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A Note on Hyperbolic Operators with Log–Zygmund

Coefficients

By Ferruccio Colombini and Daniele Del Santo

1. Introduction

Consider the operator

L = ∂2
t −

n∑
j,k=1

∂xj (ajk(t)∂xk
).(1.1)

Suppose that L is strictly hyperbolic with bounded coefficients, i.e. there

exist λ0, Λ0 > 0 such that

λ0|ξ|2 ≤
n∑

j,k=1

ajk(t)ξkξj ≤ Λ0|ξ|2(1.2)

for all t ∈ [0, T ] and for all ξ ∈ R
n.

It is well–known that if the coefficients ajk are Lipschitz–continuous then

an energy estimate holds for L: for all s ∈ R there exists Cs > 0 such that

sup
0≤t≤T

{‖u(t, ·)‖Hs+1 + ‖∂tu(t, ·)‖Hs}

≤ Cs(‖u(0, ·)‖Hs+1 + ‖∂tu(0, ·)‖Hs +

∫ T

0
‖Lu(t, ·)‖Hs dt),

(1.3)

for every function u ∈ C0([0, T ],Hs+1(Rn)) ∩ C1([0, T ],Hs(Rn)) with Lu ∈
L1([0, T ],Hs(Rn)), in particular for all u ∈ C2([0, T ],H∞(Rn)) (see e.g. [11,

Ch. IX]). The estimate (1.3) implies that the Cauchy problem for (1.1) is

H∞–well–posed (without loss of derivatives) if, for instance, the forcing term

is null.

If the coefficients ajk are not Lipschitz–continuous, then the estimate

(1.3) is no more true in general; nevertheless the H∞–well–posedness may
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be recovered from an energy estimate with loss of derivatives (see e.g. the

estimate (1.5) below), under regularity assumption on the ajk’s weaker than

Lipschitz-continuity.

A first result of this type was obtained in the well–known paper of

Colombini, De Giorgi and Spagnolo [4]. The regularity condition was the

following: there exists C > 0 such that

∫ T−ε

0
|(ajk(t + ε) − ajk(t))| dt ≤ Cε log

(1

ε
+ 1

)
(1.4)

for all ε ∈ (0, T ]. The energy estimate, deduced from the Fourier transform

with respect to x of the equation together with an approximation of the

coefficients which is different in different zones of the phase space (the so

called approximate energy technique, see [5]), is then: there exist Cs, K > 0

(K independent of s) such that

sup
0≤t≤T

{‖u(t, ·)‖Hs+1−K + ‖∂tu(t, ·)‖Hs−K}

≤ Cs(‖u(0, ·)‖Hs+1 + ‖∂tu(0, ·)‖Hs +

∫ T

0
‖Lu(t, ·)‖Hs dt),

(1.5)

for all u ∈ C2([0, T ],H∞(Rn)) (on the necessity of some kind of loss of

derivatives when the coefficients are not Lipschitz–continuous, see [2]).

Recently, in [12] (see also [13]), Tarama has proved the H∞–well–posed-

ness to the Cauchy problem for (1.1) under the condition: there exists C > 0

such that∫ T−ε

ε
|(ajk(t + ε) + ajk(t− ε) − 2ajk(t))| dt ≤ Cε log

(1

ε
+ 1

)
(1.6)

for all ε ∈ (0, T/2]. The improvement with respect to [4] is obtained intro-

ducing a new type of approximate energy which involves the second deriva-

tives of the approximating coefficients (see par. 3.3 below).

