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Galois Cohomology of a p-adic Field via (®,T")-modules
in the Imperfect Residue Field Case

By Kazuma MORITA

Abstract. For a p-adic local field K with perfect residue field, L.
Herr constructed a complex which computes the Galois cohomology of
a p-torsion representation of the absolute Galois group of K by using
the theory of (®,I')-modules. We shall generalize his work to the
imperfect residue field (the residue field has a finite p-basis) case.

1. Introduction

In this article, K denotes a complete discrete valuation field of character-
istic 0 with residue field k of characteristic p > 0 such that [k : kP] = p" < oc.
Assume that K contains a primitive p-th root of unity if p # 2 and a primi-
tive 4-th root of unity if p = 2. Choose an algebraic closure K of K and put
Gk = Gal(K/K). By a p-torsion G g-representation, we mean a Z,-module
of finite length endowed with a continuous action of G. Let Repp—_tor(G )
denote the category of p-torsion Gi-representations. Let V' be a p-torsion
Gr-representation. In the case n = 0 (i.e. k is a perfect field), Herr [H1]
obtained a presentation of the Galois cohomology H*(Gk, V) in terms of
the (®,I'k)-module D(V') associated to V' in the sense of Fontaine [F].

Now, let n be arbitrary. The purpose of this paper is to give a presen-
tation of H*(Gg, V) in terms of the (®, 'k )-module (defined in this paper)
associated to V' (Theorem 1.1). Our ' is non-commutative if n > 1.

Fix a lifting (b;)1<i<n of a p-basis of k in Ox (the ring of integers of
K), and for each m > 1 and 1 < ¢ < n, fix a p™-th root bg/pm of b; in
K satisfying (bg/pnlﬂ)p = b,}/pm. Put K() = UmZOK(b;/pm,l <i<mn)
and KC()Q = Um>0K ") (¢ym) where (ym denotes a primitive p™-th of unity
in K such that CI’: mi1 = Cpm. The field K () depends on the choice of a

lifting of a p-basis of k in O, but the field Kég doesn’t. Let K’ denote
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the p-adic completion of K(). Choose an algebraic closure K’ (D K) of
K'. Put K., = Up>0K'(¢ym) in K'. These fields K’ and K, depend on
the choice of a lifting of a p-basis of k in Ox. Put ' = Gal(Kgo)/K) and
g = Gal(K,/K'). Then, I'gs is isomorphic to an open subgroup of Z?
via the cyclotomic character x : ' — Z; and ' is isomorphic to the
semi-direct product I'gr X ZZ™ where T'gr acts on ZZ™ via x (see Section 3).
The group ' is non-commutative if n > 1. Since K’ has perfect residue
field which we denote k' = kP~ , we can apply the theory of Fontaine [F]
to obtain the (®,I'k/)-module D(V') for a p-torsion G g-representation V.
Then, D(V) is equipped with a Frobenius operator ¢ : D(V) — D(V) and
also with a continuous action of I' (not only ') which commutes with ¢.
With these actions , D(V') becomes an object of the category ®I' MX}?FZ
of torsion étale (®,I'x)-modules which we will define (see Section 2) by
imitating the definition of the category of torsion étale (®,I'x/)-modules
by Fontaine ([F]|, p273, 3.3.2). Then, we shall obtain an equivalence of
categories between
Repp.tor(Gx) and ®TM L

which is a generalization of the equivalence of Fontaine ([F], p274, 3.4.3) to
the imperfect residue field case (for details, see Theorem 2.7 in Section 2).
By using this D(V'), we will construct a complex Cy 1, (D(V)) in Section
3. Our main result is the following.

THEOREM 1.1.  With notations as above, the group H'(Gy,V) is
canonically isomorphic to the i-th cohomology group of the complex
Cor (D(V)) for alli. This isomorphism is functorial in V.

Our proof of the main theorem is a little different from the method of
Herr. In the case n = 0, he considered an “effaceable” property of the
complex Cy 1, (D(V)), whereas our method is to construct a free resolution
of the Zy[[I'k]]-module Z,.

This paper is organized as follows. In Section 2, we shall review the
theory of (®,I')-modules, which is due to J.-M. Fontaine [F] in the perfect
residue field case. We shall construct a theory of (®,I')-modules in the
imperfect residue field case (F. Andreatta [A] constructs a more general and
finer theory of (®,T")-modules). In Section 3, for M € @FMéAf’p'IE(;:, we shall

K
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construct the complexes Cr, (M) and Cyp, (M) which are to be used in
the main theorem. In Section 4, we shall construct a free resolution of Z, in
the category of left Z,[[I'k]]-modules. In Section 5, we shall prove that the
cohomology group of Cyr, (D(V)) coincides with the Galois cohomology
H* (G, V).

