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Logarithmic Abelian Varieties, Part I:
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Dedicated to Professor Luc Illusie on his sixtieth birthday

Abstract. We introduce the notions log complex torus and log
abelian variety over C, which are new formulations of degenerations
of complex torus and abelian variety over C, and which have group
structures. We compare them with the theory of log Hodge struc-
tures. A main result is that the category of the log complex tori
(resp. log abelian varieties) is equivalent to that of the log Hodge
structures (resp. fiberwise-polarizable log Hodge structures) of type
(−1, 0) + (0,−1). The toroidal compactifications of the Siegel spaces
are the fine moduli of polarized log abelian varieties with level struc-
ture and with the fixed type of local monodromy with respect to
the corresponding cone decomposition. In virtue of the fact that log
abelian varieties have group structures, we can also show this with a
fixed coefficient (rigidified) ring of endomorphisms. The Satake-Baily-
Borel compactifications are, in a sense, the coarse moduli. Classical
theories of semi-stable degenerations of abelian varieties over C can
be regarded in our theory as theories of proper models of log abelian
varieties.
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This is Part I of our series of papers on log abelian varieties.
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Log abelian varieties are some kind of degenerations of abelian varieties.

In the usual geometry, degenerations of abelian varieties have singularities

and can not have group laws. However log abelian varieties do not live in

the world of usual geometry, but they are group objects which live in the

world of log geometry in the sense of Fontaine-Illusie.

In this Part I, we consider the complex analytic theory. A main subject

is to compare log abelian varieties with log Hodge structures.

In the classical analytic theory, there are equivalences of categories

{complex torus A over C} �(1)

{Hodge structureH of weight −1 such thatF−1HC = HC, F
1HC = 0},

(2) {abelian variety A over C} �
{polarizable Hodge structureH of weight −1

such thatF−1HC = HC, F
1HC = 0}.

(1) and (2) are given by

A = HZ\HC/F
0HC.(3)

We can write the correspondence also as

A = Ext 1(Z, H),(4)

where Ext 1 is taken for the category of mixed Hodge structures (see for

example 3.1.1).

We generalize the equivalences (1) and (2) to the logarithmic situation,

replacing complex torus by log complex torus, abelian variety by log abelian

variety, Hodge structure of weight −1 by log Hodge structure of weight −1,

and Ext 1 in (4) by Ext 1 for the category of log mixed Hodge structures.

In the log situation, the presentation (3) is replaced by a multiplicative

presentation of A. Logarithmic Hodge structures are some kind of degener-

ations of Hodge structures. In [9] 1.8.15, Deligne explained his philosophy

on the formulation of “good” degenerations of Hodge structures, and Steen-

brink and Zucker realized this philosophy in [34]. The notion of log Hodge

structures is a kind of refinement of the notion of “good” degenerations of
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Hodge structures considered in [34]. We will prove the following (§3 Theo-

rem 3.1.5). (See [16] for the definition and fundamental properties of fs log

analytic spaces.)

0.1. Theorem. Let S be an fs log analytic space. Then we have an

equivalence of categories

{log complex torus A over S} �
{log Hodge structureH of weight −1 over S

such thatF−1HO = HO, F
1HO = 0},

{log abelian variety A over S} �
{fiberwise-polarizable log Hodge structureH of weight −1

such thatF−1HO = HO, F
1HO = 0},

which are given by

A = Ext1(Z, H).

Here Ext1 is taken for the category of log mixed Hodge structures.

The elliptic curve {C×/qZ}q∈∆−{0} over ∆ − {0} (the standard family

of elliptic curves parametrized by ∆ − {0}, where ∆ = {q ∈ C | |q| < 1})
does not extend to an elliptic curve over ∆, for it degenerates at q = 0.

The theory of degeneration is complicated, in the sense that there are many

proper models of this family over ∆. This family, however, extends uniquely

to a log elliptic curve (= 1-dimensional log abelian variety) over ∆, where

∆ is endowed with the log structure associated to {0} ⊂ ∆. Furthermore,

proper models over ∆ can be found in this uniquely extended log elliptic

curve. See §1.1 for this, and see §5 for the generalization of this to log

abelian varieties. With the group structure and with such uniqueness, we

present a new theory of degenerations of abelian varieties, and our analytic

theory of log abelian varieties has essentially the same simple form as the

analytic theory of abelian varieties in Chapter 1 of the textbook [21] of

Mumford.
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We will also prove that the toroidal compactification of the moduli space

of polarized abelian varieties with respect to a fixed admissible cone decom-

position is the moduli space of polarized log abelian varieties with a fixed

type of local monodromy. In virtue of the fact that log abelian varieties

have group structures, we can do this with a fixed coefficient (rigidified)

ring of endomorphisms. We prove that the Satake-Baily-Borel compactifi-

cation of the moduli space of polarized abelian varieties is, in a sense, the

coarse moduli space of polarized log abelian varieties (without fixing the

type of local monodromy). See §4.

From Part II, we will develop the algebraic theory (not the analytic

theory) of log abelian varieties.

We mention some related works. M. C. Olsson [29] proves an equivalence

of the category of log elliptic curves in his sense and that of log Hodge

structures. See also [30]. See also N. Nakayama’s study [24] of elliptic

fibrations.

We are very happy to dedicate our series of papers on log abelian varieties

to Professor Illusie, who is a pioneer of log geometry and who encouraged

us constantly. We started to write the series hoping to dedicate them to his

60th birthday, but we are sorry that we completed this Part I rather late.

We are very thankful to the referees for giving us many valuable comments.

The first and the third authors are partly supported by the Grants-in-Aid

for Encouragement of Young Scientists, the Ministry of Education, Culture,

Sports, Science and Technology, Japan.

Terminology. In this paper, a monoid means a commutative semi-

group with a unit element. A homomorphism of monoids is assumed to

respect the unit elements, and a submonoid of a monoid is assumed to

share the unit element.

An ideal of a monoid S is a subset I of S such that si ∈ I for any

s ∈ S and i ∈ I. A prime ideal of S is an ideal of S whose complement is

a submonoid of S. The complement of a prime ideal of S is called a face of

S.

The interior of S is the intersection of all nonempty prime ideals of S.

See [16] or Appendix of [15] for basic terms in (analytic) log geometry

(fs monoids, fs log analytic spaces and so on). See also [14].
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1. Log Abelian Varieties and Log Complex Tori

In §1.1, we give an example of a log elliptic curve (= 1-dimensional log

abelian variety). After preparations in §1.2, we will define “log complex

torus” and “log abelian variety (in the complex analytic situation)” in §1.3.

1.1. An example of a log elliptic curve (= 1-dimensional log

abelian variety)

1.1.1. Let

∆ = {q ∈ C | |q| < 1}
be the unit disc. Let E = {C×/qZ}q∈∆−{0} → ∆ − {0} be the well-known

family of elliptic curves over ∆ − {0}. We say “E is an elliptic curve over

∆− {0}”. We will identify E with the functor represented by E

Mor∆−{0}(?, E) : (an/(∆− {0})) → (Set),

which is isomorphic to the quotient sheaf Gm/q
Z on (an/(∆− {0})). Here

(an/(∆ − {0})) denotes the category of the analytic spaces over ∆ − {0},
Gm denotes the sheaf on (an/(∆− {0})) defined by

Gm(T ) = Γ(T,O×
T ),

q in the notation Gm/q
Z denotes the coordinate function of ∆, and hence

Gm/q
Z denotes the sheaf defined by (Gm/q

Z)(T ) = Γ(T,O×
T /q

Z).

As is well-known, E does not extend to an elliptic curve over ∆.

1.1.2. Now endow ∆ with the log structure M∆ corresponding to the

origin of ∆. That is, M∆ = O×
∆ · {qn |n ≥ 0} ⊂ O∆. Let (fs/∆) be the

category of fs log analytic spaces over ∆.

Then by the method of this paper, E extends uniquely to a log elliptic

curve (= 1-dimensional log abelian variety) Ē over ∆, as follows: Ē is

defined to be the sheaf G
(q)
m,log/q

Z of abelian groups on the category (fs/∆),

where Gm,log is the sheaf on (fs/∆) defined by

Gm,log(T ) = Γ(T,Mgp
T ),

and G
(q)
m,log denotes the subsheaf of Gm,log defined by

G
(q)
m,log(T ) = {f ∈ Γ(T,Mgp

T ) | locally on T , there exist

m,n ∈ Z such that qm|f |qn}.
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Here Mgp
T is the sheaf of abelian groups associated to MT and for local

sections f, g ∈Mgp
T , f |g means f−1g ∈MT . See §1.2 for details.

1.1.3. Examples of models in Ē. Ē is not representable, but it has

many representable big subsheaves P, P ′, . . . , which are proper models of E

over ∆ in the usual algebraic geometry. Let P = P̃ /qZ (resp. P ′ = P̃ ′/qZ),

where P̃ (resp. P̃ ′) is the subsheaf of Gm,log, which is stable under the action

of qZ, defined by

P̃ (T ) = {f ∈ Γ(T,Mgp
T ) | locally on T , there exists

n ∈ Z such that qn|f |qn+1}

P̃ ′(T ) = {f ∈ Γ(T,Mgp
T ) | locally on T , there exists

n ∈ Z such that qn|f2|qn+1}.

Then the inclusions P̃ ′ ⊂ P̃ ⊂ G
(q)
m,log induce inclusions P ′ ⊂ P ⊂ Ē. Here

the inclusion P̃ ′ ⊂ P̃ is shown as

qn|f2|qn+1 ⇒ q2[n/2]|f2|q2([n/2]+1) ⇒ q[n/2]|f |q[n/2]+1.

These P and P ′ are represented by fs log analytic spaces over ∆ which

are proper over ∆. The inverse images to ∆ − {0} of P and of P ′ are

identified with E, the fiber of P over 0 ∈ ∆ is isomorphic to the quotient

of P1
C by identifying 0 and ∞ (this quotient of P1

C is regarded as the limit

of C×/qZ for q → 0), P ′ is the blowing-up of P at this point 0 = ∞, and

P and P ′ are endowed with the log structures associated to the fibers over

0 ∈ ∆. (This is easily seen by the fact that, for a fixed n, the subsheaf T �→
{f ∈ Γ(T,Mgp

T ) | qn|f |qn+1 (resp. qn|f2|qn+1)} of P̃ (resp. P̃ ′) is represented

by the fs log analytic space (Spec C[Nn] ×SpecC[N] ∆, Na
n), where Nn is the

free monoid {(a, b) ∈ Z2 | a + nb ≥ 0, a + (n + 1)b ≥ 0 (resp. 2a + nb ≥
0, 2a+ (n+ 1)b ≥ 0)}, N → O∆ sends 1 to q, N → Nn sends 1 to (1, 0), and

Na
n denotes the log structure associated to the pre-log structure induced by

the natural homomorphism Nn → C[Nn].)

A remarkable thing is that, though the map P ′ → P is not injective as

a map of analytic spaces, the map P ′ → P is injective as a map of sheaves

on (fs/∆). By putting log structures, the sets of morphisms to these P and
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P ′ differ from those of morphisms in the category of analytic spaces, and

this is the reason why degenerate objects can behave in log geometry like

non-degenerate objects.

E extends to many proper models P , P ′, . . . over ∆, but extends

uniquely to a log elliptic curve Ē over ∆. Furthermore, though P , P ′, . . .
are not group objects, Ē is a sheaf of abelian groups. In these points, our

theory simplifies the usual theory of degeneration of abelian varieties.

1.1.4. Here we remark that our moduli problems are considered in

the category of log analytic spaces, so they differ from the usual moduli

problems in the category of analytic spaces. A reader who is familiar with

moduli problems in the category of analytic spaces (with no log structure)

may have the following questions, for example.

Question 1. Although the examples above show only the one-dimen-

sional case, how does our theory work in the higher dimensional case, for

example, that of dimension 2?

Question 2. Let p be a point of the underlying analytic space of the

moduli space of log abelian varieties (with additional structures for fixed

data), and endow p with the pull-back log structure from the moduli space.

Denote by p′ this fs log point to avoid confusion. Denote by Ap′ the log

abelian variety (with an additional structure) over p′ which is the pull-back

of the universal family over the moduli space with respect to the natural

inclusion morphism. Are there any morphisms from p′ to the moduli space

whose images equal {p} other than the natural inclusion morphism? If so,

do they give log abelian varieties over p′ (with additional structures) which

are not isomorphic to Ap′?

