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Galois Cohomology of a p-adic Field via (Φ,Γ)-modules

in the Imperfect Residue Field Case

By Kazuma Morita

Abstract. For a p-adic local field K with perfect residue field, L.
Herr constructed a complex which computes the Galois cohomology of
a p-torsion representation of the absolute Galois group of K by using
the theory of (Φ,Γ)-modules. We shall generalize his work to the
imperfect residue field (the residue field has a finite p-basis) case.

1. Introduction

In this article, K denotes a complete discrete valuation field of character-

istic 0 with residue field k of characteristic p > 0 such that [k : kp] = pn <∞.

Assume that K contains a primitive p-th root of unity if p �= 2 and a primi-

tive 4-th root of unity if p = 2. Choose an algebraic closure K of K and put

GK = Gal(K/K). By a p-torsion GK-representation, we mean a Zp-module

of finite length endowed with a continuous action of GK . Let Repp−tor(GK)

denote the category of p-torsion GK-representations. Let V be a p-torsion

GK-representation. In the case n = 0 (i.e. k is a perfect field), Herr [H1]

obtained a presentation of the Galois cohomology H∗(GK , V ) in terms of

the (Φ,ΓK)-module D(V ) associated to V in the sense of Fontaine [F].

Now, let n be arbitrary. The purpose of this paper is to give a presen-

tation of H∗(GK , V ) in terms of the (Φ,ΓK)-module (defined in this paper)

associated to V (Theorem 1.1). Our ΓK is non-commutative if n ≥ 1.

Fix a lifting (bi)1≤i≤n of a p-basis of k in OK (the ring of integers of

K), and for each m ≥ 1 and 1 ≤ i ≤ n, fix a pm-th root b
1/pm

i of bi in

K satisfying (b
1/pm+1

i )p = b
1/pm

i . Put K(′) = ∪m≥0K(b
1/pm

i , 1 ≤ i ≤ n)

and K
(′)
∞ = ∪m≥0K

(′)(ζpm) where ζpm denotes a primitive pm-th of unity

in K such that ζp
pm+1 = ζpm . The field K(′) depends on the choice of a

lifting of a p-basis of k in OK , but the field K
(′)
∞ doesn’t. Let K ′ denote
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the p-adic completion of K(′). Choose an algebraic closure K ′ (⊃ K) of

K ′. Put K ′
∞ = ∪m≥0K

′(ζpm) in K ′. These fields K ′ and K ′
∞ depend on

the choice of a lifting of a p-basis of k in OK . Put ΓK = Gal(K
(′)
∞ /K) and

ΓK′ = Gal(K ′
∞/K ′). Then, ΓK′ is isomorphic to an open subgroup of Z

∗
p

via the cyclotomic character χ : ΓK′ → Z
∗
p and ΓK is isomorphic to the

semi-direct product ΓK′ �Z
⊕n
p where ΓK′ acts on Z

⊕n
p via χ (see Section 3).

The group ΓK is non-commutative if n ≥ 1. Since K ′ has perfect residue

field which we denote k′ = kp−∞
, we can apply the theory of Fontaine [F]

to obtain the (Φ,ΓK′)-module D(V ) for a p-torsion GK-representation V .

Then, D(V ) is equipped with a Frobenius operator φ : D(V ) → D(V ) and

also with a continuous action of ΓK (not only ΓK′) which commutes with φ.

With these actions , D(V ) becomes an object of the category ΦΓMét,p-tor
AK ,ΓK

of torsion étale (Φ,ΓK)-modules which we will define (see Section 2) by

imitating the definition of the category of torsion étale (Φ,ΓK′)-modules

by Fontaine ([F], p273, 3.3.2). Then, we shall obtain an equivalence of

categories between

Repp-tor(GK) and ΦΓMét,p-tor
AK ,ΓK

which is a generalization of the equivalence of Fontaine ([F], p274, 3.4.3) to

the imperfect residue field case (for details, see Theorem 2.7 in Section 2).

By using this D(V ), we will construct a complex Cφ,ΓK
(D(V )) in Section

3. Our main result is the following.

Theorem 1.1. With notations as above, the group H i(GK , V ) is

canonically isomorphic to the i-th cohomology group of the complex

Cφ,ΓK
(D(V )) for all i. This isomorphism is functorial in V .

Our proof of the main theorem is a little different from the method of

Herr. In the case n = 0, he considered an “effaceable” property of the

complex Cφ,ΓK
(D(V )), whereas our method is to construct a free resolution

of the Zp[[ΓK ]]-module Zp.

This paper is organized as follows. In Section 2, we shall review the

theory of (Φ,Γ)-modules, which is due to J.-M. Fontaine [F] in the perfect

residue field case. We shall construct a theory of (Φ,Γ)-modules in the

imperfect residue field case (F. Andreatta [A] constructs a more general and

finer theory of (Φ,Γ)-modules). In Section 3, for M ∈ ΦΓMét,p-tor
AK ,ΓK

, we shall
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construct the complexes CΓK
(M) and Cφ,ΓK

(M) which are to be used in

the main theorem. In Section 4, we shall construct a free resolution of Zp in

the category of left Zp[[ΓK ]]-modules. In Section 5, we shall prove that the

cohomology group of Cφ,ΓK
(D(V )) coincides with the Galois cohomology

H∗(GK , V ).