2. The Theory of (¢,I')-modules

Let k" denote the perfect residue field of K’ as in Section 1. Put F(k') =
W (K')[p~!] where W (k') denotes the ring of Witt vectors with coefficients
in k’. Now, we apply the theory of (®,T")-modules of Fontaine to K’. Since
K () is a Henselian discrete valuation field , we have an isomorphism Gy =
Cal(K'/K") ~ Gy = Gal(K/K") (C Gg). With this isomorphism, we
identify G+ with a subgroup of Gx. We have a bijective map from the set
of finite extensions of K) contained in K to the set of finite extensions of
K’ contained in K’ defined by L — LK’. Furthermore, LK’ is the p-adic
completion of L. Hence, we have an isomorphism of rings

O /p" O = Ogr/p" Ogcr

where Oz and Oz denote the rings of integers of K and K’. Thus, the
p-adic completion of K is isomorphic to the p-adic completion of K’, which
we will write C,,. Put

E — lim C, = {(z©, 20 ) (2P = 20 (0 ¢ Cp}

and ET denotes the set of z = (z()) € E such that z( € Oc, (where Oc,
denotes the ring of integers of C,). For two elements z = (z(?)) and y = (y(i))
of E, define their sum and product by (z +y)® = lim o0 (20F9) 4 (90 )P
and (zy)® = 20y Let ¢ = (V) denote an element of E such that
€©® =1 and ¢ £ 1. Then, E is a field of characteristic p > 0 (IE+ is a
subring of E) and is the completion of an algebraic closure of k/((¢ — 1))
for the valuation defined by vg(z) = v,(2(?)) where v, denotes the p-adic
valuation of C, normalized by v,(p) = 1.

Ezxample 2.1. With this valuation, we have

=1 (n) _ 10"y~ ¥
vE(e — 1) = limp,—oovp((€ 1)P) P
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The field E is equipped with an action of a Frobenius ¢ and a continuous
action of the Galois group G with respect to the topology defined by the
valuation vg. Put Epgry = k'((e — 1)) and define E to be the separable
closure of Epy in E. Define Hg = Gal(K'/K!,) which is isomorphic
to the subgroup GK&) = Gal(F/K&)) of Gx. From now on, we identify
Hy with G KO- If we put Ex = E% and define G, to be the Galois
group of E /IE K, the action of Gx on E induces the canonical isomorphism
Hp ~ Gy, by the theory of the field of norms ([FW], [W]). Let = denote
[] —1. Put A = W(E) (E is a perfect field) and AT = W (E"). The ring A is
endowed with the topology whose fundamental system of the neighborhoods
of 0 has the form T8A*T + p" 1A for k,n € N. This s topology coincides with
the product topology defined by the application A—EN:z (l’k)keN
The continuous action of G on [ induces the continuous action of G K on A
which commutes with the Frobenius o. Let Ap(/) be the p-adic completion
of W (K)[[w]][x~!] contained in A. This ring is a complete discrete valuation
ring with the residue field Ep(;. Let A be the p-adic completion of the
maximal unramified extension of Ap() in A which has the residue field E.
The ring A is equipped with an action of the Galois group Gx and of the
Frobenius ¢ induced from those of E. Put Ax = Ak

For all V' € Repp—tor(Gk), we can associate the (®,I'x/)-module over
Ag

D(V) = (A®g, V)"x

It is equipped with the residual action of I'» ~ G/ H and the Frobenius
¢p(v) induced by that on A. The module D(V) is a torsion étale (®,I'k)-
module over Ag ([F], p274, 3.4.2).

Conversely, to a torsion étale (®,T' k/)-module M over Ak, we can as-
sociate a p-torsion representation of G- as follows

(*) V(M) = (A ®AK M)J®¢M:1 € Repp—tor(GK’)'

Let @FMK}?‘%‘E/ denote the category of torsion étale (®,I'k/)-modules in
the sense of Fontaine ([F|, p273, 3.3.2). By the two constructions above,
Fontaine proved the following ([F], p274, 3.4.3).
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THEOREM 2.2. The functor D gives an equivalence between the two

categories |
Reppftor(GK’) and (PFMX’p‘tOT’

KL gt

The functor V is a quasi-inverse of D.
Define (®,I'k)-modules as follows.

DEFINITION 2.3. A torsion (®,I'x)-module over Ag is an Ag-module
M of finite length equipped with

(1) a o-semi-linear map (which we call a Frobenius operator)

b=y :M— M

(2) a continuous semi-linear action of I'yr which commutes with ¢.

In addition, we call M an étale (®,T'x)-module if it is generated by the
image of ¢ as an Ag-module. Let @FMK;DFE: denote the category which
consists of

o objects: torsion étale (®, Tk )-modules over Ag

o morphisms: Ag-linear morphisms which commute with ¢ and the

action of I'k.

REMARK 2.4. Put AL =AgnN AT, If we fix a lifting Tk of the prime
element of Ex in Af, we have A} = W(K')[Tk]]. Let M be a finitely
generated A /p"-module. Fix a finitely generated sub-A} /p"-module M°
of M such that M is generated by M° over Ag/p". The module M is
endowed with the topology such that the family of submodules {177 M 0} m>1
is a fundamental system of neighborhoods of 0. This topology is independent
of the choice of M. Furthermore, since A /p" is Noetherian and complete
for the Tx-adic topology, TEN M7 is complete for the Tx-adic topology. We
may use the family of submodules {7™ M 0}m21 instead of {1 M O}mzl to
define the same topology.

