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An SO(3)-Version of 2-Torsion Instanton Invariants

By Hirofumi Sasahira∗

Abstract. We construct an invariant for non-spin 4-manifolds
by using 2-torsion cohomology classes of moduli spaces of instantons
on SO(3)-bundles. The invariant is an SO(3)-version of Fintushel-
Stern’s 2-torsion instanton invariant. We show that this SO(3)-torsion
invariant is non-trivial for 2CP2#CP 2, while it is known that any
known invariant of 2CP2#CP2 coming from the Seiberg-Witten theory
is trivial since 2CP2#CP2 has a positive scalar curvature metric.

1. Introduction

The purpose of this paper is to construct an SO(3)-version of Fintushel-

Stern’s torsion invariants [FS]. R. Fintushel and R. Stern constructed a

variant of Donaldson invariants for spin 4-manifolds by using 2-torsion co-

homology classes of the moduli spaces of instantons on SU(2)-bundles. They

used cohomology classes of degree one and two. S. K. Donaldson gave an-

other construction by using a class of degree 3 [D4]. As is well known, the

usual Donaldson invariant is trivial for the connected sum of 4-manifolds

with b+ positive ([D3]). On the other hand, Fintushel and Stern showed

that their torsion invariant is not necessarily trivial for the connected sum

of the form Y#S2 × S2 in general.

In this paper, we define an invariant of 4-manifolds using 2-torsion co-

homology classes of SO(3)-moduli spaces and show that our invariant is not

necessarily trivial for Y#S2 × S2 as in the case of Fintushel-Stern’s invari-

ant. We basically follow the argument in [FS] and modify it to extend the

definition to non-spin 4-manifolds.

The outline of the construction is as follows. Let X be a closed, oriented,

simply connected, non-spin Riemannian 4-manifold and P be an SO(3)-

bundle over X satisfying

w2(P ) = w2(X) ∈ H2(X; Z2), p1(P ) ≡ σ(X) mod 8.
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Here σ(X) is the signature of X. Let B∗
P be the space of gauge equivalence

classes of irreducible connections on P . In [AMR], S. Akbulut, T. Mrowka

and Y. Ruan showed that H1(B∗
P ; Z2) is isomorphic to Z2. We denote the

generator by u1. On the other hand, for homology class [Σ] ∈ H2(X; Z)

with self-intersection number even, we have an integral cohomology class

µ([Σ]) ∈ H2(B∗
P ; Z). Suppose that the dimension of the moduli space MP

of instantons on P is 2d+1 for some non-negative integer d. In general MP

is not compact. However for homology classes [Σ1], . . . , [Σd] ∈ H2(X; Z)

with self-intersection numbers even, we can define the pairing

qu1
X ([Σ1], . . . , [Σd]) = 〈u1 ∪ µ([Σ1]) ∪ · · · ∪ µ([Σd]), [MP ]〉 ∈ Z2

in an appropriate sense. We show that this number depends only on the

homology classes [Σi] and gives a differential-topological invariant of X.

We will show a gluing formula of torsion invariants for Y#S2×S2, which

is an SO(3)-version of Theorem 1.1 in [FS]. By using this gluing formula

and D. Kotschick’s calculation in [K1, K2], we prove that qu1

2CP2#CP2
is non-

trivial. This example exhibits two interesting aspects explained below.

The first aspect is related to vanishing theorem. We have a descrip-

tion of X = 2CP2#CP 2 as the connected sum of Y1 = CP2 and Y2 =

CP2#CP2. Since the second Stiefel-Whitney class w2(P ) is equal to w2(X),

both of w2(P )|Y1 and w2(P )|Y2 are non-trivial. In such a situation, the usual

Donaldson invariants are trivial by the dimension-count argument ([MM]).

Hence the non-triviality of qu1

2CP2#CP2
implies that the dimension-count ar-

gument can not be applied directly to proving such a vanishing theorem

in our case. If each homology class [Σi] is in H2(Y1; Z) or H2(Y2; Z), then

we can show that our invariant vanishes. However we can not reduce the

argument to this case because of the condition that [Σi] · [Σi] must be even

to define our invariant.

The next aspect is related to the Seiberg-Witten theory. In [Wi], E.

Witten introduced invariants, called the Seiberg-Witten invariants, of 4-

manifolds using monopole equations. He conjectured that the invariants

are equivalent to the Donaldson invariants and explicitly wrote a formula

which should give a relation between the Donaldson invariants and the

Seiberg-Witten invariants. In [PT], V. Pidstrigach and A. Tyurin proposed

a program to give a rigorous mathematical proof of the formula by using

non-abelian monopoles. The theory of non-abelian monopoles has been de-
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veloped by P. Feehan and T. Leness ([FL1, FL2, FL3]). Feehan and Leness

recently announced that they completed the proof of Witten’s formula for

4-manifolds of simple type with b1 = 0 and b+ > 1 in [FL4].

The non-triviality of qu1

2CP2#CP2
is quite a contrast to the equivalence of

the Donaldson invariants and Seiberg-Witten invariants. If a 4-manifold has

a positive scalar curvature metric and satisfies b+(X) ≥ 1, then the moduli

space of solutions of the monopole equations with respect to the metric is

empty for some perturbation. Hence any known invariant of 2CP2#CP2

coming from the monopole equations (the Seiberg-Witten invariant and a

refinement due to S. Bauer and M. Furuta [BF]) is trivial since 2CP2#CP2

has a positive scalar curvature metric.

The paper is organized as follows. In Section 2, we construct cohomology

classes µ([Σ]) and u1, and define a torsion invariant. In Section 3, we prove

a gluing formula for the connected sum of the form Y#S2 × S2. In Section

4, we prove that qu1

2CP2#CP2
is non-trivial by using the gluing formula. We

also discuss the reason why the usual vanishing theorem does not hold for

our torsion invariant.

Acknowledgment . The author would like to thank my advisor Mikio Fu-

ruta for his suggestions and warm encouragement. The author also thanks

Yukio Kametani and Nobuhiro Nakamura for useful conversations.

2. Torsion Invariants

2.1. Notations

Let X be a closed, oriented, simply connected 4-manifold, g a Rieman-

nian metric on X and P an SO(3)-bundle over X. Put

k = −1

4
p1(P ) ∈ Q, w = w2(P ) ∈ H2(X; Z2).

Let A∗
P be the space of irreducible connections on P and GP be the gauge

group of P . We write B∗
P or B∗

k,w,X for the quotient space A∗
P /GP . We

denote by MP or Mk,w,X the moduli space of instantons on P .

Let A be an instanton on P . We have a sequence

Ω0
X(gP )

dA−→ Ω1
X(gP )

d+
A−→ Ω+

X(gP ).
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The condition that A is an instanton implies that d+
A ◦ dA = 0. Hence the

above sequence define a complex. We denote the cohomology groups by

H0
A, H1

A, H2
A.

Let P̄ be a U(2)-lift of P and Ē be the rank 2 complex vector bundle

associated with P̄ . Fix a connection adet on det Ē. We write AĒ for the

space of connections on Ē which induce the connection adet on det Ē, and

writeA∗
Ē

for the space of irreducible connections inAĒ . Let GĒ be the group

of bundle automorphisms on Ē with determinant 1. We also introduce a

subgroup G0
Ē

of GĒ . Fix a point x0 in X. The subgroup G0
Ē

is defined by

G0
Ē = {g ∈ GĒ |g(x0) = 1}.

We denote the quotient spaces by

B∗
Ē = A∗

Ē/GĒ , B̃Ē = AĒ/G0
Ē , B̃∗

Ē = A∗
Ē/G

0
Ē .

Since we are assuming that X is simply connected, the natural map B∗
Ē
→

B∗
P is bijective.

To construct cohomology classes u1 and µ([Σ]), we need the universal

bundle Ẽ over X × B̃Ē . The universal bundle is defined by

Ẽ := Ē ×G0
Ē
AĒ −→ X × B̃Ē .

For a closed, oriented surface Σ embedded in X, let ν(Σ) be a small tubular

neighborhood of Σ. We define spaces of gauge equivalence classes of con-

nections on ν(Σ). Let Aν(Σ) be the space of connections on Ē|ν(Σ) which

induce the connection adet|ν(Σ) on det Ē|ν(Σ). Let Gν(Σ) be the group of au-

tomorphisms of Ē|ν(Σ) with determinant 1. We assume that the base point

x0 is in ν(Σ). Define G0
ν(Σ) by

G0
ν(Σ) = {g ∈ Gν(Σ)|g(x0) = 1}.

We denote the quotient spaces by

B∗
ν(Σ) = A∗

ν(Σ)/Gν(Σ), B̃ν(Σ) = Aν(Σ)/G0
ν(Σ), B̃∗

ν(Σ) = A∗
ν(Σ)/G0

ν(Σ).

