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Exact Power Series in the Asymptotic Expansion of

the Matrix Coefficients with the Corner K-type of

PJ-Principal Series Representations of Sp(2,R)

By Masatoshi Iida and Takayuki Oda

Abstract. Let G be a symplectic Lie group of rank 2, Sp(2,R)
and PJ be its maximal parabolic subgroup called the Jacobi parabolic
subgroup with non-abelian unipotent radical. The radial parts of ma-
trix coefficients of the PJ -principal series representations of G were
studied in relation to the Appell’s hypergeometric function. The lead-
ing terms of the expansion of the functions around the infinity were
well investigated in general cases (semisimple Lie groups and repre-
sentations). In this paper, we determine the power series expansion
other than leading terms for the above special case.

1. Introduction

In a previous paper [5], one of the authors gave a new explicit integral

formula for the radial part of the spherical function with the corner K type

of a PJ -principal series, in terms of the Appell’s hypergeometric function

F2. This integral expression seems to be much easier to handle than the

Eisenstein integral of matrix coefficients, because we can utilize the classical

library of special functions for further analysis.

In this paper, we consider the power series expression of this integral

at the infinity in the double coset decomposition G = KAK. For the

matrix element with the trivial K-type of the class one principal series rep-

resentations of a general semisimple group G, Harish-Chandra obtained an

expression as the sum over the Weyl group of certain hypergeometric se-

ries (Harish-Chandra’s hypergeometric series)([2]). This kind of result of

Harish-Chandra was generalized for more general representations, say, by

Casselman-Miličić ([1]), as the theory of ‘asymptotic expansion’. From the

viewpoint of algebraic analysis, Oshima investigated asymptotic behavior

of spherical functions and their boundary values ([9]). Among others the
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leading terms of ‘functions’ appearing in the ‘expansion’ were precisely in-

vestigated.

However the whole functions with these leading terms seem to be very

difficult to grasp in general. For example the higher degree terms of the

power series expansions of these ‘functions’ depend on the choice of the

local coordinates at the infinity of A, contrary to the fact that the leading

terms are independent of choice of the local coordinates at the infinity.

The main result of this paper is the following.

We consider the matrix coefficient with the corner K-type of the PJ -

principal series representation of G = Sp(2,R).

Since its radial part satisfies the holonomic system of two variables of

rank 4, which is called a modified F2 system in the sense of Takayama [10],

we have the other integral expression different from the Eisenstein integral,

which is valid on a neighborhood of G in GC, the complexification of G.

Then we can apply the monodromy argument of the hypergeometric

function to have a decomposition formula(Theorem 6.1). And this is found

to be the sum of the asymptotic expansions(Theorem 7.1).

Among others we have precise formula for coefficients of the expansion

in terms of Pochhammer symbols, which should be a special case of an

analogous formula of the coefficients in terms of the values at 1 of generalized

hypergeometric series of one variable(see, another example in [4]).

In this paper, we treat the matrix coefficient corresponding to 1-dimen-

sional K-types, which we called “even case” in [5]. The system of differen-

tial operators which annihilate the matrix coefficient is understood in the

framework of Heckman and Opdam. Almost same result will be obtained for

2-dimensional K-types(or “odd case” in [5]) just changing parameters of hy-

pergeometric functions, despite that corresponding (difference-)differential

operators are beyond the framework of Heckman and Opdam.

Our method of the proof is done by a very down-to-earth or ‘elemen-

tary’ manner. We take the advantage to start from an (Eulerian) integral

expression of our matrix coefficient in terms of the Gaussian hypergeometric

function, obtained in a previous paper [5]. What we need is the classical

connection formula of Kummer and some general framework of the asymp-

totic behavior of the ideally analytic solution of holonomic systems in our

setting (§4 and §5). We can find the theory of differential equations with

regular singularities and ideally analytic solutions of them in [9] and its
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references.

2. PJ-Principal Series Representations

In this section, we recall some facts about representations of Sp(2,R)

and their K-type. Notations are same as those of [5].

Let G = Sp(2,R) be a split real semisimple Lie group of real rank 2 with

a maximal compact subgroup K which is isomorphic to the unitary group

U(2). The group G has two standard maximal parabolic subgroups. One is

associated with the short simple root e1 − e2 and called the Siegel parabolic

subgroup. The other is associated with the long simple root 2e2 and called

the Jacobi parabolic subgroup PJ .

We set the Langlands decomposition of PJ as PJ = MJAJNJ , then MJ

is isomorphic to SL(2,R) × {±1}.
Let D+

l is the anti-holomorphic discrete series representation of SL(2,R)

with the Blattner parameter l (l ∈ N, l ≥ 2) and D−
l its contragredient

representation.

We denote the character of {±1} by ε and the complex valued linear form

on aJ = Lie(AJ)⊗C by ν. The generalized principal series representation of

Sp(2,R) which we call the PJ -principal series representation is the induced

representation π(D±
l ,ε),ν = IndG

PJ
((D±

l , ε) � eν+ρJ
1 � idNJ

).

Here, idNJ
is the trivial representation of NJ and ρJ is the half sum of

positive roots corresponding to NJ .

