK , V ), and ψ : K →
R× is a non-trivial continuous additive character, we can attach, in a canon-

ical way, an element

ε0,R((ρ, V ), ψ) ∈ R×

which satisfies the properties (1)–(9) in Theorem 5.1.

Theorem 5.4. For each triple (R, (ρ, V ), ψ) where R is a strict p′-
coefficient ring, (ρ, V ) is a tamely ramified object in Rep(WK , V ), and ψ :

K → R× is a non-trivial continuous additive character, we can attach, in a

canonical way, an element

ε0,R((ρ, V ), ψ) ∈ R

which satisfies
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(0) ε0,R((ρ, V ), ψ) ∈ R×

and the properties (1)–(9) in Theorem 5.1.

In § 7, Definition 7.5, we define, following Henniart [He] and Saito [Sa2],

an element

ε0,R(V, ψ) ∈ R×/µp∞(R).

in a canonical way, for each triple (R, (ρ, V ), ψ) as above such that V is to-

tally wild. In Theorem 7.8, we prove that which satisfies the nine properties

corresponding to the properties (1)–(9) in Theorem 5.1.

Using this element, we define, in § 8, Definition 8.1, an element

ε0,R(V, ψ) ∈ R× for each triple (R, (ρ, V ), ψ) as above such that V is to-

tally wild. In § 8, we prove Theorem 5.3.

In § 10, Definition 10.7, we define, in a canonical way, an element

ε0,R(V, ψ) ∈ R× for each triple (R, (ρ, V ), ψ) as above such that V is tamely

ramified. In § 10.3 and § 10.5, we prove Theorem 5.4.

Application to Kato’s local ε conjecture Let the notation be as

in § 1.1. In view of [K2, 3.2], we see that the “� �= p part” of his conjecture

([K2, Conj. 1.8]) is equivalent to the following conjecture modulo ±1 in the

case where K = Qp and Λ is a pro-� commutative ring:

Conjecture 5.5 (Local ε conjecture). Let K be as above. Then for

each triple (Λ, (ρ, V ), ψ) as above, we can define an element ε0,Λ(V, ψ) =

ε0,Λ((ρ, V ), ψ) in Λ(ρ,V ) satisfying the following conditions:

(1) Assume that we are given two triples (Λ, (ρ, V ), ψ) and (Λ′, (ρ′, V ′), ψ)

as above with common ψ, a local ring homomorphism h : Λ → Λ′, and

an isomorphism (ρ, V ) ⊗Λ Λ′ ∼=−→ (ρ′, V ′) in Rep(WK ,Λ′). Then the

isomorphism Λ(ρ,V ) ⊗Λ Λ′ ∼=−→ Λ′
(ρ,V ) induced by h sends ε0,Λ(V, ψ)⊗ 1

to ε0,Λ′(V ′, ψ).

(2) Let (Λ, (ρ, V ), ψ), (Λ, (ρ′, V ′), ψ) and (Λ, (ρ′′, V ′′), ψ) be three triples

as above with common Λ and ψ. Assume that there is a short exact

sequence

0 → (ρ′, V ′) → (ρ, V ) → (ρ′′, V ′′) → 0

in Rep(WK ,Λ). There is a canonical isomorphism

Λ(ρ,V )

∼=−→ Λ(ρ′,V ′) ⊗Λ Λ(ρ′′,V ′′).
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Then this isomorphism sends ε0,Λ(V, ψ) to ε0,Λ(V ′, ψ) ⊗ ε0,Λ(V ′′, ψ).

(3) Let (Λ, (ρ, V ), ψ) be a triple as above and a ∈ K×. Let ψa : K →
W (F

×
� ) denote the additive character defined by ψa(x) = ψ(ax) for

x ∈ K. Then we have

ε0,Λ(V, ψa) = det(ρ)(rec(a))q
vK(a)·rank (V )
K ε0,Λ(V, ψ).

(4) Let (Λ, (ρ, V ), ψ) be a triple as above. Assume that Λ is a finite flat

reduced local Z�-algebra. Λ ⊗Z�
FracW (F�) is isomorphic to a direct

product
∏

iKi of finite extensions Ki of FracW (F�). For each i the

base change (ρi, Vi) = (ρ, V ) ⊗Λ Ki is a continuous representation of

WK on a finite dimensional Ki-vector space which is defined over a

finite extension of Q� in Ki. Then the image of ε0,Λ(V, ψ) in Ki is

equal to the local ε0-constant ε0(Vi, ψi, dx) in Deligne ( [De1, p. 535,

Thm. 4.1], on which we have reviewed in § 4), where dx is the Ki-

valued Haar measure of the additive group K with
∫
OK

dx = 1.

Proof of Conjecture 5.5 (cf. [K2, p. 14, 3.2]). Let (Λ, (ρ, V ), ψ)

be a triple as above.

Then Λ⊗̂Z�
W (F�), is a finite product Λ⊗̂W (F�)W (F�) =

∏
iRi of p′-

coefficient rings Ri.

Define ε0,Λ(V, ψ) ∈ Λ⊗̂W (F�)W (F�) by

ε0,Λ(V, ψ) = (ε0,R(V, ψ))i.

Then, by Theorem 5.1 (4), we have ε0,Λ(V, ψ) ∈ Λ(ρ,V ).

It is easy to check that this element ε0,Λ(V, ψ) satisfies the desired prop-

erties. �

Theorem 5.6. Let L/K be a finite separable extension of p-local fields,

let R be a strict p′-coefficient ring, and let ψ : K → R× be a non-trivial

continuous additive character. Then there exists an element λR(L/K,ψ) ∈
R× such that for every object (ρ, V ) in Rep(WL, R)., we have

ε0,R(IndWK
WL

V, ψ) = λR(L/K,ψ)rankV ε0,R(V, ψ ◦ TrL/K).
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Here we give an outline of the proof of Theorem 5.6.

For L/K, R and ψ as above, we define, in § 6, Definition 6.3, in a

canonical way an element λR(L/K,ψ) ∈ R×.

We divide Theorem 5.6 into four parts in the following way:

Theorem 5.7. Let λR(L/K,ψ) ∈ R× be as in Definition 6.3. Let

(ρ, V ) be an object in Rep(WL, R). Then Theorem 5.6 holds for (ρ, V ) and

for this λR(L/K,ψ) ∈ R× in the following four cases:

(1) V is totally wild.

(2) V is tamely ramified and L/K is unramified.

(3) V is tamely ramified and L/K is totally tamely ramified.

(4) V is tamely ramified and L/K is totally ramified and [L : K] is a

power of p.

The proof of (1) is given in § 9. (2) is proved in § 10.5, Lemma 10.14.

The proofs of (3) and (4) are given in § 11.3.

Remark 5.8. In § 8.2, we prove a result analogous to Deligne-

Henniart’s result [DH, p. 108, Thm. 4.2 and p. 110, Thm. 4.6].

6. λ-Constants

In this section, we consider a triple (L/K,R, ψ), where L/K is a finite

separable extension of a p-local field K with residue field k of q elements, R

is a p′-coefficient ring, and ψ : K → R× is a non-trivial continuous additive

character.

The aim of this section is to define, for a triple (L/K,R, ψ) as above,

an element λR(L/K,ψ) ∈ R× and to prove some basic properties of

λR(L/K,ψ).

6.1. Review on lambda constants

Let L be a finite separable extension of K, and let dx and dy be Haar

measures of K and L respectively. When R = C, Deligne [De1, p. 549,

(5.6)] shows that there exists

λ(L/K,ψ, dx, dy) ∈ C×
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such that for any representation V of WL over C, we have

ε(IndK
L V, ψ, dx) = λ(L/K,ψ, dx, dy)rankV · ε(V, ψ ◦ TrL/K , dy)

and

ε0(IndK
L V, ψ, dx) = λ(L/K,ψ, dx, dy)rankV · ε0(V, ψ ◦ TrL/K , dy).

6.2. Universal λ-constant λ
Z̃K

(L/K,ψ)

For a complete discrete valuation field K whose residue field k is finite

of characteristic p, let Z̃K be the following commutative ring

Z̃K =

{
Z[12 ][X]/(1 + X4), if p = 2 and charK = 0,

Z[1p ][X]/(1 + X + · · · + Xp−1), otherwise.

The ring Z̃K depends only on the pair (charK, char k). In particular, for a

finite separable extension L of K, we have Z̃L = Z̃K .

Definition 6.1.

(1) Assume that charK = 0. A universal partial character of K is an

additive character ψ′ : I → Z̃×
K defined on a fractional ideal I ⊂ K of

K such that ψ′ is either trivial on 4mKI and is non-trivial on 4I.

(2) Assume that charK = p. A universal partial character of K is a

non-trivial continuous additive character ψ′ : I = K → Z̃×
K of K.

Let L be a finite separable extension of K. Take an embedding ι : Z̃K ↪→
C. For every universal partial character ψ′ : I → Z̃×

K , take a continuous

additive character ψ : K → C× whose restriction to I is equal to ιψ′.

Lemma 6.2. Let dx (resp. dy) be the Haar measure on K (resp. L)

satisfying
∫
OK

dx = 1 (resp.
∫
OL

dy = 1). Then the λ-constant λ(L/K,ψ) =

λ(L/K,ψ, dx, dy) ∈ C× belongs to ι(Z̃×
K).

Proof. Let V = IndWK
WL

1. We have

λ(L/K,ψ, dx, dy) =
ε(V ⊕ detV, ψ, dx)

ε(1, ψ ◦ TrL/K , dy)ε(detV, ψ, dx)
.
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Since V ⊕ detV is self-dual, we have

ε(V ⊕ detV, ψ, dx)2 = qa(V )+a(detV )+2(rankV +1)·ordψ.

Here a(V ) and a(detV ) denote the Artin conductors of V and detV , re-

spectively. By Serre [Se2], a(V ) + a(detV ) is an even integer. Hence

ε(V ⊕ detV, ψ, dx) lies in the image of Z̃×
K by ι. It is easily checked that

ε(1, ψ ◦ TrL/K , dy) and ε(detV, ψ, dx) belong to ι(Z̃×
K). �

We define λ
Z̃K

(L/K, I, ψ′) ∈ Z̃×
K to be the inverse image ι−1(λ(L/K,ψ))

by ι. The element λ
Z̃K

(L/K, I, ψ′) does not depend on the choice of ι or ψ.

Let a ∈ (Zp/4pZp)
×, ha : Z̃K → Z̃K be the automorphism of the ring Z̃K

given by ha(X) = Xa. Then for any universal partial character ψ′ : I → Z̃×
K

of K, we have ha(λZ̃K
(L/K, I, ψ′)) = λ

Z̃K
(L/K, I, ha ◦ ψ′).

6.3. Definition of λR(L/K,ψ)

Let R be a p′-coefficient ring, ψ : K → R× a non-trivial continuous

additive character. There exists a universal partial character ψ′ : I → Z̃×
K

of K and a homomorphism h : Z̃K → R of rings such that ψ|I = h ◦ ψ′.

Definition 6.3. Take I, ψ′ and h as above. We define the λ-constant

λR(L/K,ψ) ∈ R× of (L/K,R, ψ) to be

λR(L/K,ψ) := h(λ(L/K, I, ψ′)).

This λR(L/K,ψ) does not depend on the choice of I, ψ′ and h.

Proposition 6.4.

(1) Let (L/K,R, ψ) and (L/K,R′, ψ′) be two such triples with common

L/K, and h : R → R′ a local ring homomorphism satisfying ψ = ψ′◦h.

Then we have

h(λR(L/K,ψ)) = λR′(L/K,ψ′).

(2) Let q = qK . Then

λR(L/K,ψ)2 = (dL/K ,−1)K · q−vK(dL/K).
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(3) If R = C, then λR(L/K,ψ) coincides with Deligne’s λ(L/K,ψ,

dx, dy), where dx and dy are Haar measures with
∫
OK

dx = 1 and∫
OL

dy = 1.

(4) Let q = qK . Let a ∈ K× and ψa be the additive character defined as

ψa(x) = ψ(ax). Then we have

λR(L/K,ψa) = λR(L/K,ψ) · (dL/K , a)K .

(5) If M is a finite separable extension of L, then we have

λR(M/K,ψ) = λR(L/K,ψ)[M :L] · λ(M/L,ψ ◦ TrL/K).

Proof. (1) and (3) are Obvious. (4) and (5) are immediate conse-

quences of (3). We prove (2).

Let a(V ) be the Artin conductor of V = IndWK
WL

1. Then,

λR(L/K,ψ)2 = det(V )(rec(−1)) · q
a(V )+2[L:K]ordψ

q
2ord (ψ◦TrL/K)

L

.

By [Se1, VI, Prop. 4], we have a(V ) = vK(dL/K). Since ord (ψ ◦ TrL/K) =

eL/Kordψ + vL(DL/K), we have

q
2ord (ψ◦TrL/K)

L = q2fL/K(eL/Kordψ+vL(DL/K)) = q2[L:K]ordψ+2vK(dL/K).

Hence the lemma follows from det(V )(rec(−1)) = (dL/K ,−1)K . �

6.4. Description of λR(L/K,ψ) in some special cases

Let q = qK . Let n = [L : K] be the degree of L/K.

When p �= 2 and vK(dL/K) is odd, we denote by τR(L/K,ψ) the quad-

ratic Gauss sum

τR(L/K,ψ) =
∑
x∈k×

(dL/K , π−ordψ−1
K x)K ψ(π−ordψ−1

K x)

where πK ∈ K is an arbitrary prime element in K. The Gauss sum

τR(L/K,ψ) does not depend on the choice of πK . We have τR(L/K,ψ)2 =(−1
k

)
q. In particular τR(L/K,ψ) is a unit in R.
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Lemma 6.5. Suppose that L/K is unramified. Then

λR(L/K,ψ) = (−1)([L:K]−1)ordψ.

Proof. It follows from direct computation of λR(L/K,ψ) (cf. [M,

p. 879, (2.5.3)]). �

Lemma 6.6. Suppose that L/K is totally tamely ramified and let n =

[L : K]. Then

λR(L/K,ψ) =


q−

n−1
2

(
(−1)

n−1
2 n

k

)ordψ

if n is odd and p �= 2,

q−
n−1

2 (−1)
n2−1

8
[k:F2] ordψ. if n is odd and p = 2,

q−
n
2 τR(L/K,ψ)

(
(−1)

n
2 −1 n

2
k

)
if n is even.

Proof. There exists a prime element πL ∈ L such that πK = πn
L is

a prime element in K. Since {1, . . . , πn−1
L } is a OK-basis of OL, we have

dL/K = (−1)	
n−1

2

nnπn−1

K . If n is odd, vK(dL/K) = n − 1 is even. Hence if

p �= 2, by [He, p. 124, Prop. 2], we have

λR(L/K,ψ) = q−
n−1

2 ((−1)
n−1

2 n, 2πordψ
K )K = q−

n−1
2

(
(−1)

n−1
2 n

k

)ordψ

.