Consider a p-torsion G'i-representation V' € Repp_tor(Gi) and D(V).
Since the Galois group G acts on A ®z, V and we have D(V) = (A ®z,
V)Hx the quotient I'r ~ G /Hg and ¢ act on D(V) commuting with
each other. This means that D(V') becomes an object of @FMX;{IT ff;{r The
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continuous action of Gk on A ®z, V induces the continuous action of I'x
on D(V') as follows. Let L be a finite Galois extension of K contained in
K such that the action of G = Gal(K/L) on V is trivial. Fix n € N such
that p"V = 0. Then, we have D(V) = (A /p" ®z, V)#&. The following
two topologies of D(V') coincide

(1) the topology defined in Remark 2.4

(2) the induced topology as a subspace of Ar/p™ ®z, V' whose topology
is defined in Remark 2.4.

(Proof: There exists an Ay /p™-linear isomorphism
AL/pn ®AK/}7” D(V) ~ AL/pn ®Zp V.

Fix a finitely generated sub-A} /p"-module M° of D(V) such that D(V)

is generated by M over Ag/p". Let M? be the sub—AZ/p"—module of

Ar/p" ®z, V generated by M 0. Since the morphism A}} /" — AZ /p" is

finite flat, the morphism Aj{ /D" @ p+ Jpn MO — ME is an isomorphism. Thus,
K

the inverse image of 7™M} by the map D(V) — A /p" ®z, V is 7™ M".)

REMARK 2.5. Let L be a finite Galois extension of K contained in
K. Let M be a finitely generated Ay /p"-module endowed with a con-

tinuous and semi-linear action of Gal(KéQ L/K). Fix M° as in Remark
2.4. Let M! be the sub-A} /p™-module of M generated by g(M°) (g €

Gal(Kc()QL/K)). Since Gal(KéQL/K) is compact, M? is also a finitely gen-
erated sub—AJLr /p"-module. By construction, M 1 is stable under the action
of Gal(Kc(,QL/K). Then, for Nym € N, 7=V M!/amM! becomes a dis-
crete Zp[[Gal(KégL/K)]]—module. Since 7~V M1 is complete for the m-adic
topology, 7~V M" has the structure of Zp[[Gal(Kc()/o)L/K)]]— module. Thus,
M is equipped with the structure of Zp[[Gal(Kgo)L/K)]]—module. For an-

other sub-A} /p™-module M? of M stable under the action of Gal(KéQL/K)
such that M is generated by M? over A /p", we can find integers Ny < No
such that #MM! < M? < «M2M', therefore, the structure of
Zp[[Gal(Kgo) L/K)]]-module on M is independent of the choice of M. With
this, the action of I'x on D(V') naturally extends to the action of Z,[[I'k]].
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REMARK 2.6. Let L be a finite Galois extension of K contained in K
such that the action of G, on V is trivial. Fix n € N such that p™V = 0. For
a finite Galois extension of K such that L ¢ L' ¢ K, Ay, ®z, V is a finitely
generated A/ /p"-module endowed with a continuous and semi-linear action
of Gal(KégL’/K). Remark 2.5 says that the action of Gal(Kc(,QL’/K) on
A ®z, V naturally extends to the action of Zp[[Gal(KéQL’/K)]]. Thus,
the action of Gk on A ®z, V = lim /(A ®z, V) naturally extends to
the action of Z,[[Gk]]. Then, the canonical injection D(V) — A ®z, V
is compatible with the action of Z,[[Gk]]. (Proof: Let L, M° MY be
as in the proof of the coincidence of the two topologies of D(V') before
Remark 2.5. We can assume that M° is endowed with a continuous and
semi-linear action of ' (see Remark 2.5). Since the morphism A} /p" —
AT /p" is finite flat, we have a morphism of discrete Z,[[G]]- modules
T NMO /7 MO — (AT /p") DAL /pm (r=NMO /e MO) ~ 7N MY /e M.
By taking the inverse limit for m, we obtain the morphism of Z,[[Gk]l-
modules 7N MO0 — 7N MP)

Conversely, to a torsion étale (®, ' )-module M over Ay, we can asso-
ciate a p-torsion representation of G as follows (see (x))

V(M) = (A @p, M)7EPM=1,

The continuous action of Gx on A ®4, M induces the continuous action of
Gk on V(M). Here, we give V(M) the induced topology as a subspace of
A ®p, M. Since the topology of A ®4, M is Hausdorff and V(M) is finite,
the induced topology on V(M) is discrete.

An imperfect residue field version of Fontaine’s theorem is the following
(cf. Theorem 2.2).