2. The Theory of (Φ,Γ)-modules

Let k′ denote the perfect residue field of K ′ as in Section 1. Put F (k′) =

W (k′)[p−1] where W (k′) denotes the ring of Witt vectors with coefficients

in k′. Now, we apply the theory of (Φ,Γ)-modules of Fontaine to K ′. Since

K(′) is a Henselian discrete valuation field , we have an isomorphism GK′ =

Gal(K ′/K ′) 	 GK(′) = Gal(K/K(′)) (⊂ GK). With this isomorphism, we

identify GK′ with a subgroup of GK . We have a bijective map from the set

of finite extensions of K(′) contained in K to the set of finite extensions of

K ′ contained in K ′ defined by L → LK ′. Furthermore, LK ′ is the p-adic

completion of L. Hence, we have an isomorphism of rings

OK/pnOK 	 OK′/p
nOK′

where OK and OK′ denote the rings of integers of K and K ′. Thus, the

p-adic completion of K is isomorphic to the p-adic completion of K ′, which

we will write Cp. Put

Ẽ = lim←−Cp = {(x(0), x(1), · · · )|(x(i+1))p = x(i), x(i) ∈ Cp}

and Ẽ
+ denotes the set of x = (x(i)) ∈ Ẽ such that x(0) ∈ OCp (where OCp

denotes the ring of integers of Cp). For two elements x = (x(i)) and y = (y(i))

of Ẽ, define their sum and product by (x+ y)(i) = limj→∞(x(i+j) + y(i+j))p
j

and (xy)(i) = x(i)y(i). Let ε = (ε(i)) denote an element of Ẽ such that

ε(0) = 1 and ε(1) �= 1. Then, Ẽ is a field of characteristic p > 0 (Ẽ+ is a

subring of Ẽ) and is the completion of an algebraic closure of k′((ε − 1))

for the valuation defined by vE(x) = vp(x
(0)) where vp denotes the p-adic

valuation of Cp normalized by vp(p) = 1.

Example 2.1. With this valuation, we have

vE(ε− 1) = limn→∞vp((ε
(n) − 1)p

n
) =

p

p− 1
.
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The field Ẽ is equipped with an action of a Frobenius σ and a continuous

action of the Galois group GK with respect to the topology defined by the

valuation vE. Put EF (k′) = k′((ε − 1)) and define E to be the separable

closure of EF (k′) in Ẽ. Define HK = Gal(K ′/K ′
∞) which is isomorphic

to the subgroup G
K

(′)
∞

= Gal(K/K
(′)
∞ ) of GK . From now on, we identify

HK with G
K

(′)
∞

. If we put EK = E
HK and define GEK

to be the Galois

group of E/EK , the action of GK′ on E induces the canonical isomorphism

HK 	 GEK
by the theory of the field of norms ([FW], [W]). Let π denote

[ε]−1. Put Ã = W (Ẽ) (Ẽ is a perfect field) and Ã
+ = W (Ẽ+). The ring Ã is

endowed with the topology whose fundamental system of the neighborhoods

of 0 has the form πk
Ã

+ + pn+1
Ã for k, n ∈ N. This topology coincides with

the product topology defined by the application Ã → Ẽ
N : x �→ (xk)k∈N.

The continuous action of GK on Ẽ induces the continuous action of GK on Ã

which commutes with the Frobenius σ. Let AF (k′) be the p-adic completion

of W (k′)[[π]][π−1] contained in Ã. This ring is a complete discrete valuation

ring with the residue field EF (k′). Let A be the p-adic completion of the

maximal unramified extension of AF (k′) in Ã which has the residue field E.

The ring A is equipped with an action of the Galois group GK and of the

Frobenius σ induced from those of Ẽ. Put AK = A
HK .

For all V ∈ Repp−tor(GK′), we can associate the (Φ,ΓK′)-module over

AK

D(V ) = (A⊗Zp V )HK .

It is equipped with the residual action of ΓK′ 	 GK′/HK and the Frobenius

φD(V ) induced by that on A. The module D(V ) is a torsion étale (Φ,ΓK′)-

module over AK ([F], p274, 3.4.2).

Conversely, to a torsion étale (Φ,ΓK′)-module M over AK , we can as-

sociate a p-torsion representation of GK′ as follows

(∗) V (M) = (A⊗AK
M)σ⊗φM=1 ∈ Repp−tor(GK′).

Let ΦΓMét,p-tor
AK ,ΓK′ denote the category of torsion étale (Φ,ΓK′)-modules in

the sense of Fontaine ([F], p273, 3.3.2). By the two constructions above,

Fontaine proved the following ([F], p274, 3.4.3).
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Theorem 2.2. The functor D gives an equivalence between the two

categories

Repp−tor(GK′) and ΦΓMét,p-tor
AK ,ΓK′

The functor V is a quasi-inverse of D.

Define (Φ,ΓK)-modules as follows.

Definition 2.3. A torsion (Φ,ΓK)-module over AK is an AK-module

M of finite length equipped with

(1) a σ-semi-linear map (which we call a Frobenius operator)

φ = φM : M →M

(2) a continuous semi-linear action of ΓK which commutes with φ.

In addition, we call M an étale (Φ,ΓK)-module if it is generated by the

image of φ as an AK-module. Let ΦΓMét,p-tor
AK ,ΓK

denote the category which

consists of

◦ objects: torsion étale (Φ,ΓK)-modules over AK

◦ morphisms: AK-linear morphisms which commute with φ and the

action of ΓK .

Remark 2.4. Put A
+
K = AK ∩ Ã

+. If we fix a lifting TK of the prime

element of EK in A
+
K , we have A

+
K = W (k′)[[TK ]]. Let M be a finitely

generated AK/pn-module. Fix a finitely generated sub-A+
K/pn-module M0

of M such that M is generated by M0 over AK/pn. The module M is

endowed with the topology such that the family of submodules {Tm
K M0}m≥1

is a fundamental system of neighborhoods of 0. This topology is independent

of the choice of M0. Furthermore, since AK/pn is Noetherian and complete

for the TK-adic topology, T−N
K M0 is complete for the TK-adic topology. We

may use the family of submodules {πmM0}m≥1 instead of {Tm
K M0}m≥1 to

define the same topology.

Consider a p-torsion GK-representation V ∈ Repp−tor(GK) and D(V ).