If p = 2, let dx be the Haar measure of K such that
∫
OK

dx = 1. Since

χ := det(IndWK
WL

1C) is unramified, by [He, p. 124, Prop. 2] (cf. [M, p. 881,

Prop. 2.5.11]), we have

λC(L/K,ψ) = q−ord (ψ◦TrL/K)ε(IndWK
WL

1C, ψ, dx)

= q−ord (ψ◦TrL/K)+n−1
2 ε(χ, ψ, dx)n

= q−
n−1

2 χ(rec(πK))n ordψ.

If furthermore charK = 0, then

χ(rec(πK)) = (dL/K , πK)K = ((−1)
n−1

2 n, πK)K = (−1)
n2−1

8
[k:F2].
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The formula χ(rec(πK)) = (−1)
n2−1

8
[k:F2] holds even when charK = 2.

Hence

λR(L/K,ψ) = q−
n−1

2 (−1)
n2−1

8
[k:F2] ordψ.

If n is even, by [Sa1, p. 508, Thm.], we have

λR(L/K,ψ) = q−
n
2 τR(L/K,ψ)

(
(−1)

n
2
−1n

k

)
(dL/K , 2)K

= q−
n
2 τR(L/K,ψ)

(
(−1)

n
2
−1 n

2

k

)
. �

7. Local ε0-Constant for Totally Wild Representations Modulo

p-th Power Roots of Unity

Let K be a p-local field with residue field k. Let q = qK . Let R be a

strict p′-coefficient ring. In this section, inspired by the result of Henniart

in [He], we define the local ε0-constants for pairs ((ρ, V ), ψ) up to p-th power

roots of unity, where (ρ, V ) is an object in Rep(WK , R) and ψ : K → R× is

a non-trivial continuous additive character of K.

Let G = WK denote the Weil group of K, and let Gv and Gv+ denote

its ramification subgroups.

7.1. The isomorphism σψ
Let K be a separable closure of K. The valuation vK of K canonically

extends to a valuation vK : K → Q ∪ {∞} of K. For w ∈ Q, let Nw = Nw
K

be the k-vector space

Nw := {x ∈ K ; vK(x) ≥ w}/{x ∈ K|vK(x) > w}

endowed with a canonical WK-action. Furthermore, N• =
⊕

w∈QNw has a

structure of a graded k-algebra.

Let k denote the residue field of the valuation field K. There is a canon-

ical isomorphism

Hom(Gv/Gv+,Z/pZ)
∼=−→ Homk(N

v, k) ∼= N−v

of G-modules (cf. [Hi] and [Sa2, p. 3, Thm. 1]). Let us recall this in the

notation of [Sa2]:
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Let χ ∈ Hom(Gv/Gv+,Z/pZ) be a non-trivial character of Gv/Gv+.

Take a finite Galois extension L of K such that Gal(L/K)v+ = {1} and that

χ is factored by a homomorphism χL : Gal(L/K)v → Z/pZ. Let K ′ be the

subextension of L/K corresponding to Gal(L/K)v. By [Se1], ψL/K(v) and

ψK′/K(v) are integers, and the group Gal(L/K)v is canonically isomorphic

to the kernel of the homomorphism

αL/K′,ψK′/K(v) : m
ψL/K(v)

L /m
ψL/K(v)+1

L → m
ψK′/K(v)

K′ /m
ψK′/K(v)+1

K′ .

Let D̃K′/K ∈ K ′×/1 + mK be the refined different of K ′/K. Multiplica-

tion by D̃K′/K defines an isomorphism m
ψK′/K(v)

K′ /m
ψK′/K(v)+1

K′ ⊗k′ k ∼= Nv

(where k′ is the residue field of K ′).

The map m
ψL/K(v)

L /m
ψL/K(v)+1

L → Nv defines a finite Galois covering of

an affine algebraic group Nv over k with Galois group Gal(L/K)v. This

covering and χ induces a finite Galois covering Nχ → Nv with Galois group

Z/pZ. Then there exists a unique morphism Nv → A1
k

= Spec (k[t]) of line

bundles over k such that Nχ is isomorphic to the pull-back of the Artin-

Schreier covering Spec (k[t][s]/(s − sp − t)) of A1
k
. This defines an element

in Homk(N
v, k).

Fix a non-trivial continuous additive character ψ : K → R×. For v ∈
Q>0, we set w = −v − ordψ − 1 and define an isomorphism

σψ = σψ,v : Hom(Gv/Gv+, R×)
∼=−→ Nw

to be the composite

Hom(Gv/Gv+, R×)

∼= N−v ⊗Z/pZ Hom(Z/pZ, R×)

∼= Nw ⊗k Homk(m
−ordψ−1
K /m−ordψ

K , k) ⊗Z/pZ Hom(Z/pZ, R×)

Trk/Fp−−−−→ Nw ⊗k HomFp(m
−ordψ−1
K /m−ordψ

K ,Fp) ⊗Z/pZ Hom(Z/pZ, R×)

∼= Nw ⊗k Hom(m−ordψ−1
K /m−ordψ

K , R×)

ψ−→ Nw.

As in § 3.4, let Xv denote the set of G-orbits in the G-set

Hom(Gv/Gv+, R×).
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Let Σ be an element in Xv. Take a χ ∈ Σ and let Kχ be the extension

of K corresponding to the stabilizing subgroup of χ. The field Kχ is an

at most tamely ramified finite extension of K. It is easily checked that

σψ(χ) ∈ (Nw)WKχ ⊂ �v′∈QNv′ belongs to the image of the injective group

homomorphism (K×
χ /1 + mKχ) ⊗Z Z[1p ] ↪→ �v′∈QNv′ .

Let us abbreviate kKχ and qKχ by kχ and qχ, respectively. Let H = WKχ

be the Weil group of Kχ, and Hv,Hv+ the upper numbering ramification

subgroups of H. Since Kχ/K is at most tamely ramified, the inclusion map

H ↪→ G induces a canonical isomorphism HeKχ/Kv/HeKχ/Kv+ ∼= Gv/Gv+.

Then by direct computation the diagram

Hom(Gv/Gv+, R×)
σψ−−−→∼=

Nw
K

∼=
� �∼=

Hom(HeKχ/Kv/HeKχ/Kv+, R×)
σψ◦TrKχ/K−−−−−−−→∼=

N
−eKχ/Kv−ord (ψ◦TrKχ/K)−1

Kχ
.

is commutative (a more general results in this direction will be discussed in

§ 9.6).

7.2. Refined swan conductor

Definition 7.1. Let V be an object in Rep(G,R) which is pure of

refined break Σ. Choose a character χ ∈ Σ. We define refined ψ-Swan

conductor rswψ(V ) to be the element

rswψ(V ) = NKχ/K(σψ(χ))
− rankV

[Kχ:K]

in K×/1 + mK , which is independent of the choice of χ.

For an arbitrary object W in Rep(G,R), define rswψ(W ) ∈ K×/1+mK

by

rswψ(W ) =
∏
Σ′

rswψ(WΣ′
),

where W = W 0 ⊕
⊕

Σ′ WΣ′
is the refined break decomposition of W .

Remark 7.2. When R is a field of characteristic zero, this element

rswψ(V ) is related to Kato’s refined swan conductor defined in [K1, p. 324,

(3.1)]. cf. [Sa2, p. 6, Thm. 2].
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7.3. A quadratic Gauss sum

Assume that p �= 2. For x ∈ K× with vK(x) + ordψ = 2b+ 1 is odd, let

τK,ψ(x) be the quadratic Gauss sum defined as

τK,ψ(x) =
∑

y∈m
−b−1
K /m−b

K

ψ(x
y2

2
).

We have τK,ψ(x)2 =
(−1

k

)
q. In particular τK,ψ(x) is a unit in R.

The Gauss sum τK,ψ(x), for fixed K and ψ, depends only on the class of

x ∈ {x ∈ K× ; vK(x) + ordψ ≡ 1 mod 2} in (K×/1 + mK) ⊗ Z/2Z. Thus

we can define τK,ψ(x) for x ∈ {x ∈ (K×/1 + mK)⊗ZZ[1p ] ; vK(x) + ordψ ∈
1 + 2Z[1p ]}.

7.4. Definition of local ε0-constants for totally wild representa-

tions

Let v ∈ Q>0 and Σ ∈ Xv. Choose a character χ ∈ Σ. We define the

Gauss sum gR(Σ, ψ) associated with Σ and ψ to be the element

gR(Σ, ψ)

= q
ord (ψ◦TrKχ/K)
χ · λR(Kχ/K,ψ)

×
{

q
(1+w)/2
χ if p = 2 or p �= 2 and ord 2(v) ≤ 0,

q
w/2
χ · τKχ,ψ◦TrKχ/K

(σψ(χ)) if p �= 2 and ord 2(v) > 0,

in R×, where w = eKχ/Kv. The following two lemmas are easily checked:

Lemma 7.3. gR(Σ, ψ) depends only on Σ and ψ, and does not depend

on the choice of χ.

Lemma 7.4. Let dv be the p-primary part of the denominator of v.

Let χ̃ : Gv/Gv+ → Z̃×
K be a non-trivial homomorphism, Σ̃ be the set of

G-conjugates of χ̃. Then for a universal partial character ψ′ : I → Z̃×
K ,

there exists a canonical element g̃R(Σ̃, I, ψ′)dv ∈ Z̃×
K satisfying the following

property: for any strict p′-coefficient ring R, for any homomorphism h :

Z̃ → R of rings, for any continuous additive character ψ : K → R× whose

restriction to I is equal to h ◦ ψ′, and for any object (ρ, V ) in Rep(G,R)

which is pure of refined break h(Σ̃) = {h ◦ χ̃ | χ̃ ∈ Σ̃}, we have

gR(h(Σ̃), ψ) = (h(g̃R(χ̃, I, ψ′)dv))1/dv .
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Definition 7.5. Let v ∈ Q>0 and let (ρ, V ) be an object in Rep(G,R)

which is pure of refined break Σ ∈ Xv. Choose a character χ ∈ Σ and let

Vχ = (ResGGvV )χ be the χ-part of ResGGvV . Using Lemma 3.8, we regard Vχ

as an object in Rep(WKχ , R). We define the local ε0-constant ε0,R(V, ψ) for

V and ψ to be the element

ε0,R(V, ψ) = det(Vχ)(rec(σψ(χ)))−1 · gR(Σ, ψ)rankVχ

in R×/µp∞(R). We call gR(Σ, ψ)rankVχ the Gauss sum part of ε0,R(V, ψ).

Lemma 7.6. The element ε0,R(V, ψ) does not depend on the choice of

a character χ ∈ Σ.

Proof. It suffices to prove that det(Vχ)(rec(σψ(χ))) is independent of

the choice of χ. Let χ′ ∈ Σ be another character and take an element g ∈ G

such that χ′ = g.χ. We then have WKχ′ = gWKχg
−1 and Vχ′ is isomorphic

to the R[WKχ′ ]-module with underlying R-module Vχ on which the group

WKχ′ acts via the isomorphism WKχ′
∼= WKχ which sends h ∈ WKχ′ to

g−1hg. Since the homomorphism σψ is equivariant under the action of G,

we have

rec(σψ(χ′)) = rec(g(σψ(χ))) = grec(σψ(χ))g−1,

which proves the claim. �

Definition 7.7. Let (ρ, V ) be an object in Rep(G,R) which is totally

wild. Let

V =
⊕

v∈Q>0

⊕
Σ∈Xv

V Σ

be the refined break decomposition of V . We define the element ε0,R(V, ψ)

in R×/µ to be

ε0,R(V, ψ) =
∏

v∈Q>0

∏
Σ∈Xv

ε0,R(V Σ, ψ).

7.5. Properties of local ε0-constants

Theorem 7.8. The local ε0-constants ε0,R(V, ψ) satisfy the following

properties:

(1) For fixed R and ψ, the element ε0,R((ρ, V ), ψ) ∈ R×/µ depends only

on the isomorphism class of (ρ, V ).
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(2) Let R′ be another strict p′-coefficient ring, and h : R → R′ a local ring

homomorphism. Then we have

h(ε0,R(V, ψ)) = ε0,R′(V ⊗R R′, h ◦ ψ).

(3) Let V , V ′, and V ′′ be three totally wild objects in Rep(WK , R). Sup-

pose that there exists an exact sequence

0 → V ′ → V → V ′′ → 0

in Rep(WK , R). Then we have

ε0,R(V, ψ) = ε0,R(V ′, ψ) · ε0,R(V ′′, ψ).

(4) Suppose that R is a field. Then

ε0,R(V, ψ) = ε0(V, ψ, dx) mod µ(R),

where dx is the R-valued Haar measure of K satisfying
∫
OK

dx = 1.

(5) Let R0 be a complete discrete valuation ring with a finite residue field

of characteristic �= p. Let F0 denote the field of fractions Frac (R0)

of R0, and let F denote the completion of the maximal unramified

extension of F0. Suppose that R the ring of integers in F . and that

(ρ, V ) is isomorphic to the base change (ρ0, V0) ⊗R0 R of an object

(ρ0, V0) in Rep(WK , R0). Then

ε0,R(V, ψ) = ε0(V0 ⊗R0 F0, ψ, dx) mod µ(F ),

where dx is the R0-valued Haar measure of K satisfying
∫
OK

dx = 1.

(6) Suppose that rankV = 1, then ε0,R(V, ψ) coincides with ε0(ρ ◦ rec,

ψ, dx) mod µ(R) defined in [De1, p. 555, 6.4], where dx is the R-

valued Haar measure of K satisfying
∫
OK

dx = 1.

(7) Let a ∈ K× and let ψa : K → R× be the additive character defined by

ψa(x) = ψ(ax). Then we have

ε0,R(V, ψa) = det(V )(rec(a))q
vK(a)·rankV
K ε0,R(V, ψ).
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(8) Let W be an object in Rep(WK , R) on which WK acts via WK/W 0
K

∼=
Z. Let Fr ∈ WK/W 0

K be the geometric Frobenius. Then we have

ε0,R(V ⊗W,ψ) = detW (Frsw(V )+rankV ·(ordψ+1))ε0,R(V, ψ)rankW .

(9) Let V ∗ be the R-linear dual of V . Then we have

ε0,R(V, ψ) · ε0,R(V ∗, ψ) = detV (rec(−1)) · qsw(V )+rankV ·(2ordψ+1).

(10) (cf. [DH, p. 108, Thm. 4.2]) Let V �= {0} be a totally wild object in

Rep(G,R). Take the smallest v ∈ Q>0 such that V v �= {0}. Then for

every object W in Rep(G,R) satisfying Ww = {0} for all w ∈ Q≥0

with w ≥ v, we have

ε0,R(V ⊗R W,ψ) = detW (rec(rswψ(V ))) · ε0,R(V, ψ)rankW .

Proof. (1), (2) and (3) are obvious.

(4) and (5) follows from the main theorem of Henniart [He, p. 122, Thm.

and Remark 4] and the proof of Saito [Sa2, p. 10, Thm. 3].

