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2-Spheres of Square −1 and the Geography of Genus-2

Lefschetz Fibrations

By Yoshihisa Sato

Abstract. Using the Gromov invariants and the Taubes’ struc-
ture theorem, we investigate how spheres of square −1 are embedded
against fibers in relatively minimal Lefschetz fibrations over S2 and
show the finiteness of the geography of relatively minimal genus-2 Lef-
schetz fibrations containing spheres of square −1. Furthermore, we
present the list of possible pairs (n, s) of the numbers of irreducible
singular fibers and reducible singular fibers in such a Lefschetz fibra-
tion.

1. Introduction

A Lefschetz fibration is a smooth map from a smooth 4-manifold onto a

surface with finitely many critical points as complex analogs of Morse func-

tions. The importance of Lefschetz fibrations from the viewpoint of topology

was reverified by Matsumoto [22]. The remarkable works of Donaldson [6]

and Gompf [10] show that Lefschetz fibrations provide a topological char-

acterization of symplectic 4-manifolds, and the study of Lefschetz pencils

and Lefschetz fibrations has played a major role in 4-dimensional symplectic

topology since the works of Donaldson and Gompf. Moreover, they are also

studied from various viewpoints of complex surfaces, mapping class groups

and so on.

The geography problem in complex surfaces is the characterization of

pairs of integers which are realized as (c21, c2) of complex surfaces, and it is

well studied in algebraic geometry. By the classification of complex surfaces

due to Kodaira, a simply connected complex surface is rational, elliptic or

of general type. We know completely the range which rational surfaces and

elliptic surfaces cover in the (c21, c2)-plane. Minimal surfaces of general type
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must satisfy that c21, c2 > 0 and (c2 − 36)/5 ≤ c21 ≤ 3c2 (the Noether

inequality and Bogomolov-Miyaoka-Yau inequality).

A simply connected complex surface is Kähler and so symplectic. There-

fore, the geography problem for symplectic 4-manifolds comes into our mind.

This problem was raised by McCarthy and Wolfson [23]. The region real-

ized as complex surfaces are covered by some symplectic 4-manifolds. On

the other hand, there are symplectic 4-manifolds which lie outside of this

region. For example, there exist symplectic 4-manifolds which violate the

Noether inequality [9], [33]. (See also [28].)

In the geography problem for symplectic 4-manifolds, the target mani-

fold is usually required to be minimal. However, many important Lefschetz

fibrations are not minimal, and so we will consider the geography problem

for relatively minimal (possibly non-minimal) Lefschetz fibrations. Every

lattice point (c21, c2) except finitely many lying in (c2 − 36)/5 ≤ c21 ≤ 2c2
is realized as the total space of a Lefschetz fibration [29]. Fintushel and

Stern showed that there exists a minimal Lefschetz fibration which does

not satisfy the Noether inequality [8]. In [34], Stipsicz addressed the

Bogomolov-Miyaoka-Yau inequality for Lefschetz fibrations.

Smith showed in [32] that only finitely many pairs (c21, c2) can be realized

as genus-2 Lefschetz pencils. Since one can obtain examples of Lefschetz

fibrations over S2 with sections of square −1 from Lefschetz pencils by the

blow-ups at the base locus points, this puts us in mind of the geography

problem for genus-2 Lefschetz fibrations with spheres of square −1. In this

paper, we show the finiteness of the geography of relatively minimal genus-2

Lefschetz fibrations over S2 with spheres of square −1:

Theorem 1.1. Only finitely many pairs (c21, c2) can be realized as

genus-2 Lefschetz fibrations over S2 with 2-spheres of square −1 but without

a fiber containing 2-spheres of square −1.

Since a new example of a genus-2 Lefschetz fibration constructed by

Auroux [2] is a non-minimal Lefschetz fibration which can not be obtained

from any Lefschetz pencil by blow-ups, Theorem 1.1 does not follow from

the Smith’s finiteness result of genus-2 Lefschetz pencils.

We use the theory of pseudo-holomorphic curves and the Taubes’ struc-

ture theorem on the Gromov invariants. Firstly we show that a genus-g

Lefschetz fibration f : X → S2 without a fiber containing 2-spheres of
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square −1 can admit at most 2g − 2 2-spheres of square −1 essentially and

we investigate how such 2-spheres lie against fibers. Thus, we can know the

topological placement of spheres with self-intersection number −1 in genus-

2 Lefschetz fibrations and we will prove Theorem 1.1 by using such spheres

and analyzing pseudo-holomorphic curves representing classes with non-

trivial Gromov invariants. Moreover, we present examples of non-minimal

genus-2 Lefschetz fibrations.
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2. Lefschetz Fibrations and Pencils

We recall the definitions on Lefschetz fibrations and Lefschetz pencils.

A smooth map f : X → Σ from a closed, connected, oriented smooth

4-manifold X onto a closed, connected, oriented smooth 2-manifold Σ is

said to be a Lefschetz fibration, if f admits finitely many critical points

C = {p1, p2, . . . , pk} on which f is injective and around which there are

orientation-preserving complex coordinate neighborhoods such that locally

f can be expressed as f(z1, z2) = z2
1+z2

2 . It is a consequence of this definition

that f |X\C : X \ C → Σ \ f(C) is a smooth fiber bundle. Generic fibers,

which are fibers without critical points, are closed oriented 2-manifolds and

are of the same diffeomorphism type. If the genus of a generic fiber is g, we

refer to f as a genus-g Lefschetz fibration. Any fiber containing a critical

point is called a singular fiber, which is obtained by collapsing a simple

closed curve, called a vanishing cycle, on a nearby generic fiber to a point.

A singular fiber is called reducible or irreducible according to whether the

corresponding vanishing cycle separates or dose not separate in the generic

fiber. The monodromy around a singular fiber of a Lefschetz fibration is

given by a positive (or right-handed) Dehn twist along the corresponding

vanishing cycle. A Lefschetz fibration f : X → Σ is said to be relatively

minimal if there is no fiber containing a sphere of square −1. We assume that

a Lefschetz fibration f is nontrivial, that is, f has at least one singular fiber

through this paper. Moreover, we may construct a new Lefschetz fibration

from two Lefschetz fibrations as follows: Let fi : Xi → Σi (i = 1, 2) be
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a genus-g Lefschetz fibration. Removing regular neighborhoods of generic

fibers in each, we glue the boundaries of these remainders by using a fiber-

preserving diffeomorphism which can be extended to fi (i = 1, 2). Thus we

obtain a genus-g Lefschetz fibration, which is denoted by X1�fX2 → Σ1�Σ2

and is called the fiber sum of f1 and f2.

A Lefschetz pencil is a nonempty finite set B = {b1, b2, . . . , b�} of X,

called the base locus, together with a smooth map f : X \ B → CP 1 such

that each bi has an orientation-preserving complex coordinate neighborhood

in which locally f can be expressed as f(z1, z2) = z1/z2, and each critical

point of f has a local coordinate neighborhood as a Lefschetz fibration.

Every smooth projective complex surface S ⊂ CPN has a Lefschetz pencil:

The intersections of S with hyperplane sections containing a generic linear

subspace of complex codimension 2 are complex curves, which give S a

Lefschetz pencil. By the definitions of Lefschetz fibrations and pencils, the

blow-up at the base locus points of a Lefschetz pencil yields a Lefschetz

fibration over S2 with sections of square −1. For more details on Lefschetz

fibrations and Lefschetz pencils, see [3], [5] and [10].