Restricting connections, we have a map

r̃ν(Σ) : B̃∗
Ē −→ B̃ν(Σ).

We have the universal bundle Ẽν(Σ) over ν(Σ)× B̃ν(Σ) defined by

Ẽν(Σ) := (Ē|ν(Σ))×G0
ν(Σ)

Aν(Σ) −→ ν(Σ)× B̃ν(Σ).
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2.2. Cohomology classes of B∗
P

Suppose Σ is a closed, oriented surface embedded in X such that 〈w2(P ),

[Σ]〉 ≡ 0 mod 2. In this subsection, we define a 2-dimensional integral co-

homology class µ([Σ]) ∈ H2(B∗
P ; Z). Basically we follow a standard con-

struction in [DK, K1].

We first define the cohomology class µ̃Ē([Σ]) ∈ H2(B̃Ē ; Z) to be the slant

product c2(Ẽ)/[Σ].

Lemma 2.1. Let β : B̃∗
Ē
→ B∗

Ē
be the projection. Then the induced

homomorphism

β∗ : H2(B∗
Ē ; Z) −→ H2(B̃∗

Ē ; Z)

is injective. Moreover for a homology class [Σ] ∈ H2(X; Z) with 〈w2(P ),

[Σ]〉 ≡ 0 mod 2, the cohomology class µ̃Ē([Σ]) lies in the image of β∗.

Proof. Since H1(SO(3); Z) = 0, the spectral sequence associated with

the fibration SO(3)→ B̃∗
Ē
→ B∗

Ē
induces an exact sequence

0 −→ H2(B∗
Ē ; Z)

β∗
−→ H2(B̃∗

Ē ; Z) −→ H2(SO(3); Z),(1)

which implies the injectivity of β∗.
Let η be a complex line bundle over SO(3) defined by

η := SU(2)×{±1} C −→ SO(3).

Here the action of {±1} on C is the multiplication. Then it is easy to obtain

the identification

Ẽ|Σ×SO(3) = (Ē|Σ)×{±1} SU(2) = (Ē|Σ) � η −→ Σ× SO(3),

and we have

c2(Ẽ|Σ×SO(3))/[Σ] =
(
π∗

1c2(Ē|Σ) + π∗
1c1(Ē|Σ) ∪ π∗

2c1(η)
)
/[Σ]

=
〈
c1(Ē), [Σ]

〉
c1(η)

∈ H2(SO(3); Z) ∼= Z2,

where

π1 : Σ× SO(3) −→ Σ, π2 : Σ× SO(3) −→ SO(3)
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are the projections. If 〈w2(P ), [Σ]〉 is zero, the pairing
〈
c1(Ē), [Σ]

〉
is even,

and hence the restriction of c2(Ẽ)/[Σ] to SO(3) is trivial. From the exact

sequence (1), µ̃Ē([Σ]) is in the image of β∗. �

By Lemma 2.1, there is a unique element of H2(B∗
Ē
; Z) such that the

image by β∗ is µ̃Ē([Σ]). Through the natural identification between B∗
P

and B∗
Ē
, we have a 2-dimensional cohomology class of B∗

P . We denote it by

µĒ([Σ]).

Lemma 2.2. Let X be a closed, oriented, simply connected 4-manifold

and P be an SO(3)-bundle over X. Suppose that [Σ] is a 2-dimensional

homology class in X with 〈w2(P ), [Σ]〉 ≡ 0 mod 2. Then the cohomology

class µĒ([Σ]) ∈ H2(B∗
P ; Z) is independent of the choice of Ē.

This lemma will be shown in §2.4 as a corollary of Lemma 2.15. Under

the assumption in Lemma 2.2, we define µ([Σ]) ∈ H2(B∗
P ; Z) as follows.

Definition 2.3. For a homology class [Σ] ∈ H2(X,Z) with 〈w2(P ),

[Σ]〉 ≡ 0 mod 2, the cohomology class µ([Σ]) ∈ H2(B∗
P ; Z) is defined to be

µĒ([Σ]).

Remark 2.4. Let

P := P ×GP
A∗

P −→ X × B∗
P

be the universal bundle of P . Then the usual definition of µ-map is given

by

µQ : H2(X; Z) −→ H2(B∗
P ; Q)

[Σ] �−→ −1
4p1(P)/[Σ].

In general, µQ([Σ]) does not have an integral lift. Under our assumptions,

it is easy to see that µ([Σ]) is an integral lift of µQ([Σ]).

Next we define a torsion cohomology class u1 ∈ H1(B∗
P ; Z2). We write

σ(X) for the signature of X. Akbulut, Mrowka and Ruan showed the fol-

lowing in [AMR].
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Proposition 2.5 ([AMR]). Let X be a closed, oriented, simply con-

nected 4-manifold and P be an SO(3)-bundle over X. Then we have

π1(B∗
P ) =

{
Z2 if w2(P ) = w2(X), p1(P ) ≡ σ(X) mod 8

1 otherwise.

Remark 2.6. Suppose P is an SO(3)-bundle over X with w2(P ) equal

to w2(X) and let P̄ be a U(2)-lift of P . Then p1(P ) is equal to σ(X)

modulo 8 if and only if c2(P̄ ) is equal to 0 modulo 2. This equivalence is a

consequence of the formulas

p1(P ) = −4c2(P̄ ) + c1(P̄ )2, w2(X)2 ≡ σ(X) mod 8.

When w2(P ) = w2(X) and p1(P ) ≡ σ(X) mod 8, we have

H1(B∗
P ; Z2) ∼= Z2 from Proposition 2.5.

Definition 2.7. Let X be a closed, oriented, simply connected 4-

manifold and P be an SO(3)-bundle over X satisfying w2(P ) = w2(X),

p1(P ) ≡ σ(X) mod 8. We write u1 for the generator of H1(B∗
P ; Z2) ∼= Z2.

2.3. Construction of qu1
X

Let X be a closed, oriented, simply connected 4-manifold. Suppose

b+(X) = 2a for a positive integer a. Let P be an SO(3)-bundle over X.

Assume that P satisfies the condition

w2(P ) = w2(X) ∈ H2(X; Z2), p1(P ) ≡ σ(X) mod 8.(2)

The virtual dimension of MP is given by

dimMP = −2p1(P )− 3(1 + b+(X)) = 8k − 3(1 + 2a).

If we put d = −p1(P )− 3a− 2 = 4k − 3a− 2, then we have

dimMP = 2d+ 1.

From the condition (2), we have

d ≡ −σ(X)− 3a− 2 mod 8.
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Suppose that d ≥ 0 and take 2-dimensional homology classes [Σ1], . . . , [Σd]

of X satisfying

〈w2(P ), [Σi]〉 ≡ 0 mod 2 (i = 1, . . . , d).

The assumption 〈w2(P ), [Σi]〉 ≡ 0 mod 2 is equivalent to [Σi] · [Σi] ≡ 0

mod 2 since w2(P ) is equal to w2(X). We want to define the pairing

〈u1 ∪ µ([Σ1]) ∪ · · · ∪ µ([Σd]),MP 〉 ∈ Z2. The moduli space MP is not com-

pact in general and the pairing is not well-defined in the usual sense. To

define the pairing, we need submanifolds VΣi dual to µ([Σi]) which behave

nicely near the ends of MP . We briefly explain how the submanifolds are

constructed. See [D3, DK] for the details.

We use the following three things. The first is that when b+(X) and

k = −1
4p1(P ) are positive MP lies in B∗

P and has a natural smooth structure

for generic metrics on X. The second is that the restrictions of irreducible

instantons to open subsets are also irreducible. The third is that the coho-

mology class µ([Σ]) comes from B∗
ν(Σ). More precise statement of the third

is as follows.

Let [Σ] ∈ H2(X; Z) be a homology class with [Σ] · [Σ] ≡ 0 mod 2. Since

the following diagram is commutative

Ẽ|ν(Σ)×B∗
Ē

= (Ē|ν(Σ))×G0
Ē
A∗

Ē

idĒ ×r̃ν(Σ)−−−−−−→ Ẽν(Σ) = (Ē|ν(Σ))×G0
ν(Σ)

Aν(Σ)� �
ν(Σ)× B̃∗

Ē
−−−−−−−−→
idν(Σ) ×r̃ν(Σ)

ν(Σ)× B̃ν(Σ)

we obtain

µ̃Ē([Σ]) = c2(Ẽ)/[Σ] = r̃∗ν(Σ)(c2(Ẽν(Σ))/[Σ]) ∈ H2(B̃∗
Ē ; Z).(3)

We apply Lemma 2.1 to the restriction of P on ν(Σ), instead of P it-

self. Then we see that there exists a unique 2-dimensional cohomology

class µν(Σ),Ē([Σ]) of B∗
ν(Σ) such that the pull-back by the natural projection

B̃∗
ν(Σ) → B∗

ν(Σ) is equal to c2(Ẽν(Σ))/[Σ].

