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Hyperbolic Schwarz Maps of the Airy and

the Confluent Hypergeometric Differential Equations

and Their Asymptotic Behaviors

By Takeshi Sasaki and Masaaki Yoshida

Dedicated to Professor Kazuo Okamoto on his sixtieth birthday

Abstract. The Schwarz map of the hypergeometric differential
equation was studied first by Schwarz, and later by several authors for
various generalizations of the hypergeometric equation. But up to now
nothing has been studied about the Schwarz map for confluent equa-
tions, mainly because such a map would produce just a chaos. Recently
we defined the hyperbolic Schwarz map, and studied in several cases,
including confluent hypergeometric ones, geometric properties of the
image surfaces in the hyperbolic 3-space. In this paper, we first study
the hypergeometric Schwarz map of the Airy equation, which can be
regarded as the doubly confluent hypergeometric equation. The image
surface has triangular cuspidal edge curve, and at the three vertices it
has three swallowtails. We present some global behaviors by examin-
ing the asymptotic behavior of the Airy functions at infinity. We next
describe the asymptotic behavior of the hyperbolic Schwarz map of
the confluent hypergeometric differential equation, which includes the
Bessel differential equation; we thus complement the previous study
for the confluent hypergeometric equation in [SSY].

1. Introduction

For an equation of the form

u′′ − q(x)u = 0(E)

defined in a domain X ∈ P1, where q is a rational function in x, we defined

in [SYY1] the hyperbolic Schwarz map

� : x �−→ U(x) tŪ(x) ∈ H3, U =

(
u0 u′

0

u1 u′
1

)
,
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where the hyperbolic 3-space H3 is defined to be the space of positive-

definite hermitian 2-matrices modulo positive reals, and {u0, u1} are lin-

early independent solutions of (E). We identify H3 with the 3-ball B3 =

{(y1, y2, y3) | y2
1 + y2

2 + y2
3 < 1} by combining the following two maps, where

L1 = {(x0, x1, x2, x3) | x2
0 − x2

1 − x2
2 − x2

3 = 1} is the hypersphere in the

Lorenz-Minkowski 4-space:

Her+(2) �
(

h w̄

w k

)

�−→ 1

2
√

hk − |w|2
(h + k,w + w̄,−i(w − w̄), h− k) ∈ L1,

and

L1 � (x0, x1, x2, x3) �−→ (y1, y2, y3) =
1

1 + x0
(x1, x2, x3) ∈ B3.

Through this identification, the image surface is drawn in the ball. The

hyperbolic Schwarz map � is singular along the curve {x ∈ X||q(x)| = 1};
its image C will be called the cuspidal edge curve, since at generic points

the image has cuspidal edge singularities.

In this paper, we study this map for the differential equation

u′′ − q(x)u = 0 where q(x) = xk−2, k = 3, 4, . . . .(A)

When k = 3, this equation is called the Airy differential equation. We see

that the image surface S of the x-plane X = C under � has cuspidal edge

singularities along the k-gon C except at the k cuspidal vertices, where S

has swallowtail singularities. To visualize the surface S, we examine the

asymptotic behavior of the map � and we see that the surface S tends to

three circles along the Stokes lines and to the particular three points along

the open sectors as the point approaches to the irregular singular point at

infinity.

In the paper [SSY], we studied the hyperbolic Schwarz map associated

with the confluent hypergeometric differential equation

u′′ − q(x)u = 0 where q =
x2 + 2ax + b

4x2
,(C)

where a and b are assumed to be real constants. We remark that the Bessel

differential equation corresponds to the case a = 0. The asymptotic behav-

ior of this map at infinity is also given.
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2. Image Surface and Its Singularity

2.1. Singularities of flat fronts

It is known that the map � defines a surface called flat front and its

singularities are generically cuspidal edge singularities or swallowtail singu-

larities. Refer to [KRSUY, SYY1].

The following criterion is known:

Lemma 2.1 ([KRSUY]).