Combining the remarkable theorems of Donaldson and Gompf gives the

following topological characterization of symplectic 4-manifolds.

Theorem 2.1 ([6], [10]). A 4-manifold X admits a symplectic struc-

ture if and only if it admits a Lefschetz pencil.

We can estimate the number of points in the base locus of a Lefschetz

pencil, which suggests an estimation of the essential number of spheres of

square −1 in the Lefschetz fibration yielded from a Lefschetz pencil by the

blow-up.

Proposition 2.1 ([32]). Let X be a smooth 4-manifold with b+2 (X) >

1. If X admits a Lefschetz pencil whose fibers are of genus g, then the

number of points in the base locus is bounded above by 2g − 2.

In §4, we will estimate the upper bound for the essential number of

spheres of square −1 in a non-minimal Lefschetz fibration.



The Geography of Non-Minimal Genus-2 Lefschetz Fibrations 465

3. Gromov Invariants and the Taubes’ Structure Theorem

In this section, we recall the Gromov invariants and the Taubes’ struc-

ture theorem. The Seiberg-Witten invariants and the theory of pseudo-

holomorphic curves make the topology of symplectic 4-manifolds rich. Let

(M,ω) be a connected, closed symplectic 4-manifold with an ω-compatible

almost complex structure J and with symplectic canonical class KM . A

smooth map ϕ : Σ → M from a possibly disconnected compact Riemann

surface (Σ, j) to (M,J) is said to be J-holomorphic if the differential dϕ

satisfies

dϕ ◦ j = J ◦ dϕ.

We call the image ϕ(Σ) a J-holomorphic curve or a pseudo-holomorphic

curve with respect to J . If C is a pseudo-holomorphic curve with respect

to an ω-compatible almost complex structure, then C is also ω-symplectic.

The Gromov invariant GrT is defined by counting with signs the number

of pseudo-holomorphic curves in a given homology class roughly as follows.

For the more exact definition and details on the Gromov invariant, see [38,

39, 40]: Given a cohomology class α ∈ H2(M ; Z), we define d(α) by

d(α) = −KM · α + α · α,

where · is the cup product pairing. If d(α) > 0, let Ω ⊂ M be a set of d(α)/2

distinct points. If d(α) ≤ 0, we set Ω = ∅. Then, we consider the space

H(α, J) of J-holomorphic curves representing PD(α) and going through Ω.

Here we denote PD(α) the Poincaré dual of α. One can show that H(α, J) is

an oriented 0-manifold for generic choices of J and Ω. See [38, 39] and [25].

In [39], Taubes proved the regularity theorem for H(α, J) and introduced

the Gromov invariant GrT . For a nonzero class α, GrT (α) is defined to be

the algebraic number of pseudo-holomorphic curves in H(α, J);

GrT (α) =
∑

C∈H(α,J)

ε(C),

where ε(C) = ±1. We set GrT (0) = 1. The Gromov invariants GrT are in-

dependent of generic choices of J and Ω. Furthermore, Taubes showed that

the Gromov invariants of symplectic 4-manifolds with b+2 > 1 are equivalent
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to the Seiberg-Witten invariants [38, 39], that is,

SW(K−1
M + 2α) = ±GrT (α),

and he obtained the following structure theorem.

Theorem 3.1 (Taubes’ structure theorem [38, 39]). Let (M,ω) be a

closed symplectic 4-manifold with b+2 (M) > 1. Then the followings hold:

(1) GrT (KM ) = ±1. In particular, the homology class PD(KM ) has

a (possibly disconnected) smooth pseudo-holomorphic representative.

Hence, if M is minimal, then c21(M) = K2
M ≥ 0.

(2) (The duality formula) For any cohomology class α ∈ H2(M ; Z),

GrT (α) = ±GrT (KM − α).

(3) If GrT (α) �= 0, then for a generic ω-compatible almost complex struc-

ture J , there exists a J-holomorphic representative {(Ci,mi)}i of α,

where Ci ⊂ M is a J-holomorphic submanifold and mi is an appro-

priate multiplicity (which is one, unless Ci is a torus of square 0).

The Seiberg-Witten invariants can be also defined for manifolds with

b+2 = 1. However, the invariants depend on a chamber structure. For details

on the relation between the Seiberg-Witten theory and the Gromov-Taubes

theory for symplectic 4-manifolds with b+2 = 1, see [19] and [20].

4. Spheres of Square −1 in the Total Spaces of Lefschetz Fibra-

tions over S2

We begin with some theorems on smoothly embedded spheres in a sym-

plectic 4-manifold with self-intersection number −1.

Theorem 4.1 ((−1)-curve theorem). Let (M,ω) be a closed symplec-

tic 4-manifold with symplectic canonical class KM . Let e ∈ H2(M ; Z) denote

a homology class represented by a smoothly embedded sphere of square −1

and with ω(e) > 0. Then the followings hold:

(1) (Taubes [38, 39]) If b+2 (M) > 1, then we have GrT (e) = ±1, in partic-

ular, for a generic ω-compatible almost complex structure J the class

e is represented by a J-holomorphic (−1)-curve.
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(2) (Li and Liu [19]) If b+2 (M) = 1 and e ·KM = −1, then for a generic

ω-compatible almost complex structure J the class e is represented by

a J-holomorphic (−1)-curve.

(3) (Li [16]) Furthermore, if M is the blow-up of a minimal symplectic

4-manifold which is not rational nor ruled, and e1, e2, . . . , e� are the

homology classes represented by exceptional curves, then these classes

ei’s are the only classes represented by a smoothly embedded sphere of

square −1. Furthermore, if C1 and C2 are symplectic (−1)-curves in

M , then they can not satisfy [C1] · [C2] > 0, provided b+2 (M) > 1.

Moreover, rational or ruled surfaces can be characterized among all sym-

plectic 4-manifolds in terms of smoothly embedded spheres of square −1.

Theorem 4.2 ([16]). If e · KM �= −1 for a homology class e as in

Theorem 4.1, then M is rational or ruled.

Hence, if M is not rational or ruled, then every smoothly embedded

sphere of square −1 is Z-homologous to a J-holomorphic (−1)-curve for

a generic ω-compatible almost complex structure J after the appropriate

choice of an orientation of the sphere. On the other hand, if M is rational

or ruled, and e·KM �= −1, then via pullback by an orientation-preserving dif-

feomorphism, the class e is represented by a symplectic (−1)-curve, namely

e is represented by a pseudo-holomorphic (−1)-curve [16].

Let e1, e2, . . . , en be homology classes represented by smooth spheres in

M of square −1 with ω(ei) > 0 (i = 1, 2, . . . , n). By the (−1)-curve theorem,

we see that if M is not rational nor ruled, then there exists an ω-compatible

almost complex structure on M such that homology classes e1, e2, . . . , en can

be represented by pseudo-holomorphic (−1)-curves simultaneously. On the

other hand, if M is rational or ruled, then they can not always be represented

by pseudo-holomorphic (−1)-curves simultaneously [17]. For example, we

consider M = CP 2�2CP 2. Let α be the homology class represented by

the line in CP 2. Let e1 and e2 be the homology classes represented by

exceptional curves in CP 2�2CP 2. Then, e1 and α+e1+e2 are represented by

smooth spheres of square −1. However, since distinct pseudo-holomorphic

curves intersect each other positively [24] and the intersection number e1 ·
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(α+e1+e2) is negative, they can not be represented by pseudo-holomorphic

(−1)-curves simultaneously.