Here is our answer to Question 1. Our canonical degenerated objects,

i.e., log abelian varieties are abelian sheaves defined by means of log struc-

tures, such as G
(q)
m,log/q

Z in the case of log Tate curves in 1.1.2. Even in

the higher dimensional cases, log abelian varieties are very similar to log

Tate curves. For example, consider a two-dimensional log abelian vari-

ety A := (G
(q)
m,log/q

Z) × (G
(q)
m,log/q

Z) = (G⊕2
m,log)

(q,q)/qZ ⊕ qZ over ∆, where
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(G⊕2
m,log)

(q,q) is the subsheaf of G⊕2
m,log defined by

(G⊕2
m,log)

(q,q)(T ) = {(f1, f2) ∈ Γ(T,Mgp
T )2; locally on T , there exist

m,n ∈ Z such that qm|f1|qn and qm|f2|qn}

on which Z2 acts as (f1, f2) �→ (qy1f1, q
y2f2) for (f1, f2) ∈ (G⊕2

m,log)
(q,q),

and (y1, y2) ∈ Z2. As is similar to the one-dimensional case, the abelian

surface (Gm/q
Z)×(Gm/q

Z) over ∆−{0} extends uniquely to the log abelian

surface A. Clearly, this log abelian surface depends only on q, and does not

need any additional structures such as relatively complete models in the

Mumford construction. It is clear that the products P ×P , P ×P ′, P ′×P ,

P ′ × P ′ are contained in A, where P and P ′ are the proper models in the

one-dimensional case in 1.1.3. Besides them, it is easily seen that A also

contains another degenerate abelian surface P ′′ = P̃ ′′/qZ⊕ qZ. Here P̃ ′′ is

the subsheaf of G⊕2
m,log defined by

P̃ ′′(T ) = {(f1, f2) ∈ Γ(T,Mgp
T )2; locally on T , there exist n1, n2 ∈ Z

such that qni |fi|qni+1(i = 1, 2), and that qn1+n2 |f1f2|qn1+n2+1}
∪ {(f1, f2) ∈ Γ(T,Mgp

T )2; locally on T , there exist n1, n2 ∈ Z

such that qni |fi|qni+1(i = 1, 2), and that qn1+n2+1|f1f2|qn1+n2+2}.

The above proper models can be described in terms of fans in a certain

space. See Section 5 for the detail.

Here is our answer to Question 2. The answer to the former question is

“yes” as soon as the log structure of p′ is not trivial, because in the category

of log analytic spaces, (fs log) points can have non-trivial automorphisms.

Since our space is the fine moduli, the answer to the latter is also “yes.” Let

us explain it more concretely. For example, if s is the log point that is the

origin of ∆ in 1.1.2 endowed with the inverse image log structure of that of

∆, then, the pull-back Ēs of Ē in 1.1.2 to s is a log elliptic curve over s. The

log point s has non-trivial automorphisms, and the automorphism group

Aut (s) is isomorphic to C×. If g ∈ Aut (s) is a non-trivial automorphism,

then the pull-back of Ēs by g is not isomorphic to Ēs over s, as is easily

seen via the equivalence 3.1.5 (see also 2.4).

1.2. Pairings into Gm,log

1.2.1. We recall multiplicative presentations of complex tori and
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abelian varieties over C.

A commutative Lie group A over C of dimension g is a complex torus if

and only if there exist finitely generated free Z-modules X,Y of rank g and

a Z-bilinear form 〈 , 〉 : X × Y → C× such that

R⊗X × R⊗ Y → R ; (x, y) �→ log(|〈x, y〉|) (x ∈ X, y ∈ Y )

is a non-degenerate pairing of R-vector spaces, and A is isomorphic to the

cokernel of Y → Hom (X,C×).

A commutative Lie group A over C of dimension g is an abelian va-

riety over C if and only if there exist X,Y, 〈 , 〉 as above and an injective

homomorphism p : Y → X (polarization) such that

R⊗ Y × R⊗ Y ; (y, z) �→ log(|〈p(y), z〉|) (y, z ∈ Y )

is symmetric and negative definite.

1.2.2. Let G be an abelian group or a sheaf of abelian groups on a

site. By a pairing into G, we mean a triple (X,Y, 〈 , 〉), where X and Y are

finitely generated free abelian groups, and 〈 , 〉 is a Z-bilinear form

〈 , 〉 : X × Y → G.

Let S be an fs log analytic space ([16]). Let (fs/S) be the category of

fs log analytic spaces over S endowed with the usual topology. That is, a

covering of an fs log analytic space T over S is a usual open covering (Uλ)λ
of the underlying topological space of T , where each Uλ is endowed with the

inverse image of OT and the inverse image of the log structure of T .

In the next subsection, for an fs log analytic space S, we will define

the notions of log complex torus over S and log abelian variety over S as

sheaves of commutative groups on (fs/S), by using pairings into Gm,log,S .

Here Gm,log,S denotes the sheaf T �→ Γ(T,Mgp
T ) on (fs/S) (hence giving a

pairing into the sheaf Gm,log,S on (fs/S) is equivalent to giving a pairing into

the sheaf Mgp
S on S). In this subsection, we give necessary preparations on

such pairings.

1.2.3. Admissible pairings. Let S be an fs monoid and let (X,Y, 〈 , 〉)
be a pairing into Sgp.
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(1) For a face σ of S, we define

Xσ = {x ∈ X | 〈x, y〉 ∈ σgp for all y ∈ Y },

Yσ = {y ∈ Y | 〈x, y〉 ∈ σgp for all x ∈ X}.

(2) (X,Y, 〈 , 〉) is said to be S-admissible if the following (i) is satisfied.

(i) For any face σ of S and any homomorphism N : S → R≥0 into

the additive monoid R≥0 = R
(+)
≥0 = {r ∈ R | r ≥ 0}, if we denote the face

σ ∩Ker (N) of S by τ , then the pairing of R-linear spaces

R⊗ (Xσ/Xτ )× R⊗ (Yσ/Yτ ) → R; (x, y) �→ N(〈x, y〉)

is non-degenerate. Here Ker (N) = {a ∈ S |N(a) = 0}, and the group

homomorphism Sgp → R induced from N is also denoted by N by abuse of

notation.

We sometimes simply say that (X,Y, 〈 , 〉) is admissible if it is S-admis-

sible and S is clear from the context.

1.2.4. Definition. Let S be an fs log analytic space. A pairing

(X,Y, 〈 , 〉) into Mgp
S /O×

S is said to be admissible if the induced pairing

into Mgp
S,s/O×

S,s is MS,s/O×
S,s-admissible for any s ∈ S.

1.2.5. Lemma. Let S be an fs monoid and let (X,Y, 〈 , 〉) be a pairing

into Sgp. Let p : Y → X be a homomorphism satisfying the following

conditions (i)–(iii).

(i) The cokernel of p is finite.

(ii) 〈p(y), z〉 = 〈p(z), y〉 for any y, z ∈ Y .

(iii) 〈p(y), y〉 ∈ S for any y ∈ Y .

Then (X,Y, 〈 , 〉) is S-admissible.

Proof. We first show

Yσ = p−1(Xσ) for any face σ of S.(1)
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In fact, by the assumption (i), for y ∈ Y , y ∈ Yσ if and only if 〈p(z), y〉 ∈ σgp

for all z ∈ Y . Since 〈p(z), y〉 = 〈p(y), z〉 by the assumption (ii), the last

condition is equivalent to p(y) ∈ Xσ. This proves (1). Next, for a face σ

of S, let σ(Q≥0) (resp. σ(R≥0)) be the subset of Q ⊗ Sgp (resp. R ⊗ Sgp)

consisting of all linear combinations of elements of σ with coefficients in Q≥0

(resp. R≥0). Then σ(R≥0) is the closure of σ(Q≥0). Since 〈p(y), y〉 ∈ S(Q≥0)

for any y ∈ Q⊗ Y by (iii), we have

〈p(y), y〉 ∈ S(R≥0) for any y ∈ R⊗ Y

by the continuity.

To prove the lemma, it is enough to show that, for every face σ of S and

every homomorphism N : S → R
(+)
≥0 , the induced pairing

R⊗ Yσ/Yτ × R⊗ Yσ/Yτ −→ R; (y, z) �→ N(〈p(y), z〉)

is non-degenerate. Here τ denotes σ ∩ KerN . Let us take y ∈ R ⊗ Yσ,

and suppose that N(〈p(y), z〉) = 0 for all z ∈ Yσ. Since N(〈p(y), y〉) = 0,

we have 〈p(y), y〉 ∈ Ker (N : R ⊗ Sgp −→ R) ∩ σ(R≥0) = τ(R≥0). To show

y ∈ R⊗(Yτ ), it is enough to show that 〈p(y), z〉 ∈ R⊗τgp for any z ∈ R⊗Y .

For this, it is enough to show N ′(〈p(y), z〉) = 0 for any element N ′ of

Hom (S,R≥0) such that Ker (N ′) ⊃ τ . Since, for any z ∈ R⊗ Y ,

0 ≤ N ′(〈p(ynz), ynz〉) = 2n ·N ′(〈p(z), y〉) +N ′(〈p(z), z〉)

for all n ∈ Z, we have N ′(〈p(z), y〉) = 0. �

1.2.6. Definition. Non-degenerate pairings into Gm,log,S . A pairing

(X,Y, 〈 , 〉) into Gm,log,S is said to be non-degenerate if the following (i) and

(ii) are satisfied.

(i) The induced pairing into Mgp
S /O×

S is admissible in the sense of 1.2.4.

(ii) Let s be any point of S and let σ be the face {1} of MS,s/O×
S,s. Then

the pairing of R-linear spaces

R⊗Xσ × R⊗ Yσ → R; (x, y) �→ log(|〈x, y〉(s)|)

is non-degenerate. Here Xσ and Yσ are with respect to the induced pairing

into Mgp
S,s/O×

S,s, and 〈x, y〉(s) ∈ C× is the value of 〈x, y〉s ∈ O×
S,s at s.
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1.2.7. Definition. (1) A polarization on a pairing (X,Y, 〈 , 〉) into

Gm,log,S is a homomorphism p : Y → X satisfying the following three con-

ditions (i)–(iii).

(i) p is injective and the cokernel of p is finite.

(ii) 〈p(y), z〉 = 〈p(z), y〉 for any y, z ∈ Y.

(iii) For any y ∈ Y , 〈p(y), y〉 ∈ MS in Mgp
S . For any y ∈ Y − {0}, the

map α : MS → OS sends 〈p(y), y〉 to a function on S whose values are

always of absolute value < 1.

(2) A pairing into Gm,log,S is said to be polarizable if it has a polarization.

1.2.8. Proposition. A polarizable pairing into Gm,log,S is non-degen-

erate.

Proof. Let p : Y → X be a polarization on a pairing (X,Y, 〈 , 〉) into

Gm,log,S and let s ∈ S. By 1.2.5, the condition (i) in 1.2.6 is satisfied. Let

σ be the face {1} of MS,s/O×
S,s. Then we have p(Yσ) ⊂ Xσ ((1) in the proof

of 1.2.5). By 1.2.7 (i), X and Y have the same rank so that Xσ and Yσ also

have the same rank by the admissibility. Thus R⊗ Yσ ∼= R⊗Xσ via p. On

the other hand, for any y ∈ Yσ − {0}, we have 0 < |〈p(y), y〉(s)| < 1 and

hence log |〈p(y), y〉(s)| < 0. This shows that the pairing of R-vector spaces

R ⊗ Yσ × R ⊗ Yσ → R induced by Y × Y → R; (y, z) �→ log(|〈p(y), z〉(s)|)
is negative definite. (Note that a symmetric bilinear form over Q which

is definite over Q is definite over R.) Hence the condition (ii) in 1.2.6 is

satisfied. �

1.2.9. Lemma. (1) Let 〈 , 〉 : X × Y → Sgp be an admissible pairing

and let h : S → S ′ be a homomorphism of fs monoids. Then the induced

pairing X × Y → (S ′)gp; (x, y) �→ h(〈x, y〉) is also admissible.

(2) Let (X,Y, 〈 , 〉) be a non-degenerate (resp. admissible) pairing into

Gm,log,S (resp. Mgp
S /O×

S ) and let T be an fs log analytic space over S. Then

the induced pairing into Gm,log,T (resp. Mgp
T /O×

T ) is non-degenerate (resp.

admissible).

Proof. We prove (1). Let σ be a face of S ′ and let τ = h−1(σ). Then

τ is a face of S. It is enough to show that

Xσ = Xτ .(∗)
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The inclusion Xσ ⊃ Xτ is clear. Let N be an element of Hom (S ′,R(+)
≥0 )

with kernel σ. Then the kernel of N ◦h ∈ Hom (S,R(+)
≥0 ) is τ . Hence by the

admissibility of (X,Y, 〈 , 〉), the pairing

N ◦ h(〈 , 〉) : R⊗X/Xτ × R⊗ Y/Yτ → R

is non-degenerate. Since N ◦ h(〈Xσ, Y 〉) = 0, this shows Xσ ⊂ R⊗Xτ and

thus Xσ ⊂ X ∩ (R⊗Xτ ) = Xτ .

The part of (2) concerning a pairing into Mgp
S /O×

S follows easily from

(1). The part of (2) concerning a pairing into Gm,log,S follows from it and

the equality (∗) with σ = {1} in the proof of (1). �

1.3. Log complex tori and log abelian varieties

Let S be an fs log analytic space (see [16] for its definition).

1.3.1. For a pairing (X,Y, 〈 , 〉) into Gm,log,S , Hom(X,Gm,log)
(Y ) de-

notes the sheaf associating, with each T ∈ (fs/S), the abelian group {ϕ ∈
Hom (X,Gm,log,T ); for each x ∈ X, locally on T , there exist y, y′ ∈ Y

such that 〈x, y〉|ϕ(x)|〈x, y′〉}. Note that we have a natural homomorphism

Y −→ Hom(X,Gm,log)
(Y ); y �→ 〈−, y〉.

1.3.2. For a pairing (X,Y, 〈 , 〉) into Gm,log,S , the sheaf Coker (Y →
Hom(X,Gm,log)

(Y )) of abelian groups is called the quotient associated to

(X,Y, 〈 , 〉).