THEOREM 2.7. The functor D gives an equivalence between the two
categories
St,p-t
Repy-1or(Gk) and @FMXﬁF‘:

The functor V is a quasi-inverse of D.

ProoOF. For M € @FMXI’?F;:, the natural morphism

A®z V(M) — Ay, M
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induces a morphism D(V(M)) — M and this morphism is an isomorphism
([F], p258, 1.2.6). Conversely, for N € Rep-tor(G k), the natural morphism

A®p, D(N) - A®z N

induces a morphism V(D(N)) — N and this morphism is an isomorphism
([F], p258, 1.2.4). O

3. Main Theorem

We will give a presentation of H*(Gg, V) in terms of D(V'). Recall that

we fixed a p™-th root b;/pm of b; in Introduction. Fix a p™-th root (pm of
unity such that ngH = (pm. Fix a topological generator v of I'g» C '
and define §; € ' (1 <1i <n) by

Biby™" ) = 6" Gy BiB)"") = 57" (5 # 8) amd BilGm) = G
Define [ € Z;, by
’Y(Cpm) = C;lom'
These topological generators (v, 51, ... , ) define the isomorphism I'g ~

I x Z;‘?” (B; — the topological generator of i-th component of Zj). Let A
denote Z,[[I'k]] in what follows. Define elements of A as follows

Bi — 1
Bl-1
Recall that D(V') is naturally equipped with the action of A (Remark 2.5).
Since (8! — 1)(8i — 1)7! = {(1 + w;)! — 1}w; ! € | + wiZp[[wi]] and | € Z,
we have (8! —1)(8; — 1) € Zp[[wi]]*

(1) The complex Cr, (D(V))

To a p-torsion representation V of G, define the complex Cr,. (D(V))
to be

wi=pFi—1 and 75 = (Ilies )y —1

0 — D(V)X©) d_O>D(V)X(1) O

! D(V)X(i) A ﬂD(V)X(n-H) —0.

(The proof of d’od*~! = 0 follows from the presentation of Cr,.(D(V))
in terms of Cy in Section 5.)

Here
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(a) For a finite set X, we define D(V)X = @gexD(V).

(b) X (i) denotes the set of all subsets of {0, - - - , n} of order i. Notice
that the order of X (1) is (njl) We define the degree of D(V)X(©)
to be 0.

(c) For S € X(i) and T € X (i + 1), the (S,T)-component d*(S,T)
of d : D(V)XW — D(V)X(+1D) is defined as follows.

(A)IfS ¢ T,d(S,T)=0.
(B) If S C T, put {j} = T\S.
oIf j=0,d(S,T)=rs.

olIf j #0, d(S, T) = (—1)a(57j)wj where a(S,j) = t{z € S;z <
7t

(2) The complex Cyr, (D(V))
Define the complex Cy 1, (D(V)) by

Cyry(D(V)) = the mapping fiber of Cr, (D(V)) 2, Cr.(D(V))

where p = ¢ — 1. The complex Cy r, (D(V)) has the following form

0 — D L, pye(t) 2
CE)D(V)G%ZR) A dt! D(v)@(ﬁ;) — 0.

(Here, define the degree of D(V)@(narQ) to be 0.)

Our main result is the following.
THEOREM 3.1.  With notations as above, the group H'(Gg,V) is
canonically isomorphic to the i-th cohomological group of the complex

Cori(D(V)) for all i. This isomorphism is functorial in V.

It follows that the cohomological dimension of K is n + 2.
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Ezxample 3.2.
(1) The case n =0 (i.e. the residue field k is perfect)
In this case, the complex Cyr, (D(V)) is given by
0— )L pvyspw) LDV —o
o d’(z) = (p(z), 7()),
o d'(z,y) = (p(y) — 7(x)).
Here, p = ¢ — 1 and 7 = 7 = v — 1. This is the complex constructed
by Herr.

(2) The case n =1 (i.e. the residue field k is imperfect and [k : kP] = p)
In contrast to the example (1), there is an action of w; = (1 — 1.
Therefore, we have a more complicated complex than before.

0
0— D(V)-% D(V)@® D(V) @ D(V)
1 2
L. D(VYe D(V)® D(V) - D(V) — 0
o d’(z) = (p(), 7(z),wi(2)),
o dl(ﬁ,y, Z) = (p(y) - T(az),p(z) - W1({E),T{1}(Z) - wl(?/))?
o d*(z,y,2) = (p(2) — 7413 (y) + wi1(2)).
The appearance of T{1}- instead of 7, reflects the non-commutativity
of PK.
4. Construction of a Free Resolution of Z,
4.1. Relations in A
Let

7751>ﬂ27"' aﬁn

be the topological generators of I'r as in the previous section. We have the
following relations
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(1) v8; = Bi'y (1€ Z3)
(2) BiBj = BiBi.

For the construction of the complex, consider the following elements of A
(these are introduced in the previous section)

(1) T=~v-1
(2) wi=0i—1
(3) Wi=g'-1

(4) 79 = .HS(wZ-Wi_l)'y —1for SCAl,---,n}k
1€

Recall that w;W; ! € Z,[[3; — 1]] C A.

