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Local Constants in Torsion Rings

By Seidai YASUDA

Abstract. Let p be a rational prime and K a local field of residue
characteristic p. In this paper, generalizing the theory of Deligne [Del],
we construct a theory of local gg-constants for representations, over a
complete local ring with an algebraically closed residue field of char-
acteristic # p, of the Weil group Wi of K.

1. Introduction

Let K be a complete discrete valuation field whose residue field k is
finite of characteristic p. In this paper, such a field is called a p-local field.
Let ¢ denote the cardinality of k. Let Wx denote the Weil group of K.
In [Del], Deligne defined the local constants e(V, ¢, dx) and eo(V, v, dx) for
triples (V,4,dx) where V is a complex or an f-adic representation of Wi
of finite rank, 1 an additive character of K, and dx a Haar measure of K.
These local constants play an important role in the theory of L-functions
for representations of global Weil groups.

For a topological ring R, let Rep(Wg, R) denote the category of con-
tinuous representations of Wy on finitely generated free R-modules. A
strict p’-coefficient Ting is a noetherian commutative local ring with an al-
gebraically closed residue field of characteristic # p such that (R*)P = R*.
In this paper, we generalize the theory of Deligne to the representation
of Wi over strict p’-coefficient rings. We consider a triple (R, (p, V), %)
where R is a strict p/-coefficient ring, (p, V') is an object in Rep(Wk, R),
and 9 : K — R* is a non-trivial continuous additive character. The main
theorem of this paper is the following:

THEOREM 1.1 (See Theorem 5.1 for the precise statements). Let K be
a p-local field. Then for each such triple (R, (p,V),¥) we can attach, in a
canonical way, an element

EO,R((pv V)a d)) € R*
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which satisfy several properties including the following:

(1) For fized R and v, the element eo r((p,V'),%) € R* depends only on
the isomorphism class of (p, V).

(2) Let (R,(p,V),%) be such a triple, R’ a strict p’-coefficient ring, and
h: R — R’ a local ring homomorphism. Then we have

h(eo,r(V,1))) = eo,r(V ®r R, h o).
(3) Let (R,(p,V),v) be such a triple. Suppose that R is a field. Then

6O,R(Vva W = 50(V7 ¢7 dl’),

where dx is the R-valued Haar measure of K in the sense of Deligne
[Del, p. 554, 6.1] satisfying fOK dr =1.

We call the element eor(V,9) the local eo-constant of the triple
(R, (p, V), ¥).

For a fixed K, our local gg-constants satisfy many properties analogous
to those of Deligne’s eg-constants; for example additivity, formula for rank
one objects, formula for changes of ¢, and formula for unramified twists (see
§ 5, Theorem 5.1 for details). We also prove that the well-known formula
for local gg-constants for induced representations also holds for our case:

THEOREM 1.2 (Theorem 5.6). Let L be a finite separable extension of
K, let R be a strict p'-coefficient ring, and let 1) : K — R* be a non-trivial
continuous additive character. Then there exists an element

Ar(L/K,¢) € R*
such that for every object V' in Rep(Wr, R), we have
eo,R(Ind%fV, ) =eor(V 9o TI“L/K) Ar(L/K, w)rankv.

Furthermore, Ar(L/K,) is compatible with the base change by h : R — R'.

Let k be a finite field. When Ry is the ring of integers of a finite extension
of Qg for a prime ¢ # p, the product formula of Deligne-Laumon describes
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the determinant of Frobenius on the etale cohomologies of a smooth Rg-sheaf
on a curve over k as a product of local gg-constants. In the forthcoming
paper [Y], we generalize the product formula to the case where Ry is a pro-
finite p’-coefficient ring, giving evidence that our construction provides a
good theory of local gg-constants.

1.1. The local € conjecture

In [K2, p. 5, 1.8], Kato gives a conjecture concerning local e-constants,
which he named as “local € conjecture”. While Kato deals only with K = Q,
case, the formulation of the “¢ # p”-part of his conjecture can be generalized
without any difficulty to the case where K is an arbitrary p-local field. Let
us briefly explain his conjecture. (We do not recall the exact form of his
conjecture in this introduction because it is rather lengthy. In § 5, we recall
his conjecture in a form slightly different from his original one.)

Let ¢ be a rational prime different from p. We consider a triple
(A, (p,V),9), where A = (A,my) is a complete noetherian commutative
local ring whose residue field is finite of characteristic ¢, (p, V') is an object
in Rep(Wg,A) and ¢ : K — W(F;)* is a non-trivial continuous additive
character.

Let (p,V') be an object in Rep(Wx, A). Let r denote the A-rank of V.
Then the r-th exterior power of (p, V') defines a continuous homomorphism
det(p) : Wb — AX.

We set

ay = ag,y) = det(p)(rec(f)) € A™.

The ring A has a canonical structure of a Z-algebra. Define Ay = A(, v

by
Ay = {z € A2z, W(Fr); (1@ ¢)(z) = (a(v,p) @ 1)z}
Ay is a A-submodule of A ®z, W (F;) which is free of rank one.

The “¢ # p part” of his conjecture ([K2, p. 5, Conj. 1.8]) predicts the
existence of a canonical basis €y (V') of the invertible A-module

ApN(V) = det A\RT(Q, V) ®4 Av,

which satisfies certain conditions and has a connection with Deligne’s local
constants.
As a corollary of Theorem 1.1, we have

COROLLARY 1.3. The £ # p part of Kato’s local € conjecture is true.
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1.2. Other results in this paper

In viewing the proof of “independence of ¢y” which we have briefly de-
scribed above, we get a formula expressing tame €p-constants as an integral
on the tame inertia group of K. By taking a prime element of K, we iden-
tify Xo with Gy, 5. We set G = Wi /(W) and I = (Wg)?/(Wk)%F. For
every positive integer n prime to p, let [n] : Gy, — Gy, i denote the n-th
power map. By taking the projective limit of Hg(Gm,Ev [n]*E;ﬁO), we get a
free R][[I]]-module W of rank one with a semi-linear action of G. Take a lift
Fr € G of the geometric Frobenius. The eigenvalue of the action of Fr gives
a well-defined element v in the G-coinvariant (R[[I]]*)g. Then g r(V, )
has the following description:

PROPOSITION 1.4 (Proposition 11.4). Take an arbitrary representative
u € R[[I]] of u. We consider u as a measure on I. Let 1 : K — R* be an
additive character with conductor —1 satisfying

~ ]

() = golrec (Fr )a)

for all x € Ok. Then for any tamely ramified object (p,V') in Rep(Wg, R),
we have

o (V) = det (é / dp(g)—lda(g)) .

This paper also deals with results (Proposition 10 and Proposition 8.3)
analogous to that in Deligne-Henniart [DH, p. 108, Thm. 4.2 and p. 110,
Thm. 4.6].

Let us explain the outline of our proof of Theorem 5.1. Let K be a
p-local field. Let be R be a strict p/-coefficient ring. For an object (p, V) in
Rep(Wk, R), let V = V9@ V>Y be the decomposition of V into the tamely
ramified part V9 and the totally wild part V>°. We construct the epsilon
constants g9 r(V>0,9), g0 r(V°,¢) for V>0 V0 separately and then define
eo,r(V, 1) as the product 507R(V>0, - soyR(VO, ¥). Let mp C R denote the
maximal ideal of R. We construct go g(V>09,9) by lifting 507R/mR(V>0 ®R
R/mp,v)constructed by Deligne ([Del, p. 555-556, Thm. 6.5]) in a unique
way such that g9 g(V>0,9) satisfies a version of Henniart’s formula (cf.
Theorem 5.3). The original Henniart’s formula in [He, Theorem)] is a formula
for complex representations of Wy, however, it can be stated as a formula
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for €, g/my, (V7" ®p R/mg,1p). We identify the tame quotient of Wy with
that of the Weil group Wy of the completion of A,lf at 0 and then construct
eo.r(V?, 1) in the spirit of Laumon’s definition ([Laul]) of e¢-constants for
¢-adic representations of Wi+ (cf. Theorem 5.4).

Let us briefly review the contents of this paper. After recalling in § 3
some basic facts necessary in this paper, we recall, in § 4, basic properties
of Langlands-Deligne’s local e-constants. Main results of this paper will be
given in § 5. After the preparation of A-constants in § 6 and of Henniart and
Saito’s results on the description of local e-constants in § 7, we give, in § 8,
the definition of the local eo-constant €9 r(V, ) for totally wild V. In § 9,
we give a proof of a formula of ey g for induced representations. In § 10, we
define g9 r(V, 1) for tamely ramified representations. In § 11, we prove that
the constant 9 r(V, ) defined in § 10 does not depend on the choice of an
auxiliary parameter and completes the proof of the main results in § 5.
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p = 2 case, Kenichi Bannai for pointing out many mistakes in English in
the first draft of this thesis, and especially his supervisor Prof. Takeshi Saito
for many fruitful discussions and helpful comments. The author also would
like to thank the referee for careful reading of the manuscript and many
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2. Notation

Let Z, Q, R, and C denote the ring of rational integers, the field of
rational numbers, the field of real numbers, and the field of complex numbers
respectively.

Let Zsq (resp. Z>p) be the ordered set of positive (resp. non-negative)
integers. We also define Q>9, Qs0, R>0 and Rs in the same way. For
a € R, let | (resp. [a]) denote the maximum integer not larger than o
(resp. the minimum integer not smaller than «).

For a prime number ¢, we denote by F, the finite field of ¢ elements.
For n € Z~q, we let Fyrn denote the unique extension of [, of degree n. We
denote by Fy a fixed algebraic closure of Fy, by Z, = W (F,) (resp. by W (FFy))
the ring of Witt vectors of Fy (resp. Fy), and by Q, the field of fractions
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Frac(Z)) of Zy. Let ¢ : W(F;) — W (F;) be the Frobenius automorphism
of W(Fg)

For a ring R, we denote by R* the group of units in R. For a positive
integer n € Z~q, we denote by p,,(R) the group of n-th roots of unity in R,
and by p, the union U;p,,i(R).

For a finite extension L/K of fields, we let [L : K| denote the degree of
L over K. For a subgroup H of a group G of finite index, we denote its
index by [G : H].

For a finite field k of characteristic # 2, we let (3) : k* — {+1} denote
the unique surjective homomorphism.

Throughout this paper, we fix once for all a prime number p. We con-
sider a complete discrete valuation field K whose residue field is finite of
characteristic p. Such a field K is called a p-local field.

For a p-local field K, we denote by Og its ring of integers, by mg
the maximal ideal of Ok, by kx the residue field Ok /mg of Ok, and by
vk the normalized valuation K* — Z. We also denote by qx = ttkg the
cardinality of kg, by Wi the Weil group of K, by rec = recg : K* = Wf(b
the reciprocity map given by the local class field theory, which sends a
prime element of K to a lift of the geometric Frobenius of k. We denote by
(, )x: K* x K* — {£1} the Hilbert symbol (resp. the trivial biadditive
map) if char K # 2 (resp. char K = 2). We often abbreviate ki and qx by
k and q respectively if there is no risk of confusion.

If L/K is a finite separable extension of p-local fields, we let e, /K € L,
Jr/xk € Z, Dk € Or/OF, and dr/k € OK/(QIX(2 denote the ramification
index of L/K, the residual degree of L/K, the different of L/K, and the
discriminant of L /K respectively.

For a topological group (or more generally for a topological monoid) G
and a commutative topological ring R, let Rep(G, R) denote the category
whose object is a pair (p, V') of a finitely generated free R-module V' and
a continuous group homomorphism p : G — GLr(V) (we endow GLg(V)
with the topology induced from the direct product topology of Endg(V)),
and whose morphisms are R-linear maps compatible with actions of G.

A sequence

0= (p,V) = (p,V) = (0", V") = 0

of morphisms in Rep(G, R) is called a short exact sequence in Rep(G, R) if
0— V"=V — V" —0is the short exact sequence of R-modules.
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In this paper, a noetherian commutative local ring with residue field
of characteristic # p is called a p’-coefficient ring. Any p'-coefficient ring
(R, mp) is considered as a topological ring with the mg-preadic topology. A
strict p’-coefficient ring is a p’-coefficient ring R with an algebraically closed
residue field such that (R*)P = R*.

3. Review of Basic Facts

3.1. Ramification subgroups

Let K be a p-local field with residue field k. Take a separable closure K
(resp. k) of K (resp. k) and let G = W denote the Weil group of K. Let
G’ = GNGal(K/K)? and G*T = GNGal(K/K)"T be the upper numbering
ramification subgroups of G. They have the following properties:

e GV and GV are closed normal subgroups of G.
e GV D G D GY for every v,w € Qx¢ with w > v.

e G'T is equal to the closure of | J,,., G".

w>v

o (' = Iy, the inertia subgroup of Wx. G°* = Py, the wild inertia
subgroup of Wi . In particular, the group G¥ for w > 0 and the group
Gt for w > 0 are pro p-groups.

e For w € Q with w > 0, the group G¥/G"™ is an abelian group which
is killed by p.

3.2. Herbrand’s function vy, /k

For a finite separable extension L/K of p-local fields, let 1k : R>0 —
R>¢ denote the Herbrand function (cf. [Sel, IV, §3], [Lan2], [De5] and [FV,
Chap. III, 3]). The function ¢,/ has the following properties:

® ¢ Kk is continuous, strictly increasing, piecewise linear, and convex
function on Rx>.

e For sufficiently large w, the function 1y, /K(w) is linear with slope

eL/K'

e We have 9,/ (0) = 0.

o We have ¢/ (Z>0) C Z>o and ¢k (Q>0) = Q>o.
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ProposITION 3.1. We set G = Wi and H = W,. Then for w € Q>,
we have G N H = HYo/xW) gnd Gvt N H = HYL/xW | Byrthermore, the

€L/K

slope of@bL/K at w s equal to m

Proor. If L/K is Galois, the first assertion is essentially in [Sel], The
first assertion in general case follows from Galois case by [Sel, IV, §3, Prop.
15]. The second assertion is found in [DH, p.103, (3.2.1)]. O

COROLLARY 3.2. Let vg € Q>0 be a non-negative rational number.
Then the function i (v) is linear for v > vo if and only if Wi, contains
W}’;“.

Let m € Zso be a positive integer. Put n = vp/x(m). We have
NL/K(l -+ mZ) C 1 =+ m% and NL/K(l —|—m2+1) C 1 =+ m?—i_l. Let aL/K,m :
m’L‘/mTLHl — m%/mﬁJrl be the homomorphism given by 1 + ay /k n(7) =

Np/k(1+x) mod 1 +m2 ! for all 2 € m7.

LEMMA 3.3.  Suppose that 1,k (v) is linear for v > vo. Then for any
integer m > vg, the map ar, ., s surjective and is equal to the trace map

Y (m) , P r(m)+1 m+1
L my — mp/mET

TTL/K m

PROOF. Let L be the Galois closure of L/K. Let vy € Q>0 be the
minimal rational number such that 1k (v) is linear for v > vo. Then W,
contains W}’;r. Since W}’(Jr is a normal subgroup of Wi, the group W; also
contains W, Hence wE/K(v) is linear for v > vy and wz/L(v) is linear for
v > vk (vo). Hence we may assume that L/K is Galois. Since the lemma
for L/K and that for M /L imply that of M /L, we may assume that L/K
is cyclic of prime degree. Then the lemma follows from the discussion in
[Sel, V, §3]. O

LEMMA 34. Let L and K' be two finite separable extensions of K (in
a fized separable closure K of K). Suppose that there exist vi,vo € Q>0
with v1 < vg such that Yy (v) = v for 0 < v < vy and that YK (v) is
linear for v > vy. Let L' = L - K' be the composite field. Then

(1) Yy (v) =v for 0 <v < g/ (v2).

(2) Ypr/p(v) is linear for v > v;.
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PrOOF. We use Proposition 3.1.

(1) Let w € Qs be a rational number satisfying v; < w < vy. Let
v =Ygk (w). Since Wxr O (Wg )™, we have

1 K’] > [W;(, w2 Wi IV 5 Wi 0 (Wic)

= W Wy W] = (W )
=[L: K].

Hence the assertion follows.
(2) Let v € Qs be a rational number satisfying v; < v < va. Since
Wi O W, we have

Wl W AWE = WL Wi A WE = W AW = WP

Hence the assertion follows. OJ

3.3. Refined different (See [K1, p. 321, §2] and [Sa2, p. 2])

Let L/K be a finite separable extension of p-local fields. The refined
different ﬁL sk is the unique element in L*/1 + my satisfying
Trp i (D} ) O1) C Ok and Trp (D} Jmp) C my which makes the fol-
lowing diagram commutative:

Try, /i
Oy _ L/EK kr.