1.3.3. Example. Let the notation be as in §1.1, and let S = ∆. Recall

that ∆ is endowed with the log structure associated to {0} ⊂ ∆. Consider

the pairing (X,Y, 〈 , 〉) into Gm,log,S , where

X = Y = Z, 〈m,n〉 = qmn.

Then Hom(X,Gm,log)
(Y ) coincides with G

(q)
m,log in §1.1, and the quotient

associated to (X,Y, 〈 , 〉) coincides with Ē in §1.1.

1.3.4. Definition. Log complex tori. A log complex torus over S is

a sheaf A of abelian groups on (fs/S) satisfying the following condition (i)

locally on S.
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(i) There exists a non-degenerate pairing (X,Y, 〈 , 〉) into Gm,log,S such

that A is isomorphic to the quotient associated to (X,Y, 〈 , 〉).

1.3.5. Definition. Log abelian varieties. A log abelian variety over

S is a log complex torus A over S which satisfies the following condition.

For any s ∈ S, the pull back of A to (fs/s) is isomorphic to the quotient

associated to a polarizable pairing into Gm,log. Here in (fs/s), s is endowed

with the ring C and with the inverse image of the log structure of S.

1.3.6. By 1.2.1, in the case the log structure of S is trivial, a log

complex torus over S is nothing but a complex torus over S in the usual

sense (i.e., a proper smooth family of complex tori over S), and a log abelian

variety over S is nothing but a complex torus over S whose all fibers are

abelian varieties.

1.3.7. For a morphism T → S of fs log analytic spaces, the pull back

of a log complex torus (resp. a log abelian variety) over S to (fs/T ) is a log

complex torus (resp. log abelian variety) over T . This follows from 1.2.9

(2).

By 1.2.8, we have

1.3.8. Proposition. Let A be a sheaf of abelian groups on (fs/S). As-

sume that locally on S, there is a polarizable pairing into Gm,log,S whose

associated quotient is isomorphic to A. Then A is a log abelian variety over

S.

1.3.9. We call a log abelian variety having the property in 1.3.8 a

locally polarizable log abelian variety.

1.3.10. The Ē in §1.1 is a log abelian variety over ∆. In fact, for

X = Y = Z and 〈 , 〉 as in 1.3.3, the identity map Y → X is a polarization

on (X,Y, 〈 , 〉) since qn
2 ∈ M∆ for n ∈ Z and the values of qn

2
on ∆ for

n ∈ Z− {0} are of absolute values < 1.

1.3.11. We consider the Lie sheaf Lie (A) of a log complex torus A.

For a group sheaf G on (fs/S), we define a group sheaf Lie (G) on (fs/S),

called the Lie sheaf of G, by

Lie (G)(T ) = Ker (G(T [ε]/(ε2)) → G(T )),
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where T [ε]/(ε2) denotes the fs log analytic space whose underlying topo-

logical space is that of T , whose sheaf of rings is OT [ε]/(ε2) (ε denotes an

indeterminate), and whose log structure is the inverse image of that of T .

We denote the structure sheaf of (fs/S), defined by OS(T ) = O(T ),

simply by OS .

We have an action of OS on Lie (G). For a ∈ OS(T ) = O(T ), the action

of a on Lie (G)(T ) is defined to be the map induced by ε �→ aε. In general,

this is just an action of OS as a multiplicative monoid. But usually Lie (G)

becomes an OS-module via this action. If this is the case, we say Lie (G)

is a module. For example, we can prove easily that Lie(G) is a module

if G is represented by an fs log analytic space over S. Also for example,

Lie (Gm,log,S) is a module, and is identified with Lie(Gm) = OS .

For a log complex torus A over S, Lie (A) is a module and is locally free

of finite rank as an OS-module. This can be seen as, locally on S,

Lie (Hom(X,Gm,log,S)(Y )) = Lie (Hom(X,Gm))

= Hom(X,Lie (Gm)) = Hom(X,OS).

(Here we use the above Lie (Gm,log,S) = Lie (Gm) for the first equality.)

We define the dimension of A to be the rank of Lie (A) as an OS-module,

which is a locally constant function on S. If A comes from a non-degenerate

pairing (X,Y, 〈 , 〉) into Gm,log,S , it is just the rank of X (= rank of Y ) as a

Z-module.

2. Log Hodge Structures

2.1. Slog and local monodromy

For the proofs of statements in this subsection and the next, see [16] and

[12].

2.1.1. Let S be an fs log analytic space. Then Slog is the space of all

pairs (s, h), where s ∈ S and h is a homomorphism

Mgp
S,s → S1 = {z ∈ C× | |z| = 1}

which extends O×
S,s → S1 ; f �→ f(s)/|f(s)|.



84 Takeshi Kajiwara, Kazuya Kato and Chikara Nakayama

The topology of Slog is defined as in [16]. As a topological space over S,

Slog represents the functor

T �→ {homomorphismh : Mgp
S |T → Cont (?,S1) |h(f) = f/|f |

for all f ∈ O×
S |T }.

Here |T means the inverse image on T , and Cont(?,S1) means the sheaf of

continuous maps into S1 ([12]). The canonical map

τ : Slog → S ; (s, h) �→ s

is proper and surjective.

2.1.2. For s ∈ S, Mgp
S,s/O×

S,s � Z⊕r for some r, and τ−1(s) is home-

omorphic to the product of r copies of S1. In fact, fixing an element

h0 : Mgp
S,s → S1 of τ−1(s), we have a homeomorphism

τ−1(s) � Hom (Mgp
S,s/O×

S,s,S
1) ; h �→ hh−1

0 .(1)

We have a canonical isomorphism

π1(τ
−1(s)) � Hom (Mgp

S,s/O×
S,s,Z(1))(2)

which is induced by the exact sequence

0 −→ Hom (Mgp
S,s/O×

S,s,Z(1)) −→ Hom (Mgp
S,s/O×

S,s,R(1))
exp−→ Hom (Mgp

S,s/O×
S,s,S

1) −→ 0,

where Z(1) = Z · 2πi, R(1) = R ⊗Z Z(1), and the middle term is regarded

as a universal covering of τ−1(s)
(1)
� Hom (Mgp

S,s/O×
S,s,S

1). The isomorphism

(2) is independent of the choice of h0.

We will use also the isomorphism

π1(τ
−1(s)) � Hom (Mgp

S,s/O×
S,s,Z)(3)

which is induced from (2) via the isomorphism Z ∼= Z(1); 1 �→ 2πi.

We will call the cone

C(s) = Hom (MS,s/O×
S,s,R≥0) ⊂ Hom (Mgp

S,s/O×
S,s,R) = R⊗Z π1(τ

−1(s))
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the monodromy cone at s, where the last equality comes from (3).

2.1.3. For a locally constant sheaf L on Slog and for s ∈ S, t ∈ τ−1(s),

the action of π1(τ
−1(s)) on the stalk Lt is called the local monodromy of L.

2.1.4. Definition. Admissibility of local monodromy. Let L be a lo-

cally constant sheaf of Q-vector spaces over Slog endowed with an increasing

filtration W = (Wk)k∈Z consisting of locally constant Q-subsheaves.

For s ∈ S, we say that the local monodory of L at s is admissible with

respect to W if the action of any element of π1(τ
−1(s)) on any stalk of L on

τ−1(s) is unipotent and if there exists an increasing filtration (W (σ)k)k∈Z
consisting of locally constant Q-subsheaves on the pull back L|s of L to

τ−1(s) given for each face σ of the monodromy cone C(s) satisfying the

following conditions (i)–(iii).

(i) W ({0}) = W .

(ii) If σ is a face of C(s) and h ∈ σ, then log(h) : R ⊗Q Lt → R ⊗Q Lt
for t ∈ τ−1(s) satisfies

log(h)(R⊗QW (σ)k,t) ⊂ R⊗QW (σ)k−2,t for all k ∈ Z.

(iii) Let σ and σ′ be faces of C(s) such that σ ⊂ σ′. Let h ∈ σ′, and

assume that there exists a ∈ σ for which h+ a belongs to the interior of σ′.
(Here we denote the semi-group law of C(s) additively.) Then for t ∈ τ−1(s),

we have isomorphisms

log(h)� : R⊗Q gr
W (σ′)
k+� (gr

W (σ)
k,t )


→ R⊗Q gr
W (σ′)
k−� (gr

W (σ)
k,t ) for all . ≥ 0.

Such family (W (σ))σ was considered by Deligne ([9]). Note that by [9]

1.6.13, (W (σ))σ is unique if it exists.

We say the local monodromy of L is admissible with respect to W if the

local monodromy of L at s is admissible with respect to W for any s ∈ S.

In the case there exists j ∈ Z such that Wj = L and Wj−1 = 0, we call

the admissibility of L with respect to W just the admissibility of L.
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2.1.5. Let T −→ S be a morphism of fs log analytic spaces. Let L be a

locally constant sheaf of Q-vector spaces over Slog endowed with an increas-

ing filtration W = (Wk)k∈Z consisting of locally constant Q-subsheaves. If

the local monodromy of L is admissible with respect to W , then the local

monodromy of the pull back of L to T log is admissible with respect to the

pull back of W .

This is seen as follows. Let t ∈ T with its image s ∈ S. We will define

an increasing filtration W (τ) on the pull back L|t of L to τ−1(t) for each

face τ of C(t). Let σ be the smallest face of C(s) containing the image of

τ . Let W (τ) be the pull back of W (σ). Then as is easily seen, these W (τ)

satisfy the required conditions of the admissibility.

2.2. Olog
S

We review the sheaf of rings Olog
S on Slog.

2.2.1. Define a sheaf of abelian groups LS on Slog by the commutative

diagram of exact sequences

0 → Z(1) → LS
exp→ Mgp

S → 0

‖ ↓ ↓
0 → Z(1) → Cont(?,R(1))

exp→ Cont(?,S1) → 0.

Here Mgp
S denotes the inverse image of Mgp

S on Slog. (In this way, we

sometimes use the same notation F for the inverse image of a sheaf F .)

That is, LS is defined to be the fiber product of Mgp
S → Cont(?,S1)

exp←
Cont(?,R(1)). We call LS the sheaf of logarithms of Mgp

S .

2.2.2. We define an embedding

ι : OS → LS

by

exp : OS → O×
S ⊂Mgp

S ,

OS → Cont(?,R(1)) ; f �→ 1

2
(f − f̄).

Then the usual exponential sequence 0 → Z(1) → OS
exp→ O×

S → 0 is

embedded in the upper exact sequence in 2.2.1.
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2.2.3. We define Olog
S by

Olog
S = (OS ⊗Z SymZ(LS))/a,

where SymZ is the symmetric algebra as a Z-module and a is the ideal of

OS ⊗Z SymZ(LS) generated by the image of

OS → OS ⊗Z SymZ(LS) ; f �→ f ⊗ 1− 1⊗ ι(f).

2.2.4. For s ∈ S and t ∈ τ−1(s), the stalk Olog
S,t of Olog

S at t has the

following structure. If .j (1 ≤ j ≤ r) denotes elements of LS,t such that

exp(.j) mod O×
S,s (1 ≤ j ≤ r) form a Z-basis of Mgp

S,s/O×
S,s, then Olog

S,t is

isomorphic to the polynomial ring over OS,s in r variables by

OS,s[T1, · · · , Tr] 
→ Olog
S,t ; Tj �→ .j .

2.2.5. Note that by 2.2.4, (Slog,Olog
S ) is usually not a local ringed

space.

For s ∈ S and t ∈ τ−1(s), by a specialization at t, we mean a ring

homomorphism Olog
S,t → C which extends OS,s → C ; f �→ f(s).

2.3. Log mixed Hodge structures

For the details of what treated in this subsection, see [17] §2. Let S be

an fs log analytic space.

2.3.1. By a pre-log Hodge structure over S, we mean a triple

(HZ, HO, ι), where HZ is a locally constant sheaf of finitely generated free

Z-modules on Slog, HO is a sheaf of OS-modules on S endowed with a de-

creasing filtration (F pHO)p∈Z such that the OS-modules HO, F pHO and

HO/F pHO for all p are locally free of finite rank, and where

ι : Olog
S ⊗ZHZ � Olog

S ⊗τ−1(OS) τ
−1(HO)

is an isomorphism of Olog
S -modules. We will identify Olog

S ⊗Z HZ and

Olog
S ⊗τ−1(OS) τ

−1(HO) via ι.
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2.3.2. For a pre-log Hodge structure over S, the local monodromy of

HZ is unipotent, and we have

HO = τ∗(Olog
S ⊗ZHZ).

2.3.3. By a pre-log mixed Hodge structure over S, we mean a pair

(H,W ), where H is a pre-log Hodge structure over S and W = (Wk)k∈Z
is an increasing filtration on HQ = Q ⊗ZHZ consisting of locally constant

Q-subsheaves.

2.3.4. Let (H,W ) be a pre-log mixed Hodge structure. For s ∈ S,

t ∈ τ−1(s) and for a specialization a : Olog
S,t → C at t (2.2.5), we have a 4-ple

(H,W )(a) = (HZ,t, HO(s), ι(a),Wt),

where HO(s) is the C-vector space C⊗OS,s
HO,s endowed with a decreasing

filtration C ⊗OS,s
F ·HO,s (here OS,s → C is f �→ f(s)), and ι(a) is the

isomorphism of C-vector spaces C ⊗ZHZ,t � HO(s) induced by ι. We call

(H,W )(a) the specialization of (H,W ) at a.

