A Cohen Type Inequality for Polynomial Expansions

Associated with the Measure $(1-x)^{\alpha}(1+x)^{\beta} d x+M \delta_{-1}+N \delta_{1}$

By Bujar Xh. Fejzullahu

Abstract

The purpose of this paper is to establish a Cohen type inequality for Fourier expansion with respect to polynomials associated with the measure $(1-x)^{\alpha}(1+x)^{\beta} d x+M \delta_{-1}+N \delta_{1}$, where δ_{t} is the delta function at a point t and $M, N \geq 0$.

1. Introduction and Main Result

In a well known paper [1] Cohen proved that for any trigonometric polynomial $P_{N}(x)=\sum_{k=1}^{N} a_{k} e^{i n_{k} x}$, where $0<n_{1}<\ldots<n_{N}, N \geq 2$, and $\left|a_{k}\right| \geq 1$ for $1 \leq k \leq N$, the following inequality holds:

$$
\int_{0}^{2 \pi}\left|P_{N}(x)\right| d x \geq c\left(\frac{\log N}{\log \log N}\right)^{1 / 8}
$$

Motivated by the work of Cohen, inequalities of this type have been established in various other contexts, e.g., for classical orthogonal expansions or on compact groups (see [1], [2], [3], [6], [10], [12]). The aim of this article is to prove a Cohen type inequality for Fourier expansions in terms of orthonormal polynomials relative to the Jacobi measure with two masses at points $x= \pm 1$.

Let $\omega_{\alpha, \beta}(x)=(1-x)^{\alpha}(1+x)^{\beta},(\alpha, \beta>-1)$, be the Jacobi weight on the interval $[-1,1]$. In [11] T. H. Koornwinder introduced the sequence of polynomials $\left\{P_{n}^{(\alpha, \beta, M, N)}(x)\right\}_{n=0}^{\infty}$ which are orthogonal on the interval $[-1,1]$ with respect to the measure

$$
d \mu(x)=\frac{\Gamma(\alpha+\beta+2)}{2^{\alpha+\beta+1} \Gamma(\alpha+1) \Gamma(\beta+1)} \omega_{\alpha, \beta}(x) d x+M \delta_{-1}+N \delta_{1},
$$

[^0]where $\alpha>-1, \beta>-1$, and $M, N \geq 0$. They are called Koornwinder's Jacobi-type polynomials. We denote the orthonormal Koornwinder's Jacobi-type polynomial by $p_{n}^{(\alpha, \beta, M, N)}$, which differs from $P_{n}^{(\alpha, \beta, M, N)}$ by normalization constant (see [15, p. 81]). For $M=N=0$, denoted by $\left\{p_{n}^{(\alpha, \beta)}\right\}_{n=0}^{\infty}$, we have the classical Jacobi orthonormal polynomials (see [14, Chapter IV]). It is known that, unlike the Jacobi orthonormal polynomials, the polynomials $p_{n}^{(\alpha, \beta, M, N)}$ for $M>0, N>0$ decay at the rate of $n^{-\alpha-3 / 2}$ and $n^{-\beta-3 / 2}$ at the end points 1 and -1 .

We shall say that $f(x) \in L^{p}(d \mu)$ if $f(x)$ is μ-measurable on the $[-1,1]$ and $\|f\|_{L^{p}(d \mu)}<\infty$, where

$$
\|f\|_{L^{p}(d \mu)}= \begin{cases}\left(\int_{-1}^{1}|f(x)|^{p} d \mu(x)\right)^{\frac{1}{p}} & \text { if } 1 \leq p<\infty \\ \operatorname{ess} \sup |f(x)| & \text { if } p=\infty \\ -1<x<1\end{cases}
$$

Throughout this paper we denote by $\left[L^{p}(d \mu)\right]$ the space of all bounded, linear operators $T: L^{p}(d \mu) \rightarrow L^{p}(d \mu)$, furnished with the usual operator norm

$$
\|T\|_{\left[L^{p}(d \mu)\right]}=\sup _{0 \neq f \in L^{p}(d \mu)} \frac{\|T(f)\|_{L^{p}(d \mu)}}{\|f\|_{L^{p}(d \mu)}}
$$

For $f \in L^{1}(d \mu)$, the Fourier expansion in Koornwinder's Jacobi-type polynomials is

$$
\begin{equation*}
\sum_{k=0}^{\infty} \hat{f}(k) p_{k}^{(\alpha, \beta, M, N)}(x) \tag{1.1}
\end{equation*}
$$

where the Fourier coefficients are

$$
\begin{aligned}
\hat{f}(k)= & \int_{-1}^{1} f(x) p_{k}^{(\alpha, \beta, M, N)}(x) d \mu(x) \\
= & \frac{\Gamma(\alpha+\beta+2)}{2^{\alpha+\beta+1} \Gamma(\alpha+1) \Gamma(\beta+1)} \int_{-1}^{1} f(x) p_{k}^{(\alpha, \beta, M, N)}(x) \omega_{\alpha, \beta}(x) d x \\
& \quad+M f(-1) p_{k}^{(\alpha, \beta, M, N)}(-1)+N f(1) p_{k}^{(\alpha, \beta, M, N)}(1)
\end{aligned}
$$