(6) Let a(V ) denotes the Artin conductor of V . The representation V is

pure of refined break {χ}, where χ = ρ|
W

a(V )−1
K

. Then σψ(χ) is the unique

element in K×/1 + mK such that

ρ(rec(1 + x)) = ψ(σψ(χ)x)

holds for all x ∈ m
a(V )−1
K . Then we have

ε0,R(V, ψ) = ε0(ρ ◦ rec, ψ, dx) mod µp∞ ,

by the standard computation of the local constant for character (see [T3,

p.95, prop.1 and p.97, proof of Cor. 1]).

For (7) (8) (9) and (10), we may assume that V is pure of refined break

Σ ∈ Xv. Then V ∗ is pure of refined break Σ−1 = {χ−1 | χ ∈ Σ}. Choose

a character χ ∈ Σ and let Kχ/K be the extension corresponding to the

stabilizing subgroup of χ and qχ = qKχ . Let Vχ ∈ Rep(WKχ , R) be the

χ-part of ResGGvV .

(7) We have σψa = a−1σψ. Hence by Proposition 6.4 (4),

ε0,R(V, ψa) = ε0,R(V, ψ) · det(Vχ)(rec(a))
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· (qeKχ/KvK(a)+vK(a)([Kχ:K]−eKχ/K)(dKχ/K , a)K)rankVχ

= ε0,R(V, ψ) det(V )(rec(a))qvK(a)·rankV .

(9) We have

ε0,R(V, ψ) · ε0,R(V ∗, ψ)

= det(Vχ)(recKχ(σψ(χ)))−1 · gR(Σ, ψ)rankVχ

· det(Vχ)(recKχ(−σψ(χ))) · gR(Σ−1, ψ)rankVχ

= det(Vχ)(recKχ(−1)) · (qord (ψ◦TrKχ/K)
χ · λR(Kχ/K,ψ))2rankV

· qrankVχ·(1+eKχ/Kv)
χ

= det(V )(recK(−1)) · det(IndWK
WKχ

1)(recK(−1))rankVχ

· ((dKχ/K ,−1)K · qvK(dKχ/K)+2[Kχ:K]ordψ)rankVχ

· qrankVχ·(fKχ/K+[Kχ:K]v)

= det(V )(recK(−1)) · qrankVχ·(vK(dKχ/K)+2[Kχ:K]ordψ)+fKχ/K+[Kχ:K]v)

= det(V )(recK(−1)) · qsw(V )+rankV ·(2ordψ+1).

(10) V ⊗ W is pure of refined break Σ and Vχ ⊗ W is the χ-part of

ResGGvV ⊗W . Hence

ε0,R(V ⊗W,ψ) = det(Vχ ⊗W )(rec(σψ(χ)))−1 · gR(Σ, ψ)rankVχ⊗W

= detW (rec(σψ(χ)))−rankVχ · ε0,R(V, ψ)rankW

= detW (rec(rswψ(V ))) · ε0,R(V, ψ)rankW .

(8) By (10), we have

ε0,R(V ⊗W,ψ) = det(W )(Fr
fKχ/K vKχ (σψ(χ))
q )−rankVχε0,R(V, ψ)rankW .

The assertion follows from vKχ(σψ(χ)) = −eKχ/K(v + ordψ + 1). �

8. Local ε0-Constants for Totally Wild Representations

Let K be a p-local field with residue field k and let G = WK denote

the Weil group of K. Let (R,mR) be a strict p′-coefficient ring. Let µ =

µp∞(R) ⊂ R× denote the group of p power roots of unity in R.
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8.1. Definition of local ε0-constants for totally wild representa-

tions

Definition 8.1. Let ψ : K → R× be a non-trivial continuous additive

character. For a totally wild object (ρ, V ) in Rep(G,R), we define the local

ε0-constant ε0,R(V, ψ) to be the unique element of R× satisfying

ε0,R(V, ψ) mod µ = ε0,R(V, ψ)

and

ε0,R(V, ψ) mod mR = ε0(V ⊗R R/mR, ψ, dx).

Remark 8.2. Existence of ε0,R(V, ψ) follows from Theorem 7.8 (4).

Uniqueness of ε0,R(V, ψ) follows from the bijectivity of the canonical map

µp∞(R) → µp∞(R/mR).

Proof of Theorem 5.3. It suffices to check that the element

ε0,R(V, ψ) in Definition 8.1 satisfies the properties (1)–(9) in Theorem 5.3.

All these properties follows immediately from Theorem 7.8 and the proper-

ties of ε0(V ⊗R R/mR, ψ, dx) reviewed in the last part of § 4. �

8.2. Result of Deligne-Henniart type

Proposition 8.3 (cf. [DH, p. 110, Thm. 4.6]). Let V �= {0} be a

totally wild object in Rep(G,R). Take the smallest v ∈ Q>0 such that V v �=
{0}. Then there exists an element γ = γV,ψ ∈ K×, unique modulo 1+m

� v
2
�

K ,

which satisfies the following property: for every object W in Rep(G,R)

satisfying Ww = {0} for all w ∈ Q≥0 with w > v
2 , we have

ε0,R(V ⊗R W,ψ) = detW (rec(γ)) · ε0,R(V, ψ)rankW .

Furthermore, we have γ ≡ rswψ(V ) mod 1 + mK , in particular vK(γ) =

sw(V ) + ordψ · rankV .

Proof. We may assume that V is pure of refined break Σ ∈ Xv. If R

is a field of characteristic zero, then the assertion follows from [DH, p. 110,

Thm. 4.6] and [Sa2, p. 10, Cor. of Thm. 3].

Assume that R is a field of characteristic �= 0, p. Since any irreducible

object (ρ, V ) in Rep(G,R) is a twist by an unramified character of a rep-

resentation of G whose image is finite, (ρ, V ) can be lifted to characteristic
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zero as a virtual representation (ρ̃, Ṽ ). Further we can take Ṽ such that Ṽ

has a pure refined break. The continuous additive character ψ is also lifted

to characteristic zero, which we denote by ψ̃. Thus we can take γV,ψ = γ
Ṽ ,ψ̃

.

For general R, let γ ∈ K× be the element which satisfies the assertion

of the proposition for V ⊗R R/mR. Then, by Theorem 7.8 (10), γ satisfies

the assertion of the proposition also for V . �

9. Proof of Theorem 5.7 (1)

9.1. Statement

Let L be a finite separable extension of K. Let OL denote the ring of

integers in L, and let mL denote the maximal ideal of OL. Let ψ : K → R×

be a non-trivial continuous additive character.

The aim of this section is to give a proof of Theorem 5.7 (1), that is, to

prove the following theorem:

Theorem 9.1. Let (ρ, V ) be a totally wild object in Rep(WL, R). Let

W = IndWK
WL

V . Then

ε0,R(W,ψ) = ε0,R(V, ψ ◦ TrL/K) · λR(L/K,ψ)rankV .

We denote WK and WL by G and H respectively. Let ψL/K is the

Herbrand function of L/K. Then for w ∈ Q≥0 and for v = ψL/K(w),

we have Gw ∩ H = Hv (resp. Gw+ ∩ H = Hv+), where Gw, Hv, Gw+

and Hv+ are the upper numbering ramification subgroups. The inclusion

H ↪→ G induces canonical inclusions H/Hv ↪→ G/Gw, H/Hv+ ↪→ G/Gw+

and Hv/Hv+ ↪→ Gw/Gw+.

9.2. Break decomposition of IndG
HV

Let (ρ, V ) be an object in Rep(H,R) which is pure of break v0 ∈ Q≥0.

We put W = IndG
HV . There exists a unique w0 ∈ Q≥0 satisfying v0 =

ψL/K(w0).

The following lemma is easily checked:

Lemma 9.2.

(1) If w0 > 0, then WGw0 = {0}.
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(2) If w ≥ w0 and v = ψL/K(w), then WGw+
is canonically isomorphic to

Ind
G/Gw+

H/Hv+V as an object of Rep(G,R).

(3) If w > w0 and v = ψL/K(w), then WGw
is canonically isomorphic to

Ind
G/Gw

H/HvV as an object of Rep(G,R).

Corollary 9.3. For w ∈ Q≥0, let Ww denote the break-w-part of W .

(1) Ww = {0} for w < w0

(2) Ww0 ∼= Ind
G/Gw0+

H/Hv0+V

(3) For w > w0 and for v = ψL/K(w), there exists an exact sequence

0 → Ind
G/Gw

H/HvV → Ind
G/Gw+

H/Hv+V → Ww → 0

in Rep(G,R).

9.3. Reduction to ε0,R

Lemma 9.4. If R is a field, then for any object (ρ, V ) in Rep(H,R),

we have

ε0,R(IndG
HV, ψ) = ε0,R(V, ψ ◦ TrL/K) · λR(L/K,ψ)rankV .

Proof. If charR = 0, this is due to Proposition 6.4 (3) and Deligne

[De1, 4.1]. If charR �= 0, this is an immediate consequence of Deligne [De1,

6.5]. �

If (ρ, V ) is a totally wild object in Rep(H,R) then IndG
HV is also a totally

wild object. Therefore, to prove the Theorem 9.1, it suffices to prove the

following proposition:

Proposition 9.5. If (ρ, V ) is a totally wild object in Rep(WL, R) then

ε0,R(IndG
HV, ψ) = ε0,R(V, ψ ◦ TrL/K) · λR(L/K,ψ)rankV .

Before proving this proposition, we investigate the refined break decom-

position of IndG
HV .
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9.4. Refined break decomposition of (IndG
HV )>w0

As in § 9.2, let (ρ, V ) be an object in Rep(H,R) which is pure of break

v0 ∈ Q≥0. Set W = IndG
HV . There exists a unique w0 ∈ Q≥0 satisfying v0 =

ψL/K(w0). In this subsection, we consider the refined break decomposition

of Ww for w > w0.

Let w > w0 and set v = ψL/K(w). Let Cw be the set of all R-valued

characters of the abelian p-group Gw/Gw+ which is trivial on Hv/Hv+.

The group H/Hv+ acts on Cw by conjugation. Let Bw denote the set of

H/Hv+-orbits of Cw. For χ′ ∈ Cw, let Hχ′ ⊂ H/Hv+ be the stabilizing

subgroup of χ′. Then the representation Res
H/Hv+

Hχ′ V can be uniquely lifted

to a representation Vχ′ of GwHχ′/Gw+ on which Gw/Gw+ acts by χ′. For

Σ′ ∈ Bw, take an element χ′ ∈ Σ′ and set VΣ′ = Ind
GwH/Gw+

GwHχ′/Gw+Vχ′ . Then

VΣ′ does not depend on the choice of χ′.
The following lemma is easily checked:

Lemma 9.6.

(1) As an object in Rep(GwH,R), the induced representation

Ind
GwH/Gw+

H/Hv+ V is canonically isomorphic to the direct sum
⊕

Σ′∈Bw
VΣ′.

(2) For Σ′ ∈ Bw with Σ′ �= {1}, let Σ̃′ denote the unique G/Gw+-orbit

of characters of Gw/Gw+ which contains Σ′. Then, as an object in

Rep(G,R), the induced representation Ind
G/Gw+

GwH/Gw+VΣ′ is pure of re-

fined break Σ̃′.

Let Gχ′ ⊂ G/Gw+ be the stabilizing subgroup of χ′. Then Gχ′ ⊃
Gw/Gw+ and Gχ′ ∩H/Hv+ = Hχ′ . Hence

Ind
G/Gw+

GwH/Gw+VΣ′ = Ind
G/Gw+

GwHχ′/Gw+Vχ′ = Ind
G/Gw+

Gχ′/Gw+Ind
Gχ′/Gw+

GwHχ′/Gw+Vχ′ .

Using this description, we shall compute the ε0-constant of the break-w-part

Ww of W .

9.5. Refined break decomposition of (IndG
HV )w0

Let (ρ, V ) be an object in Rep(H,R) which is pure of break v0 ∈ Q>0.

Set W = IndG
HV . Assume further that V is pure of refined break Σ. There
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exists a unique w0 ∈ Q>0 such that ψL/K(v0) = w0. In this subsection, we

consider the refined break decomposition of Ww0 .

Take an element χ ∈ Σ. Let Hχ ⊂ H/Hv0+ be the stabilizing subgroup

of χ. Then Hχ ⊃ Hv0/Hv0+. There exists a representation V ′ of Hχ such

that Hv0/Hv0+ acts on V ′ by χ and that V is isomorphic to Ind
H/Hv0+

Hχ
V ′.

Let Cw0 be the set of all characters of the abelian p-group Gw0/Gw0+ whose

restriction on Hv0/Hv0+ is isomorphic to χ. The group Hχ acts on Cw0

by conjugation. et Bw0 denote the set of Hχ-orbits of Cw0 . For χ′ ∈ Cw0 ,

let Hχ′ ⊂ Hχ be the stabilizing subgroup of χ′. Then the representation

Res
Hχ

Hχ′V
′ can be uniquely lifted to a representation V ′

χ′ of Gw0Hχ′/Gw0+ on

which Gw0/Gw0+ acts by χ′. For Σ′ ∈ Bw0 , take an element χ′ ∈ Σ′ and set

V ′
Σ′ = Ind

Gw0Hχ/Gw0+

Gw0Hχ′/Gw0+V
′
χ′ . V ′

Σ′ does not depend on the choice of χ′.

The following lemma is easily checked:

Lemma 9.7.

(1) The object Ind
Gw0Hχ/Gw0+

Hχ/Hv0+ V ′ in Rep(Gw0Hχ/G
w0+, R) is canonically

isomorphic to the direct sum
⊕

Σ′∈Bw0
V ′

Σ′.

(2) For Σ′ ∈ Bw0, let Σ̃′ denote the unique G/Gw0+-orbit of characters of

Gw0/Gw0+ which contains Σ′. Then as an object in Rep(G,R), the

induced representation Ind
G/Gw0+

Gw0Hχ/Gw0+V
′
Σ′ is pure of refined break Σ̃′.

Let Gχ′ ⊂ G/Gw0+ be the stabilizing subgroup of χ′. Then Gχ′ ⊃
Gw0/Gw0+ and Gχ′ ∩H/Hv0+ = Hχ′ . Hence

Ind
G/Gw0+

Gw0Hχ/Gw0+V
′
Σ′ = Ind

G/Gw0+

Gw0Hχ′/Gw0+V
′
χ′ = Ind

G/Gw0+

Gχ′/Gw0+Ind
Gχ′/Gw0+

Gw0Hχ′/Gw0+V
′
χ′ .

Using this description, we shall compute the ε0-constant of the break-w0-

part Ww0 of W .

9.6. The restriction map Hom(Gw/Gw+,Z/pZ) → Hom(Hv/Hv+,

Z/pZ)

Let L/K be an finite separable extension of p-fields such that L �= K and

that L/K has no non-trivial intermediate extension. When L/K is ramified,

there exists a unique w1 ∈ Q≥0 such that ψL/K(w) = w for 0 ≤ w ≤ w1
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and that ψL/K(w) is linear with slope [L : K] for w > w1. When L/K is

unramified, we put w1 = 0.