Since the Galois group GK acts on A ⊗Zp V and we have D(V ) = (A ⊗Zp

V )HK , the quotient ΓK 	 GK/HK and φ act on D(V ) commuting with

each other. This means that D(V ) becomes an object of ΦΓMét,p-tor
AK ,ΓK

. The
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continuous action of GK on A ⊗Zp V induces the continuous action of ΓK

on D(V ) as follows. Let L be a finite Galois extension of K contained in

K such that the action of GL = Gal(K/L) on V is trivial. Fix n ∈ N such

that pnV = 0. Then, we have D(V ) = (AL/p
n ⊗Zp V )HK . The following

two topologies of D(V ) coincide

(1) the topology defined in Remark 2.4

(2) the induced topology as a subspace of AL/p
n ⊗Zp V whose topology

is defined in Remark 2.4.

(Proof: There exists an AL/p
n-linear isomorphism

AL/p
n ⊗AK/pn D(V ) 	 AL/p

n ⊗Zp V.

Fix a finitely generated sub-A+
K/pn-module M0 of D(V ) such that D(V )

is generated by M0 over AK/pn. Let M0
L be the sub-A+

L/p
n-module of

AL/p
n ⊗Zp V generated by M0. Since the morphism A

+
K/pn → A

+
L/p

n is

finite flat, the morphism A
+
L/p

n⊗
A

+
K/pnM

0 →M0
L is an isomorphism. Thus,

the inverse image of πmM0
L by the map D(V )→ AL/p

n ⊗Zp V is πmM0.)

Remark 2.5. Let L be a finite Galois extension of K contained in

K. Let M be a finitely generated AL/p
n-module endowed with a con-

tinuous and semi-linear action of Gal(K
(′)
∞L/K). Fix M0 as in Remark

2.4. Let M1 be the sub-A+
L/p

n-module of M generated by g(M0) (g ∈
Gal(K

(′)
∞L/K)). Since Gal(K

(′)
∞L/K) is compact, M1 is also a finitely gen-

erated sub-A+
L/p

n-module. By construction, M1 is stable under the action

of Gal(K
(′)
∞L/K). Then, for N,m ∈ N, π−NM1/πmM1 becomes a dis-

crete Zp[[Gal(K
(′)
∞L/K)]]-module. Since π−NM1 is complete for the π-adic

topology, π−NM1 has the structure of Zp[[Gal(K
(′)
∞L/K)]]- module. Thus,

M is equipped with the structure of Zp[[Gal(K
(′)
∞L/K)]]-module. For an-

other sub-A+
L/p

n-module M2 of M stable under the action of Gal(K
(′)
∞L/K)

such that M is generated by M2 over AL/p
n, we can find integers N1 ≤ N2

such that πN1M1 ⊂ M2 ⊂ πN2M1, therefore, the structure of

Zp[[Gal(K
(′)
∞L/K)]]-module on M is independent of the choice of M1. With

this, the action of ΓK on D(V ) naturally extends to the action of Zp[[ΓK ]].
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Remark 2.6. Let L be a finite Galois extension of K contained in K

such that the action of GL on V is trivial. Fix n ∈ N such that pnV = 0. For

a finite Galois extension of K such that L ⊂ L′ ⊂ K, AL′ ⊗Zp V is a finitely

generated AL′/pn-module endowed with a continuous and semi-linear action

of Gal(K
(′)
∞L′/K). Remark 2.5 says that the action of Gal(K

(′)
∞L′/K) on

AL′ ⊗Zp V naturally extends to the action of Zp[[Gal(K
(′)
∞L′/K)]]. Thus,

the action of GK on A ⊗Zp V = lim−→ L′(AL′ ⊗Zp V ) naturally extends to

the action of Zp[[GK ]]. Then, the canonical injection D(V ) → A ⊗Zp V

is compatible with the action of Zp[[GK ]]. (Proof: Let L, M0, M0
L be

as in the proof of the coincidence of the two topologies of D(V ) before

Remark 2.5. We can assume that M0 is endowed with a continuous and

semi-linear action of ΓK (see Remark 2.5). Since the morphism A
+
K/pn →

A
+
L/p

n is finite flat, we have a morphism of discrete Zp[[GK ]]- modules

π−NM0/πmM0 → (A+
L/p

n) ⊗
A

+
K/pn (π−NM0/πmM0) 	 π−NM0

L/π
mM0

L.

By taking the inverse limit for m, we obtain the morphism of Zp[[GK ]]-

modules π−NM0 → π−NM0
L.)

Conversely, to a torsion étale (Φ,ΓK)-module M over AK , we can asso-

ciate a p-torsion representation of GK as follows (see (∗))

V (M) = (A⊗AK
M)σ⊗φM=1.

The continuous action of GK on A⊗AK
M induces the continuous action of

GK on V (M). Here, we give V (M) the induced topology as a subspace of

A⊗AK
M . Since the topology of A⊗AK

M is Hausdorff and V (M) is finite,

the induced topology on V (M) is discrete.

An imperfect residue field version of Fontaine’s theorem is the following

(cf. Theorem 2.2).

Theorem 2.7. The functor D gives an equivalence between the two

categories

Repp-tor(GK) and ΦΓMét,p-tor
AK ,ΓK

The functor V is a quasi-inverse of D.

Proof. For M ∈ ΦΓMét,p-tor
AK ,ΓK

, the natural morphism

A⊗Zp V (M)→ A⊗AK
M
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induces a morphism D(V (M))→M and this morphism is an isomorphism

([F], p258, 1.2.6). Conversely, for N ∈ Repp-tor(GK), the natural morphism

A⊗AK
D(N)→ A⊗Zp N

induces a morphism V (D(N)) → N and this morphism is an isomorphism

([F], p258, 1.2.4). �

3. Main Theorem

We will give a presentation of H∗(GK , V ) in terms of D(V ). Recall that

we fixed a pm-th root b
1/pm

i of bi in Introduction. Fix a pm-th root ζpm of

unity such that ζp
pm+1 = ζpm . Fix a topological generator γ of ΓK′ ⊂ ΓK

and define βi ∈ ΓK (1 ≤ i ≤ n) by

βi(b
1/pm

i ) = b
1/pm

i ζpm , βi(b
1/pm

j ) = b
1/pm

j (j �= i) and βi(ζpm) = ζpm .