The Cesàro means of order ρ of the expansion (1.1) are defined by (see [16, p. 76-77])

$$
\sigma_{n}^{\rho} f(x)=\sum_{k=0}^{n} \frac{A_{n-k}^{\rho}}{A_{n}^{\rho}} \hat{f}(k) p_{k}^{(\alpha, \beta, M, N)}(x)
$$

where $A_{k}^{\rho}=\binom{k+\rho}{k}$.
For a given sequence $\left\{c_{k, n}\right\}_{k=0}^{n}, n \in \mathbf{N} \cup\{0\}$, of complex numbers with $\left|c_{n, n}\right|>0$, we define the operators $T_{n}^{\alpha, \beta, M, N} \in\left[L^{p}(d \mu)\right]$ by

$$
T_{n}^{\alpha, \beta, M, N}(f)=\sum_{k=0}^{n} c_{k, n} \hat{f}(k) p_{k}^{(\alpha, \beta, M, N)}
$$

The main result of the present paper is the following theorem:
Theorem. Let $\alpha \geq \beta \geq-1 / 2, \alpha>-1 / 2$ and $1 \leq p \leq \infty$. There exists a positive constant c, independent of n, such that

$$
\left\|T_{n}^{\alpha, \beta, M, N}\right\|_{\left[L^{p}(d \mu)\right]} \geq c\left|c_{n, n}\right| \begin{cases}n^{\frac{2 \alpha+2}{p}-\frac{2 \alpha+3}{2}} & \text { if } a \leq p<p_{0} \\ (\log n)^{\frac{2 \alpha+1}{4 \alpha+4}} & \text { if } p=p_{0}, p=q_{0} \\ n^{\frac{2 \alpha+1}{2}-\frac{2 \alpha+2}{p}} & \text { if } q_{0}<p \leq b\end{cases}
$$

where $p_{0}=(4 \alpha+4) /(2 \alpha+3), q_{0}=(4 \alpha+4) /(2 \alpha+1)$, and
i) if $M>0, N=0$, then $a=1$ and $b=\infty$,
ii) if $M>0, N>0$, then $1<a, b<\infty$ and $1 / a+1 / b=1$.

Corollary 1.1. Let α, β, and p be as in Theorem. For $c_{k, n}=1$, $k=0, \ldots, n$, and for p outside the Pollard interval $\left(p_{0}, q_{0}\right)$

$$
\left\|S_{n}\right\|_{\left[L^{p}(d \mu)\right]} \rightarrow \infty, \quad n \rightarrow \infty
$$

where S_{n} denotes the nth partial sum of expansion (1.1).
For $c_{k, n}=\frac{A_{n-k}^{\rho}}{A_{n}^{\rho}}, 0 \leq k \leq n$, the Theorem 1 yields:
Corollary 1.2. Let α, β, p, and ρ be given numbers such that $\alpha>$ $-1 / 2$,

$$
\left\{\begin{array}{l}
-\frac{1}{2} \leq \beta \leq \alpha \\
a \leq p \leq b \\
0 \leq \rho<\frac{2 \alpha+2}{p}-\frac{2 \alpha+3}{2} \quad \text { if } 1 \leq p<p_{0} \\
0 \leq \rho<\frac{2 \alpha+1}{2}-\frac{2 \alpha+2}{p} \\
\text { if } q_{0}<p \leq \infty
\end{array}\right.
$$

Then, for $p \notin\left[p_{0}, q_{0}\right]$

$$
\left\|\sigma_{n}^{\rho}\right\|_{\left[L^{p}(d \mu)\right]} \rightarrow \infty, \quad n \rightarrow \infty
$$

REMARK 1.1. Using the symmetry formula in [11], for the case $M=0$ and $N>0$ we get the same results as above but exchanging α and β.

Notice that the study of the convergence of Fourier expansions (1.1) has been discussed in [7], [9].

2. Estimates for Koornwinder's Jacobi-type Polynomials

In order to prove our main result, we need some estimates for Koornwinder's Jacobi-type orthonormal polynomials. The representation of the $p_{n}^{(\alpha, \beta, M, N)}$ in terms of $p_{n}^{(\alpha, \beta)}$, a strong asymptotic on $(-1,1)$, a Mehler-Heine type formula, Lebesgue norms of $p_{n}^{(\alpha, \beta, M, N)}$ are derived. Throughout this paper, the positive constants are denoted by c, c^{\prime}, \ldots and they may be different at different occurrence. The notation $u_{n} \cong v_{n}$ means that the sequence u_{n} / v_{n} converges to 1 and notation $u_{n} \sim v_{n}$ means $c u_{n} \leq v_{n} \leq c^{\prime} u_{n}$ for sufficiently large n.