As for spheres of square −1 in the total space of a Lefschetz fibration,

the problems about the minimality or the fiber sum decomposability have

been treated.

Theorem 4.3 ([34]). A Lefschetz fibration f : X → B with g(B) > 0

is relatively minimal if and only if X is minimal.

The case of B = S2 has many counterexamples for this theorem. In the

rest of this paper, we consider Lefschetz fibrations over S2 which are rela-

tively minimal but not minimal. The followings are well known as theorems

about the fiber sum decomposability.

Theorem 4.4 ([35]). For any Lefschetz fibration f : X → S2, the fiber

sum X�fX is minimal.

Theorem 4.5 ([36], [31]). If a Lefschetz fibration f : X → S2 admits

a section of square −1, then X cannot be decomposed as any nontrivial fiber

sum X = X1�fX2.

These theorems naturally lead us to the problem of the minimality of

nontrivial fiber sums. Usher proved the following conjecture proposed by

Stipsicz [36].

Theorem 4.6 (The Stipsicz’s conjecture [41]). Every nontrivial fiber

sum X1�fX2 is minimal.

Therefore, non-minimal Lefschetz fibrations are “irreducible” building

blocks in the fiber-sum construction.

Given a Lefschetz pencil on a smooth 4-manifold X, we obtain a genus-

g Lefschetz fibration X�nCP 2 → S2 by the blow-up along the base locus.

Then, each exceptional sphere is a section of square −1. Proposition 2.1

states that there are at most 2g − 2 sections of square −1 which are ex-

ceptional spheres. We will generalize this estimation about the numbers of

spheres of square −1 to the case of Lefschetz fibrations.

Now let E ∈ H2(X; Z) be the Poincaré dual of the homology class which

is represented by a smoothly embedded sphere of square −1 in a closed
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symplectic 4-manifold (X,ω). In the case where X is not rational nor ruled,

by changing the orientation of a smooth sphere representing E if necessary,

we may assume that E · [ω] > 0, because we have E · [ω] �= 0 by the (−1)-

curve theorem and the fact that ω|Σ on a closed symplectic submanifold

Σ is a volume form. We denote by EX the set of all the Poincaré dual of

the homology classes E which can be represented by smoothly embedded

spheres of square −1 and satisfy E · [ω] > 0.

Let f : X → S2 be a relatively minimal genus-g Lefschetz fibration. The

Gompf’s result on symplectic structures [10] states that if the homology

class of a generic fiber F of f is not torsion in H2(X; Z), in particular g ≥ 2,

then the total space X of a Lefschetz fibration admits a symplectic structure

ω with symplectic fibers, and so X can be equipped with an ω-compatible

almost complex structure J for which the fibers are pseudo-holomorphic.

Let F denote the Poincaré dual of the homology class represented by

a generic fiber. Given a 2-dimensional submanifold Σ, we will avoid the

complication by using the same symbol in order to denote the Poincaré

dual of the homology class represented by Σ from now on.

Since a Lefschetz fibration f is relatively minimal, one can show the

following key lemma:

Lemma 4.1 ([18]). If X is not rational nor ruled, then E · F ≥ 1 for

any E ∈ EX .

Now we estimate spheres of square −1 in relatively minimal Lefschetz

fibrations over S2.

Theorem 4.7. Let f : X → S2 be a relatively minimal genus-g

(≥ 2) Lefschetz fibration. Suppose that EX is not empty, and set EX =

{E1, E2, . . . , En}. If X is not rational nor ruled, then the followings hold:

(1) n ≤ 2g − 2.

(2)

(
n∑
i=1

Ei

)
· F ≤ 2g − 2.

(3) For any i (1 ≤ i ≤ n), 1 ≤ Ei · F ≤ 2g − 2.

Proof. Assertions (1) and (3) follow from Lemma 4.1 and the as-

sertion (2). We show the assertion (2). Since pseudo-holomorphic curves
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are symplectic, it follows from the (−1)-curve theorem that there are sym-

plectic (−1)-curves C1, C2, . . . , Cn representing the classes E1, E2, . . . , En,

respectively. Then, X has a symplectic minimal model Y and is obtained by

blowing up Y at n points [10]. Exceptional curves represent E1, E2, . . . , En.

Let π : X → Y be the blow-down map. Then KX = π∗KY +
∑n

i=1 Ei in

cohomology. Equip X with an almost complex structure J such that fibers

are J-holomorphic curves. It follows from the adjunction formula that we

have

2g − 2 = KX · F + F · F = KX · F

= π∗KY · F +

(
n∑
i=1

Ei

)
· F.

We need to show π∗KY · F ≥ 0. This inequality is true if KY is a torsion

class. Suppose that KY is not a torsion class.

The case of b+2 (X) > 1 : Then, we have b+2 (Y ) > 1. By the Taubes’

structure theorem and the blow-up formula of Gromov invariants, we have

GrT (π∗KY ) �= 0. So, π∗KY can be represented by a J-holomorphic curve Σ.

Since F is represented by an irreducible J-holomorphic curve with F ·F = 0

and pseudo-holomorphic curves have locally positive intersections [24], the

intersection number of any component of Σ with F is non-negative. Hence,

we concludes that π∗KY · F ≥ 0 and so

2g − 2 ≥
(

n∑
i=1

Ei

)
· F.

The case of b+2 (X) = 1 : We can prove the assertion (2) in the same

manner as the case of b+2 (X) > 1. However, the question is whether π∗KY

can have a pseudo-holomorphic representative or not, that is to say, whether

GrT (π∗KY ) �= 0 or not. Since X is not the blow-up of a rational or ruled

surface, it follows from a result, Proposition 5.2 in [20], of Li and Liu that

GrT (mKY ) �= 0 for m ≥ 2. By the blow-up formula of Gromov invariants,

we have GrT (mπ∗KY ) �= 0 for m ≥ 2. Hence, mπ∗KY can be represented

by a pseudo-holomorphic curve, and so we can show that (mπ∗KY ) ·F ≥ 0.

Thus π∗KY ·F ≥ 0. Therefore, we can prove the inequality (2) in the same

manner as the case of b+2 (X) > 1. �
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Remark 4.1. Theorem 4.5 is not true for the blow-up of a rational or

ruled surface. For example, CP 2�13CP 2 and S2 × T 2�4CP 2 admit a rela-

tively minimal genus-2 Lefschetz fibration over S2 (see §5), which contain

more than two spheres of square −1.

5. The Geography of Genus-2 Lefschetz Fibrations over S2 with

Spheres of Square −1

In this section, we consider a relatively minimal genus-2 Lefschetz fibra-

tion f : X → S2 with spheres of square −1. If X is not rational nor ruled,

then Theorem 4.7 states that EX is one of the following three :

Type (1, 1) : EX = {E1, E2}, E1 · F = E2 · F = 1.

Type (1) : EX = {E}, E · F = 1.

Type (2) : EX = {E}, E · F = 2.

In the first and the second cases, spheres representing EX are sections of

f : X → S2. Note that E1 · E2 = 0 for E1 and E2 in the case of Type (1,

1), which follows from the proof of Corollary 3 in [16].

Theorem 5.1. Only finitely many pairs (c21, c2) can be realized as rela-

tively minimal genus-2 Lefschetz fibrations X → S2 with 2-spheres of square

−1. Here, c21 = c21(X)([X]) and c2 = c2(X)([X]).