The case of the operator L with coefficients depending on the time vari-

able t and also on the space variables x was considered by Colombini and

Lerner in [6]. In this paper the regularity condition was: there exists C > 0

such that

sup
y,y′∈[0,T ]×Rn

|y′|=ε

|(ajk(y + y′) − ajk(y))| dt ≤ Cε log
(1

ε
+ 1

)
(1.7)
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for all ε ∈ (0, T ]. Here the use of the Littlewood-Paley dyadic decomposition

(in place of the Fourier transform with respect to x) together with the

approximate energy technique was the crucial point to obtain an energy

estimate of the following type: for all θ ∈ (0, 1/4] there exist β, C > 0 and

T ∗ ∈ (0, T ] such that

sup
0≤t≤T ∗

{‖u(t, ·)‖H−θ+1−βt + ‖∂tu(t, ·)‖H−θ−βt}

≤ C
(
‖u(0, ·)‖H−θ+1 + ‖∂tu(0, ·)‖H−θ

+

∫ T ∗

0
‖Lu(t, ·)‖H−θ−βt dt

)
(1.8)

for all u ∈ C2([0, T ∗],H∞(R)). Results concerning local existence and

uniqueness of the solutions to the Cauchy problem for similar hyperbolic

problems can be found in [7].

In the present note we will consider the case of one space variable (from

now on n = 1) and will study the case of the coefficient a depending on t and

x, under a regularity condition inspired by (1.6) and (1.7). In particular a

will be log–Zygmund–continuous with respect to t, uniformly with respect to

x, and log–Lipschitz–continuous with respect to x, uniformly with respect

to t (see par. 2 for the precise definitions). The dyadic decomposition

technique will be applied as in [6] (see also [3], [9] and [8]) together with

Tarama’s approximate energy. An energy estimate similar to (1.8) will be

obtained.

Before ending this introduction, let us remark that the choice of con-

sidering only one space variable is due to the fact that the case of several

space variables needs some different and new ideas in the definition of the

microlocal energy eν,ε(t) (see par. 3.3 below). This point still remain as an

open problem.

Acknowledgments. The authors would like to thank J.–M. Bony and

G. Métivier for the useful discussions on the topics of this paper. They

would also like to thank the anonymous referee(s) for the suggestions and

the improvements proposed.
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2. Main Result

Let a : R
2 → R. We suppose that there exist λ0, Λ0 > 0 such that, for

all (t, x) ∈ R
2,

λ0 ≤ a(t, x) ≤ Λ0.(2.1)

We suppose moreover that there exists C0 > 0 such that, for all τ , ξ > 0,

sup
(t,x)∈R2

|a(t + τ, x) + a(t− τ, x) − 2a(t, x)| ≤ C0 τ log
(1

τ
+ 1

)
,(2.2)

sup
(t,x)∈R2

|a(t, x + ξ) − a(t, x)| ≤ C0 ξ log
(1

ξ
+ 1

)
.(2.3)

Theorem 1. Let θ ∈ (0, 1/2). Consider the operator

L = ∂2
t − ∂x(a(t, x)∂x).(2.4)

Then there exist T , β∗, C > 0 such that, for all u ∈ C2([0, T ],H∞(R)), the

following a–priori estimate holds:

sup
0≤t≤T

{‖u(t, ·)‖H−θ+1−β∗t + ‖∂tu(t, ·)‖H−θ−β∗t}

≤ C
(
‖u(0, ·)‖H−θ+1 + ‖∂tu(0, ·)‖H−θ +

∫ T

0
‖Lu(t, ·)‖H−θ−β∗t dt

)
.

(2.5)

Corollary 1. The Cauchy problem for (2.4) is (locally in time) well–

posed in H∞.

3. Proof

3.1. Approximation of the coefficient a

We set

aε(t, x) :=

∫∫
ρε(t− s)ρε(x− y)a(s, y) ds dy,
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where ρε(s) = 1
ερ(

s
ε) with ρ ∈ C∞

0 (R), ρ even, 0 ≤ ρ ≤ 1, supp ρ ⊆ [−1, 1]

and
∫
ρ(s) ds = 1. We obtain that, for all ε ∈ (0, 1],

sup
(t,x)∈R2

|aε(t, x) − a(t, x)| ≤ C0

2
ε log

(1

ε
+ 1

)
;(3.1)

for all σ ∈ (0, 1) there exists cσ > 0 such that, for all ε ∈ (0, 1],

sup
(t,x)∈R2

|∂taε(t, x)| ≤ cσ(Λ0 + C0)ε
σ−1;(3.2)