Proposition 2.1. The representation of the $p_{n}^{(\alpha, \beta, M, N)}$ in terms of $p_{n}^{(\alpha, \beta, M, 0)}$ is

$$
\begin{equation*}
p_{n}^{(\alpha, \beta, M, N)}(x)=A_{n} p_{n}^{(\alpha, \beta, M, 0)}(x)+B_{n}(x-1) p_{n-1}^{(\alpha+2, \beta, 4 M, 0)}(x) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n} \cong c n^{-2 \alpha-2}, \quad B_{n} \cong 1 \tag{2.2}
\end{equation*}
$$

Proof. Let $\left\{P_{n}^{1}\right\}_{n=0}^{\infty}$ be the orthonormal polynomials with respect to the measure (see proof of the Proposition 6 in [8])

$$
(x-1)^{2}\left[\omega_{\alpha, \beta}(x) d x+M \delta_{-1}\right]=\omega_{\alpha+2, \beta}(x) d x+4 M \delta_{-1}
$$

Therefore $P_{n}^{1}=p_{n}^{(\alpha+2, \beta, 4 M, 0)}$. From [8, Proposition 4] it follows

$$
p_{n}^{(\alpha, \beta, M, N)}(x)=A_{n} p_{n}^{(\alpha, \beta, M, 0)}(x)+B_{n}(x-1) p_{n-1}^{(\alpha+2, \beta, 4 M, 0)}(x)
$$

where

$$
\begin{gathered}
\lim _{n \rightarrow \infty} A_{n} L_{n-1}(1,1)=\frac{1}{\lambda(1)+N} \\
\lim _{n \rightarrow \infty} B_{n}=\frac{N}{\lambda(1)+N} \\
\lambda(1)=\lim _{n \rightarrow \infty} \frac{1}{L_{n}(1,1)}
\end{gathered}
$$

Since (see [5, (3)] and [14, (4.5.8)])

$$
L_{n}(1,1)=\sum_{i=0}^{n} p_{i}^{(\alpha, \beta, M, 0)}(1) p_{i}^{(\alpha, \beta, M, 0)}(1) \cong c n^{2 \alpha+2}
$$

we get (2.2).
Combining the above proposition with $[5,(7)]$ we obtain:
COROLLARY 2.1. The representation of the $p_{n}^{(\alpha, \beta, M, N)}$ in terms of
$p_{n}^{(\alpha, \beta)}$ is

$$
\begin{aligned}
& p_{n}^{(\alpha, \beta, M, N)}(x)=a_{n} p_{n}^{(\alpha, \beta)}(x)+b_{n}(x+1) p_{n-1}^{(\alpha, \beta+2)}(x) \\
& \quad+c_{n}(x-1) p_{n-1}^{(\alpha+2, \beta)}(x)+d_{n}\left(x^{2}-1\right) p_{n-2}^{(\alpha+2, \beta+2)}(x)
\end{aligned}
$$

where
i) if $M>0, N=0$, then

$$
a_{n} \cong c n^{-2 \beta-2}, \quad b_{n} \cong 1, \quad c_{n}=0, \quad d_{n}=0
$$

ii) if $M>0, N>0$, then

$$
a_{n} \cong c n^{-2 \alpha-2 \beta-4}, \quad b_{n} \cong c n^{-2 \alpha-2}, \quad c_{n} \cong c n^{-2 \beta-2}, \quad d_{n} \cong 1
$$

The following proposition establishes a strong asymptotic on $(-1,1)$ for $p_{n}^{(\alpha, \beta, M, N)}$.

Proposition 2.2. For $\theta \in[\epsilon, \pi-\epsilon]$ and $\epsilon>0$

$$
p_{n}^{(\alpha, \beta, M, N)}(x)=l_{n}^{\alpha, \beta}(1-x)^{-\alpha / 2-1 / 4}(1+x)^{-\beta / 2-1 / 4} \cos (k \theta+\gamma)+O\left(n^{-1}\right)
$$

where $x=\cos \theta, k=n+(\alpha+\beta+1) / 2, \gamma=-(\alpha+1 / 2) \pi / 2$, and $\lim _{n \rightarrow \infty} l_{n}^{\alpha, \beta}=$ $\sqrt{2 / \pi}$.