Proof. Let f : X → S2 be a relatively minimal genus-2 Lefschetz

fibration with spheres of square −1. Equip X with an almost complex

structure J such that fibers are J-holomorphic curves. We begin with the

proof in the case of b+2 (X) > 1.

The case of b+2 (X) > 1 : We consider the case of Type (2), where

EX = {E} and E ·F = 2. Set A = KX −E. By the adjunction formula, we

have KX · F = 2, KX ·E = −1 and so A · F = A ·E = 0 and A2 = KX ·A.

Since E is a basic class of the Gromov invariant, it follows from the duality

formula that A is also a basic class, that is, GrT (A) �= 0. Hence, the class

A has a J-holomorphic representative {(Ci,mi)}i such that each Ci is a J-

holomorphic curve and each mi(≥ 1) is a multiplicity. If we set C =
⋃n
i=1 Ci,

then we have A = [C] =
∑n

i=1 mi[Ci] in (co)homology. Noting that A·F = 0,

each component Ci of C is contained in a fiber because pseudo-holomorphic
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curves have locally positive intersections. Thus, we have [Ci]
2 = 0 or −1.

Because of the relative minimality of f , fibers contain no sphere-component

and each component Ci is not a sphere. Since E ·F = 2 and A ·E = 0, each

component Ci is neither a generic fiber nor an irreducible singular fiber,

and so it is a component of a reducible singular fiber. Furthermore, we have

Ci ∩ Cj = ∅ (i �= j), because fibers containing Ci, Cj are disjoint. Hence C

consists of components C1, C2, . . . , Cn with [Ci]
2 = −1, [Ci]·[Cj ] = 0 (i �= j)

and genus(Ci) = 1 (i, j = 1, 2, . . . , n). Then, by the adjunction formula,

we have KX · [Ci] = 1 (i = 1, 2, . . . , n), and so we have

A2 =

n∑
i=1

m2
i [Ci]

2 = −
n∑
i=1

m2
i and

KX ·A =

n∑
i=1

miKX · [Ci] =

n∑
i=1

mi.

Since A satisfies that A2 = KX · A, we obtain that 0 <
∑n

i=1 mi =

−
∑n

i=1 m
2
i < 0. Therefore, A has to satisfy that A = 0. Thus, we have

that KX = E and K2
X = −1. Suppose that f : X → S2 has n irreducible

singular fibers and s reducible singular fibers. By the Hirzebruch signature

theorem and the Matsumoto’s local signature formula [22], we have

K2
X = 3σ(X) + 2e(X),

σ(X) = −3

5
n− 1

5
s, and

e(X) = n + s− 4.

Moreover, the structure on the abelianization H1(Γ2; Z) ∼= Z/10Z of the

mapping class group Γ2 of genus 2 concludes that n + 2s ≡ 0 (mod 10)

([14], [22]). Therefore, the pair (n, s) satisfies{
n + 7s = 35,

n + 2s ≡ 0 (mod 10).

Since f in the case of n = 0 is trivial [35], the required pairs (n, s) are

(14, 3) and (28, 1).

Next we consider the case of Type (1, 1), where EX = {E1, E2} and

E1 · F = E2 · F = 1. Set A = KX − E1 − E2. Then it follows from
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the Taubes’ structure theorem that A has a J-holomorphic representative.

Furthermore, since A · F = A · E1 = A · E2 = 0 and A2 = KX · A, we can

show that A = 0, i.e. KX = E1 + E2 in the same manner as above. Hence,

K2
X = −2, and so the pair (n, s) satisfies the equations

{
n + 7s = 30,

n + 2s ≡ 0 (mod 10).

Since there are at least 7 singular fibers in any genus-2 Lefschetz fibration

over S2 ([14], [27]), the required pairs are (n, s) = (16, 2) and (30, 0).

Next we consider the case of Type (1), where EX = {E} and E · F = 1.

Set A = KX − E. Then, A · F = 1, A · E = 0 and A2 = KX ·A. Moreover,

A has a J-holomorphic representative C. Because of A · F = 1, C contains

a section S. Then we can see that S is smooth. Suppose that S has a

singular point x. The fiber F0 = f−1(f(x)) intersects S at the singular

point x. This fact implies that S · F0 ≥ 2, because pseudo-holomorphic

curves have locally positive intersections. However, this is in contradiction

to A·F0 = A·F = 1. Hence, S is a smooth section. By Lemma 2.1 of [36], the

self-intersection number of S is negative. Moreover, because of A·F = 1, the

multiplicity of S is one. Thus we have that C = S ∪
⋃n
i=1 Ci and A = [C] =

[S]+
∑n

i=1 mi[C]i. Since A·F = [S]·F+
∑n

i=1 mi[Ci]·F = 1+
∑n

i=1 mi[Ci]·F ,

the equation A ·F = 1 leads us to
∑n

i=1 mi[Ci] ·F = 0, i.e. [Ci] ·F = 0 (i =

1, 2, . . . , n). Hence, the components C1, C2, . . . , Cn of C are components of

fibers, because of the positivity of intersections. We divide these components

into generic/irreducible fibers and reducible singular fibers, and so we can

write A = [S]+mF +
∑k

j=1 nj [Dj ] in (co)homology, where each Dj(⊂ C) is

a component of a reducible singular fiber. Since the fibration f is relatively

minimal, each Dj is a torus of square −1. Because of GrT (A) �= 0, the

space H(A, J ′) of J ′-holomorphic curves representing A is nonempty for a

generic ω-compatible almost complex structure J ′ and the formal dimension

of H(A, J ′) is non-negative, that is,

−KX ·A + A2 = dimH(A, J ′) ≥ 0.
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(We note that in fact dimH(A, J ′) = −KX · A + A2 = 0 because of A2 =

KX ·A.) Using the adjunction formula, we calculate KX ·A and A2;


KX ·A = KX · [S] + mKX · F +
k∑
j=1

njKX · [Dj ]

= (−2 − [S]2) + 2m +
k∑
j=1

nj ,

A2 = [S]2 −
k∑
j=1

n2
j + 2m + 2

k∑
j=1

nj [S] · [Dj ].

Hence we have

dimH(A, J ′) = −KX ·A + A2 = 2([S]2 + 1) +

k∑
j=1

nj(2[S] · [Dj ] − nj − 1).

Since [S]2 ≤ −1, [S] · [Dj ] ≤ 1 and nj ≥ 1, we have that 2([S]2 + 1) ≤ 0

and
∑k

j=1 nj(2[S] · [Dj ] − nj − 1) ≤ 0. Thus, because of dimH(A, J ′) ≥ 0,

we obtain [S]2 = −1. Hence S is a smooth section of square −1, and so

[S] = E, that is, A = E +mF +
∑k

j=1 nj [Dj ]. From the equation A ·E = 0,

we get 1 = m +
∑k

j=1 nj [Dj ] · E ≥ m, and so we have that m = 0 or 1.

When m = 0, we have
∑k

j=1 nj [Dj ]·E = 1. Since nj ≥ 1 and [Dj ]·E ≥ 0,

we may assume that n1 = [D1] · E = 1 and
∑k

j=2 nj [Dj ] · E = 0 without

loss of generality, that is, A = E + [D1] +
∑k

j=2 nj [Dj ]. Then, we have

KX ·A = KX · E + KX · [D1] +
k∑
j=2

njKX · [Dj ] =
k∑
j=2

nj and

A2 = E2 + [D1]
2 +

k∑
j=2

n2
j [Dj ]

2 + 2E · [D1] + 2
k∑
j=2

njE · [Dj ]

+ 2
k∑
j=2

nj [D1] · [Dj ]

= −
k∑
j=2

n2
j .
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By using the equation A2 = KX ·A, we can deduce that A = E + [D1], i.e.