(1) A point x ∈ X is a singular point of the hyperbolic Schwarz map � if

and only if |q(x)| = 1,

(2) a singular point x ∈ X is a cuspidal edge if and only if q′(x) 	= 0 and

(q3q′ − q′)(x) 	= 0,

(3) and a singular point x ∈ X is a swallowtail if and only if q′(x) 	= 0,

(q3q′ − q′)(x) = 0, and Re
(
q′′/q2 − (3/2)(q′)2/q3

)
(x) 	= 0.

2.2. Solutions of the equation (A)

The criterion in Lemma 2.1 applied to the case q(x) = xk−2 shows that

the hyperbolic Schwarz map in this case is singular along the unit circle

|x| = 1, and has swallowtail singularities at the k-th roots of unity:

x = 1, ω, ω2, . . . , ωk−1; ω = exp(2πi/k).

The equation (A) is invariant under the change x �→ ωx, and admits the

solutions

u0 =
∞∑
n=0

anx
kn and u1 = x

∞∑
n=0

bnx
kn,(2.1)

where

a0 = 1, an =
an−1

kn(kn− 1)
; b0 = 1, bn =

bn−1

kn(kn + 1)
.

Relative to this choice of solutions, the k-fold symmetry of the equation

yields the symmetry of S as the rotation by angle 2π/k around the y3-axis.

Moreover, since the coefficients ai and bi are real, S is invariant under the

reflection (y1, y2, y3) �→ (y1,−y2, y3), which corresponds to x �→ x.
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The image of the unit disc is a k-gon with k-cuspidal vertices. Figure 1

shows the images of the unit disc when k = 3 and k = 5. Since the images

for k = 4, 5, . . . can be easily imagined from that for k = 3, we mainly work

on this case.

2.3. Invariance of the hyperbolic Schwarz map

In the definition of the hyperbolic Schwarz map, we have freedom of

choice of a pair of solutions. However, the map differs only by an isometric

transformation of the ball B3. For later use, we cite the following lemma:

Lemma 2.2. Let {u0, u1} and {v0, v1} be two sets of independent so-

lutions of the equation (E) that are related as u0 = c1v0 + c2v1 and u1 =

c3v0 + c4v1. Let (y1, y2, y3) (resp. (Y1, Y2, Y3)) denote the coordinates of the

image of the point x under the hyperbolic Schwarz map defined by use of

{u0, u1} (resp. {v0, v1}). Then both coordinates are related as follows.

y1 =
A0(1 + |Y |2) + 2A1Y1 + 2A2Y2 + 2A3Y3

2c(1 − |Y |2) + D0(1 + |Y |2) + 2D1Y1 + 2D2Y2 + 2D3Y3
,

y2 =
B0(1 + |Y |2) + 2B1Y1 + 2B2Y2 + 2B3Y3

2c(1 − |Y |2) + D0(1 + |Y |2) + 2D1Y1 + 2D2Y2 + 2D3Y3
,

y3 =
C0(1 + |Y |2) + 2C1Y1 + 2C2Y2 + 2C3Y3

2c(1 − |Y |2) + D0(1 + |Y |2) + 2D1Y1 + 2D2Y2 + 2D3Y3
,

where c = |c1c4 − c2c3| and |Y |2 = Y 2
1 + Y 2

2 + Y 2
3 . The coefficients are

determined as follows:

A0 = c1c3 + c1c3 + c2c4 + c2c4, A1 = c1c4 + c1c4 + c2c3 + c2c3,

A2 = i(−c1c4 + c1c4 + c2c3 − c2c3), A3 = c1c3 + c1c3 − c2c4 − c2c4,

B0 = i(c1c3 − c1c3 + c2c4 − c2c4), B1 = i(c1c4 − c1c4 + c2c3 − c2c3),

B2 = c1c4 + c1c4 − c2c3 − c2c3, B3 = i(c1c3 − c1c3 − c2c4 + c2c4),

C0 = c1c1 + c2c2 − c3c3 − c4c4, C1 = c1c2 + c1c2 − c3c4 − c3c4,

C2 = i(−c1c2 + c1c2 + c3c4 − c3c4), C3 = c1c1 − c2c2 − c3c3 + c4c4,

D0 = c1c1 + c2c2 + c3c3 + c4c4, D1 = c1c2 + c1c2 + c3c4 + c3c4,

D2 = i(−c1c2 + c1c2 − c3c4 + c3c4), D3 = c1c1 − c2c2 + c3c3 − c4c4.
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Fig. 1. The image surface of the unit disc: (Left) k = 3, (Right) k = 5

Proof is given by the identification of the hyperbolic space H3 and the

3-ball stated in Introduction.

Example 2.3. In the case where c1 = 1, c2 = c3 = 0, and |c4| = 1, we

can see that

y1 + iy2 = c4(Y1 + iY2) and y3 = Y3;

namely, the multiplication of u1 by c4 with u0 unaltered corresponds to the

rotation in the (y1, y2)-plane.

3. The Airy Functions and the Confluent Hypergeometric Func-

tions

3.1. Properties of the Airy functions

The standard solutions of the equation (A) when k = 3 are the Airy

function Ai(x) defined by the Airy integral

Ai(x) =
1

π

∫ ∞

0
cos(t3/3 + xt)dt

and the Airy function Bi(x) of the second kind defined by the integral

Bi(x) =
1

π

∫ ∞

0
(exp(−t3/3 + xt) + sin(t3/3 + xt)dt.
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We refer to [O, AS] for precise definitions of these integrals and the funda-

mental properties of these functions.

The solutions u0 and u1 in (2.1) are related with the Airy functions as

follows:

u0 = c1Ai(x) + c2Bi(x), u1 = c3Ai(x) + c4Bi(x),(3.1)

where

c1 = 32/3Γ(2/3)/2, c2 = 31/6Γ(2/3)/2,

c3 = −35/6π/(3Γ(2/3)), c4 = 31/3π/(3Γ(2/3)).

We denote by �A the hyperbolic Schwartz map relative to the set of

solutions {u0, u1} and by �T the map relative to the set {Ai,Bi}. It turns

out that the former is better for drawing the surface because the symmetry

is easily observed in the target and the latter is better for analyzing the

behavior at infinity.

3.2. Asymptotic behavior of the Airy functions

In order to know the behavior as |x| tends to infinity, we need to know

the asymptotic behavior of the functions Ai and Bi. Since the differential

equation is irregular singular, we need to take care of the Stokes lines. The

Stokes line for the general equation (E) is by definition the curve satisfying

Re

∫ x

a

√
q(t)dt = 0,

where a is a root of q = 0; we refer to [F]. In the present case, they consist

of three half-lines emanating from the origin:

x = r exp(2πi/6), x = −r, x = r exp(−2πi/6); r ∈ [0,∞).

The open cone bounded by two of these three lines is called a sector; we

have three sectors:

S0 = {r exp(iθ) | r > 0,−π/3 < θ < π/3},
S1 = {r exp(iθ) | r > 0, π/3 < θ < π},
S2 = {r exp(iθ) | r > 0, π < θ < 5π/3}.
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We cite the following lemma from [O], Chapter 11, Sections 1 and 8, pp.392–

414.

Lemma 3.1. When x lies inside the sector S0, the functions Ai and Bi

have the following asymptotic expansions:

Ai(x) ∼ e−ξ

2
√
πx1/4

∞∑
s=0

(−1)s
as
ξs

, Ai′(x) ∼ −x1/4e−ξ

2
√
π

∞∑
s=0

(−1)s
bs
ξs

,

Bi(x) ∼ eξ√
πx1/4

∞∑
s=0

as
ξs

, Bi′(x) ∼ x1/4eξ√
π

∞∑
s=0

bs
ξs

,

where x1/4 and ξ = 2/3x3/2 take the principal values, and the coefficients

as and bs are defined as

a0 = b0 = 1, as =
(2s + 1)(2s + 3) · · · (6s− 1)

(216)ss!
, bs = −6s + 1

6s− 1
as.