2.3.5. We define the notion of “log mixed Hodge structure over S.”

We first assume that S is an fs log point, that is, S is a one point set {s}
and the ring of S is C. In this case, by a log mixed Hodge structure over

S, we mean a pre-log mixed Hodge structure (H,W ) over S satisfying the

following conditions (i)–(iii).

(i) The local monodromy of HQ is admissible with respect to W .

(ii) (For the definition of sufficiently shifted specialization, see below.)

Let σ be a face of C(s) and t ∈ τ−1(s) = Slog. Then, for any sufficiently

shifted specialization a : Olog
S,t → C at t, the specialization (H,W (σ))(a) of

(H,W (σ)) at a (2.3.4) is a mixed Hodge structure in the usual sense.

(iii) Let ω1
S be the logarithmic differential module of S. Then the ho-

momorphism ∇ : HO → ω1
S ⊗OS

HO induced from d : Olog
S → ω1

S ⊗OS
Olog
S

satisfies

∇(F pHO) ⊂ ω1
S ⊗OS

F p−1HO for all p ∈ Z.

In (ii) and (iii), note OS = C by the assumption. In (ii), take a finite

family (.j)1≤j≤n of elements of LS,t such that exp(.j) mod O×
S,s (1 ≤ j ≤ n)
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generate the monoid MS,s/O×
S,s and such that .j /∈ OS,s for 1 ≤ j ≤ n. Then,

by a “sufficiently shifted specialization”, we mean a specialization a : Olog
S,t →

C at t such that exp(a(.j)) (1 ≤ j ≤ n) are sufficiently near to 0. This

definition is independent of the choice of the family (.j)j . In certain cases

(see 2.4), a((2πi)−1.j) are regarded as coordinates of the specialization a.

The condition that a is sufficiently shifted is equivalent to the condition that

the imaginary parts of a((2πi)−1.j) are sufficiently large, in other words, the

coordinates of a are in the upper direction on the upper half plane.

2.3.6. We define the notion of log mixed Hodge structure in general.

By a log mixed Hodge structure over S, we mean a pre-log mixed Hodge

structure over S whose pull back to any point s of S is a log mixed Hodge

structure over s in the above sense. Here the ring of s is C and the log

structure of s is the pull back of that of S.

2.3.7. Remark. The above definition of log mixed Hodge structures

follows the ideas of “good” degenerations of variations of mixed Hodge struc-

tures by Deligne [9] and Steenbrink-Zucker [34]. See 3.3.4.

2.3.8. By a log Hodge structure over S of weight w, we mean a log

mixed Hodge structure (H,W ) satisfying Ww = HQ and Ww−1 = 0.

2.3.9. For a morphism T → S of fs log analytic spaces, the pull back

of a log mixed Hodge structure over S to T is a log mixed Hodge structure

over T .

This is proved easily by 2.1.5 and by the fact that the condition (ii) in

2.3.5 is independent of the choice of the (.j)j , which was remarked in the

above.

2.4. Example

We give a log Hodge structure of rank 2 over the unit disc ∆ with the

log structure along the origin. As we will see later, in the correspondence

between log abelian varieties and log Hodge structures in the next section,

this log Hodge structure corresponds to the log elliptic curve G
(q)
m,log/q

Z over

∆ in §1.1.

Let HO be the free O∆-module of rank 2 on ∆ with base (e, f) endowed

with the filtration defined by

F pHO = HO for p ≤ −1, F 0HO = O∆f, F pHO = 0 for p ≥ 1.
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Let HZ be the Z-subsheaf of Olog
∆ ⊗τ−1(O∆) τ

−1(HO) on ∆log generated

locally by e and (2πi)−1log(q)e− f , where q is the coordinate function of ∆

and log(q) denotes a local section of L∆ whose exp in τ−1(Mgp
∆ ) coincides

with q (then HZ is independent of the local choice of log(q)). This sheaf

HZ is locally isomorphic to Z2, e is a global section of HZ, the stalk of

HZ at a point of ∆log has a basis (e, e′), where e′ is the stalk of a local

section (2πi)−1log(q)e − f , and the local monodromy around 0 with the

standard direction sends e to e and e′ to e + e′. We see easily that the

canonical homomorphism ι : Olog
∆ ⊗Z HZ → Olog

∆ ⊗τ−1(O∆) τ
−1(HO) is an

isomorphism.

We show that the pre-log Hodge structure (HZ, HO, ι) is a log Hodge

structure of weight −1.

Let W be the increasing filtration of HQ defined by W−1 = HQ, W−2 =

(0). Then the local monodromy of HQ is admissible with respect to W .

In fact, the increasing filtration (W (σ)k)k∈Z of HQ|0 for the maximal face

σ := R≥0 of the monodromy cone at 0 ∈ ∆ is given as

(0) = W (σ)−3 ⊂ Qe =: W (σ)−2 = W (σ)−1 ⊂W (σ)0 := HQ|0.

We next check 2.3.5 (ii) for the pull back of (H,W ) to each point q ∈ ∆.

If q &= 0, the pull back is a Hodge structure of weight −1 because the

imaginary part of (2πi)−1 log(q) is positive by |q| < 1.

In the case of q = 0, we take log q as l1 in 2.3.5. Then, the set of the

specializations a : Olog
∆,t → C at t ∈ τ−1(0) bijectively corresponds to the

set C of the complex numbers z via z = a((2πi)−1l1), and for any a, the

specialization by a induces the isomorphism

C⊗ZHZ,t � C⊗O∆,0
HO,0;

1⊗ e �→ 1⊗ e;

1⊗ e′ �→ z ⊗ e− 1⊗ f.

For the maximal cone σ = R≥0 of C(0), we have

C⊗ gr
W (σ)
−2 HQ,t = Ce, C⊗ gr

W (σ)
−1 HQ,t = 0,

C⊗ gr
W (σ)
0 HQ,t = (Ce+ Ce′)/Ce

for each t ∈ τ−1(0). We can easily verify that the filtrations of C⊗ grkHQ,t

(k = −2,−1, 0) induced by F pHO make them Hodge structures of weight k.
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For the minimal cone (0) of C(0), the imaginary part of z = a((2πi)−1 log q)

is positive if exp(a(log q)) is sufficiently near to 0. Hence we can prove this

case as in the case q &= 0.

Since F−1HO = HO and F 1HO = (0), the condition 2.3.5 (iii) is trivial.

Therefore, ((HZ, HO, ι),W ) is a log Hodge structure of weight −1 over ∆.

2.5. Polarization

We review the definition of polarization in the log Hodge theory (see

[17] §2).

2.5.1. Definition. Let H be a pre-log Hodge structure of weight w

(i.e., a pre-log mixed Hodge structure such that Ww = HQ and Ww−1 = 0)

over an fs log analytic space S.

(1) A polarization on H is a homomorphism p : H ⊗ H → Z(−w) of

pre-log Hodge structures having the following property (i) for each s ∈ S

and each t ∈ τ−1(s) ⊂ Slog.

(i) For any sufficiently shifted specialization a : Olog
S,t → C at t, the

specialization H(a) of H at a (2.3.4) is a polarized Hodge structure of

weight w with respect to the pairing pt in the usual sense.

(2) We say H is polarizable if H has a polarization.

We will denote a polarization p : H ⊗ H → Z(−w) also as H →
H∗(−w);h �→ p(−⊗ h), where H∗ denotes the Z-dual of H.

2.5.2. By Cattani and Kaplan [6] and Schmid [32], a pre-log Hodge

structure of weight w satisfying (iii) in 2.3.5 and having a polarization is a

log Hodge structure of weight w. (The condition (i) in 2.3.5 is by [6] and

the condition (ii) is by [32].)

2.5.3. For example, for the log Hodge structure H of weight −1 in

§2.4, the homomorphism p : H ⊗H → Z(1) defined by

p(e⊗ e′) = −p(e′ ⊗ e) = 2πi, p(e⊗ e) = p(e′ ⊗ e′) = 0

is a polarization as is easily seen.
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3. Equivalences of Categories

3.1. Statements of equivalences of categories

3.1.1. We recall the well-known isomorphism

Ext 1(Z, H) � HZ\HC/F
0HC

for a Hodge structure H of weight −1 such that F−1HC = HC and F 1HC =

0, where Ext 1 is taken for the category of mixed Hodge structures and Z

is the unit Hodge structure of weight 0. For z ∈ HC, the extension H ′ of

Z by H corresponding to the class of z ∈ HC in HZ\HC/F
0HC is given as

follows.

H ′
Z = Z⊕HZ,

F pH ′
C = H ′

C for p ≤ −1, F pH ′
C = 0 for p ≥ 1,

F 0H ′
C = C(1,−z) + (0, F 0HC).

Conversely, if we have an extension H ′ of Z by H, we have exact se-

quences

0 → HZ→ H ′
Z→ Z → 0, 0 → F 0HC→ F 0H ′

C→ C → 0,

and hence there exist an element a of H ′
Z whose image in Z is 1, and an

element b of F 0H ′
C whose image in C is 1. Let z = a − b ∈ HC. Then

the class of z in HZ\HC/F
0HC is independent of the choices of a and b.

These z �→ H ′ and H ′ �→ z give mutually inverse isomorphisms between

HZ\HC/F
0HC and Ext 1(Z, H).

3.1.2. We review the classical theory of correspondences between com-

plex tori and Hodge structures, and between abelian varieties and polariz-

able Hodge structures.

Let A be the category of complex tori and let A+ be the category of

abelian varieties. On the other hand, let H be the category of Hodge struc-

tures H of weight −1 such that F−1HC = HC and F 1HC = 0, and let

H+ be the full subcategory of H consisting of polarizable objects. We have

equivalences of categories

H � A, H+ � A+.
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The complex torus A corresponding to an object H of H is given by

A = HZ\HC/F
0HC = Ext 1(Z, H),

and the equivalence H+ � A+ is induced from H � A.

The inverse functor A → H is given by A �→ H, where

HZ = H1(A(C),Z), F 0HC = Ker (HC→ Lie(A));

F pHC = HC for p ≤ −1, F pHC = 0 for p ≥ 1.

Here HC → Lie(A) is the surjection which comes from the exact sequence

0 → HZ→ Lie(A) → A(C) → 0.

The following theorem 3.1.5 gives logarithmic generalizations of these

equivalences.

3.1.3. Let S be an fs log analytic space.

Let AS be the category of log complex tori over S, and let A+
S be the

category of log abelian varieties over S.

On the other hand, let HS be the category of log Hodge structures H

over S of weight −1 satisfying

F−1HO = HO, F 1HO = 0.

Let H+
S be the full subcategory of HS consisting of all objects whose pull

backs to s for any s ∈ S are polarizable.

3.1.4. For an object H of HS , we define the sheaf of abelian groups

Ext1(Z, H) on (fs/S) by

Ext1(Z, H)(T ) = Ext 1(Z, HT )

for fs log analytic spaces T over S, where HT denotes the pull back of H to

T , and Ext 1 is taken for the category of log mixed Hodge structures over

T . Note that the category of log mixed Hodge structures has the evident

definitions of “exact sequence” and “extension (short exact sequence).” We

consider Ext 1 as the set of isomorphism classes of extensions, with the group

structure given by Baer sums.

The aim of this section is to prove the following theorem.



94 Takeshi Kajiwara, Kazuya Kato and Chikara Nakayama

3.1.5. Theorem. (1) For an object H of HS, Ext1(Z, H) is a log com-

plex torus over S.

(2) H �→ Ext1(Z, H) defines an equivalence of categories

HS

→ AS .

(3) The equivalence in (2) induces an equivalence of full subcategories

H+
S


→ A+
S .

3.1.6. The inverse functor AS → HS is defined in the following way.

Here only the method of the definition is described. See 3.7 for the details.

For an fs log analytic space S, let (fs/S)log be the following site. An

object of (fs/S)log is a pair (U, T ), where T is an fs log analytic space over

S and U is an open set of T log. The morphisms are defined in the evident

way. A covering is a family of morphisms ((Uλ, Tλ) → (U, T ))λ, where each

Tλ → T is an open immersion and the log structure of Tλ is the inverse

image of that of T , and (Uλ)λ is an open covering of U .

We have a commutative diagram of topoi

{sheaf on (fs/S)log} βlog
S−→ {sheaf onSlog}

τ ↓ ↓ τ

{sheaf on (fs/S)} βS−→ {sheaf onS}.

Here the right vertical arrow τ is the morphism of topoi induced by the map

τ : Slog → S, and βS and βlog
S are the evident ones. The left vertical arrow

which we denote also by τ is defined as follows. For a sheaf F on (fs/S)log,

the image τ∗(F ) on (fs/S) is defined by τ∗(F )(T ) = F (T log, T ). For a sheaf

F on (fs/S), the inverse image τ−1(F ) on (fs/S)log is defined as follows. For

an object (U, T ) of (fs/S)log, the restriction of τ−1(F ) to the usual site of

open sets of U (i.e., the restriction to the site consisting of (U ′, T ) for all

open sets U ′ of U) coincides with the inverse image of the restriction of F

to the site of open sets of T under the map U → T . In the above diagram,

βS and βlog
S are exact, and βS∗β

−1
S and (βlog

S )∗(β
log
S )−1 are isomorphic to the

identity functors. Furthermore, for the both τ in the above diagram, τ∗τ−1
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is isomorphic to the identity functor. This follows from that T log → T is

proper with connected fibers for fs log analytic spaces T .