KX = 2E + [D1]. Thus we have K2
X = −1, and so the possible pair (n, s)

satisfies n + 7s = 35 and n + 2s ≡ 0 (mod 10). On the other hand, we

can show that a genus-2 Lefschetz fibration X → S2 with KX = 2E + [D1]

admits only one reducible singular fiber. Suppose that there is another

reducible singular fiber R which is distinct from D1. Since E · [R] = 0 or 1,

we obtain that [D1] · [R] = ±1 from the equation KX · [R] = 1. However,

this is a contradiction because R is a pseudo-holomorphic curve which is

disjoint from D1. Hence, we have s = 1. Therefore, when KX = 2E + [D1],

the possible pair (n, s) is only (28, 1).

When m = 1, we have A = E+F +
∑k

j=1 nj [Dj ]. The equation A·E = 0

leads us to
∑k

j=1 nj [Dj ] · E = 0. Hence, none of the Dj ’s meet the section

E. Then, we have

KX ·A = KX · E + KX · F +

k∑
j=1

njKX · [Dj ] = 1 +

k∑
j=1

nj and

A2 = E2 + F 2 +

k∑
j=1

n2
j [Dj ]

2 + 2E · F + 2

k∑
j=1

njE · [Dj ]

+ 2
k∑
j=1

njF · [Dj ]

= 1 −
k∑
j=1

n2
j .

Hence, by using the equation A2 = KX ·A, we can deduce that A = E +F ,

i.e. KX = 2E + F . Then, we have K2
X = 0, and so the possible pair (n, s)

satisfies n + 7s = 40 and n + 2s ≡ 0 (mod 10). On the other hand, we

can show that a genus-2 Lefschetz fibration X → S2 with KX = 2E + F

admits no reducible singular fiber. If there is a reducible singular fiber,

then its irreducible component R is a pseudo-holomorphic torus of square

−1. Though KX · [R] = 2E · [R] ≡ 0 (mod 2), the adjunction formula

leads us to KX · [R] = 1. This is a contradiction. Hence, we have s = 0.

Therefore, the possible pair (n, s) is only (40, 0).

The case of b+2 (X) = 1 : Since X is a symplectic 4-manifold with

b+2 (X) = 1, X is either the blow-up of a ruled surface or b1(X) ∈ {0, 2}
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[37]. Moreover, we obtain that

1 − b−2 (X) = −3

5
n− 1

5
s and

3 − 2b1(X) + b−2 (X) = n + s− 4

from the definitions of the signature and the Euler number. If X is the

blow-up of a ruled surface over the surface Σh of genus h, then a genus-2

Lefschetz fibration X → S2 must satisfy that 0 ≤ 2h ≤ 2 [37]. Moreover,

because of h = 0, 1, we obtain that b1(X) = 0, 2. Thus, we see that b1(X) ∈
{0, 2} holds for ruled surfaces with genus-2 Lefschetz fibrations as well.

If b1(X) = 0, then the above relations imply that n + 2s = 20. When

b1(X) = 2, n+ 2s = 10. Hence, only finitely many pairs (n, s) satisfy either

(i) n + 2s = 20, n > 0, s ≥ 0 or (ii) n + 2s = 10, n > 0, s ≥ 0.

Thus only finitely many pairs (n, s) arise. Since the pairs (n, s) of

the numbers of singular fibers are equivalent to the pairs (c21, c2) by the

Hirzebruch signature theorem and the Matsumoto’s local signature formula

σ = −3n/5 − s/5, and so only finitely many pairs (c21, c2) arise. �

Remark 5.1. (1) Let f : X → S2 be a genus-2 Lefschetz fibration with

n+2s = 10. The fiber sum X�fX of two copies of f is a minimal symplectic

4-manifold with b+2 (X�fX) > 1 by Theorem 4.4. Hence, it follows from

Theorem 3.1 (1) that we have 2c21(X)+8 = c21(X�fX) ≥ 0, i.e. c21(X) ≥ −4.

By the Matsumoto’s local signature formula, we get c21(X) = 3σ(X) +

2e(X) = s − 6, and so s ≥ 2. Therefore, the pairs (10, 0) and (8, 1) do not

occur as the pair of the numbers of singular fibers.

(2) By Theorem 5.1, we can prove that if a nontrivial fiber sum X =

X1�fX2 → S2 of genus-2 Lefschetz fibrations satisfies b+2 (X) > 1, then X

is minimal, which is the Stipsicz’s conjecture in the case of genus 2 with

b+2 > 1: Suppose that X = X1�fX2 is not minimal. Let (n, s) be the pair

of the numbers of singular fibers of X → S2. Noting Theorem 4.5, the pair

(n, s) is (14, 3) or (28, 1) of Type (2) in Table 1. If we let (ni, si) be the

pair of the numbers of singular fibers of Xi → S2 (i = 1, 2), then we have

n = n1 + n2 and s = s1 + s2. Noting that ni + 2si ≡ 0 (mod 10) and

ni + si ≥ 7 (i = 1, 2), the possible pairs (ni, si) are the followings;

(n, s) = (14, 3) :

{
(n1, s1) = (4, 3)

(n2, s2) = (10, 0)
,

{
(n1, s1) = (6, 2)

(n2, s2) = (8, 1)
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Table 1. Possible pairs (n, s) as geography.

b+2 Possible pairs (n, s) EX
(16, 2), (30, 0) Type (1, 1)

b+2 > 1 (28, 1) Type (1)
(40, 0)
(14, 3), (28, 1) Type (2)

b+2 = 1 n + 2s = 20, n > 0, s ≥ 0
n + 2s = 10, n > 0, s ≥ 0

(n, s) = (28, 1) :

{
(n1, s1) = (8, 1)

(n2, s2) = (20, 0)
,

{
(n1, s1) = (18, 1)

(n2, s2) = (10, 0).

However, there is no genus-2 Lefschetz fibration with (ni, si) = (10, 0) or

(8, 1) by the above remark (1). Hence, the above decompositions of (n, s)

do not occur. Thus, X = X1�fX2 is minimal.

(3) A genus-g Lefschetz fibration f : X → S2 is said to be hyperel-

liptic if the monodromy representation of f is equivalent to one taking

isotopy classes commuting with the hyperelliptic involution ι : Σg → Σg

on a closed oriented surface Σg of genus g. Since the hyperelliptic map-

ping class group Γhyp
2 of genus 2 agrees with Γ2, every genus-2 Lefschetz

fibration is hyperelliptic. When we restrict the signature cocycle τg to the

hyperelliptic mapping class group Γhyp
g of genus g, its cohomology class

[τHg ] ∈ H2(Γhyp
g ; Z) is of finite order [7]. So we can calculate the terms of

signature cocycles by the coboundary maps called Meyer’s functions. Mat-

sumoto [22] calculated Meyer’s functions and obtained the local signature

formula σ(X) = −3n/5 − s/5 for genus-2 Lefschetz fibrations. Endo [7]

extended the signature formula for genus-2 Lefschetz fibrations to that for

hyperelliptic genus-g Lefschetz fibrations. These formulae imply that the

signature is determined by the number of singular fibers. So we can consider

the geography of hyperelliptic genus-g(≥ 3) Lefschetz fibrations in the same

manner as Theorem 5.1. However, since all genus-g Lefschetz fibrations

are not hyperelliptic, we will need another argument in order to consider

the non-hyperelliptic case. In [30], the author considers the geography of
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genus-3 Lefschetz fibrations.

