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A Note on Semistable Barsotti-Tate Groups

By Fabien Trihan

Abstract. We show that the Dieudonné crystal associated to
a Barsotti-Tate group with potentially semistable reduction over a
smooth curve is overconvergent. As a corollary, we obtain the ratio-
nality of the L-function associated to this group.

1. Introduction

Let U/Fp be a smooth curve and G/U a Barsotti-Tate group. Assume

G/U has potentially semistable reduction (see 4.2 for a precise definition).

We show that the Dieudonné crystal as defined in [1] is overconvergent in the

sense of Berthelot. As a corollary we get the rationality of the L-function

associated to G/U . In the third section we study the local situation, that

is, semitable Barsotti-Tate groups over a complete discrete valuation field of

equal characteristic p. Using Extension groups in the category of Dieudonné

crystals and their interpretation in terms of syntomic cohomology (as de-

fined in [13]) we prove that the Dieudonné crystal associated to such group

extends to a log Dieudonné crystal over the ring of integers. Using the glue-

ing properties of overconvergent F -isocrystals over smooth curves proved in

[14], we deduce from section three the overconvergence of the Dieudonné

crystal associated to G/U and the rationality of its L-function in the last

section. We end both sections three and four by some open questions.
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3. Semistable Barsotti-Tate Groups and Extensions

In this section, we extend the Dieudonné crystal of a semistable Barsotti-

Tate group over a complete discrete valuation field of equal characteristic

p > 0 to a log Dieudonné crystal.

3.1. Let k be a perfect field of characteristic p endowed with its Frobe-

nius σ, W := W (k) the ring of Witt vectors and K = Frac(W ). We denote

η := Spec(k((t))). Let Gη/η a Barsotti-Tate group. Following [5]:

3.2 Definition. The Barsotti-Tate group Gη/η is called semistable if

there exists a filtration:

0 ⊂ Gµ
η ⊂ Gf

η ⊂ Gη

by Barsotti-Tate groups such that the following conditions hold:

1. Gf
η and Gη/G

µ
η extend to Barsotti-Tate groups G1 and G2 over k[[t]].

In this case, the composed map

Gf
η ↪→ Gη → Gη/G

µ
η

extends to a map G1 → G2.

2. Gµ
1 := Ker (G1 → G2) and Gét

2 := coker(G1 → G2) are Barsotti-Tate

groups over k[[t]].

3. Gµ
1 is of multiplicative type and Gét

2 is étale.

3.3 Remark. It has been shown in [5], 2.5, that an abelian variety A

over η has semistable reduction if and only if its associated Barsotti-Tate

group Gη := lim
−→n

A[pn] is semistable.

3.4. Let S be a fine log-scheme over Spec(k) endowed with the trivial

log-structure. We denote the absolute Frobenius of S by σS , lying above

σ. We work on the log crystalline site with the étale topology, denoted
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Crys(S/W )([7]). An object of Crys(S/W ) is a pair (S′, P ), where S′ is

an étale scheme over S, P is a p.d.-thickening of S′ over W with respect

to the p.d.-structure of (p), and we are given an isomorphism between the

inverse image of the log structure of P on S′ and the inverse image of the log

structure of S on S′. Morphisms of Crys(S/W ) are defined in the evident

way. The topology of Crys(S/W ) is given by the étale topology of each P .

In the applications of this paper, S is mainly one of the followings :

1. S/k is a proper smooth curve with the log structure on S associated

to the divisor S \ U , for some open subset U .

2. S = U with the trivial log structure.

3. S = Spec(k[[t]]) with the log structure associated to the closed point.

4. S = η with the trivial log structure.

3.5. A crystal E on Crys(S/W ) is called a Dieudonné crystal if it

is a finite locally free crystal endowed with linear operators F : σ∗SE → E

and V : E → σ∗SE called respectively Frobenius and Verschiebung such that

FV = p and V F = p. If (D,FD, VD) is a Dieudonné crystal on Crys(S/W ),

its OS/W -dual D∨ is endowed with a structure of Dieudonné crystal such

that FD∨ = (VD)∨ and VD∨ = (FD)∨.