Define l ∈ Z
∗
p by

γ(ζpm) = ζ lpm .

These topological generators (γ, β1, . . . , βn) define the isomorphism ΓK 	
ΓK′ � Z

⊕n
p (βi �→ the topological generator of i-th component of Zp). Let Λ

denote Zp[[ΓK ]] in what follows. Define elements of Λ as follows

ωi = βi − 1 and τS = (Πi∈S
βi − 1

βl
i − 1

)γ − 1.

Recall that D(V ) is naturally equipped with the action of Λ (Remark 2.5).

Since (βl
i − 1)(βi − 1)−1 = {(1 + ωi)

l − 1}ω−1
i ∈ l + ωiZp[[ωi]] and l ∈ Z

∗
p,

we have (βl
i − 1)(βi − 1)−1 ∈ Zp[[ωi]]

∗.

(1) The complex CΓK
(D(V ))

To a p-torsion representation V of GK , define the complex CΓK
(D(V ))

to be

0 −→ D(V )X(0) d0

−→D(V )X(1) d1

−→· · ·
di−1

−→D(V )X(i) di−→· · · dn−→D(V )X(n+1) −→ 0.

(The proof of di◦di−1 = 0 follows from the presentation of CΓK
(D(V ))

in terms of CΛ in Section 5.)

Here



Galois Cohomology 227

(a) For a finite set X, we define D(V )X = ⊕S∈XD(V ).

(b) X(i) denotes the set of all subsets of {0, · · · , n} of order i. Notice

that the order of X(i) is
(
n+1
i

)
. We define the degree of D(V )X(0)

to be 0.

(c) For S ∈ X(i) and T ∈ X(i + 1), the (S, T )-component di(S, T )

of di : D(V )X(i) → D(V )X(i+1) is defined as follows.

(A) If S �⊂ T , di(S, T ) = 0.

(B) If S ⊂ T , put {j} = T\S.

◦ If j = 0, di(S, T ) = τS .

◦ If j �= 0, di(S, T ) = (−1)a(S,j)ωj where a(S, j) = ,{x ∈ S;x ≤
j}.

(2) The complex Cφ,ΓK
(D(V ))

Define the complex Cφ,ΓK
(D(V )) by

Cφ,ΓK
(D(V )) = the mapping fiber of CΓK

(D(V ))
ρ→CΓK

(D(V ))

where ρ = φ− 1. The complex Cφ,ΓK
(D(V )) has the following form

0 −→ D(V )⊕(n+2
0 ) d0

−→D(V )⊕(n+2
1 ) d1

−→· · ·
di−1

−→D(V )⊕(n+2
i ) di−→· · · d

n+1

−→D(V )⊕(n+2
n+2) −→ 0.

(Here, define the degree of D(V )⊕(n+2
0 ) to be 0.)

Our main result is the following.

Theorem 3.1. With notations as above, the group H i(GK , V ) is

canonically isomorphic to the i-th cohomological group of the complex

Cφ,ΓK
(D(V )) for all i. This isomorphism is functorial in V .

It follows that the cohomological dimension of K is n + 2.
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Example 3.2.

(1) The case n = 0 (i.e. the residue field k is perfect)

In this case, the complex Cφ,ΓK
(D(V )) is given by

0 −→ D(V )
d0

−→D(V )⊕D(V )
d1

−→D(V ) −→ 0

◦ d0(x) = (ρ(x), τ(x)),

◦ d1(x, y) = (ρ(y)− τ(x)).

Here, ρ = φ− 1 and τ = τ∅= γ − 1. This is the complex constructed

by Herr.

(2) The case n = 1 (i.e. the residue field k is imperfect and [k : kp] = p)

In contrast to the example (1), there is an action of ω1 = β1 − 1.

Therefore, we have a more complicated complex than before.

0 −→ D(V )
d0

−→D(V )⊕D(V )⊕D(V )

d1

−→D(V )⊕D(V )⊕D(V )
d2

−→D(V ) −→ 0

◦ d0(x) = (ρ(x), τ(x), ω1(x)),

◦ d1(x, y, z) = (ρ(y)− τ(x), ρ(z)− ω1(x), τ{1}(z)− ω1(y)),

◦ d2(x, y, z) = (ρ(z)− τ{1}(y) + ω1(x)).

The appearance of τ{1}, instead of τ , reflects the non-commutativity

of ΓK .

4. Construction of a Free Resolution of Zp

4.1. Relations in Λ

Let

γ, β1, β2, · · · , βn

be the topological generators of ΓK as in the previous section. We have the

following relations
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(1) γβi = βi
lγ (l ∈ Z

∗
p)

(2) βiβj = βjβi.

For the construction of the complex, consider the following elements of Λ

(these are introduced in the previous section)

(1) τ = γ − 1

(2) ωi = βi − 1

(3) Wi = βi
l − 1

(4) τS = Π
i∈S

(ωiW
−1
i )γ − 1 for S ⊂ {1, · · · , n}.

Recall that ωiW
−1
i ∈ Zp[[βi − 1]] ⊂ Λ.

Remark 4.1. Notice that τS = τ if S = ∅.

These operators have the following relations:

Relations (R)

(1) ωiωj = ωjωi

(2) WiWj = WjWi

(3) γωi = Wiγ

(4) For i ∈ S ⊂ {1, · · · , n}, τSωi = ωiτS\{i}.