6. Examples of Non-Minimal Genus-2 Lefschetz Fibrations

We consider whether the pairs (n, s) in Table 1 can be realized as

non-minimal genus-2 Lefschetz fibrations. In particular, we will prove the

following theorem:

Theorem 6.1. In the case of b+2 > 1, there exist non-minimal genus-2

Lefschetz fibrations realizing all pairs in Table 1 except (14, 3) of Type (2).

It is open whether the pair (14, 3) of Type (2) can be realized.

We can construct Lefschetz fibrations by using double branched cover-

ings of surface bundles or by using positive relations in the mapping class

groups. Many well-known Lefschetz fibrations are constructed from double

branched coverings of surface bundles. We will give new examples by using

positive relations, because the way of using positive relations has an advan-

tage to judge whether Lefschetz fibrations corresponding to given positive

relations admit sections of square −1. On the other hand, a non-minimal

genus-2 Lefschetz fibration of Type (2) admits a sphere of square −1 inter-

secting with a generic fiber at two points, and so it is difficult to obtain an

example of a non-minimal Lefschetz fibration of Type (2) from a positive

relation. As an example of Type (2), we will present a Lefschetz fibration

realizing the pair (28, 1) of Type (2), which is constructed from a double

branched covering of a Hirzebruch surface by Auroux.

Let Γ2 be the mapping class group of genus 2 and Γ2,k the mapping class

group of a genus-2 surface with k boundary components. To simplify the

notation in the rest of the paper, we denote a positive Dehn twist along a

simple closed curve α also by α. The inverse α−1 of α is denoted by α. For

elements ϕ,ψ ∈ Γ2, the product ϕ · ψ stands for applying ϕ first and then

applying ψ, and sometimes the dot ”·” is dropped. Furthermore, we use the

notation ϕψ instead of ψ ·ϕ ·ψ. If τ is a positive Dehn twist along a simple

closed curve α on the closed orientable surface Σ2 of genus 2, then τψ is the

positive Dehn twist along the curve ψ(α).

The monodromy around a singular fiber of a Lefschetz fibration is given

by a positive Dehn twist along the corresponding vanishing cycle. Since

the base spaces of Lefschetz fibrations in this paper are the sphere, the
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product τ1τ2 · · · τm of all monodromies is trivial in Γ2. We call the relation

τ1τ2 · · · τm = 1 obtained from a factorization of the identity via positive

Dehn twists τ1, τ2, . . . , τm a positive relation. Then, by Kas [13] and Mat-

sumoto [22], Lefschetz fibrations on 4-manifolds can be described by positive

relations. Namely, for a given positive relation τ1τ2 · · · τm = 1, there is a

Lefschetz fibration with monodromies τ1, τ2, . . . , τm. If a lift of the relation

τ1τ2 · · · τm = 1 to Γ2,k is given by positive Dehn twists along circles δj ’s

parallel to the boundary components;

τ1τ2 · · · τm = δn1
1 δn2

2 · · · δnk
k ,

then it shows the existence of k distinct sections of the corresponding Lef-

schetz fibration and the self-intersection number of the j-th section is −nj
[15].

The mapping class group Γ2 is generated by five Dehn twists ζi (1 ≤ i ≤
5) around curves indicated on Figure 1 [21] :

ζ2 ζ4
ζ5ζ3ζ1

Fig. 1.

For the sake of brevity, we denote the Dehn twist ζj by j. It is well-

known that Γ2 has the following positive relations:

(1 · 2 · 3 · 4 · 5 · 5 · 4 · 3 · 2 · 1)2 = 1(6.1)

(5 · 4 · 3 · 2 · 1)6 = 1(6.2)

(4 · 3 · 2 · 1)10 = 1(6.3)
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Example 6.1. There exist genus-2 Lefschetz fibrations with the above

positive relations, which are obtained from double branched covers of the

Hirzebruch surfaces Fn. See [10].

(1) CP 2�13CP 2 :

The positive relation (6.1) describes the genus-2 Lefschetz fibration on

the rational surface CP 2�13CP 2 obtained as a double covering of F0 =

CP 1 × CP 1 branched along a smooth algebraic curve in the linear system

|6∆+2F |. Here ∆ is a section of F0 and F is a fiber of F0. This fibration is

obtained from the composition of the covering projection with the bundle

projection F0 → S2 and has 20 irreducible singular fibers and sections of

square −1, which represents (n, s) = (20, 0).

(2) K3�2CP 2 :

The positive relation (6.2) describes the genus-2 Lefschetz fibration on

K3�2CP 2 obtained as a double covering of F1 = CP 2�CP 2 branched along

a smooth algebraic curve in the linear system |6L|, where L is a line in CP 2

avoiding the blown-up point. This fibration has 30 irreducible singular fibers

and two sections of square −1. Hence, this fibration represents (n, s) =

(30, 0) of Type (1, 1) in Table 1.

(3) H ′(1) (Horikawa surface) :

The Hirzebruch surface F2 = P(OCP 1 ⊕OCP 1(2)) has two disjoint holo-

morphic sections ∆2 and ∆−2 of square ±2. The Horikawa surface H ′(1)

is obtained as a double branched cover of F2, branched along the disjoint

union of a smooth curve in the linear system |5∆2| and ∆−2. Then, the pos-

itive relation (6.3) describes the genus-2 Lefschetz fibration on the Horikawa

surface H ′(1). This fibration has 40 irreducible singular fibers and a section

of square −1. This section is a lift of the component of the branched set

coming from ∆−2. Hence, this fibration represents (n, s) = (40, 0) of Type

(1) in Table 1.

(4) S2 × T 2�4CP 2 :

Matsumoto [22] showed that S2 × T 2�4CP 2 has a genus-2 Lefschetz

fibration with 6 irreducible singular fibers and 2 reducible singular fibers,

namely (n, s) = (6, 2). This also has a section of square −1. The positive

relation describing this fibration is (α1 · σ · α2 · α3)
2 = 1, where α1, α2, α3

and σ are given by positive Dehn twists along curves indicated on Figure 2.
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α

α
α

1

2
3 σ

Fig. 2.

Hirose [11] constructed interesting positive relations as an application

of his study of periodic homeomorphisms on Riemann surfaces. An orien-

tation-preserving homeomorphism ϕ : Σg → Σg on a surface of genus g is

said to be periodic if there is an integer n such that ϕn is isotopic to the

identity map. We call the smallest positive such integer n the period of ϕ.

By Nielsen’s theorem, the conjugacy class [ϕ] of a periodic homeomorphism

ϕ is characterized by the period and the valencies of multiple points. For a

periodic homeomorphism ϕ : Σg → Σg, we denote the valency data of ϕ by

[g, n; θ1, θ2, . . . , θb]. Here n is the period of ϕ and each θi is the integer corre-

sponding to the valency of a multiple point of ϕ. The sequence θ1, θ2, . . . , θb
is corresponding to the total valency n1/m1 + n2/m2 + · · · + nb/mb in [1],

namely θi/n = ni/mi. For example, the valency data [2, 6; 1, 1, 4] stands for

the valency data g = 2, n = 6, 1/6+1/6+2/3. For more details on periodic

homeomorphisms, see [26] and [1].

Hirose gave the list of periodic homeomorphisms of genus 2 by which

any periodic homeomorphism is generated. See Table 2.