3.6. Let G be a Barsotti-Tate group over S. By the crystalline

Dieudonné theory (see for example [1], [2], [4]), the Dieudonné crystal D(G)

on Crys(S/W ) is defined by forgetting the log structures of objects of

Crys(S/W ) (D is a contravariant functor). More precisely, let π denote

the canonical morphism from S to Striv, the scheme S endowed with the

trivial log-structure. Then π∗D(G) is a Dieudonné crystal on Crys(S/W )

that we still denote D(G). The OS/W -dual of D(G) will be denoted by

D(G), so that D(.) becomes a covariant functor. We will furthermore, de-

note by 1 := D(Qp/Zp) the Dieudonné crystal (OS/W , F = p, V = id) and

by 1(1) := D(µp∞) the Dieudonné crystal (OS/W , F = id, V = p). The

Dieudonné crystals 1 and 1(1) are dual to each other.

3.7. We recall the construction of the syntomic cohomology as defined

in [13] in the case S = Spec(k[[t]]) with the log structure associated to



414 Fabien Trihan

the closed point. Let D be a Dieudonné crystal over S/W . The syntomic

complex SD is the total complex associated to the bicomplex

D0 ∇→ D ⊗ Ω1
Y

1 − F1 ↓ ↓ 1 − F2

D
∇→ D ⊗ Ω1

Y

We explain the notations: Y = Spf(W [[t]]) is endowed with the log-

structure associated to N → W [[t]] sending n to tn. It is a log smooth

formal lifting of S and we denote σY a lifting of the Frobenius of S sending

the variable t to tp. By abuse of notation, we still denote (D,∇, FD, VD)

the realization of the Dieudonné crystal D at the p.d. thickening (S ⊂ Y)

endowed with its connection, Frobenius and Verschiebung. Consider the

composed map

D
ι→ σ∗YD → σ∗YD/VD(D)

where ι is the map sending x → 1 ⊗ x. Set Lie(D) to be the image of the

above map. Then Lie(D) is a locally free OS-module (see [13], 5.3) and

we denote D0, the kernel of the surjective map D → Lie(D). Finally, we

explain the Frobenius operators. The map F1 : D0 → D is constructed as

follows: the composed map

F̃1 : D0 1→ D
ι→ σ∗YD

FD→ D,

is in p.D (see [13], 5.8.1) and we set F1 := p−1F̃1. On the other side, remark

that σY(Ω1
Y) ⊂ p.Ω1

Y so that we can define a map

F2 := FD ◦ ι ⊗ p−1σY .

3.8 Proposition. Assume k is algebraically closed and let S =

Spec(k[[t]]) endowed with the log structure associated to the closed point.

Then, we have:

H i(S,S1(1)) = H i(η,S1(1)) =

{
k̂((t))×, i = 1

0, otherwise,

where M̂ = lim
←−n

M/Mpn for any multiplicative group M .



Semistable Barsotti-Tate Group 415

Proof. First, we prove the claim for H i(η,S1(1)). By [13], 5.10, we

have

H i(η,S1(1)) = H i
fl(η, TpGm).

Since k((t)) is a C1-field, we have

H i
fl(η,Gm) =

{
k((t))× , i = 1

0, otherwise.

By using the short exact sequence

0 → µpn → Gm
pn→ Gm → 0

on the flat site, we see that

H i
fl(η, TpGm) =

{
k̂((t))× , i = 1

0, otherwise.

So the claim for H i(η,S1(1)) is proved.

Next we prove the claim for H i(S,S1(1)). In the case of the crystal

D = 1(1) the short exact sequence

0 → D0 → D → Lie(D) → 0

is induced by the canonical short exact sequence in the crystalline site:

0 → IS/W → OS/W → Ga → 0

which induces on the pd-thichening S ⊂ Y the short exact sequence:

0 → p.W [[t]] → W [[t]] → k[[t]] → 0.

Hence, the syntomic complex of 1(1) over S is the total complex associ-

ated to the bicomplex

p.W [[t]]
d→ W [[t]]dtt

1 − F1 ↓ ↓ 1 − F2

W [[t]]
d→ W [[t]]dtt
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where d : W [[t]] → W [[t]]dtt is the map sending an element
∑

i ait
i to

(
∑

i iait
i)dtt , F1 is the map sending an element p.

∑
i ait

i to
∑

i σ(ai)t
pi

and F2 the map sending an element (
∑

i ait
i)dtt to (

∑
i σ(ai)t

pi)dtt . Hence,

S1(1) is the complex concentrated in degree 0, 1, 2:

[pW [[t]]
d,1−F1→ W [[t]]

dt

t
⊕ W [[t]]

1−F2,−d→ W [[t]]
dt

t
].