If M is a finite separable extension of L, we have EM/K = ﬁM/LINDL/K. If
L/K is at most tamely ramified, then EL/K =er/K-

LEMMA 3.5.  Suppose that ¢y, (v) is linear for v > vo. Then we have

Y/ () = ep/gv — vL(EL/K). In particular vL(ﬁL/K) =vr(Dpjk) +1—
er/i- Furthermore for any integer m > vo, ar /g m s equal to the composite

Yryk(m) , Yr/x(m)+1 Dr/k ep/Kkm , er/gm+l
my /my, o my /my,
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1®TrkL/kK ’ITL+1

> (mi/mt) @, ki my/my

Proor. This follows from Lemma 3.3. [J

PROPOSITION 3.6. Let L and K' be two finite separable extensions of K
(in a fized separable closure K of K ). Suppose that there exist vy, vy € Q>0
with v1 < wvg such that Yk (v) = v for 0 < v < vy and that Y/ (v) is
linear for v > vy. Let L' = L - K’ be the composite field. Then we have

EK’/K — NL’/K’(EL’/L) — B[l{;/IZ]

PROOF. The assertion is clear if K'/K is at most tamely ramified.
We may assume that K'/K is totally wildly ramified. Take a sufficiently
large integer N with p 1 N, so that there exist an integer m € Z satisfying
Nv; < mNwvy. Let K1/K a totally ramified extension whose ramification
index ek, /x is equal to N. Put Ly = K- L, K=K -K'and L) = K;-L

For n € Zso, let K;, denote the unique unramified extension of K;
of degree n. Define Ly ,, K|, and L}, in similar ways. Then we have
QR L/ Kinm © QLY K] iy i, (1) = QL /K © QL /Ly s By taking
direct limit, we get the following commutative diagram:

aL//K/ "

, , — 1/ K gr iy () w ’ by (m)+1 -
mlé,L /K(m)/m?f K+ o T 1/K1 m K| /Ky (M / KI’{ s o5k
&L’l/Llyml aK{/Kl,mJ(
a m -
my, /mp @y, e, mpt fm @ k.
— Yk (m)
If we take k-bases for mKl/mmJrl Q0 k, le/merl Q k, ngl/ Y
wK’ K( )+1 - . .
mKll/ ! @ k, and mig /merl ®y k, all the morphisms in the above

diagram are represented by additive polynomials with coefficients in k. The
above diagram remains commutative if we replace all the morphisms by the
highest degree parts of them. In particular we have the following commu-
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tative diagram

N,7r e 1

Y (m)  brrim LY /K wK’ Ky (M) wK’ e, (m)+

L{: /K L{: /K (m)+1 1/5%1 /K1 / K/ /K1
1 1

Dy |

Np,/Kx
mt1 _h/k

my fmy" mKl/merl ®k k-

Hence the proposition follows. [

3.4. Break decomposition and refined break decomposition

Let K be a p-local field and let G = Wx denote the Weil group of K.
Let (R,mp) be a p'-coefficient ring.

Let V be an R[G]-module. We say that V' is tamely ramified or pure of
break 0 if GOt acts trivially on V. V is called totally wild if VE*" = {0}.
For v € Qs¢, we say that V is pure of break v if the GV-fixed part V&* of
V is 0 and if G'* acts trivially on V.

Let (p, V') be an object in Rep(G, R). Then for any v € Q>0, there exists
a unique maximal sub R[G]-module V¥ of V' which is pure of break v. We
have V¥ = {0} except for a finite number of v and we have a decomposition

V:@V”

'UGQZO

in Rep(G, R). For v € Q>¢, the object V¥ in Rep(G, R) is called the break-
v-part of (p,V'). The assignment V — V" gives a functor from Rep(G, R)
to itself which preserves short exact sequences. When we consider such
functors for various R’s, they are compatible with the base changes of the
representations by a local ring homomorphism R — R'.

DEFINITION 3.7. Let (p,V) be an object in Rep(G, R), and let V =
@D,cq., V"’ be its break decomposition. We define the Swan conductor

sw(V) of V as
sw(V) = Z v-rank V.
’UEQZO

Since sw(V) = sw(V ®r R/mpg), we have sw(V) € Z>¢.
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Assume further that the ring R contains a primitive p-th root of unity.
Let v € Qs0, and let (p, V') be an object in Rep(G, R). Let (p”, V") denote
the break-v-part of (p, V). We have a decomposition

VY= ) Vy
1#x€Hom(GV /GV+,RX)
of V¥ by the sub R[GY/G"*]-modules V, on which G¥/G"" acts by x. The
group G acts on the set Hom(G?/G"", R*) by conjugation : (g.x)(h) =
x(g7'hg). The action of ¢ € G on V? induces an R-linear isomorphism
Vi = Vyx- Let X" denote the set of G-orbits in the G-set of the non-
trivial homomorphisms from G/G"" to R*. For any ¥ € X", the direct
sum V= = @D, cx Vx is a sub R[G]-module of V¥ and thus we have the

decomposition
v="'e @ P v”
veQuo TEX?

in Rep(G, R), which we call the refined break decomposition of V. The
object V¥ in Rep(G, R) is called the refined-break-S-part of (p,V). We
say that (p,V) is pure of refined break ¥ if V. = V*. The assignment
V +— V¥ gives a functor from Rep(G,R) to itself which preserves short
exact sequences. When we consider such functors for various R’s, they are
compatible with the base changes of the representations by a local ring
homomorphism R — R'.

LEMMA 3.8. Let (p,V) be a non-zero object in Rep(G, R) which is pure
of refined break X € XV. Choose x € ¥ and let V, C ResgvV denote the
x-part of RengV. Let H, C G denote the stabilizing subgroup of x.

(1) Hy is a subgroup of G of finite index.
(2) Vy is stable under the action of Hy on V.

(3) V is, as an object in Rep(G, R), isomorphic to Indgx V-
PrOOF. Obvious. [

REMARK 3.9. Finiteness of [G : Hy] also follows from the explicit de-

scription of the homomorphism Hom(GY/GY*, R*) given in [Sa2, p. 3, Thm.
1] (See also § 7).
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4. Deligne’s Local Constant eo(V, v, dx)

Let K be a p-local field with residue field k. In this section we recall
the basic properties of o(V, 1, dz). Let R be a discrete commutative ring
on which p is invertible. Assume that there exists a non-trivial continuous
additive character ¢» : K — R*. Take such a character ¢ and an R-
valued Haar measure dx of K. (We use the terminology “R-valued Haar
measure” to indicate an R-valued Haar measure in the sense of Deligne
[Del, p. 554, 6.1].) The conductor of 1, denoted by ord), is the unique
integer n € Z satisfying ¢|y-» = 1 and ¢|gy-n-1 # 1. For a € K*, let 9,
be the additive character of K defined by 14(z) = ¥ (az). Then we have
ord 1, = ordy + vk (a). If L is a finite separable extension of K, then we
have ord (v o Trp /) = e gord ) + v (D k)-

For a continuous multiplicative quasi-character y : K* — R* of K*
(we endow R with discrete topology), the e-constant e(x, 1, dx) € R of x is
defined by the following integral:

g ¥y (mword¥ dz, if x: unramified,
5(X,¢»dl’) = { f _(1 )fOK . .
rox X (@)Y(z)de, if x: ramified.
For an object (p,V) in Rep(Wg, R) with rank gV = 1, we define the
e-constant (V, vy, dx) = e((p,V),v,dx) of (p,V) by

e(p ¥, dx) = e(p orec, ¢, dx).

When R = C with discrete topology, Langlands [Lan2] defines, after the
pioneering work of Dwork [Dw], the local e-constant £(p, 1) for any object
(p,V) in Rep(Wk, C), generalizing e(V ® w; /9, %, dz ) discussed above for
(p, V) with rank gV = 1, where w5 : W@ — C* is an unramified quasi-

character defined by wy/y(x) = ar < (rec™"(z))/ 2 and drg is the self-dual

Haar measure of K (see [W, Chap. VII, §2] for the definition of self-dual
Haar measure). It is not difficult to construct a candidate of (p,v) by
using Brauer’s theorem, however the proof of the well-definedness of £(p, ¥)
given in [Lan2] is much complicated.

In [Del], Deligne discusses Langlands’ result and gives a simpler proof
of the well-definedness of e-constants. Deligne uses the terminology
“e(V,4,dzx)”. For any (p,V) in Rep(Wk,C), Langlands’ £(p,v) is equal
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to Deligne’s e(V ® w12, ¥, dxg). In this paper, we use Deligne’s terminol-
ogy for local constants, since it has the advantage that we can generalize the
theory of Deligne’s €(V, 1, dx) to the case where R # C. For example, the
proof of [Del, p. 555, Théoréme 6.5] shows that we can define ¢(V, ), dx)
without much effort for (p, V') in Rep(Wx, R) when

(4.1) R is an arbitrary discrete field of characteristic zero

in such a way that most properties of e(V, 1, dz) for (p,V) in Rep(Wk, C)
(for example, the properties (1), (3), (6), (7), (8), (9) in Theorem 5.1 below)
are automatically satisfied by (V. 9,dx) for (p, V) in Rep(Wgk, R). As we
can see from [Del, p. 572, 8.12], we can define £(V,v,dz) for (p,V) in
Rep(Wg, R) even when

(4.2) R is the topological field Q, for £ # p and and V is defined over a
finite extension of Q.

Under the assumption (4.1) or (4.2), Deligne [Del, p. 548, 5.1] also
defines eg-constants eo(V, 1, dr) which satisfies

eo(V, 9, dz) = £(V, 4, dw) det(—Fry,[V1).

There are several properties that the e-constants and the p-constants satisfy
(cf. [Del, p. 535, thm 4.1. and p. 548, 5.1.] and [Laul, p. 187]). In [Del,
p. 555-556, Thm. 6.5.], Deligne also considers ¢ of representations of Wi
over fields of characteristic # p, which satisfies additivity, a formula for a
change of dz, an induction formula, an explicit formula in rank one case,
the compatibility with inclusions of coefficient fields, and the compatibility
with reduction of the coefficients from a complete discrete valuation ring to
its residue field.

5. Statements of the Main Results

THEOREM 5.1. Let K be a p-local field. Then for each triple
(R, (p,V),) where R is a strict p'-coefficient ring, (p,V) is an object in
Rep(Wk, V), and ¢ : K — R* is a non-trivial continuous additive charac-
ter, we can attach, in a canonical way, an element

50,R((p7 V)a 7/1) € R*

which satisfy the following properties:



(1)

(2)
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For fized R and 1, the element g9 r((p,V'),¥) € R* depends only on
the isomorphism class of (p, V).

Let (R, (p,V),v) be a triple as above, R' a strict p'-coefficient ring,
and h : R — R' a local ring homomorphism. Then we have

h(eo,r(V,¥)) = cow(V @r R ,h o).

Let (R, (p,V),9), (R, (p/,V'),%) and (R, (p",V"),1) be three triples
as above with common R and 1. Suppose that there exists an exact
sequence

0=V =V -=V"-0
in Rep(Wk, R). Then we have

eo,r(Vi¥) = eo.r(V', ) - e0,r(V", ).
Let (R, (p,V),v) be a triple as above. Suppose that R is a field. Then
EO,R(M ¢) = EO(V’ 1/1, d$)7

where dx is the R-valued Haar measure of K satisfying fOK dxr = 1.

Let Ry be a complete discrete valuation ring with o finite residue
field of characteristic # p. We denote by Fy the field of fractions
Frac (Ry) of Ry, by F the completion of the maximal unramified ex-
tension of Fy, and by R the ring of integers in F. Let (R, (p, V), ) be
a triple as above. Suppose that (p, V') is isomorphic to the base change
(po, Vo) ®r, R of an object (po, Vo) in Rep(Wg, Ry). Then

5O,R(‘/a 1/1) = 8O(T/E) ®R0 ?Oa 1/)5 d.I),
where dx is the Ry-valued Haar measure of K satisfying fOK dr =1.

Let (R, (p,V), ) be a triple as above with rank V' =1, then e r(V, )
coincides with €o(p orec, ), dx) defined in [Del, p. 555, 6.4], where dx
is the R-valued Haar measure of K satisfying fOK dr =1.

Let (R, (p,V), ) be a triple as above. Let a € K* and let ¢, : K —
R* be the additive character defined by 1,(x) = ¥ (ax). Then we have

eo,r(V,1a) = det(V) (rec(a))go V™™V eg m(V, ).
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(8) Let (R,(p,V),¢) be a triple as above. Let W be an object in
Rep(Wk, R) on which W acts via Wi /WS = 7. Let Fr € Wi /WY

be the geometric Frobenius. Then we have

807R(V QR W, ¢) = det W(Frsw(V)—l-rankV(ordLZ)-H))EQR(V’ w)rankW‘

et (R,(p,V), e a triple as above. Suppose that the coinvariant
9) Let (R V),v) b pl b S hat th ] )
(V)W;% is zero. Let V* be the R-linear dual of V. Then we have

607R(Vv, w) . 507R<V*,'¢) — det V(rec(—l)) . qsw(V)+rankV-(2ordw+1).

REMARK 5.2. A partial result for the uniqueness of eg-constants is
given in Corollary 9.17.

Here we give an outline of the proof of Theorem 5.1. Let K be a p-local
field.

Let be R be a strict p/-coefficient ring. For an object (p,V) in
Rep(Wk, R), let V = V%@ V>? be the decomposition of V into the tamely
ramified part V° and the totally wild part V>9. By § 3.4, for a short exact
exact sequence 0 — V' — V — V" — 0 in Rep(Wg, R), 0 — (V)* - V0 —
(V"0 - 0and 0 — (V/)>0 — V>0 — (V")>Y — 0 are also exact sequences.

We divide Theorem 5.1 into the following two theorems:

THEOREM 5.3.  For each triple (R, (p,V),v) where R is a strict p'-
coefficient ring, (p, V') is a totally wild object in Rep(Wg, V), and ¢ : K —
R* is a non-trivial continuous additive character, we can attach, in a canon-
ical way, an element

50,R((p7 V)a Q/}) € R*
which satisfies the properties (1)—(9) in Theorem 5.1.
THEOREM 5.4. For each triple (R, (p,V),v) where R is a strict p'-
coefficient ring, (p, V') is a tamely ramified object in Rep(Wg, V), and 1 :

K — R* is a non-trivial continuous additive character, we can attach, in a
canonical way, an element

EO,R((pv V)7 ¢) €ER

which satisfies
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(0) e0,r((p, V), %) € R*
and the properties (1)—(9) in Theorem 5.1.

In § 7, Definition 7.5, we define, following Henniart [He] and Saito [Sa2],

an element

gO,R(V7 w) € RX/IJ’p“’ (R)
in a canonical way, for each triple (R, (p,V'),4) as above such that V is to-
tally wild. In Theorem 7.8, we prove that which satisfies the nine properties
corresponding to the properties (1)—(9) in Theorem 5.1.

Using this element, we define, in § 8, Definition 8.1, an element
eo,r(V,9) € R* for each triple (R, (p,V),%) as above such that V is to-
tally wild. In § 8, we prove Theorem 5.3.

In § 10, Definition 10.7, we define, in a canonical way, an element
eo,r(V,1) € R* for each triple (R, (p,V'),%) as above such that V' is tamely
ramified. In § 10.3 and § 10.5, we prove Theorem 5.4.

Application to Kato’s local ¢ conjecture Let the notation be as
in § 1.1. In view of [K2, 3.2], we see that the “/ # p part” of his conjecture
([K2, Conj. 1.8]) is equivalent to the following conjecture modulo £1 in the
case where K = Q, and A is a pro-¢ commutative ring:

CONJECTURE 5.5 (Local e conjecture). Let K be as above. Then for
each triple (A, (p,V'),%) as above, we can define an element e A(V,v) =
eo,A((p, V), ) in A, vy satisfying the following conditions:

(1) Assume that we are given two triples (A, (p,V),v) and (A, (o', V"), )
as above with common 1, a local ring homomorphism h : A — N, and

an isomorphism (p,V) @x N = (o', V') in Rep(Wi, \'). Then the
isomorphism A, vy @p A = A’(p v induced by h sends gon(V,)®1
to eon (V' 7).