Proof. τSωi

= ( Π
j∈S

(ωjW
−1
j )γ − 1)ωi = ( Π

j∈S
(ωjW

−1
j )γωi − ωi)

= ( Π
j∈S

(ωjW
−1
j )Wiγ − ωi) = ωi( Π

j∈S,j �=i
(ωjW

−1
j )γ − 1)

= ωiτS\{i}. �
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4.2. Construction of CΛ

Consider the following sequence CΛ of left Λ-modules

0 −→ ΛX(n+1) dn−→ΛX(n) dn−1−→ · · · di−→ΛX(i) di−1−→· · · d0−→ΛX(0) −→ 0.

Here

(1) For a finite set X, define ΛX = ⊕S∈XΛ.

(2) X(i) denotes the set of all subsets of {0, 1, · · · , n} of order i. Define

the degree of ΛX(0) to be 0.

(3) For S ∈ X(i) and T ∈ X(i + 1), the (S, T )-component di(S, T ) of

di : ΛX(i+1) → ΛX(i) is defined as follows.

(A) If S �⊂ T , di(S, T )(x) = 0.

(B) If S ⊂ T , put {j} = T\S.

◦ If j = 0, di(S, T )(x) = xτS .

◦ If j �= 0, di(S, T )(x) = (−1)a(S,j)xωj where a(S, j) = ,{y ∈ S; y ≤
j}.

Example 4.2. In the case of [k : kp] = p, we have

0 −→ Λ
d1−→Λ⊕2 d0−→Λ −→ 0

Here, d0(f, g) = (fτ + gω1) and d1(f) = (−fω1, fτ{1}).

Lemma 4.3. The natural morphism

lim←−m Zp[ΓK′ ]/(ΓK′)p
m ⊗Zp Zp[[ω1, . . . , ωn]]→ Λ = Zp[[ΓK ]]

is an isomorphism of left Zp[[ΓK′ ]]- and right Zp[[ω1, . . . , ωn]]-modules.

Proof. For m ∈ N>0, put Γm = ΓK′/(ΓK′)p
m

�(Z/pmZ)⊕n. Note that

the action of ΓK′ on (Z/pmZ)⊕n factors through the quotient ΓK′/(ΓK′)p
m
.

Then, we have Zp[[ΓK ]] 	 lim←−mZp[Γm]. The natural homomorphisms of
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rings f : Zp[ΓK′/(ΓK′)p
m

] → Zp[Γm] and g : Zp[(Z/p
m

Z)⊕n] → Zp[Γm]

induce the surjection of left Zp[ΓK′/(ΓK′)p
m

]- and right Zp[(Z/p
m

Z)⊕n]-

modules

Zp[ΓK′/(ΓK′)p
m

]⊗Zp Zp[(Z/p
m

Z)⊕n] � Zp[Γm] : a⊗ b �→ f(a)g(b).

Since both sides have the same Zp-rank, it turns out to be an isomorphism.

On the other hand, we have

lim←−m(Zp[ΓK′/(ΓK′)p
m

]⊗Zp Zp[(Z/p
m

Z)⊕n])

	 lim←−m(lim←−m′(Zp[ΓK′/(ΓK′)p
m

]⊗Zp Zp[(Z/p
m′

Z)⊕n]))

	 lim←−m(Zp[ΓK′/(ΓK′)p
m

])⊗Zp Zp[[ω1, . . . , ωn]].

This completes the proof. �

Proposition 4.4. The sequence

0 −→ ΛX(n+1) dn−→ΛX(n) dn−1−→ · · · d0−→ΛX(0) Aug−→Zp −→ 0

gives a free resolution of the left Λ-module Zp. Here, Zp is equipped with

the structure of left Λ-modules induced from the trivial action of ΓK .

Proof. Consider the following sequence Cω

0 −→ ΛY (n)
d′n−1−→ ΛY (n−1)

d′n−2−→ · · · d′0−→ΛY (0) Aug−→Zp[[τ ]] −→ 0.

Here

(1) Y (i) denotes the set of all subsets of {1, · · · , n} of order i. (Recall

that X(i) denotes the set of all subsets of {0, 1, · · · , n}.)

(2) For S ∈ Y (i) and T ∈ Y (i + 1), the (S, T )-component d′i(S, T ) of

d′i : ΛY (i+1) → ΛY (i) is defined as follows.

◦ If S �⊂ T , d′i(S, T )(x) = 0.

◦ If S ⊂ T , put {j} = T\S.

d′i(S, T )(x) = (−1)a(S,j)xωj where a(S, j) = ,{y ∈ S; y ≤ j}.
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Put Λ0 = Zp[[ω1, . . . , ωn]]. Let K.(ω1, . . . , ωn) be the Koszul complex

0 −→ Λ
Y (n)
0

d′n−1−→ Λ
Y (n−1)
0

d′n−2−→ · · · d′0−→Λ
Y (0)
0 −→ 0.

Since we have the isomorphism lim←−m Zp[ΓK′/(ΓK′)p
m

]⊗ZpZp[[ω1, . . . , ωn]] 	
Λ = Zp[[ΓK ]], the sequence

0 −→ ΛY (n)
d′n−1−→ ΛY (n−1)

d′n−2−→ · · · d′0−→ΛY (0) −→ 0

is the complex lim←−m Zp[ΓK′/(ΓK′)p
m

]⊗ZpK.(ω1, . . . , ωn), so the sequence Cω

is a resolution of Zp[[ΓK′ ]] = Λ/(
∑n

i=1 Λωi) in the category of left Λ-modules

(note that the transition map Zp[ΓK′/(ΓK′)p
m

] → Zp[ΓK′/(ΓK′)p
m′

] (m ≥
m′) is surjective). In particular, the sequence Cω is exact. Then, consider
the following commutative diagram of left Λ-modules (the commutativity
follows from the relation (4)):

0�
0 −−−→ ΛY (n)

d′
n−1−−−→ ΛY (n−1)

d′
n−2−−−→ · · · d′

0−−−→ ΛY (0) −−−→ Zp[[τ ]] −−−→ 0

d
′′
n

� d
′′
n−1

� d
′′
0

� τ

�
0 −−−→ ΛY (n)

d′
n−1−−−→ ΛY (n−1)

d′
n−2−−−→ · · · d′

0−−−→ ΛY (0) −−−→ Zp[[τ ]] −−−→ 0�
Zp�
0 .