Remark that this complex is isomorphic to the complex

[W [[t]]
pd,p−σ→ W [[t]]

dt

t
⊕ W [[t]]

1−F2,−d→ W [[t]]
dt

t
].

We compute the H0: By definition H0 = Ker (d) ∩ Ker (1 − F1). Since

Ker (d) = pW , H0 is equal to the set of element p.a ∈ pW such that

pa − σ(a) = 0. Since the p-adic valuation v(σ(a)) is equal to v(a), the

previous equality gives a = 0.

We compute the H2: to show that this is zero, we just need to show that

the map π := (1 − F2,−d) is surjective. But for any
∑

i cit
i dt
t ∈ W [[t]]dtt ,

the element (
∑

i bit
i dt
t , 0), with bi = ci+σ(bi/p) if p divide i and bi = ci else

is an antecedent of
∑

i cit
i dt
t by π.

We now turn to the computation of H1 := Ker (π)/Im(d, 1 − F1). The

group Ker (π) is the set of elements (
∑

i ait
i dt
t ,

∑
i bit

i) such that a0 ∈ Zp and

for n, any positive integer with p-adic valuation r, an = nbn+(n/p)σ(bn/p)+

... + (n/pr)σr(bn/pr). We get this way an isomorphism

Ker (π) � Zp
dt

t
⊕ W [[t]]

by sending (
∑

i ait
i dt
t ,

∑
i bit

i) to (a0,
∑

i bit
i), which induces an isomor-

phism

Im(d, 1 − F1) � 0 ⊕ Im(1 − F1),

since the elements in Im(d) have no constant terms.

We get

H1 = Zp
dt

t
⊕ W [[t]]/Im(1 − F1).

On the other hand, k((t))× � tZ× k× × (1 + tk[[t]]) and (k((t))×)p
n

=

k((tp
n
))× � tp

nZ × k× × (1 + tp
n
k[[tp

n
]]). So, we are reduced to identify
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W [[t]]/Im(1−F1) and lim
←−n

(1+ tk[[t]])/(1+ tp
n
k[[tp

n
]]). We first prove that

the lefthand side is p-adically complete. By, [15], chapter 8, it is enough

to prove that I = Im(1 − F1) is closed and in particular complete. Let

(fm(t) =
∑

i b
(m)
i ti)m∈N a sequence of elements in I converging to f(t) =∑

i bit
i ∈ W [[t]]. We want to show that f(t) is in fact in I. Since fm(t) ∈ I,

for any m, there exists some sequence (a
(m)
i )i ∈ WN such that b

(m)
i =

pa
(m)
i − σ(a

(m)
i
p

) if p divides i and b
(m)
i = pa

(m)
i else. We construct by

induction on the p-adic valuation of i, a sequence (ai)i ∈ WN such that

(1 − F1)(
∑

i pait
i) = f(t). For vp(i) = 0, that is when p does not divide i,

p.a
(m)
i converges when m goes to infinity to bi so that (a

(m)
i ) converges to an

element ai ∈ W such that bi = p.ai. Assume now that for any i such that

vp(i) ≤ r, (a
(m)
i ) converges to an element ai ∈ W . Then, if vp(i) = r +1, we

have b
(m)
i = pa

(m)
i − σ(a

(m)
i
p

), with (b
(m)
i )m converging to an element bi and

by induction hypothesis, (σ(a
(m)
i
p

))m converging to an element σ(a i
p
) and so

we deduce that (a
(m)
i ) converges to an element ai ∈ W .

Let D = 1(1). We compute now H1(S,SD)/pn: we have a short exact

sequence

0 → SD
×pn→ SD → SD,n → 0,

which induces an exact sequence

H1(S,SD)
×pn→ H1(S,SD) → H1(S,SD,n) → H2(S,SD).

Since we already have proved that H2(S,SD) = 0, we deduce for any n the

isomorphisms

H1(S,SD)/pn � H1(S,SD,n).

By [13], 5.14.6, we also have

H1(η,SD)/pn � H1(η,SD,n).

Again, by using the short exact sequence:

0 → SD,1 → SD,n+1
×p→ SD,n → 0
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and the 5-lemma, we are reduced by induction to prove that

H1(S,SD,1) � H1(η,SD,1).