Proof. From (2.1) and [5, Lemma 1]

$$
\begin{aligned}
& p_{n}^{(\alpha, \beta, M, N)}(x)=\left[A_{n} s_{n}^{\alpha, \beta}+B_{n} s_{n-1}^{\alpha+2, \beta}\right](1-x)^{-\alpha / 2-1 / 4}(1+x)^{-\beta / 2-1 / 4} \\
& \times \cos (k \theta+\gamma)+\left[A_{n}+B_{n}(x-1)\right] O\left(n^{-1}\right)
\end{aligned}
$$

$\lim _{n \rightarrow \infty} s_{n}^{\alpha, \beta}=\sqrt{2 / \pi}$. Now taking into account (2.2), the result follows.
Next we give a Mehler-Heine type formula of the polynomials $p_{n}^{(\alpha, \beta, M, N)}$ for $M>0$ and $N>0$.

Proposition 2.3. Let $|z| \leq R$, and R a given positive real number. Then

$$
\lim _{n \rightarrow \infty} n^{-\alpha-1 / 2} p_{n}^{(\alpha, \beta, M, N)}\left(\cos \frac{z}{n}\right)=-2^{-\frac{\alpha+\beta}{2}} z^{-\alpha} J_{\alpha+2}(z)
$$

where $J_{\alpha}(z)$ is the Bessel function of order α.
Proof. By (2.1) we have

$$
\begin{aligned}
n^{-\alpha-1 / 2} p_{n}^{(\alpha, \beta, M, N)}\left(\cos \frac{z}{n}\right) & =A_{n} n^{-\alpha-1 / 2} p_{n}^{(\alpha, \beta, M, 0)}\left(\cos \frac{z}{n}\right) \\
& -2 B_{n} \sin ^{2}\left(\frac{z}{2 n}\right) n^{-\alpha-1 / 2} p_{n}^{(\alpha+2, \beta, 4 M, 0)}\left(\cos \frac{z}{n}\right)
\end{aligned}
$$

Using the estimates for the coefficients A_{n}, B_{n}, and the Mehler-Heine type formula for orthonormal polynomials $p_{n}^{(\alpha, \beta, M, 0)}\left(\cos \frac{z}{n}\right)$ (see [5, Lemma 2])

$$
\lim _{n \rightarrow \infty} n^{-\alpha-1 / 2} p_{n}^{(\alpha, \beta, M, 0)}\left(\cos \frac{z}{n}\right)=2^{-\frac{\alpha+\beta}{2}}(z / 2)^{-\alpha} J_{\alpha}(z)
$$

the result follows.
The proof of main result is based on following proposition.
Proposition 2.4. Let $\alpha \geq-1 / 2$ and $M, N \geq 0$. For $1 \leq q<\infty$

$$
\int_{0}^{1}(1-x)^{\alpha}\left|p_{n}^{(\alpha, \beta, M, N)}(x)\right|^{q} d x \sim \begin{cases}c & \text { if } 2 \alpha>q \alpha-2+q / 2 \\ \log n & \text { if } 2 \alpha=q \alpha-2+q / 2 \\ n^{q \alpha+q / 2-2 \alpha-2} & \text { if } 2 \alpha<q \alpha-2+q / 2\end{cases}
$$

Proof. The upper estimate has been proved in [5, Theorem 1]. In order to prove the lower estimate, we follow the same line as in [14, Theorem 7.34] (see also [5, Theorem 2]).

Le $\alpha \geq-1 / 2, M>0$ and $N>0$. By using the Proposition 2.3 we get

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \theta^{2 \alpha+1}\left|p_{n}^{(\alpha, \beta, M, N)}(\cos \theta)\right|^{q} d \theta>\int_{0}^{n^{-1}} \theta^{2 \alpha+1}\left|p_{n}^{(\alpha, \beta, M, N)}(\cos \theta)\right|^{q} d \theta \\
& \quad \cong c \int_{0}^{1}(z / n)^{2 \alpha+1} n^{q \alpha+q / 2}\left|z^{-\alpha} J_{\alpha+2}(z)\right|^{q} n^{-1} d z \sim n^{q \alpha+q / 2-2 \alpha-2}
\end{aligned}
$$

In the same way, for $2 \alpha=q \alpha-2+q / 2$, from [13, Lemma 2.1] we obtain

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \theta^{2 \alpha+1}\left|p_{n}^{(\alpha, \beta, M, N)}(\cos \theta)\right|^{q} d \theta>\int_{0}^{n^{-1 / 2}} \theta^{2 \alpha+1}\left|p_{n}^{(\alpha, \beta, M, N)}(\cos \theta)\right|^{q} d \theta \\
& \cong c \int_{0}^{n^{1 / 2}} z^{2 \alpha+1}\left|z^{-\alpha} J_{\alpha+2}(z)\right|^{q} d z \geq c \log n
\end{aligned}
$$

Finally, we use Proposition 2.2 to obtain

$$
\int_{0}^{\pi / 2} \theta^{2 \alpha+1}\left|p_{n}^{(\alpha, \beta, M, N)}(\cos \theta)\right|^{q} d \theta>\int_{\pi / 4}^{\pi / 2} \theta^{2 \alpha+1}\left|p_{n}^{(\alpha, \beta, M, N)}(\cos \theta)\right|^{q} d \theta \sim c
$$

The proof of case when $M>0$ and $N=0$ can be done in a similar way (see [5, Theorem 2]).