for all ε ∈ (0, 1],

sup
(t,x)∈R2

|∂xaε(t, x)| ≤ C0‖ρ′‖L1 log
(1

ε
+ 1

)
,(3.3)

sup
(t,x)∈R2

|∂2
t aε(t, x)| ≤ C0

2
‖ρ′′‖L1

1

ε
log

(1

ε
+ 1

)
,(3.4)

sup
(t,x)∈R2

|∂t∂xaε(t, x)| ≤ C0‖ρ′‖2
L1

1

ε
log

(1

ε
+ 1

)
.(3.5)

In particular, (3.1) is obtained from (2.2) remarking that

aε(t, x) − a(t, x)

=
1

2

∫
|s|≤ε

ρε(s)

∫
ρε(x− y)(a(t + s, y) + a(t− s, y) − 2a(t, y))dy ds,

where we have used the fact that ρ is an even function. Next

∂2
t aε(t, x) =

1

2

∫
|s|≤ε

ρ′′ε(s)

∫
ρε(x−y)(a(t+s, y)+a(t−s, y)−2a(t, y))dy ds,

and (3.4) follows. The inequalities (3.3) and (3.5) are deduced from (2.3) in

a similar way and, finally, (3.2) is a consequence of the fact that (2.1) and

(2.2) imply that for all σ ∈ (0, 1) there exists c′σ > 0 such that, for all τ > 0,

sup
(t,x)∈R2

|a(t + τ, x) − a(t, x)| ≤ c′σ(Λ0 + C0) τ
σ.(3.6)

Let us note that a way to obtain (3.6) is to use the characterization of Hölder

spaces given by the dyadic decomposition remarking that in such a case it

is equivalent to use first or second order difference.
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3.2. Dyadic decomposition

We collect here some well–known facts on the Littlewood-Paley de-

composition, referring to [1] and [6] for the details. Let ϕ0 ∈ C∞
0 (Rξ),

0 ≤ ϕ0(ξ) ≤ 1, ϕ0(ξ) = 1 if |ξ| ≤ 1, ϕ0(ξ) = 0 if |ξ| ≥ 2, ϕ0 even and

ϕ0 decreasing on [0,+∞). We set ϕ(ξ) = ϕ0(ξ) − ϕ0(2ξ) and, if ν is an

integer greater than or equal to 1, ϕν(ξ) = ϕ(2−νξ). Let w be a tempered

distribution in H−∞(R); we define

wν(x) := ϕν(Dx)w(x) =
1

2π

∫
eixξϕν(ξ)ŵ(ξ) dξ

=
1

2π

∫
ϕ̂ν(y)w(x− y) dy.

For all ν, wν is an entire analytic function belonging to L2 and for all m ∈ R

there exists Km > 0 such that

1

Km

∞∑
ν=0

‖wν‖2
L22

2mν ≤ ‖w‖2
Hm ≤ Km

∞∑
ν=0

‖wν‖2
L22

2mν .(3.7)

Moreover, we have

2ν−1‖wν‖L2 ≤ ‖∂xwν‖L2 ≤ 2ν+1‖wν‖L2 ,(3.8)

where the inequality on the right–hand side holds for all ν ≥ 0, while the

other one holds only for all ν ≥ 1.

We end this subsection quoting a result which will be useful in the

following (for the proof see [6, Prop. 3.6.]). There exist C > 0 and ν0 ∈ N

such that if a ∈ L∞(R) with supx∈R |a(x + y) − a(x)| ≤ C0 y log( 1
y + 1),

y > 0, then, for all ν ≥ ν0,

‖[ϕν(Dx), a(x)]‖L(L2) ≤ C(‖a‖L∞ + C0)2
−νν,(3.9)

where [ϕν(Dx), a(x)] is the commutator between ϕν(Dx) and a, and ‖·‖L(L2)

is the operator norm from L2 to L2.