Using the second description of the syntomic complex, we have the quasi-

isomorphisms:

S1(1),S ⊗Z/p � [k[[t]]
0,−σ→ k[[t]]

dt

t
⊕ k[[t]]

πS→ k[[t]]
dt

t
],

S1(1),η ⊗Z/p � [k((t))
0,−σ→ k((t))

dt

t
⊕ k((t))

πη→ k((t))
dt

t
]

and the map H1(S,S1(1))/p → H1(η,S1(1))/p is induced by the natural

inclusion

k[[t]]
dt

t
⊕ k[[t]] ↪→ k((t))

dt

t
⊕ k((t)).

Now, we compute H1(η,S1(1))/p. For any element (
∑

i ait
i dt
t ,

∑
i bit

i) ∈
Ker (πη) we find the same conditions that a0 ∈ Fp and for n, any positive in-

teger with p-adic valuation r, an = nbn+(n/p)σ(bn/p)+...+(n/pr)σr(bn/pr).

For negative integers and working modulo Im(σ) = k((tp)), we claim that

only the bj ’s with b−j = 0 for any j prime to p, gives a solution. Namely,

for such j we have a−j = −jb−j but then a−jpk = σ(−jb−j) for any positive

integer k. But since
∑

i ait
i ∈ k((t)), we must have a−jpk = 0 for k big

enough. Therefore, the canonical inclusion

k[[t]]
dt

t
⊕ k[[t]] ↪→ k((t))

dt

t
⊕ k((t))

induces the identity map

H1(S,SD)/p = Fp
dt

t
⊕ k[[t]]/k[[tp]] → Fp

dt

t
⊕ k[[t]]/k[[tp]] = H1(η,SD)/p.

Hence, we proved the canonical isomorphism H1(S,SD) � H1(η,SD) and

so the proof of the proposition is finished. �

3.9. Let D1, D2 some Dieudonné crystals over S/W . We will denote

ExtS/W (D1, D2) (or Ext(D1, D2) if there is no ambiguity) the isomorphism

classes of extensions

0 → D2 →? → D1 → 0
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in the category of Dieudonné crystals over S/W . Any commutative diagram

S′
f→ S

↓ ↓
Spec(W )

g→ Spec(W )

induces in the crystalline topos a functor f∗ : (S′/W )crys → (S/W )crys al-

lowing to define for any Dieudonné crystals D1 and D2 over S/W a canonical

map

f∗ : Ext1(D1, D2) → Ext1(f∗D1, f
∗D2),

sending the isomorphism class of an extension:

0 → D2 →? → D1 → 0

to the isomorphism class of the extension

0 → f∗D2 → f∗? → f∗D1 → 0.

(The exactness of this sequence follows from the local freeness of D1.)

3.10. Let Gη/η a semistable Barsotti-Tate group and denote as in 3.2

Gf
η , Gµ

η , G1, Gµ
1 , G2 and Gét

2 its associated Barsotti-Tate groups. We denote
S := Spec(k[[t]]) endowed with the log-structure induced by its closed point.
We also denote j : η → Spec(k[[t]]) the open immersion. Then there is a
commutative diagram of exact sequences:

Ext(D(Gét
2 ), D(Gµ

1 ))
flog→ Ext(D(Gét

2 ), D(G1))
glog→ Ext(D(Gét

2 ), D(G1/G
µ
1 ))

h1 ↓ h2 ↓ h3 ↓
Ext(D(Gη/G

f
η), D(Gµ

η ))
f→ Ext(D(Gη/G

f
η), D(Gf

η))
g→ Ext(D(Gη/G

f
η), D(Gf

η/G
µ
η ))

where the horizontal maps are defined by applying the functor

RHom(D(Gét
2 ), .) and RHom(D(Gη/G

f
η), .) to the short exact sequences:

0 → D(Gµ
1 ) → D(G1) → D(G1/G

µ
1 ) → 0,

and

0 → D(Gµ
η ) → D(Gf

η) → D(Gf
η/G

µ
η ) → 0

of Dieudonné crystals over (S/W )crys and (η/W )crys respectively. The ver-

tical maps are induced by the functor j∗ : (S/W )crys → (η/W )crys.
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3.11 Lemma. Assume k is algebraically closed. Then the map glog is

surjective.