(2) Let (A, (p,V),¥), (A, (o', V'), 9) and (A, (p",V"),) be three triples
as above with common A and . Assume that there is a short exact
sequence

0—(p,V') = (p,V) = (o, V") =0

in Rep(Wk, A). There is a canonical isomorphism

Ay = D) @4 Agrvm):
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Then this isomorphism sends o A (V, 1) to eo a(V', ) @ o a(V",9).

(3) Let (A, (p,V),) be a triple as above and a € K*. Let ¢, : K —
W(F,) denote the additive character defined by 1q(z) = h(azx) for
x € K. Then we have

go,A(V,a) = det (p)(rec(a))qz{l((a)rank (V)

80,A(V,¢).

(4) Let (A, (p, V), ) be a triple as above. Assume that A is a finite flat
reduced local Z¢-algebra. A ®gz, Frac W (F,) is isomorphic to a direct
product T[], K; of finite extensions K; of Frac W (F,). For each i the
base change (pi, Vi) = (p, V) ®a K; is a continuous representation of
Wk on a finite dimensional K;-vector space which is defined over a
finite extension of Qq in K;. Then the image of eo aA(V,v) in K; is
equal to the local eg-constant eo(V;, i, dz) in Deligne ( [Del, p. 535,
Thm. 4.1], on which we have reviewed in § /), where dx is the K;-

valued Haar measure of the additive group K with fOK dr = 1.

PROOF OF CONJECTURE 5.5 (cf. [K2, p. 14, 3.2]). Let (A, (p,V), )
be a triple as above.

Then A®z, W (F,), is a finite product A@W(]FZ)W(E) = [1, Ri of p'-
coefficient rings R;.

Define g9 (V,¥) € A®y )W (Fe) by

eo (Vi) = (e0,r (V)i

Then, by Theorem 5.1 (4), we have eg A (V%) € A, v).
It is easy to check that this element g (V) satisfies the desired prop-
erties. [J

THEOREM 5.6. Let L/K be a finite separable extension of p-local fields,
let R be a strict p'-coefficient ring, and let v : K — R* be a non-trivial
continuous additive character. Then there exists an element Agr(L/K, ) €
R* such that for every object (p,V') in Rep(Wp, R)., we have

eo,r(Indy SV, 90) = Ag(L/K, )™ Veo q(V, ) 0 Trp ).
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Here we give an outline of the proof of Theorem 5.6.

For L/K, R and 1 as above, we define, in § 6, Definition 6.3, in a
canonical way an element A\r(L/K,) € R*.

We divide Theorem 5.6 into four parts in the following way:

THEOREM 5.7. Let Agr(L/K,v) € R* be as in Definition 6.3. Let
(p, V') be an object in Rep(Wr, R). Then Theorem 5.6 holds for (p, V) and
for this Ar(L/K,v) € R* in the following four cases:

(1) V is totally wild.

(2) V is tamely ramified and L/K is unramified.

(3) V is tamely ramified and L/ K is totally tamely ramified.
(4)

4) V is tamely ramified and L/K s totally ramified and [L : K] is a
power of p.

The proof of (1) is given in § 9. (2) is proved in § 10.5, Lemma 10.14.
The proofs of (3) and (4) are given in § 11.3.

REMARK 5.8. In § 8.2, we prove a result analogous to Deligne-
Henniart’s result [DH, p. 108, Thm. 4.2 and p. 110, Thm. 4.6].

6. XM-Constants

In this section, we consider a triple (L/K, R,v), where L/K is a finite
separable extension of a p-local field K with residue field k£ of ¢ elements, R
is a p’-coefficient ring, and 1 : K — R* is a non-trivial continuous additive
character.

The aim of this section is to define, for a triple (L/K, R,v) as above,
an element Ap(L/K,v) € R* and to prove some basic properties of

6.1. Review on lambda constants

Let L be a finite separable extension of K, and let dr and dy be Haar
measures of K and L respectively. When R = C, Deligne [Del, p. 549,
(5.6)] shows that there exists

ML/K, 1, dx, dy) € C*



144 Seidai YASUDA

such that for any representation V' of Wp, over C, we have
e(Ind} V, ¥, dx) = N(L/K, ¢, dz, dy)"™™ " - (V,4 0 Trp g, dy)
and
eo(Indf V, ¢, dz) = ML/K, ¢, dz, dy)™™" - o(V, ¢ 0 Trp i, dy).

6.2. Universal A\-constant \; (L/K,1))
For a complete discrete valuation field K whose residue field k is finite
of characteristic p, let Zg be the following commutative ring

7 _ ZI3X]/(1+ XY, if p =2 and char K =0,
K Z[%][X]/(l + X +---+XP7), otherwise.

The ring 7 i depends only on the pair (cha£ K, char k). In particular, for a
finite separable extension L of K, we have Z; = Zk.

DEFINITION 6.1.

(1) Assume that char K = 0. A wuniversal partial character of K is an
additive character ¢/ : I — Zj defined on a fractional ideal I C K of
K such that v/ is either trivial on 4mg [ and is non-trivial on 41.

(2) Assume that char K = p. A wuniversal partial character of K is a
non-trivial continuous additive character ¢’ : I = K — Zj; of K.

Let L be a finite separable extension of K. Take an embedding ¢ : Ly —
C. For every universal partial character ¢/ : I — Zj, take a continuous
additive character 1) : K — C* whose restriction to I is equal to 17,

LEMMA 6.2. Let dx (resp. dy) be the Haar measure on K (resp. L)
satisfying fOK dx =1 (resp. fOL dy = 1). Then the A-constant \(L/K, 1) =
ML/K, v, dx,dy) € C* belongs to L(if()

PROOF. Let V = Ind{j‘v,fl. ‘We have

e(V @ detV, ¢, dx)
(15 7/1 o TrL/K7 dy)e(det V7 wv d$) '

NL/K, 6, da, dy) = -
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Since V @ det V is self-dual, we have

S(V & det V, 9, dl‘)Q _ qa(V)+a(det V)+2(rankV+1)~0rd¢.

Here a(V') and a(det V') denote the Artin conductors of V' and detV, re-
spectively. By Serre [Se2], a(V) + a(detV) is an even integer. Hence
e(V @& det V, 1), dx) lies in the image of Zy by . It is easily checked that

e(1,¢ 0 Trp /i, dy) and e(det V, 1, dz) belong to L(i@ O

We define A, (L/K, I, (TONS ZIX( to be the inverse image ¢~} (\(L/K,v))
by ¢. The element Ay, (L/K,1,v") does not depend on the choice of ¢ or 9.

Let a € (Zyp/4pZy)*, hy - Zy — Zx be the automorphism of the ring %K
given by hq(X) = X®. Then for any universal partial character ¢’ : I — Zj
of I, we have ha(Ay (L/K,1,4/)) = Ay (L/K., 1, hq o).

6.3. Definition of Ag(L/K, 1))
Let R be a p'-coefficient ring, ¥ : K — R* a non-trivial continuous
additive character. There exists a universal partial character ¢/ : I — Zj

of K and a homomorphism A : Zg — R of rings such that ¢|; = h o).

DEFINITION 6.3. Take I, ¢ and h as above. We define the \-constant
Ar(L/K, ) € R* of (L/K, R,) to be

)\R(L/K7 ¢) = h()‘(L/Ka I, ¢/))

This Ag(L/K, ) does not depend on the choice of I, ¢' and h.

PROPOSITION 6.4.

(1) Let (L/K,R,v) and (L/K,R',¢') be two such triples with common
L/K, andh : R — R’ alocal ring homomorphism satisfying 1» = v'oh.
Then we have

h(AR(L/ K, ¥)) = Ap(L/ K, 4).
(2) Let g = qx. Then

Ar(L/K,$)* = (dpp, —1)i - q 1 e/m).
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(3) If R = C, then Ar(L/K,v) coincides with Deligne’s \(L/K,1,
dz,dy), where dx and dy are Haar measures with fOK de =1 and

fOL dy =1.

(4) Let ¢ = qi. Let a € K* and 1, be the additive character defined as
Yo(x) = YP(ax). Then we have

)‘R(L/Kv ¢a) = AR(L/Kv ¢) : (dL/Ka a)K-
(5) If M is a finite separable extension of L, then we have

AR(M/K, ) = Ag(L/ K, )M X\(M/L, ¢ o Trp ).

PrROOF. (1) and (3) are Obvious. (4) and (5) are immediate conse-
quences of (3). We prove (2).
Let a(V) be the Artin conductor of V' = Ind%fl. Then,

a(V)+2[L:K]ord ¢

2ord (oTrr k)
ay,

By [Sel, VI, Prop. 4], we have a(V) = vk (dy k). Since ord (¢ o Try i) =
er/kordy +vr(Dr ), we have

q

Ar(L/K,)? = det(V)(rec(—1)) -

qiord (¥oTrp k) _ q2fL/K(eL/Kord1/;+UL(DL/K)) _ q2[L:K]0rdw+2vK(dL/K).

Hence the lemma follows from det(V)(rec(—1)) = (dr/x, —1)k. O

6.4. Description of Ap(L/K,v) in some special cases

Let ¢ = qi. Let n =[L : K| be the degree of L/K.

When p # 2 and vk(dy, k) is odd, we denote by 7r(L/K, 1) the quad-
ratic Gauss sum

’TR(L/K, ) = Z (dL/Ka 7_[_;(ordwflx)K w(ﬂ_l}ordwflx)

ek

where mx € K is an arbitrary prime element in K. The Gauss sum
7r(L/K,) does not depend on the choice of 7. We have 7r(L/K, )% =
(%) q. In particular 7p(L/K, ) is a unit in R.
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LEMMA 6.5. Suppose that L/K is unramified. Then

)\R(L/K, w) —_ (_1)([L:K}71)ordz/1'

Proor. It follows from direct computation of Ar(L/K,v) (cf. [M,
p. 879, (2.5.3)]). O

LEMMA 6.6. Suppose that L/K is totally tamely ramified and let n =
[L: K]. Then

qg | 5 if n is odd and p # 2,
_ n2_
AR(L/K ) = q_nTl(—l) 5 [kFa]ord g if n is odd and p = 2,

n_1n
(=273

q 2 Tr(L/K, ) (T) if n is even.

PrROOF. There exists a prime element 77, € L such that mx = 7} is
a prime element in K. Since {1,... ,TrZ_l} is a Ok-basis of Or, we have

dr/k = (—1)LnTilJn”7r?(_1. If n is odd, vk (dp k) = n — 1 is even. Hence if
p # 2, by [He, p. 124, Prop. 2], we have

n—1 OI‘d’lZJ
—n-l n=l or _n-1 —1) 2 n
AR(I//[(717b) =q 2 ((_1) 2 n,QWde)K:q 2 (L) .

If p = 2, let dx be the Haar measure of K such that fOK dxr = 1. Since

X = det(Ind%f 1¢) is unramified, by [He, p. 124, Prop. 2] (cf. [M, p. 881,
Prop. 2.5.11]), we have

)\C(L/K, w) _ q—ord (TPOTrL/K)E(Ind%f 1(C7 wa dl‘)

_ q—ord (wOTI“L/K)"‘nT_lg(X, P, d(L‘)n

= q_nT_lx(rec(wK))”‘)rdV
If furthermore char K = 0, then
n-t n2 =1y
x(rec(mg)) = (dpji, 7r )k = ((=1)2 n,mr)x = (=1) 5 F72
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n2—1

The formula x(rec(mg)) = (—1) =
Hence

(k:F2] holds even when char K = 2.

AR(L/K, §) = g5 (—1) "5 el
If n is even, by [Sal, p. 508, Thm.], we have

-1

(=1

n

0|3

Ar(L/K,0) = a2 7r(L/ K, ) ( ) (dr/w,2)x

).D

7. Local gp-Constant for Totally Wild Representations Modulo
p-th Power Roots of Unity

o

-1

=q 27R(L/K, ) (L

0|3
|3

o

Let K be a p-local field with residue field k. Let ¢ = gx. Let R be a
strict p’-coefficient ring. In this section, inspired by the result of Henniart
in [He|, we define the local eg-constants for pairs ((p, V'), 1) up to p-th power
roots of unity, where (p, V') is an object in Rep(Wg, R) and ¢ : K — R* is
a non-trivial continuous additive character of K.

Let G = Wx denote the Weil group of K, and let G¥ and G”* denote
its ramification subgroups.

7.1. The isomorphism o

Let K be a separable closure of K. The valuation vx of K canonically
extends to a valuation vy : K — QU {oco} of K. For w € Q, let N¥ = N¥
be the k-vector space

N" :={r € K; vg(z) > w}/{z € Klvg(x) > w}

endowed with a canonical Wi-action. Furthermore, N* = €P,,cqN" has a
structure of a graded k-algebra.

Let k denote the residue field of the valuation field K. There is a canon-
ical isomorphism

Hom(G/G"*,Z/pZ) = Hom(N", k) = N~

of G-modules (cf. [Hi] and [Sa2, p. 3, Thm. 1]). Let us recall this in the
notation of [Sa2]:
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Let x € Hom(GY/G"",Z/pZ) be a non-trivial character of G¥/G"*.
Take a finite Galois extension L of K such that Gal(L/K)"" = {1} and that
X is factored by a homomorphism y, : Gal(L/K)" — Z/pZ. Let K' be the
subextension of L/K corresponding to Gal(L/K)". By [Sel], 1,k (v) and
Y K (v) are integers, and the group Gal(L/K)" is canonically isomorphic
to the kernel of the homomorphism

Yk (), r(v)+1 Yk (V) Vg (W)+l
aL/K/ﬂl)K//K( ) mL /mL mK/ /mK/ .

Let ZNDK//K € K'*/1+ mg be the refined different of K'/K. Multiplica-

’ +1 -
tion by DK/ /i defines an isomorphism mwK ) mfé{ ) R k = NV

(where £ is the residue field of K').

The map m%/ K@) / mf” k@ _, NV defines a finite Galois covering of

an affine algebraic group NV over k with Galois group Gal(L/K)". This
covering and x induces a finite Galois covering N, — N with Galois group
Z/pZ. Then there exists a unique morphism NV — A% = Spec (k[t]) of line

bundles over k such that N, is isomorphic to the pull-back of the Artin-
Schreier covering Spec (k[t][s]/(s — s? —t)) of A% This defines an element
in Homz(N", k).

Fix a non-trivial continuous additive character ¢» : K — R*. For v €
Q=0, we set w = —v —ordy — 1 and define an isomorphism

0y = 0pp : Hom(GY /G, R¥) = N¥
to be the composite
Hom(G"/G"", R*)
= N™" ®gz,pz Hom(Z/pZ, R*)
>~ N @ Homy,(m; ™™ /m Y k) @77 Hom(Z/pZ, R*)
Try,
M Nv g @, Homp, (m” Y™ /m Y ») ®7/p7 Hom(Z/pZ, R*)
~ N" @, Hom(m~ ordy=1 Kordw R™)
2N,

As in § 3.4, let XV denote the set of G-orbits in the G-set
Hom(G"/G"*, R™).
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Let X be an element in X". Take a x € X and let K, be the extension
of K corresponding to the stabilizing subgroup of x. The field K, is an
at most tamely ramified finite extension of K. It is easily checked that
op(x) € (N*)WEx € I,cpN?" belongs to the image of the injective group
homomorphism (K /1 + mg, ) ®z Z[%] s TyeNY.

Let us abbreviate kx, and gk, by ky and gy, respectively. Let H = Wk,
be the Weil group of K,, and HY,H"" the upper numbering ramification
subgroups of H. Since K, /K is at most tamely ramified, the inclusion map
H — G induces a canonical isomorphism H®%x/K"/HKx/KVT = qv/Gvt,

Then by direct computation the diagram

Hom(G¥/Gv+, R¥)

|

Hom (Hsx/KY | HKx/KVF | RX)

I F
=

TypoTrpe /K —ex, /xv—ord (YoTrg, sr)—1

N

1%

X

is commutative (a more general results in this direction will be discussed in

§9.6).

7.2. Refined swan conductor

DEFINITION 7.1. Let V be an object in Rep(G, R) which is pure of
refined break . Choose a character x € 3. We define refined ¥-Swan
conductor rswy, (V') to be the element

rank V'

rswy (V) = Ng_ /(0 (x)) FxE

in K*/1 4 mg, which is independent of the choice of .
For an arbitrary object W in Rep(G, R), define rswy (W) € K* /1 +mg
by
rswy, (W) = Hrsww(WE/),
Y

where W = W% @ P W' is the refined break decomposition of W .