3.3. Approximate energy of the ν-component

Let T0 > 0. Let u(t, x) be a function in C2([0, T0],H∞(Rn)). We set

uν(t, x) = ϕν(D)u(t, x). We obtain

∂2
t uν = ∂x(a(t, x)∂xuν) + ∂x([ϕν , a]∂xu) + (Lu)ν .(3.10)
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We introduce the approximate energy of uν (see [12]), setting

eν,ε(t) :=

∫
R

1√
aε

|∂tuν +
∂t
√
aε

2
√
aε

uν |2 +
√
aε|∂xuν |2 + |uν |2 dx.

We have

d

dt
eν,ε(t) =

∫
2√
aε

Re
(
∂2
t uν · (∂tuν +

∂t
√
aε

2
√
aε

uν)
)
dx

+

∫
2√
aε

(
∂t(

∂t
√
aε

2
√
aε

) − (
∂t
√
aε

2
√
aε

)2
)

× Re
(
uν ·(∂tuν +

∂t
√
aε

2
√
aε

uν)
)
dx

+

∫
∂t
√
aε|∂xuν |2 dx +

∫
2
√
aεRe (∂xuν · ∂x∂tuν) dx

+

∫
2Re (uν · ∂tuν) dx.

We replace ∂2
t uν by the quantity given by (3.10) and we obtain

∫
2√
aε

Re
(
∂2
t uν · (∂tuν +

∂t
√
aε

2
√
aε

uν)
)
dx

=

∫
2√
aε

Re
(
∂x(a(t, x)∂xuν) · (∂tuν +

∂t
√
aε

2
√
aε

uν)
)
dx

+

∫
2√
aε

Re
(
(∂x([ϕν , a]∂xu) + (Lu)ν) · (∂tuν +

∂t
√
aε

2
√
aε

uν)
)
dx.

Moreover,

∫
2√
aε

Re
(
∂x(a(t, x)∂xuν) · (∂tuν +

∂t
√
aε

2
√
aε

uν)
)
dx

=

∫
2
∂x

√
aε

aε
aRe

(
∂xuν · (∂tuν +

∂t
√
aε

2
√
aε

uν)
)
dx

−
∫

∂t
√
aε

aε
a |∂xuν |2 dx−

∫
2

a√
aε

Re (∂xuν · ∂x∂tuν) dx

−
∫

a√
aε

∂x(
∂t
√
aε√
aε

) Re (∂xuν · uν) dx.
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Consequently, we obtain

d

dt
eν,ε(t) =

∫
2√
aε

Re
(
(∂x([ϕν , a]∂xu) + (Lu)ν) · (∂tuν +

∂t
√
aε

2
√
aε

uν)
)
dx

+

∫
2√
aε

(
∂t(

∂t
√
aε

2
√
aε

) − (
∂t
√
aε

2
√
aε

)2
)

× Re
(
uν · (∂tuν +

∂t
√
aε

2
√
aε

uν)
)
dx

+

∫
∂t
√
aε(1 − a

aε
)|∂xuν |2 dx

+

∫
2(
√
aε −

a√
aε

) Re (∂xuν · ∂x∂tuν) dx

+

∫
2
∂x

√
aε

aε
aRe

(
∂xuν · (∂tuν +

∂t
√
aε

2
√
aε

uν)
)
dx

−
∫

a√
aε

∂x(
∂t
√
aε√
aε

) Re (∂xuν · uν) dx

+

∫
2Re (uν · ∂tuν) dx.