Proof. Since k is algebraically closed, Gét
2 � (Qp/Zp)a and we can

reduce to the the case a = 1, that is to the case D(Gét
2 ) = 1. By [13], 5.9,

Ext(1, D(G1)) � H1(k[[t]],SD(G1)). Similarly, we have

Ext(1, D(G1/G
µ
1 )) � H1(k[[t]],SD(G1/G

µ
1 ))

so that the cokernel of glog is H2(k[[t]],SD(Gµ
1 )). Again, since k is alge-

braically closed, we can reduce to the case D(Gµ
1 ) = 1(1) and the assertion

results from 3.8. �

3.12 Lemma. Assume that k is algebraically closed, then h1 is an iso-

morphism.

Proof. We are reduced to prove that

ExtS/W (1,1(1)) � Extη/W (1,1(1)).

Using [13], 5.9 and 5.10, it is enough to prove that the map

H1(S,S1(1)) → H1(η,S1(1))

is an isomorphism but this has already been proved in 3.8. �

3.13 Theorem. Assume k is algebraically closed.

Let α ∈ Ext(D(Gη/G
f
η), D(Gf

η)) be the isomorphism class of the exten-

sion:

0 → D(Gf
η) → D(Gη) → D(Gη/G

f
η) → 0.

There exists a short exact sequence of Dieudonné crystals over S/W :

0 → D(G1) → Dlog → D(Gét
2 ) → 0,

such that its isomorphism class β is sent by h2 to α.

As a corollary, we get:

3.14 Corollary. Let Gη/η := k((t)) be a semistable Barsotti-Tate

group. Then its Dieudonné crystal D(Gη) extends to a Dieudonné crystal
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Dlog over S, the scheme Spec(k[[t]]) endowed with the log-structure induced

by its closed point.

We now prove the theorem:

Proof. Let γ ∈ Ext(D(Gét
2 ), D(G1/G

µ
1 )) be the isomorphism class of

the extension:

0 → D(G1/G
µ
1 ) → D(G2) → D(Gét

2 ) → 0

such that we have g(α) = h3(γ). Since glog is surjective, there exists γ̃ ∈
Ext(D(Gét

2 ), D(G1)) such that glog(γ̃) = γ. Since g(α − h2(α̃)) = 0, there

exists some δ ∈ Ext(D(Gη/G
f
η), D(Gµ

η )), corresponding by 3.12 to a unique

δ̃ ∈ Ext((D(Gét
2 ), D(Gµ

1 )), such that f(δ) = α−h2(α̃). Then β := flog(δ̃)+γ̃

is sent by h2 to α. �

3.15 Definition. Let Gη/η be a Barsotti-Tate group. We say that it

is overconvergent if its associated Dieudonné isocrystal, corresponding to a

(ϕ,∇) over

E = {a =
+∞∑
−∞

aix
i| ai ∈ K, sup

i
|ai| < ∞, |ai| → 0 (i → −∞)}

(see [14]) admits a lattice as (ϕ,∇)-module over

E† = {a ∈ E||ai|ri → 0 (i → −∞) for a certain r, 0 < r < 1}.

As a corollary of 3.14, we have:

3.16 Corollary. Any semistable Barsotti-Tate group Gη/η is over-

convergent.

3.17 Remark.

1. Any Barsotti-Tate group coming from an abelian variety is overcon-

vergent: the abelian variety has potentially semistable reduction and

in consequence it has been shown in [13] that the Dieudonné crystal of

the abelian variety (which coincides with the Dieudonné crystal of the

associated Barsotti-Tate group) comes from a log Dieudonné crystal

after taking some finite étale base change.
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2. Barsotti-Tate groups associated to p-adic representations of the abso-

lute Galois group of η with infinite monodromy are not overconvergent

([18]).

3. We have shown that if Gη/η is semistable then it is overconvergent.

Reciprocally, if Gη/η is overconvergent, can we conclude that it is

potentially semistable? Since Gη/η is overconvergent its associated

isocrystal will be quasi-unipotent by the local p-adic monodromy the-

orem of André-Kedlaya-Mebkhout. So we know that it will come from

some log-Dieudonné crystal after considering some finite étale base

change. The previous question can thus be rephrased as: Is there a

log Dieudonné functor from the category (still to be defined) of log

p-divisible groups to the category of log Dieudonné modules over k[[t]]

and if yes, is this functor an equivalence of categories (as this is the

case without log-structure by [4])?