Let w ∈ Q≥0 and set v = ψL/K(w). In this subsection, we will investigate

the restriction map

Hom(Gw/Gw+,Z/pZ)
Res−−→ Hom(Hv/Hv+,Z/pZ),

where G = WK and H = WL as before. For every finite separable extension

M of K (resp. of L), we set wM = ψM/K(w) (resp. vM = ψM/L(v)).

Lemma 9.8. Let K̃ be a finite Galois extension of K satisfying

Gal(K̃/K)w+ = {1} and Gal(K̃/K)w �= {1}. Let L̃ = L · K̃. Assume

that [L̃ : K̃] = [Gw+ : Hv+]. Let K ′ (resp. L′) be the subextension of K̃/K

(resp. L̃/L) corresponding to the subgroup Gal(K̃/K)w (resp. Gal(L̃/L)v)

of Gal(K̃/K) (resp. Gal(L̃/L)). Then w
K̃

, v
L̃
, wK′, and vL′ are integers

and the natural map

φL/K,w : N−w
K

∼= Hom(Gw/Gw+,Z/pZ)
Res−−→ Hom(Hv/Hv+,Z/pZ) ∼= N−v

L

is dual to the map

Nv
L

×D̃−1
L′/L−−−−−→ m

vL′
L′ /m

vL′
L′ ⊗kL′ k

αL′/K′,wK′−−−−−−−→ m
wK′
K′ /m

wK′+1
K′ ⊗kK′ k

×D̃K′/K−−−−−→ Nw
K ,

where αL′/K′,wK′ is the homomorphism defined in § 3.2, that is, αL′/K′,wK′

is the homomorphism induced by the norm map

NL′/K′ : (1 + m
vL′
L′ )/(1 + m

vL′
L′ ) → (1 + m

wK′
K′ )/m

wK′+1
K′ .

Proof. Let K̃1 be another finite Galois extension of K satisfying

K̃1 ⊃ K̃ and Gal(K̃1/K)w+ = {1}. We have Gal(K̃1/K)w �= {1}. Let

L̃1 = L · K̃1. Let K ′
1 (resp. L′

1) be the subextension of K̃1/K (resp.

L̃1/L) corresponding to the subgroup Gal(K̃1/K)w (resp. Gal(L̃1/L)v) of

Gal(K̃1/K) (resp. Gal(L̃1/L)).
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Then w
K̃1

, v
L̃1

, wK′
1

and vL′
1

are integers. We have the following com-

mutative diagram:

Since WK′
1
⊃ Gw, we have WK′

1
⊃ (WK′)wK′ . There exists a rational num-

ber ε ∈ Q>0 such that ψK′
1/K

′(x) is linear for x > wK′ − ε. By Lemma 3.5,

αK′
1/K

′,wK′ is equal to the multiplication by D̃K′
1/K

′ . For the same rea-

son αL′
1/L

′,vL′ is equal to the multiplication by D̃L′
1/L

′ . Hence the lemma

follows. �

Proposition 9.9. Let us consider the canonical map

σL/K,ψ,w = σψ◦TrL/K
◦ Res ◦ σ−1

ψ : N−w−ordψ−1
K → N

−v−ord (ψ◦TrL/K)−1

L .

(1) If w > w1, then σL/K,ψ,w is equal to the identity map :

N−w−ordψ−1
K

=−→ N
−v−ord (ψ◦TrL/K)−1

L .

(2) Suppose that w < w1. Take a finite Galois extension K̃ of K such that

Gal(K̃/K)w+ = {1} and that Gal(K̃/K)w �= {1}. Then the field L̃ =

L·K̃ is a finite Galois extension of L such that Gal(L̃/L)v+ = {1} and

that Gal(L̃/L)v �= {1}. Let K ′ (resp. L′) be the subextension of K̃/K

(resp. L̃/L) corresponding to Gal(K̃/K)w (resp. Gal(L̃/L)v). Take

prime elements πL′ ∈ L′ and πK′ ∈ K ′ satisfying NK′/L′(πK′) = πL′.

Then σL/K,ψ,w sends a · a−1
ψ,ζ · D̃−1

K′/Kπ
−wK′
K′ to

a
1

[L:K] · a−1
ψ,ζD̃

−1
L′/Kπ

−vL′
L′ .
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(3) Let L̃ be the Galois closure of L/K. Then Gal(L̃/K)w1+ = {1}. Let

K̃ (resp. L′) be the subextension of L̃/K (resp. L̃/L) corresponding to

Gal(L̃/K)w1 (resp. Gal(L̃/L)w1). Take prime elements πL′ ∈ L′ and

π
K̃

∈ K̃ satisfying N
K̃/L′(πK̃) = πL′. Then there exists an additive

polynomial

P (t) = a0 · t[L:K] + · · · + 1 ∈ k[t]

of degree [L : K] with a0 = D̃
L′/K̃ · π

w1,L′
L′

π
w

1,K̃

K̃

and with the constant term

1 such that the homomorphism σL/K,ψ,w sends a · a−1
ψ,ζ · D̃−1

K̃/K
π
−w

1,K̃

K̃
to

P (a
1

[L:K] ) · a−1
ψ,ζD̃

−1
L′/Kπ

−w1,L′
L′ .

Remark 9.10. We need only (1) to prove Theorem 5.7 (1). In § 11,

(3) is used to prove Theorem 5.7 (4).

To prove the proposition, we use the following lemma which is easily

checked.

Lemma 9.11. Let V = V ′ = Spec k[t], let P (t) = a0t + a1t
p + · · · +

ant
pn ∈ k[t] be an additive polynomial, and let P : V ′ → V denote the

morphism given by t �→ P (t). Then the map

k ∼= Homk(V, k) ∼= Hom(π1(V ),Z/pZ) → Hom(π1(V
′),Z/pZ)

∼= Homk(V
′, k) ∼= k

induced by P is described as

a �→ a0a + a
1
p

1 a
1
p + · · · + a

1
pn

n a
1
pn .

Proof. We prove only (3). (1) and (2) are easier and their proofs are

left to the reader. By Lemma 9.8, the natural map

Nw1
L → Nw1

K

of k-group schemes is the composite

Nw1
L

D̃−1
L′/L−−−−→ m

w1,L′
L′ /m

w1,L′+1

L′

α
L′/K̃,w

1,K̃−−−−−−−→ m
w

1,K̃

K̃
/m

w
1,K̃

+1

K̃

D̃
K̃/K−−−−→ Nw1

K .
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By taking D̃L′/Lπ
w1,L′
L′ (resp. D̃

K̃/K
π
w

1,K̃

K̃
) as a k-basis of Nw1

L (resp.

Nw1
K ), we identify Nw1

L (resp. Nw1
K ) as the affine line over k.

Apply Lemma 9.11 to V = Nw1
K and V ′ = Nw1

L . By simple calculation,

P (t) is of the form

P (t) = a0t + · · · + t[L
′:K̃],

where a0 =
Tr

L′/K̃(π
w1,L′
L′ )

π
w

1,K̃

K̃

= D̃
L′/K̃ · π

w1,L′
L′

π
w

1,K̃

K̃

. Hence φL/K,w sends a ·

D̃−1

K̃/K
π
−w

1,K̃

K̃
to

(a0 · a + · · · + a
1

[L:K] ) · D̃−1
L′/Lπ

−w1,L′
L′ .

Let ψ : K → R× be a non-trivial continuous additive character. Take

a primitive p-th root of unity ζ ∈ R. There exists a unique element aψ,ζ ∈
m

−ordψ−1
K /mordψ

K such that ψ(x) = ζTrk/Fp (aψ,ζx) for all x ∈ m
−ordψ−1
K /

m
−ordψ
K . Then, for all y ∈ m

−ord (ψ◦TrL/K)−1

L /m
−ord (ψ◦TrL/K)

L , we have by

Lemma 3.5,

ψ(TrL/K(y)) = ψ(TrkL/k(D̃L/Ky)) = ζTrk/Fp (aψ,ζTrkL/k(D̃L/Ky))

= ζTrkL/Fp (aψ,ζD̃L/Ky).

We have a commutative diagram:

Hom(Gw/Gw+,Z/pZ)
1 →ζ−−−→ Hom(Gw/Gw+, R×)

∼=
� �σψ

N−w
K

a−1
ψ,ζ−−−→ N−w−ordψ−1

K .

Hence the proposition follows. �

9.7. Representation of p-groups over p′-coefficient rings

Let G be a finite p-group, R a strict p′-coefficient ring which contains a

primitive p-th root of unity.

We call an object V in Rep(G,R) indecomposable if it cannot be written

as a direct sum of two non-trivial objects in Rep(G,R).
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It is well known that any irreducible complex representation of a finite

p-group is monomial. (see [I, Chap. 6, Cor. (6.14)] for example). In the

same way of its proof, we have

Lemma 9.12. If (ρ, V ) is an indecomposable objects in Rep(G,R), then

there exists a subgroup H of G and an object W in Rep(H,R) of rank one

such that V is isomorphic to IndG
HW .

Corollary 9.13. Let R′ be another strict p′-coefficient ring, h : R →
R′ a local ring homomorphism. Then the functor V �→ V ⊗RR′ gives a cat-

egorical equivalence Rep(G,R)⊗RR′ ∼= Rep(G,R′), where Rep(G,R)⊗RR′

denotes the category with the same objects as as Rep(G,R) whose morphisms

are defined as HomRep(G,R)⊗RR′(X,Y ) := HomRep(G,R)(X,Y ) ⊗R R′.

9.8. A key proposition

Let K be a p-local field with residue field k of q elements, R a strict

p′-coefficient ring which contains a primitive p-th root of unity.

The aim of this subsection is to prove the following result.

Proposition 9.14. Let (ρ, V ) be a totally wild object in Rep(WK , R)

which is defined over a finite subring R0 ⊂ R. Assume that V is inde-

composable and that V is not of the form IndWK
WL

V ′ for a non-trivial fi-

nite separable at most tamely ramified extension L of K and for an ob-

ject V ′ ∈ Rep(WL, R). Then there exist a strict p′-coefficient ring R′, p′-
coefficient ring R′′ which is a complete discrete valuation ring with a finite

residue field whose field of fractions is of characteristic zero, local ring ho-

momorphisms

R
h→ R′ h′

← R′′

such that h is injective, a tamely ramified object V ′ in Rep(WK , R′) and an

object V ′′ in Rep(WK , R′′) such that

V ⊗R R′ ∼= V ′ ⊗R′ (V ′′ ⊗R′′ R′).

Proof. Let G, I, and P denote the image of WK , (WK)0, and (WK)0+

under ρ, respectively. We have G � I � P and G � P . By assumption, I

is a finite group. I/P is a cyclic group of finite order m which is prime to



166 Seidai Yasuda

p. Take a lift ζ̃ ∈ I of a generator ζ ∈ I/P such that the order of ζ̃ in I is

also m. Then we have I ∼= 〈ζ̃〉 � P . Also take a lift σ̃ ∈ G of the geometric

Frobenius in G/I.

The restriction ResGPV is a direct sum of indecomposable objects V =⊕n
i=0 Vi. Since P is a p-group, for 0 ≤ i, j ≤ n we have Vi

∼= Vj or

HomRep(P,R)(Vi, Vj) = {0}. By assumption on V , all Vi are isomorphic

and for any g ∈ G, the conjugation of V0 by g is isomorphic to V0. Re-

placing R0 by a larger subring of R if necessary, we may assume that V0 is

defined over R0. Let � denote the residue characteristic of R. Then there

exists a ring R1 which is the integer ring of a finite unramified extension of

Q�, a local ring homomorphism R1 → R0, and an object V ′
0 in Rep(P,R1)

such that V0
∼= V ′

0 ⊗R1 R.

There is an automorphism α, β ∈ GLR1(V
′
0) such that α◦g = (ζ̃gζ̃−1)◦α

and β ◦ g = (σ̃gσ̃−1) ◦ β on V ′
0 for any g ∈ P . Let g0 be the element in

P defined by σ̃−1ζ̃σ̃ = ζ̃qg0. Then there exist two elements a, b ∈ R×
1 such

that αm = a and β−1αβ = bαqg0. Let a and b denote the image of a and b

in R0, respectively. Adjusting α by an element in R×
1 , we may assume that

the order m′ of a in R×
0 is prime to p. Take a power q′ > 1 of q which is

congruent to 1 modulo mm′. Then we have

β−1αq′β = (bαqg0)
q′

= bq
′
αqq′(α−q(q′−1)g0α

q(q′−1)) · · · (α−qg0α
q)g0

= bq
′
αqq′(ζ̃−q(q′−1)g0ζ̃

q(q′−1)) · · · (ζ̃−qg0ζ̃
q)g0

= bq
′
αqq′(ζ̃−q(ζ̃qg0)

q′)

= bq
′
αqq′(ζ̃−q(σ̃−1ζ̃σ̃)q

′
)

= bq
′
αqq′g0.

Hence b = b
q′
. In particular the order of b in R×

0 is prime to p.

Let R′
1 be the ring of integers in the field adjoining a q−1-th power root

c of b to Frac (R1).

There exists a strict p′-coefficient ring R′, and local R1-algebra homo-

morphisms h : R ↪→ R′ and h′ : R′
1 → R′. Define α′ ∈ GLR′

1
(V ′

0 ⊗R1 R′
1)

as α′ = cα. Then we have α′m = acm, β−1α′β = α′qg0. We note that the

order of the image of acm in R′ is finite and prime to p.

Take a lift ζ̃ ′, σ̃′ ∈ G′ := WK/Ker (W 0+
K � P ) of ζ̃, σ̃ ∈ G. Then the

action of P on V ′
0 ⊗R1 R

′
1 is uniquely extended to a continuous action of G′
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by ζ̃ ′ �→ α′ and σ̃′ �→ β; in fact G′ is the projective limit G′ = lim←− (M,p)=1G
′
M

of discrete groups G′
M , where G′

M is the quotient of G′ by the inverse image

of (W 0
K/W 0+

K )M by G′ � WK/W 0+
K . The group G′

M is isomorphic to the

group with a set of generators

{x} � {y} � {zh ; h ∈ P},

and with fundamental relations

zhzh′ = zhh′ , yM = 1, yzhy
−1 = z

ζ̃′hζ̃′−1 , xzhx
−1

= zσ̃′hσ̃′−1 , x−1yx = yqzg0 .

Let Ṽ ′
0 denote V ′

0 ⊗R1 R
′
1 regarded as an object in Rep(G′, R′

1) in the above

way.

It is easily checked that there exists a tamely ramified object W in

Rep(WK , R′) such that V ⊗R R′ ∼= (Ṽ ′
0 ⊗R′

1
R′) ⊗R′ W . �

9.9. Proof of Theorem 5.7 (1)

Lemma 9.15. Let L/K be a finite separable totally ramified extension

of p-local fields, R an algebraically field of characteristic zero, ψ : K → R×

a non-trivial continuous additive character, and V a totally wild object in

Rep(WL, R). Then we have

rswψ(IndWK
WL

V ) = NL/K(rswψ◦TrL/K
(V )).