We define VΣ as follows.

Definition 2.8. Take a homology class [Σ] ∈ H2(X; Z) with [Σ] · [Σ]

even. We write LΣ for a complex line bundle over B∗
ν(Σ),Ē

with first Chern
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class µν(Σ),Ē([Σ]) ∈ H2(B∗
ν(Σ),Ē

; Z). Fix a section sΣ of LΣ. We denote the

zero locus of sΣ by VΣ ⊂ B∗
ν(Σ). Suppose that b+(X) and k = −1

4p1(P ) are

positive. For a generic metric g, we define

MP ∩ VΣ := { [A] ∈MP | [A|ν(Σ)] ∈ VΣ }.

We will show that the pairing 〈u1,MP ∩ VΣ1 ∩ · · · ∩ VΣd
〉 is well-defined

under some condition.

Remark 2.9. We give some remarks on the line bundle LΣ. We refer

to [D3, DK] for details.

• As is well-known, we are also able to construct the line bundle LΣ by

using a family of twisted Dirac operators on Σ.

• Assume that 〈w2(P ), [Σ]〉 is equal to 0 modulo 2. Then P |ν(Σ) is

topologically trivial. Let B∗
ν(Σ) + := B∗

ν(Σ) ∪ {[Θν(Σ)]}. Here Θν(Σ)

is the trivial connection on ν(Σ). It is known that LΣ extends to

B∗
ν(Σ) +. Hence we can assume that the section sΣ is non-zero near

[Θν(Σ)]. In the case when w2(P ) is zero, we need this property to define

invariants. On the other hand, when we treat an SO(3)-bundle P with

w2(P ) non-trivial, we do not need this property for the definition of

invariants. However we will need this property in Lemma 3.7 to prove

some property of our invariant .

We prepare some lemmas. The following is well-known.

Lemma 2.10 ([D3, DK]). Let X be a closed, oriented, simply con-

nected 4-manifold with b+(X) positive and P be a SO(3)-bundle with k =

−1
4p1(P ) > 0. Take homology classes [Σ1], . . . , [Σd′ ] ∈ H2(X; Z) with self-

intersection numbers even. For generic sections sΣi, the intersections

Mk−j,w,X ∩
(⋂

i∈I
VΣi

)
(I ⊂ {1, . . . , d′}, 0 ≤ j < k)

are transverse.
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From now on, we require that Σi are generic in the following sense.{
Σi � Σj (i, j distinct)

Σi ∩ Σj ∩ Σk = ∅ (i, j, k distinct).
(4)

Lemma 2.11. Let X be a closed, oriented, simply connected, non-spin

4-manifold with b+(X) positive. Let P be an SO(3)-bundle over X with

w2(P ) equal to w2(X). Suppose that the dimension of MP is 2d′ + r for a

non-negative integer d′ and 1 ≤ r ≤ 3. Take d′ homology classes [Σ1], . . . ,

[Σd′ ] ∈ H2(X; Z) with

[Σi] · [Σi] ≡ 0 mod 2 (i = 1, . . . , d′).

Moreover we assume that the surfaces Σi satisfy the condition (4). Then

for generic sections sΣi, the intersection

MP ∩ VΣ1 ∩ · · · ∩ VΣd′

is a compact r-dimensional manifold.

Proof. Put k = −1
4p1(P ), w = w2(P ). For [A] ∈MP , we have

k = −1

4
p1(P )

=
1

8π2

∫
X

Tr(F 2
A)

=
1

8π2

∫
X
|F−

A |2dµg −
1

8π2

∫
X
|F+

A |2dµg

=
1

8π2

∫
X
|F−

A |dµg ≥ 0.

by the Chern-Weil theory. Here dµg is the volume form with respect to

g. First we show k > 0. If not, k = 0 and A is flat. Since X is simply

connected, A is trivial. This contradicts the assumption that w2(P ) is non-

trivial. Hence we have k > 0. From Lemma 2.10, MP ∩ VΣ1 ∩ · · · ∩ VΣd′ is

a smooth r-dimensional manifold for generic sections sΣi .

Next we prove that MP ∩VΣ1 ∩· · ·∩VΣd′ is compact. Let {[A(n)]}n∈N be

a sequence in MP ∩VΣ1 ∩· · ·∩VΣd′ . Uhlenbeck’s weak compactness theorem
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implies that there is a subsequence {[A(n′)]}n′ which is weakly convergent

to

([A∞];x1, . . . , xl) ∈Mk−l,w,X ×X l.

We also have k−l > 0 in the same way as above. Let m be the number of the

tubular neighborhoods ν(Σi) which contain xα for some α with 1 ≤ α ≤ l.

Then without loss of generality, we may suppose that

[A∞] ∈Mk−l,w,X ∩ VΣ1 ∩ · · · ∩ VΣd′−m

if we change the order of the surfaces. If we take the tubular neighborhoods

ν(Σi) to be sufficiently small, we have

ν(Σi) ∩ ν(Σj) ∩ ν(Σk) = ∅ (i, j, k distinct)

from (4). Hence we have m ≤ 2l. Since k−l > 0, the intersection Mk−l,x,X∩
VΣ1 ∩ · · · ∩ VΣd′−m

is transverse by Lemma 2.10. From this transversality,

we obtain

0 ≤ dimMk−l,w,X ∩ VΣ1 ∩ · · · ∩ VΣd′−m

= dimMk,w,X − 8l − 2(d′ −m)

= r − 8l + 2m

≤ r − 4l.

Since we suppose 1 ≤ r ≤ 3, we have l = 0 and

[A∞] ∈MP ∩ VΣ1 ∩ · · · ∩ VΣd′ .

Hence MP ∩ VΣ1 ∩ · · · ∩ VΣd′ is compact. �

Let X be as in Lemma 2.11 and P be an SO(3)-bundle over X satisfying

(2). Suppose that dimMP is 2d + 1 for a non-negative integer d and take

homology classes [Σ1], . . . , [Σd] ∈ H2(X; Z) with self-intersection numbers

even. From Lemma 2.11, we have the pairing

〈u1,MP ∩ VΣ1 ∩ · · · ∩ VΣd
〉 ∈ Z2.
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Proposition 2.12. Let X be a closed, oriented, simply connected,

non-spin 4-manifold with b+(X) = 2a for a positive integer a and P be

an SO(3)-bundle over X satisfying (2). Assume that the dimension of MP

is 2d+ 1 for a non-negative integer d. Then the pairing

〈u1,MP ∩ VΣ1 ∩ · · · ∩ VΣd
〉 ∈ Z2

is independent of the choices of Riemannian metric g, U(2)-lift P̄ of P ,

sections sΣi of LΣi and surfaces Σi representing the homology classes [Σi].

Moreover the pairing is multi-linear with respect to [Σ1], . . . , [Σd].

We prove the above proposition in §2.4. By using this proposition, we

can easily show that the following invariant qu1
X is well defined.

Definition 2.13. Let X be as in Proposition 2.12. Let A′
d(X) be the

subspace of ⊗dH2(X; Z) generated by

{ [Σ1]⊗ · · · ⊗ [Σd] | [Σi] ∈ H2(X; Z), [Σi] · [Σi] ≡ 0 mod 2 },

and we put

A′(X) :=
⊕
d

A′
d(X),

where d runs over non-negative integers with d ≡ −σ(X)− 3a− 2 mod 8.

We define qu1
X by

qu1
X : A′(X) −→ Z2

([Σ1], . . . , [Σd]) �−→ qu1
k,w,X([Σ1], . . . , [Σd])

:= 〈u1,MP ∩ VΣ1 ∩ · · · ∩ VΣd
〉 .

Here P is an SO(3)-bundle over X with w2(P ) = w2(X) and p1(P ) =

−d− 3a− 2.

2.4. Well-definedness of qu1
X

In this subsection, we prove Proposition 2.12. First we show the inde-

pendence of qu1
X from Riemannian metric g and sections sΣi in a standard

way. Take two metrics g, g′ on X and sections sΣi , s
′
Σi

of LΣi . Choose a
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path {gt}t∈[0,1] between g and g′, and a path {sΣi,t}t∈[0,1] between sΣi and

s′Σi
. Then put

M :=
∐

t∈[0,1]

MP (gt)× {t},

M∩VΣi := { ([A], t) ∈M | sΣi,t([A|ν(Σi)]) = 0 }.