REMARK 4.1. Notice that ¢ =7 if § = @.

These operators have the following relations:
Relations (R)

(1) WiWj = WjW;
(2) WiW,; = W,;W;
(3) YWi; = WZ'

(4) Forie S CA{l,-+,n}, Tswi = wiTg\ {;3-

PROOF. Tgw;
= (I (wjW; Dy = Dwi = (I (w; W ) ywi — wi)

€s J jes
= (jgs(ijj_l)wﬂ —w;) = wi(j€g¢i(ijjfl)7 —1)
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4.2. Construction of Cy
Consider the following sequence Cy of left A-modules

dnfl
— .

0 — AX(+1) dn 4 X(n) i aX@ bz do A X(0)

Here
(1) For a finite set X, define AX = @gexA.

(2) X (i) denotes the set of all subsets of {0,1,---,n} of order i. Define
the degree of AX(©) to be 0.

(3) For S € X (i) and T' € X(i + 1), the (S,T)-component d;(S,T) of
d; : AX+Y)  AX() g defined as follows.

(A IS¢ T, di(S,T)(x)=0.
(B) If S C T, put {j} =T\S.
olf =0, di(S,T)(x) = x75.

olf j #0, di(S,T)(x) = (—l)a(s’j)ij where a(S,j) = t{y € S;y <
Jr.

Ezample 4.2. In the case of [k : kP] = p, we have
0—A-LLA®2 DN o
Here, do(f,g) = (f7 + gw1) and di(f) = (—fw1, frgi3)-
LEMMA 4.3. The natural morphism
limp, Zy[Crer) /(P )" @2, Zpllwr, - wall = A = Z,[[]]
is an isomorphism of left Z,[[I' k']]- and right Zp[lwi, ... ,wy]]-modules.

PRrROOF. Form € Nug, put Iy, = T /(D )P 5 (Z/p™Z)®". Note that
the action of ' on (Z/p™Z)®" factors through the quotient I'g/(T'gr)P™".
Then, we have Zy[[I'x]] ~ lim,Z,[I'y]. The natural homomorphisms of
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tings f : Zy[Tser/(Ter)?"] = Zy[Ton] and g = Z[(Z/p"2)E] — Z,[T.]
induce the surjection of left Z,[['x//(Lk:)P"]- and right Z,[(Z/p™Z)®"-
modules

Zy[Trr /T )P @7, Zp[(Z )P Z)*") — Zp[Tin) : a @b — f(a)g(b).

Since both sides have the same Z,-rank, it turns out to be an isomorphism.
On the other hand, we have

lim (Zp [T/ (T )| @7, Zo[(Z/p™Z) ™))
~ limyy, (i (Zy[Crr /(D )P @2, Zp[(Z/p™ Z)*7)))
~ lim (Zp[Cxr /(T )P )) @2, Zpl[wrs - - s wn]].

This completes the proof. [
PrRoOPOSITION 4.4. The sequence
0 — AX(HD) dn, g\ X It do, g X0 Ay g

gives a free resolution of the left A-module Z,. Here, 7, is equipped with
the structure of left A-modules induced from the trivial action of I'k.

ProoOF. Consider the following sequence C,,

0 — A Bt gy B v Aug

Here

(1) Y (i) denotes the set of all subsets of {1,---,n} of order i. (Recall
that X (7) denotes the set of all subsets of {0,1,---,n}.)

(2) For S € Y(i) and T € Y(i + 1), the (S,T)-component d;(S,T) of
d;: AV 5 AY0) s defined as follows.

oIf $ ¢ T, di(S,T)(x) = 0.

oIf SC T, put {j} =T\S.
di(S,T)(z) = (—l)a(s’j)ij where a(S,7) =t{y € S;y < j}.
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Put Ag = Zy[|w1, ... ,wy]]. Let K.(w1,...,wy,) be the Koszul complex

0 AV D YTy zv0)

Since we have the isomorphism limy, Zy [Tk /(T )P @7, Zp[lwr, - . . ,wn]] >
A = Zp[[I'k]], the sequence
d_ d_ d!
0 — AY() b AY(n=1) =2 B0 AV(0)
is the complex limy, Z,[T' g/ /(D )P @7, K. (w1, . .. ,wy), so the sequence C,,
is a resolution of Zy[[I'k+]] = A/ (3 1, Aw;) in the category of left A-modules

m

(note that the transition map Z,[Tg/ /(T )P — Zp[Tx/ /(T )P | (m >
m’) is surjective). In particular, the sequence C,, is exact. Then, consider
the following commutative diagram of left A-modules (the commutativity
follows from the relation (4)):

0 —— AV D gveeny B ave) g )] —— 0

17 17 1
dnl dn—lJ/ dOJ/ T
! ! !
0 AY) Dot jveeny T2 b

AYO — 2,7 — 0

0

For S € Y (i) (the target) and T € Y (7) (the source), the (.5, 7T)-component
of d; (S,T) : A¥® — AV is defined as follows.

oIf S#T,d; (S, T)(z) =0.

oIf S=T,d;(S,T)(z) = xs.