Proof. By [Sa2, p. 6, Thm. 2], rswψ is related to the refined Swan

conductor defined in [K1, p. 324, (3.1)]. The lemma follows from [K1, p. 325,

Prop. 3.3 (2)]. �

Lemma 9.16. Let L/K be a finite separable at most tamely ramified

extension of p-local fields, R a strict p′-coefficient ring, and ψ : K → R× a

non-trivial continuous additive character. Let V be a totally wild object in

Rep(WL, R) which is pure of break v and of refined break Σ. Suppose that

Theorem 5.7 (1) holds for L/K, ψ and V . Then for any tamely ramified

object V1 in Rep(WL, R), Theorem 5.7 (1) also holds for L/K, ψ and V ⊗R

V1.
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Proof. We set W = IndWK
WL

V and W1 = IndWK
WL

(V ⊗R V1).

By Corollary 9.3, W and W1 are also totally wild. It suffices to prove

that

ε0,R(W1, ψ) = ε0,R(V ⊗R V1, ψ ◦ TrL/K) · λR(L/K,ψ)rankV ·rankV1 .

Since V is also totally wild, we have, by Proposition 8.3,

ε0,R(V ⊗ V1, ψ ◦ TrL/K)

= detV1(rec(rswψ◦TrL/K
(V ))) · ε0,R(V, ψ ◦ TrL/K)rankV1 .

Hence it suffices to prove that

ε0,R(W1, ψ) = detV1(rec(rswψ◦TrL/K
(V ))) · ε0,R(W,ψ)rankV1 .

Let w = v
eL/K

. Then the canonical map W v
L/W

v+
L → Ww

K/Ww+
K is

bijective. Let

r : Hom(Ww
K/Ww+

K , R×)
∼=−→ Hom(W v

L/W
v+
L , R×)

be the canonical bijection. Let Σ′ be the unique WK-orbit containing

r−1(Σ). By § 9.5, W and W1 are pure of refined break Σ′.
Take an element χ ∈ Σ and let Hχ ⊂ WL be the stabilizing subgroup of

χ. Let V ′ ⊂ V be the χ-part of V . Let χ′ = r−1(χ) ∈ Σ′ and Gχ′ ⊂ WK

the stabilizing subgroup of WK . Then by § 9.5, the χ′-part W ′ of W is

isomorphic to Ind
Gχ′
Hχ

V ′.
The object V ⊗R V1 is pure of refined break Σ, and the χ-part of V ⊗R

(ResWL
Hχ

V1) is equal to V ′ ⊗R V1. Hence the χ′-part W ′
1 of W1 is isomorphic

to Ind
Gχ′
Hχ

(V ′ ⊗ (ResWL
Hχ

V1)) Hence

ε0,R(W1, ψ)

ε0,R(W,ψ)rankV1
=

detW ′(rec(σψ(χ′)))rankV

detW ′
1(rec(σψ(χ′)))

=
(Ind

Gχ′
Hχ

1)(rec(σψ(χ′)))rankV−rankV ·rankV1

detV1(Ver
Gχ′
Hχ

(rec(σψ(χ′))))rankV ′
.

By Proposition 9.9 (1), we have σψTrL/K
(χ) = σψ(χ′). Hence

detV1(Ver
Gχ′
Hχ

(rec(σψ(χ′))))rankV ′
= det(ResWL

Hχ
V1)(σψ(χ′))rankV ′
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= detV1(rec(rswψ◦TrL/K
(V )))−1.

Hence the assertion follows. �

Proof of Theorem 5.7 (1). Let L/K be a finite separable extension

of p-local fields, and let ψ : K → R× be a non-trivial continuous additive

character. Let V be a totally wild object in Rep(WL, R).

We prove the theorem by induction on r = rankV . We may assume

that V is indecomposable. Suppose that V is of the form V = IndWL

W ′
L
V ′

for a non-trivial finite separable at most tamely ramified extension L′ of L

and for an object V ′ ∈ Rep(WL′ , R). Then V ′ is also totally wild and the

theorem holds for V by induction and by Proposition 6.4 (5). Hence we

may assume that V is not of the form V = IndWL

W ′
L
V ′ as above.

We apply Proposition 9.14. Replacing R by a larger strict p′-coefficient

ring if necessary, we may assume that V is of the form V = V1⊗R V2, where

V1 is a tamely ramified object in Rep(WK , R) and V2 is the base change of

an object in Rep(WK , R′) by a local ring homomorphisms R′ → R, where

R′ is a p′-coefficient ring which is a complete discrete valuation ring with a

finite residue field whose field of fractions is of characteristic zero.

Let L1 be the maximal at most tamely ramified subextension of L/K.

Let V ′
1 = Ind

WL1
/W 0+

L1

WL/W
0+
L

V1 be the tamely ramified object in Rep(WL1 , R)

whose restriction to WL is isomorphic to V1. Then we have a canonical

isomorphism

Ind
WL1
WL

V ∼= V ′
1 ⊗R (Ind

WL1
WL

V2).

Since the theorem holds for L1/K, ψ, and Ind
WL1
WL

V2, it also holds for L1/K,

ψ and Ind
WL1
WL

V by Lemma 9.16. Hence

ε0,R(IndWK
WL

V, ψ) = ε0,R(Ind
WL1
WL

V, ψ ◦ TrL1/K) · λR(L1/K,ψ)rankV ·[L:L1].

Since Ind
WL1
WL

V2 is also totally wild, we have, by Proposition 8.3,

ε0,R(Ind
WL1
WL

V, ψ ◦ TrL1/K)

= detV ′
1(rec(rswψ◦TrL1/K

(Ind
WL1
WL

V2))) · ε0,R(Ind
WL1
WL

V2, ψ ◦ TrL1/K)rankV1 .
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Since the theorem holds for L/L1, ψ ◦ TrL1/K , and V2, we have

ε0,R(Ind
WL1
WL

V2, ψ◦TrL1/K) = ε0,R(V2, ψ◦TrL/K)·λR(L/L1, ψ◦TrL1/K)rankV2 .

By Proposition 6.4 (5), it suffices to prove that

detV ′
1(recL1(rswψ◦TrL1/K

(Ind
WL1
WL

V2))) = detV1(recL(rswψ◦TrL/K
V2)).

By Lemma 9.15, we have

rswψ◦TrL1/K
(Ind

WL1
WL

V2) = NL/L1
(rswψ◦TrL/K

(V2)).

Hence the assertion follows. �

From Proposition 9.14, we have the following corollary:

Corollary 9.17 (Characterization of ε0-constants for totally wild ob-

jects). The attachment

(L,R, (ρ, V ), ψ) �→ ε0,R(V, ψ) ∈ R×

for each quadruple (L,R, (ρ, V ), ψ) where L is a finite separable at most

tamely ramified extension of K, R is a strict p′-coefficient ring, (ρ, V ) is

a totally wild object in Rep(WL, V ), and ψ : L → R× is a non-trivial

continuous additive character, is characterized by the following properties.

(1) For fixed L, R and ψ, the element ε0,R((ρ, V ), ψ) ∈ R× depends only

on the isomorphism class of (ρ, V ).

(2) Let (L,R, (ρ, V ), ψ) be a quadruple as above, R′ a strict p′-coefficient

ring, and h : R → R′ a local ring homomorphism. Then we have

h(ε0,R(V, ψ)) = ε0,R′(V ⊗R R′, h ◦ ψ).

(3) Let (L,R, (ρ, V ), ψ), (L,R, (ρ′, V ′), ψ), and (L,R, (ρ′′, V ′′), ψ) be three

quadruples as above with common L, R and ψ. Suppose that there

exists an exact sequence

0 → V ′ → V → V ′′ → 0

in Rep(WL, R). Then we have

ε0,R(V, ψ) = ε0,R(V ′, ψ) · ε0,R(V ′′, ψ).
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(4) Let R0 be a complete discrete valuation ring with a finite residue field

of characteristic �= p. We denote by F0 the field of fractions Frac (R0)

of R0, by F the completion of the maximal unramified extension of

F0, and by R the ring of integers in F . Let (L,R, (ρ, V ), ψ) be a

quadruple as above. Suppose that (ρ, V ) is isomorphic to the base

change (ρ0, V0) ⊗R0 R of an object (ρ0, V0) in Rep(WK , R0). Then

ε0,R(V, ψ) = ε0(V0 ⊗R0 F0 ψ, dx),

where dx is the R-valued Haar measure of K satisfying
∫
OK

dx = 1.

(5) Let L1 and L2 be two finite separable at most tamely ramified exten-

sions of K with L1 ⊂ L2, let R be a strict p′-coefficient ring, and let

ψ : L1 → R× be a non-trivial continuous additive character. Then

there exists an element λR(L2/L1, ψ) ∈ R× such that for every totally

wild object (ρ, V ) in Rep(WL2 , R), we have

ε0,R(V, ψ ◦ TrL2/L2
) = ε0,R(W,ψ) × λR(L2/L1, ψ)rankV .

(6) Let (L,R, (ρ, V ), ψ) be a quadruple as above. Then for every tamely

ramified object W in Rep(WL, R), we have

ε0,R(V ⊗R W,ψ) = detW (rec(rswψ(V )) · ε0,R(V, ψ)rankW .

10. Local ε0-Constants for Tamely Ramified Representations

Let K be a p-local field with residue field k of q elements and R a strict

p′-coefficient ring. The aim of this section is to define ε0,R(V, ψ) for a tamely

ramified object (ρ, V ) in Rep(WK , R) and a non-trivial continuous additive

character ψ : K → R×.

10.1. Global tame ε-constants

For a finite separable extension L of K, with (OL,mL) its ring of integers,

let Gr•L and Gr≥0L denote the graded OL/OK-algebras given by

Gr•L = ⊕n∈Zm
n
L/m

n+1
L , Gr≥0L = ⊕n≥0m

n
L/m

n+1
L ,

respectively and let Ĝr
•
L denote the complete discrete valuation field given

by

Ĝr
•
L = Frac (

∞∏
i=0

m
−i
L /m−i+1

L ).
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If L/K is a finite at most tamely ramified Galois extension of K, then

Gr•L (resp. Ĝr
•
L) is a finite etale Galois Gr•K-algebra (resp. a finite, at

most tamely ramified Galois extension of Ĝr
•
K) whose Galois group is

canonically isomorphic to Gal(L/K). We note that X0 := Spec (Gr•K)

is (non-canonically) isomorphic to Gm,k. Let WGr•K (resp. WGr≥0K) de-

note the subgroup of πet
1 (X0) (resp. of πet

1 (Spec (Gr≥0K))) consisting of

the elements whose image in πet
1 (Spec (k)) are integral powers of Frobenius.

For any tamely ramified object (ρ, V ) in Rep(WK , R), we associate an ob-

ject (ρ, V )Gr• in Rep(WGr• , R) (resp. a tamely ramified object (ρ, V )
Ĝr

in

Rep(W
Ĝr

•
K
, R)) in a canonical way.

Fix a non-trivial additive character φ0 : m
−1
K /OK → R×. Let K ′ =

Gr≥0K (resp. K ′ = Ĝr
•
K). Take a non-zero element x ∈ mK/m2

K and

consider the K ′-algebra L′ = K ′[t]/(t − tq − x). L′ is a finite etale Galois

K ′-algebra with its Galois group canonically isomorphic to k. Define a ho-

momorphism Gal(L′/K ′) ∼= k → R× by k � a �→ φ0(
a
x). This defines a rank

one object Lφ0 (resp. L̂φ0) in Rep(WGr≥0K , R) (resp. in Rep(W
Ĝr

•
K
, R))

which does not depend on the choice of x. Let L′
φ0

be the restriction of Lφ0

to WGr•K .

For a moment let us assume

(*) there exists a finite subring R0 of R such that (ρ, V ) comes from an

object (ρ0, V0) in Rep(WK , R0) by the base change, and that the image

of φ0 is contained in R×
0 .

Then (ρ, V )Gr• and L′
φ0

define smooth etale R0-sheaves Ṽ and L̃′
φ0

respec-

tively on the algebraic curve X0 over k. By the perfect complex argument

(see [De3, Rapport]), H1
c (X0⊗kk, Ṽ ⊗R0 L̃′

φ0
) (where k is an algebraic closure

of k) is a free R0-module of the same rank as V , endowed with an action of

the geometric Frobenius Frq. We define the global ε-constant εR(Ṽ ⊗R0 L̃′
φ0

)

to be

εR(Ṽ ⊗R0 L̃′
φ0

) = det(−Frq;H
1
c (X0 ⊗k k, Ṽ ⊗R0 ⊗L̃′

φ0
)).

Let us go back to the situation where the condition (*) is not necessarily

satisfied. For an effective divisor D =
∑n

i=1 mi[Pi] on Spec (Gr•K), where

mi are positive integers and P1, . . . , Pn are mutually distinct closed points
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on Spec (Gr•K), we define the symmetric trace T (D;V ⊗ L′
φ0

) by

T (D;V ⊗ L′
φ0

) =
n∏

i=1

Tr(FrPi ; TSmi(V ⊗R L′
φ0

)),

where FrPi ∈ WGr•K is any element in the conjugacy class of the geometric

Frobenius at Pi, and TSmi( ) denotes the sheaf of mi-th symmetric tensors.

Definition 10.1. We define the global ε-constant εR(V ⊗RL′
φ0

) to be

εR(V ⊗R L′
φ0

) =
∑
D

T (D;V ⊗ L′
φ0

),

where D runs over all effective divisors on Spec (Gr•K) of degree r = rankV .

Proposition 10.2 (Trace formula). Under the condition (*), we have

εR(Ṽ ⊗R0 L̃′
φ0

) = εR(V ⊗R L′
φ0

).

In particular, εR(V ⊗R L′
φ0

) is a unit in R.

Proof. This follows immediately from [De3, bFonction L mod �n]. �

10.2. Definition of tame local ε0-constants

Definition 10.3. Let (ρ, V ) be a tamely ramified object in

Rep(WK , R). For a non-trivial additive character ψ0 : k → R×, we de-

fine the ε0-constant ε0,R(V, ψ0, φ0) ∈ R with an additional parameter φ0

as

ε0,R(V, ψ0, φ0) := q−rankV ·
εR(V ⊗R L′

φ0
)

ε0,R((ρ, V )
Ĝr

⊗R L̂φ0 , ψ
′)
,

where ψ′ is an additive character of Ĝr
•
K induced from the additive char-

acter of Gr•(K) =
⊕

n∈Zmn
K/mn+1

K which is 1 on
⊕

n�=0 mn
K/mn+1

K and

x �→ ψ0(−x) for x ∈ m0
K/m1

K .

Remark 10.4. Let y ∈ m
−1
K /OK be the unique element satisfying

φ0(xy) = ψ0(−x)
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for all x ∈ k. Then, by Proposition 8.3, we have

ε0,R((ρ, V )
Ĝr

⊗R L̂φ0 , ψ
′) = detV (y).