Using a similar argument in the proof of Lemma 2.11, we can show the

following lemma:

Lemma 2.14. Let X and P be as in Proposition 2.12. Then for generic

paths {gt}t∈[0,1] and {sΣi,t}t∈[0,1], the intersection

M∩VΣ1 ∩ · · · ∩ VΣd

is a compact 2-dimensional manifold whose boundary is

(MP (g) ∩ VΣ1 ∩ · · · ∩ VΣd
)
∐

(MP (g′) ∩ V ′
Σ1
∩ · · · ∩ V ′

Σd
).

This lemma implies

〈u1,MP (g) ∩ VΣ1 ∩ · · · ∩ VΣd
〉 =

〈
u1,MP (g′) ∩ V ′

Σ1
∩ · · · ∩ V ′

Σd

〉
∈ Z2,

and the pairing 〈u1,MP ∩ VΣ1 ∩ · · · ∩ VΣd
〉 is independent of the choices of

g and sΣi .

Next we see the independence of qu1
X from the choice of U(2)-lift P̄ of

P . Take two U(2)-lifts P̄ and P̄ ′ of P . The associated vector bundle Ē′

with P̄ ′ is topologically isomorphic to Ē ⊗ L for some complex line bundle

L over X. Fix connections adet, aL on det Ē, L and an isomorphism

ϕ : Ē′ ∼=−→ Ē ⊗ L.

We have a connection a′det on det Ē′ induced by adet, aL and ϕ. We consider

connections on Ē⊗L and Ē′ which are compatible with adet +2aL and a′det

respectively. By tensoring aL|ν(Σ), we have maps

tA : Aν(Σ),Ē

∼=−→ Aν(Σ),Ē⊗L, tB∗ : B∗
ν(Σ),Ē

∼=−→ B∗
ν(Σ),Ē⊗L,

tB̃ : B̃ν(Σ),Ē

∼=−→ B̃ν(Σ),Ē⊗L.
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Moreover the pull-back by ϕ induces identifications

ψB∗ : B∗
ν(Σ),Ē⊗L

∼=−→ B∗
ν(Σ),Ē′ , ψB̃ : B̃ν(Σ),Ē⊗L

∼=−→ B̃ν(Σ),Ē′ .

Lemma 2.15. Suppose LΣ, L′
Σ are complex line bundles over B∗

ν(Σ),Ē
,

B∗
ν(Σ),Ē′ corresponding to the cohomology classes µν(Σ),Ē([Σ]) ∈

H2(B∗
ν(Σ),Ē

; Z), µν(Σ),Ē′([Σ]) ∈ H2(B∗
ν(Σ),Ē′ ; Z). Then we have

(ψB∗ ◦ tB∗)∗L′
Σ
∼= LΣ.

Proof. It is sufficient to show that (ψB̃ ◦ tB̃)∗(c2(Ẽ′
ν(Σ))/[Σ]) is equal

to c2(Ẽν(Σ))/[Σ] since H2(B∗
ν(Σ),Ē

; Z)→ H2(B̃∗
ν(Σ),Ē

; Z) is injective.

Let π1 : ν(Σ)×B̃ν(Σ),Ē → ν(Σ) be the projection. We have the following

commutative diagram:

Ẽν(Σ) ⊗ π∗
1(L|ν(Σ)) Ẽ′

ν(Σ)∥∥∥ ∥∥∥
(Ē ⊗ L|ν(Σ))×G0

ν(Σ),Ē
Aν(Σ),Ē

ϕ−1×(ϕ∗ ◦ tA)−−−−−−−−−→ (Ē′|ν(Σ))×G0
ν(Σ),Ē′

Aν(Σ),Ē′� �
ν(Σ)× B̃ν(Σ),Ē −−−−−−−−−−−→

idν(Σ) ×(ψB̃ ◦ tB̃)
ν(Σ)× B̃ν(Σ),Ē′

Hence we have(
idν(Σ)×(ψB̃ ◦ tB̃)

)∗
Ẽ′
ν(Σ)

∼= Ẽν(Σ) ⊗ π∗
1(L|ν(Σ))

and we obtain

(ψB̃ ◦ tB̃)∗(c2(Ẽ
′
ν(Σ))/[Σ])

= c2(Ẽν(Σ) ⊗ π∗
1(L|ν(Σ)))/[Σ]

=
{
c2(Ẽν(Σ)) + π∗

1c1(L|ν(Σ)) ∪ c1(Ẽν(Σ)) + π∗
1c1(L|ν(Σ))

2
}
/[Σ]

= c2(Ẽν(Σ))/[Σ] +
{
π∗

1c1(L|ν(Σ)) ∪ c1(Ẽν(Σ))
}
/[Σ]

∈ H2(B̃Ē ; Z).

(5)
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By the Künneth formula, we can write

c1(Ẽν(Σ)) = c1(Ẽν(Σ))ν(Σ) + c1(Ẽν(Σ))B̃
∈ H2(ν(Σ)× B̃ν(Σ),Ē ; Z) ∼= H2(ν(Σ); Z)⊕H2(B̃ν(Σ),Ē ; Z)

since B̃ν(Σ),Ē is simply connected ([AB]). The action of G0
ν(Σ),Ē

on Λ2Ē|ν(Σ)

is trivial, since the determinants of elements of G0
ν(Σ),Ē

are equal to 1 by

definition. Hence Λ2Ẽν(Σ) is the pull-back π∗
1(Λ

2Ē|ν(Σ)). This implies that

the B̃ν(Σ)-part c1(Ẽν(Σ))B̃ of c1(Ẽν(Σ)) = c1(Λ
2Ẽν(Σ)) is 0 and we have{

π∗
1c1(L|ν(Σ)) ∪ c1(Ẽν(Σ))

}
/[Σ] =

{
π∗

1c1(L|ν(Σ)) ∪ c1(Ẽν(Σ))ν(Σ)

}
/[Σ]

= 0 ∈ H2(B̃ν(Σ); Z).

From the equation (5), we obtain

(ψB̃ ◦ tB̃)∗(c2(Ẽ
′
ν(Σ))/[Σ]) = c2(Ẽν(Σ))/[Σ] ∈ H2(B̃ν(Σ); Z). �(6)

Proof of Lemma 2.2. Lemma 2.2 follows from (6) and the following

commutative diagram:

B̃ν(Σ),Ē

∼=
ψB̃◦tB̃

�� B̃ν(Σ),Ē′

B̃∗
X,Ē

r̃ν(Σ)

��

∼= ��

��

B̃∗
X,Ē′

r̃ν(Σ)

��

��
B∗
X,Ē

∼= ��

∼=

����
��

��
��

�
B∗
X,Ē′

∼=

�����
��

��
��

B∗
X,P

�

Proof of independence of qu1
X from P̄ . Take homology classes

[Σi] ∈ H2(X; Z) with [Σi] · [Σi] ≡ 0 mod 2 for i = 1, . . . , d and choose U(2)-

lifts P̄ and P̄ ′ of P . Then we obtain line bundles LΣi and L′
Σi

over B∗
ν(Σi),Ē
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and B∗
ν(Σi),Ē′ . We denote the zero locus of sections sΣi , s

′
Σi

of LΣi , L′
Σi

by

VΣi , V
′
Σi

. By Lemma 2.15, (ψB∗ ◦ tB∗)∗L′
Σi

is isomorphic to LΣi . We fix an

isomorphism and regard the section s′Σi
of L′

Σi
as a sections of LΣi through

the identifications

ψB∗ ◦ tB∗ : B∗
ν(Σi),Ē

∼=−→ B∗
ν(Σi),Ē′ , (ψB∗ ◦ tB∗)∗L′

Σi
∼= LΣi .

We take paths {sΣi,t}t∈[0,1] between sΣi and s′Σi
. In the same way as Lemma

2.14, we have a bordism between MP∩VΣ1∩· · ·∩VΣd
and MP∩V ′

Σ1
∩· · ·∩V ′

Σd
.

Hence we obtain

〈u1,MP ∩ VΣ1 ∩ · · · ∩ VΣd
〉 =

〈
u1,MP ∩ V ′

Σ1
∩ · · · ∩ V ′

Σd

〉
∈ Z2. �

Lastly we show that qu1
X is independent of the choice of surfaces Σi

representing the homology classes [Σi] and that qu1
X is multi-linear with

respect to [Σ1], . . . , [Σd]. It follows from the following lemma directly.

Lemma 2.16. Let X and P be as in Proposition 2.12. Take homol-

ogy classes [Σ1], . . . , [Σd] ∈ H2(X; Z) with self-intersection numbers even.