From (2.1), (3.2) with e. g. σ = 1/2, (3.4) we deduce that there exists

C1 > 0 depending only on λ0, Λ0 and C0 such that, for all ν ∈ N,

∣∣∣
∫

2√
aε

(
∂t(

∂t
√
aε

2
√
aε

) − (
∂t
√
aε

2
√
aε

)2
)
Re

(
uν · (∂tuν +

∂t
√
aε

2
√
aε

uν)
)
dx

∣∣∣
≤ C1

1

ε
log(

1

ε
+ 1) 2−ν eν,ε(t),

where, for ν ≥ 1, we have used the left-hand side part of (3.8). Similarly

from (2.1), (3.1) and (3.2) we deduce that

∣∣∣
∫

∂t
√
aε
(
1 − a

aε

)
|∂xuν |2 dx

∣∣∣ ≤ C2 log
(1

ε
+ 1

)
eν,ε(t),

where again C2 depends only on λ0, Λ0 and C0. From (2.1) and (3.1) we
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have that∫
2(
√
aε −

a√
aε

) Re (∂xuν · ∂x∂tuν) dx

≤ C3ε log
(1

ε
+ 1

)
‖∂xuν‖L2‖∂x∂tuν‖L2

≤ C3ε log
(1

ε
+ 1

)
2ν+1‖∂xuν‖L2‖∂tuν‖L2 ,

where we have used the right-hand side part of (3.8). Remarking that

‖∂tuν‖L2 ≤
∥∥∥∂tuν +

∂t
√
aε

2
√
aε

uν

∥∥∥
L2

+
∥∥∥∂t

√
aε

2
√
aε

uν

∥∥∥
L2
,

and ∥∥∥∂t
√
aε

2
√
aε

u0

∥∥∥
L2

≤ C ′
3ε

−1/2‖u0‖L2 ,

while, for all ν ≥ 1,

∥∥∥∂t
√
aε

2
√
aε

uν

∥∥∥
L2

≤ C ′
3ε

−1/22−ν‖∂xuν‖L2 ,

we deduce that

∣∣∣
∫

2(
√
aε−

a√
aε

) Re (∂xuν ·∂x∂tuν) dx
∣∣∣ ≤ C ′′

3

(
(ε2ν +1) log

(1

ε
+1

)
eν,ε(t)

)
.

Similarly, from (3.3),

∣∣∣
∫

2
∂x

√
aε

aε
aRe

(
∂xuν · (∂tuν +

∂t
√
aε

2
√
aε

uν)
)
dx

∣∣∣ ≤ C4 log
(1

ε
+ 1

)
eν,ε(t),

and, from (3.2), from (3.3) and from (3.5),

∣∣∣
∫

a√
aε

∂x(
∂t
√
aε√
aε

) Re (∂xuν · uν) dx
∣∣∣ ≤ C5

1

ε
log

(1

ε
+ 1

)
2−νeν,ε(t).
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Finally ∣∣∣
∫

2Re (uν · ∂tuν) dx
∣∣∣ ≤ C6ε

−1/22−νeν,ε(t).

We remark that the constants C3, C
′
3, C

′′
3 , C4, C5, C6 depend only on λ0,

Λ0 and C0. We choose now ε = 2−ν . We obtain that there exists C̃ > 0

such that, for all ν ∈ N,

d

dt
eν,2−ν (t) ≤ C̃(ν + 1)eν,2−ν (t)

+

∫
2

√
a2−ν

Re
(
(∂x([ϕν , a]∂xu) + (Lu)ν

)

·
(
∂tuν +

∂t
√
a2−ν

2
√
a2−ν

uν)
)
dx,

(3.11)

where C̃ depends only on λ0, Λ0 and C0.

3.4. Total energy

Let θ ∈ (0, 1/2). We define the total energy for the function u setting

E(t) :=
∞∑
ν=0

e−2β(ν+1)t2−2νθeν,2−ν (t),(3.12)

where β > 0 will be fixed later on. Using (3.7), (3.8) and the fact that there

exists a constant c > 0 not depending on ν such that

c eν,2−ν (t) ≤
∫
R

|∂tuν |2 + |∂xuν |2 + |uν |2 dx ≤ 1

c
eν,2−ν (t),

it is possible to prove that there exist cθ, c
′
θ > 0 such that

E(0) ≤ cθ(‖∂tu(0, ·)‖2
H−θ + ‖u(0, ·)‖2

H−θ+1)(3.13)

and

E(t) ≥ c′θ(‖∂tu(t, ·)‖2
H−θ−β∗t + ‖u(t, ·)‖2

H−θ+1−β∗t),(3.14)
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where β∗ = β(log 2)−1. From (3.11) we deduce

d

dt
E(t) ≤ (C̃ − 2β)