The following theorem will be proved in § 11.

Theorem 10.5. ε0,R(V, ψ0, φ0) does not depend on the choice of φ0.

We denote it by ε0,R(V, ψ0).

Lemma 10.6. For a ∈ k×, let ψ0,a : k → R× be the homomorphism

defined as ψ0,a(x) = ψ(ax). Take a lift ã ∈ O×
K of a. Then we have

ε0,R(V, ψ0,a) = det(V )(rec(ã))ε0,R(V, ψ0)

Proof. We will show that

ε0,R(V, ψ0,a, φ0) = det(V )(rec(ã))ε0,R(V, ψ0, φ0)

We show that

ε0,R((ρ, V )
Ĝr

⊗R L̂φ0 , (ψa)
′) = det(V )(rec(ã))−1ε0,R((ρ, V )

Ĝr
⊗R L̂φ0 , ψ

′).

Since (ψa)
′ = (ψ′)a, it suffices to show that

det((ρ, V )
Ĝr

⊗R L̂φ0)(recĜr
•
K

(a)) = det(V )(rec(ã))−1.

By the reciprocity law, we have

L̂φ0(recĜr
•
K

(a)) = 1

and

det((ρ, V )
Ĝr

)(rec
Ĝr

•
K

(a)) = det(V )(rec(ã))−1.

Hence the assertion follows. �

Definition 10.7. Let ψ : K → R× be a non-trivial continuous addi-

tive character of K. Take an element a ∈ K× such that vK(a)+ordψ = −1.

Let ψa : K → R× be the additive character of K defined as ψa(x) = ψ(ax).

We define the ε0-constant ε0,R(V, ψ, a) to be

ε0,R(V, ψ) = det(V )(rec(a))−1q−vK(a)·rankV ε0,R(V, ψa).

By Lemma 10.6, ε0,R(V, ψ) does not depend on the choice of a.
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10.3. Properties of tame local ε0-constants (I)

In this subsection and in § 10.5, we prove that the ε0-constants ε0,R(V, ψ)

defined in Definition 10.7 satisfy the properties (0)–(9) in Theorem 5.4.

Proof of Theorem 5.4 (1), (2), (6), and (7). (1) and (2) are obvious.

(7) is clear from the definition of ε0,R(V, ψ).

(6). By (7), we may assume that ordψ = −1. Let ψ0 : k → R× be the

character induced by ψ|OK
. Then the assertion follows from the definition

of the global ε-constant εR(V ⊗ L′
φ0

) and Remark 10.4. �

Lemma 10.8 (Stability for totally wild extensions). Let K be a p-local

field, and (ρ, V ) be a tamely ramified object in Rep(WK , R). Let L/K be

a totally ramified finite separable extension whose ramification index is a

power of p. We have a canonical isomorphism WL/W
0+
L

∼= WK/W 0+
K . Let

(ρL, VL) be the tamely ramified object in Rep(WL, R) corresponding to (ρ, V )

via this isomorphism.

Then we have

ε0,R(VL, ψ0) = ε0,R(V, ψ
([L:K])
0 ),

where ψ
([L:K])
0 is the composition of the [L : K]-th power map k → k with

ψ0.

Proof. For every n ∈ Z, the norm map NL/K : L× → K× induces an

group isomorphism mn
L/m

n+1
L

∼=−→ mn
K/mn+1

K . This induces isomorphisms

Gr•L
∼=−→ Gr•K, Gr≥0L

∼=−→ Gr≥0K, Ĝr
•
L

∼=−→ Ĝr
•
K

of rings. Then (ρL, VL)Gr• , (ρL, VL)
Ĝr

, and Lφ0◦NL/K
corresponds respec-

tively to (ρ, V )Gr• , (ρ, V )
Ĝr

, and Lφ0 via these isomorphisms.

Hence we have

εR(VL ⊗R L′
φ0◦NL/K

) = εR(V ⊗R L′
φ0

)

and

ε0,R((ρL, VL)
Ĝr

⊗ L̂φ0◦NL/K
, ψ′ ◦ NL/K) = ε0,R((ρ, V )

Ĝr
⊗ L̂φ0 , ψ

′).

Hence the lemma follows. �
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Take a primitive p-th root of unity ζ ∈ R. Let aψ,ζ ∈ m
−ordψ−1
K /mordψ

K

be the element defined in §9.6, that is, aψ,ζ is the unique element satisfying

ψ(x) = ζTrk/Fp (aψ,ζx)

for all x ∈ m
−ordψ−1
K /m−ordψ

K . Then by the above lemma, we have

Corollary 10.9.

ε0(VL, ψ ◦ TrL/K)

= detV (rec(a
[L:K]−1
ψ,ζ ·NL/K(D̃L/K)))q(([L:K]−1)(ordψ+1)+vL(D̃L/K))·rankV

· ε0,R(V, ψ).

10.4. Reduction to finite rings

10.4.1 A preliminary from commutative ring theory

The aim of this subsubsection is to prove the following proposition:

Proposition 10.10. Let A be a finitely generated commutative Z-

algebra. Then for every non-zero element f ∈ A, there exists a finite

commutative ring R and a homomorphism ϕ : A → R of rings such that

ϕ(f) �= 0.

This proposition follows immediately from the following lemma:

Lemma 10.11. Let A be a noetherian commutative ring. Then for any

non-zero element f ∈ A, there exists a maximal ideal m ⊂ A and a positive

integer n ∈ Z>0 such that f �∈ mn.

Proof. Let I = {x ∈ A ; xf = 0}. Since f �= 0, we have I �= A. Take

a maximal ideal m of A containing I, and put N =
⋂

n mn. Assume that

f ∈ N . By Krull intersection theorem, there exists an element m ∈ m such

that (1−m)f = 0. We then have 1 = (1−m) +m ∈ I + m = m, which is a

contradiction. Thus f �∈ mn for some n. �
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10.4.2 A universal ring Rq,r

Let q and r be two positive integers. Let us consider the functor from

the category of commutative rings to the category of sets, which associates

a commutative ring R to the set

{(σ,A) ∈ GLr(R)2 ; σ−1Aσ = Aq}.

We easily see that this functor is representable by a finitely generated Z-

algebra, which we denote by Rq,r.

Let K be a p-local field with residue field k of q elements. Fix a lift

F ∈ WK/PK of the geometric Frobenius and fix a topological generator

ζ of IK/PK . Let R be a p′-coefficient ring. If we take an R-basis of V

for any tamely ramified object (ρ, V ) in Rep(WK , R) of rank r, the pair

(ρ(F ), ρ(ζ)) of two elements in GLr(R) satisfies ρ(F )−1ρ(ζ)ρ(F ) = ρ(ζ)q.

Let ϕV : Rq,r → R be the ring homomorphism corresponding to the pair

(ρ(F ), ρ(ζ)).

Lemma 10.12. If R0 is a finite local ring of order prime to p, then

V �→ ϕV gives a bijection from the set of isomorphism classes of tamely

ramified objects (ρ, V ) in Rep(WK , R0) of rank r with R0-bases to the set of

ring homomorphisms ϕ : Rq,r → R0.

Proof. Let (σ,A) be the pair of elements in GLr(R0) corresponding

to ϕ. Then the relation σ−1Aσ = Aq implies that the order of A in GLr(R0)

is prime to p. Hence ϕ defines an object in Rep(WK , R0). �

To study tame ε0-constants, the ring Rq,r is often useful to reduce the

assertion to the case where the condition (*) is satisfied. We will explain

this by proving the following lemma as an example:

Lemma 10.13. Let (ρ, V ) be a tamely ramified object in Rep(WK , R)

of rank r. For a positive integer s, set

∆(V, φ0, s) =
∑
D

T (D;V ⊗ L′
φ0

),

where D runs over all effective divisors on Spec (Gr•K) of degree s. Then

∆(V, φ0, s) = 0 for all s > r.
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Proof. Let

R′
q,r := Rq,r[

1

p
].

and let φ̃0 : m
−1
K /OK → (Z[X]/(1 + X + · · · + Xp−1))× be a non-trivial

additive character. Then for any non-trivial character φ0 : m
−1
K /OK →

R× whose kernel is equal to the kernel of φ̃0, there exists a unique ring

homomorphism hφ0 : Z[X]/(1+X+· · ·+Xp−1) → R such that φ0 = hφ0◦φ̃0.

There exists an element ∆̃(φ̃0, s) in R′
q,r ⊗Z Z[X]/(1 +X + · · ·+Xp−1)

such that for any p′-coefficient ring R and for any tamely ramified object

(ρ, V ) in Rep(WK , R) of rank r with an R-basis of V , and for any non-

trivial character φ0 : m
−1
K /OK → R× whose kernel is equal to the kernel

of φ̃0, the element ∆(V, φ0, s) is equal to the image of ∆̃(φ̃0, s) by the ring

homomorphism

ϕV ⊗ hφ0 : R′
q,r ⊗Z Z[X]/(1 + X + · · · + Xp−1) → R.

To prove the lemma, it suffices to prove that ∆̃(φ̃0, s) = 0. By Proposi-

tion 10.10, it suffices to prove that ϕ(∆̃(φ̃0, s)) = 0 for any homomorphisms

ϕ : R′
q,r ⊗ZZ[X]/(1+X + · · ·+Xp−1) → R0 from R′

q,r to a finite local ring

R0.

Hence it suffices to show the lemma for every R and (ρ, V ) which satisfy

the condition (∗). In this case, the assertion of the lemma is obvious since∧sH1
c (Spec (Gr•K) ⊗k k, Ṽ ⊗R0 L̃′

φ0
) = 0. �

10.5. Properties of tame local ε0-constants (II)

Lemma 10.14 (=Theorem 5.7 (2)). Let L be an unramified extension

of K. We denote by OL its ring of integers, by mL the maximal ideal of OL,

and by kL the residue field of OL. Let (ρ, V ) be a tamely ramified object in

Rep(WL, R). Then we have

ε0,R(IndWK
WL

V, ψ) = ε0,R(V, ψ ◦ TrL/K) · λR(L/K,ψ)rankV .

Remark 10.15. By Lemma 6.5, we have

λR(L/K,ψ) = (−1)([L:K]−1)ordψ.
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Proof. By reduction to finite rings, we may assume that (ρ, V ) satis-

fies the condition (*).

Let f : Spec (Gr•L) → Spec (Gr•K) be the canonical etale covering

induced from L/K. Since

IndWk
WkL

H1
c (Spec (Gr•L) ⊗kL kL, Ṽ ⊗R0 L̃′

φ0◦TrkL/k
)

= H1
c (Spec (Gr•K) ⊗k k, f∗(Ṽ ⊗R0 L̃′

φ0◦TrkL/k
))

= H1
c (Spec (Gr•K) ⊗k k, f∗(Ṽ ) ⊗R0 L̃′

φ0
),

we have

εR(IndWK
WL

V ⊗ L′
φ0

) = εR(V ⊗ L′
φ0◦Tr) · (−1)[L:K]−1.

Hence the lemma follows by Lemma 6.5. �

Proof of Theorem 5.4. We check the properties (0)-(9) in the state-

ment of the theorem. The properties (1) and (2) are clear.

Let V , V ′, and V ′′ be as in the statement of property (3). By the

definition of ε0,R(V, ψ, φ0), we see that

ε0,R(V, ψ, φ0) = ε0,R(V ′ ⊕ V ′′, ψ, φ0).

We may assume that V = V ′ ⊕ V ′′. We set r′ = rankV ′ and r′′ = rankV ′′.
For the property (3), it suffices to show that a certain element in the

ring

(R′
q,r′ ×R′

q,r′′) ⊗Z Z[X]/(1 + X + · · ·Xp−1)

is zero. We reduce, by reduction to finite rings, the problem to the case

where both (ρ′, V ′) and (ρ′′, V ′′) satisfy the condition (*). In this case the

assertion is immediate from the cohomological interpretation of the global

ε-constants.

(4). We may assume that R is of characteristic zero and that ordψ = −1.

If K is of characteristic p, the assertion follows from the product formula.

If K is of characteristic zero, let

K ′ = Frac (lim←− n ⊕n
i=0 m

i
K/mi+1

K )

and let V ′ denote the object in Rep(WK′ , R) which canonically corresponds

to V . The representation V is the direct sum of the representation of the
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form IndWK
WL

χ, where L is an unramified extension of K and χ is a rank

one tamely ramified object in Rep(WL, R). Hence we can check, by direct

computation, that

ε0(V, ψ, dx) = ε0(V
′, ψ′, dx′),

where ψ′ is an additive character of K ′ with ordψ′ = −1 whose restriction

to OK/mK is equal to that of ψ, and dx′ is the R-valued Haar measure of

K ′ satisfying
∫
OK′ dx

′ = 1. Hence the proposition follows.

(5) follows from (3) and (4).

(0) follows from (4).

(8) By reduction to finite rings, we may assume that (ρ, V ) satisfies the

condition (*). By (7), we may assume that ordψ = −1. Let ψ0 be the

additive character of k induced by ψ|OK
. It suffices to prove that

ε0,R(V ⊗W,ψ0, φ0) = ε0,R(V, ψ0, φ0)
rankW .

By Theorem 5.3 (8), we have

ε0,R((ρ, V ⊗W )
Ĝr

⊗R L̂φ0 , ψ
′)

= detW (FrrankV ) · ε0,R((ρ, V )
Ĝr

⊗R L̂φ0 , ψ
′)rankW .

On the other hand, by the cohomological interpretation of the global ε-

constant, we have

εR(V ⊗W ⊗R L′
φ0

) = detW (FrrankV ) · εR(V ⊗R L′
φ0

)rankW

Hence the assertion follows.

(9) Let (ρ, V ) be a tamely ramified object in Rep(WK , R) such that the

coinvariant (V )W 0
K

is zero. Let ζ be a topological generator of W 0
K/W 0+

K .

Then ρ(ζ) − 1 : V → V is invertible. By reduction to finite rings, we may

assume that (ρ, V ) satisfies the condition (*). By (7), we may assume that

ordψ = −1. Let ψ0 be the additive character of k induced by ψ|OK
. Let

φ0 : m
−1
K /OK → R×

0 be a non-trivial character and set φ0,1(x) = φ0(−x). It

suffices to prove that

ε0,R(V, ψ0, φ0) · ε0,R(V ∗, ψ0, φ0,−1) = det(V )(rec(−1))q−rankV .

To prove this, it suffices to prove that

εR(Ṽ ⊗R0 L̃′
φ0

) · εR(Ṽ ∗ ⊗R0 L̃′
φ0,−1

) = qrank (V ),

which follows from Poincare duality. This completes the proof of Theo-

rem 5.4. �
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11. Proofs of Theorem 10.5 and Theorem 5.7 (3) (4)

In the first part of this section, we prove Theorem 10.5, that is, in-

dependence of φ0 of tame ε0-constants stated in the previous section. As

a corollary, we get a formula describing tame ε0-constants as integrals, on

which we will discuss in § 11.2. § 11.3 is devoted to the proof of Theorem 5.7

(3). The proof consists of the following reduction steps:

Theorem 5.7 (3) ⇐ Prop. 11.5 ⇐ Prop. 11.6.