Moreover assume that

[Σ1] = [Σ′
1] + [Σ′′

1] ∈ H2(X; Z), [Σ′
1] · [Σ′

1] ≡ [Σ′′
1] · [Σ′′

1] ≡ 0 mod 2.

Then we have

〈u1,MP ∩ VΣ1 ∩ VΣ2 ∩ · · · ∩ VΣd
〉

=
〈
u1,MP ∩ VΣ′

1
∩ VΣ2 ∩ · · · ∩ VΣd

〉
+
〈
u1,MP ∩ VΣ′′

1
∩ VΣ2 ∩ · · · ∩ VΣd

〉
∈ Z2.

Proof. By definition, we have

µ̃Ē([Σ1]) = c2(Ẽ)/[Σ1] = c2(Ẽ)/[Σ′
1] + c2(Ẽ)/[Σ′′

1]

= µ̃Ē([Σ′
1]) + µ̃Ē([Σ′′

1]) ∈ H2(B̃Ē ; Z).
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The homomorphism β∗ : H2(B∗
Ē
; Z)→ H2(B̃∗

Ē
; Z) is injective and µ̃Ē([Σ1]),

µ̃Ē([Σ′
1]), µ̃Ē([Σ′′

1]) lie in the image β∗ from Lemma 2.1. Hence we have

µ([Σ1]) = µ([Σ′
1]) + µ([Σ′′

1]) ∈ H2(B∗
P ; Z).

Since MP ∩ VΣ2 ∩ · · · ∩ VΣd
is compact from Lemma 2.11, we have

〈u1,MP ∩ VΣ1 ∩ · · · ∩ VΣd
〉

= 〈u1 ∪ µ([Σ1]),MP ∩ VΣ2 ∩ · · · ∩ VΣd
〉

=
〈
u1 ∪ (µ([Σ′

1]) + µ([Σ′′
1])),MP ∩ VΣ2 ∩ · · · ∩ VΣd

〉
=
〈
u1 ∪ µ([Σ′

1]),MP ∩ VΣ2 ∩ · · · ∩ VΣd

〉
+
〈
u1 ∪ µ([Σ′′

1]),MP ∩ VΣ2 ∩ · · · ∩ VΣd

〉
=
〈
u1,MP ∩ VΣ′

1
∩ VΣ2 ∩ · · · ∩ VΣd

〉
+
〈
u1,MP ∩ VΣ′′

1
∩ VΣ2 ∩ · · · ∩ VΣd

〉
. �

3. A Connected Sum Formula for Y#S2 × S2

3.1. Statement of the result

As is well known Donaldson invariants vanish for the connected sum

X1#X2 provided b+(Xi) > 0 for i = 1, 2 ([D3]). In [FS], however, Fintushel

and Stern defined some torsion invariants by using instantons on SU(2)-

bundles and they showed that their SU(2)-torsion invariants are non-trivial

for the connected sum of the form Y#S2 × S2. In this section, we show a

similar non-vanishing theorem for our SO(3)-torsion invariants.

Let Y be a closed, oriented, simply connected, non-spin 4-manifold with

b+(Y ) = 2a− 1 for a > 1. Let Q be an SO(3)-bundle with w2(Q) equal to

w2(Y ) and p1(Q) equal to σ(Y ) + 4 modulo 8. Suppose that the dimension

of MQ is 2d for a non-negative integer d. When we fix an orientation on the

space H+
g (Y ) of self-dual harmonic 2-forms on Y and an lift c ∈ H2(Y ; Z)

of w2(Q) ∈ H2(Y ; Z2), we have the Donaldson invariant

qk−1,w,Y : ⊗dH2(Y ; Z) −→ Q

where

k − 1 = −1

4
p1(Q) ∈ Q, w = w2(Q) ∈ H2(Y ; Z2).

When [Σi] · [Σi] are even for i = 1, . . . , d, then qk−1,w,Y ([Σ1], . . . , [Σd]) is in

Z.
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We consider an SO(3)-bundle P over X = Y#S2 × S2 satisfying

w2(P ) = w2(X), p1(P ) = p1(Q)− 4,

so that P satisfies (2). The dimension of MP is given by 2d+ 5.

We define surfaces Σ, Σ′ embedded in S2 × S2 by

Σ = S2 × {pt}, Σ′ = {pt} × S2 ⊂ S2 × S2.

Then we have

[Σ] · [Σ] ≡ [Σ′] · [Σ′] ≡ 0 mod 2.

Now qu1

k,w,Y #S2×S2([Σ1], . . . , [Σd], [Σ], [Σ′]) is defined for homology classes

[Σi] of Y with self-intersection numbers even. The following is an SO(3)-

version of Theorem 1.1 in [FS].

Theorem 3.1. In the above situation, we have

qu1

k,w,Y #S2×S2([Σ1], . . . , [Σd], [Σ], [Σ′]) ≡ qk−1,w,Y ([Σ1], . . . , [Σd]) mod 2.

The proof is given in the following three subsections.

3.2. Notations and general facts

For the proof of Theorem 3.1, we will investigate the intersection MP ∩
VΣ1 ∩ · · ·∩VΣd

∩VΣ′ ∩VΣ when the neck of Y#S2×S2 is very long. For the

preparation, we define some notations and recall some facts about instantons

over the connected sum of 4-manifolds.

Let Y1 and Y2 be a closed, oriented 4-manifold. The connected sum

X = Y1#Y2 is constructed in the following way. Fix Riemannian metrics g1

and g2 on Y1 and Y2 which are flat in small neighborhoods of fixed points

y1 ∈ Y1 and y2 ∈ Y2. For N > 1 and λ > 0 with Nλ
1
2 ! 1, we put

Ωi = Ωyi(λ,N) = {y ∈ Yi|N−1λ
1
2 < d(y, yi) < Nλ

1
2 } (i = 1, 2).

Let

σ : (TY1)y1

∼=−→ (TY2)y2 .
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be an orientation-reversing linear isometry. For each positive real number

λ > 0, we define

fλ : (TY1)y1\{0} −→ (TY2)y2\{0}
ξ �−→ λ

|ξ|2σ(ξ).

This map fλ induces a diffeomorphism between Ω1 and Ω2. The connected

sum X of Y1 and Y2 is identified with

X(λ) = (Y1\By1(N
−1λ

1
2 ))
⋃
fλ

(Y2\By2(N
−1λ

1
2 ))

where Byi(N
−1λ

1
2 ) is the open ball centered on yi with radius N−1λ

1
2 . The

metrics g1 and g2 define a conformal structure on X since gi is flat in a small

neighborhood of yi. We fix a metric gλ on X which represents the conformal

structure. Moreover we assume that gλ is equal to gi on Yi\B((N + 1)λ
1
2 ).

Definition 3.2. Fix a real number q with q > 4. Let [A(n)] ∈MP (gλn)

be instantons over X = Y1#Y2 for a sequence λn → 0. Let z1, . . . , zl
be points in Y1\{y1}, z′1, . . . , z′m be points in Y2\{y2} and Ai be connec-

tions over Yi. Then we say that [A(n)] is weakly convergent to ([A1], [A2];

z1, . . . , zl, z
′
1, . . . , z

′
m) when [A(n)] is Lq-convergent to ([A1], [An]) over com-

pact subsets in (Y1 ∪ Y2)\{y1, y2, z1, . . . , zl, z
′
1, . . . , z

′
m} and |FA(n) |2 is con-

vergent as measure to

|FA1 |2 + |FA2 |2 + 8π2

(
l∑

ν=1

δzν +

m∑
ν=1

δz′ν

)
over compact subsets in (Y1\{y1})∪ (Y2\{y2}). Here δz is the delta function

supported on z.

We use the following well-known theorem.

Theorem 3.3 ([D3, DK]). Let P be an SO(3)-bundle over X =

Y1#Y2. Set k = −p1(P )/4, w = w2(P ), wi = w|Yi. Let [A(n)] ∈Mk,w,X(λn)

be instantons over X for λn → 0. Then there is a subsequence {[A(n′)]}n′

which is weakly convergent to ([A1], [A2]; z1, . . . , zl, z
′
1, . . . , z

′
m) for some

[A1] ∈Mk1,w1,Y1(g1), [A2] ∈Mk2,w2,Y2(g2),

z1, . . . , zl ∈ Y1\{y1}, z′1, . . . , z′m ∈ Y2\{y2}
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with

k1 ≥ 0, k2 ≥ 0, k1 + k2 + l +m ≤ k.

Next we review gluing of instantons. The theory of gluing of instantons

is standard. To fix notations, we recall the theory briefly.

Let Ai be instantons over Yi. We denote the SO(3)-bundles carrying

Ai by Pi. We can construct instantons on X = Y1#Y2 close to Ai on each

factor. Outline of the construction is as follows. (See [DK] Chapter 7 for

details.)