We will denote the sheaf (U, T ) �→ Olog
T (U) on (fs/S)log simply by Olog

S .

Now we describe the inverse functor AS → HS ;A �→ H. As we will see

in 3.7.4, for a log complex torus A over S, the Ext1 sheaf Ext1(τ−1(A),Z) on

(fs/S)log for the inverse image τ−1(A) of A on (fs/S)log is a locally constant

sheaf of finitely generated free abelian groups. We define

HZ = HomZ(Ext1(τ−1(A),Z),Z).

Next we define

HO = τ∗(Olog
S ⊗ZHZ).

As we will see in 3.7.4, the canonical homomorphism Olog
S ⊗τ−1(OS)

τ−1(HO) → Olog
S ⊗ZHZ is an isomorphism. Furthermore, there is a canoni-

cal surjective homomorphism HO → Lie(A) of OS-modules. We will define

F pHO to be HO if p ≥ −1, Ker (HO → Lie(A)) if p = 0, and 0 if p ≥ 1.

Then this gives an object H of HS .

3.1.7. The plan of the rest of §3 is as follows. In §3.2 and §3.3, we prove

certain “simpler” categorical equivalences ĤS � ÂS and H̃S � ÃS , which

are closely related to the equivalence HS � AS in 3.1.5. After preliminaries

in §3.4 and §3.5, in §3.6, we study Ext1(Z, H) for an object H of HS ,

and prove that it is a log complex torus. Then, we prove the equivalence

HS � AS in 3.1.5 in §3.7 by constructing the inverse functor. In §3.8, we

consider dual log complex tori and polarizations of log abelian varieties, and

prove the equivalence H+
S � A+

S in 3.1.5. In §3.9 and §3.10, we prove some

related results, which we will use later.

3.2. The equivalence ĤS � ÂS
Let S be an fs log analytic space. We define categories ÂS and ĤS , which

are closely related to AS and to HS , respectively, and prove an equivalence

ĤS � ÂS .

3.2.1. Let ÂS be the category of pairings into Gm,log,S . That is, an

object of ÂS is a triple (X,Y, 〈 , 〉), where X and Y are finitely generated free

abelian groups and 〈 , 〉 is a Z-bilinear form X×Y → Gm,log,S . A morphism

(X1, Y1, 〈 , 〉1) → (X2, Y2, 〈 , 〉2) of ÂS is a pair (f, g) of homomorphisms
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f : X2 → X1 and g : Y1 → Y2 satisfying 〈f(x), y〉1 = 〈x, g(y)〉2 for any

x ∈ X2 and y ∈ Y1.

3.2.2. Let ĤS be the category of 4-ples (H,X, Y, e), where H =

(HZ, HO, ι) is a pre-log Hodge structure over S, X,Y are finitely gener-

ated free abelian groups, and e is an exact sequence of local systems

0 → Hom (X,Z(1)) → HZ→ Y → 0

on Slog satisfying the following condition (i).

(i) F−1HO = HO, F 1HO = 0, HO = Hom(X,OS)⊕ F 0HO.

Here we embed Hom(X,OS) in HO via e.

A morphism (H,X, Y, e) → (H ′, X ′, Y ′, e′) of ĤS is a triple (h0, h1, h2),

where h0 is a morphism H → H ′, h1 is a homomorphism X ′ → X, and h2

is a homomorphism Y → Y ′ which are compatible with the exact sequences

e and e′.

3.2.3. Proposition. We have an equivalence of categories

ĤS � ÂS .

3.2.4. We define a functor ĤS → ÂS .

Let (H,X, Y, e) be an object of ĤS .

We define a Z-bilinear form 〈 , 〉 : X × Y → Gm,log as follows. We have

a projection

HO = Hom(X,OS)⊕ F 0HO → Hom(X,OS),

and hence HZ → Hom(X,Olog
S ) which induces the identity map on

Hom (X,Z(1)). Hence we have a homomorphism Y = HZ/Hom (X,Z(1)) →
Hom(X,Olog

S /Z(1)). By taking τ∗ and by using the following lemma, we

obtain a homomorphism

Y → Hom(X, τ∗(Olog
S /Z(1))) � Hom(X,Mgp

S ),

and hence a Z-bilinear form 〈 , 〉 : X × Y → Gm,log. This gives a functor

ĤS → ÂS .
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3.2.5. Lemma. The isomorphism exp : LS/Z(1)

−→ τ−1(Mgp

S ) and

the map LS/Z(1) → Olog
S /Z induces an isomorphism

Mgp
S � τ∗(Olog

S /Z(1)).

Proof. This follows from the commutative diagram of exact sequences

0 → Z(1) → OS
exp→ Mgp

S → Mgp
S /O×

S → 0

‖ ‖ ↓ (|
0 → Z(1) → OS → τ∗(Olog

S /Z(1)) → R1τ∗Z(1) → 0,

where the lower sequence is obtained from 0 → Z(1) → Olog
S → Olog

S /Z(1) →
0 by R1τ∗Olog

S = 0 ([20] 4.6, [12] Proposition (3.7) (3)). Here the right

vertical isomorphism is by [16] (1.5). �

3.2.6. Next in 3.2.6–3.2.8, we define a functor ÂS → ĤS .

Let S be an fs log analytic space. Let (X,Y, 〈 , 〉) be an object of ÂS .

We define first the Betti realization HZ of (X,Y, 〈 , 〉), which is a locally

constant sheaf of abelian groups on Slog, by the commutative diagram of

exact sequences

0 → Hom (X,Z(1)) → HZ → Y → 0

‖ ↓ ↓
0 → Hom (X,Z(1)) → Hom(X,LS) → Hom(X, τ−1(Mgp

S )) → 0.

Here the lower row is induced by the exact sequence 0 → Z(1) → LS
exp→

τ−1(Mgp
S ) → 0.

3.2.7. The exact sequence of Olog
S -modules

0 → Hom(X,Olog
S ) → Olog

S ⊗ZHZ→ Olog
S ⊗Z Y → 0(1)

splits canonically, by the Olog
S -homomorphism Olog

S ⊗ZHZ→ Hom(X,Olog
S )

induced by the map HZ→ Hom(X,LS) in 3.2.6.

3.2.8. Let HO = τ∗(Olog
S ⊗ZHZ). By 3.2.7, we have a direct decom-

position

HO � Hom(X,OS)⊕OS ⊗Z Y.
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This shows that the OS-module HO is locally free of finite rank and the

canonical homomorphism ι : Olog
S ⊗τ−1(OS) τ

−1(HO) → Olog
S ⊗Z HZ is an

isomorphism.

Define a decreasing filtration on HO by

F 0HO = OS ⊗Z Y = Ker (HO → Hom(X,OS))

in the above direct decomposition, and F pHO = HO for p ≤ −1, F pHO = 0

for p ≥ 1.

Then we have HO = Hom(X,OS) ⊕ F 0HO and hence we obtain an

object (H,X, Y, e) of ĤS . This gives a functor ÂS → ĤS .

3.2.9. The above two functors are the inverses of each other. In fact,

to see that the composition ĤS → ÂS → ĤS is equivalent to the identity,

it is enough to construct the diagram as in 3.2.6 for an object (H,X, Y, e)

of ĤS . We have a homomorphism

0 → Hom (X,Z(1)) → HZ → Y → 0

‖ ↓ a ↓ b
0 → Hom (X,Z(1)) → Hom(X,Olog

S ) → Hom(X,Olog
S /Z(1)) → 0

of exact sequences. Since the map b factors through Hom(X, τ−1(Mgp
S ))

by 3.2.5, the map a factors through Hom(X,LS), which gives the desired

diagram.

To see that the composition ÂS → ĤS → ÂS is equivalent to the iden-

tity, take an object (X,Y, 〈 , 〉) of ÂS . Then the associated diagram in 3.2.6

induces the diagram as in the above, the map a induces the splitting in

3.2.7, and this a is to be used to obtain the new pairing. Hence (X,Y, 〈 , 〉)
coincides with the new pairing.

Thus we get ĤS � ÂS .

3.3. The equivalence H̃S � ÃS
We define categories ÃS and H̃S , which are closely related to AS and

HS , respectively, and prove an equivalence

H̃S � ÃS .
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3.3.1. Let ÃS be the full subcategory of ÂS consisting of non-degen-

erate pairings (1.2.6).

3.3.2. Let H̃S be the full subcategory of ĤS consisting of all objects

(H,X, Y, e) such that H is a log Hodge structure of weight −1.

In other words, H̃S is the category of 4-ples (H,X, Y, e), where H is an

object of HS , X and Y are finitely generated free abelian groups, and e is

an exact sequence

0 → Hom (X,Z(1)) → HZ→ Y → 0

on Slog satisfying HO = Hom(X,OS)⊕ F 0HO.

The aim of this subsection is to prove

3.3.3. Proposition. The equivalence of categories in 3.2.3 induces an

equivalence of the full subcategories

H̃S � ÃS .

In the course of the proof of 3.3.3, we prove the following.

3.3.4. Proposition. Let H be a pre-log Hodge structure over S such

that F−1HO = HO and F 1HO = 0. Then H is a log Hodge structure of

weight −1 if and only if the following conditions (i) and (ii) are satisfied.

(i) The local monodromy of HQ is admissible.

(ii) For each s ∈ S, gr
W (C(s))
j is a Hodge structure of weight j for any j.

Note here that gr
W (C(s))
j HZ in (ii) is a constant sheaf by (i).

The only if part is clear. We prove below the if part.

To prove 3.3.3, we first compare the admissibility of a pairing and the

admissibility of the local monodromy.

3.3.5. Proposition. Let S be an fs log analytic space. Assume that

we are given a locally constant sheaf of abelian groups L on Slog, finitely

generated free abelian groups X, Y , and an exact sequence

0 → Hom (X,Z(1)) → L→ Y → 0(1)
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of sheaves of abelian groups on Slog. Then there exists a unique Z-bilinear

form 〈 , 〉 : X × Y → Gm,log/Gm which describes the local monodromy of L

as follows: for any s ∈ S and g ∈ π1(τ
−1(s)) = Hom (Mgp

S,s/O×
S,s,Z(1)), the

action of g−1 on L|slog induces Y ) y �→ (x �→ g(〈x, y〉)) ∈ Hom (X,Z(1)).

Proof. The uniqueness is clear. We show the existence of 〈 , 〉.
By applying τ∗ to the exact sequence (1), we obtain an exact sequence

0 → Hom (X,Z(1)) → τ∗(L) → Y → R1τ∗Hom (X,Z(1)).(2)

By

R1τ∗Z(1) �Mgp
S /O×

S(3)

([16] (1.5)), we have

R1τ∗Hom (X,Z(1)) � Hom(X,Gm,log/Gm).

Hence (2) gives a homomorphism Y → Hom(X,Gm,log/Gm), i.e., a Z-

bilinear form 〈 , 〉 : X × Y → Gm,log/Gm. We have to prove that this

pairing is the desired one. We may assume that S is the standard log point

(Spec C,C× ⊕ N) and that X = Y = Z. Then (1) is obtained by the pull

back of the exact sequence 0 → Z(1) → LS → τ−1(Mgp
S ) → 0 with respect

to a homomorphism Y = Z → τ−1(Mgp
S ). Since the isomorphism (3) is

induced from the last exact sequence, we have the desired compatibility. �

3.3.6. Proposition. Let the notation be as in Proposition 3.3.5. Let

s ∈ S. Then the local monodromy of LQ is admissible at s if and only if the

pairing 〈 , 〉 : X × Y →Mgp
S,s/O×

S,s is admissible.

Proof. There exists a bijection between the set of faces of MS,s/O×
S,s

and the set of faces of the monodromy cone C(s) given by σ ↔ σ′, where σ

and σ′ are the annihilators of each other.

If the pairing is admissible, W (σ′) is defined as follows (we are describing

after pulling back to τ−1(s)):

W (σ′)0 = LQ, W (σ′)−1 ∩ L is the inverse image of Yσ under L →
Y , W (σ′)−2 ∩ L is the kernel of Hom (X,Z(1)) → Hom (Xσ,Z(1)), and

W (σ′)−3 = 0. Then, for h ∈ σ′, (h − 1)(LQ) ⊂ W (σ′)−2 and (h −
1)(W (σ′)−1) = {0} since h(〈Xσ, Y 〉) = h(〈X,Yσ〉) = 0. Furthermore, for
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an element h of C(s) and for faces σ, τ of MS,s/O×
S,s such that τ ⊂ σ, the

condition τ = σ ∩ Ker (h) is equivalent to the condition that h ∈ τ ′ and

there exists a ∈ σ′ such that a + h belongs to the interior of τ ′. Since

log(h) : R⊗Q gr
W (τ ′)
0 (gr

W (σ′)
−1,t ) −→ R⊗Q gr

W (τ ′)
−2 (gr

W (σ′)
−1,t ), t ∈ τ−1(s), is iso-

morphic to h− 1: R⊗ (Yσ/Yτ ) −→ Hom (R⊗ (Xσ/Xτ ),R), it is an isomor-

phism if τ = σ ∩Ker (h). Hence the local monodromy of LQ is admissible.

(Note that we have (h1 − 1)(h2 − 1) = 0 on LQ for any h1, h2 ∈ π1(τ
−1(s)).

Hence log(h) = h− 1 for any h ∈ R⊗ π1(τ
−1(s)).)