The PJ -principal series representation has a special K-type of multiplic-

ity free. We call the K-type as “the corner K-type”.

If the character ε of {±1} satisfies ε(−1) = (−1)l, then the corner K-

type of π(D±
l ,ε),ν is the one dimensional representation τ(l,l) whose highest

weight is (l, l) and if ε = (−1)l+1 holds, then the corner K-type is the two

dimensional representation τ(l,l−1) whose highest weight is (l, l − 1).

Let (η, Vη), (τ, Vτ ) be in K̂. We denote the contragredient representation

of τ by τ∗. We define the space of spherical functions

C∞
η,τ (K\G/K) = {f : G → Vη ⊗ Vτ∗ | f is a C∞ function,

f(k1gk2) = η(k1) ⊗ τ∗(k2)
−1f(g),

∀g ∈ G,∀k1,∀k2 ∈ K}.
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In this paper, we consider the matrix coefficient φ ∈ C∞
τ(k,k),τ(l,l)

(K\G/K) of

π(D±
l ,ε),ν for k ≥ l, k ≡ l mod 2 and ε(−1) = (−1)l (It goes almost same

way for the case of ε(−1) = (−1)l+1.). If k < l or k �≡ l mod 2 holds, then

φ = 0 (Proposition 3.4 and Lemma 4.2 in [5]). That is why we call τ(l,l) the

corner K-type.

We denote the standard split Cartan subgroup of G by

A = {diag(a1, a2, a
−1
1 , a−1

2 ) | a1, a2 ∈ R>0}.

The system of partial differential equations satisfied by the A-radial part

of φ is the holonomic system. We choose the coordinates of A as (x1, x2)

determined by a1 = expx1, a2 = expx2.

We recall the system of differential equations satisfied by φ (Theorem

7.5 in [5]).

Theorem 2.1. φ satisfies the following system of differential equa-

tions :

2∑
i=1

∂2

∂x2
i

φ+
2∑

i=1

{2 coth 2xi + coth(x1 + x2)}
∂

∂xi
φ(2.1)

+ coth(x1 − x2)
∂

∂x1
φ− coth(x1 − x2)

∂

∂x2
φ

− (k2 + l2)(sh−2 x1 + sh−2 x2)φ

+ 2kl(ch 2x1 · sh−2 2x1 + ch 2x2 · sh−2 2x2)φ

= {ν2 + (l − 1)2 − 5}φ,

2
∂

∂x1

∂

∂x2
φ+ {2l coth 2x2 − 2k sh−1 2x2(2.2)

+ coth(x1 + x2) − coth(x1 − x2)}
∂

∂x1
φ

+ {2l coth 2x1 − 2k sh−1 2x1

+ coth(x1 + x2) + coth(x1 − x2)}
∂

∂x2
φ

+ 2(l coth 2x1 − k sh−1 2x1)(l coth 2x2 − k sh−1 2x2)φ

+ (l coth 2x2 − k sh−1 2x2)

× (coth(x1 + x2) + coth(x1 + x2))φ
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+ (l coth 2x1 − k sh−1 2x1)

× (coth(x1 + x2) − coth(x1 + x2))φ = 0.

In the following section, we will determine characteristic roots of the

system around the infinity, a1/a2 = 0, a2 = 0 (Note that a1/a2 and a2
2

correspond simple roots e1 − e2 and 2e2 respectively). There are 4 charac-

teristic roots, so the system has 4 independent solutions. A solution φ is

a linear combination of these solutions and its coefficients are analogues of

c-functions.

3. The Holonomic System

We put δ(x1, x2) = (chx1 chx2)
(l+k)/2(shx1 shx2)

(l−k)/2 and

ψ(x1, x2) = δ(x1, x2)φ(x1, x2).

Proposition 3.1. ψ satisfies the following system of partial differen-

tial equations:

2∑
i=1

∂

∂x2
i

ψ +
2∑

i=1

{2k sh−1 2xi − 2(l − 1) coth 2xi}
∂

∂xi
ψ(3.1)

+
sh 2x1

sh2 x1 − sh2 x2

∂

∂x1
ψ − sh 2x2

sh2 x1 − sh2 x2

∂

∂x2
ψ

= {ν2 − (l − 2)2}ψ,
∂2

∂x1∂x2
ψ − 1

2

sh 2x2

sh2 x1 − sh2 x2

∂

∂x1
ψ +

1

2

sh 2x1

sh2 x1 − sh2 x2

∂

∂x2
ψ = 0.(3.2)

Proof. This system is easily obtained from Theorem 2.1. �

We will transform this system into the system with variables

y1 = (a1/a2)
2 = exp 2(x1 − x2), y2 = a2

2 = exp 2x2.

Since y1y2 = exp 2x1, we have

sh 2x1 =
y1y2 − y−1

1 y−1
2

2
=

y2
1y

2
2 − 1

2y1y2
, sh 2x2 =

y2 − y−1
2

2
=

y2
2 − 1

2y2
,
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sh2 x1 − sh2 x2 =
1

2
(ch 2x1 − ch 2x2) =

y1y2 + y−1
1 y−1

2

4
− y2 + y−1

2

4

=
(y1 − 1)(y1y

2
2 − 1)

4y1y2
,

coth 2x1 =
y1y2 + y−1

1 y−1
2

y1y2 − y−1
1 y−1

2

=
y2
1y

2
2 + 1

y2
1y

2
2 − 1

, coth 2x2 =
y2 + y−1

2

y2 − y−1
2

=
y2
2 + 1

y2
2 − 1

,

and

∂

∂x1
= 2y1

∂

∂y1
,

∂

∂x2
= −2y1

∂

∂y1
+ 2y2

∂

∂y2
.