In § 11.4, we remark that, if K = Qp, Gross-Koblitz formula [GK] yields an

integration formula analogous to that in § 11.2. The last two subsections in

this section are devoted to the proof of Theorem 5.7 (4).

11.1. Proof of Theorem 10.5

By reduction to finite rings, it suffices to prove the theorem under the

assumption (*) in § 10.1.

Let K be a p-local field, R0 a finite local ring on which p is invertible,

φ0 : m
−1
K /OK → R×

0 a non-trivial additive character. Let V be a tamely

ramified object in Rep(WK , R0). We use the notation Gr•K, Ṽ , and L̃′
φ0

in § 10.1. We set X0 = Spec (Gr•K) and X = X0 ⊗k k. Take an element

a ∈ k× and let φ′
0 : m

−1
K /OK → R×

0 be the non-trivial additive character

defined by φ′
0(x) = φ0(ax). Define the smooth invertible sheaf L̃′

φ′
0

on X0

in a similar way as we have defined L̃′
φ0

.

By Remark 10.4, Theorem 10.5 is implied by the following proposition:

Proposition 11.1. We have

det(Frq ;H1
c (X,F⊗R0L̃′

φ0
)) = det(V )(recK(a))·det(Frq ;H1

c (X,F⊗R0L̃′
φ′

0
)).

Proof. For a positive integer m ∈ Z>0, let πm : Xm → X be the

unique connected etale covering of X of degree m which is tamely ramified

at boundaries. Take a sufficiently divisible m ∈ Z>0 such that the restriction

of F to Xm is constant.

We define an object Wm in Rep(Gal(Xm/X0), R0) as

Wm := H1
c (X, (πm∗R0) ⊗R0 L̃′

φ0
).
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We put Im := Gal(Xm/X)(∼= Z/mZ). By duality and Hochschild-Serre

spectral sequence, we have a canonical isomorphism

H1
c (X, Ṽ ⊗R0 L̃′

φ0
) ∼= (V ⊗R0 Wm)Im ,

where ( )Im denotes the Im-coinvariant.

By the perfect complex argument, as an R0[Im]-module, Wm is free of

rank one. Take an R0[Im]-basis b of Wm. Then the map

ϕ : V → (V ⊗R0 Wm)Im

defined as ϕ(v) = v ⊗ b is an isomorphism of R0-modules. Take a lift

F̃rq ∈ Gal(Xm/X0) of the geometric Frobenius and let us write F̃rq(b) = ub

with u =
∑

g∈Im rg[g] ∈ R0[Im]. Then we have

Frq(v ⊗ b) = F̃rq(v) ⊗
∑
g∈Im

rg[g]b

= (
∑
g∈Im

rg[g
−1]F̃rq)v ⊗ b

in (V ⊗R0 Wm)Im . Therefore

det(Frq;H
1
c (X,F ⊗R0 L̃′

φ0
)) = det(

∑
g∈Im

rg[g
−1]F̃rq;V ).(11.1)

Define the object W ′
m in Rep(Gal(Xm/X0), R0) by

W ′
m := H1

c (X, (πm∗R0) ⊗R0 L̃′
φ′

0
).

Then we have a canonical isomorphism

H1
c (X, Ṽ ⊗R0 L̃′

φ′
0
) ∼= (V ⊗R0 W

′
m)Im .

Take an element α ∈ k satisfying αm = a. Then the map Xm →
Xm induced by the multiplication-by-α map mK/m2

K → mK/m2
K induces

an isomorphism ϕ : Wm
∼= W ′

m of R0[Im]-modules. Let [αq−1] ∈ Im be

the element corresponding to αq−1 ∈ µm(k) by the canonical isomorphism

Im ∼= µm(k). It is easily checked that the action of F̃rq on Wm is identified

with the action of F̃rq · [αq−1] in W ′
m by ϕ. Hence the proposition follows. �
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This completes the proof of Theorem 10.5. �

Corollary 11.2. For fixed K, R, and ψ0 the local ε0-constant

ε0,R(V, ψ0) for a tamely ramified object (ρ, V ) in Rep(WK , R) depends only

on the restriction of V to W 0
K .

11.2. A measure defined by (Wm)m
Let K, X0, X, Xm and Im be as in the proof of Proposition 11.1.

Let G := πtm
1 (X0) = lim←−mGal(Xm/X0) denote the tame fundamental

group of X, and let I := πtm
1 (X) = lim←−mIm ⊂ G denote the inertia

subgroup of G. We use the canonical identifications G ∼= WK/(WK)0+

and I ∼= (WK)0/(WK)0+. Take a prime number � different from p. Set

R = W (F�(µp)). Let φ0 : m
−1
K /OK → R× be a non-trivial additive charac-

ter.

Since R is isomorphic to the projective limit lim←− nR/�nR of finite local

rings, we can define, for each positive integer m, the cohomology group

Wm := H1
c (X, (πm∗R) ⊗R L̃φ0) as the projective limit of the cohomology

groups for φ0 modulo �n (n = 0, 1, 2 · · · ) which appear in the proof of

Proposition 11.1. Then Wm is an object in Rep(Gal(Xm/X0), R) and as an

R[Im]-module, Wm is free of rank one. Let us consider Wm as an object in

Rep(G,R) on which G act via the quotient Gal(Xm/X0). For two integers

m,n with m|n, the canonical morphism Wm → Wn is compatible the action

of G. Let Ŵ be the R[[G]]-module Ŵ = lim←−mWm. As an R[[I]]-module, Ŵ

is free of rank one. Take an R[[I]]-basis b̂ of Ŵ . Take a lift F̃rq ∈ G of the

geometric Frobenius and define an element u
b̂

in R[[I]] by F̃rq b̂ = u
b̂
b̂. It is

simple to see that u
b̂

lies in R[[I]]×. We note that u
b̂

depends on the choice

of φ0 and F̃rq, not only on that of b̂.

Remark 11.3. Let us define the action of G on R[[I]] by the conjuga-

tion g.[i] = [gig−1]. The R[[I]]-action R[[I]] × Ŵ → Ŵ on Ŵ is compatible

with the actions of G. The class û of u
b̂

in the G-coinvariant (R[[I]]×)G

does not depend on the choice of b̂. In fact, if b̂′ = ab̂, with a ∈ R[[I]]×, is

another basis of Ŵ , then we have u
b̂′ = (F̃r.a)u

b̂
a−1.

By (11.1) and by Remark 10.4, we have:

Proposition 11.4. We canonically regard the element u
b̂
∈ R[[I]] as

an R-valued measure on I.
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Let R′ be a strict p′-coefficient ring whose residue field is of characteristic

�. Then R′ has a canonical structure of an R-algebra. Let ψ : K → R′× an

additive character with ordψ = −1 satisfying

ψ(x) = φ0(rec
−1(F̃r

−1

q )x)

for all x ∈ OK . Then for any tamely ramified object (ρ, V ) ∈ Rep(WK , R′),
we have

ε0,R′(V, ψ) = det

(
1

q

∫
g∈I

ρ(g)−1du
b̂
(g)

)
.

11.3. Proof of Theorem 5.7 (3)

Let L be a finite separable totally tamely ramified extension of K degree

n. Let R be a strict p′-coefficient ring, and let (ρ, V ) be a tamely ramified

object ∈ Rep(WK , R) which satisfies the condition (*) in § 10.1.

We set Y0 = Spec (Gr•L). Let f : Y0 → X0 denote the morphism

associated with the extension L/K and put Y = Y0⊗kk ∼= Xn. Let ψL : L →
R× be a non-trivial continuous additive character. To prove Theorem 5.7

(3), it suffices to prove that

(∗∗) ε0,R(V, ψL) = q−rankV ·
det(−Frq ; H1

c (Y, Ṽ ⊗ f∗L̃′
φ0

))

ε0,R(V̂ ⊗ Res
W

ĜrK
W

ĜrL

L̂φ0 , ψ
′
L)

.

Let gR ∈ R× denotes the Gauss sum part of ε0,R(V̂ ⊗ Res
W

ĜrK
W

ĜrL

L̂φ0 , ψ
′
L)

(Definition 7.5).

Let � be a prime number different from p. Let R, φ0, Wm, Ŵ , b̂ and u
b̂

be as in the previous subsection.

Consider the n-th power map I → I. To avoid confusion, we denote

it by IL → IK . We regard R[[IK ]] as a representation of IK over a free

R[[IL]]-module of rank n. Then detR[[IL]] R[[IK ]] defines a representation ρ̂n
of I = IK over a free R[[I]] = R[[IL]]-module of rank one.

In the same way as in the proof of Proposition 11.4, the right hand side

of (**) is expressed using

det

(
1

q

∫
g∈I

ρ(g)−1d(ρ̂n(u
b̂
))(g)

)
.
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Thus to prove Theorem 5.7 (3), it suffices to prove the following propo-

sition:

Proposition 11.5. The two elements gRub̂ and ρ̂n(u
b̂
) in R[[I]]× co-

incide in (R[[I]]×)G.

Let Reps(G,R[[I]]) denote the category of finitely generated projective

R[[I]]-modules endowed with a continuous semi-linear action of G. The G-

module Ŵ is an object in Reps(G,R[[I]]) of R[[I]]-rank one. Furthermore,

the action of I ⊂ G on Ŵ and that of I ⊂ R[[I]]× on Ŵ coincide. We note

that these two actions of I do not necessarily coincide on a general object

V in Reps(G,R[[I]]).

If V, V ′ are two objects in Reps(G,R[[I]]), then the tensor product

V ⊗R[[I]] V
′ is canonically viewed as an object in Reps(G,R[[I]]). For an

integer n ∈ Z>0 which is prime to p, let I = IL → IK = I be the n-th power

map of I. Let V be an object in Reps(G,R[[IK ]]). We regard V as an object

in Reps(G,R[[IL]]) via the map IL → IK as above. Set V(n) = ∧n
R[[IL]]V .

The assignment V �→ V(n) gives a functor from Reps(G,R[[I]]) to itself. If

the two actions of I mentioned above coincide on V , then so does on V(n).

Proposition 11.5 is equivalent to the following:

Proposition 11.6. The object Ŵ(n) in Reps(G,R[[I]]) is isomorphic

to ŴgR , where ŴgR is the unramified twist of Ŵ by the unramified character

defined by F̃rq �→ gR.

Proof. Let us recall that our extension L/K is a totally tamely ram-

ified extension of degree n. Taking a prime element πL in L such that

πK = πn
L is a prime element in K, we identify X0 = Y0 = Gm,k. Then

Y0 → X0 is the n-th power map : Gm,k
n−→ Gm,k.

For a positive integer m, let Y0,m = Gm,k endowed with the structure of

Y0 = Gm,k-scheme by the m-th power map

π′
m : Y0,m = Gm,k

m−→ Gm,k = Y0.

Set Ym = Y0,m ⊗k k = Gm,k. We set Jm = Gal(Ym/Y ) ∼= Z/mZ. If we

identify Y with Xn as X-schemes, then Jm is identified with a subgroup of

Imn.
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We consider the sheaf of R[Jm]-module π′
m,∗R on Y . Let (π′

m,∗R)�n

is the external tensor product of n copies of πn,nm,∗R over R[Jm]; it is an

invertible R[Jm]-sheaf on the n-fold product Y n = Y × · · · × Y of Y .

Lemma 11.7. Let sn : Y n = Gn
m,k

→ Gm,k = Y be the product map.

Then we have a canonical isomorphism

(π′
m,∗R)�R[Jm]n ∼= s∗n(π′

m,∗R)

of R[Jm]-sheaves on Y m.

Proof. Since sn comes from the group law of Gm,k, the map

πtm
1 (Y n) → πtm

1 (Y ) induced by sn comes from the corresponding group

law. Hence the lemma follows. �

Since Wmn = H1
c (Y, π′

m,∗R⊗R L̃φ0 |Y ), the above lemma yields a canon-

ical isomorphism

W
⊗R[Jm],n
mn

∼= Hn
c (Y n, (π′

m,∗R⊗R L̃φ0 |Y )�R[Jm],n)

∼= Hn
c (Y n, (π′

m,∗R)�R[Jm],n ⊗R (L̃φ0 |Y )�R,n)

∼= H1
c (Y, π′

m,∗R⊗R Rsn,!(L̃φ0 |Y )�R,n)[n− 1]).

The n-th symmetric group Sn acts on Y n and the morphism sn factors

through the quotient SymnY = Y n/Sn of Y n. Following [De4] we denote

by Γn
ext(L̃φ0 |Y ) the Sn-invariant part of the direct image of (L̃φ0 |Y )�R,n

under the quotient morphism Y n → SymnY . Taking actions of the n-th

symmetric group Sn into account, we have

detR[Jm]Wmn
∼= H1

c (Y, π′
m,∗R⊗R Rs̃n,!(Γ

n
ext(L̃φ0 |Y ))[n− 1]),

where s̃n : SymnY → Y is the morphism induced by sn.

Next we will compute Rs̃n,!(Γ
n
ext(L̃φ0 |Y ))[n − 1]). The scheme SymnY

is identified with the moduli scheme of monic polynomials of degree n with

invertible constant terms. Hence SymnGm,k is identified with An−1
k

× Gm,k

by associating a polynomial P (X) = Xn +
∑

i(−1)iaiX
n−i to the point

((a1, . . . , an−1), an). The morphism s̃n is identified with the second projec-

tion pr2 : An−1
k

× Gm,k → Gm,k.
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Let Nn(X1, · · · , Xn) be the n-th Newton polynomial, that is, the poly-

nomial with Z-coefficients characterized by

Nn(a1, · · · , an) = αn
1 + · · · + αn

n if
∏
i

(X − αi) = Xn +
∑
i

(−1)iaiX
n−i.

Then Nn is of the form

Nn(X1, · · · , Xn) = (−1)n−1nXn + Q(X1, · · · , Xn−1).

Let Q : An−1
k

→ A1
k

be the morphism defined by Q(X1, · · · , Xn−1). We have

a canonical isomorphism

Γn
ext(L̃′

φ0
|Y ) ∼= Q∗L̃φ0 �R L̃′

φ0,(−1)n−1n
,

where φ0,(−1)n−1n : m
−1
K /OK → R× is the composition of φ0 with the mul-

tiplication by (−1)n−1n. Hence,

Rs̃n,!(Γ
n
ext(L̃′

φ0
|Y )) ∼= RΓc(A

n−1
k

, Q∗L̃φ0) ⊗R L̃′
φ0,(−1)n−1n

.

We compute the cohomology group

RΓc(A
n−1
k

, Q∗L̃φ0). Since Q(X1, · · · , Xn) is characterized by

Q(a1, · · · , an−1) = αn
1 + · · · + αn

n−1 if

n−1∏
i=1

(X − αi)

= Xn−1 +
n−1∑
i=1

(−1)iaiX
n−1−i,

we have

RΓc(A
n−1
k

, Q∗L̃φ0) = RΓc(Symn−1(A1
k
),Γn−1

ext L̃φ0(xn))

= LΓn−1
ext RΓc(A

1
k
, L̃φ0(xn)).