REMARK 7.2. When R is a field of characteristic zero, this element

rswy (V) is related to Kato’s refined swan conductor defined in [K1, p. 324,
(3.1)]. cf. [Sa2, p. 6, Thm. 2].
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7.3. A quadratic Gauss sum
Assume that p # 2. For z € K* with vg(z) +ordy = 2b+ 1 is odd, let
Tk () be the quadratic Gauss sum defined as

ke = Y, b,

—b—1 . —b
yem, T /my

We have T (7)% = (%1) q. In particular 7 () is a unit in R.

The Gauss sum 7 y(z), for fixed K and v, depends only on the class of
re{re K*;vg(x)+ordy =1 mod 2} in (K*/1 +mg) ® Z/27Z. Thus
we can define 7x (2) for z € {v € (K*/1+mg) @z Z[%] ; v () +ordy €
1+ QZ[%]}.

7.4. Definition of local gp-constants for totally wild representa-
tions
Let v € Qsp and X € X". Choose a character y € . We define the
Gauss sum gr(2,v) associated with ¥ and 1 to be the element

gR(Ea 1/1)
rd (yoTr )
=ay AR K )
. q)(cler)/2 if p=2orp+#2andords(v) <0,
q;(v/Q _ TKX,onrKX/K(U¢(X)) if p # 2 and ord2(v) > 0,

in R, where w = ef ;rv. The following two lemmas are easily checked:

LEMMA 7.3. gr(X%,¢) depends only on ¥ and v, and does not depend
on the choice of x.

LEMMA 7.4. Let dy, be the p-primary part of the denominator of v.
Let ¥ : GY/G"T — ZX be a mon-trivial homomorphism, ¥ be the set of
G-conjugates of X. Then for a universal partial character ¢’ : I — ZIX(,
there exists a canonical element §R(i I,y e Z[X( satisfying the following
property: for any strict p'-coefficient ring R, for any homomorphism h :
Z — R of rings, for any continuous additive character v : K — R* whose
restriction to I is equal to h o), and for any object (p,V) in Rep(G, R)
which is pure of refined break h(X) = {hoX | X € £}, we have

gr(W(Z),v) = (W(Gr(X, T,¢) ™))"/ %
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DEFINITION 7.5. Let v € Q¢ and let (p, V') be an object in Rep(G, R)
which is pure of refined break 3 € XV. Choose a character y € % and let
Vi = (Res&. V)y be the x-part of Res&, V. Using Lemma 3.8, we regard Vi
as an object in Rep(Wp, , R). We define the local €y-constant Zo,r(V,v) for
V' and 1 to be the element

éo,R(V7 1)) = det(VX)(rec(gw(X)))fl - gr(3, w)rank Vi

in R*/pye0 (R). We call gg(3, )k Vx the Gauss sum part of 89 r(V, ).

LEMMA 7.6. The element €y r(V, 1) does not depend on the choice of
a character x € X.

ProoF. It suffices to prove that det(V,)(rec(oy(x))) is independent of
the choice of x. Let ¥’ € ¥ be another character and take an element g € G
such that ¥’ = g.x. We then have WKX’ = gWk, g~ ! and V) is isomorphic
to the R[WKX,]—module with underlying R-module V,, on which the group
WKX' acts via the isomorphism WKX’ = Wk, which sends h € WKX/ to
g 1thg. Since the homomorphism o, is equivariant under the action of G,

we have

rec(oy(x')) = rec(g(oy(x))) = grec(oy(x))g "

which proves the claim. [J

DEFINITION 7.7. Let (p, V') be an object in Rep(G, R) which is totally

wild. Let
-D DV

’UEQ>0 YeXv

be the refined break decomposition of V. We define the element gy r(V, %)

in R*/u to be
V)= [ ] 20r(VZ¢).

U€Q>0 ZEX'U

7.5. Properties of local gy-constants
THEOREM 7.8. The local E-constants €9 r(V, 1) satisfy the following
properties:

(1) For fized R and 1, the element €0 r((p,V),v) € R*/p depends only

on the isomorphism class of (p,V).



(2)

(6)

(7)

Local Constants in Torsion Rings 153

Let R’ be another strict p'-coefficient ring, and h : R — R’ a local ring
homomorphism. Then we have

h(Zo,r(V, %)) =E0.r(V ®r R ,h o).

Let V, V', and V" be three totally wild objects in Rep(Wk, R). Sup-
pose that there exists an exact sequence

0=V -V -V"=0
in Rep(Wgk, R). Then we have
go.r(V,9) =Eor(V',¥) - Eo,r(V", ).
Suppose that R is a field. Then
go,r(V,¥) =eo(V.4h,dz) mod p(R),
where dz is the R-valued Haar measure of K satisfying fOK de =1.

Let Rg be a complete discrete valuation ring with a finite residue field
of characteristic # p. Let Fy denote the field of fractions Frac (Ry)
of Ro, and let F' denote the completion of the maximal unramified
extension of Fy. Suppose that R the ring of integers in F. and that
(p, V) is isomorphic to the base change (po, Vo) ®r, R of an object
(po, Vo) in Rep(Wk, Ry). Then

g0,}%(‘/7 1/}) - 60(% ®Ro F07 1% dx) mod l‘l’(F)a
where dzx is the Rg-valued Haar measure of K satisfying fOK de =1.

Suppose that rankV = 1, then g9 r(V,1) coincides with £o(p o rec,
Y,dr) mod pu(R) defined in [Del, p. 555, 6.4], where dx is the R-
valued Haar measure of K satisfying fOK dxr =1.

Let a € K* and let 1, : K — R* be the additive character defined by
Yo(x) = YP(ax). Then we have

Z0.r(Vitha) = det(V)(rec(a))gu ™™ Ve p(V, ).
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(8) Let W be an object in Rep(Wk, R) on which Wy acts via Wy /W3 =
Z. Let Fr € Wi /WY be the geometric Frobenius. Then we have

5073(‘/ QR W, w) = det [/V(]‘:.‘rsw(V)—l—mnkV~(0rd7,!)-&-1))507]%(‘/7 w)rankW'

(9) Let V* be the R-linear dual of V. Then we have

gO,R(V: w) . gO,R(V*v w) — det V(I"QC(—].)) . qsw(V)+rankV.(2ordw+1)'

(10) (cf. [DH, p. 108, Thm. 4.2]) Let V' # {0} be a totally wild object in
Rep(G, R). Take the smallest v € Qsq such that V¥ # {0}. Then for
every object W in Rep(G, R) satisfying W* = {0} for all w € Q>¢
with w > v, we have

Zo.r(V @r W,¢) = det W (rec(rswy (V) - o r(V, )k W,

ProoOF. (1), (2) and (3) are obvious.

(4) and (5) follows from the main theorem of Henniart [He, p. 122, Thm.
and Remark 4] and the proof of Saito [Sa2, p. 10, Thm. 3].

(6) Let a(V') denotes the Artin conductor of V. The representation V is
pure of refined break {y}, where x = p|W;<(v),1. Then o,(x) is the unique

element in K* /1 4+ mg such that

plrec(l +x)) = ¢(oy (X))

V)

holds for all x € mlll{( ~1 Then we have

gO,R(VY7 77/)) = 50(0 orec, 1, d.’L‘) mod Hpoo

by the standard computation of the local constant for character (see [T3,
p.95, prop.1 and p.97, proof of Cor. 1]).

For (7) (8) (9) and (10), we may assume that V' is pure of refined break
¥ € XV. Then V* is pure of refined break ¥=! = {x~! | x € X}. Choose
a character x € ¥ and let K, /K be the extension corresponding to the
stabilizing subgroup of x and ¢, = qx,. Let V, € Rep(Wk, , R) be the
x-part of ResgvV.

(7) We have oy, = a'oy. Hence by Proposition 6.4 (4),

2o,r(V,va) = Eo,r(V, ) - det(V) ) (rec(a))
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er/KUK(a)+UK(a)([KxiK}*eKX/K)( rank Vy

-(q I 0)K)
= 2o,r(V. 7)) det(V)(rec(a))q”K(a)~rankV_

(9) We have

go,r(V,¥) - Eo,r(V", 1)
= det(Vy)(reck, (o (X)) " - gr(S, )"V

- det(Vy) (reck, (—o(x))) - gr(E7H, 9)

ord (¢poTr ) ran
= det(VX)(recKX(—l)) ’ (qX o/ ‘AR(Kx/Ka¢))2 kv

rank Vi -(1+ex, /xv)
Ay

= det(V)(reckx(—1)) - det(IndWK 1)(rec (— 1))rankVX
((dKX/K, _1)K qu(de/K)+2[Kx K]Ordw)rankVX
qranka (Fry /K x:K]v)
= det(V)( ( )) . qrankVX'(”K(dKX/K)-FZ[KXZK]OI‘d1/))+fKX/K+[KX:K],U)
= det(V)( ( )) . qsw(V)+rankV-(20rd¢+1)‘
10) V ® W is pure of refined break ¥ and V, ® W is the y-part of
Lo b X X-p
ResgvV ® W. Hence
gO,R(V QR W, ¢) = det(VX ® W)(rec(o- ( ))) (E w)rankVX(@W
= det W (rec(oy (x))) T2k Vx - EOR(V )Tk W

= det W (rec(rswy (V) - Eo,r(V, o)W,
(8) By (10), we have
Zon(V © W) = det(W)(Frf;Kx/K ”Kx("w(X)))—rank Vigg p(V, )W,
The assertion follows from vk, (04 (x)) = —exk, /x (v +ordy +1). [
8. Local ¢p-Constants for Totally Wild Representations

Let K be a p-local field with residue field k and let G = Wg denote
the Weil group of K. Let (R,mp) be a strict p’-coefficient ring. Let p =
Hyee (R) C R denote the group of p power roots of unity in R.
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8.1. Definition of local ¢p-constants for totally wild representa-
tions
DEFINITION 8.1. Let v : K — R* be a non-trivial continuous additive
character. For a totally wild object (p, V') in Rep(G, R), we define the local
go-constant 0.r(V, 1) to be the unique element of R* satisfying

eo,r(V,¢) mod p =gy r(V,9)

and
eo,r(V,9) mod mp = eo(V @r R/mp, v, dx).

REMARK 8.2. Existence of g9 r(V,v) follows from Theorem 7.8 (4).
Uniqueness of €9 r(V, ) follows from the bijectivity of the canonical map

Hpoo (R) — Hpo (R/mR)

Proor oF THEOREM 5.3. It suffices to check that the element
€0,r(V, 1) in Definition 8.1 satisfies the properties (1)-(9) in Theorem 5.3.
All these properties follows immediately from Theorem 7.8 and the proper-
ties of eo(V ®@pr R/mpg, 1, dz) reviewed in the last part of § 4. [

8.2. Result of Deligne-Henniart type

ProprosITION 8.3 (cf. [DH, p. 110, Thm. 4.6]). Let V. # {0} be a
totally wild object in Rep(G, R). Take the smallest v € Q¢ such that V¥ #
{0}. Then there exists an element v = yv,y € K*, unique modulo 1 +m§w,
which satisfies the following property: for every object W in Rep(G, R)

satisfying W* = {0} for all w € Q>0 with w > 3, we have
SO,R(V ®R VI/’ ’(]Z)) = det W(rec(ry)) . 6O,R(‘/; w)rankW'

Furthermore, we have v = rswy(V) mod 1 4+ mg, in particular vi(y) =
sw(V) +ordy - rank V.

PrROOF. We may assume that V is pure of refined break ¥ € XV. If R
is a field of characteristic zero, then the assertion follows from [DH, p. 110,
Thm. 4.6] and [Sa2, p. 10, Cor. of Thm. 3].

Assume that R is a field of characteristic # 0,p. Since any irreducible
object (p,V) in Rep(G, R) is a twist by an unramified character of a rep-
resentation of G whose image is finite, (p, V') can be lifted to characteristic
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zero as a virtual representation (p, 17) Further we can take V such that V
has a pure refined break. The continuous additive character v is also lifted
to characteristic zero, which we denote by {/; Thus we can take vy, = .o

For general R, let v € K* be the element which satisfies the assertion
of the proposition for V ®g R/mp. Then, by Theorem 7.8 (10), v satisfies

the assertion of the proposition also for V. [J
9. Proof of Theorem 5.7 (1)

9.1. Statement

Let L be a finite separable extension of K. Let O denote the ring of
integers in L, and let m;, denote the maximal ideal of Op. Let ¢ : K — R*
be a non-trivial continuous additive character.

The aim of this section is to give a proof of Theorem 5.7 (1), that is, to
prove the following theorem:

THEOREM 9.1.  Let (p, V') be a totally wild object in Rep(Wr, R). Let
W =Indy*V. Then

co,r(W, ) = eo,r(V, ¢ 0 ’I&"L/K) . )\R(L/Kyw)rankV.

We denote Wi and Wy, by G and H respectively. Let vk is the
Herbrand function of L/K. Then for w € Qx> and for v = ¥y k(w),
we have GY N H = HY (resp. GY* N H = H"), where G¥, HY, G¥*
and HY" are the upper numbering ramification subgroups. The inclusion
H — @ induces canonical inclusions H/H” — G/GY, H/H"" — G/G%*
and HY/H"" — GV /G"*.

9.2. Break decomposition of Ind%V

Let (p, V) be an object in Rep(H, R) which is pure of break vy € Qx¢.
We put W = IndgV. There exists a unique wy € Qx¢ satisfying vy =
Y1, K (Wo)-

The following lemma is easily checked:

LEMMA 9.2.

(1) If wo > 0, then WE™ = {0}.
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(2) Ifw>wo and v =k (w), then wa " s canonically isomorphic to
Indgéng as an object of Rep(G, R).
(3) If w > wo and v = Yy i (w), then WS is canonically isomorphic to
Ind%f{fv as an object of Rep(G, R).
COROLLARY 9.3. Forw € Qx>¢, let W* denote the break-w-part of W.
(1) W* ={0} for w < wp

G/G'wo+v

(2) Wwo =~ IndH/H1,0+

(3) Forw > wo and for v =1k (w), there exists an evact sequence

0 — Ind/) %V — Ind/ S0V — WY — 0

in Rep(G, R).
9.3. Reduction to gy g

LEMMA 9.4. If R is a field, then for any object (p, V) in Rep(H, R),
we have

50,R(Indgv,w) =co,r(V;¢p o Trp i) - Ar(L/K, p)rankV

PrOOF. If char R = 0, this is due to Proposition 6.4 (3) and Deligne
[Del, 4.1]. If char R # 0, this is an immediate consequence of Deligne [Del,
6.5). O

If (p, V) is a totally wild object in Rep(H, R) then Ind%V is also a totally
wild object. Therefore, to prove the Theorem 9.1, it suffices to prove the
following proposition:

ProPOSITION 9.5. If (p, V) is a totally wild object in Rep(Wp, R) then

EO,R(IndgV, ¢) = EO,R(Va o TrL/K) . )\R(L/K, w)rankv.

Before proving this proposition, we investigate the refined break decom-
position of Ind V.
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9.4. Refined break decomposition of (Ind%V)>wo

Asin § 9.2, let (p, V') be an object in Rep(H, R) which is pure of break
vg € Q>p. Set W = IndIG_IV. There exists a unique wy € Qx> satisfying vy =
Y, Kk (wo). In this subsection, we consider the refined break decomposition
of W% for w > wy.

Let w > wo and set v = ¢ /x(w). Let Cy be the set of all R-valued
characters of the abelian p-group G¥/G"* which is trivial on HY/H"*.
The group H/H'" acts on C,, by conjugation. Let B, denote the set of
H/H"*-orbits of Cy,. For x' € Cy, let Hyy C H/H"" be the stabilizing

, . H/HYT
subgroup of x’. Then the representation Resy’
X

to a representation Vys of G*H,//G"" on which G*/G"™ acts by x’. For

Y € By, take an element y' € ¥’ and set Vs = Indgwf[/cjalrv Then

V' can be uniquely lifted

Vsv does not depend on the choice of y’.
The following lemma is easily checked:

LEMMA 9.6.