Since Cy is the simple complex associated to the mapping cone of

d' i Zp [T /(T 7' @7, Ko (w1, ywn)
— L&nnzp[rK’/(FK/)pn] ®Zp K.(wl, PN ,wn),



Galois Cohomology 233

it is quasi-isomorphic to the complex Z,|[[7]] — Zy|[7]] : © — 2T, and hence
to Zp. Thus, we get the exact sequence

0 — AX(HD) dn, \X() ot do pX(©) Ay g O

5. Proof of the Main Theorem

5.1. Connection between Cr, (M) and Cy

First, let us fix some notations. Let G denote a profinite group and put
Ag = Z,[[G]]. Then, Ag-Mod (resp. Z,-Mod, C¢, D) denotes the category
of left Ag-modules (resp. Z,-modules, compact left Ag-modules, discrete
left Ag-modules). Furthermore, let DT (x) denote the derived category of
% (€ {Ag-Mod, Z,-Mod, C¢, D¢}) which consists of complexes bounded be-
low.

Let M be a left A-module. Define the complex Cr, (M) to be
Cry (M) = Homp (Ca, M)

where Homy (A, B) (A, B € A(= Ar, )-Mod) denotes the set of all homo-
morphisms f : A — B of A-modules. In the case M = D(V), this Cr, (M)
clearly coincides with the one defined in Section 3. On the other hand, by
Proposition 4.4, we have

Homp (Ch, M) ~ RHomy (Z,, M)

where we denote RHomy (Z,, —) : DT (A-Mod) — D*(Z,-Mod).

For every discrete left A-module M, consider the Z,-module
Homn cont(Zp, M) of all continuous homomorphisms f : Z, — M of A-
modules. Then, we obtain the functor

HomA,cont(Zp7 _) : DFK - 'DZT

Here, Dz, denotes the category D,y (e: unit). To define the derived functor
RHom cont(Zy, M) (M: discrete left A-module), we can use the projective
resolution of Z,, in Cr,. (see Remark 5.2 below). Since each component of
Cy is a finitely generated free A-module, it gives a projective resolution
of Z, in Cr,. Furthermore, since we have the equality Homp (P, M) =
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Homa cont(P, M) for a finitely generated free A-module P and a discrete
A-module M, we obtain

RHom (Zy,, M) = RHom cont(Zyp, M).
If M is a discrete A-module, we also have
RHomy cont(Zp, M) ~ RI'(T' g, M)
(see [NSW, p231, (5.2.7)]). Thus, we obtain the following.
ProrosITION 5.1. If M is a discrete left A-module, we have

Cr, (M) ~ RI(Tg, M).

REMARK 5.2. Though it is stated in ([NSW], p231) that, to define
RHomp, cont(L, M) for L € Cq and M € D, one can use either projective
resolutions of L in Cg or injective resolutions of M in Dy, we shall review
this fact here. For a projective resolution P — L in Cg and an injective
resolution M — I'in D¢, it suffices to show

HomAg,cont (L7 I) - Hom)\g,cont(P'7 I) N Hom.Ag,cont (P? M)

are quasi-isomorphisms. Here, Homp, cont(A, B) (A € Cg and B € Dg)
denotes all continuous homomorphisms f : A — B of Ag-modules. For
this, we have to show that both functors C¢ — Dz, : L — Homa cont(L, I)
(I is an injective object of Dg) and Dg — Dz, : M +— Homp, cont (P, M)
(P is a projective object of Cg) are exact functors. This follows from the
fact that, for L € Cg and M € D¢, any continuous homomorphism L — M
of Ag-modules factors through a compact and discrete subgroup of M.

REMARK 5.3. The functor Cr, from the category A-Mod (resp. Dr,.)
to the category Z,-Mod (resp. Dz, ) naturally extends to the functor Cr,
from the derived category D (A-Mod) (resp. D1 (Dr,)) to the derived
category D*(Zp,-Mod) (resp. D*(Dy)). Note that the functor Cr is
an exact functor, i.e. for an exact sequence of A-modules (resp. discrete
A-modules) 0 — M; — My — M3 — 0, we have an exact sequence of
complexes 0 — Cr, (M;) — Cr,(M3) — Cr,(Ms) — 0. Furthermore,
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Proposition 5.1 induces a canonical isomorphism of functors Cr, (—) =~
RI(Tk,—) from the derived category D™ (Dr,.) to the derived category
D (Dgz,).

The exact functor from the category Dr, to the category A-Mod natu-
rally extends to the functor from the derived category Dt (Dr, ) to the de-
rived category Dt (A-Mod). Therefore, the object RT'(Hg, V') of the derived
category DT (Dr, ) gives an object of the derived category Dt (A-Mod).