∞∑
ν=0

(ν + 1)e−2β(ν+1)t2−2νθeν,2−ν (t)

+
∞∑
ν=0

e−2β(ν+1)t2−2νθ

×
∫

2
√
a2−ν

Re
(
∂x([ϕν , a]∂xu)·

(
∂tuν +

∂t
√
a2−ν

2
√
a2−ν

uν

))
dx

+
∞∑
ν=0

e−2β(ν+1)t2−2νθ

×
∫

2
√
a2−ν

Re
(
(Lu)ν ·

(
∂tuν +

∂t
√
a2−ν

2
√
a2−ν

uν

))
dx.

(3.15)

It is not difficult to show that there exists C̃θ > 0 such that

∞∑
ν=0

e−2β(ν+1)t2−2νθ

∫
2

√
a2−ν

Re
(
(Lu)ν ·

(
∂tuν +

∂t
√
a2−ν

2
√
a2−ν

uν

))
dx

≤ C̃θE(t)1/2‖Lu(t, ·)‖H−θ−β∗t .

(3.16)

3.5. Estimate of the commutator term

The estimate of the second term in the right–hand side part of (3.15)

is essentially the same as that one in [6, Lemma 4.4.]. For the reader’s

convenience we give here most part of the details. First of all we remark

that

∥∥∥∂x
( 1
√
a2−ν

(
∂tuν +

∂t
√
a2−ν

2
√
a2−ν

uν

))∥∥∥
L2

≤ C ′2ν(eν,2−ν (t))1/2,

where C ′ depends only on λ0, Λ0 and C0. We set ϕ−1 := 0 and we define,

for µ ≥ 0, ψµ := ϕµ−1 + ϕµ + ϕµ+1. Then

ψµ(Dx)(ϕµ(Dx)∂xu) = ϕµ(Dx)∂xu = ∂xuµ,

and, consequently,

[ϕν , a]∂xu = [ϕν , a]
(∑

µ

∂xuµ

)
=

∑
µ

([ϕν , a]ψµ)∂xuµ.
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Hence

∣∣∣
∫

2
√
a2−ν

Re
(
∂x([ϕν , a]∂xu)·

(
∂tuν +

∂t
√
a2−ν

2
√
a2−ν

uν

))
dx

∣∣∣

=
∣∣∣
∫ ∑

µ

2Re
(
([ϕν , a]ψµ)∂xuµ ·∂x

( 1
√
a2−ν

(
∂tuν +

∂t
√
a2−ν

2
√
a2−ν

uν

)))
dx

∣∣∣
≤ C ′∑

µ

‖([ϕν , a]ψµ)∂xuµ‖L22ν(eν,2−ν (t))1/2

≤ C ′′∑
µ

‖([ϕν , a]ψµ)‖L(L2)(eµ,2−µ(t))1/22ν(eν,2−ν (t))1/2,

where C ′′ depends only on λ0, Λ0 and C0. This implies that

∣∣∣
∞∑
ν=0

e−2β(ν+1)t2−2νθ

∫
2

√
a2−ν

Re
(
∂x([ϕν , a]∂xu)·

(
∂tuν +

∂t
√
a2−ν

2
√
a2−ν

uν

))
dx

∣∣∣
≤ C ′′∑

ν,µ

kν,µ(ν + 1)1/2e−β(ν+1)t2−νθ(eν,2−ν (t))1/2

· (µ + 1)1/2e−β(µ+1)t2−µθ(eµ,2−µ(t))1/2,

where

kν,µ = e−(ν−µ)βt 2−(ν−µ)θ 2ν(ν + 1)−1/2(µ + 1)−1/2‖([ϕν , a]ψµ)‖L(L2).