(1) As an object in Rep(GYH,R), the induced representation
md& /e

H/Hv+ V' is canonically isomorphic to the direct sum @EleBw Vs

(2) For ¥ € By, with X' # {1}, let ¥/ denote the unique G /G -orbit
of characters of G¥ /G which contains ¥'. Then as an object in

Rep(G, R), the induced representation Ind a/d

G“’H/G“’JFVE/ is pure of re-
fined break .
Let G,» C G/G™T be the stabilizing subgroup of x’. Then G,/ D
GY/G"" and G,y N H/H"" = H,,. Hence

G/Gu+

yleias
e Ve = mdZL G Ve = d/ 9 Tnd G /€

Ind GwH,, /Gw+ Gy /Gutgun /Gt

V.

Using this description, we shall compute the £yg-constant of the break-w-part
WY of W.

9.5. Refined break decomposition of (Ind% V)%
Let (p,V') be an object in Rep(H, R) which is pure of break vyg € Qs.
Set W = Ind$ V. Assume further that V is pure of refined break ¥. There
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exists a unique wy € Q¢ such that ¢, Kk (v9) = wp. In this subsection, we
consider the refined break decomposition of W™,

Take an element x € ¥. Let H, C H/H YT he the stabilizing subgroup
of x. Then H, D H"/H"". There exists a representation V' of H, such
that H" /H"" acts on V' by x and that V is isomorphic to Indgi HO v
Let Cy, be the set of all characters of the abelian p-group G*° /G“°" whose
restriction on H/H"™" is isomorphic to x. The group H, acts on Cy,
by conjugation. et B, denote the set of H,-orbits of Cy,. For x' € Cy,
let Hy C H, be the stabilizing subgroup of x’. Then the representation

Resgxl V' can be uniquely lifted to a representation V)é, of G H,,/G"" on
X

which G*0/G"0F acts by x'. For ¥’ € By, take an element x’ € ¥’ and set

;. Gwo HX/Gw0+
VE’ - IndeO HXI/Gw0+

The following lemma is easily checked:

V1,. Vg, does not depend on the choice of x'.

LEMMA 9.7.

(1) The object Indgwjgfo/f%JrV’ in Rep(G*°H,, /G"", R) is canonically
X

isomorphic to the direct sum ®E/€Bw0 V.

(2) ForXY' € By,, let S denote the unique G/G™* -orbit of characters of
G™0 /GYot which contains X'. Then as an object in Rep(G, R), the

G/Gwot . =
GioH /Gwo+VZ/:' is pure of refined break 3.
X

induced representation Ind
Let G,y C G/G"7% be the stabilizing subgroup of x’. Then G,/ D
GY° /G"F and G,y N H/H"" = H,,. Hence
G/Gwo+ G, //Gwot

G/GoT V!, =Tnd nd’x V!
GwoH,, /Gwot "X/ G, /Gwot T GWOH, , /Guot TX

G/Gwo+

IndG%HX/Gw0+

VE,/ = Ind
Using this description, we shall compute the £g-constant of the break-w-
part W®o of W.

9.6. The restriction map Hom(GY/G"",Z/pZ) — Hom(H"/H"",
Z/pZ)

Let L/K be an finite separable extension of p-fields such that L # K and

that L/K has no non-trivial intermediate extension. When L/K is ramified,

there exists a unique w1 € Qxo such that ¥y, /x(w) = w for 0 < w < wy
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and that 9, x(w) is linear with slope [L : K| for w > w;. When L/K is
unramified, we put w; = 0.

Let w € Q>0 and set v = 91/ (w). In this subsection, we will investigate
the restriction map

Hom(G" /G“*,Z/pZ) Res, Hom(H"/H"",Z/pZ),

where G = Wi and H = W, as before. For every finite separable extension
M of K (resp. of L), we set wyr = ¥pr/x(w) (resp. var = Yar/r(v))-

LEMMA 9.8. Let K be a _finite Galois extension of K  satisfying
Gaul(K/K)“”r = {1} and Gal(K/K)* # {1}. Let L = L - K. Assume
that [L K] = [G¥t : H'Y]. Let K' (resp. L') be the subextension of K/K
(resp. L/L) corresponding to the subgroup Gal(K/K)" (resp. Gal(L/L)")
of Gal(K/K) (resp. Gal(L/L)). Then w, i V1, WK, and vps are integers
and the natural map

O/ : N = Hom(G" /G¥*, Z/pZ) = Hom(H"/H"*,Z/pZ) = N, "

is dual to the map

xD7} st D
L'/L vt [y — TL'/K'wpy w , Wi +1 — XDgr/i
NE mLe /mL ®kL’ K/m x ®kK/k NK7

where ap /i, 1S the homomorphism defined in § 3.2, that is, o g

is the homomorphism induced by the norm map

SW et

Npjser (L) /(L4 mi) — (14 migs’) /ms .

PrROOF. Let fﬁ be another finite Galois extension of K satisfying
Ki D K and Gal(K;/K)“t = {1}. We have Gal(K;/K)* # {1}. Let
L, = L-K;. Let K| (resp. L) be the subextension of Kl/K (resp
L1/L) corresponding to the subgroup Gal(K;/K)“ (resp. Gal(Ly/L)") o
Gal(K,/K) (resp. Gal(Ly/L)).
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Then w &y VL WK and v L, are integers. We have the following com-
mutative diagram:

af ARy
vy £, +1 ! Ly vt v+l
L v
Gal(Ll/L)”%m 1/ —-——>mL,1/ g Np
L1 1 1 XDysp
/ LR g, CLA/K g v
QR /R w s XD per
-~ s VATYK] Wy Wger+1 K1/
Wi K K w
Gal(K;/K)¥*——1— mfﬁl/ K1 —)mK{l/ o C N
“L1/Lvg OLY /L oy
O‘kl/k,wf( | XK K g
~ V7 vy+1 L/, vt v vpr+lc
Gal(L/L)“(——‘——> mt/mr* - mg 7 /m L NY
L L xDpi/p,
/ 7 Ry BL /K g
~ Wi wi+1 mix’ wyer+1 w
Gal(K/K)We———>m_ K /m X - K rer NK'
( / ) K / K YR/ K wper / xDK//K

Since Wg; D G*, we have Wy: D (Wg)"“x’. There exists a rational num-

ber € € Q>0 such that Yy /s (x) is linear for z > wgs — e. By Lemma 3.5,
ORI JK w1 equal to the multiplication by DK{ /i~ For the same rea-
son s/ is equal to the multiplication by lAlel /- Hence the lemma

follows. [

Jps

PROPOSITION 9.9. Let us consider the canonical map

—v—ord (¢oTry, /i )—1

1 . N;{wfordwfl N NL

OL/Kpw = OpoTry, O Res ooy

(1) If w > w1, then op/gypw 15 equal to the identity map
N[—(w—ordq/)—l = NEU—OTd (YoTry k)—1

(2) Suppose that w < wy. Take a finite Galois extension K of K such that
Gal(K /K)“" = {1} and that Gal(K/K)" # {1}. Then the field L =
L-K is a finite Galois extension of L such that Gal(L/L)"+ = {1} and
that Gal(L/L) # {1}. Let K' (resp. L) be the subextension of K/K
(resp. L/L) correspondmg to Gal(K/K)¥ (resp. Gal(L/L)"). Take
prime elements m € L' and g € K' satisfying N+ (7gr) = 7.

Then o,k pw sends a - aM DK}/KWKT,UK/ to
K. g-LD-l v
altfl - ay, CDL//KWL' "
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(3) Let L be the Galois closure of L/K. Then Gral(L/K)“’lJr = {1}. Let
K (resp. L) be the subextension of L/K (resp. L/ L) corresponding to
Gal(L/K)"' (resp. Gal(L/L)""). Take prime elements 7, € L' and
Ty € K satisfying NR-/L,(WR-) = mwr. Then there exists an additive

polynomial
P(t) = ag - tFE o+ 1 € K]

. w1,L!

of degree [L : K] with ag = Dy g Tflu'? and with the constant term
K

: -1 . p-1 "%k
1 such that the homomorphism o,k y . Sends a - Ay DF{/K”R
to

P(a[L:K ) 1;1CDLI1/K7TL/'LU1 L
REMARK 9.10. We need only (1) to prove Theorem 5.7 (1). In § 11,
(3) is used to prove Theorem 5.7 (4).

To prove the proposition, we use the following lemma which is easily
checked.

LEMMA 9.11. Let V = V' = Speck[t], let P(t) = aot + a1t? + --- +
ant?" € k[t] be an additive polynomial, and let P : V' — V denote the
morphism given by t — P(t). Then the map

k

IIZ

omg(V, k) = Hom(m(V), Z/pZ) — Hom(m (V'), Z/pZ)
= HomE(V',E) >k

induced by P is described as

1 1
Lt 4
a+— apa+ajar +---+ap art.

PrROOF. We prove only (3). (1) and (2) are easier and their proofs are
left to the reader. By Lemma 9.8, the natural map

w1 w1
Nyt — Ny

of k-group schemes is the composite

~Z’I/L w w +1 /K w K w w
w 1,L’ 1,L’ 1, 1,K 1,
NLl > My, m;, — mf{ /mf{

gt DK/K

w1
N
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lK
K/KT g

NEY), we identify N} (resp. Ng') as the affine line over k.
Apply Lemma 9.11 to V = N* and V' = N}”'. By simple calculation,
P(t) is of the form

By taking 5L//L7rz),l’y (resp. D. ) as a k-basis of N;"* (resp.

P(t)=apt+---+ /K]

Tr,, (Ww/lyL/) N wl L
where ag = L/Ifulé = DL’/K : LI1K' Hence ¢r/k, sends a -
L
K K
~ —w
D7 x hE 4o
K/K"K

1 ~ wy 1/
(ao.a+...+a[L:K]) DL’l/LWL’ 1,L

Let ¢ : K — R* be a non-trivial continuous additive character. Take
a primitive p-th root of unity ¢ € R. There exists a unique element a, ¢ €

ml_(ordw_l/mordw such that ¢(z) = CTr’“/FP(% ) for all z € mf_(ordw_l/

_ d (yoTr —ord (¢oTr
mKordd’. Then, for all y € mLOr (YoTre/x) Lor N L/K), we have by
Lemma 3.5,

Y(Trr i (y) = w(TrkL/k(ﬁL/KZ/)) = ¢k (@ T (D)
_ <TrkL/]Fp(aw,CDL/Ky).

We have a commutative diagram:

Hom(G™ G+, Z/pZ) ——* Hom(G®/G¥+, RX)

~| [

- ¥,¢ —w—ordyY—1
NY s Ny .
Hence the proposition follows. [

9.7. Representation of p-groups over p’-coefficient rings

Let G be a finite p-group, R a strict p’-coefficient ring which contains a
primitive p-th root of unity.

We call an object V' in Rep(G, R) indecomposable if it cannot be written
as a direct sum of two non-trivial objects in Rep(G, R).
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It is well known that any irreducible complex representation of a finite
p-group is monomial. (see [I, Chap. 6, Cor. (6.14)] for example). In the
same way of its proof, we have

LEMMA 9.12. If(p,V) is an indecomposable objects in Rep(G, R), then
there exists a subgroup H of G and an object W in Rep(H, R) of rank one
such that V is isomorphic to IndGW.

COROLLARY 9.13. Let R’ be another strict p’-coefficient ring, h : R —
R’ a local ring homomorphism. Then the functor V +— V @gr R’ gives a cat-
egorical equivalence Rep(G, R) @ R’ = Rep(G, R'), where Rep(G, R) ®@r R’
denotes the category with the same objects as as Rep(G, R) whose morphisms
are defined as Homgepq ryor (X, Y) := Hompepqp) (X, Y) @r R

9.8. A key proposition

Let K be a p-local field with residue field k of ¢ elements, R a strict
p’-coefficient ring which contains a primitive p-th root of unity.

The aim of this subsection is to prove the following result.

PROPOSITION 9.14. Let (p,V') be a totally wild object in Rep(Wg, R)
which is defined over a finite subring Ry C R. Assume that V is inde-
composable and that V is not of the form Ind%f‘/’ for a non-trivial fi-
nite separable at most tamely ramified extension L of K and for an ob-
ject V! € Rep(Wp, R). Then there exist a strict p'-coefficient ring R', p'-
coefficient ring R" which is a complete discrete valuation ring with a finite
residue field whose field of fractions is of characteristic zero, local ring ho-
momorphisms

RLRER
such that h is injective, a tamely ramified object V' in Rep(Wgk, R') and an
object V" in Rep(Wg, R") such that

V ®r R =V Kp (V” QR R’).

PROOF. Let G, I, and P denote the image of Wy, (Wg)?, and (W )+
under p, respectively. We have G > I > P and G > P. By assumption, 1
is a finite group. I/P is a cyclic group of finite order m which is prime to
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p. Take a lift Z € I of a generator ¢ € I/P such that the order of E in [ is
also m. Then we have I 2 () x P. Also take a lift & € G of the geometric
Frobenius in G/I.

The restriction ResIGDV is a direct sum of indecomposable objects V =
;. ,Vi. Since P is a p-group, for 0 < i,j < n we have V; = Vj or
Homgepp,r)(Vi, Vj) = {0}. By assumption on V, all V; are isomorphic
and for any g € G, the conjugation of Vj by ¢ is isomorphic to V. Re-
placing Ry by a larger subring of R if necessary, we may assume that Vj is
defined over Ry. Let ¢ denote the residue characteristic of R. Then there
exists a ring Ry which is the integer ring of a finite unramified extension of
Qy, a local ring homomorphism R; — Ry, and an object V{ in Rep(P, R;)
such that Vp =V ®@r, R.

There is an automorphism «, 3 € GLg, (Vj) such that cog = (CgCYoa
and Bog = (6go 1) o B on V§ for any g € P. Let gy be the element in
P defined by 5*16 o= E 9. Then there exist two elements a,b € R such
that o™ = a and f~'af = balgy. Let @ and b denote the image of a and b
in Ry, respectively. Adjusting o by an element in R;, we may assume that
the order m’ of @ in Rj is prime to p. Take a power ¢’ > 1 of ¢ which is
congruent to 1 modulo mm’. Then we have

571 5 = (ba'ge)”
— p? 2 (a—q(q goa‘I(q/—l)) (" 9g0a?) go
= b7 a7 (1 go (1T - (90 g0
— p? 097 (C q(ngo) )
= b (G157
= bq/aqq/go.
Hence b = Eq/. In particular the order of b in R is prime to p.

Let R] be the ring of integers in the field adjoining a ¢ — 1-th power root
c of b to Frac (Ry).

There exists a strict p’-coefficient ring R’, and local R;-algebra homo-
morphisms & : R — R’ and &' : R} — R'. Define o/ € GLp, (Vy ®r, R})
as o' = ca. Then we have o/™ = ac™, [~ 1a/B = a'gy. We note that the
order of the image of ac™ in R is ﬁnite and prime to p.

Take a lift ¢',5' € G’ := Wi /Ker (Wt — P) of (,G € G. Then the
action of P on Vj ®pg, R} is uniquely extended to a continuous action of G’
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by (' — o' and & +— 3; in fact G' is the projective limit G’ = m (p7)=1Gy
of discrete groups G, where G, is the quotient of G’ by the inverse image
of (W% /Wih)M by G — W /Wy The group G, is isomorphic to the
group with a set of generators

{o} W {y} U {zp; h € P},
and with fundamental relations

M -1 -1
Znzn = znwes Yo = 1 YzRyY T = Zapeeas T2RT

_ —1,
= Zgippi—1, T yr = ylzg.

Let VJ denote V] ®r, R} regarded as an object in Rep(G’, R}) in the above
way.

It is easily checked that there exists a tamely ramified object W in
Rep(Wy, R') such that V @r R = (V] @, R') ®p W. O

9.9. Proof of Theorem 5.7 (1)
LEMMA 9.15. Let L/K be a finite separable totally ramified extension
of p-local fields, R an algebraically field of characteristic zero, 1 : K — R*

a non-trivial continuous additive character, and V a totally wild object in
Rep(Wr, R). Then we have

rsww(Ind%f V) = Np/k(rswyonry (V).