Conversely, assume that the local monodromy of LQ is admissible. Then

for any face σ′ of C(s) and for any element h of the interior of σ′, W (σ′)k =

LQ for k ≥ 0, R ⊗ W (σ′)−1 = Ker (h − 1 : LR → LR), R ⊗ W (σ′)−2 =

Image(h − 1 : LR → LR), W (σ′)−3 = 0. Furthermore, we have W (σ′)−2 ⊂
Hom (X,Q(1)) ⊂ W (σ′)−1. Let X(σ′) ⊂ X be the annihilator of W (σ′)−2,

and let Y (σ′) ⊂ Y be the image of L ∩W (σ′)−1 under L→ Y .

We show that for any face σ of MS,s/O×
S,s, if we denote the annihi-

lator of σ in C(s) as σ′, then Xσ = X(σ′) and Yσ = Y (σ′). It is clear

that Xσ ⊂ X(σ′). We prove X(σ′) ⊂ Xσ. Let S be an fs monoid.

As is well-known, if S× = {1}, the set of homomorphisms N : S → N

with Ker (N) = {1} generates the group Hom (Sgp,Z). In general, since

(Sσgp/σgp)× = {1} and S ∩ σgp = σ, this shows that the intersection of

Ker (Sgp → Z) for all homomorphisms N : S → N with Ker (N) = σ coin-

cides with σgp. Let x ∈ X(σ′). Then, by the above description of W (σ′),
〈x, Y 〉 ⊂ (MS,s/O×

S,s)
gp is contained in Ker (Ngp) for any N ∈ σ′, and hence,

by the previous observation, is contained in σgp. Hence x ∈ Xσ. The proof

for Yσ = Y (σ′) is the same.

By definition of X(σ′) and Y (σ′), for any h ∈ C(s) and any face

σ of MS,s/O×
S,s, the isomorphism log(h) : R ⊗Q gr

W (τ ′)
0 (gr

W (σ′)
−1,t ) −→

R ⊗Q gr
W (τ ′)
−2 (gr

W (σ′)
−1,t ), t ∈ τ−1(s), is naturally isomorphic to h − 1: R ⊗

(Y (σ′)/Y (τ ′)) −→ Hom (R ⊗ (X(σ′)/X(τ ′)),R), where τ = σ ∩ Ker (h).

Therefore h−1: R⊗(Yσ/Yτ ) −→ Hom (R⊗(Xσ/Xτ ),R) is an isomorphism.

Thus 〈 , 〉 is admissible. �

3.3.7. Lemma. For an object (X,Y, 〈 , 〉) of ÂS, the pairing into

Gm,log/Gm induced by (X,Y, 〈 , 〉) coincides with the pairing of the local

monodromy of HZ defined in 3.3.5 above. Here HZ is the object of ĤS

corresponding to (X,Y, 〈 , 〉).
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Proof. Let (X,Y, 〈 , 〉) be an object of ÂS . From the commutative

diagram in 3.2.6, we have a commutative diagram

Y −−−→ R1τ∗Hom (X,Z(1))� �
�

Hom(X,Mgp
S ) −−−→ Hom(X,Gm,log/Gm).

The composite Y → Hom(X,Mgp
S ) → Hom(X,Gm,log/Gm) gives the in-

duced pairing into Gm,log/Gm from the original pairing. On the other hand,

the composite Y → R1τ∗Hom (X,Z(1)) → Hom(X,Gm,log/Gm) is the pair-

ing from the local monodromy of HZ as is seen in the proof of 3.3.5. Thus

the both coincide. �

This lemma together with 3.3.6 implies that the condition (i) in 1.2.6

for (X,Y, 〈 , 〉) is equivalent to the admissibility of the local monodromy of

HQ.

We next prove the “trivial base case” of Proposition 3.3.3.

3.3.8. Lemma. Proposition 3.3.3 is true in the case where S is Spec(C)

with the trivial log structure.

Proof. This lemma should be well-known. For the convenience of

readers, we describe a proof. Let (X,Y, 〈 , 〉) be a pairing into C×. Then

the corresponding H is defined as follows: HZ is the fiber product of

Hom (X,C)
exp→ Hom (X,C×) ← Y , and F 0HC is the kernel of the canonical

map HC→ Hom (X,C).

It is sufficient to prove that H is a Hodge structure of weight −1 if and

only if

b : R⊗ZX × R⊗Z Y → R ; (x, y) �→ − log(|〈x, y〉|)
(x ∈ X, y ∈ Y ) is non-degenerate.

In fact, H is a Hodge structure of weight −1 if and only if HC is the direct

sum of F 0HC and its complex conjugate. Since HC = F 0HC⊕Hom (X,C),

the last condition is equivalent to the condition that the homomorphism

c : F 0HC→ Hom (X,C); f �→ (f̄ mod F 0HC)

is an isomorphism. Here f̄ is the complex conjugate. As is shown below, c

coincides with the composite F 0HC

→ C ⊗Z Y → Hom (X,C), where the
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second map is z ⊗ y �→ (x �→ −2z̄b(x, y)). Hence c is an isomorphism if and

only if b is non-degenerate.

We prove the above description of c by b. Let h ∈ HZ and write h = f+g

with f ∈ F 0HC and g ∈ Hom (X,C). Let y be the image of h in Y . Then

for x ∈ X, b(x, y) = −+(g(x)), where + denotes the real part. On the other

hand,

f̄ = h− ḡ = f + g − ḡ ≡ g − ḡ mod F 0HC.

Since the complex conjugate of HC induces the identity map on

Hom (X,Z(1)) (not on Hom (X,Z)), ḡ sends x ∈ X to the complex con-

jugate of −g(x). Hence c(f)(x) = (g − ḡ)(x) = 2+(g(x)). �

Now we will prove the general case of 3.3.3 together with 3.3.4. We

explain the plan. Let (H,X, Y, e) be an object of ĤS , and let (X,Y, 〈 , 〉) be

its corresponding object of ÂS .

First, as noted before, it is clear that if (H,X, Y, e) belongs to H̃S , then

H satisfies the conditions (i) and (ii) in 3.3.4.

Second, in 3.3.9 below, we will show that H satisfies the conditions (i)

and (ii) if and only if the corresponding (X,Y, 〈 , 〉) belongs to ÃS .

Third, from 3.3.10, we will show that if (X,Y, 〈 , 〉) belongs to ÃS , then

the corresponding (H,X, Y, e) belongs to H̃S , which completes the proofs

of 3.3.3 and 3.3.4 simultaneously.

3.3.9. Let (X,Y, 〈 , 〉) be an object of ÂS , and let (H,X, Y, e) be the

corresponding object of ĤS . We show that H satisfies the conditions (i)

and (ii) of 3.3.4 if and only if (X,Y, 〈 , 〉) belongs to ÃS .

As noted before, (i) in 3.3.4 is equivalent to the admissibility of X ×
Y → Gm,log/Gm by 3.3.6 and 3.3.7. Let s ∈ S. Since W (C(s))−2 ⊂
Hom (X,Q(1)) ⊂W (C(s))−1, gr

W (C(s))
j is a Hodge structure unless j = −1.

It remains to show that gr
W (C(s))
−1 is a Hodge structure of weight −1 if and

only if for the pull back of (X,Y, 〈 , 〉) to s, the pairing R ⊗ZX{1} × R ⊗Z

Y{1} → R is non-degenerate. For this, by replacing X by X{1}, Y by Y{1},
and H by W (C(s))−1/W (C(s))−2 of H, we may assume that H is the pull

back of a usual Hodge structure over Spec(C) with the trivial log structure,

and hence we are reduced to 3.3.8.

3.3.10. Let (X,Y, 〈 , 〉) be an object of ÂS , and let (H,X, Y, e) be the

corresponding object of ĤS . Assume that (X,Y, 〈 , 〉) belongs to ÃS . We
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prove that (H,X, Y, e) belongs to H̃S , that is, H is a log Hodge structure

of weight −1.

The proof is long and occupies the rest of this subsection.

With 3.3.9, this proves Proposition 3.3.3, and also proves Proposition

3.3.4.

The admissibility of the local monodromy of HQ follows from 3.3.6.

Since F−1HO = HO and F 1HO = 0, the Griffiths transversality is au-

tomatically satisfied.

It remains to prove the following. Let s ∈ S, σ′ a face of C(s), j ∈ Z,

and t ∈ τ−1(s). Then for any sufficiently shifted specialization a : Olog
S,t → C

at t, (gr
W (σ′)
j , F )(a) is a Hodge structure of weight j. Note that gr

W (σ′)
j = 0

unless j ∈ {0,−1,−2}.

3.3.11. Assume j = 0.

By the direct decomposition HO = Hom(X,OS) ⊕ F 0HO and by

the fact Hom(X,OS) ⊂ W (σ′)−1HO, the canonical map F 0HO(a) →
gr
W (σ′)
0 (HO)(a) is surjective, and hence (gr

W (σ′)
0 , F )(a) is a Hodge struc-

ture of weight 0 for any specialization a at t.

3.3.12. By duality, (gr
W (σ′)
−2 , F )(a) is a Hodge structure of weight −2

for any specialization a at t.

3.3.13. It remains to consider the case j = −1. We may assume that

the underlying analytic space of S is Spec C = {s}.
Let σ be the face of MS,s/O×

S,s corresponding to σ′. Then (Xσ, Yσ, 〈 , 〉σ),
where 〈 , 〉σ is the restriction of 〈 , 〉 to Xσ × Yσ, belongs to ÃS . Hence by

replacing (Xσ, Yσ, 〈 , 〉σ) by (X,Y, 〈 , 〉), we see that it is sufficient to prove

that for a sufficiently shifted specialization a, H(a) is a Hodge structure of

weight −1.

Let

ba : R⊗ZX × R⊗Z Y → R

be the pairing defined by composing 〈 , 〉 : X × Y →Mgp
S,s,

Mgp
S,s → C× ; f �→ exp(a(log(f)))
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(independent of the choice of log(f) ∈ LS,t which is determined only modulo

Z(1)), and − log(|?|) : C× → R. We have a commutative diagram

ĤS � ÂS
↓ ↓

ĤSpec(C) � ÂSpec(C),

where Spec(C) is endowed with the trivial log structure and the vertical

arrows are defined by the specialization a; the left vertical arrow is given

by MS,s → C× ; f �→ exp(a(log(f))). By 3.3.8, H(a) is a Hodge structure

of weight −1 if and only if ba is non-degenerate.

3.3.14. Lemma. Fix a specialization a. Let Nj : X × Y → Z (1 ≤ j ≤
n) be the pairings induced by 〈 , 〉 and a set of elements of the monodromy

cone C(s) which generates C(s). Then ba′ for a sufficiently shifted a′ is

ba + y1N1 + · · ·+ ynNn with yj >> 0.

Proof. Fix a splitting LS,t ∼= P gp ⊕ C, where P := MS,s/O×
S,s. Then

we identify the set of specializations with the set Hom (P gp,C), and ba =

ba′ if the corresponding homomorphisms of a, a′ have the same real part.

Take a set of generators (lk)k of P . Assume that lk &= 1 for any k. It

is enough to show that for any a,N1, · · · , Nn ∈ Hom (P gp,R) such that

N1, · · · , Nn generate Hom (P,R≥0), and for any C, there exists C ′ such

that {a +
∑

yjNj |yj ≥ C} ⊃ {N |N(lk) ≥ C ′ for any k}. But it is enough

to take C ′ := maxk(a+ C
∑

Nj)(lk). �

For y1, · · · , yn > 0, let f(y1, · · · , yn) = ba + y1N1 + · · · + ynNn : R ⊗Z

X × R⊗Z Y → R.

We prove that there exists C > 0 such that if yj > C (1 ≤ j ≤ n), then

f(y1, · · · , yn) is non-degenerate.

It is enough to prove this under the assumption y1 ≥ · · · ≥ yn ≥ 1.

Let [0, 1] be the closed interval {x ∈ R | 0 ≤ x ≤ 1}.

3.3.15. Lemma. Let α ∈ [0, 1]n and assume αn = 0. Then there exists

a neighborhood Uα of α in [0, 1]n such that f(y1, · · · , yn) is non-degenerate

for any yj (1 ≤ j ≤ n) such that (yj+1/yj)1≤j≤n ∈ Uα, where yn+1 denotes

1.
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Assume 3.3.15. For each β ∈ [0, 1]n−1, take an open neighborhood

Vβ of β in [0, 1]n−1 and Cβ > 0 such that Vβ × [0, C−1
β ) is contained

in U(β,0). Since [0, 1]n−1 = ∪βVβ and [0, 1]n−1 is compact, there is a fi-

nite subset {β1, · · · , βr} of [0, 1]n−1 such that [0, 1]n−1 = ∪1≤j≤rVβj . Let

C = max{Cβj | 1 ≤ j ≤ r}. Then f(y1, · · · , yn) is non-degenerate whenever

yj > C (1 ≤ j ≤ n).

We prove 3.3.15.

Let T = {t | 1 ≤ t ≤ n, αt = 0}. For t ∈ T , let

J(t) = {j | 1 ≤ j ≤ n, t = min{t′ ∈ T | j ≤ t′}}.

Then {1, · · · , n} is the disjoint union of J(t) (t ∈ T ).