For S ∈ Y (i) (the target) and T ∈ Y (i) (the source), the (S, T )-component

of d
′′
i (S, T ) : ΛY (i) → ΛY (i) is defined as follows.

◦ If S �= T , d
′′
i (S, T )(x) = 0.

◦ If S = T , d
′′
i (S, T )(x) = xτS .

Since CΛ is the simple complex associated to the mapping cone of

d
′′

: lim←− nZp[ΓK′/(ΓK′)p
n
]⊗Zp K.(ω1, . . . , ωn)

→ lim←− nZp[ΓK′/(ΓK′)p
n
]⊗Zp K.(ω1, . . . , ωn),
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it is quasi-isomorphic to the complex Zp[[τ ]]→ Zp[[τ ]] : x �→ xτ , and hence

to Zp. Thus, we get the exact sequence

0 −→ ΛX(n+1) dn−→ΛX(n) dn−1−→ · · · d0−→ΛX(0) Aug−→Zp −→ 0. �

5. Proof of the Main Theorem

5.1. Connection between CΓK
(M) and CΛ

First, let us fix some notations. Let G denote a profinite group and put

ΛG = Zp[[G]]. Then, ΛG-Mod (resp. Zp-Mod, CG, DG) denotes the category

of left ΛG-modules (resp. Zp-modules, compact left ΛG-modules, discrete

left ΛG-modules). Furthermore, let D+(∗) denote the derived category of

∗ (∈ {ΛG-Mod,Zp-Mod,CG,DG}) which consists of complexes bounded be-

low.

Let M be a left Λ-module. Define the complex CΓK
(M) to be

CΓK
(M) = HomΛ(CΛ,M)

where HomΛ(A,B) (A,B ∈ Λ(= ΛΓK
)-Mod) denotes the set of all homo-

morphisms f : A→ B of Λ-modules. In the case M = D(V ), this CΓK
(M)

clearly coincides with the one defined in Section 3. On the other hand, by

Proposition 4.4, we have

HomΛ(CΛ,M) 	 RHomΛ(Zp,M)

where we denote RHomΛ(Zp,−) : D+(Λ-Mod)→ D+(Zp-Mod).

For every discrete left Λ-module M , consider the Zp-module

HomΛ,cont(Zp,M) of all continuous homomorphisms f : Zp → M of Λ-

modules. Then, we obtain the functor

HomΛ,cont(Zp,−) : DΓK
→ DZp .

Here, DZp denotes the category D{e} (e: unit). To define the derived functor

RHomΛ,cont(Zp,M) (M : discrete left Λ-module), we can use the projective

resolution of Zp in CΓK
(see Remark 5.2 below). Since each component of

CΛ is a finitely generated free Λ-module, it gives a projective resolution

of Zp in CΓK
. Furthermore, since we have the equality HomΛ(P,M) =
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HomΛ,cont(P,M) for a finitely generated free Λ-module P and a discrete

Λ-module M , we obtain

RHomΛ(Zp,M) = RHomΛ,cont(Zp,M).

If M is a discrete Λ-module, we also have

RHomΛ,cont(Zp,M) 	 RΓ(ΓK ,M)

(see [NSW, p231, (5.2.7)]). Thus, we obtain the following.

Proposition 5.1. If M is a discrete left Λ-module, we have

CΓK
(M) 	 RΓ(ΓK ,M).

Remark 5.2. Though it is stated in ([NSW], p231) that, to define

RHomΛG,cont(L, M) for L ∈ CG and M ∈ DG, one can use either projective

resolutions of L in CG or injective resolutions of M in DG, we shall review

this fact here. For a projective resolution P · → L in CG and an injective

resolution M → I ·in DG, it suffices to show

Hom·
ΛG,cont(L, I

·)→ Hom·
ΛG,cont(P

·, I ·)← Hom·
ΛG,cont(P

·,M)

are quasi-isomorphisms. Here, HomΛG,cont(A,B) (A ∈ CG and B ∈ DG)

denotes all continuous homomorphisms f : A → B of ΛG-modules. For

this, we have to show that both functors CG → DZp : L �→ HomΛG,cont(L, I)

(I is an injective object of DG) and DG → DZp : M �→ HomΛG,cont(P,M)

(P is a projective object of CG) are exact functors. This follows from the

fact that, for L ∈ CG and M ∈ DG, any continuous homomorphism L→M

of ΛG-modules factors through a compact and discrete subgroup of M .

Remark 5.3. The functor CΓK
from the category Λ-Mod (resp. DΓK

)

to the category Zp-Mod (resp. DZp) naturally extends to the functor CΓK

from the derived category D+(Λ-Mod) (resp. D+(DΓK
)) to the derived

category D+(Zp-Mod) (resp. D+(DZp)). Note that the functor CΓK
is

an exact functor, i.e. for an exact sequence of Λ-modules (resp. discrete

Λ-modules) 0 → M1 → M2 → M3 → 0, we have an exact sequence of

complexes 0 → CΓK
(M1) → CΓK

(M2) → CΓK
(M3) → 0. Furthermore,
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Proposition 5.1 induces a canonical isomorphism of functors CΓK
(−) 	

RΓ(ΓK ,−) from the derived category D+(DΓK
) to the derived category

D+(DZp).