PrOOF. By [Sa2, p. 6, Thm. 2|, rswy, is related to the refined Swan
conductor defined in [K1, p. 324, (3.1)]. The lemma follows from [K1, p. 325,
Prop. 3.3 (2)]. O

LEMMA 9.16. Let L/K be a finite separable at most tamely ramified
extension of p-local fields, R a strict p'-coefficient ring, and ¢ : K — R* a
non-trivial continuous additive character. Let V' be a totally wild object in
Rep(Wp, R) which is pure of break v and of refined break X. Suppose that
Theorem 5.7 (1) holds for L/K, 1 and V. Then for any tamely ramified
object Vi in Rep(Wp, R), Theorem 5.7 (1) also holds for L/K, 1) and V ®p
Vi.
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PROOF. We set W = Indy ¥V and Wi = Indjj* (V ®g 11).
By Corollary 9.3, W and W are also totally wild. It suffices to prove
that

20,r(W1.¥) =0, r(V ®r Vi, 00 Try i) - Ap(L/ K, ap) eV mankha,
Since V is also totally wild, we have, by Proposition 8.3,

eo,rR(V @ V1,90 Trp k)
= det Vl (I'eC(I'SWd,oTrL/K (V))) ' EO,R(V, '1/1 o TrL/K)rank Vi .

Hence it suffices to prove that
go,r(W1, %) = det Vi(rec(rswyonr, . (V))) - €0,r(W, p)rank Vi,

Let w = —%—. Then the canonical map Wy /W;* — WE/WEt is

€L/K

bijective. Let
r: Hom(WgE /Wt R™) = Hom(W} /W™, R¥)

be the canonical bijection. Let ¥’ be the unique Wg-orbit containing
r~1(2). By § 9.5, W and W; are pure of refined break Y.

Take an element x € X and let H, C W, be the stabilizing subgroup of
x. Let V! C V be the x-part of V. Let ¥’ = r~!(x) € ¥ and G, C Wk
the stabilizing subgroup of Wx. Then by § 9.5, the x/-part W’ of W is
isomorphic to Ind V’

The object V ® r V1 is pure of refined break X, and the y-part of V ®p
(Res H)f V1) is equal to V' ®@p V1. Hence the x'-part W{ of Wi is isomorphic

G/
to Ind V'® (ResHLVl)) Hence

go,r(W1,7p)  det W'(rec(oy (X)) rank V
eo, (W, )rankVi = det Wi (vec(oy (x')))
(Indgx’ 1)(1"€C((T¢ (Xl)))rank V —rank V-rank V3
et VilVery (recloy ()Y
By Proposition 9.9 (1), we have oy, . (X) = oy(x’). Hence

G/ ’ /
det Vl(VerH’; (rec(o*w(x/))))rankv = det(ResvHvim)(Ulp(X/))rankV
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=det V] (rec(rswwoﬂL/K 7))

Hence the assertion follows. [J

PROOF OF THEOREM 5.7 (1). Let L/K be a finite separable extension
of p-local fields, and let ¢ : K — R* be a non-trivial continuous additive
character. Let V' be a totally wild object in Rep(Wr, R).

We prove the theorem by induction on r = rankV. We may assume
that V is indecomposable. Suppose that V is of the form V = Ind%ﬁ 1%

for a non-trivial finite separable at most tamely ramified extension L’ of L
and for an object V' € Rep(Wp/, R). Then V' is also totally wild and the
theorem holds for V' by induction and by Proposition 6.4 (5). Hence we

may assume that V' is not of the form V = Indmw,% V' as above.

L

We apply Proposition 9.14. Replacing R by a larger strict p’-coefficient
ring if necessary, we may assume that V' is of the form V = V] ® g V5, where
V1 is a tamely ramified object in Rep(Wyx, R) and V5 is the base change of
an object in Rep(Wg, R') by a local ring homomorphisms R’ — R, where
R’ is a p/-coefficient ring which is a complete discrete valuation ring with a
finite residue field whose field of fractions is of characteristic zero.

Let Lj be the maximal at most tamely ramified subextension of L/K.

Wy, /Wit

Let V| = IndWLl/éVOil Vi be the tamely ramified object in Rep(Wr,, R)
L L

whose restriction to Wy, is isomorphic to Vj. Then we have a canonical
isomorphism

Indy, 'V 2 V] ©p (Indy ' Va).

Since the theorem holds for L, /K, 1, and IndII:VVIL“1 V4, it also holds for L, /K,
1 and Ind%ilV by Lemma 9.16. Hence

W ran. . :
60,R(Ind&V/fV, ) = eo,r(Indy " V,1p o Try, ) - Ap(La /K, b)Y [L:L1]
Since Ind%ﬁl‘/g is also totally wild, we have, by Proposition 8.3,

W
50,R(Indwi1 VipoTrr, k)

= det Vll(reC(I"SWonrLl/K (Indgil ‘/2))) . EO,R(IndWW/il V27 w o TrLl/K)rank 1%1 )
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Since the theorem holds for L /L1, ¥ o Tr, /k, and Va2, we have

W, ran
EO,R(IndW?Vg,wOTrLl/K) = eo,r(Va, ¥oTry i) Ar(L/ Ly, o Trp, /i) V2.

By Proposition 6.4 (5), it suffices to prove that

1%
det V{ (recr, (rswonrLl/K (Indwi1 V5))) = det Vi (recy, (rswonrL/K V2)).

By Lemma 9.15, we have

w
ISWosoTry, |/ x (IndWil Va) = Np1, (rsw¢oTrL/K (V2)).

Hence the assertion follows. [J
From Proposition 9.14, we have the following corollary:

COROLLARY 9.17 (Characterization of eg-constants for totally wild ob-
jects). The attachment

(L, R, (p, V), ¥) = e0,r(V,¥) € R”

for each quadruple (L, R, (p,V),v) where L is a finite separable at most
tamely ramified extension of K, R is a strict p'-coefficient ring, (p,V') is
a totally wild object in Rep(Wr,V), and ¢ : L — R* is a non-trivial
continuous additive character, is characterized by the following properties.

(1) For fized L, R and 1, the element eo r((p, V), %) € R* depends only
on the isomorphism class of (p, V).

(2) Let (L,R,(p,V),v) be a quadruple as above, R' a strict p'-coefficient
ring, and h : R — R’ a local ring homomorphism. Then we have

h’(eo,R(V7 ¢)) = 6O,R’(‘/ QR Rlv ho ¢)

(3) Let (L,R,(p,V),v), (L, R, (p', V'), %), and (L, R, (p",V"),1) be three
quadruples as above with common L, R and . Suppose that there
exists an exact sequence

0=V -V-V"=0
in Rep(Wrp, R). Then we have

eo,a(V,¥) = eo,r(V',0) - 0, r(V", ).
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(4) Let Ry be a complete discrete valuation ring with a finite residue field
of characteristic # p. We denote by Fy the field of fractions Frac (Ry)
of Ry, by F the completion of the maximal unramified extension of
Fy, and by R the ring of integers in F. Let (L,R,(p,V),9) be a
quadruple as above. Suppose that (p,V') is isomorphic to the base
change (po, Vo) ®r, R of an object (po, Vo) in Rep(Wk, Ry). Then

50,R(V7 ¢) = 50(‘/0 ®Ro Foiﬁ: dJ?),
where dx is the R-valued Haar measure of K satisfying fOK dr = 1.

(5) Let Ly and Lo be two finite separable at most tamely ramified exten-
sions of K with L1 C Lo, let R be a strict p’-coefficient ring, and let
Y L1 — R* be a non-trivial continuous additive character. Then
there exists an element Ar(Lo/L1,1) € R* such that for every totally
wild object (p,V') in Rep(Wp,, R), we have

eo,r(V o TrLQ/L2) = eo,r(W, %) x AR(LQ/L1’¢)rankV‘

(6) Let (L,R,(p,V),¥) be a quadruple as above. Then for every tamely
ramified object W in Rep(W1p, R), we have

co,r(V @r W, ) = det W (rec(rswy,(V)) - €0,r(V, w)rankW.
10. Local gp-Constants for Tamely Ramified Representations

Let K be a p-local field with residue field k£ of q elements and R a strict
p-coefficient ring. The aim of this section is to define gg g(V, ) for a tamely

ramified object (p, V') in Rep(Wg, R) and a non-trivial continuous additive
character ¢ : K — R*.

10.1. Global tame s-constants
For a finite separable extension L of K, with (O, mp) its ring of integers,
let Gr*L and Gr=°L denote the graded Or,/O-algebras given by

>
Gr*L = @pezmy/mit Gr2'L = @,5om? /mlHh

respectively and let Gr L denote the complete discrete valuation field given
by

o
Gr'L = Frac ([ my’/mz ™).
1=0
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If L/K is a finite at most tamely ramified Galois extension of K, then
Gr*L (resp. (/}?L) is a finite etale Galois Gr®K-algebra (resp. a finite, at
most tamely ramified Galois extension of Gr K ) whose Galois group is
canonically isomorphic to Gal(L/K). We note that Xy := Spec (Gr*K)
is (non-canonically) isomorphic to Gy, . Let Wgeg (resp. Wy >0y ) de-
note the subgroup of 7¢*(Xo) (resp. of n¢*(Spec(Gr="K))) consisting of
the elements whose image in 7§(Spec (k)) are integral powers of Frobenius.
For any tamely ramified object (p, V) in Rep(Wk, R), we associate an ob-
ject (p,V)are in Rep(Weye, R) (resp. a tamely ramified object (p,V)g, in
Rep(Wg,* -+ 1)) in a canonical way.

Fix a non-trivial additive character ¢g : ml_(1 /Og — R*. Let K' =
Gr=K (resp. K’ = é\r.K) Take a non-zero element z € mg/m2% and
consider the K’-algebra L' = K'[t]/(t —t? — x). L' is a finite etale Galois
K'-algebra with its Galois group canonically isomorphic to k. Define a ho-
momorphism Gal(L'/K") 2 k — R* by k 5 a +— ¢o(%). This defines a rank
one object Ly, (resp. E¢O) in Rep(W¢, 05, R) (resp. in Rep(W@r-K,R))
which does not depend on the choice of z. Let L;)O be the restriction of Ly,
to WGr'K-

For a moment let us assume

(*) there exists a finite subring Ry of R such that (p, V) comes from an
object (po, Vp) in Rep(Wik, Rp) by the base change, and that the image
of ¢ is contained in R .

Then (p, V)gpe and £/¢>0 define smooth etale Rg-sheaves V and EN;SO respec-
tively on the algebraic curve Xy over k. By the perfect complex argument
(see [De3, Rapport]), H (Xo®ik, V&g, Eﬁﬁo) (where k is an algebraic closure
of k) is a free Ry-module of the same rank as V', endowed with an action of
the geometric Frobenius Fr,. We define the global e-constant € rR(V® Ro E;ﬁo)
to be

er(V ®ry Lly,) = det(—Frg; HX(Xo @1 k, V ®r, ®LY,)).
Let us go back to the situation where the condition (*) is not necessarily

satisfied. For an effective divisor D = Y ; m;[P;] on Spec (Gr*K), where
m,; are positive integers and Py, ... , P, are mutually distinct closed points
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on Spec (Gr*K), we define the symmetric trace T'(D; V ® L], ) by
T(D;V ® L) =[] Tr(®rp; TS™(V @ L)),
i=1

where Frp, € Wge i is any element in the conjugacy class of the geometric
Frobenius at P;, and TS ( ) denotes the sheaf of m;-th symmetric tensors.

DEFINITION 10.1. We define the global e-constant eg(V ®p Eipo) to be

er(V@r Ly) =Y T(D;V®L),
D

where D runs over all effective divisors on Spec (Gr® K') of degree r = rank V.
ProproSITION 10.2 (Trace formula). Under the condition (*), we have
er(V @p, L) = er(V @ Ll,).
In particular, er(V Qg E;ﬁo) is a unit in R.
ProOF. This follows immediately from [De3, bFonction L mod ¢"]. O

10.2. Definition of tame local ¢g-constants

DErINITION 10.3. Let (p,V) be a tamely ramified object in
Rep(Wk, R). For a non-trivial additive character ¢y : & — R*, we de-
fine the eg-constant €9 r(V, %0, ¢0) € R with an additional parameter ¢g
as
er(V ®gr Eiﬁo)

eo,r((p,V)g, ®r Loost)’

0.r(V, o, ¢o) == ¢ kY .

where ¢ is an additive character of Gr K induced from the additive char-
acter of Gr*(K) = @,,czmj/m"" which is 1 on @, 4 mk/my" and
z +— tho(—x) for x € m§ /mi..

REMARK 10.4. Let y € m[}l/C’)K be the unique element satisfying

¢o(ry) = to(—)
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for all x € k. Then, by Proposition 8.3, we have
e0,n((0, V) g, R Loy, ¥') = det V(y).

The following theorem will be proved in § 11.

THEOREM 10.5. ¢ r(V, %0, ¢o) does not depend on the choice of ¢o.
We denote it by €o.r(V, 10).

LeEMMA 10.6. For a € k*, let Yo, : K — R* be the homomorphism
defined as o q(x) = Y(ax). Take a lift @ € O of a. Then we have

e0,r(V; %0,a) = det(V)(rec(a))eo,r(V, o)

Proor. We will show that
e0,r(V; 0,4, ¢0) = det(V')(rec(a))eo,r(V, Yo, do)
We show that
c0.0((0. V) ©r Ear (¥)) = det(V) (rec(@)) "co.1((p, V), ©r Lapr).
Since (1) = (¢')a, it suffices to show that
det((p,V)g, ®r E¢O)(rec@r-K(a)) = det(V)(rec(a)) " .
By the reciprocity law, we have
Loy(recg,s o(a) =1
and
det((p, V)g,)(recq, (@) = det (V) (rec(a)) .
Hence the assertion follows. [J
DEFINITION 10.7. Let ¢ : K — R* be a non-trivial continuous addi-
tive character of K. Take an element a € K* such that vk (a)+ordy = —1.

Let ¢, : K — R* be the additive character of K defined as 1, (z) = 9 (az).
We define the eg-constant eg r(V, 1, a) to be

eo.r(V, ) = det(V) (rec(a)) ™ g K@Y gg (V. ).

By Lemma 10.6, €9, z(V, ) does not depend on the choice of a.
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10.3. Properties of tame local ¢p-constants (I)
In this subsection and in § 10.5, we prove that the gp-constants eg r(V, %)
defined in Definition 10.7 satisfy the properties (0)—(9) in Theorem 5.4.

PROOF OF THEOREM 5.4 (1), (2), (6), and (7). (1) and (2) are obvious.
(7) is clear from the definition of g9 r(V,¥).

(6). By (7), we may assume that ordy) = —1. Let ¢ : k — R* be the
character induced by v¥|p,.. Then the assertion follows from the definition
of the global e-constant er(V ® L), ) and Remark 10.4. [J

LEMMA 10.8 (Stability for totally wild extensions). Let K be a p-local
field, and (p, V') be a tamely ramified object in Rep(Wg, R). Let L/K be
a totally ramified finite separable extension whose ramification index is a
power of p. We have a canonical isomorphism VVL/I/VLOJr = WK/WIO{JF. Let
(pL, VL) be the tamely ramified object in Rep(W,, R) corresponding to (p, V')
via this isomorphism.

Then we have

c0,r(VL,¢0) = €0,r(V, %L )

)

where zp(()[L:K])

Yo.

is the composition of the [L : K]-th power map k — k with

ProOOF. For every n € Z, the norm map Ny x : L™ — K> induces an

n+1 n+1

group isomorphism m7 /m7" — m} /m7". This induces isomorphisms

CrL = Gr*K, Gr2'L = Gr2 20K, GrL=GrK

of rings. Then (pr,VL)are, (PL:ViL)g,, and LN, corresponds respec-
tively to (p,V)are, (p,V)g,, and £¢O via these isomorphisms.
Hence we have

and

eo,r((pL, V)G, ® EgsooNL/K,w oNp k) =¢eor((p,V)g @ Lo, ').

Hence the lemma follows. [J
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Take a primitive p-th root of unity ¢ € R. Let ay ¢ € ml}ordwfl /m%dw
be the element defined in §9.6, that is, a, ¢ is the unique element satisfying

(o) = (T ()

for all x € m;(ord¢_1/ mf_(ordw. Then by the above lemma, we have

COROLLARY 10.9.

eo(Vp, ¥ o Trp k)

— det V(rec(aEﬁ%K]_l ) NL/K(ﬁL/K)))q(([L;K]—l)(ord¢+1)+vL(DL/K))-rankv

: €O,R(V7 W

10.4. Reduction to finite rings
10.4.1 A preliminary from commutative ring theory
The aim of this subsubsection is to prove the following proposition:

ProrosiTION 10.10. Let A be a finitely generated commutative Z-
algebra. Then for every non-zero element f € A, there exists a finite
commutative ing R and a homomorphism ¢ : A — R of rings such that

o(f) #0.