3. Proof of Theorem

Let us consider the test functions

$$
g_{n}^{\alpha, \beta, j}(x)=\left(1-x^{2}\right)^{j} p_{n}^{(\alpha+j, \beta+j)}(x)
$$

where $\alpha \geq \beta \geq-1 / 2, \alpha>-1 / 2$, and $j \in \mathbf{N}$. The following estimates of the Fourier coefficients for the functions $g_{n}^{\alpha, \beta, j}(x)$ as well as the upper bounds of their Lebesgue norms plays the essential role in proof of theorem. By applying the operators $T_{n}^{\alpha, \beta, M, N}$ to the test functions $g_{n}^{\alpha, \beta, j}$, for some $j>\alpha+1 / 2-(2 \alpha+2) / p$, we get

$$
\begin{equation*}
T_{n}^{\alpha, \beta, M, N}\left(g_{n}^{\alpha, \beta, j}\right)=\sum_{k=0}^{n} c_{k, n}\left(g_{n}^{\alpha, \beta, j}\right)^{\wedge}(k) p_{k}^{(\alpha, \beta, M, N)} \tag{3.1}
\end{equation*}
$$

where

$$
\left(g_{n}^{\alpha, \beta, j}\right)^{\wedge}(k)=\int_{-1}^{1} g_{n}^{\alpha, \beta, j}(x) p_{k}^{(\alpha, \beta, M, N)}(x) d \mu(x), \quad k=0,1, \ldots, n
$$

From Corollary 2.1, the Fourier coefficients of the function $g_{n}^{\alpha, \beta, j}(x)$ are

$$
\begin{aligned}
& \frac{2^{\alpha+\beta+1} \Gamma(\alpha+1) \Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)}\left(g_{n}^{\alpha, \beta, j}\right)^{\wedge}(k) \\
& \quad=\int_{-1}^{1}\left(1-x^{2}\right)^{j} p_{n}^{(\alpha+j, \beta+j)}(x) p_{k}^{(\alpha, \beta, M, N)}(x) \omega_{\alpha, \beta}(x) d x \\
& \quad=a_{k} \int_{-1}^{1}\left(1-x^{2}\right)^{j} p_{n}^{(\alpha+j, \beta+j)}(x) p_{k}^{(\alpha, \beta)}(x) \omega_{\alpha, \beta}(x) d x \\
& \quad+b_{k} \int_{-1}^{1}\left(1-x^{2}\right)^{j} p_{n}^{(\alpha+j, \beta+j)}(x)(x+1) p_{k-1}^{(\alpha, \beta+2)}(x) \omega_{\alpha, \beta}(x) d x \\
& +c_{k} \int_{-1}^{1}\left(1-x^{2}\right)^{j} p_{n}^{(\alpha+j, \beta+j)}(x)(x-1) p_{k-1}^{(\alpha+2, \beta)}(x) \omega_{\alpha, \beta}(x) d x \\
& -d_{k} \int_{-1}^{1}\left(1-x^{2}\right)^{j} p_{n}^{(\alpha+j, \beta+j)}(x)\left(1-x^{2}\right) p_{k-2}^{(\alpha+2, \beta+2)}(x) \omega_{\alpha, \beta}(x) d x \\
& \quad=I_{1}^{k, n}+I_{2}^{k, n}+I_{3}^{k, n}-I_{4}^{k, n}
\end{aligned}
$$

where $k=0,1, \ldots, n$, and it is assumed $p_{i}^{(\cdot, \cdot)}(x)=0$ for $i=-1,-2$.
According to the $[12,(2.8)]$ and $[14,(4.3 .4)]$ we get

$$
\begin{align*}
& \left(1-x^{2}\right)^{j} p_{n}^{(\alpha+j, \beta+j)}(x) \tag{3.2}\\
& \quad=\left\{h_{n}^{(\alpha+j, \beta+j)}\right\}^{-1 / 2} \sum_{m=0}^{2 j} b_{m, j}(\alpha, \beta, n)\left\{h_{n+m}^{(\alpha, \beta)}\right\}^{1 / 2} p_{n+m}^{(\alpha, \beta)}(x)
\end{align*}
$$

where $h_{n}^{(\alpha, \beta)} \cong 2^{\alpha+\beta} n^{-1}, b_{0, j}(\alpha, \beta, n) \cong 4^{j}$ and $b_{2 j, j}(\alpha, \beta, n) \cong(-4)^{j}$.
Taking into account (3.2)

$$
\begin{aligned}
& I_{1}^{k, n}=A_{k}\left\{h_{n}^{(\alpha+j, \beta+j)}\right\}^{-1 / 2} \sum_{m=0}^{2 j} b_{m, j}(\alpha, \beta, n)\left\{h_{n+m}^{(\alpha, \beta)}\right\}^{1 / 2} \\
& \times \int_{-1}^{1} p_{n+m}^{(\alpha, \beta)}(x) p_{k}^{(\alpha, \beta)}(x) \omega_{\alpha, \beta}(x) d x
\end{aligned}
$$