We remark that if |ν−µ| ≥ 3, then ϕνψµ ≡ 0 and, consequently, [ϕν , a]ψµ =

ϕν([a, ψµ]), so that from (3.9) we deduce that

‖([ϕν , a]ψµ)‖L(L2) ≤




C ′′′2−ν(ν + 1) if |ν − µ| ≤ 2,

C ′′′2−max{ν,µ} max{ν + 1, µ + 1} if |ν − µ| ≥ 3,

where C ′′′ depends only on Λ0 and C0.

We need the following elementary lemma.

Lemma 1. There exist two continuous decreasing functions θ1, θ2 :

(0, 1] → (0,+∞), with limc→0+ θj(c) = +∞ for j = 1, 2, such that, for all

c ∈ (0, 1] and for all m ≥ 1,

m∑
j=1

ecjj−1/2 ≤ θ1(c)e
cmm−1/2,

+∞∑
j=m

e−cjj1/2 ≤ θ2(c)e
−cmm1/2.(3.17)
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Our aim is to use Schur’s Lemma, so we have to estimate

sup
µ

∑
ν

|kν,µ| + sup
ν

∑
µ

|kν,µ|.

We choose now β > 0 and T ∈ (0, T0] in such a way that βT = θ
2 log 2

(remark that for the moment only the product βT is fixed). Then for

t ∈ (0, T ] we have that

βt + θ log 2 ≥ θ log 2 > 0,(3.18)

and

(−θ + 1) log 2 − βt ≥ (1 − 3

2
θ) log 2 > 0.(3.19)

Let µ ≤ 2. Then, using the second estimate in (3.17) and (3.18), we have

+∞∑
ν=0

|kν,µ| ≤ C ′′′e(µ+1)βt2(µ+1)θ(µ + 1)−1/2
+∞∑
ν=0

e−(ν+1)βt2−(ν+1)θ(ν + 1)1/2

≤ C ′′′e(µ+1)βt2(µ+1)θ(µ + 1)−1/2
+∞∑
ν=0

e−(βt+θ log 2)(ν+1)(ν + 1)1/2

≤ C ′′′e2βt22θθ2(βt + θ log 2)

≤ C ′′′23θθ2(θ log 2).

Let µ ≥ 3. We have
∑+∞

ν=0 |kν,µ| =
∑µ−3

ν=0 |kν,µ|+
∑+∞

ν=µ−2 |kν,µ|. Then, from

the first one in (3.17) and (3.19), we deduce

µ−3∑
ν=0

|kν,µ|

≤ C ′′′e(µ+1)βt2(µ+1)(θ−1)(µ + 1)1/2
µ−3∑
ν=0

e−(ν+1)βt2(ν+1)(−θ+1)(ν + 1)−1/2

≤ C ′′′e(µ+1)βt2(µ+1)(θ−1)(µ + 1)1/2
µ−3∑
ν=0

e(−βt+(−θ+1) log 2)(ν+1)(ν + 1)−1/2

≤ C ′′′e(µ+1)βt2(µ+1)(θ−1)(µ + 1)1/2θ1(−βt + (−θ + 1) log 2)

· e(−βt+(−θ+1) log 2)(µ−2)(µ− 2)−1/2

≤ C ′′′21+ 9
2
θθ1

((
1 − 3

2
θ
)
log 2

)
,
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and, from the second one in (3.17) and (3.18),

+∞∑
ν=µ−2

|kν,µ| ≤ C ′′′e(µ+1)βt2(µ+1)θ(µ + 1)−1/2

×
∞∑

ν=µ−2

e−(ν+1)βt2−(ν+1)θ(ν + 1)1/2

≤ C ′′′e(µ+1)βt2(µ+1)θ(µ + 1)−1/2θ2(βt + θ log 2)

· e−(βt+θ log 2)(µ−1)(µ− 1)1/2

≤ C ′′′23θθ2(θ log 2).