This proposition follows immediately from the following lemma:

LEMMA 10.11. Let A be a noetherian commutative ring. Then for any
non-zero element f € A, there exists a mazximal ideal m C A and a positive
integer n € Z~q such that f ¢ m”.

PrROOF. Let I ={x € A; xf = 0}. Since f # 0, we have I # A. Take
a maximal ideal m of A containing I, and put N = (), m"”. Assume that
f € N. By Krull intersection theorem, there exists an element m € m such
that (1 —m)f = 0. We then have 1 = (1 —m)+m € I + m = m, which is a
contradiction. Thus f ¢ m” for some n. [J
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10.4.2 A universal ring Ry,
Let ¢ and r be two positive integers. Let us consider the functor from
the category of commutative rings to the category of sets, which associates
a commutative ring R to the set

{(6,A) € GL.(R)? ; 0 'Ac = A9}.

We easily see that this functor is representable by a finitely generated Z-
algebra, which we denote by R, .

Let K be a p-local field with residue field k£ of g elements. Fix a lift
F € Wg/Pk of the geometric Frobenius and fix a topological generator
¢ of Ix/Pk. Let R be a p/-coefficient ring. If we take an R-basis of V
for any tamely ramified object (p,V) in Rep(Wk, R) of rank r, the pair
(p(F), p(C)) of two elements in GL,(R) satisfies p(F)™1p(¢)p(F) = p(¢)q.
Let v : Ryr — R be the ring homomorphism corresponding to the pair

(p(F), p(C))-

LEMMA 10.12.  If Rq is a finite local ring of order prime to p, then
V — oy gives a bijection from the set of isomorphism classes of tamely
ramified objects (p, V') in Rep(Wg, Ro) of rank r with Ry-bases to the set of
ring homomorphisms ¢ : Rq, — Rp.

PROOF. Let (0, A) be the pair of elements in GL,(Ryp) corresponding
to . Then the relation 0 ~! Ao = A% implies that the order of A in GL,(Ry)
is prime to p. Hence ¢ defines an object in Rep(Wx, Ry). O

To study tame eop-constants, the ring R, is often useful to reduce the
assertion to the case where the condition (*) is satisfied. We will explain
this by proving the following lemma as an example:

LEMMA 10.13. Let (p,V) be a tamely ramified object in Rep(Wgk, R)
of rank r. For a positive integer s, set

AV, ¢o,5) =Y T(D;V ® Ly,
D

where D runs over all effective divisors on Spec (Gr*K) of degree s. Then
AV, ¢o,8) =0 for all s > r.
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PROOF. Let 1
R;,r = R‘lﬂ"[;]'

and let ¢p : mz' /O — (Z[X]/(1 + X +--- + XP~1))* be a non-trivial
additive character. Then for any non-trivial character ¢q : ml_(1 /O —
R* whose kernel is equal to the kernel of ggo, there exists a unique ring
homomorphism hg, : Z[X]/(1+X +---+XP~!) — R such that ¢y = h¢oo¢~>0.

There exists an element A(dy, s) in Ry, ®zZIX]/(14+X +---+XP71)
such that for any p’-coefficient ring R and for any tamely ramified object
(p,V) in Rep(Wg, R) of rank r with an R-basis of V, and for any non-
trivial character ¢ : m[_(1 /Og — R* whose kernel is equal to the kernel
of ¢o, the element A(V, ¢, s) is equal to the image of K((Eo, s) by the ring
homomorphism

oy ® hg, : RZN QzZ[X]/1+ X+ -+ XP71) 5 R

To prove the lemma, it suffices to prove that &(50, s) = 0. By Proposi-
tion 10.10, it suffices to prove that o(A (¢, s)) = 0 for any homomorphisms
¢: Ry, QzZX]/(1+X +---+ XP~1) — Ry from R/, to a finite local ring
Ry.

Hence it suffices to show the lemma for every R and (p, V') which satisfy
the condition (). In this case, the assertion of the lemma is obvious since
N* H(Spec (Gr*K) @, k,V ®g, Zﬁzﬁo) =0.0

10.5. Properties of tame local ¢p-constants (II)

LeEMMA 10.14 (=Theorem 5.7 (2)). Let L be an unramified extension
of K. We denote by Oy, its ring of integers, by my, the mazximal ideal of Oy,
and by kr, the residue field of Op. Let (p, V) be a tamely ramified object in
Rep(Wr, R). Then we have

eo,R(Ind%fV,w) = 507R(V,¢) o TrL/K) . )\R(L/K’d))rankv‘

REMARK 10.15. By Lemma 6.5, we have

Ar(L/K, ) = (~1) (1K) Dord v
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PROOF. By reduction to finite rings, we may assume that (p, V') satis-
fies the condition (*).

Let f : Spec(Gr*L) — Spec(Gr*K) be the canonical etale covering
induced from L/K. Since

Ind%’;L H!(Spec (Gr*L) ®y, kr, 1% ® R, Z;)OOT‘rkL/k)
— H}(Spec (Gr*K) @ k, f(V ®g, Z;OoTrkL/k))
= H(Spec (Gr*K) @ k, f+(V) @r, N:bo),
we have
er(Indy XV @ L) = er(V @ Ly opy) - (—1EFITL
Hence the lemma follows by Lemma 6.5. [

PROOF OF THEOREM 5.4.  We check the properties (0)-(9) in the state-
ment of the theorem. The properties (1) and (2) are clear.

Let V, V', and V" be as in the statement of property (3). By the
definition of g9 r(V, 1, ¢o), we see that

€O,R(‘/7 ¢7 ¢0) = EO,R(V, S VN: '(/)7 ¢0)

We may assume that V =V' @ V”. We set ' = rank V'’ and " = rank V"
For the property (3), it suffices to show that a certain element in the
ring

(R X Ryor) @ZZIX] /(1 + X + - L XP

is zero. We reduce, by reduction to finite rings, the problem to the case
where both (p', V') and (p”, V") satisfy the condition (*). In this case the
assertion is immediate from the cohomological interpretation of the global
e-constants.

(4). We may assume that R is of characteristic zero and that ord ¢ = —1.
If K is of characteristic p, the assertion follows from the product formula.
If K is of characteristic zero, let

K' = Frac (lim , &7 m/mitt)

and let V'’ denote the object in Rep(Wx, R) which canonically corresponds
to V. The representation V is the direct sum of the representation of the
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form Ind%f X, where L is an unramified extension of K and x is a rank
one tamely ramified object in Rep(Wp, R). Hence we can check, by direct
computation, that
5O(V7 Y, dl‘) = Eﬂ(vla ¢/7 dl‘l)v

where 1)/ is an additive character of K’ with ordvy’ = —1 whose restriction
to Ok /mg is equal to that of ¢, and dx’ is the R-valued Haar measure of
K’ satisfying fOK’ dxz’ = 1. Hence the proposition follows.

(5) follows from (3) and (4).

(0) follows from (4).

(8) By reduction to finite rings, we may assume that (p, V') satisfies the
condition (*). By (7), we may assume that ordy) = —1. Let ¢y be the
additive character of k induced by ©|p, . It suffices to prove that

eo,r(V @ W, 4o, ¢0) = £0,r(V, 0, do)™ kW
By Theorem 5.3 (8), we have

e0.6((p, V@ W)g, ®r Loy, ?)
= det W(FrrankV) . 507R((p, V)@r RR E¢07¢/)rankW'

On the other hand, by the cohomological interpretation of the global e-
constant, we have

er(V@W ®gr [:;O) — det W(FrrankV) er(V ®g E%O)rankW

Hence the assertion follows.

(9) Let (p, V) be a tamely ramified object in Rep(Wx, R) such that the
coinvariant (V)W?( is zero. Let ¢ be a topological generator of W/ W}O(+-
Then p(¢) —1:V — V is invertible. By reduction to finite rings, we may
assume that (p, V') satisfies the condition (*). By (7), we may assume that
ordy = —1. Let 1y be the additive character of k induced by 9|p, . Let
¢o : My /O — R be a non-trivial character and set ¢g 1(z) = ¢o(—x). It
suffices to prove that

0.r(V, %0, ¢0) - €0.r(V*, 10, ¢o.—1) = det(V) (rec(—1))g rankV
To prove this, it suffices to prove that
63(‘7 QR Zii’o) . ER(‘/}; D Ro ~/¢0,71) _ qrank(V)’

which follows from Poincare duality. This completes the proof of Theo-
rem 5.4. O
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11. Proofs of Theorem 10.5 and Theorem 5.7 (3) (4)

In the first part of this section, we prove Theorem 10.5, that is, in-
dependence of ¢g of tame gg-constants stated in the previous section. As
a corollary, we get a formula describing tame ep-constants as integrals, on
which we will discuss in § 11.2. § 11.3 is devoted to the proof of Theorem 5.7
(3). The proof consists of the following reduction steps:

Theorem 5.7 (3) < Prop. 11.5 < Prop. 11.6.

In § 11.4, we remark that, if K = Q,, Gross-Koblitz formula [GK] yields an
integration formula analogous to that in § 11.2. The last two subsections in
this section are devoted to the proof of Theorem 5.7 (4).

11.1. Proof of Theorem 10.5

By reduction to finite rings, it suffices to prove the theorem under the
assumption (*) in § 10.1.

Let K be a p-local field, Ry a finite local ring on which p is invertible,
oo : m[_(1 /Ok — Rj a non-trivial additive character. Let V be a tamely
ramified object in Rep(Wg, Rp). We use the notation Gr*K, ‘7, and Eﬁzﬁo
in § 10.1. We set Xy = Spec (Gr*K) and X = X, ®; k. Take an element
a € k* and let ¢f : m' /Ox — R be the non-trivial additive character
defined by ¢}(z) = ¢o(azx). Define the smooth invertible sheaf £ , on Xo

in a similar way as we have defined E;O.
By Remark 10.4, Theorem 10.5 is implied by the following proposition:

ProrosiTiION 11.1. We have

det(Frg ; H) (X, F@ Ry Ly,)) = det(V)(reci(a))-det (Frq ; HE (X, Fog, Ll ).

Proor. For a positive integer m € Zwq, let m, : X;, — X be the
unique connected etale covering of X of degree m which is tamely ramified
at boundaries. Take a sufficiently divisible m € Z~q such that the restriction
of F to X,, is constant.

We define an object W,,, in Rep(Gal(X,,/Xo), Ro) as

W := HY{(X, (tnsRo) @R, N;)O).
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We put I, := Gal(X,,/X)(=Z Z/mZ). By duality and Hochschild-Serre

spectral sequence, we have a canonical isomorphism
HY X,V @y L) = (V @Ry Win) 1,

where ()7 denotes the I,,-coinvariant.
By the perfect complex argument, as an Ry[I,,]-module, W, is free of
rank one. Take an Ry[l,,]-basis b of Wy,. Then the map

2R V - (V ®RO Wm)Im

defined as ¢(v) = v ® b is an isomorphism of Ro-modules. Take a lift
Fr, € Gal(X,,/Xo) of the geometric Frobenius and let us write Frq(b) = ub
with u =73 ; 14[g] € Ro[Imm]. Then we have

Fry(v ® b) Frq ) ® Z Telg

g€lm,
= (D relg M Frg)v @b
g€l
in (V ®r, Wm)r1,,. Therefore
(11.1) det(Fro; HY (X, F ®p, L)) = det( > r4lg™"[Frg; V).
gEI"L

Define the object W), in Rep(Gal(X,,/Xo), Ro) by
W' = H{(X, (7« Ro) @R, ¢,).
Then we have a canonical isomorphism
HCI(X, V @R, ;56) =(V @R, W7/n>fm'

Take an element o € k satisfying o™ = a. Then the map X,, —
X, induced by the multiplication-by-a map myg/m3% — mg/m% induces
an isomorphism ¢ : W, = W/ of Ry[l,]-modules. Let [a?7!] € I, be
the element corresponding to a?~! € u,, (k) by the canonical isomorphism
I = p,,, (F). Tt is easily checked that the action of Fr, on W, is identified
with the action of Fqu- [~ 1] in W/, by ¢. Hence the proposition follows. (]
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This completes the proof of Theorem 10.5. [J

COROLLARY 11.2. For fired K, R, and g the local eg-constant
c0,r(V,vo) for a tamely ramified object (p, V') in Rep(Wk, R) depends only
on the restriction of V to Wy

11.2. A measure defined by (W,,)nm

Let K, Xy, X, X,, and I,, be as in the proof of Proposition 11.1.
Let G := n{™(Xo) = lim,,Gal(X,,/Xo) denote the tame fundamental
group of X, and let I := m{™(X) = lim,,I,, C G denote the inertia
subgroup of G. We use the canonical identifications G = Wy /(W)
and I = (Wg)?/(Wg)". Take a prime number ¢ different from p. Set
R =W(F,(pu,)). Let ¢o : my'/Ox — R* be a non-trivial additive charac-
ter.

Since R is isomorphic to the projective limit LiLnnR/ "R of finite local
rings, we can define, for each positive integer m, the cohomology group
W = HYX, (7msR) ®r E¢0) as the projective limit of the cohomology
groups for ¢g modulo ¢" (n = 0,1,2---) which appear in the proof of
Proposition 11.1. Then W, is an object in Rep(Gal(X,,/Xy), R) and as an
R[I,,]-module, W, is free of rank one. Let us consider W,,, as an object in
Rep(G, R) on which G act via the quotient Gal(X,,/Xp). For two integers
m,n with m|n, the canonical morphism W,, — W,, is compatible the action
of G. Let W be the R[[G]]-module W= lim ,,,Wp,. As an R[[I]]-module, W

is free of rank one. Take an R[[I]]-basis b of W. Take a lift Frq € G of the
geometric Frobenius and define an element wu; in R[[I]] by Frqb = wb It is
simple to see that u; lies in R[[/]]*. We note that u; depends on the choice

of ¢g and ﬁq, not only on that of b.

REMARK 11.3. Let us define the action of G on R[[I]] by the conjuga-
tion g.[i] = [gig~!]. The R[[I]]-action R[[I]] x W — W on W is compatible
with the actions of G. The class @ of u; in the G-coinvariant (R[[I]]*)q
does not depend on the choice of b. In fact, if ' = ab, with a € R[[I]]*, is

another basis of W then we have u;, = (Fr a)uya” L

By (11.1) and by Remark 10.4, we have:

PROPOSITION 11.4.  We canonically regard the element u; € R[[I]] as
an R-valued measure on I.
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Let R be a strict p’-coefficient ring whose residue field is of characteristic
0. Then R’ has a canonical structure of an R-algebra. Let v : K — R'™ an
additive character with ordy = —1 satisfying

~ ]

W(x) = do(rec™ (Fr, )z)

for all x € Ok. Then for any tamely ramified object (p, V') € Rep(Wgk, R'),
we have

con (Vo) = det (2] pto) e ).

11.3. Proof of Theorem 5.7 (3)

Let L be a finite separable totally tamely ramified extension of K degree
n. Let R be a strict p’-coefficient ring, and let (p, V') be a tamely ramified
object € Rep(Wrk, R) which satisfies the condition (*) in § 10.1.

We set Yy = Spec(Gr®L). Let f : Yy — Xy denote the morphism
associated with the extension L/K and put Y = Yy®ik = X,,. Let ¢y : L —
R* be a non-trivial continuous additive character. To prove Theorem 5.7
(3), it suffices to prove that

det(—Frg; HX(Y,V @ f*L), )

(o) cor(Vigpn) =g Y S .
607R(V X RGSWC:K Ed’o’ wlL)
L

Let gr € R™ denotes the Gauss sum part of 5073(17 ® Reszlv,zj’( E¢O, ()
(Definition 7.5). -

Let £ be a prime number different from p. Let R, ¢g, Wi, W, b and (I
be as in the previous subsection.

Consider the n-th power map I — I. To avoid confusion, we denote
it by I, — Ix. We regard R[[Ix]] as a representation of Ix over a free
R[[IL]]-module of rank n. Then det g, R[[Ix]] defines a representation py,
of I = Ik over a free R[[I]] = R[[I1]]-module of rank one.

In the same way as in the proof of Proposition 11.4, the right hand side
of (**) is expressed using

et 1 / Pl ().

q
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Thus to prove Theorem 5.7 (3), it suffices to prove the following propo-
sition:

PROPOSITION 11.5.  The two elements gruy and pp(uy) in R[[I]]* co-
incide in (R[[I]]*)q-

Let Rep?(G, R[[1]]) denote the category of finitely generated projective
RJ[[I]}-modules endowed with a continuous semi-linear action of G. The G-
module W is an object in Rep®(G, R[[I]]) of R[[I]]-rank one. Furthermore,
the action of I C G on W and that of I C R[[I]]* on W coincide. We note
that these two actions of I do not necessarily coincide on a general object
V in Rep®(G, R[[I]]).