We regard φ and ψ as functions in variables y1, y2. Then, we have the

system of differential equations in y1, y2 as follows.

Proposition 3.2. ψ satisfies the system differential equations:

4

{
2

(
y1

∂

∂y1

)2

− 2

(
y1

∂

∂y1

)(
y2

∂

∂y2

)
+

(
y2

∂

∂y2

)2
}
ψ(3.3)

+

{
4ky1y2

y2
1y

2
2 − 1

− 4ky2

y2
2 − 1

− 2(l − 1)
y2
1y

2
2 + 1

y2
1y

2
2 − 1

+2(l − 1)
y2
2 + 1

y2
2 − 1

}(
2y1

∂

∂y1

)
ψ

+

{
4ky2

y2
2 − 1

− 2(l − 1)
y2
2 + 1

y2
2 − 1

}(
2y2

∂

∂y2

)
ψ

+4
y2
1y

2
2 − 1 + y1(y

2
2 − 1)

(y1 − 1)(y1y2
2 − 1)

(
y1

∂

∂y1

)
ψ

−4
y1(y

2
2 − 1)

(y1 − 1)(y1y2
2 − 1)

(
y2

∂

∂y2

)
ψ

= {ν2 − (l − 2)2}ψ,(
y1

∂

∂y1

)(
−y1

∂

∂y1
+ y2

∂

∂y2

)
ψ(3.4)

−1

2

y1(y
2
2 − 1) + (y2

1y
2
2 − 1)

(y1 − 1)(y1y2
2 − 1)

(
y1

∂

∂y1

)
ψ

+
1

2

y2
1y

2
2 − 1

(y1 − 1)(y1y2
2 − 1)

(
y2

∂

∂y2

)
ψ = 0.
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4. Characteristic Indices

Let ξ(y1, y2) be a solution of the system of differential equations (3.3)

and (3.4) which has the expansion around (y1, y2) = (0, 0) as

ξ(y1, y2) = yα1 y
β
2

∑
p,q≥0

cp,qy
p
1y

q
2, c0,0 = 1,

that is, (α, β) is the leading exponent of ξ at (y1, y2) = (0, 0).

Proposition 4.1. The leading exponent (α, β) of ξ is one of the fol-

lowings :

(
1

2
, µ±), (µ±, µ±).

Here, µ± = ±ν

2
− l − 2

2
.

Proof. If we substitute above ξ(y1, y2) for ψ(y1, y2) in the equation

(3.4), then we obtain the indicial equation

α(−α+ β) − 1

2

(−1)

(−1)2
α+

1

2

(−1)

(−1)2
β = 0.

The solutions of this equation is

α =
1

2
or α = β.

We obtain the other indicial equation from the equation (3.3) :

4(2α2 − 2αβ + β2) +

{
−2(l − 1)

1

(−1)
+ 2(l − 1)

1

(−1)

}
(2α)(4.1)

+

{
−2(l − 1)

1

(−1)

}
(2β) + 4

(−1)

(−1)2
α = ν2 − (l − 2)2.

In both cases α = 1/2 and α = β, the equation (4.1) is equivalent to

4β2 + 4(l − 2)β = ν2 − (l − 2)2.

Hence β = ±ν/2 − (l − 2)/2. �
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We denote ξ with the leading term yα1 y
β
2 by ψα,β .

Since the multiplier δ(x1, x2)
−1 is expanded as

δ(x1, x2)
−1 = (chx1 chx2)

− l+k
2 (shx1 shx2)

− l−k
2

=

(
a1 + a−1

1

2
· a2 + a−1

2

2

)− l+k
2
(
a1 − a−1

1

2
· a2 − a−1

2

2

)− l−k
2

= 22lal1a
l
2(1 + higher order)

= 22l(y1y2)
l
2 y

l
2
2 (1 + higher order)

= 22ly
l
2
1 y

l
2(1 + higher order),

we have

δ(x1, x2)
−1ψα,β(y1, y2) = 22ly

l
2
1 y

l
2(1 + higher order) · (yα1 yβ2 + higher order).

So we set

φα+l/2,β+l(y1, y2) = 2−2lδ(x1, x2)
−1ψα,β(y1, y2).(4.2)

The leading term of this function φα+l/2,β+l is

y
l
2
1 y

l
2 · yα1 yβ2 =


 y

l+1
2

1 y
µ±+l
2 if α = 1

2 , β = µ±

y
µ±+ l

2
1 y

µ±+l
2 if α = β = µ±.

These exponents are same as the Siegel-Whittaker function and the Whit-

taker function([3]).

5. The Singular Boundary Value Problem

We would like to represent ψ as the linear combination of ψα,β .