Let b be a small positive number with b ≥ 4Nλ
1
2 . By using suitable cut-

off functions and trivializations of Pi on neighborhoods of yi, we obtain a

connections A′
i which are flat over the annuli Ωi and equal to Ai outside the

balls centered at yi with radius b. Take an SO(3)-isomorphism ρ between

(P1)y1 and (P2)y2 . We can spread this isomorphism by using flat structures

of A′
i, and obtain an isomorphism gρ between P1|Ω1 and P2|Ω2 covering fλ.

We define an SO(3)-bundle Pρ over X and a connection A′(ρ) = A′
1#ρA

′
2

on Pρ by gluing Pi, Ai through gρ. Then in large region outside the neck of

X, A′(ρ) satisfies the instanton equation, and F+
A′(ρ) is very small near the

neck. To obtain a genuine instanton we have to perturb A′(ρ). We consider

the equation

F+
A′(ρ)+a = 0(7)

for a ∈ Ω1
X(gPρ). To solve this equation, we take linear maps

σi : H2
Ai
−→ Ω+

Yi
(gPi)

such that d+
Ai
⊕σi are surjective and for each hi ∈ H2

Ai
the supports of σi(hi)

are in the complement of the ball centered at yi with radius b. Then put

σ := σ1 + σ2 : H2
A1
⊕H2

A2
−→ Ω+

X(gPρ).

We can construct a right inverse of d+
A′(ρ) +σ starting from right inverses of

d+
Ai

+ σi . Decompose the right inverse as P ⊕ π, where

P : Ω+
X(gPρ) −→ Ω1(gPρ), π : Ω+

X(gPρ) −→ H2
A1
⊕H2

A2
.
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Instead of (7), we first consider the equation

F+
A′(ρ)+a + σ(h) = 0

for (a, h) ∈ Ω1
X(gPρ)× (H2

A1
⊕H2

A2
). We find a solution of this equation in

the form a = Pξ, h = πξ. In this case, we see that the equation is equivalent

to the equation

ξ + (Pξ ∧ Pξ)+ = −F+
A′(ρ)

by a short calculation. Using the contraction mapping principle, we can

show that there is a unique small solution ξρ ∈ Ω+(gPρ) for the equation.

We get a genuine instanton if and only if πξρ = 0. Therefore there is a map

Ψ : Gly1,y2 −→ H2
A1
×H2

A2

such that the solutions of Ψ = 0 represent instantons over X. Here Gly1,y2

is the space of SO(3)-equivariant isomorphisms between (P1)y1 and (P2)y2 .

We fix an element ρ0 ∈ Gly1,y2 to identify Gly1,y2 with SO(3).

We can include the deformations of [Ai] to this construction. For small

neighborhoods UAi of 0 in H1
Ai

, we have a map

Ψ : T := UA1 × UA2 × SO(3) −→ H2
A1
×H2

A2

such that elements of Ψ−1(0) correspond to instantons.

Let ΓAi be the isotropy group of Ai in the gauge group and put Γ =

ΓA1 × ΓA2 . We assume that UAi is ΓAi-invariant. Then there are natural

actions of Γ on T and on H2
A1
×H2

A2
. We can show that Ψ is Γ-equivariant

and instantons corresponding to elements of Ψ−1(0) are gauge equivalent to

each other if and only if they are in the same Γ-orbit. Hence we can regard

Ψ−1(0)/Γ as a subspace of MP .

An important feature is that instantons over X = Y1#Y2 which is close

to Ai over Yi are given in the above description. More precise statement is

the following:

Let Y ′′
i be the complement of balls centered at yi with radius λ

1
2 /2. Take

instantons Ai over Yi and a positive number ν > 0. Then put

Uλ(ν) := { [A] ∈ B∗
X | dq([A|Y ′′

i
], [Ai|Y ′′

i
]) < ν, i = 1, 2 }.(8)
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Here q is the fixed real number with q > 4 and dq is the distance induced by

Lq-norm over Y ′′
i . If ν > 0 is small, then there is a positive number λ(ν) > 0

such that for λ < λ(ν) we can take a neighborhood T of {0}×{0}×SO(3) in

H1
A1
×H1

A2
×SO(3) such that MP (gλ)∩Uλ(ν) is homeomorphic to Ψ−1(0)/Γ.

Summing up these:

Theorem 3.4. Let A1, A2 be instantons on Y1, Y2. Then there is a

Γ = ΓA1 × ΓA2-invariant neighborhood T of SO(3)× {0} × {0} in SO(3)×
H1

A1
×H1

A2
and Γ-equivariant map

Ψ : T −→ H2
A1
×H2

A2

such that Ψ−1(0)/Γ is homeomorphic to an open set N in MP . Moreover

for a small positive number ν > 0, there is a λ(ν) > 0 and T such that if

λ < λ(ν) then N = MP (gλ) ∩ Uλ(ν).

In particular, when Y2 is S4 and A2 is the fundamental instanton J with

instanton number one, we have:

Corollary 3.5. Let A1 be an instanton over Y1 and A2 be the funda-

mental instanton J over S4. For a small positive number ν > 0, there is a

positive number λ0 > 0 and a neighborhood UA1 of 0 in H1
A1

, a neighborhood

U0 of 0 in S4 = R4 ∪ {∞} and Γ = ΓA1-equivariant map

Ψ : UA1 × U0 × (0, λ0)× SO(3) −→ H2
A1

such that Ψ−1(0)/Γ is naturally homeomorphic to MP ∩ Uλ0(ν).

Remark 3.6. We can generalize the statements of Theorem 3.4 and

Corollary 3.5 to the case of gluing 3 or more instantons.

3.3. Shrinking the neck

In the situation of Theorem 3.1, we investigate

MP (gλ) ∩ VΣ1 ∩ · · · ∩ VΣd
∩ VΣ ∩ VΣ′

as λ tends to 0. We use the notations in §3.2.

Let Y1 be a closed, oriented, simply connected, non-spin 4-manifold with

b+(Y1) = 2a − 1 with a > 1 and we write Y2 for S2 × S2. Let P be an
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SO(3)-bundle over X = Y1#Y2 satisfying (2). Assume that the virtual

dimension of MP is 2d + 5 for a non-negative integer d. Take homology

classes [Σ1], . . . , [Σd] ∈ H2(Y1; Z) with [Σi] · [Σi] ≡ 0 mod 2. Set Σ =

S2 × {pt},Σ′ = {pt} × S2 ⊂ Y2. Take instantons

[A(n)] ∈MP (gλn) ∩ VΣ1 ∩ · · · ∩ VΣd
∩ VΣ ∩ VΣ′

for a sequence λn → 0. By Theorem 3.3, a subsequence of {[A(n)]}n is

weakly convergent to some

([A1], [A2]; z1, . . . , zl, z
′
1, . . . , z

′
m),

where

[A1] ∈Mk1,w,Y1(g1), [A2] ∈Mk2,Y2(g2),

z1, . . . , zl ∈ Y1\{y1}, z′1, . . . , z′m ∈ Y2\{y2}.

Lemma 3.7. In the above situation, we have

k1 = k − 1, l = 0, [A1] ∈Mk−1,w,Y1(g1) ∩ VΣ1 ∩ · · · ∩ VΣd
,

m = 1, z′1 ∈ ν(Σ) ∩ ν(Σ′), [A2] = [ΘY2 ].

Here ΘY2 is the trivial connection on Y2.

Proof. From Theorem 3.3, we have

k1 + k2 + l +m ≤ k.(9)

Let p be the number of ν(Σi) which contain some point zα and q be the num-

ber of ν(Σ), ν(Σ′) which contain some point z′α. Then by the transversality

condition (4), we have

0 ≤ p ≤ 2l, 0 ≤ q ≤ 2m.(10)

Without loss of generality, we may assume

[A1] ∈Mk1,w,Y1 ∩ VΣ1 ∩ · · · ∩ VΣd−p

if we change the order of surfaces. Since w2(P )|Y1 is non-trivial, we can show

k1 > 0 in the same way as the proof of Lemma 2.11. For generic sections,
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the intersection Mk1,w,Y1 ∩ VΣ1 ∩ · · · ∩ VΣd−p
is transverse by Lemma 2.10.

Hence we have

2(d− p) ≤ dimMk1,w,Y1 .(11)

We would like to show k2 = 0. Suppose that k2 is positive. Then we also

obtain

2(2− q) ≤ dimMk2,Y2 .(12)

By index theorem, there is the formula

dimMk1,w,Y1 + dimMk2,Y2 + 3 = dimMk1+k2,w,X .(13)

From (9), (11), (12) and (13), we have

2(d− p) + 2(2− q) + 3 ≤ dimMk1+k2,w,X

≤ dimMk,w,X − 8(l +m) = 2d+ 5− 8(l +m).