When x is real positive, they have the following expansions:

Ai(−x) ∼ 1√
πx1/4

(
cos(ξ − π/4)

∞∑
s=0

(−1)s
a2s

ξ2s

+ sin(ξ − π/4)
∞∑
s=0

(−1)s
a2s+1

ξ2s+1

)
,

Ai′(−x) ∼ x1/4

√
π

(
sin(ξ − π/4)

∞∑
s=0

(−1)s
b2s
ξ2s

− cos(ξ − π/4)

∞∑
s=0

(−1)s
b2s+1

ξ2s+1

)
,

Bi(−x) ∼ 1√
πx1/4

(
− sin(ξ − π/4)

∞∑
s=0

(−1)s
a2s

ξ2s

+ cos(ξ − π/4)

∞∑
s=0

(−1)s
a2s+1

ξ2s+1

)
,
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Bi′(−x) ∼ x1/4

√
π

(
cos(ξ − π/4)

∞∑
s=0

(−1)s
b2s
ξ2s

+ sin(ξ − π/4)

∞∑
s=0

(−1)s
b2s+1

ξ2s+1

)
.

3.3. The confluent hypergeometric functions

The confluent hypergeometric differential equation is defined as

xu′′ + (γ − x)u′ − αu = 0,(3.2)

where α and γ are constants. We assume here that these constants are real.

It is regular singular at x = 0 and irregular singular at x = ∞. By a change

of the unknown u by multiplying a non-zero function

ρ = e−x/2xγ/2,

and a change of parameters

a = 2α− γ, b = γ2 − 2γ,(3.3)

this equation transforms to the equation (C). We have an apparent sym-

metry (x, a, b) ↔ (−x,−a, b) and note that the Bessel differential equation

corresponds to the case a = 0. As we showed in [SSY], The associated hy-

perbolic Schwarz map behaves differently according as a = 0 or a 	= 0. An

ordinary set of independent solutions of (3.2) is given as

f1(x) = F (α, γ;x) and f2(x) = x1−γF (α− γ + 1, 2 − γ;x),

unless γ is not integer, where

F (α, γ;x) =

∞∑
k=0

(α, k)

(γ, k)k!
xk

is the confluent hypergeomtric function and (c, k) = c(c + 1) · · · (c + k − 1).

Hence,

u0 = ρ(x)f1(x) and u1 = ρ(x)f2(x)
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make a set of independent solutions of (C). Since we need the asymptotic

behaviors of solutions, we cite the following lemma from [O], p.256:

Lemma 3.2. There exist two solutions U and V that have the following

asymptotic expansions.

U(α, γ;x) ∼ x−α
∞∑
k=0

(−1)k
(α, k)(1 + α− γ, k)

k!xk
, | arg x| ≤ 3π/2 − δ,

V (α, γ;x) ∼ ex(−x)α−γ
∞∑
k=0

(γ − α, k)(1 − α, k)

k!xk
, | arg(−x)| ≤ 3π/2 − δ,

for any positive small number δ. They are well-defined even if γ is an

integer.

The relations of these solutions with the functions f1 and f2 are given

as

U =
π

sinπγ

(
f1

Γ(α− γ + 1)Γ(γ)
− f2

Γ(α)Γ(2 − γ)

)
,

V =
π

sinπγ

(
f1

Γ(1 − α)Γ(γ)
− eπi(γ−1)f2

Γ(γ − α)Γ(2 − γ)

)
,

with the convention arg(−x) = arg(x) − π; we refer to [AS], Chapter 13,

pp.504–505.