The exact functor from the category DΓK
to the category Λ-Mod natu-

rally extends to the functor from the derived category D+(DΓK
) to the de-

rived category D+(Λ-Mod). Therefore, the object RΓ(HK , V ) of the derived

category D+(DΓK
) gives an object of the derived category D+(Λ-Mod).

Proposition 5.4. Let V be a p-torsion representation of GK . Then,

we have an isomorphism

RΓ(HK , V ) 	 [D(V )
ρ=φ−1→ D(V )]

in D+(Λ-Mod).

For the proof of this proposition, we shall introduce a subcategory of

ΛGK
-Mod which contains the ΛGK

-module A ⊗Zp V . First, let us fix some

notations. Let G be a profinite group and H be a closed normal subgroup

of G. Let S denote the set of open subgroups of H which are also normal

subgroups of G. We define EG,H to be the full subcategory of ΛG-Mod which

consists of ΛG-modules M with the following property: for all x ∈M , there

exist Ux ∈ S and nx ∈ Z>0 such that the action of Ker (ΛG → ΛG/Ux
/pnx)

on x is 0. Then, EG,H forms an abelian category.

Lemma 5.5. The category EG,H has sufficiently many injectives.

Proof. For M ∈ EG,H , there exists an inclusion M ↪→ I where I is

an injective object of ΛG-Mod. Define I ′ to be {x ∈ I|∃U ∈ S, n ∈ Z>0

s.t. the action of Ker (ΛG → ΛG/U/p
n) on x is 0 }. Then, I ′ becomes an

injective object of EG,H such that M ⊂ I ′. �

Lemma 5.6.

(1) For U,U ′ ∈ S, U ′ ⊂ U , the homomorphism ΛG/U ′ ⊗ΛH/U′ ΛH/U →
ΛG/U is an isomorphism.

(2) For U ∈ S, ΛG/U is flat as a right ΛH/U -module.
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Proof. (1) The natural homomorphism G/U ′ → G/H has a continu-

ous section s : G/H → G/U ′ (see [S2], p4, Proposition 1.). With this, we

obtain a homeomorphism G/H×H/U ′ 	 G/U ′ : (a, b) �→ s(a) ·b of profinite

sets which is compatible with the right action of H/U ′. Therefore, we get an

isomorphism f ′ : Zp[[G/H]] ⊗Zp Zp[H/U ′] 	 Zp[[G/U ′]] of right Zp[H/U ′]-
modules. By using the composition with the section s and G/U ′ → G/U ,

we similarly get an isomorphism f : Zp[[G/H]]⊗Zp Zp[H/U ] 	 Zp[[G/U ]] of

right Zp[H/U ]-modules. Since f and f ′ are compatible with Zp[H/U ′] →
Zp[H/U ] and Zp[[G/U ′]]→ Zp[[G/U ]], we obtain the desired result.

(2) Since we have the isomorphism f : Zp[[G/H]] ⊗Zp Zp[H/U ] 	
Zp[[G/U ]] of right Zp[H/U ]-modules and Zp[[G/H]] is flat as a Zp-module,

ΛG/U is flat as a right ΛH/U -module. �

For M ∈ DH and U ∈ S, define MU = {x ∈M|the action of Ker (ΛH →
ΛH/U ) on x is trivial}. Since M is an object of DH , we have M =

lim−→ U∈SM
U . Define the left ΛG/U -module TU (M) to be ΛG/U ⊗ΛH/U

MU .

By Lemma 5.6.(1), for U ′ ∈ S, U ′ ⊂ U , the natural morphism ΛG/U ′ ⊗ΛH/U′

MU → TU (M) becomes an isomorphism. Therefore, by Lemma 5.6.(2), we

obtain an injection TU (M) → TU ′(M) which is compatible with the action

of ΛG. Then, it follows easily that {ΛU (M)|U ∈ S} forms an inductive sys-

tem. We denote the inductive limit lim−→ U∈STU (M) by T (M). Since T (M)

becomes an object of EG,H , we obtain a functor T : DH → EG,H . Further-

more, by Lemma 5.6.(2) and the fact M = lim−→ U∈SM
U , it follows that the

functor T is an exact functor.

Lemma 5.7. If H is a finite group, Ker (ΛG → ΛG/H) is generated by

{h− 1|h ∈ H}.

Proof. There exists an exact sequence of projective systems of finite

abelian groups

⊕
h∈H

Z/pn[G/V ] · (h− 1)→ Z/pn[G/V ]→ Z/pn[G/(V ·H)]→ 0

where n and V run through positive integers and open normal subgroups of

G. Since these are projective systems of finite abelian groups, the filtered

projective limit preserves the exactness by Pontryagin duality. Thus, we
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obtain an exact sequence

⊕
h∈H

ΛG · (h− 1)→ ΛG → ΛG/H → 0. �

Lemma 5.8. Let N be an object of EG,H . If the action of Ker (ΛH →
ΛH/U ) on x is 0 for x ∈ N,U ∈ S, then, the action of Ker (ΛG → ΛG/U ) on

x is also 0.

Proof. By the definition of EG,H , there exists an element U ′ ∈ S

contained in U such that the action of Ker (ΛG → ΛG/U ′) on x is 0. By

applying Lemma 5.7 above to U/U ′ ⊂ G/U ′, we see that Ker (ΛG/U ′ →
ΛG/U ) is an ideal generated by {g− 1|g ∈ U/U ′}. Since the action of U on

x is trivial by hypothesis, the action of this ideal on x is 0. �

Proposition 5.9. The functor T is a left-adjoint functor of the for-

getful functor F : EG,H → DH .