This inequality and (10) imply

8(l +m) + 2 ≤ 2p+ 2q ≤ 4(l +m).

We have a contradiction. Hence k2 is 0 which implies that [A2] is the class

of trivial flat connection [ΘY2 ].

Since k2 is 0, the virtual dimension of M0,Y2 is −6. From (13), we have

dimMk1,w,Y1 − 3 = dimMk1,w,X .(14)

By (9), (10),(11) and (14), we have

2(d− 2l)− 3 ≤ 2(d− p)− 3 ≤ dimMk1,w,Y1 − 3

= dimMk1,w,X ≤ dimMk,w,X − 8(l +m).

Therefore we obtain

4l + 8m ≤ 8.

In particular, we have m ≤ 1. We show m = 1. Suppose m = 0, then we

have [ΘY2 ] ∈ VΣ, [ΘY2 ] ∈ VΣ′ . To obtain a contradiction, we need to choose

VΣ and VΣ′ in a specific way. As mentioned in Remark 2.9, we can choose
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VΣ and VΣ′ do not include [ΘY2 ]. If we choose such VΣ and VΣ′ , we have a

contradiction. We obtain l = 0, m = 1 and z′1 ∈ ν(Σ) ∩ ν(Σ′). Hence

[A1] ∈Mk1,w,Y1 ∩ VΣ1 ∩ · · · ∩ VΣd
.

Lastly we show k1 = k − 1. From (9), we have k1 ≤ k − 1. On the other

hand, from (11) we have

2d ≤ dimMk1,w,Y1 = dimMk−1,w,Y1 − 8(k − 1− k1) = 2d− 8(k − 1− k1).

This implies k1 ≥ k − 1. Therefore k1 is equal to k − 1. We complete the

proof. �

Let w′
0 be the unique intersection point of Σ and Σ′. Fix a small neigh-

borhood Uw′
0

of w′
0 with ν(Σ) ∩ ν(Σ′) ⊂ Uw′

0
. We suppose that the metric

g2 on Y2 is flat on Uw′
0

for simplicity.

Take

[A(n)] ∈MP (gλn) ∩ VΣ1 ∩ · · · ∩ VΣd
∩ VΣ ∩ VΣ′

for λn → 0 and assume that {[A(n)]}n∈N weakly converges to ([A1], [ΘY2 ]; z
′
1)

for some [A1] ∈Mk−1,w,Y1∩VΣ1∩· · ·∩VΣd
, z′1 ∈ ν(Σ)∩ν(Σ′). We can define

the local center of mass cn ∈ Uw′
0

and scale λ′n > 0 of [A(n)] around z′1 when

n is sufficiently large. If n is large enough, then we obtain∫
Uw′

0

|FA(n) |2dµg2 > 4π2

since |FA(n) |2 converges to 8π2δz′1 on Uw′
0
. We define the center of mass cn

to be the center of the smallest ball in Uw′
0

where the integral of |FA(n) |2 is

equal to 4π2 and the scale λ′n to be the radius of the ball. The center of

mass and scale is determined uniquely ([D1]). The center cn converges to

z′1 and the scale λ′n converges to 0.

Let m : R4 → S4 = R4∪{∞} be the stereographic map and dλ : R4 → R4

be the map dλ(y) = λ−1y. Put χn := m◦dλ′
n
. Then χn induces a conformal

isomorphism between X and the connected sum

X#S4 = (X\Bcn(N−1λ′n)) ∪fλ′n (S4\B∞(N−1λ′n))
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since the metric g2 is flat on Uw′
0
. Here fλ′

n
is defined in the following

way: Using the geodesic coordinate near cn and the stereographic map, we

identify (TX)cn with (TS4)0. Let σ′ be the natural, orientation reversing

isometry between (TS4)0 and (TS4)∞, then fλ′
n

is given by

fλ′
n

: (TX)cn\{0} −→ (TS4)∞\{0}
ξ �−→ λ′

n
|ξ|2σ

′(ξ).

We can regard A(n) as an instanton on X#S4 such that A(n) is close to A1,

ΘY2 on Y1, Y2 and close to the standard instanton J on S4.

Fix a small positive number λ0 and a small neighborhood U ′
[A1] of [A1]

in MQ. Let O[A1] ⊂ B∗
P be a small open neighborhood of

{ [B′ #y1,λ,ρ ΘY2 #z′1,λ
′,ρ′ J

′] | B ∈ U ′
[A1], λ, λ

′ ∈ (0, λ0),

ρ, ρ′ ∈ SO(3), z′1 ∈ ν(Σ) ∩ ν(Σ′) }.

Here B′, J ′ are connections which are flat near y1,∞ and equal to B, J

outside b-balls. (The real number b is a small positive number fixed in

§3.2). The notation #z′1,λ
′,ρ′ means gluing of connections at z′1 using the

identification fλ′ twisted by ρ′, and similarly for #y1,λ,ρ. The instanton

[A(n)] is in O[A1] when n is large. We can define the local centers for elements

of O[A1] and we have a map p : O[A1] → Uw′
0

which maps connections to their

centers. By Donaldson [D2] Proposition (3.18), we can take sections sΣ, sΣ′

such that O[A1] ∩ VΣ, O[A1] ∩ VΣ′ are equal to p−1(U ′
z′1
∩ Σ), p−1(U ′

z′1
∩ Σ′).

Hence we may suppose that the center cn of [A(n)] is w′
0 for large n.

We denote S4 by Y3 and denote ΘY2 , J by A2, A3 and put

Y ′′
1,n = Y1\By1(λn/2), Y ′′

2,n = Y2\(By2(λn/2) ∪Bw′
0
(λ′n/2)),

Y ′′
3,n = Y3\B∞(λ′n/2).

For ν > 0, put

U[A1],λn
(ν) = { [A] ∈ B∗

X#S4 | dq([A|Y ′′
i,n

], [Ai|Y ′′
i,n

]) < ν, i = 1, 2, 3 }.

We have proved the following:

Lemma 3.8. Fix a positive number ν > 0. Take instantons [A(n)] ∈
MP (gλn)∩ VΣ1 ∩ · · · ∩ VΣd

∩ VΣ ∩ VΣ′ for a sequence λn → 0. Then [A(n)] is
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in U[A1],λn
(ν) for some [A1] ∈ MQ ∩ VΣ1 ∩ · · · ∩ VΣd

when n is sufficiently

large.

Fix [A1] ∈ MQ ∩ VΣ1 ∩ · · · ∩ VΣd
and a small positive number ν. By

Theorem 3.4, Corollary 3.5 and Remark 3.6, there is a small neighborhood

UA1 of 0 in H1
A1

, a positive real number λ0 and a ΓΘY2
-equivariant map

Ψ : T = UA1 × SO(3)× Uw′
0
× (0, λ0)× SO(3) −→ H2

ΘY2

such that Ψ−1(0)/ΓΘY2
is homeomorphic to MP (gλn)∩U[A1],λn

(ν). Note that

H2
A1

= 0 and dimH1
A1

= 2d (for generic metrics on Y1). Since the action of

ΓΘY2
= SO(3) on SO(3) × SO(3) is the diagonal action, Ψ−1(0)/SO(3) is

naturally identified with

Ψ−1(0) ∩
(
UA1 × {1} × Uw′

0
× (0, λ0)× SO(3)

)
.

We write T ′ for UA1 × {1} × Uw′
0
× (0, λ0)× SO(3). Since T ′ parametrizes

connections on X, it makes sense to take the intersection T ′ ∩ VΣ1 ∩ · · · ∩
VΣd

∩ VΣ ∩ VΣ′ . We can suppose

T ′ ∩ VΣ1 ∩ · · · ∩ VΣd
∩ VΣ ∩ VΣ′ = {0} × {1} × {w′

0} × (0, λ0)× SO(3).

Hence MP (gλn) ∩ VΣ1 ∩ · · · ∩ VΣd
∩ VΣ ∩ VΣ′ ∩ U[A1],λn

(ν) is homeomorphic

to

Ψ−1(0) ∩
(
{0} × {1} × {w′

0} × (0, λ0)× SO(3)
)

⊂ H1
A1
× SO(3)× Uw′

0
× (0, λ0)× SO(3).

Donaldson calculated the leading term of Ψ in [D2] explicitly. By the explicit

expression of the leading term of Ψ and calculations similar to those in [D2]

V, we can show the following:

Lemma 3.9. For generic metrics g1 and g2, points y1, y2 and w′
0 and

the metric gλn, the intersection

Ψ−1(0) ∩
(
{0} × {1} × {w′

0} × (0, λ0)× SO(3)
)

is homeomorphic to

{cλn} × γ ⊂ (0, λ0)× SO(3)
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where γ is a loop in SO(3) which represent the generator of π1(SO(3)) ∼= Z2

and c > 0 is a constant number independent of n.