Thus

$$
\left\{\begin{array}{lc}
I_{1}^{k, n}=0, & 0 \leq k \leq n-1 \tag{3.3}\\
I_{1}^{n, n} \cong 2^{j} a_{n}, & m=0 \\
I_{1}^{n, n}=0, & 0<m \leq 2 j
\end{array}\right.
$$

Again, for $k \geq 1$, according to the [12, (2.8)] and [14, (4.3.4)]

$$
\begin{aligned}
I_{2}^{k, n}= & b_{k}\left\{h_{n}^{(\alpha+j, \beta+j)}\right\}^{-1 / 2}\left\{h_{k-1}^{(\alpha, \beta+2)}\right\}^{-1 / 2} \\
& \times \int_{-1}^{1}\left(1-x^{2}\right)^{j} P_{n}^{(\alpha+j, \beta+j)}(x)(x+1) P_{k-1}^{(\alpha, \beta+2)}(x) \omega_{\alpha, \beta}(x) d x \\
= & b_{k}\left\{h_{n}^{(\alpha+j, \beta+j)}\right\}^{-1 / 2}\left\{h_{k-1}^{(\alpha, \beta+2)}\right\}^{-1 / 2} \sum_{m=0}^{2 j} b_{m, j}(\alpha, \beta, n) \\
& \times \int_{-1}^{1} P_{n+m}^{(\alpha, \beta)}(x)(x+1) P_{k-1}^{(\alpha, \beta+2)}(x) \omega_{\alpha, \beta}(x) d x
\end{aligned}
$$

Since (see [14, (4.5.4)])

$$
\begin{aligned}
&(x+1) P_{k-1}^{(\alpha, \beta+2)}(x)=\frac{2 k}{2 k+\alpha+\beta+1} P_{k}^{(\alpha, \beta+1)}(x) \\
& \quad+\frac{2(k+\beta+1)}{2 k+\alpha+\beta+1} P_{k-1}^{(\alpha, \beta+1)}(x)
\end{aligned}
$$

and $\operatorname{deg} P_{k-1}^{(\alpha, \beta+1)} \leq n-1$, we have

$$
\begin{aligned}
I_{2}^{k, n}=\frac{2 k b_{k}}{2 k+\alpha+} & \left\{h_{n}^{(\alpha+j, \beta+j)}\right\}^{-1 / 2}\left\{h_{k-1}^{(\alpha, \beta+2)}\right\}^{-1 / 2} \\
& \quad \times \sum_{m=0}^{2 j} b_{m, j}(\alpha, \beta, n) \int_{-1}^{1} P_{n+m}^{(\alpha, \beta)}(x) P_{k}^{(\alpha, \beta+1)}(x) \omega_{\alpha, \beta}(x) d x
\end{aligned}
$$

Formula 16.4 (11) in [4, p. 285] shows that

$$
\begin{align*}
\int_{-1}^{1} P_{n}^{(\alpha, \beta)}(x) & P_{n}^{(\alpha, \beta+1)}(x) \omega_{\alpha, \beta}(x) d x \tag{3.4}\\
& =\frac{2^{\alpha+\beta+1} \Gamma(\alpha+n+1) \Gamma(\beta+n+1)}{\Gamma(n+1) \Gamma(\alpha+\beta+n+2)} \cong 2^{\alpha+\beta+1} n^{-1}
\end{align*}
$$

This formula can also be proved by using identity (9.4.1) in [14, p. 256]. Thus

$$
\left\{\begin{array}{lc}
I_{2}^{k, n}=0, & 0 \leq k \leq n-1 \tag{3.5}\\
I_{2}^{n, n} \cong 2^{j} b_{n}, & m=0 \\
I_{2}^{n, n}=0, & 0<m \leq 2 j
\end{array}\right.
$$

In a similar way, for $k \geq 1$, using symmetry $p_{n}^{(\alpha, \beta)}(-x)=(-1)^{n} p_{n}^{(\beta, \alpha)}(x)$ we find that

$$
\left\{\begin{array}{lc}
I_{3}^{k, n}=0, & 0 \leq k \leq n-1 \tag{3.6}\\
I_{3}^{n, n} \cong 2^{j} c_{n}, & m=0 \\
I_{3}^{n, n}=0, & 0<m \leq 2 j
\end{array}\right.
$$