For t ∈ T , let σ′(t) be the smallest face of the monodromy cone C(s)

containing Nj for any j ≤ t, and let σ(t) be the corresponding face of

MS,s/O×
S,s. Then if t1, t2 ∈ T and t1 ≤ t2, we have σ′(t1) ⊂ σ′(t2), σ(t1) ⊃

σ(t2), Yσ(t1) ⊃ Yσ(t2). For t ∈ T , fix an R-subspace Vt of R⊗Z Y such that

R⊗Z Y = (⊕t∈TVt)⊕ R⊗Z Y{1},

Yσ(t) = (⊕t′∈T,t′>tVt′)⊕ R⊗Z Y{1} for all t ∈ T.

Define g(y1, · · · , yn) : R⊗ZX × R⊗Z Y → R by

g(y1, · · · , yn)(x, (
∑
t∈T

vt) + w) = f(y1, · · · , yn)(x, (
∑
t∈T

y−1
t vt) + w)

(x ∈ R⊗X, vt ∈ Vt, w ∈ R⊗Z Y{1}).
Then g(y1, · · · , yn) depends only on (yj+1/yj)1≤j≤n ∈ [0, 1]n as well as

f(y1, · · · , yn) does. (yn+1 denotes 1.) We have

det(f(y1, · · · , yn)) = (
∏
t∈T

y
d(t)
t ) det(g(y1, · · · , yn)).

Here d(t) = dim(Vt). Hence

3.3.16. Lemma. f(y1, · · · , yn) is non-degenerate if and only if

g(y1, · · · , yn) is non-degenerate.

Define gα : R⊗ZX × R⊗Z Y → R by

gα(x, (
∑
t∈T

vt) + w) = (
∑
t∈T

∑
j∈J(t)

(
∏
j≤k<t

α−1
k )Nj(x, vt)) + ba(x,w)
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(vt ∈ Vt, w ∈ R⊗Z Y{1}). Then as is easily seen,

3.3.17. Lemma. When (yj+1/yj)1≤j≤n converges to α, g(y1, · · · , yn)
converges to gα.

3.3.18. Lemma. gα is non-degenerate.

Proof. This is because (X,Y, 〈 , 〉) is non-degenerate. More precisely,

let N ′
t =

∑
j∈J(t)(

∏
j≤k<t α

−1
k )Nj for any t ∈ T . Then σ(t) ∩ Ker (N ′

t1) =

σ(t1) if t ∈ T and t1 = min{t′ ∈ T |t < t′}. Let x ∈ R ⊗ X. Assume that

gα(x, y) = 0 for any y ∈ R⊗Y , that is, that N ′
t(x, vt) = ba(x,w) = 0 for any

t ∈ T , vt ∈ Vt, w ∈ R⊗ Y{1}. Then we see inductively x ∈ R⊗Xσ(t) for any

t ∈ T . Thus x ∈ R ⊗X{1} and x = 0. Similarly, let vt ∈ Vt (t ∈ T ) and

w ∈ R⊗Y{1}. Assume that
∑

t∈T N
′
t(x, vt)+ba(x,w) = 0 for any x ∈ R⊗X,

then ba(x,w) = 0 for any x ∈ R ⊗ X{1}, hence w = 0. Inductively all the

vt’s are also zeros. �

These 3.3.16, 3.3.17, 3.3.18 prove the existence of Uα.

3.4. On the cone C and its subcones

In this subsection and in the next subsection, we consider cone decom-

positions and toric geometry which will be used to complete the proof of

HS � AS . The results of these two subsections will be also used in §4 to

prove Theorem 4.6.5 and in §5 to construct models of log complex tori.

3.4.1. In this subsection, let S be an fs monoid, let X and Y be finitely

generated free abelian groups, and let 〈 , 〉 : X×Y → Sgp be an S-admissible

pairing.

For a finitely generated abelian group L and a subset P of L, we say P

is a cone of L if P is a submonoid of L and if P is saturated in L (that is,

for a ∈ L such that an ∈ P for some n ≥ 1, we have a ∈ P ).

3.4.2. We define a subset C of Hom (S,N)×Hom (X,Z). Let

C :=
{
(N, l) ∈ Hom (S,N)×Hom (X,Z); l(XKer (N)) = {0}

}
.

Here Xσ with σ = Ker (N) is as in 1.2.3.

3.4.3. Lemma. (1) C is a cone of Hom (S,N)×Hom (X,Z).
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(2) The group of the invertible elements C× of C is trivial.

We will prove this lemma in 3.4.6.

3.4.4. Remark. We remark that the monoid C is not necessarily

finitely generated.

We denote the semi-group law of C additively.

3.4.5. Lemma. Let 〈 , 〉 : X × Y → Sgp be an admissible pairing.

(1) For faces σ and τ of S, we have

Xσ ∩Xτ = Xσ∩τ , Yσ ∩ Yτ = Yσ∩τ .

(2) Let x ∈ X (resp. y ∈ Y ). Then the set of all faces σ of S such that

〈x, Y 〉 ⊂ σgp (resp. 〈X, y〉 ⊂ σgp) has the smallest element.

(3) Let x ∈ X (resp. y ∈ Y ) and let σ be the smallest face of S satisfying

the property in (2). Then there exists an element y ∈ Yσ (resp. x ∈ Xσ)

such that 〈x, y〉 belongs to the interior (see Terminology) of σ.

(4) If there exists a homomorphism p satisfying the conditions in 1.2.5,

then, for y ∈ Y , a face σ of S is the minimal face satisfying y ∈ Yσ if and

only if 〈p(y), y〉 is in the interior of σ.

Proof. (1) By symmetry, it is enough to show the first equality. There

exist homomorphisms N,N ′ : S → N such that Ker (N) = σ and Ker (N ′) =

τ . Let N ′′ = N + N ′. Then Ker (N ′′) = σ ∩ τ . We show Xσ ∩Xτ = Xσ∩τ .
The inclusion Xσ∩τ ⊂ Xσ ∩ Xτ is clear. We prove the converse inclusion.

Let x ∈ Xσ ∩ Xτ . Since N(〈x, Y 〉) = 0 and N ′(〈x, Y 〉) = 0, we have

N ′′(〈x, Y 〉) = 0. Since Ker (N ′′) = σ ∩ τ , by the admissibility, x belongs to

X ∩ (R⊗Xσ∩τ ) = Xσ∩τ .
(2) follows from (1).

(3) By symmetry, it is enough to prove the statement for x ∈ X. Let

H = 〈x, Yσ〉 ⊂ σgp, and assume that H does not meet the interior of σ.

Let σ be the image of σ in σgp/H. Then if a is an element of the interior

of σ, the image a of a in σ is not invertible in σ. (Indeed, if a · b = 1 in

σ for some b ∈ σ, we have ab ∈ H. This contradicts the fact that H does

not meet the interior of σ since ab is in the interior of σ.) Thus σ is not

a group. Hence there exists a non-trivial homomorphism σ → N. That is,

there exists a non-trivial homomorphism h : σ → N such that the induced
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map σgp → Z kills H. Since σ is a face of S, the homomorphism h extends

to N : S → (1/m)N for some m ≥ 1. Let τ = σ ∩Ker (N). Then x belongs

to Xτ . The minimality of σ implies that σ = τ . This contradicts the fact

that N does not kill σ.

(4) It is enough to show that for a face σ of S, 〈p(y), y〉 ∈ σ if and only

if y ∈ Yσ. By (iii) in 1.2.5, y ∈ Yσ implies 〈p(y), y〉 ∈ S ∩ σgp = σ. We

will prove the converse. Assume that 〈p(y), y〉 ∈ σ. Take a homomorphism

N : S −→ R
(+)
≥0 whose kernel is σ. To prove y ∈ Yσ, it is enough to show

N(〈p(y), z〉) = 0 for any z ∈ Y . This can be seen as in the last part of the

proof of 1.2.5. �

3.4.6. We prove 3.4.3.

Proof. (1) Let (N, l), (N ′, l′) ∈ C. Since

XKer (N+N ′) = XKer (N)∩Ker (N ′) = XKer (N) ∩XKer (N ′)

(see 3.4.5 (1)), the homomorphism l+l′ kills XKer (N+N ′). Hence (N+N ′, l+
l′) ∈ C.

It is easy to see that C is saturated in Hom (S,N)×Hom (X,Z).

(2) Assume (N, l), (−N,−l) ∈ C. Then N = 0. Hence l kills XS = X.

Hence l = 0. �

3.4.7. Lemma. Let ∆ be a finitely generated subcone of C, and let ∆∨

be the dual cone of ∆ in Sgp ×X, i.e.,

∆∨ := {(µ, x) ∈ Sgp ×X;N(µ) + l(x) ≥ 0 for all (N, l) ∈ ∆} .

(1) Identify S with S × {1} in S ×X. Then S ⊂ ∆∨.

(2) (∆∨)gp = Sgp ×X.

(3) Let σ be a face of S and let x ∈ Xσ. Then there exists µ ∈ σ such

that (µ, x) ∈ ∆∨.

Proof. (1) is clear because ∆ ⊂ C. (2) follows from ∆× = C× = {0}
by 3.4.3 (2).

We prove (3). Let (Ni, .i) (1 ≤ i ≤ n) be elements of ∆ which generate

the cone ∆. For each i, take µi ∈ σ as follows. If Ni(σ) = {0}, take

any element µi of σ. If Ni(σ) &= {0}, take any element µi of σ such that
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Ni(µi) + .i(x) ≥ 0 (such µi exists; take any µ′
i ∈ σ such that Ni(µ

′
i) > 0,

and multiply µ′
i to get µi). Let µ =

∏
1≤i≤n µi ∈ σ. We show (µ, x) ∈ ∆∨.

In fact, if Ni(σ) = {0}, then .i(x) = 0 and hence Ni(µ)+.i(x) = Ni(µ) ≥ 0.

If Ni(σ) &= {0}, then Ni(µ) + .i(x) ≥ Ni(µi) + .i(x) ≥ 0. �

In the rest of this subsection, we prove the following proposition.

3.4.8. Proposition. Let ∆ be a finitely generated subcone of C. Then

there exists a finitely generated subcone ∆′ of C containing ∆ and satisfying

the following conditions (i) and (ii).

(i) If (µ, x) ∈ (∆′)∨ (µ ∈ Sgp, x ∈ X), then µ ∈ S;

(ii) Let σ be a face of S. If (µ, x) ∈ (∆′)∨ and x /∈ Xσ, then there exist

µ′, µ′′ ∈ S such that µ = µ′µ′′ and such that (µ′, x) ∈ ∆∨ and µ′′ /∈ σ.

3.4.9. For each face σ of S, fix an element sσ of the interior of σ and

fix a Z-basis (xσ,i)i of Xσ. For an integer a ≥ 0, let

C(a) := {(N, l) ∈ Hom (S,N)×Hom (X,Z);

a ·N(sσ) ≥ |l(xσ,i)| for all σ and i} .

3.4.10. Lemma. (1) C(a) is a finitely generated subcone of C.

(2)
⋃
aC(a) = C.

Proof. (1) It is easily seen that C(a) is a finitely generated monoid.

We prove C(a) ⊂ C. Let (N, l) ∈ C(a), and let σ = Ker (N). Then

N(sσ) = 0 and hence l(xσ,i) = 0 for all i. This shows l(Xσ) = 0 and hence

(N, l) ∈ C.

(2) Let (N, l) ∈ C. We prove (N, l) ∈ C(a) if a is sufficiently large. Let

σ be a face of S. If N(σ) = 0, then by (N, l) ∈ C, we have l(Xσ) = 0 and

hence the inequality a ·N(sσ) ≥ |l(xσ,i)| holds for any a ≥ 0. If N(σ) &= 0,

then N(sσ) > 0 and hence the inequality a · N(sσ) ≥ |l(xσ,i)| holds if a is

sufficiently large. �

3.4.11. We now prove Proposition 3.4.8.

Let sσ, (xσ,i)i, and C(a) be as in 3.4.9. Further, for each face σ of

S, fix a homomorphism Nσ : S → N such that Ker (Nσ) = σ. Fix also
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a finite subset Bσ of Hom (X,Z) which generates the abelian group {l ∈
Hom (X,Z) | l(Xσ) = 0}. By

⋃
aC(a) = C (3.4.10 (2)), the following condi-

tion (∗) is satisfied if a is large enough:

(∗) (Nσ, l) ∈ C(a) for any σ and l ∈ Bσ.

Since ∆ ⊂ C(a) for some of such a > 0, we may assume ∆ = C(a) for

some a > 0 satisfying (∗).
Fix a finite set of generators {(Ni, li)}1≤i≤r of ∆ = C(a), and fix also

a finite set of generators Jσ of the ideal Iσ := S − σ (see Terminology) of

S for every σ. Now let m ≥ 1 be a sufficiently large integer satisfying the

following (∗∗):
(∗∗) m > max{Ni(µ); 1 ≤ i ≤ r, µ ∈ Jσ, σ is a face of S}.
We prove that ∆′ = C(am) has the property stated in 3.4.8. Let (µ, x) ∈

(∆′)∨.

First, since (Ni,±mli) ∈ ∆′, we have Ni(µ) ≥ |mli(x)| ≥ 0 for all i,

which implies (i). We prove (ii). Let σ and (µ, x) be as in (ii).