We next set

v0 = ρ(x)U(x) and v1 = (−1)γ/2ρ(x)V (x)(3.4)

and denote by �C the hyperbolic Schwarz map relative to this set. From

Lemma 3.2, we have the following.

Lemma 3.3. The solutions v0 and v1 have the asymptotic expansions

as

v0 ∼ e−x/2x−a/2

(
1 − α(1 + α− γ)

x
+ O

(
1

x2

))
,

v1 ∼ ex/2(−x)a/2
(

1 +
(γ − α)(1 − α)

x
+ O

(
1

x2

))(3.5)

that are valid in the common domain −π/2+ δ ≤ arg(x) ≤ 3π/2− δ for any

positive small number δ.
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Fig. 2. Stokes lines for the confluent hypergeometric equation

3.4. Stokes lines of the confluent hypergeometric functions

We exhibit the Stokes lines in some cases in Figure 2; The authors

are grateful to Tatsuya Koike who provided these figures. The figures are

arranged from left to right and from upper to lower with the parameters as

a = 0, b = −1; a = 0, b = 1; a = 1, b = −1 and a = 1, b = 1; the small dots

in the figures denote the points q = 0.

Although the shapes of the figures change fairly drastically, the asymp-

totic behavior of solutions at infinity turns out to be simple as we will see

in Section 5. This is because the the Stokes lines approach to the infinity

from two directions irrespective of the parameters. Indeed, the differential

equation relative to the variable t = 1/x is written as

v̈ − 1 + 2at + bt2

4t4
v = 0,
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S2

S1

S0

Fig. 3. Stokes lines, the preimage of the self-intersection curve and the unit circle

which means
√
q ∼ 1/(2t2) at t = 0 and, if we set t = εeiθ for small ε, then∫ √

qdt ∼ −(1/2ε)e−iθ; hence, the Stokes lines approach the infinity along

the direction θ = ±π/2, namely along the imaginary axis.

4. Image Surface for the Airy Differential Equation

4.1. Image of a fan around the line arg x = 0

In Figure 3, we draw the Stokes lines and the sectors. The round circle

denotes |x| = 1. The image of the fan

{x ∈ X | | arg x| < π

6
, 0.7 < |x| < 1.5}

is shown in Figure 4, where a swallowtail singularity can be seen. Since

around any swallowtail singularity the surface must self-intersect, we can

trace the self-intersection curve: its preimage in the sector S0 and its equiv-

alents in the other sectors are drawn in Figure 3 together with the three

Stokes lines and the unit circle. Each curve is a simple curve touching

the unit circle, and approaching asymptotically to the real axis or to its

equivalents.

Here and in the following, we use Maple 9.5 for a practical computation

of functions Ai and Bi.
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A

B

1.50.7

D

C

−→

B
A

DC

Fig. 4. Image of a fan around the line arg x = 0

Fig. 5. Image of a fan around the line arg x = π/3

4.2. Image of a fan around the line arg x = π/3

The image of the fan

{x ∈ X |
∣∣∣arg x− π

3

∣∣∣ < a}
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Fig. 6. Images of rings

looks like a winding paper. Figure 5 is the image of such a fan with 0.5 <

|x| < 4.5 and a = π/64; the cuspidal edge curve (image of |x| = 1) can be

seen inside the roll.

4.3. Image of rings around the origin

The functions Ai(x) and Bi(x) have infinite number of zeros on the

negative real axis. Let [−r1,−r2,−r3, . . . ] be the zeros of Ai and [−s1,−s2,

−s3, . . . ] the zeros of Bi, both in decreasing order. They are interlacing each

other: si < ri < si+1. For example, s1 = 1.1737 and r1 = 2.3381. Here,

we show the images of the thin four rings s1 ≤ |x| ≤ 1.5, 1.5 ≤ |x| ≤ 1.8,

1.8 ≤ |x| ≤ 2.1 and 2.1 ≤ |x| ≤ r1 in Figure 6, which are viewed from the
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same angle. They change their shapes gradually but they look having the

same homotopy. The union of the four figures is redrawn in Figure 8.