Considering now
∑

µ |kν,µ| we have

ν+2∑
µ=0

|kν,µ| ≤ C ′′′e−(ν+1)βt2−(ν+1)θ(ν + 1)1/2
ν+2∑
µ=0

e(µ+1)βt2(µ+1)θ(µ + 1)−1/2

≤ C ′′′e−(ν+1)βt2−(ν+1)θ(ν + 1)1/2θ1(βt + θ log 2)

· e(βt+θ log 2)(ν+3)(ν + 3)−1/2

≤ C ′′′2
7
2
θθ1(θ log 2),

and
+∞∑

µ=ν+3

|kν,µ|

≤ C ′′′e−(ν+1)βt2(ν+1)(−θ+1)(ν + 1)−1/2

×
∞∑

µ=ν+3

e(µ+1)βt2−(µ+1)(−θ+1)(µ + 1)1/2

≤ C ′′′e−(ν+1)βt2(ν+1)(−θ+1)(ν + 1)−1/2θ2(−βt + (−θ + 1) log 2)

· e(−βt+(−θ+1) log 2)(ν+4)(ν + 4)1/2

≤ C ′′′2
9
2
θθ2

((
1 − 3

2
θ
)
log 2

)
.

Hence there exists a positive function Θ, with limθ→0+ Θ(θ) = +∞, such

that

sup
µ

+∞∑
ν=0

|kν,µ| + sup
ν

+∞∑
µ=0

|kν,µ| ≤ C ′′′Θ(θ).
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We finally obtain

∣∣∣
∞∑
ν=0

e−2β(ν+1)t2−2νθ

×
∫

2
√
a2−ν

Re
(
∂x([ϕν , a]∂xu)·

(
∂tuν +

∂t
√
a2−ν

2
√
a2−ν

uν

))
dx

∣∣∣

≤ C ′′C ′′′Θ(θ)

∞∑
ν=0

(ν + 1)e−2β(ν+1)t2−2νθeν,2−ν (t).

(3.20)

3.6. End of the proof

From (3.15), (3.16) and (3.20) we have that

d

dt
E(t) ≤ (C̃ + C ′′C ′′′Θ(θ) − 2β)

∞∑
ν=0

(ν + 1)e−2β(ν+1)t2−2νθeν,2−ν (t)

+ C̃θE(t)1/2‖Lu(t, ·)‖H−θ−β∗t .

We fix now β in such a way that C̃ + C ′′C ′′′Θ(θ) − 2β ≤ 0. Remark that

since the product βT was already fixed, this force us to choose T sufficiently

small. We obtain

d

dt
E(t) ≤ C̃θE(t)1/2‖Lu(t, ·)‖H−θ−β∗t ,

and the conclusion of the theorem easily follows from (3.13) and (3.14).

Appendix

We give here in some details an example due to S. Tarama concerning a

bounded function which is log–Zygmund–continuous but not log–Lipschitz–

continuous. The function is the following

ω(t) =

∞∑
n=1

2−nn sin(2nt).

Considering the sequence tk = 2−k−1π, k ≥ 1, it is easy to see that

ω(tk) =

k∑
n=1

2−nn sin(2n−k−1π) ≥ 2−k−1k(k − 1),
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so that
|ω(tk) − ω(0)|

|tk log tk|
≥ C0k

and, consequently, ω is not log–Lipschitz–continuous. To prove that ω is log-

Zygmund–continuous we argue as in [12]. Setting ε ∈ (0, 1/2) and ω(t) =

ω1,ε(t) + ω2,ε(t), where

ω1,ε(t) =
∑

1≤n≤ | log ε|
log 2

2−nn sin(2nt) and ω2,ε(t) =
∑

n>
| log ε|
log 2

2−nn sin(2nt),

we easily deduce that |ω′′
1,ε(t)| ≤ Cε−1| log ε| while ω2,ε(t)| ≤ Cε| log ε|.

Then |ω(t + ε) + ω(t − ε) − 2ω(t)| ≤ C ′ε| log ε| and the conclusion follows.

To end let us remark that the function ω is nowhere differentiable (see [10]).
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