If V,V' are two objects in Rep®(G, R[[I]]), then the tensor product
V @pgj V' is canonically viewed as an object in Rep®(G, R[[I]]). For an
integer n € Z~o which is prime to p, let I = I, — Ix = I be the n-th power
map of I. Let V be an object in Rep®(G, R[[Ik]]). We regard V' as an object
in Rep®(G, R[[IL]]) via the map I, — Ik as above. Set V() = NIRLE
The assignment V' +— V(,,) gives a functor from Rep®(G, R[[I]]) to itself. If
the two actions of I mentioned above coincide on V, then so does on V(.

Proposition 11.5 is equivalent to the following:

PROPOSITION 11.6. The object /W(n) in Rep®(G, R][[I]]) is isomorphic

to ng where Wga 1s the unramified twist of W by the unramified character
defined by Fry — gr.

PROOF. Let us recall that our extension L/K is a totally tamely ram-
ified extension of degree n. Taking a prime element 7y in L such that
Tk = 77 is a prime element in K, we identify Xg = Yy = G;, . Then
Yy — Xj is the n-th power map : G, i N G -

For a positive integer m, let Y ,, = Gy, 1 endowed with the structure of
Yy = G,y p-scheme by the m-th power map

/ m
T, + }/O,m = Gm,k — Gm,k: = Yp.

Set Y, = Yom ®p k= G,, 7 Weset J, = Gal(Y,,/Y) = Z/mZ. 1f we
identify Y with X,, as X-schemes, then J,, is identified with a subgroup of

L.
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We consider the sheaf of R[Jp,]-module ), ,R on Y. Let (m, R)*"
is the external tensor product of n copies of T pm «R over R[Jp,]; it is an
invertible R[J,]-sheaf on the n-fold product Y =Y x --- x Y of Y.

LEmMMA 11.7. Let s, : Y™ = G:;E — G,,7 =Y be the product map.
Then we have a canonical isomorphism

(), R)FRUmI™ = % (1! R)

m,% n\’"m x

of R[Jp]-sheaves on Y™.

Proor. Since s, comes from the group law of G the map

m,E’
im(Y"™) — 7™ (Y) induced by s, comes from the corresponding group

law. Hence the lemma follows. [J

Since Wy = H} (Y, 7, ,R®R E¢O ly'), the above lemma yields a canon-
ical isomorphism

UATREOMES HI(Y", (m,, ,ROR Ly |y )ErUmI™)
= HY (Y™, (), JR)EEImI™ @p (L, |y )EE™)

m,

= HNY, 7, JR O Rspi(Lgoly)®™)n —1]).

The n-th symmetric group &,, acts on Y™ and the morphism s,, factors
through the quotient Sym™Y = Y"/&,, of Y. Following [De4] we denote
by T (Lgly) the Sp-invariant part of the direct image of (Lg, |y ) m™"
under the quotient morphism Y™ — Sym"™Y. Taking actions of the n-th
symmetric group &,, into account, we have

det gpg,,|Wmn = HC1 (Y, 7r,’n7*R QR REnyg(ngt(Ed)o yN[n —1)),

where s, : Sym™Y — Y is the morphism induced by s,.

Next we will compute R§n7!(ngt(E~¢O|y))[n —1]). The scheme Sym"Y
is identified with the moduli scheme of monic polynomials of degree n with
invertible constant terms. Hence SymnGmE is identified with A%_l X Gm,E
by associating a polynomial P(X) = X" + > .(—1)'a; X" to the point
((a1,...,an—1),a,). The morphism s, is identified with the second projec-
tion pry : A%fl XG5~ G,
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Let N, (X1, ,X,) be the n-th Newton polynomial, that is, the poly-
nomial with Z-coefficients characterized by

Ny(ar,--- ,an) =af + -+ ay if H — ) X”+Z(—1)iaiX”_i.

Then N, is of the form
No (X1, Xp) = (=1)" "Xy + Q(X1, -+, Xno1).

Let Q : Ag—l — A be the morphism defined by Q(X1,- -, Xy-1). We have
a canonical isomorphism

ngt( é)o‘y) Q £¢0 IXR ¢0< 1n— 1.’

where ¢g (_1yn—1, : ml_(l/(’)K — R* is the composition of ¢y with the mul-
tiplication by (—1)""'n. Hence,

R (Tt (Lo lv)) = RT(AL, Q" Log) OR Ly -

We compute the cohomology group
RI‘C(A%A, Q*Ly,). Since Q(X1,- -, X,) is characterized by

n—1
Q(alv"' 7an71) = Oé?+ +OZZ_1 if H(X —O[Z)
=1
n—1
_Xn—l _|_Z(_1)zal)(n—l—z7
=1

we have

RT (A7, Q" Ly,) = RTo(Sym™ ' (AL), To Loy (om)
= LTS R (AL Ly (om)).

ext

Here Zd)o(mn) is the pull-back of E¢O by the morphism A% — A% =
Spec (Gr=K), x +— 2™ _

By the wildness of Ly (,») at infinity and the Grothendieck-Ogg-
Shafarevich formula, Hg(A%, Lgy(zn)) is zero except i = 1 and Hcl(A%,
Lo(zmy) is a free R-module of rank n — 1.
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LEMMA 11.8. We have

det(Frg ; Hp (AL Loam)) = —9r-

ProoF. This follows from the product formula for the global e-con-
stant of Ly (zn). U

Summing up, we have

det g, Winn = HX(Y, 7, \R @R R, (Tl (Lo ly))n — 1])

= RFC(A%717 Q*£¢O)[n - 1] ®R Hcl (K W;n,*R ®R E;ﬁoy(,l)'nfln)

> Hg—l(A%—l7 Q*’C¢O) RRr Hcl (Y, W;n,*R QR 'C:z’o,(_nn*ln)

= det gHY (AL, Ly (o) @ HE (Y, 7, R @R L,

¢0’(,1)n—1n

).
Hence the proposition follows. [
This completes the proof of Theorem 5.7 (3).

11.4. A question on an integration formula for e-constants

In this subsection, we assume that K = Q,. As a coefficient ring, we
take R = @p the algebraic closure of Q,. Here we endow R with discrete
topology.

Let Z,) = Zp N Q be the ring of rational numbers whose denomina-
tor is prime to p. Choose a group homomorphism @ : Z¢,) — R* such

that w(1l) = —p. Let ¢g : F, — R* be the non-trivial homomorphism
characterized by the following property:
Y1) -1

el + m R))-
w(ﬁ) @p(l‘p( )

Let ey, be the formal sum defined by

Ctm,ew = Z I'y(x)w(z).

xEZ(p) ,0<z<1
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where I, : Z,, — Z,, is Morita’s p-adic Gamma function;

Ty(z)=  lim _ (=1)™ I

m—x, me€l=o
0<j<m, (p,j)=1

Let do be the Haar measure of Wg, such that fW(&p do = 1. For a locally

constant compactly supported R-valued function f on W,/ W(&j, define
the integral

(0)o(etm,)do € R
Wa,
by the sum

J(@)Ty(@)e(@)do.
z€Z),0<z<1 Wq,

Since these summands vanish except for finitely many z, this sum has a
well-defined meaning.

ProPOSITION 11.9. Let ¢ : Q, — R* be an continuous additive char-
acter of Q, with ordy = —1 whose restriction to Z, is equal to 1g. Then
for any tamely ramified object (p,V') in Rep(Wq,, R), we have

EO,R(V7¢) = det (/ p(U)_IU(etm7w)dO'> .
WY, /(W )0+

PROOF. Because of the additivity, it suffices to prove the proposition
when V is of the form V = Ind%%nx, where K, is the unique unramified
extension of Q, of degree n, and x € Rep(Wk,,, R) is a rank one tamely ram-
ified object. Then the restriction of x orec on O, defines a multiplicative
character xo : Fpn — R*. We have

colpy 1) = <—1>”—1]% S o) Wo(Trs,, g, ().

T EF;"

Let N denote the order of xo. Set Fpa := Fy(puy(Fpn)). Let a € +Z/Z be
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the unique element which makes the following diagram commutative:

B u(R)

N]Fpn /de J{ = l can
@’-1)
LS TN )

Then by Gross-Koblitz formula [GK, p. 571, Thm. 1.7], and Davenport-
Hasse formula, we have

X
]de

CU" T w((pap)y(a)),
Pt

where () denote the fractional part. Then the proposition follows by simple
calculation. [

QUESTION. Assume that p # 2. For general v € Q>, does there exists
a explicitly defined measure e, , on W, /(Wg,)"" such that the formula

o,r(V, 1) = det (/W e P(U)la(ev,zz;)dff)
Qp Qp v+

holds for any object (p,V') € Rep(Wg,, R) which is pure of break v 7

11.5. An auxiliary lemma
The contents of this subsection are preliminary to the proof of Theo-
rem 5.7 (4) given in § 11.6. Let K be a p-local field. Take a prime element
7w of K. For every integer n > 1, let L, be the finite separable extension
of K given by
L, = K[X]/(X?" + 71X — 7).

Then it is easily checked that the Herbrand function ¢,/ : R>0 — Rxo
of L, /K is given by

w, forOSwSﬁ,

Yk (w) = { p"w —1, forw > ﬁ
P
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LEMMA 11.10. Let C be a separably closed field of characteristic # p.
Let G = Wg denote the Weil group of K. Let w € Wsq. Then, for any non-
trivial character o € (Hom(GY/GY,C*))Y, there exists an object (p,V)
in Rep(G, C) which is pure of refined break {o} and that rank V' is a power

of p.

Proor. Take a sufficiently large n € Z~q so that w > ]ﬁ and that
p"w is an integer. Then v = 91, /x(w) is an integer.

Let H = Wy, denote the Weil group of L,. We have a canonical iso-
morphism HY/H'T =2 G¥/G%*t. Let o/ : H’/H"" — C* be the character
corresponding to o.

By the local class field theory, there exists a character x : H — C* of
H which is pure of refined break {¢'}. We set V = Ind%. It follows from
the argument in § 9.5 that V' is pure of refined break {c}. O

COROLLARY 11.11. Let C be a separably closed field of characteristic
% p. Let G = Wk denote the Weil group of K. Let w € W~qg. Then, for
any G-orbit X in the set of non-trivial characters in Hom(G"/GY*t,C*),
there exists an object (p,V') in Rep(G,C) which is pure of refined break %
and that ra?% is a power of p.

11.6. Proof of Theorem 5.7 (4)

ProOOF. Let L/K be a totally wild finite separable extension. We set
G =Wy and H = Wp,. Let (p, V) be a tamely ramified object in Rep(H, R).
Let W = IndgV. Let WY (resp. W>?) denote the tamely ramified part
(resp. wild part) of W. We prove that

5073(W>0,¢) . 60,R(W0’ ) =eor(V 9o TrL/K) . /\R(L/Kﬂﬂ)rank\/.

We may assume that L/K has no non-trivial intermediate extension. There
exists a unique w; € Q¢ such that wL/K(w) = w for 0 < w < w; and
that 97/ x(w) is linear of slope [L : K] for w > wy. By corollary 9.3, W
is a direct sum W = W% @ W™ of the tamely ramified part W° and the
break-w;-part W™1.

Let us consider W™'. We use the notation in § 9.4. We have a canonical
element oy, (') for x' € Cy,. We have

G,/Gv1t

det(IndeleHX//Gw1+VX/)(rec(aw(X')))
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= det(Vy)(rec(oy(x))) - (Ind /™

G"Y1H, , /Gt 1) (rec(g¢ (X’)))rank Vi ‘

For each ¥’ € By, take an element x%, € ¥'. We abbreviate the functor
G ’ /Gw1+

Inde1 H, / P by IndX/E , for simplicity. Then we have
go,r(W™, 1)
_ rank Ind_, V.,
= I det(ind,, Vi, )(rec(oy (X)) ™" - gr(Xsr,©) X X
/€ Buw, —{1}
/ -1 / —rankV ’ ,
=TI etV )rec(oy (xe))) ™" - (Indy, Drec(ory(xhy))
S/ €Buy —{1}
rank Ind_, V_,
-gr(Xs, ¥) o Xy

Let L be the Galois closure of L/K. Then Gad(L/K)ler = {1}. Let
K (resp. L) be the subextension of L/K (resp. L/L) corresponding to
Gal(L/K)®" (resp. Gal(L/L)“’l) Take prime elements 77, € L' and 7 € K
satisfying NK/L,(WK) r. By Proposition 9.9 (3), the map

. ar—wi—ord—1 —wi—ord (YoTrr, /r)—1
OL/Kppaun * N — Ny,

is of the form

— _w1 K -1 -1 —wy s
’ . P [L:K]
a- a¢< DK/K — (ap-a+---+a )y D <7
~ “1,1!
where ag = D, .. - &
0= /g K

K
Hence by Proposition 3.6,

o1 el Wigy[LK]-1 L
H &= (ayc DK/KWK ) K]
0

TENZ " TN T 00,01 11 oy (2)=0
1 “W,LN\[L: K
_( DL'/KWL' )i
N —1, -1 YLK

Yo PRk K
_ 1-[L:K] §~-[L:K]
=a,, 'DL/K .
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Let K" (resp. L") be the Galois extension of K (resp. L) corresponding
to H" (resp. K"'). For x' € C,,, let M, be the finite subextension of
LY /K"* corresponding to Kery’. Let L,, be the finite extension of L
corresponding to H,s, and set K,y = K“* N L,/ and M;(, = My N Ly.
Then there is a canonical isomorphism Gal(L"'/L,/) = Gal(K"'/K,s) and
Gal(M,/K") = Gal(M,/K,/). Let VJ, (resp. X’) be the representation
of Gal(K"'/Kys) (resp. Gal(M},/K,/)) over R corresponding to Reng/V
(resp. ') via the above isomorphism. Then V,, is canonically isomorphic
to V;, ® X'

Consider the following commutative diagram

L;,/l —|—mLX, Emm— K;:,/l —{—mKX,

l l

LX/l—i—mL S KX/1+mK

where all the arrows are homomorphisms induced by norms. Since L/K
and L,/ /K, are totally wildly ramified extensions, the horizontal maps are
isomorphisms. Let oy,(x') € (L*/1 + mp) ®z Z[%] be the unique element
satistying Nk (o7, (X)) = NKX,/K(Uw(X/)). Then we have

det Vi (rec(oy (X)) = det(V) (rec(ay (X)) - X/ (rec(oy (x))™*"

= det(V') (ree(e'y (x'))).
in R*/p.
Since
T o) =Ny 11 Nk, /x(op(xs))
S€Buw, —{1} S'€Buy—{1}
o N | EEC9)
Xlec’wl_{l}
a1 1-[L:K] ~—[L:K]
_NL/K(aw,C 'DL/K )
I DU S
we have
_ R = _
H det(Vy)(rec(ow(Xsy))) b= det(V)(rec <aw’< [L:K] -DL}K)) L

S/ €Buyw, —{1}
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Take an element x € ¥ and let L, be the extension of L corresponding
to the stabilizing subgroup H, of x. Let V' be the x-part of V. Since V is
isomorphic to Indgx V', we have

[T det(Vi)(rec(os ()™

/€ By —{1}

I DU S
= det(V’)(recr, (%},CJF K -D_}K>)1

141 ~ _
-(Indgxl)(recL (aw’C KD }K>) L

Therefore we have

Eo,r(W",9)
*Hﬁ n—1 -1
= det V(rec(a,, . -DL/K))
[T orOn )™ "
Y €Bu, —{1}

On the other hand, by corollary 10.9, we have

€O,R(W0a dja ¢0)

S IS S -
_ detV(rec(a¢7<+ [L:K] DZ/IK))q(—([L:K]—l)(ordw—i-l)—vL(DL/K))TankV
~eo(VipoTrp i, oo Npjk)-

Therefore, it suffices to prove that

rankInd_, V_,
Xgor * Xy

H gR(X/E’7 ¢)

Y €Bu, —{1}

— q(([L:K]—l)(ordw+1)+vL(DL/K))-rankV . )\R(L/K, w)rankv‘

By Corollary 11.11, it follows from the similar computation for R = C
case. [J



[Del]

[De2]

[De3]

[Ded]

[De5]
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