4. Recall (see [19]) that Gη/η is endowed with a unique Frobenius slope

filtration, whose quotients are isoclinic Barsotti-Tate groups. Assume

each quotients to be overconvergent. Does it imply that Gη/η is over-

convergent?

4. Semistable Barsotti-Tate Groups over Smooth Curves

4.1. In this section, we consider a dense open subset U of a proper

smooth connected curve C/Fp. For any closed point x ∈ C, we denote

ηx := Spec(k(x)((t))) and Kx := Frac(W (k(x))). For any Fp-scheme T , we

will denote T̄ := T ×Fp F̄p.

4.2 Definition. A Barsotti-Tate group G/U is called semistable if at

any closed point x ∈ Z := C \ U , Gηx := G ×U ηx/ηx is semistable. We

say that a Barsotti-Tate group G/U is potentially semistable if and only if

there exists some finite Galois covering U ′ → U such that G′ := G×U U ′/U ′

is semistable.

4.3. Let G/U a potentially semistable Barsotti-Tate group. We asso-

ciate to G/U the following L-function:

L(U,G, t) :=
∏
x∈U

det(1 − tdeg(x)Fx, D(Gx))
−1,
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where (D(Gx), Fx) is the F -isocrystal over k(x) deduced from D(G) by

restriction and deg(x) := [k(x) : Fp].

We are going to show that the Dieudonné crystal associated to a po-

tentially semistable Barsotti-Tate group is overconvergent and that its as-

sociated L function is a rational function. We will need the following lemma:

4.4 Lemma. ([6])

Let E be a convergent F -isocrystal over U . Let π : Ū → U the canonical

étale covering. Assume that π∗E is overconvergent, then E is overconver-

gent.

4.5 Theorem. Let G/U a potentially semistable Barsotti-Tate group.

Then its associated Dieudonné crystal D(G) over U has a structure of over-

convergent F -isocrystal D(G)† over U .

Proof. By the previous lemma we can assume U = Ū and by finite

étale descent we can assume that G/U is semistable. For any closed point

x ∈ Z, we denote ηx := Spec(Frac( ˆOC,x)) and Sx := Spec( ˆOC,x) endowed

with the log-structure induced by its closed point. By 3.14, the Dieudonné

crystal D(G ×U ηx) extends to a Dieudonné crystal Dlog over Sx. Hence,

the assertion follows from [14], proposition 4. �

4.6 Corollary. Let G/U a potentially semistable Barsotti-Tate

group. Then its L-function L(G,U, t) is a rational function in t. More

precisely, we have:

L(G,U, t) =
2∏
i=0

det(1 − tF,H i
rig,c(U,D(G)†))(−1)i+1

.

Proof. By 4.5 D(G) has a structure of overconvergent F -isocrystal

and the formula results from [17], theorem 1.2. Finally, the rationaly re-

sults from the finiteness of the cohomological groups H i
rig,c(U,D(G)†) which

follows from [14], corollary 8 and the Poincaré duality of rigid cohomology. �

4.7 Remark. Let GF /F be a Barsotti-Tate group, where F is the

function field of C.
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1. It is a priori not always possible to extend GF /F to some Barsotti-

Tate group G over some dense open subset U of C (but this is the

case when GF /F is the Barsotti-Tate group associated to an abelian

variety). For example, consider the étale case. Then, we can re-

place Barsotti-Tate groups by p-adic representations. We can find an

example of a p-adic representation of Gal(F̄ /F ) that ramifies at in-

finitely many places and thus don’t factorize through any fundamental

group of some dense open subset U of C. To construct such repre-

sentation, it is enough to construct a Zp-extension K of F that ram-

ifies at infinitely many places (it exists: see for example [11]). Take

any extension L/F with Galois group (Z/p)×. Then the extension

K.L/F has a Galois group isomorphic to Z×p and the natural projec-

tion Gal(F̄ /F ) → Gal(K.L/F ) gives an example of one-dimensional

p-adic representation of Gal(F̄ /F ) that ramifies at infinitely many

places.

2. If G1, G2/U are two Barsotti-Tate groups with GF /F as generic fiber,

are G1 and G2 isomorphic (or at least isogenous)? See [5] for some

evidences on this question. If the answer to this question is yes and

GF /F extends to some Barsotti-Tate group G/U , then we can define

the Hasse-Weil L-function of GF /F as L(GF , t) := L(U,G, t).
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