ProrPoOsSITION 5.4. Let V' be a p-torsion representation of Gx. Then,
we have an isomorphism

RT(Hy, V) =~ [D(V)" % D(V)]
in Dt (A-Mod).

For the proof of this proposition, we shall introduce a subcategory of
Ag-Mod which contains the Ag,-module A ®z, V. First, let us fix some
notations. Let G be a profinite group and H be a closed normal subgroup
of G. Let 8§ denote the set of open subgroups of H which are also normal
subgroups of G. We define €5 g to be the full subcategory of Ag-Mod which
consists of Ag-modules M with the following property: for all z € M, there
exist Uy € 8 and n; € Zxo such that the action of Ker (A¢ — Ag/u, /p"*)
on z is 0. Then, €g i forms an abelian category.

LEMMA 5.5. The category Eq,ur has sufficiently many injectives.

Proor. For M € Eg g, there exists an inclusion M — I where I is
an injective object of Ag-Mod. Define I’ to be {z € I13U € 8,n € Z~g
s.t. the action of Ker (Ag — Agy/p™) on x is 0 }. Then, I’ becomes an
injective object of ¢ g such that M C I'. O

LEMMA 5.6.

(1) For U,U" € 8, U" C U, the homomorphism Agu ®Ag 0 Ay —
Ag v is an isomorphism.

(2) ForU €8, Agyu is flat as a right Ay y-module.
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PROOF. (1) The natural homomorphism G/U’ — G/H has a continu-
ous section s : G/H — G /U’ (see [S2], p4, Proposition 1.). With this, we
obtain a homeomorphism G/H x H/U' ~ G/U’ : (a,b) — s(a)-b of profinite
sets which is compatible with the right action of H/U’. Therefore, we get an
isomorphism f' : Z,[[G/H]| ®z, Z,[H/U'] ~ Zy[[G/U"]] of right Z,[H/U']-
modules. By using the composition with the section s and G/U" — G/U,
we similarly get an isomorphism [ : Z,[[G/H]] ®z, Z,[H /U] ~ Z,[[G/U]] of
right Z,[H/U]-modules. Since f and f’ are compatible with Z,[H/U’| —
Zp|H/U] and Z,[[G/U’']] — Z,[[G/U]], we obtain the desired result.

(2) Since we have the isomorphism f : Z,[[G/H]| ®z, Zy[H/U] ~
Zp||G/U]| of right Z,[H/U]-modules and Z,[[G/H]] is flat as a Z,-module,
Agu is flat as a right Ag/p-module. U

For M € Dy and U € 8, define MV = {x € M |the action of Ker (Ay —
Apy) on zis trivial}.  Since M is an object of Dy, we have M =
lim ;7egM Y. Define the left Agjp-module Ty (M) to be Ag/y ®ny,, MY,
By Lemma 5.6.(1), for U’ € 8, U’ C U, the natural morphism A¢ /¢ Ay
MY — Ty (M) becomes an isomorphism. Therefore, by Lemma 5.6.(2), we
obtain an injection Ty (M) — Ty:(M) which is compatible with the action
of Ag. Then, it follows easily that {Ay(M)|U € 8} forms an inductive sys-
tem. We denote the inductive limit lim yegTy (M) by T'(M). Since T'(M)
becomes an object of g i, we obtain a functor T': Dy — Eg . Further-
more, by Lemma 5.6.(2) and the fact M = h_n;UegMU, it follows that the
functor T is an exact functor.

LEMMA 5.7. If H is a finite group, Ker (Ag — Ag ) is generated by
{h—11h € H}.

PROOF. There exists an exact sequence of projective systems of finite
abelian groups

P z/p"(G/V] - (h=1) = Z/p"[G/V] — Z/p"[G/(V - H)] = 0
heH

where n and V' run through positive integers and open normal subgroups of
(. Since these are projective systems of finite abelian groups, the filtered
projective limit preserves the exactness by Pontryagin duality. Thus, we
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obtain an exact sequence

@AG'(h—l)—)AG—)AG/H—)O.D
heH

LEMMA 5.8. Let N be an object of Eq i If the action of Ker (Ag —
Apyy) onxis 0 forx € N,U € 8, then, the action of Ker (Ag — Agyr) on
x s also 0.

PROOF. By the definition of g g, there exists an element U’ € §
contained in U such that the action of Ker (A¢ — Ag/yr) on z is 0. By
applying Lemma 5.7 above to U/U" C G/U’, we see that Ker (Ag/yr —
Agyy) is an ideal generated by {g —11g € U/U’}. Since the action of U on
x is trivial by hypothesis, the action of this ideal on z is 0. OJ

PROPOSITION 5.9. The functor T is a left-adjoint functor of the for-
getful functor F': Eg. g — Dp.