To do that, we will obtain analytic continuation of ψ from (y1, y2) =

(1, 1) , which corresponds to the identity of G, to (y1, y2) = (1, 0) at first,

then (y1, y2) = (1, 0) to (y1, y2) = (0, 0). The first part was almost done in

§9 of [5]. So we discuss the latter part in this section. A general reference

for the singular boundary value problem is [10].
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5.1. Justification of the singular boundary problem

We obtain the following equation by 1/4 × the equation (3.3) + 2 ×
the equation (3.4).(
y2

∂

∂y2

)2

ψ +

{
2k(1 − y1)y2(1 + y1y

2
2) − 2(l − 1)(1 − y2

1)y
2
2

(y2
2 − 1)(y2

1y
2
2 − 1)

}(
y1

∂

∂y1

)
ψ

+

{
2ky2 − (l − 1)(y2

2 + 1)

y2
2 − 1

+
y1y

2
2 + 1

y1y2
2 − 1

}(
y2

∂

∂y2

)
ψ =

1

4
{ν2 − (l − 2)2}ψ.

This differential equation has regular singularities along y2 = 0 and its

indicial equation is

β2 +

{−(l − 1)

(−1)
+

1

(−1)

}
β =

1

4
{ν2 − (l − 2)2}.

Hence, we have β = ±ν/2 − (l − 2)/2 = µ±, which is independent from y1.

Therefore, when the difference µ+ − µ− = ν is not an integer, the above

differential equation has a solution

ψ(y1, y2) = a+(y1, y2)y
µ+

2 + a−(y1, y2)y
µ−
2 .

Functions a±(y1, y2) are real analytic function around 0 < y1 ≤ 1, y2 = 0.

This solution is called the ideally analytic solution.

So we assume that ν is not an integer hereafter.

5.2. The equation of the singular boundary value

In the beginning, we will find the equation which is satisfied by f±(y1) =

a±(y1, 0).

Lemma 5.1. The function f±(y1) satisfies the following ordinary dif-

ferential equation.{(
y1

d

dy1

)2

− µ±

(
y1

d

dy1

)
+

1

2

y1 + 1

y1 − 1

(
y1

d

dy1

)
− 1

2

µ±
y1 − 1

}
f±(y1) = 0.

Proof. Inserting ψ(y1, y2) = a±(y1, y2)y
µ±
2 into the equation (3.4), we

have

y
µ±
2

(
−
(
y1

∂

∂y1

)2

a±(y1, y2) + µ±

(
y1

∂

∂y1

)
a±(y1, y2)
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+ y2

(
y1

∂

∂y1

)
∂a±(y1, y2)

∂y2

− 1

2

y1(y
2
2 − 1) + (y2

1y
2
2 − 1)

(y1 − 1)(y1y2
2 − 1)

(
y1

∂

∂y1

)
a±(y1, y2)

+
1

2

y2
1y

2
2 − 1

(y1 − 1)(y1y2
2 − 1)

(
µ±a±(y1, y2) + y2

∂a±(y1, y2)

∂y2

))
= 0.

Dividing both sides of this equation by y
µ±
2 and taking limit y2 → 0, then

we obtain

−
(
y1

d

dy1

)2

f±(y1) + µ±

(
y1

d

dy1

)
f±(y1)

− 1

2

y1(−1) + (−1)

(y1 − 1)(−1)

(
y1

d

dy1

)
f±(y1)

+
1

2

(−1)µ±
(y1 − 1)(−1)

f±(y1) = 0. �

Now changing variables as y1 = 1/ζ, the equation in the previous lemma

changes into the Gaussian hypergeometric equation of f̃±(ζ) = f±(y1) with

parameters a = 1/2, b = µ±, c = µ± + 1/2 = a+ b :

[
ζ(1 − ζ)

d2

dζ2
+

{
(µ± +

1

2
) − (µ± +

1

2
+ 1)ζ

}
d

dζ
− 1

2
µ±

]
f̃±(ζ) = 0.

The solution of this equation is

f̃±(ζ) = c±P




0 ∞ 1

0 1
2 0

1
2 − µ± µ± 0

: ζ


 = c±P




0 ∞ 1

0 1
2 0

0 µ±
1
2 − µ±

: 1 − ζ


 .

Here, c± are some constants. Therefore, the regular solution around ζ =

1(this means y1 = 1) is

2F1

(
1

2
, µ±; 1; 1 − ζ

)
= 2F1

(
1

2
, µ±; 1; 1 − 1

y1

)

up to a constant multiple.
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Using the connection formula of 2F1 ([8] equation (9.5.8)):

2F1(a, b; c; z) = (1 − z)−aΓ(c)Γ(b− a)

Γ(c− a)Γ(b)
2F1

(
a, c− b; 1 + a− b;

1

1 − z

)

+ (1 − z)−bΓ(c)Γ(a− b)

Γ(c− b)Γ(a)
2F1

(
c− a, b; 1 − a+ b;

1

1 − z

)
,

and 1/{1 − (1 − 1/y1)} = y1, we obtain

f±(y1) = c± 2F1

(
1

2
, µ±; 1; 1 − 1

y1

)

= c±

{(
1

y1

)− 1
2 Γ(1)Γ(µ± − 1

2)

Γ(1 − 1
2)Γ(µ±)

2F1

(
1

2
, 1 − µ±;

3

2
− µ±; y1

)

+

(
1

y1

)−µ± Γ(1)Γ(1
2 − µ±)

Γ(1 − µ±)Γ(1
2)

2F1

(
1

2
, µ±;

1

2
+ µ±; y1

)}

= c±

{
Γ(µ± − 1

2)√
πΓ(µ±)

y
1
2
1 2F1

(
1

2
, 1 − µ±;

3

2
− µ±; y1

)

+
Γ(1

2 − µ±)√
πΓ(1 − µ±)

y
µ±
1 2F1

(
1

2
, µ±;

1

2
+ µ±; y1

)}
.