Finally, for $k \geq 2$

$$
\begin{align*}
& I_{4}^{k, n}=d_{k}\left\{h_{n}^{(\alpha+j, \beta+j)}\right\}^{-1 / 2}\left\{h_{k-2}^{(\alpha+2, \beta+2)}\right\}^{-1 / 2} \sum_{m=0}^{2 j} b_{m, j}(\alpha, \beta, n) \tag{3.7}\\
& \times \int_{-1}^{1} P_{n+m}^{(\alpha, \beta)}(x)\left(1-x^{2}\right) P_{k-2}^{(\alpha+2, \beta+2)}(x) \omega_{\alpha, \beta}(x) d x
\end{align*}
$$

On the other hand, from $[12,(2.8)]$ and $[14,(4.5 .3)]$ we have the following relations

$$
\begin{aligned}
& \left(1-x^{2}\right) P_{k-2}^{(\alpha+2, \beta+2)}(x)=b_{2,1}(\alpha+1, \beta+1, n) P_{k}^{(\alpha+1, \beta+1)}(x) \\
& +b_{1,1}(\alpha+1, \beta+1, n) P_{k-1, \beta+1)}^{(\alpha+1)}(x) \\
& \\
& \quad+b_{0,1}(\alpha+1, \beta+1, n) P_{k-2}^{(\alpha+1, \beta+1)}(x)
\end{aligned}
$$

and

$$
P_{n}^{(\alpha+1, \beta+1)}(x)=\frac{2 n+\alpha+\beta+1}{n+\alpha+\beta+1} P_{n}^{(\alpha, \beta+1)}(x)+\sum_{k=0}^{n-1} C_{n, k} P_{k}^{(\alpha, \beta+1)}(x)
$$

By using these relations and (3.4) we also find from (3.7) that

$$
\left\{\begin{array}{l}
I_{4}^{k, n}=0, \quad 0 \leq k \leq n-1 \tag{3.8}\\
I_{4}^{n, n} \cong-4 \cdot 2^{j} d_{n}, \quad m=0 \\
I_{4}^{n, n}=0, \quad 0<m \leq 2 j
\end{array}\right.
$$

As a conclusion, by using (3.3), (3.5), (3.6), (3.8), and Corollary 2.1 we find that:
i) If $M>0, N=0$, then

$$
\left\{\begin{array}{l}
\left(g_{n}^{\alpha, \beta, j}\right)^{\wedge}(k)=0, \quad 0 \leq k \leq n-1, \tag{3.9}\\
\left(g_{n}^{\alpha, \beta, j}\right)^{\wedge}(n) \cong 2^{j},
\end{array}\right.
$$

ii) If $M>0, N>0$, then

$$
\left\{\begin{array}{l}
\left(g_{n}^{\alpha, \beta, j}\right)^{\wedge}(k)=0, \quad 0 \leq k \leq n-1, \tag{3.10}\\
\left(g_{n}^{\alpha, \beta, j}\right)^{\wedge}(n) \cong 4 \cdot 2^{j}
\end{array}\right.
$$

On the other hand, from $[12,(3.1)]$

$$
\begin{equation*}
\left\|g_{n}^{\alpha, \beta, j}\right\|_{L^{p}(d \mu)}^{p}=\frac{\Gamma(\alpha+\beta+2)}{2^{\alpha+\beta+1} \Gamma(\alpha+1) \Gamma(\beta+1)}\left\|g_{n}^{\alpha, \beta, j}\right\|_{L^{p}\left(\omega_{\alpha, \beta} d x\right)}^{p} \leq c \tag{3.11}
\end{equation*}
$$

for $j>\alpha+\frac{1}{2}-(2 \alpha+2) / p>\beta+\frac{1}{2}-(2 \beta+2) / p$ and $q_{0} \leq p \leq \infty$.
We are now in position to prove Theorem.
Proof of Theorem. Let $\alpha \geq \beta \geq-1 / 2$ and $\alpha>-1 / 2$. We assume that $q_{0} \leq p \leq b$, where

$$
\begin{cases}b=\infty & \text { if } M>0, N=0 \\ b<\infty & \text { if } M>0, N>0\end{cases}
$$