Proof. For an object M of DH , the natural map MU → TU (M) :

x �→ 1⊗ x is a homomorphism of ΛH -modules and compatible with respect

to U . By taking the inductive limit, we obtain αM : M → F ◦ T (M). This

morphism is functorial in M . On the other hand, for an object N of EG,H ,

NU becomes a ΛG/U -module by Lemma 5.8 above. Therefore, we have a

homomorphism TU (N) → NU of ΛG/U -modules and this homomorphism

is compatible with respect to U . By taking the inductive limit, we obtain

βN : T ◦ F (N) → N . This morphism is functorial in N . For M ∈ DH and

N ∈ EG,H , we obtain maps which are functorial in M and N

HomEG,H
(T (M), N)→ HomDH

(M,F (N)) : ϕ �→ F (ϕ) ◦ αM ,

HomDH
(M,F (N))→ HomEG,H

(T (M), N) : ψ �→ βN ◦ T (ψ).

It follows easily that each map is inverse to the other map. �

Since the functor T is exact and a left-adjoint functor of F by Proposition

5.9, the functor F preserves injective objects.

Now, for an object N of EG,H , define NH = {x ∈ N|h(x) = x,∀h ∈ H}.
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Lemma 5.10. NH is a left ΛG/H-module.

Proof. For x ∈ NH , there exists an element U ∈ S such that the

action of Ker (ΛG → ΛG/U ) on x is 0. By applying Lemma 5.7 to H/U ⊂
G/U , it follows that the ideal Ker (ΛG/U → ΛG/H) is generated by {h −
1|h ∈ H/U}. Thus, we see that the action of this kernel on x is 0. �

With this, we have a left exact functor ΓE(H,−) : EG,H → ΛG/H−Mod :

N �→ NH and

RΓE(H,−) : D+(EG,H)→ D+(ΛG/H -Mod).

Proposition 5.11. The following diagram is commutative

D+(EG,H)
RΓE(H,−)−−−−−−→ D+(ΛG/H-Mod)

F1

� F2

�
D+(DH)

RΓ(H,−)−−−−−→ D+(Zp-Mod).

Here the two vertical arrows denote the functors induced by the forgetful

functors EG,H → DH and ΛG/H-Mod→ Zp-Mod.

Proof. We have a commutative diagram

EG,H
ΓE(H,−)−−−−−→ ΛG/H -Mod�

�
DH

Γ(H,−)−−−−→ Zp-Mod.

The two vertical functors are exact and the left vertical map preserves in-

jective objects by Proposition 5.9. Thus, it follows easily that the diagram

in this proposition is commutative. �

Proposition 5.12. Let F3 (resp. F4) be the functor D+(DG) →
D+(EG,H) (resp. D+(DG/H) → D+(ΛG/H-Mod)) induced by the inclusion
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functor DG → EG,H (resp. DG/H → ΛG/H-Mod). Then, the following

diagram is commutative

D+(DG)
RΓ(H,−)−−−−−→ D+(DG/H)

F3

� F4

�
D+(EG/H)

RΓE(H,−)−−−−−−→ D+(ΛG/H-Mod).

Proof. It suffices to show that, for an injective object I of DG, we

have RiΓE(H, F3(I)) = 0 (i > 0). By Proposition 5.11, we have an iso-

morphism RiΓE(H,F3(I)) = RiΓ(H,F1 ◦ F3(I)) of Zp-modules. Since the

following diagram is commutative by the group cohomology theory for dis-

crete modules, we obtain RiΓ(H,F1 ◦ F3(I)) = F2 ◦ F4(R
iΓ(H, I)) = 0.

D+(DG)
RΓ(H,−)−−−−−→ D+(DG/H)

F1◦F3

� F2◦F4

�
D+(DH)

RΓ(H,−)−−−−−→ D+(Zp-Mod). �

Now, we shall give the proof of Proposition 5.4. Note that, since A⊗ZpV

becomes an object of EGK ,HK
(see Remark 2.6), we have an exact sequence

0→ V → A⊗Zp V
ρ=φ−1→ A⊗Zp V → 0

in EGK ,HK
. First, we will show that we have

H i(HK ,A⊗Zp V ) = 0 for all i > 0.

Since we have the canonical isomorphism of Galois groups HK 	 GEK
by

the theory of field of norms, we have only to show H i(GEK
,A ⊗Zp V ) = 0

for all i > 0. On the other hand, we have isomorphisms of GEK
(	 HK)-

modules A⊗Zp V 	 A⊗AK
D(V ) 	

⊕d
j=1 A/pmjA. Thus, it suffices to show

H i(GEK
,A/pmA) = 0 for all i > 0. This is clear for m = 1 (H i(GEK

,E) = 0

for all i > 0) and the general case can be deduced by induction on the
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integer m. Thus, by using Proposition 5.11, we obtain isomorphisms in

D+(Λ-Mod) from the exact sequence above

RΓE(HK , V ) 	 RΓE(HK , [A⊗Zp V
φ−1→ A⊗Zp V ])

	 ΓE(HK , [A⊗Zp V
φ−1→ A⊗Zp V ])

= [D(V )
φ−1→ D(V )].

On the other hand, by Proposition 5.12, RΓE(HK , V ) coincides with the

image of the Galois cohomology RΓ(HK , V ) ∈ D+(DΓK
) by the functor F4 :

D+(DΓK
) → D+(Λ-Mod). Thus, this completes the proof of Proposition

5.4.

5.2. Conclusion

We now compute the Galois cohomology RΓ(GK , V ) for a p-torsion rep-

resentation of V of GK . We have

RΓ(GK , V ) 	 RΓ(ΓK ,RΓ(HK , V )).

From Proposition 5.1 and Remark 5.3, we obtain

RΓ(ΓK ,RΓ(HK , V )) 	 CΓK
(RΓ(HK , V )).

By Proposition 5.4,

RΓ(GK , V ) 	 CΓK
([D(V )

ρ→D(V )]) 	 Cφ,ΓK
(D(V )).

Thus, this completes the proof of the main theorem.
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