Note that our hypothesis ν �∈ Z guarantees that the Gamma functions in

numerators have no poles.

The function a±(y1, y2)y
µ±
2 = f±(y1)y

µ±
2 (1+O(y2)) is a linear combina-

tion of ψα,β . Comparing the leading term, we have

ψ 1
2
,µ±(y1, y2) = y

1
2
1 y

µ±
2 2F1

(
1

2
, 1 − µ±;

3

2
− µ±; y1

)
+ (higher order term),

ψµ±,µ±(y1, y2) = y
µ±
1 y

µ±
2 2F1

(
1

2
, µ±;

1

2
+ µ±; y1

)
+ (higher order term)

and

a±(y1, y2)y
µ±
2

= c±

{
Γ(µ± − 1

2)√
πΓ(µ±)

ψ 1
2
,µ±(y1, y2) +

Γ(1
2 − µ±)√

πΓ(1 − µ±)
ψµ±,µ±(y1, y2)

}
.
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6. The Exact Asymptotic Expansion

In this section, we determine the value of constants c±.

The matrix coefficient φ corresponding to the corner K-type of π(D±
l ,ε),ν

was proved to be represented as

φ(x1, x2) = δ(x1, x2)
−1F10

(
µ+ µ−

1
2

1
2

1 C
;− sh2 x1,− sh2 x2

)
,

where F10 is the hypergeometric function

F10

(
a b c1 c2
d e

;x1, x2

)

=
∑
mi≥0

(a)m1+m2(b)m1+m2(c1)m1(c2)m2

m1!m2!(d)m1+m2(e)m1+m2

xm1
1 xm2

2

and (λ)n =
Γ(λ+ n)

Γ(λ)
(Theorem 8.1 in [5]).

Theorem 6.1. Assume ν �∈ Z. We set C =
3 + k − l

2
∈ 1

2
Z − Z and

µ± as above. The A-radial part of the matrix coefficient of the PJ -principal

series representation with respect to the corner K-type τ(l,l)

δ(x1, x2)
−1F10

(
µ+ µ−

1
2

1
2

1 C
;− sh2 x1,− sh2 x2

)

has the following expansion around y1 = y2 = 0 :

4µ++lΓ(−ν)Γ(C)√
πΓ(µ−)Γ(C − µ+)

{
Γ(µ+ − 1

2)

Γ(µ+)
φ(l+1)/2,µ++l

+
Γ(1

2 − µ+)

Γ(1 − µ+)
φµ++l/2,µ++l

}

+
4µ−+lΓ(ν)Γ(C)√
πΓ(µ+)Γ(C − µ−)

{
Γ(µ− − 1

2)

Γ(µ−)
φ(l+1)/2,µ−+l

+
Γ(1

2 − µ−)

Γ(1 − µ−)
φµ−+l/2,µ−+l

}
.
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Proof. By setting B1 = B2 =
1

2
, B = B1+B2 = 1 and µ± = ±ν

2− l−2
2 ,

we have

F10

(
µ+ µ−

1
2

1
2

1 C
; η1, η2

)
(6.1)

=
Γ(−ν)Γ(C)

Γ(µ−)Γ(C − µ+)
(−η2)

−µ+

× F2(µ+;
1

2
, µ+ − C + 1; 1, ν + 1; 1 − η1/η2, 1/η2)

+
Γ(ν)Γ(C)

Γ(µ+)Γ(C − µ−)
(−η2)

−µ−

× F2(µ−;
1

2
, µ− − C + 1; 1,−ν + 1; 1 − η1/η2, 1/η2)

from the equation (9.8) in [5]. Though we required the condition B �∈ Z in

Theorem 9.2 in [5], that condition should be corrected as B �∈ {0,−1,−2, ...}
(see [6]). So we can apply the theorem in the current problem.

We would like to know the asymptotic behavior of the matrix coefficient

as y1, y2 → 0. Since we put y1 = (a1/a2)
2, y2 = (a2)

2 and ai = expxi
(i = 1, 2) in §3, the limit y1, y2 → 0 corresponds to x1, x2 → −∞.

As xi → −∞ (that is, ai → 0),

ηi = − sh2 xi = −exp(−2xi)

4
(1 +O(exp(2xi)))

= − 1

4a2
i

(1 +O(a2
i )) (i = 1, 2).

Then we have

1 − η1

η2
= 1 − a2

2

a2
1

(1 +O(a2
1))(1 +O(a2

2)) = 1 − 1

y1
(1 +O(y1y2))(1 +O(y2)),

1

η2
= −4a2

2(1 +O(a2
2)) = −4y2(1 +O(y2)).