The assertion for $a \leq p \leq p_{0}, a$ is the index dual to b, then follows by duality. From (3.1), (3.9), (3.10), and (3.11) we have

$$
\begin{align*}
&\left\|T_{n}^{\alpha, \beta, M, N}\right\|_{\left[L^{p}(d \mu)\right]} \geq\left[\left\|g_{n}^{\alpha, \beta, j}\right\|_{L^{p}(d \mu)}\right]^{-1}\left\|T_{n}^{\alpha, \beta, M, N} g_{n}^{\alpha, \beta, j}\right\|_{L^{p}(d \mu)} \tag{3.12}\\
& \geq c\left|c_{n, n}\right|\left\|p_{n}^{(\alpha, \beta, M, N)}\right\|_{L^{p}(d \mu)}
\end{align*}
$$

By Proposition 2.4 we have

$$
\left\|p_{n}^{(\alpha, \beta, M, N)}\right\|_{L^{p}(d \mu)} \geq c \begin{cases}(\log n)^{1 / p} & \text { if } p=q_{0} \\ n^{(2 \alpha+1) / 2-(2 \alpha+2) / p} & \text { if } q_{0}<p<\infty\end{cases}
$$

On combining this and [5, (13)] with (3.12), the statement is seen to be true.

References

[1] Cohen, P. J., On a conjecture of Littlewood and idempotent measures, Amer. J. Math. 82 (1960), 191-212.
[2] Dreseler, B. and P. M. Soardi, A Cohen type inequality for ultraspherical series, Arch. Math. 38 (1982), 243-247.
[3] Dreseler, B. and P. M. Soardi, A Cohen-type inequality for Jacobi expansions and divergence of Fourier series on compact symmetric spaces, J. Approx. Theory 35 (1982), no. 3, 214-221.
[4] Erdélyi, A., Magnus, W., Oberhettinger, F. and F. G. Tricomi, Tables of Integral Transforms, Vol. II, McGraw-Hill, New York, (1954).
[5] Fejzullahu, B. Xh., Divergent Cesàro means of Fourier expansions with respect to polynomials associated with the measure $(1-x)^{\alpha}(1+x)^{\beta}+M \Delta_{-1}$, Filomat 21:2 (2007), 153-160; http://www.pmf.ni.ac.yu/filomat.
[6] Giulini, S., Soardi, P. M. and G. Travaglini, A Cohen type inequality for compact Lie groups, Proc. Amer. Math. Soc. 77 (1979), 359-364.
[7] Guadalupe, J. J., Pérez, M., Ruiz, F. J. and J. L. Varona, Convergence in the mean of the Fourier series with respect to polynomials associated with the measure $(1-x)^{\alpha}(1+x)^{\beta} d x+M \delta_{-1}+N \delta_{1}$ (Spanish), Orthogonal polynomials and their applications (Spanish) (Vigo, 1988), 91-99, Esc. Téc. Super. Ing. Ind. Vigo, Vigo, 1989.
[8] Guadalupe, J. J., Pérez, M., Ruiz, F. J. and J. L. Varona, Asymptotic behaviour of orthogonal polynomials relative to measures with mass points, Mathematika 40 (1993), 331-344.
[9] Guadalupe, J. J., Pérez, M., Ruiz, F. J. and J. L. Varona, Weighted norm inequalities for polynomial expansions associated to some measures with mass points, Constr. Approx. 12 (1996), 341-360.
[10] Hardy, G. H. and J. E. Littlewood, A new proof of a theorem on rearrangements, J. London Math. Soc. 23 (1948), 163-168.
[11] Koornwinder, T. H., Orthogonal polynomials with weight function (1 $x)^{\alpha}(1+x)^{\beta} d x+M \delta(x+1)+N \delta(x-1)$, Canad. Math. Bull. 27 (1984), 205-214.
[12] Markett, C., Cohen type inequalities for Jacobi, Laguerre and Hermite expansions, SIAM J. Math. Anal. 14 (1983), no. 4, 819-833.
[13] Stempak, K., On convergence and divergence of Fourier-Bessel series, Electron. Trans. Numer. Anal. 14 (2002), 223-235.
[14] Szegő, G., Orthogonal polynomials, Amer. Math. Soc. Colloq. Pub. 23, Amer. Math. Soc., Providence, RI, (1975).
[15] Varona, J. L., Convergencia en L^{p} con pesos de la serie de Fourier respecto de algunos sistemas ortogonales, Ph. D. Thesis, Sem. Mat. García de Galdeano, sec. 2, no. 22. Zaragoza, (1989); http://www.unirioja.es/cu/jvarona/papers. html.
[16] Zygmund, A., Trigonometric series: Vols. I, II, Cambridge University Press, London, (1968).
(Received December 12, 2007)
(Revised May 7, 2008)
Faculty of Mathematics and Sciences University of Prishtina Nëna Terezë 5
10000 Prishtinë
Kosovë
E-mail: bujarfej@uni-pr.edu

[^0]: 2000 Mathematics Subject Classification. 42C05, 42C10.
 Key words: Jacobi polynomials, Koornwinder's Jacobi-type polynomials, polynomial expansions, Cohen type inequality.