Here L̃φ0(xn) is the pull-back of L̃φ0 by the morphism A1
k

→ A1
k

=

Spec (Gr≥0K), x �→ xn.

By the wildness of L̃φ0(xn) at infinity and the Grothendieck-Ogg-

Shafarevich formula, H i
c(A

1
k
, L̃φ0(xn)) is zero except i = 1 and H1

c (A1
k
,

L̃φ0(xn)) is a free R-module of rank n− 1.
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Lemma 11.8. We have

det(Frq ; H1
c (A1

k
, L̃φ0(xn))) = −gR.

Proof. This follows from the product formula for the global ε-con-

stant of L̃φ0(xn). �

Summing up, we have

detR[Jm]Wmn
∼= H1

c (Y, π′
m,∗R⊗R Rs̃n,!(Γ

n
ext(L̃φ0 |Y ))[n− 1])

∼= RΓc(A
n−1
k

, Q∗L̃φ0)[n− 1] ⊗R H1
c (Y, π′

m,∗R⊗R L̃′
φ0,(−1)n−1n

)

∼= Hn−1
c (An−1

k
, Q∗L̃φ0) ⊗R H1

c (Y, π′
m,∗R⊗R L̃′

φ0,(−1)n−1n
)

∼= detRH
1
c (A1

k
, L̃φ0(xn)) ⊗R H1

c (Y, π′
m,∗R⊗R L̃′

φ0,(−1)n−1n
).

Hence the proposition follows. �

This completes the proof of Theorem 5.7 (3).

11.4. A question on an integration formula for ε-constants

In this subsection, we assume that K = Qp. As a coefficient ring, we

take R = Qp the algebraic closure of Qp. Here we endow R with discrete

topology.

Let Z(p) = Zp ∩ Q be the ring of rational numbers whose denomina-

tor is prime to p. Choose a group homomorphism � : Z(p) → R× such

that �(1) = −p. Let ψ0 : Fp → R× be the non-trivial homomorphism

characterized by the following property:

ψ(1) − 1

�( 1
p−1)

∈ 1 + mQp(µµµp(R)).

Let etm,
 be the formal sum defined by

etm,
 =
∑

x∈Z(p),0≤x<1

Γp(x)�(x).
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where Γp : Zp → Zp is Morita’s p-adic Gamma function;

Γp(x) = lim
m→x,m∈Z>0

(−1)m
∏

0<j<m, (p,j)=1

j.

Let dσ be the Haar measure of WQp such that
∫
W 0

Qp

dσ = 1. For a locally

constant compactly supported R-valued function f on WQp/W
0+
Qp

, define

the integral ∫
WQp

f(σ)σ(etm,
)dσ ∈ R

by the sum ∑
x∈Z(p),0≤x<1

∫
WQp

f(x)Γp(x)�(x)dσ.

Since these summands vanish except for finitely many x, this sum has a

well-defined meaning.

Proposition 11.9. Let ψ : Qp → R× be an continuous additive char-

acter of Qp with ordψ = −1 whose restriction to Zp is equal to ψ0. Then

for any tamely ramified object (ρ, V ) in Rep(WQp , R), we have

ε0,R(V, ψ) = det

(∫
W 0

Qp
/(WQp )0+

ρ(σ)−1σ(etm,
)dσ

)
.

Proof. Because of the additivity, it suffices to prove the proposition

when V is of the form V = Ind
WQp

WKn
χ, where Kn is the unique unramified

extension of Qp of degree n, and χ ∈ Rep(WKn , R) is a rank one tamely ram-

ified object. Then the restriction of χ ◦ rec on OKn defines a multiplicative

character χ0 : Fpn → R×. We have

ε0(ρ, ψ) = (−1)n−1 1

pn

∑
x∈F×pn

χ0(x)−1ψ0(TrFpn/Fp(x)).

Let N denote the order of χ0. Set Fpd := Fp(µN (Fpn)). Let a ∈ 1
N Z/Z be
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the unique element which makes the following diagram commutative:

F×
pn

χ0−−−→ µN (R)

NFpn/F
pd

� ∼=
�can

F×
pd

(pd−1)a−−−−−→ µN (Fpd).

Then by Gross-Koblitz formula [GK, p. 571, Thm. 1.7], and Davenport-

Hasse formula, we have

ε0(ρ, ψ) = (−1)n−1 · (−1)
n
d
−1

− 1

pd

d−1∏
j=0

�(〈pja〉)Γp(〈pja〉)

n
d

=
(−1)n

pn

n−1∏
j=0

�(〈pja〉)Γp(〈pja〉),

where 〈 〉 denote the fractional part. Then the proposition follows by simple

calculation. �

Question. Assume that p �= 2. For general v ∈ Q≥0, does there exists

a explicitly defined measure ev,ψ on WQp/(WQp)
v+ such that the formula

ε0,R(V, ψ) = det

(∫
WQp/(WQp )v+

ρ(σ)−1σ(ev,ψ)dσ

)
holds for any object (ρ, V ) ∈ Rep(WQp , R) which is pure of break v ?

11.5. An auxiliary lemma

The contents of this subsection are preliminary to the proof of Theo-

rem 5.7 (4) given in § 11.6. Let K be a p-local field. Take a prime element

πK of K. For every integer n ≥ 1, let Ln be the finite separable extension

of K given by

Ln = K[X]/(Xpn + πKX − πK).

Then it is easily checked that the Herbrand function ψLn/K : R≥0 → R≥0

of Ln/K is given by

ψL/K(w) =

{
w, for 0 ≤ w ≤ 1

pn−1 ,

pnw − 1, for w ≥ 1
pn−1 .
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Lemma 11.10. Let C be a separably closed field of characteristic �= p.

Let G = WK denote the Weil group of K. Let w ∈ W>0. Then, for any non-

trivial character σ ∈ (Hom(Gw/Gw+, C×))G, there exists an object (ρ, V )

in Rep(G,C) which is pure of refined break {σ} and that rankV is a power

of p.

Proof. Take a sufficiently large n ∈ Z>0 so that w > 1
pn−1 and that

pnw is an integer. Then v = ψLn/K(w) is an integer.

Let H = WLn denote the Weil group of Ln. We have a canonical iso-

morphism Hv/Hv+ ∼= Gw/Gw+. Let σ′ : Hv/Hv+ → C× be the character

corresponding to σ.

By the local class field theory, there exists a character χ : H → C× of

H which is pure of refined break {σ′}. We set V = IndG
Hχ. It follows from

the argument in § 9.5 that V is pure of refined break {σ}. �

Corollary 11.11. Let C be a separably closed field of characteristic

�= p. Let G = WK denote the Weil group of K. Let w ∈ W>0. Then, for

any G-orbit Σ in the set of non-trivial characters in Hom(Gw/Gw+, C×),

there exists an object (ρ, V ) in Rep(G,C) which is pure of refined break Σ

and that rankV
�Σ is a power of p.

11.6. Proof of Theorem 5.7 (4)

Proof. Let L/K be a totally wild finite separable extension. We set

G = WK and H = WL. Let (ρ, V ) be a tamely ramified object in Rep(H,R).

Let W = IndG
HV . Let W 0 (resp. W>0) denote the tamely ramified part

(resp. wild part) of W . We prove that

ε0,R(W>0, ψ) · ε0,R(W 0, ψ) = ε0,R(V, ψ ◦ TrL/K) · λR(L/K,ψ)rankV .

We may assume that L/K has no non-trivial intermediate extension. There

exists a unique w1 ∈ Q≥0 such that ψL/K(w) = w for 0 ≤ w ≤ w1 and

that ψL/K(w) is linear of slope [L : K] for w > w1. By corollary 9.3, W

is a direct sum W = W 0 ⊕ Ww1 of the tamely ramified part W 0 and the

break-w1-part Ww1 .

Let us consider Ww1 . We use the notation in § 9.4. We have a canonical

element σψ(χ′) for χ′ ∈ Cw1 . We have

det(Ind
Gχ′/Gw1+

Gw1Hχ′/Gw1+Vχ′)(rec(σψ(χ′)))
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= det(Vχ′)(rec(σψ(χ′))) · (Ind
Gχ′/Gw1+

Gw1Hχ′/Gw1+1)(rec(σψ(χ′)))rankVχ′ .

For each Σ′ ∈ Bw0 , take an element χ′
Σ′ ∈ Σ′. We abbreviate the functor

Ind
Gχ′

Σ′
/Gw1+

Gw1Hχ′
Σ′

/Gw1+ by Indχ′
Σ′ for simplicity. Then we have

ε0,R(Ww1 , ψ)

=
∏

Σ′∈Bw1−{1}
det(Indχ′

Σ′Vχ′
Σ′ )(rec(σψ(χ′

Σ′)))−1 · gR(χ′
Σ′ , ψ)

rank Indχ′
Σ′

Vχ′
Σ′

=
∏

Σ′∈Bw1−{1}
det(Vχ′

Σ′ )(rec(σψ(χ′
Σ′)))−1 · (Indχ′

Σ′1)(rec(σψ(χ′
Σ′)))

−rankVχ′
Σ′

· gR(χ′
Σ′ , ψ)

rank Indχ′
Σ′

Vχ′
Σ′

Let L̃ be the Galois closure of L/K. Then Gal(L̃/K)w1+ = {1}. Let

K̃ (resp. L′) be the subextension of L̃/K (resp. L̃/L) corresponding to

Gal(L̃/K)w1 (resp. Gal(L̃/L)w1). Take prime elements πL′ ∈ L′ and π
K̃

∈ K̃

satisfying N
K̃/L′(πK̃) = πL′ . By Proposition 9.9 (3), the map

σL/K,ψ,w1
: N−w1−ordψ−1

K → N
−w1−ord (ψ◦TrL/K)−1

L

is of the form

a · a−1
ψ,ζ · D̃−1

K̃/K
π
−w

1,K̃

K̃
�→ (a0 · a + · · · + a

1
[L:K] ) · a−1

ψ,ζ · D̃−1
L′/Kπ

−w1,L′
L′ ,

where a0 = D̃
L′/K̃ · π

w1,L′
L′

π
w

1,K̃

K̃

.

Hence by Proposition 3.6,∏
x∈N−w1−ordψ−1

K ,x �=0,σL/K,ψ,w1
(x)=0

x = (a−1
ψ,ζ · D̃−1

K̃/K
π
−w

1,K̃

K̃
)[L:K]−1 · 1

a
[L:K]
0

=
(a−1

ψ,ζ · D̃−1
L′/Kπ

−w1,L′
L′ )[L:K]

a−1
ψ,ζ · D̃−1

K̃/K
π
−w

1,K̃

K̃

= a
1−[L:K]
ψ,ζ · D̃−[L:K]

L/K .
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Let Kw1 (resp. Lv1) be the Galois extension of K (resp. L) corresponding

to Hv1 (resp. Kw1). For χ′ ∈ Cw1 , let Mχ′ be the finite subextension of

Lv1/Kw1 corresponding to Kerχ′. Let Lχ′ be the finite extension of L

corresponding to Hχ′ , and set Kχ′ = Kw1 ∩ Lχ′ and M ′
χ′ = Mχ′ ∩ Lχ′ .

Then there is a canonical isomorphism Gal(Lv1/Lχ′) ∼= Gal(Kw1/Kχ′) and

Gal(Mχ′/Kw1) ∼= Gal(Mχ′/Kχ′). Let V ′
χ′ (resp. χ′) be the representation

of Gal(Kw1/Kχ′) (resp. Gal(M ′
χ′/Kχ′)) over R corresponding to ResHHχ′V

(resp. χ′) via the above isomorphism. Then Vχ′ is canonically isomorphic

to V ′
χ′ ⊗ χ′.
Consider the following commutative diagram

L×
χ′/1 + mLχ′ −−−→ K×

χ′/1 + mKχ′� �
L×/1 + mL −−−→ K×/1 + mK

where all the arrows are homomorphisms induced by norms. Since L/K

and Lχ′/Kχ′ are totally wildly ramified extensions, the horizontal maps are

isomorphisms. Let σ′
ψ(χ′) ∈ (L×/1 + mL) ⊗Z Z[1p ] be the unique element

satisfying NL/K(σ′
ψ(χ′)) = NKχ′/K(σψ(χ′)). Then we have

detVχ′(rec(σψ(χ′))) = det(V )(rec(σ′
ψ(χ′))) · χ′(rec(σψ(χ′)))rankV

= det(V )(rec(σ′
ψ(χ′))).

in R×/µ.

Since ∏
Σ′∈Bw1−{1}

σ′
ψ(χ′

Σ′) = N−1
L/K(

∏
Σ′∈Bw1−{1}

NKχ′
Σ′

/K(σψ(χ′
Σ′)))

= N−1
L/K(

∏
χ′∈Cw1−{1}

σψ(χ′))

= N−1
L/K(a

1−[L:K]
ψ,ζ · D̃−[L:K]

L/K )

= a
−1+ 1

[L:K]

ψ,ζ · D̃−1
L/K .

we have∏
Σ′∈Bw1−{1}

det(Vχ′)(rec(σψ(χ′
Σ′)))−1 = det(V )(rec

(
a
−1+ 1

[L:K]

ψ,ζ · D̃−1
L/K

)
)−1.
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Take an element χ ∈ Σ and let Lχ be the extension of L corresponding

to the stabilizing subgroup Hχ of χ. Let V ′ be the χ-part of V . Since V is

isomorphic to IndH
Hχ

V ′, we have∏
Σ′∈Bw1−{1}

det(Vχ′)(rec(σψ(χ′
Σ′)))−1

= det(V ′)(recLχ

(
a
−1+ 1

[L:K]

ψ,ζ · D̃−1
L/K

)
)−1

· (IndH
Hχ

1)(recL

(
a
−1+ 1

[L:K]

ψ,ζ · D̃−1
L/K

)
)−1.

Therefore we have

ε0,R(Ww1 , ψ)

= detV (rec(a
−1+ 1

[L:K]

ψ,ζ · D̃−1
L/K))−1

·
∏

Σ′∈Bw1−{1}
gR(χ′

Σ′ , ψ)
rank Indχ′

Σ′
Vχ′

Σ′ .

On the other hand, by corollary 10.9, we have

ε0,R(W 0, ψ, φ0)

= detV (rec(a
−1+ 1

[L:K]

ψ,ζ · D̃−1
L/K))q(−([L:K]−1)(ordψ+1)−vL(D̃L/K))·rankV

· ε0(V, ψ ◦ TrL/K , φ0 ◦ NL/K).

Therefore, it suffices to prove that∏
Σ′∈Bw1−{1}

gR(χ′
Σ′ , ψ)

rank Indχ′
Σ′

Vχ′
Σ′

= q(([L:K]−1)(ordψ+1)+vL(D̃L/K))·rankV · λR(L/K,ψ)rankV .

By Corollary 11.11, it follows from the similar computation for R = C

case. �
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