The hyperbolic Schwarz map �T associated with the set {Ai,Bi} is

written as

C � x �→ 1

L
(P,Q,R) ∈ B3,

where

L = 2/π + |Ai|2 + |Ai′|2 + |Bi|2 + |Bi′|2, P = 2Re(AiBi) + 2Re(Ai′Bi′),

Q = 2Im(AiBi) + 2Im(Ai′Bi′), R = |Ai|2 + |Ai′|2 − |Bi|2 − |Bi′|2,
where AiBi′ − BiAi′ = 1/π is used. Relying on these expressions, we have

the following.

Proposition 4.1. The image �T (x) of the hyperbolic Schwarz map

tends to (0, 0,−1) as |x| tends to infinity while it remains in the sector S0.

The image �T (−x) of the negative real axis has no limit when x tends to

infinity; however the set of accumulation of such points is the whole circle

on the boundary sphere that is the section by the plane y2 = 0.

Proof. Assume | arg x| ≤ π/3. Then it is straightforwd to see that

L(x) ∼ (xx)1/4eξ+ξ

π

(
1 + O(

1

ξ
)

)
,

P (x) ∼ Re
e−ξ+ξ

π(xx)1/4

(
1 +

a1

ξ
− a1

ξ
+ O(

1

ξ2
)

)

−Re
(xx)1/4e−ξ+ξ

π

(
1 +

b1

ξ
− b1

ξ
+ O(

1

ξ2
)

)
,

Q(x) ∼ Im
e−ξ+ξ

π(xx)1/4

(
1 +

a1

ξ
− a1

ξ
+ O(

1

ξ2
)

)

− Im
(xx)1/4e−ξ+ξ

π

(
1 +

b1

ξ
− b1

ξ
+ O(

1

ξ2
)

)
,

R(x) ∼ e−ξ−ξ

4π(xx)1/4

(
1 − a1

ξ
− a1

ξ
+ O(

1

ξ2
)

)

− eξ+ξ

π(xx)1/4

(
1 +

a1

ξ
+

a1

ξ
+ O(

1

ξ2
)

)
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+
(xx)1/4e−ξ−ξ

4π

(
1 − b1

ξ
− b1

ξ
+ O(

1

ξ2
)

)

− (xx)1/4eξ+ξ

π

(
1 +

b1

ξ
+

b1
ξ

+ O(
1

ξ2
)

)
.

We set x = r exp(iθ). Then ξ + ξ = 2/3r3/2 cos(3θ/2) and |e−ξ| =

exp(−2/3r3/2 cos(3θ/2)). By the assumption |θ| ≤ π/3−δ for some positive

constant δ, we see cos(3/2θ) ≥ c > 0 for a positive constant c. Hence, |e−ξ|
tends to zero as r tends to infinity, and P/L ∼ 0, Q/L ∼ 0 and R/L ∼ −1

uniformly for each δ. For the second statement we use

L(−x) ∼ 2

π
+

√
x

π

(
1 + O(

1

ξ2
)

)
+

1

π
√
x

(
1 + O(

1

ξ
)

)
,

P (−x) ∼
(

1

π
√
x
−

√
x

π

)(
cos(2ξ) + O(

1

ξ
)

)
,

Q(−x) = 0,

R(−x) ∼
(

1

π
√
x
−

√
x

π

)(
sin(2ξ) + O(

1

ξ
)

)
,

for real positive x. Hence we have the result. �

We remark that the image �T (x) of x ∈ S1 tends to (0,−1, 0) and that

of x ∈ S2 to (0, 1, 0). This result is transferred to the map �A associated

with the set {u0, u1}:

Corollary 4.2. The image �A tends to the following respective points

as |x| tends to infinity while it remains in the sectors S0, S1 and S2:

p0 = (k1, 0, k3),

p1 = (k1 cos(2π/3), k1 sin(2π/3), k3),

p2 = (k1 cos(4π/3), k1 sin(4π/3), k3),

where

k1 =
4π35/6Γ(2/3)2

35/3Γ(2/3)4 + 4π2
∼ 0.95204 89606,

k3 =
35/3Γ(2/3)4 − 4π2

35/3Γ(2/3)4 + 4π2
∼ −0.30594 57086.
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p0

p2

p1

-1

-0.5

0

0.5

1

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1

Fig. 7. Limits of |x| = ∞

The images �A of the three Stokes lines {x| arg(x) = π/3}, {x| arg(x) = π}
and {x| arg(x) = −π/3} tend to the boundary circles, which are the sections

of the boudary ball by the planes that are equidistant from p0 and p1, p1 and

p2, and p2 and p0, respectively. They meet at the poles (0, 0,±1).

Proof. Since (k1, 0, k3) is the transform of (Y1, Y2, Y3) = (0, 0,−1),

Lemma 2.2 shows that

k1 =
2c2c4
c22 + c24

and k3 =
c22 − c24
c22 + c24

. �

These figures are shown in Figure 7. Note that p2 lies on the first circle,

and p0 on the second and p1 on the third.

4.4. Change of image of rings

The map � on the negative real axis is approximately equal to

(− cos(2ξ), 0,− sin(2ξ)) where ξ = (2/3)|x|3/2, which is periodic relative
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Fig. 8. Images of the rings S1, R1 and S2

Fig. 9. Images of the rings S2 and R2

to ξ. We here note that the zeros of cos(2ξ) for negative x are −(3π(2m−
1)/8)2/3, and that these values are the asymptotic values of zeros of either

Ai(x) or Bi(x); refer to 10.4.94 and 10.4.98 in [AS], Chapter 10. Hence, it

is natural to look at the images of rings

Si = �A({x | si ≤ |x| ≤ ri}) and Ri = �A({x | ri ≤ |x| ≤ si+1}),
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Fig. 10. Images of the rings S10 and S100

where si and ri denote the zeros defined in Subsection (4.3.). We found the

following experimental fact.

In Figure 8 we draw the images of three rings S1, R1 and S2 viewed in

the same angle; note that the image of S1 is the union of four figures in

Figure 6.

Figure 9 gives the view of the images of S2 and R2 from the different

point of view; they can be glued continuously. We note that R2 looks just

like the mirror of S2.

The left figure of Figure 10 is S10 and the right is S100.

Note that s2 = 3.2710, r2 = 4.0879, s3 = 4.8307, s10 = 12.3864, r10 =

12.8287, s11 = 13.2636, s100 = 60.2533, r100 = 60.4555, s101 = 60.6574.

To see more finely the right figure of Figure 10, we draw in Figure 11

the images of the circles lying in S100 in the left column and the circles lying

in R100 in the right column. The left of each pair draws the curve viewed

in the direction of angle [25, 100] (i.e., the viewer’s point is near the north

pole) and the right in the direction of angle [80, 85] (the viewer’s point is

near the horizontal plane). The dotted points are p0, p1 and p2 and the

grey circles denote those given in Figure 7.
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Fig. 11. Images of circles in the rings s100 ≤ |x| ≤ r100 (left) and r100 ≤ |x| ≤ s101 (right)
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5. Asymptotic Behavior of the Hyperbolic Schwarz Map Asso-

ciated with the Confluent Hypergeometric Equation

The asymptotic behavior of the hyperbolic Schwarz map associated with

the confluent hypergeometric equation can be examined analogously as in

the proof of Proposition 4.1. We use the same notations L, P , Q and R in

Section 4.3. applied to the set {v0, v1} in (3.4). Then, since |v0v
′
1−v′0v1| = 1,