Hirose studies presentations of periodic homeomorphisms by positive

Dehn twists. For examples, the conjugacy classes of periodic homeomor-

phisms with valency data [2, 10; 1, 4, 5], [2, 8; 1, 3, 4], [2, 6; 2, 3, 3, 4], [2, 6;

1, 1, 4] are represented by the following products of positive Dehn twists :

[2, 10; 1, 4, 5] = [ζ4 · ζ3 · ζ2 · ζ1], [2, 8; 1, 3, 4] = [ζ4 · ζ4 · ζ3 · ζ2 · ζ1]
[2, 6; 2, 3, 3, 4] = [ζ1 · ζ2 · ζ3 · ζ3 · ζ4 · ζ5 · ζ2ζ3ζ4 · ζ1ζ2ζ3 · σ]

[2, 6; 1, 1, 4] = [ζ5 · ζ4 · ζ3 · ζ2 · ζ1].
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Table 2. Valency data of periodic maps of genus 2.

period = 10 [ϕ] = [2, 10; 1, 4, 5] period = 8 [ϕ] = [2, 8; 1, 3, 4]
ϕ2 [2, 5; 2, 2, 1] ϕ2 [2, 4; 2, 2, 3, 1]
ϕ3 [2, 10; 8, 7, 5] ϕ3 [2, 8; 1, 3, 4]
ϕ4 [2, 5; 1, 1, 3] ϕ4 [2, 2; 1, 1, 1, 1, 1, 1]
ϕ5 [2, 2; 1, 1, 1, 1, 1, 1] ϕ5 [2, 8; 7, 5, 4]
ϕ6 [2, 5; 4, 4, 2] ϕ6 [2, 4; 2, 2, 3, 1]
ϕ7 [2, 10; 2, 3, 5] ϕ7 [2, 8; 7, 5, 4]
ϕ8 [2, 5; 3, 3, 4] ϕ8 id
ϕ9 [2, 10; 6, 9, 5]
ϕ10 id

period = 6 [ϕ] = [2, 6; 2, 3, 3, 4] period = 6 [ϕ] = [2, 6; 1, 1, 4]
ϕ2 [2, 3; 1, 1, 2, 2] ϕ2 [2, 3; 1, 1, 2, 2]
ϕ3 [2, 2; 1, 1, 1, 1, 1, 1] ϕ3 [2, 2; 1, 1]
ϕ4 [2, 3; 1, 1, 2, 2] ϕ4 [2, 3; 1, 1, 2, 2]
ϕ5 [2, 6; 2, 3, 3, 4] ϕ5 [2, 6; 5, 5, 2]
ϕ6 id ϕ6 id

For example, two products (44321)4 and (4321)5 have the same valency

data [2, 2; 1, 1, 1, 1, 1, 1] (see Table 2) and so there is a homeomorphism h

such that (44321)4 = h−1(4321)5h. (We can show that (44321)4 = (4321)5

by using the braid relations only, and so we can take h = id exactly.)

Thus, from Table 2 and these presentations, we can obtain presentations of

periodic homeomorphisms of genus 2 by positive Dehn twists and construct

new examples of positive relations of genus 2. The followings are examples

given by Hirose [12]:

Example 6.2. (1) By using the braid relations and the chain relation

(2 · 1)6 = σ on Γ2, we can obtain a positive presentation of (4 · 3 · 2 · 1)5

by 9 Dehn twists as follows (we use the braid relations at the terms with

underlines) :

(4 · 3 · 2 · 1)5 = (4321)343214321 = (4321)343241321 = (4321)343243121

= (4321)343423121 = (4321)334323121 = (4321)33423(21)2

= · · · = (4321)2234123(21)3 = (4321)2234123(12)3(21)6

= (4321)2234123(12)3σ = (4321)2234123121212σ
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= (4321)2234121321121σ = (4321)2234212321121σ

= · · · = 4 · 32123 · 4 · 323 · 1 · 232 · 4 · 12321 · σ
= 4 · 31213 · 4 · 232 · ·323 · 4 · 13231 · σ
= · · · = 4 · 12321 · 4 · 232 · 1 · 323 · 4 · 32123 · σ
= 4 · 321 · 4 · 32 · 1 · 23 · 4 · 123 · σ

Since ((4 · 3 · 2 · 1)5)2 = (4 · 3 · 2 · 1)10 = 1 in Γ2, we have the positive

relation

(4 · 321 · 4 · 32 · 1 · 23 · 4 · 123 · σ)2 = 1(6.4)

and (4 ·321 ·4 ·32 ·1 ·23 ·4 ·123 ·σ)2 is the product of 16 positive Dehn twists

along non-separating curves and two positive Dehn twists along separating

curves. Furthermore, we see that the lift of the relation (6.4) to Γ2,2 is

(4 · 321 · 4 · 32 · 1 · 23 · 4 · 123 · σ)2 = δ1 · δ2,

where δ1 and δ2 are Dehn twists along boundaries of disks indicated in

Figure 3.

D1 D2

1

3
3

21

23 23

2

D1
D2

σ

1
4

Fig. 3.

Therefore, the Lefschetz fibration induced from the positive relation

(6.4) admits two sections with self-intersection number −1 and so it is a

genus-2 Lefschetz fibration representing (n, s) = (16, 2) of Type (1, 1) in

Table 1.
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D

1

3
3

21

23 23

2

Fig. 4.

(2) Since (4 · 3 · 2 · 1)10 = 1 and (4 · 3 · 2 · 1)5 = 4 · 321 · 4 · 32 · 1 · 23 · 4 · 123 · σ
in Γ2, we have the positive relation

(4 · 3 · 2 · 1)5 · 4 · 321 · 4 · 32 · 1 · 23 · 4 · 123 · σ = 1.(6.5)

Hence, we can construct a genus-2 Lefschetz fibration with (n, s) = (28, 1)

from the positive relation (6.5). Since the lift of the relation (6.5) to Γ2,1 is

(4 · 3 · 2 · 1)5 · 4 · 321 · 4 · 32 · 1 · 23 · 4 · 123 · σ = δ,

where δ is the Dehn twist along the boundary of a disk indicated in Figure

4.

Thus, this fibration has at least one section of square −1. Non-minimal

genus-2 Lefschetz fibrations with (n, s) = (28, 1) are of Type (1) or Type

(2) in Table 1. Every non-minimal fibration of Type (2) admits no section

of square −1. Hence, the fibration induced from the relation (6.5) has one

section of square −1 and represents (n, s) = (28, 1) of Type (1) in Table 1.

Since (4 · 4 · 3 · 2 · 1)8 = 1 and (4 · 4 · 3 · 2 · 1)4 = (4 · 3 · 2 · 1)5 in Γ2, we

can obtain the positive relation

1 = (4 · 4 · 3 · 2 · 1)4 · (4 · 3 · 2 · 1)5

= (4 · 4 · 3 · 2 · 1)4 · 4 · 321 · 4 · 32 · 1 · 23 · 4 · 123 · σ.(6.6)

From the relation (6.6), we can also construct a genus-2 Lefschetz fibration

with (n, s) = (28, 1). But two fibrations induced from the relations (6.5)

and (6.6) are isomorphic, for (4 ·4 ·3 ·2 ·1)4 and (4 ·3 ·2 ·1)5 are equivalent by



The Geography of Non-Minimal Genus-2 Lefschetz Fibrations 485

the braid relations and so the words (4 ·3 ·2 ·1)5 ·4 ·321 ·4 ·32 ·1 ·23 ·4 ·123 ·σ
and (4 · 4 · 3 · 2 · 1)4 · 4 · 321 · 4 · 32 · 1 · 23 · 4 · 123 · σ are Hurwitz equivalent.