Using results of §5, the equation (6.1) is asymptotically written as

F10

(
µ+ µ−

1
2

1
2

1 C
;− sh2 x1,− sh2 x2

)

∼ Γ(−ν)Γ(C)

Γ(µ−)Γ(C − µ+)
(4y2)

µ+F2(µ+;
1

2
, µ+ − C + 1; 1, ν + 1; 1 − y−1

1 ,−4y2)



534 Masatoshi Iida and Takayuki Oda

+
Γ(ν)Γ(C)

Γ(µ+)Γ(C − µ−)
(4y2)

µ−

× F2(µ−;
1

2
, µ− − C + 1; 1,−ν + 1; 1 − y−1

1 ,−4y2)

∼ 4µ+Γ(−ν)Γ(C)

Γ(µ−)Γ(C − µ+)
y
µ+

2 2F1(µ+,
1

2
; 1; 1 − y−1

1 )

+
4µ−Γ(ν)Γ(C)

Γ(µ+)Γ(C − µ−)
y
µ−
2 2F1(µ−,

1

2
; 1; 1 − y−1

1 )

=
4µ+Γ(−ν)Γ(C)

Γ(µ−)Γ(C − µ+)
y
µ+

2 · 1

c+
f+(y1)

+
4µ−Γ(ν)Γ(C)

Γ(µ+)Γ(C − µ−)
y
µ−
2 · 1

c−
f−(y1)

∼ 4µ+Γ(−ν)Γ(C)

Γ(µ−)Γ(C − µ+)
· 1

c+
a+(y1, y2)y

µ+

2

+
4µ−Γ(ν)Γ(C)

Γ(µ+)Γ(C − µ−)
· 1

c−
a−(y1, y2)y

µ−
2

=
4µ+Γ(−ν)Γ(C)

Γ(µ−)Γ(C − µ+)

(
Γ(µ+ − 1

2)√
πΓ(µ+)

ψ 1
2
,µ+

(y1, y2)

+
Γ(1

2 − µ+)√
πΓ(1 − µ+)

ψµ+,µ+(y1, y2)

)

+
4µ−Γ(ν)Γ(C)

Γ(µ+)Γ(C − µ−)

(
Γ(µ− − 1

2)√
πΓ(µ−)

ψ 1
2
,µ−(y1, y2)

+
Γ(1

2 − µ−)√
πΓ(1 − µ−)

ψµ−,µ−(y1, y2)

)
.

Since y2 = a2
2 > 0, the blanch of the complex power y

µ±
2 is determined.

Multiplying δ(x1, x2)
−1 on both sides of the above equation, we have

the result by the equation (4.2). �

From the above theorem, we find that analogues of c-functions are

c1(k, l, ν) =
4µ++lΓ(−ν)Γ(C)Γ(µ+ − 1

2)√
πΓ(µ−)Γ(C − µ+)Γ(µ+)

=
2ν+l+2Γ(−ν)Γ(k−l+3

2 )Γ(ν−l+1
2 )

√
πΓ(−ν−l+2

2 )Γ(−ν+k+1
2 )Γ(ν−l+2

2 )
,
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c2(k, l, ν) =
4µ−+lΓ(ν)Γ(C)Γ(µ− − 1

2)√
πΓ(µ+)Γ(C − µ−)Γ(µ−)

=
2−ν+l+2Γ(ν)Γ(k−l+3

2 )Γ(−ν−l+1
2 )

√
πΓ(ν−l+2

2 )Γ(ν+k+1
2 )Γ(−ν−l+2

2 )
= c1(k, l,−ν),

c3(k, l, ν) =
4µ++lΓ(−ν)Γ(C)Γ(1

2 − µ+)√
πΓ(µ−)Γ(C − µ+)Γ(1 − µ+)

=
2ν+l+2Γ(−ν)Γ(k−l+3

2 )Γ(−ν+l−1
2 )

√
πΓ(−ν−l+2

2 )Γ(−ν+k+1
2 )Γ(−ν+l

2 )
,

c4(k, l, ν) =
4µ−+lΓ(ν)Γ(C)Γ(1

2 − µ−)√
πΓ(µ+)Γ(C − µ−)Γ(1 − µ−)

=
2−ν+l+2Γ(ν)Γ(k−l+3

2 )Γ(ν+l−1
2 )

√
πΓ(ν−l+2

2 )Γ(ν+k+1
2 )Γ(ν+l

2 )
= c3(k, l,−ν).

7. Power Series Expansion of the Fundamental System of Solu-

tions

In this section, we have explicit power series expression of ψα,β .

Theorem 7.1. Let u1, u2 be

u1 =
sh2 x2

sh2 x1

, u2 = − 1

sh2 x2

.(7.1)

Then, ψα,β(y1, y2) = (−4)−βΨα,β(u1, u2), where

Ψ 1
2
,µ±(u1, u2)(7.2)

= u
1
2
1 u

µ±
2

∑
m,n≥0

(−µ± − n+ 1)m
(

1
2

)
m(

−µ± − n+ 3
2

)
m
m!