PrOOF. For an object M of Dy, the natural map MY — Ty (M) :
x — 1® x is a homomorphism of Ax-modules and compatible with respect
to U. By taking the inductive limit, we obtain aps : M — F o T'(M). This
morphism is functorial in M. On the other hand, for an object N of Eq u,
NY becomes a Ag su-module by Lemma 5.8 above. Therefore, we have a
homomorphism Ty (N) — NV of Ag su-modules and this homomorphism
is compatible with respect to U. By taking the inductive limit, we obtain
By : T o F(N) — N. This morphism is functorial in N. For M € Dy and
N € €g,i, we obtain maps which are functorial in M and N

Home,, ,, (T'(M), N) — Homop, (M, F(N)) : ¢+ F(p) o an,
Homp, (M, F(N)) — Home,, ,,(T(M),N) : ¢ — By o T(¥).

It follows easily that each map is inverse to the other map. [

Since the functor T is exact and a left-adjoint functor of F' by Proposition
5.9, the functor F' preserves injective objects.
Now, for an object N of E¢ 7, define N¥ = {z € N|h(z) = z,Yh € H}.
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LEMMA 5.10. N is a left Aq)-module.

PrROOF. For x € NH there exists an element U € § such that the
action of Ker (A¢ — Ag/y) on z is 0. By applying Lemma 5.7 to H/U C
G/U, it follows that the ideal Ker (Ag/y — Ag/p) is generated by {h —
1lh € H/U}. Thus, we see that the action of this kernel on x is 0. O

With this, we have a left exact functor I'e(H, —) : Eg,u — Ag/gp—Mod :
N — Nt and

Rlg(H,—): D™ (&g u) — DT (Ag/u-Mod).

ProrosiTiON 5.11.  The following diagram is commutative

D+(8G7H) w D+(Ag/H-M0d)

F1l FQJ/
D0y XD pHz,-Mod).
Here the two wvertical arrows denote the functors induced by the forgetful
functors Eg.u — Dy and Ag/p-Mod — Zy-Mod.

PrROOF. We have a commutative diagram

o —27 Ag p-Mod

| I

I(H,—
Dy LT 7 Mod.
The two vertical functors are exact and the left vertical map preserves in-

jective objects by Proposition 5.9. Thus, it follows easily that the diagram
in this proposition is commutative. [

PROPOSITION 5.12. Let Fy (resp. Fy) be the functor DT (Dg) —
D*(Eq,m) (resp. DT (D) — DT (Ag/u-Mod)) induced by the inclusion
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functor Dg — Equ (resp. Dg/g — Aga-Mod). Then, the following
diagram is commutative

RI(H,—
DHDg) DL prDg )

D*(Eq/u) Rredo), Dt (Agr-Mod).

ProOOF. It suffices to show that, for an injective object I of D¢, we
have R‘T'¢(H, F3(I)) = 0 (i > 0). By Proposition 5.11, we have an iso-
morphism R‘T'g(H, F3(I)) = R'T'(H, Fy o F5(I)) of Z,-modules. Since the
following diagram is commutative by the group cohomology theory for dis-
crete modules, we obtain R'T(H, F} o F3(I)) = F, 0o Fy(R'T(H, 1)) = 0.

RI(H,—
D*(De) L DH(Dgym)
FioF; F2OF4J(
Dt (Dy) D, pH(z,-Mod). O

Now, we shall give the proof of Proposition 5.4. Note that, since A®z, V
becomes an object of Eg, H, (see Remark 2.6), we have an exact sequence

0-V Ay V% Agy V=0
in Eq 1y - First, we will show that we have
H'(Hyx,A®z,V)=0 foralli>0.

Since we have the canonical isomorphism of Galois groups Hx ~ G, by
the theory of field of norms, we have only to show H'(Gg,,A ®z, V) =0
for all ¢ > 0. On the other hand, we have isomorphisms of Gg, (~ Hg)-
modules A®z, V ~ A®p, D(V) ~ @?:1 A/p™iA. Thus, it suffices to show
H'(Gg,,A/p™A) =0 for all i > 0. This is clear for m =1 (H*(Gg,,E) =0
for all ¢ > 0) and the general case can be deduced by induction on the
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integer m. Thus, by using Proposition 5.11, we obtain isomorphisms in
DT (A-Mod) from the exact sequence above

RT¢(Hy, V) ~ RUe(H, [A @z, VS Awg, V])
~ Te(Hr, [A ®z, V™S Az, V)
— [D(V) = DV

On the other hand, by Proposition 5.12, RI'¢(Hg, V) coincides with the
image of the Galois cohomology RI'(Hg, V) € D (Dr,.) by the functor Fy :
DT (Dr,.) — DT(A-Mod). Thus, this completes the proof of Proposition
5.4.

5.2. Conclusion
We now compute the Galois cohomology RI'(G g, V') for a p-torsion rep-
resentation of V' of Gg. We have

RI'(Gk,V) ~RI'Tk,RI'(Hg,V)).
From Proposition 5.1 and Remark 5.3, we obtain
RI'T'k,RI(Hg,V)) ~ Cr (RT'(Hg,V)).
By Proposition 5.4,
RI(Gk, V) = Crye([D(V) 5 D(V)]) = Cor,e (D(V)).
Thus, this completes the proof of the main theorem.
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