(3) By using the braid relations and the chain relation, we obtain a positive

presentation of (5 · 4 · 3 · 2 · 1)3 by 4 Dehn twists as follows :

(5 · 4 · 3 · 2 · 1)3 = 543215432154321 = 543215432543121

= 543215435423121 = 543215453423121

= 543214543423121 = 543214534323121

= 543214534232121 = · · ·
= 345234123 · (21)3 = 345234123(12)3(21)6

= 345234123121212σ = 345234121321212σ = · · ·
= 34543 · 23432 · 12321 · σ = 35453 · 24342 · 13231 · σ
= 53435 · 42324 · 31213 · σ = 54345 · 43234 · 32123 · σ
= 345 · 234 · 123 · σ.

Since (5 · 4 · 3 · 2 · 1)6 = 1 in Γ2, we can obtain the positive relation

1 = (5 · 4 · 3 · 2 · 1)3 · (5 · 4 · 3 · 2 · 1)3

= (5 · 4 · 3 · 2 · 1)3 · 345 · 234 · 123 · σ.(6.7)

The genus-2 Lefschetz fibration induced from the positive relation (6.7) is

a fibration representing (n, s) = (18, 1) and we can see that it has at least

one section of square −1 .

Next we consider an interesting Lefschetz fibration constructed by Au-

roux :

Example 6.3. In [2], Auroux gave the interesting genus-2 Lefschetz

fibration f : X → CP 1 with (n, s) = (28, 1), which is constructed as follows :

Consider a curve C of degree 7 in CP 2 with two triple points p1 and p2.

Then, we can choose C such that the three branches of C through pi intersect

each other transversely. Let L0 be the line through p1 and p2. Since [C] ·
[L0] = 7, the line L0 intersects C transversely in another point p. Next

blow up CP 2 at p and let B be the resulting curve obtained from C by the

blow-up. The complex surface obtained by the blow-up is the Hirzebruch

surface F1 = CP 2�CP 2 and has a S2-bundle over S2. Let L be a line in
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Fig. 5.

CP 2, F a fiber of F1 and E the exceptional curve of the blow-up. Since

B is the proper transform of C in F1, we have that [E] = [L] − [F ] and

[B] = [C] − [E] = 6[L] + [F ]. The proper transform F0 of L0 is the fiber of

F1 through two triple points p1 and p2. The exceptional curve E intersects

the curves B and F0 in one point each transversely.

Next let P be the surface obtained by blowing up F1 at p1 and p2. We

denote the proper transforms of B and F0 in P by B̂ and F̂0, respectively.

See Figure 5.

If we let E1 and E2 be the exceptional curves of the two blow-ups, then

we have that [B̂] = [B] − 3[E1] − 3[E2] = 6[L] + [F ] − 3[E1] − 3[E2] and

[F̂0] = [F ] − [E1] − [E2]. Since [B̂] + [F̂0] = 2(3[L] + [F ] − 2[E1] − 2[E2])

is divisible by 2, we can consider the double cover π : X̂ → P branched

along B̂ ∪ F̂0. Because of [F ] · [E1] = [F ] · [E2] = 0, we have [F̂0]
2 = −2 and

so [π−1(F̂0)]
2 = −2/2 = −1. Hence, π−1(F̂0) is a rational curve of square

−1. Next we want to blow down the (−1)-curve π−1(F̂0), but before that

we consider the fibration f̂ : X̂ → CP 1 obtained by composing the double

cover π : X̂ → P with the projection P → CP 1 induced from the bundle

projection F1 → CP 1. Because of ([B̂] + [F̂0]) · [F ] = 6, a fiber of f̂ is a
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Fig. 6.

closed surface of genus 2 obtained as the double cover of CP 1 branched at 6

points. Namely, f̂ is a genus-2 fibration. Then, the fiber of f̂ corresponding

to F0 is π−1(F̂0 ∪E1 ∪E2) = π−1(F̂0)∪ π−1(E1)∪ π−1(E2). The preimages

π−1(E1) and π−1(E2) are elliptic curves of square −2, for these are obtained

as the double covers of spheres E1 and E2 branched at 4 points each.

By blowing down π−1(F̂0) in X̂, we obtain a holomorphic genus-2 fibra-

tion f : X → CP 1 induced from the genus-2 fibration f̂ : X̂ → CP 1. This

fibration f has one reducible singular fiber consisting of two elliptic curves

of square −1. See Figure 6. Then, we have the following :

Proposition 6.1 ([2]). The complex surface X obtained by blowing

down π−1(F̂0) admits a holomorphic genus-2 Lefschetz fibration f : X →
CP 1 with global monodromy σ · (ζ3 · ζ4 · ζ5 · ζ2 · ζ3 · ζ4 · ζ1 · ζ2 · ζ3)2 · (ζ1 · ζ2 ·
ζ3 · ζ4 · ζ5 · ζ5 · ζ4 · ζ3 · ζ2 · ζ1).

Hence, the Lefschetz fibration f has 28 irreducible singular fibers and

one reducible singular fiber.

Next we chase the exceptional curve E in F1 intersecting the curves

B and F0 in one point each. Since E does not pass through two triple
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points p1 and p2, E gives an exceptional curve in P , which we call E again.

The exceptional curve E in P intersects both B̂ and F̂0 in one point each.

Hence, the preimage E′ = π−1(E) of E via the double cover π : X̂ → P is

the double cover of the sphere branched at two points, and so E′ is a sphere

of square −2. Furthermore, since E′ intersects π−1(F̂0) in one point which

is one of the two branch points of the double cover E′ → E. Therefore,

after blowing down π−1(F̂0), the sphere E′ of square −2 becomes a sphere

E′′ in X of square −1.

The exceptional curve E′′ passes through the singular point of the re-

ducible singular fiber which is the intersection between two elliptic curves

induced from π−1(E1) and π−1(E2), and E′′ comes from a section of the

Hirzebruch surface F1. Hence, the intersection number [E′′] · [F ] of E′′ with

a generic fiber F in X is 2. Therefore, we have the following:

Proposition 6.2. (1) The holomorphic genus-2 Lefschetz fibration f :

X → CP 1 constructed by Auroux in [2] represents (n, s) = (28, 1) of Type

(2) in Table 1.

(2) There exists a non-minimal genus-2 Lefschetz fibration which can

not be obtained from any Lefschetz pencil by blow-ups.

Remark 6.1. (1) In [32], Smith showed that only finitely many pairs

(c21, c2) are realized as the total spaces of genus-2 Lefschetz pencils. By

Proposition 6.2, Theorem 5.1 does not follow from the Smith’s finiteness

result of genus-2 Lefschetz pencils.

(2) By taking the fiber sums, we can obtain infinitely many pairs (c21, c2)

realized as minimal genus-2 Lefschetz fibrations. For example, for the genus-

2 Lefschetz fibration f : CP 2�13CP 2 → CP 1 we consider the fiber sum �mf

of m copies of f . Then, �mf has (c21, c2) = (4m − 8, 20m − 4). It follows

from Theorem 4.4 and Table 1 that the total space of �mf is minimal,

provided m ≥ 2. Hence, Theorem 5.1 does not hold for minimal genus-2

Lefschetz fibrations.
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