· (µ± − 1
2)n(µ± − 1

2 + l−k
2 )n

(2µ± + l − 1)nn!
um1 u

n
2

= u
1
2
1 u

µ±
2

∞∑
n=0

(µ± − 1
2)n(µ± − 1

2 + l−k
2 )n

(2µ± + l − 1)nn!
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× 2F1

(
1

2
,−µ± − n+ 1;−µ± − n+

3

2
;u1

)
un2

and

Ψµ±,µ±(u1, u2)(7.3)

= u
µ±
1 u

µ±
2

∑
n,j≥0

(1
2)j(µ± + n)j

j!(µ± + n+ 1
2)j

· (µ±)n(µ± − 1 + l−k
2 )n

(2µ± + l − 1)nn!
un+j

1 un2

= u
µ±
1 u

µ±
2

∞∑
n=0

(µ±)n(µ± − 1 + l−k
2 )n

(2µ± + l − 1)nn!

× 2F1

(
1

2
, µ± + n;µ± + n+

1

2
;u1

)
un1u

n
2 .

Here

(a)n = a(a+ 1) · · · (a+ n− 1) (n �= 0), (a)0 = 1.

As is seen in the proof of Theorem 6.1, we have u1 ∼ y1 and u2 ∼ −4y2

as y1, y2 → 0.

At first, we will express differential operators in Proposition 3.2 with

new variables u1, u2.

Proposition 7.2. Differential operators in equations (3.3) and (3.4)

are written as following operators P and Q(up to function multiple) respec-

tively.

P = 4(2 − u2 − u1u2)ϑ
2
1 + 4(1 − u2)ϑ

2
2 − 8(1 − u2)ϑ1ϑ2(7.4)

+
4

u1 − 1

{
1 + u1 −

l − k

2
u2 + (l − k − 2)u1u2 −

l − k

2
u2

1u2

}
ϑ1

− 4

u1 − 1

{
l − 1 − (l − 2)u1 −

l − k

2
u2 +

l − k − 2

2
u1u2

}
ϑ2

+(l − 2)2 − ν2,

Q = ϑ2
1 − ϑ1ϑ2 +

1

2

u1 + 1

u1 − 1
ϑ1 −

1

2

1

u1 − 1
ϑ2.(7.5)

Here, we set ϑi = ui
∂

∂ui
(i = 1, 2).
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Indicial equations of P and Q are

8α2 + 4β2 − 8αβ − 4α+ 4(l − 1)β + (l − 2)2 − ν2
1 = 0,

α2 − αβ − 1

2
α+

1

2
β = 0

respectively and the solutions of these equations are

(α, β) = (
1

2
, µ±), (µ±, µ±),

where µ± = ±ν/2 − (l − 2)/2.

This is a kind of the modified Appell’s F2 system.

Now we put the analytic kernel of P,Q as

Ψα,β(u1, u2) = uα1u
β
2

∑
m,n≥0

am,nu
m
1 u

n
2 .

We normalize this solution as a0,0 = 1.

Comparing the leading term of Ψα,β with that of ψα,β as y1, y2 → 0, we

can see that

Ψα,β(u1, u2) = (−4)βψα,β(y1, y2).

Note that µ± �∈ 1

2
Z, since we assume that ν �∈ Z in §5.

It is easy to prove the following lemma.

Lemma 7.3. If QΨα,β(u1, u2) = 0 holds, then am,n satisfy the following

recurrence equations.

(α+m− 1)(α− β +m− n− 1

2
)am−1,n(7.6)

+ (−α+ β −m+ n)(α+m− 1

2
)am,n = 0 (m �= 0)

(−α+ β + n)(α− 1

2
)a0,n = 0(7.7)
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7.1. Case 1 : α = 1
2

In this subsection we determine am,n for the case (α, β) = (1/2, µ±).

In this case, any a0,n satisfies (7.7). On the other hand, we have

am,n(7.8)

=
(β −m+ n)(β −m+ n+ 1) · · · (β + n− 1) · (m− 1

2)(m− 3
2) · · · 1

2

(β −m+ n− 1
2)(β −m+ n+ 1

2) · · · (β + n− 3
2) ·m(m− 1) · · · 1

a0,n

=
(−β − n+ 1)m

(
1
2

)
m(

−β − n+ 3
2

)
m
m!

a0,n

=
(−µ± − n+ 1)m

(
1
2

)
m(

−µ± − n+ 3
2

)
m
m!

a0,n

from (7.6).

Therefore we have only to determine a0,n (n ≥ 0) from PΨα,β(u1, u2) =

0.

Setting φm(u2) =
∑∞

n=0 am,nu
n
2 , we have

Ψα,β(u1, u2) = uα1u
β
2

∑
m,n≥0

am,nu
m
1 u

n
2 = uα1u

β
2

∞∑
m=0

φm(u2)u
m
1 .

So we have only to determine φ0(u2).

Lemma 7.4. φ0(u2) is a solution of the Gaussian hypergeometric equa-

tion :

u2(1 − u2)φ
′′
0(u2) + {r − (p+ q + 1)u2}φ′0(u2) − pqφ0(u2) = 0.