we have

L ∼ 2 +
5

4

∣
∣
∣x−a/2e−x/2

∣
∣
∣ +

5

4

∣
∣
∣(−x)a/2ex/2

∣
∣
∣ ,

P ∼ 3

4
(−x/x)−a/2e(x−x)/2 +

3

4
(−x/x)−a/2e(x−x)/2,

Q ∼ −i
3

4
(−x/x)−a/2e(x−x)/2 + i

3

4
(−x/x)−a/2e(x−x)/2,

R ∼ 5

4

∣
∣
∣x−a/2e−x/2

∣
∣
∣− 5

4

∣
∣
∣(−x)a/2ex/2

∣
∣
∣ ,

when |x| is large, up to higher order terms of 1/x. We set z = r exp(iθ).

Then, if a = 0, we see that

L ∼ 2 +
5

4
(exp(−r cos θ) + exp(r cos θ)),

R ∼ 5

4
(exp(−r cos θ) − exp(r cos θ)),

P ∼ 3

2
cos(−r sin θ), Q ∼ 3

2
sin(−r sin θ),

which show

lim
1

L
(P,Q,R) = (0, 0,−1) or (0, 0, 1)

according as cos θ > 0 or cos θ < 0, while, when cos θ = 0, the point

approaches to any point in the circle

C := {(y1, y2, 0) | y2
1 + y2

2 = 1/9}.(5.1)

If a �= 0, then P and Q remain bounded and

L ∼ 5

4
ra exp(r cos θ) and R ∼ −5

4
ra exp(r cos θ)
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Fig. 12. Parameters: α = 1/2 and γ = 1/4 [a > 0] (left); α = 1/4 and γ = 1/2 [a = 0]
(right)

when cos θ > 0, and

L ∼ 5

4
r−a exp(−r cos θ) and R ∼ 5

4
r−a exp(−r cos θ)

when cos θ < 0. Furthermore, when cos θ = 0, we see that

L ∼ 2 +
5

4
(ra + r−a) and R ∼ 5

4
(r−a − ra).

Thus we have the following statement.

Proposition 5.1. We divide the x-plane into three parts: N =

{x | Re(x) < 0}, L = {x | Re(x) = 0} and P = {x | Re(x) > 0}, and

denote by NP , SP and C the north pole (0, 0, 1), the south pole (0, 0,−1)

and the circle (5.1). Then the point �C(x) tends to NP or SP , or accu-

mulates to C as follows.

a < 0 a = 0 a > 0

N NP NP NP

L SP C NP

P SP SP SP

To have an intuitive image, we draw some pictures: Figure 12 draws the

image under �C relative to the set of solutions {v0, v1} in (3.4) of three half-

lines {x | arg(x) = π/4}(blue), {x | arg(x) = π/2}(red) and {x | arg(x) =
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Fig. 13. Image surfaces when a = 1, b = −16/25; (r1, r2) = (0.2, 2), (2, 5), (5, 10).

Fig. 14. Image surfaces when a = 0, b = −3/4; (r1, r2) = (0.2, 2), (2, 5), (5, 10).

3π/4}(green). The parameters are taken as indicated in the figure. The

grey-colored curves are the great circles for reference.

The last figures Figures 13-14 show several images of the area {x =

reiθ | r ∈ [r1, r2], θ ∈ [0, π]}. In the first row, the values of parameters are

α = 13/5, γ = 8/5, i.e., a = 1, b = −16/25 and r ∈ [0.2, 2], [2, 5] and [5, 10].

As we saw in [SSY], the first surface contains the cuspidal edge curve and

two swallowtail singularities, which may not be seen; refer to [SSY] for finer

pictures near the point x = 0. In the second row, the values are α = 1/4,

γ = 1/2, i.e., a = 0, b = −3/4 and r ∈ [0.2, 2], [2, 5] and [5, 10]; in this case,
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the cuspidal edge is smooth and the surface has no swallowtails.

A more detailed description of the asymptotic behavior as well as a

consideration of the equation with irregular singularities of higher rank will

be given in a forthcoming paper.
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