Define N[A1] by

N[A1] = { [A′
1#λnΘY2#w′

0,cλn,ρJ
′] | ρ ∈ γ }.(15)

Here #λn is an abbreviation for #y1,λn,1. We have obtained the following:

Corollary 3.10. Let Y be a closed, oriented, simply connected, non-

spin 4-manifold with b+(Y ) = 2a − 1 for a > 1 and P be an SO(3)-bundle

over X = Y#S2 × S2 which satisfies the condition (2). Suppose that the

virtual dimension of MP is 2d + 5 for a non-negative integer d. Take d

homology classes [Σi] in H2(Y ; Z) with self-intersection numbers even. Then

for a small λ > 0, generic metrics g1 and g2, and generic points y1, y2 and

w′
0, the intersection

MP (gλ) ∩ VΣ1 ∩ · · · ∩ VΣd
∩ VΣ ∩ VΣ′

is homeomorphic to ∐
[A1]∈MQ∩VΣ1

∩···∩VΣd

N[A1].

3.4. End of the proof

From Corollary 3.10, we have

qu1

k,w,Y #S2×S2([Σ1], . . . , [Σd], [Σ], [Σ′]) =
∑
[A1]

〈
u1, N[A1]

〉
∈ Z2,

where [A1] runs in MQ ∩ VΣ1 ∩ · · · ∩ VΣd
. Therefore it is sufficient to show

that the pairing
〈
u1, N[A1]

〉
is non-trivial for the proof of Theorem 3.1. The

last step is carried out by making use of the following Proposition due to

Akbulut, Mrowka and Ruan.

Proposition 3.11 ([AMR]). Let Xi be closed, oriented, simply con-

nected 4-manifolds for i = 1, 2 and xi be points of Xi. Take SO(3)-bundles

Pi over Xi with w2(Pi) equal to w2(Xi). Choose U(2)-lifts P̄i of Pi and
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assume that the second Chern numbers of P̄i are odd. (In this case, P1#P2

satisfies the condition (2). See Remark 2.6.) We fix trivializations of Pi

on small neighborhoods Uxi of xi. For irreducible connections Bi on Pi

with trivial on Uxi with respect to fixed trivializations, we have a family of

connections

G := { [B1#ρB2] | ρ ∈ SO(3) } (∼= SO(3)) ⊂ B∗
P1#P2

.

Then the restriction u1|G is non-trivial in H1(G; Z2) ∼= Z2.

In our case,

X1 = Y#S2 × S2, P1 = Q#PS2×S2 , B1 = A′
1#ΘS2×S2 ,

X2 = S4, P2 = PS4/{±1}, B2 = J ′.

Here Q is an SO(3)-bundle over Y with

w2(Q) = w2(Y ), p1(Q) ≡ σ(Y ) + 4 mod 8,(16)

PS2×S2 is the trivial SO(3)-bundle over S2×S2 and PS4 is an SU(2)-bundle

with second Chern number equal to 1. By the formulas

p1(Q) = −4c2(Q̄) + c1(Q̄)2, w2(Y )2 ≡ σ(Y ) mod 8

and (16), we have

c2(Q̄) ≡ 1 mod 2.

Hence the assumptions of Proposition 3.11 is satisfied. Since N[A1] is a loop

in G which represent the generator of π1(G) ∼= Z2, we obtain:

Corollary 3.12. For each [A1] ∈ MQ ∩ VΣ1 ∩ · · · ∩ VΣd
, the pairing〈

u1, N[A1]

〉
is non-trivial in Z2.

This completes the proof of Theorem 3.1.
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4. Example

4.1. Non-triviality of qu1

2CP2#CP2

We see that the SO(3)-torsion invariant for X = 2CP2#CP
2

is non-

trivial.

To distinguish two CP2’s, we write X = CP2
1#CP2

2#CP2.

Theorem 4.1. Let Hi be the canonical generator of H2(CP2
i ; Z) for

i = 1, 2 and E be the canonical generator of H2(CP2; Z). Then we have

qu1

CP2
1#CP2

2#CP2
(−H1 + E,H2 − E) ≡ 1 mod 2.

Proof. Let Q be an SO(3)-bundle on CP2 with

w2(Q) = w2(CP2), p1(Q) = −3.

Then the dimension of MQ is 0. Kotschick showed that the Donaldson

invariant associated with Q is

q 3
4
,w,CP2 = −1

if we choose a suitable orientation on MQ ([K1, K2]). Note that there is no

wall since b−(CP2) is 0. The signature of CP2 is 1, hence we have

p1(Q) ≡ σ(CP2) + 4 mod 8

and qu1
7
4
,w,CP2#S2×S2([Σ], [Σ′]) is defined. From Theorem 3.1, we have

qu1
7
4
,w,CP2#S2×S2([Σ], [Σ′]) ≡ 1 mod 2.

On the other hand, CP2#S2×S2 is diffeomorphic to CP2
1#CP2

2#CP2 ([Wa]).

The induced isomorphism between the 2-dimensional homology groups is

given by

H2(CP2#S2 × S2; Z)
∼=−→ H2(CP2

1#CP2
2#CP2; Z)

H �−→ H1 +H2 − E

[Σ] �−→ −H1 + E

[Σ′] �−→ H2 − E.
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The torsion cohomology class w is w2(CP2#S2 × S2), and the image of w

under the isomorphism is w2(2CP2#CP2). We also denote this class by w.

The images of [Σ] and [Σ′] under the isomorphism are −H1 +E and H2−E
respectively. Hence we obtain

qu1
7
4
,w,CP2

1#CP2
2#CP2

(−H1 + E,H2 − E) ≡ 1 mod 2. �

4.2. A vanishing theorem

Let X be a closed, oriented, simply connected, non-spin 4-manifold with

b+(X) = 2a for some a > 0. Moreover assume that X can be written as the

connected sum Y1#Y2 of non-spin 4-manifolds Yi with b+(Yi) ≥ 1. In this

situation, we can show a vanishing theorem similar to the usual Donald-

son invariant. However we must require a certain condition for homology

classes in X. The condition is that each homology class lies in H2(Y1; Z) or

H2(Y2; Z).

Suppose that P is an SO(3)-bundle over X satisfying (2) and that

dimMP is 2d + 1 for some non-negative integer d. Moreover suppose

that d = d1 + d2 for some d1 ≥ 0, d2 ≥ 0. Take homology classes

[Σ1], . . . , [Σd1 ] ∈ H2(Y1; Z), [Σ′
1], . . . , [Σ

′
d2

] ∈ H2(Y2; Z) with self-intersection

numbers even. Then by the standard dimension-count argument [MM], we

can show

MP ∩ VΣ1 ∩ · · · ∩ VΣd1
∩ VΣ′

1
∩ · · · ∩ VΣ′

d2
= ∅

when the neck is sufficiently long. Hence we have:

Theorem 4.2. Let Y1, Y2 be closed, oriented, simply connected, non-

spin 4-manifolds with b+(Yi) > 0 and b+(Y1) ≡ b+(Y2) mod 2. Then for

homology classes [Σ1], . . . , [Σd1 ] ∈ H2(Y1; Z), [Σ′
1], . . . , [Σ

′
d2

] ∈ H2(Y2; Z)

with self-intersection numbers even, we have

qu1
Y1#Y2

([Σ1], . . . , [Σd1 ], [Σ
′
1], . . . , [Σ

′
d2

]) ≡ 0 mod 2.

Remark 4.3. We regard X = 2CP2#CP
2

as the connected sum of

Y1 = CP2 and Y2 = CP2#CP
2
. Then w is non-trivial on Yi for i = 1, 2. By
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Theorem 3.1, qu1
Y1#Y2

(−H1+E,H2−E) is non-trivial in contrast to Theorem

4.2. If there were a formula like

qu1
7
4
,w,Y1#Y2

(−H1 + E,H2 − E) ≡

“qu1
7
4
,w,Y1#Y2

(−H1, H2 − E)” + “qu1
7
4
,w,Y1#Y2

(E,H2 − E)” mod 2,

then we would be able to apply Theorem 4.2 to showing the vanishing of

qu1
7
4
,w,Y1#Y2

(−H1 + E,H2 − E). However “qu1
7
4
,w,Y1#Y2

(−H1, H2 − E)” nor

“qu1
7
4
,w,Y1#Y2

(E,H2 − E)” are not defined because

(−H1) · (−H1) ≡ E · E ≡ 1 mod 2.
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