In particular, we have φ0(u2) = 2F1(p, q; r;u2) and

a0,n =
(p)n(q)n
(r)nn!

,(7.9)

with parameters

p = µ± − 1

2
, q = µ± − 1

2
+
l − k

2
, r = 2µ± + l − 1.
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Proof. We obtain the Gaussian hypergeometric equation from

1

4
u−α

1 u−β−1
2 PΨα,β(u1, u2)|u1=0 = 0

using

ϑ1Ψα,β = uα1u
β
2

∞∑
m=0

(α+m)φm(u2)u
m
1 ,

ϑ2
1Ψα,β = uα1u

β
2

∞∑
m=0

(α+m)2φm(u2)u
m
1 ,

ϑ2Ψα,β = βΨα,β + uα1u
β+1
2

∞∑
m=0

φ′m(u2)u
m
1

= uα1u
β
2

∞∑
m=0

{
βφm(u2) + u2φ

′
m(u2)

}
um1 ,

ϑ2
2Ψα,β = uα1u

β
2

∞∑
m=0

{
β2φm(u2) + (2β + 1)u2φ

′
m(u2) + u2

2φ
′′
m(u2)

}
um1 ,

ϑ1ϑ2Ψα,β = uα1u
β
2

∞∑
m=0

(α+m)
{
βφm(u2) + u2φ

′
m(u2)

}
um1

and indicial equations above.

The latter part is obvious from the assumption that a0,0 = 1. �

Now, we have

am,n =
(−µ± − n+ 1)m

(
1
2

)
m(

−µ± − n+ 3
2

)
m
m!

· (µ± − 1
2)n(µ± − 1

2 + l−k
2 )n

(2µ± + l − 1)nn!

from equations (7.8), (7.9) and we have shown the former half of Theorem

7.1.

7.2. Case 2 : α �= 1
2

In this subsection we assume that α �= 1/2, that is, α = β = µ±. From

this condition and the equation (7.7), we have a0,n = 0 (n ≥ 1). At the

same time we have

(α+m− 1)(m− n− 1

2
)am−1,n + (−m+ n)(α+m− 1

2
)am,n = 0
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from (7.6).

Note that factors except (−m+ n) are not zero by the assumption α =

µ± �∈ 1

2
Z.

If m = n, then we have am−1,m = 0.

If m < n, then we have am,n = Ca0,n = 0 (C is a constant which depends

on m and n).

If m > n, then we have

am,n(7.10)

=
(m− n− 1

2)(m− n− 3
2) · · · 1

2 · (α+m− 1)(α+m− 2) · · · (α+ n)

(m− n)(m− n− 1) · · · 1 · (α+m− 1
2)(α+m− 3

2) · · · (α+ n+ 1
2)
an,n

=
(1
2)m−n(α+ n)m−n

(m− n)!(α+ n+ 1
2)m−n

an,n

=
(1
2)m−n(µ± + n)m−n

(m− n)!(µ± + n+ 1
2)m−n

an,n

from (7.6).

Therefore it remains to determine an,n (n ≥ 0) from PΨα,β(u1, u2) = 0.

Since

Ψµ±,µ±(u1, u2) = u
µ±
1 u

µ±
2

∞∑
n=0

∞∑
j=0

an+j,nu
n+j
1 un2

= (u1u2)
µ±

∞∑
j=0

uj1

∞∑
n=0

an+j,n(u1u2)
n

holds, we have

Ψµ±,µ±(u1, u2) = tµ±
∞∑
j=0

ϕj(t)s
j

where s = u1, t = u1u2, ϕj(t) =
∑∞

n=0 an+j,nt
n. We have only to determine

ϕ0(t).

Lemma 7.5. ϕ0(t) is a solution of the Gaussian hypergeometric equa-

tion :

t(1 − t)ϕ′′
0(t) + {c− (a+ b+ 1)t}ϕ′

0(t) − abϕ0(t) = 0.
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Hence we have ϕ0(t) = 2F1(a, b; c; t) and

an,n =
(a)n(b)n
(c)nn!

,(7.11)

with parameters

a = µ±, b = µ± − 1 +
l − k

2
, c = 2µ± + l − 1.

Proof. We denote ϑs = s ∂
∂s , ϑt = t ∂

∂t . Then we have

ϑ1 = u1

(
∂s

∂u1

∂

∂s
+

∂t

∂u1

∂

∂t

)
= u1

(
∂

∂s
+ u2

∂

∂t

)
= ϑs + ϑt,

ϑ2 = u2

(
∂s

∂u2

∂

∂s
+

∂t

∂u2

∂

∂t

)
= ϑt.

Using above equations, we obtain the Gaussian hypergeometric equation

from

PΨµ±,µ±(s, t) = 0

in the similar way as Proposition 7.4. �

Now, we have

am,n =

{
0 (m < n)

( 1
2
)m−n(µ±+n)m−n

(m−n)!(µ±+n+ 1
2
)m−n

· (µ±)n(µ±−1+ l−k
2

)n
(2µ±+l−1)nn! (m ≥ n)

from equations (7.10), (7.11) and we have shown the latter half of Theorem

7.1.

Remark 7.6. It is an interesting problem to compare our power series

solutions with the confluenced ones which were discussed in [3].
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