Take l ∈ Bσ such that l(x) &= 0. Since (Nσ,±l) ∈ C(a) by (∗), aNσ(µ) ≥
|l(x)| > 0. Then, this shows µ ∈ Iσ. Hence µ = µ′ · µ′′ for some µ′ ∈ S and

µ′′ ∈ Jσ. We prove (µ′, x) ∈ ∆∨. It is sufficient to prove Ni(µ
′) + li(x) ≥ 0

for 1 ≤ i ≤ r. If li(x) = 0, we have nothing to prove. If li(x) &= 0,

Ni(µ
′) + li(x) = Ni(µ)−Ni(µ

′′) + li(x)

≥ m|li(x)| −max({Ni(µ
′′)}i) + li(x)

(this follows from (Ni,±mli) ∈ ∆′)

≥ m− 1−max({Ni(µ
′′)}i) ≥ 0 (by (∗∗)).

3.5. Study of Hom(X,Gm,log)
(Y )

3.5.1. Let 〈 , 〉 : X × Y → Sgp be as in 3.4. In this subsection, let S

be an fs log analytic space and assume that we are given a homomorphism

S →MS/O×
S .

The induced pairing X × Y → Gm,log,S/Gm,S defines a subgroup

sheaf Hom(X,Gm,log)
(Y ) as in 1.3.1. In fact in 1.3.1, we defined

Hom(X,Gm,log)
(Y ) for a pairing X×Y → Gm,log,S , but the definition relies

only on the induced pairing into Gm,log,S/Gm,S .

For s ∈ S, let σ(s) be the kernel of S → MS,s/O×
S,s, which is a face of

S.
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3.5.2. For a finitely generated subcone ∆ of the cone C (3.4.2), define

a subsheaf V (∆) of Hom(X,Gm,log) on (fs/S) as follows. For an object U

of (fs/S), let

V (∆)(U) :=
{
ϕ ∈ Hom (X,Mgp

U );µ · (ϕ(x) mod O×
U ) ∈MU/O×

U

for every (µ, x) ∈ ∆∨} .
If ∆′ is a finitely generated subcone of ∆, we have V (∆′) ⊂ V (∆).

3.5.3. Lemma. Let ∆ be a finitely generated subcone of C.

(1) V (∆) is represented by a log smooth fs log analytic space over S.

(In the following, we will identify V (∆) with the fs log analytic space which

represents it.)

(2) If ∆′ is a face of ∆, then V (∆′) is an open fs log analytic subspace

in V (∆).

(3) If ∆′ is a finitely generated subcone of C, then we have

V (∆) ∩ V (∆′) = V (∆ ∩∆′).

Proof. (1) We may assume that there exists a lifting S → MS of

S → MS/O×
S . Fix such a lifting. Then V (∆) is represented by the fiber

product

S ×(SpecC[S])an (Spec C[∆∨])an,

where Spec C[S] and Spec C[∆∨] are endowed with the canonical log struc-

tures associated to S and ∆∨, respectively.

(2) As is well-known in toric geometry, if ∆′ is a face of ∆, then

(Spec C[(∆′)∨])an is an open fs log analytic subspace of (Spec C[∆∨])an.

(3) This follows from the fact that (∆ ∩∆′)∨ coincides with{
t ∈ Sgp ×X; tn = ab for some n ≥ 1, a ∈ ∆∨, b ∈ (∆′)∨

}
. �

3.5.4. Proposition. We have

Hom(X,Gm,log)
(Y ) =

⋃
∆

V (∆),
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where ∆ ranges over all finitely generated subcones of C.

Proof. We first prove V (∆) ⊂ Hom(X,Gm,log)
(Y ) for any finitely

generated subcone ∆ of C. Let {(Ni, li)}i be a finite set of generators of

∆, x ∈ X an arbitrary element, and σ the minimal face of S with x ∈ Xσ

(see 3.4.5 (2)). Let us take y ∈ Yσ such that 〈x, y〉 is in the interior of σ

(see 3.4.5 (3)). Since Ni(〈x, y〉) = 0 (resp. &= 0) implies Ni(σ) = 0 and

li(x) = 0 (resp. Ni(〈x, y〉) > 0), there exists a sufficiently large integer

m ∈ Z≥0 which satisfies Ni(〈x,my〉) ≥ li(x) ≥ Ni(〈x,−my〉) for each i.

Hence (〈x,my〉,−x), (〈x,my〉, x) ∈ ∆∨. Hence if ϕ : X → Gm,log belongs to

V (∆), then 〈x,my〉ϕ(x)−1 and 〈x,my〉ϕ(x) belong to M/O× in Mgp/O×,

and hence 〈x,−my〉|(ϕ(x) mod O×)|〈x,my〉.
We next prove Hom(X,Gm,log)

(Y ) ⊂
⋃

∆ V (∆). Let us take a finite

family (xi ∈ X)i such that, for every face σ of S, some xi’s generate Xσ.

Let ϕ be a section of Hom(X,Gm log)
(Y ). Then locally on S, for each i,

there exist yi and y′i such that 〈xi, y′i〉|(ϕ(xi) mod O×)|〈xi, yi〉. Define

∆ := {(N, l) ∈ Hom (S,N)×Hom (X,Z);

N(〈xi, yi〉) ≥ l(xi) ≥ N(〈xi, y′i〉) for all i}.

Then ∆ ⊂ C since 〈xi, Y 〉 ⊂ (KerN)gp implies l(xi) = 0. Since ∆∨ is

generated (over Q≥0) by S, (〈xi, yi〉,−xi), and (〈xi,−y′i〉, xi), we have ϕ ∈
V (∆) because of the choice of yi and y′i. �

3.5.5. Assume that ∆ ⊃ S∨ × {0}. In Hom(X,Gm,log)
(Y ), V (∆)

contains the torus Hom(X,Gm), and stable under the translation by

Hom(X,Gm).

Since V (∆) ⊂ Hom(X,Gm,log), we have a canonical homomorphism

X → Mgp
V (∆), and hence a canonical continuous map V (∆)log →

Hom (X, S1). The composition Slog × Hom (X,C×) → V (∆)log →
Hom(X, S1), where the first arrow is induced by Hom(X,Gm) → V (∆),

coincides with the canonical projection induced by C× → S1; z �→ z/|z|.
If σ is a face of S contained in the kernel of S →MS/O×

S , then any sec-

tion of Hom(X,Gm,log)
(Y ) sends Xσ into Gm. In fact, if S′ is an fs log ana-

lytic space over S and ϕ : X →Mgp
S′ belongs to Hom(X,Gm,log)

(Y )(S′), and

if x ∈ Xσ, then locally on S′, there are y, y′ ∈ Y such that 〈x, y〉|(ϕ(x) mod

O×
S′)|〈x, y′〉 in Mgp

S′ /O×
S′ , and since 〈x, y〉 and 〈x, y′〉 are trivial in Mgp

S′ /O×
S′
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by x ∈ Xσ, we have ϕ(x) ∈ O×
S′ . Hence we have a homomorphism

Hom(X,Gm,log)
(Y ) → Hom(Xσ,Gm). The induced morphism V (∆) →

Hom(Xσ,Gm) is described also as follows. Locally on S, take a lifting

S → MS of S → MS/O×
S . Let x ∈ Xσ. Then by 3.4.7 (3), there is µ ∈ σ

such that (µ, x) ∈ ∆∨. The above morphism is induced from the ring ho-

momorphism C[Xσ] → OS⊗C[S] C[∆∨] which sends x to µ−1⊗ (µ, x) (which

is independent of the choice of µ).

In particular, for each s ∈ S, we have a canonical morphism of analytic

spaces V (∆)×Ss→ Hom (Xσ(s),C
×) which is compatible with the canonical

projection Hom (X,C×) → Hom (Xσ(s),C
×).

For s ∈ S, the diagram

V (∆)log ×Slog slog → Hom (Xσ(s),C
×)

↓ ↓
Hom (X, S1) → Hom (Xσ(s),S

1)

is commutative.

The map V (∆)log ×Slog slog → Hom (Xσ(s),R>0)×Hom (X, S1)× slog is

surjective, where the map V (∆)log×Slog slog → Hom (Xσ(s),R>0) is obtained

from V (∆)log ×Slog slog → Hom (Xσ(s),C
×) by | | : C× → R>0.

3.5.6. Proposition. Let ∆ be a finitely generated subcone of C.

(1) There exists a finitely generated subcone ∆′ of C containing ∆ ∪
(S∨ × {0}) and satisfying the following conditions (i)–(iii).

(i) For each s ∈ S, the underlying morphism of analytic spaces V (∆)×S
s → V (∆′) ×S s (here we forget the log structures) factors through the

canonical surjection V (∆)×S s→ Hom (Xσ(s),C
×).

(ii) For each s ∈ S, the morphism V (∆)log×Slog slog → V (∆′)log×Slog slog

of topological spaces factors through the canonical surjection V (∆)log ×Slog

slog → Hom (Xσ(s),R>0)×Hom (X, S1)× slog.

(iii) The canonical map V (∆)log → V (∆′)log is homotope with the com-

posite V (∆)log → Slog ×Hom (X, S1) → Slog ×Hom (X,C×) → V (∆′)log.

(2) Assume that S is a one point set {s}. Then there exists a finitely

generated subcone ∆′ of C containing ∆ and satisfying the following condi-

tion. The underlying morphism of analytic spaces V (∆) → V (∆′) (here we

forget the log structures) factors through V (∆) → Hom(Xσ(s),Gm).
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Proof. We prove (1). Take ∆′ as in 3.4.8. We prove that the condi-

tions (i)–(iii) are satisfied.

We prove (i). Take a lifting S → MS,s of S → MS,s/O×
S,s. It is suffi-

cient to prove that the homomorphism of C-algebras C[(∆′)∨] ⊗C[S] C →
C[∆∨]⊗C[S] C factors through the injection C[Xσ(s)] → C[∆∨]⊗C[S] C. Let

(µ, x) ∈ (∆′)∨. If x ∈ Xσ(s), then by 3.4.7 (3), there is µ′ ∈ σ(s) such that

(µ′, x) ∈ ∆∨, and the image of (µ, x) in C[∆∨]⊗C[S] C is µ(s)µ′(s)−1(µ′, x)

and it is contained in the image of C[Xσ(s)]. Here µ(s) denotes the image

of µ under S → OS,s → C. If x /∈ Xσ(s), by 3.4.8, there are µ′, µ′′ ∈ S such

that µ = µ′µ′′, (µ′, x) ∈ ∆∨ and µ′′ /∈ σ(s). Since µ′′(s) = 0, the image of

(µ, x) in C[∆∨]⊗C[S] C is µ′′(s)(µ′, x) = 0.

We prove (ii). It is enough to show the set-theoretical factorization. Take

a lifting S → MS,s of S → MS,s/O×
S,s. Then V (∆)log ×Slog slog is identified

with the set of all triples (t, ψ, h), where t ∈ slog, h is a homomorphism X →
S1 and ψ is a homomorphism ∆∨ → R≥0 for the multiplicative structure

of R≥0 such that ψ(µ) = |µ(s)| for any µ ∈ S. The image of (t, ψ, h)

in V (∆′)log is (t, ψ′, h), where ψ′ is the composite (∆′)∨ → ∆∨ ψ→ R≥0.

Fix (µ, x) ∈ (∆′)∨. It is sufficient to prove that ψ′(µ, x) depends only on

the image of ψ in Hom (Xσ(s),R>0). If x ∈ Xσ(s), by 3.4.7 (3), there is

µ′ ∈ σ(s) such that (µ′, x) ∈ ∆∨. We have ψ′(µ, x) = |µ(s)||µ′(s)|−1ψ(µ′, x)

and |µ′(s)|−1ψ(µ′, x) is nothing but the value at x of the image of ψ in

Hom (Xσ(s),R>0). If x /∈ Xσ(s), we have µ = µ′µ′′ with µ′, µ′′ ∈ S such

that (µ′, x) ∈ ∆∨ and µ′′ /∈ σ(s). Since µ′′(s) = 0, we have ψ′(µ, x) =

µ′′(s)ψ(µ′, x) = 0.

We prove that (iii) is satisfied. Let [0, 1] ⊂ R be the closed interval

between 0 and 1. We define a map

H : [0, 1]× V (∆)log → V (∆′)log

as follows. On the inverse image [0, 1] × V (∆)log ×Slog slog of s ∈ S in

[0, 1]× V (∆)log, we define it as the composite

[0, 1]× V (∆)log ×Slog slog → [0, 1]×Hom (Xσ(s),R>0)×Hom (X, S1)× slog

→ Hom (Xσ(s),R>0)×Hom (X, S1)× slog → V (∆′)log,
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where the last arrow is by the condition (ii) and the second arrow is induced

by

[0, 1]×Hom (Xσ(s),R>0) → Hom (Xσ(s),R>0); (u, ψ) �→ (a �→ ψ(a)u).

The restriction of H to u = 1 gives the canonical map V (∆)log → V (∆′)log

and the restriction to u = 0 gives the composite in the condition (iii).

Hence it is sufficient to prove that H is continuous. The problem is lo-

cal on S, and hence we may assume that there is a lifting S → MS

of S → MS/O×
S . Then V (∆)log is identified with the set of all triples

(t, ψ, h), where t ∈ Slog, h is a homomorphism X → S1, and ψ is a ho-

momorphism ∆∨ → R≥0 with respect to the multiplicative structure of

R≥0 such that ψ(µ) = |µ(s)| for all µ ∈ S (s denotes the image of t in

S). For (t, ψ, h) ∈ V (∆)log and u ∈ [0, 1], write H(u, t, ψ, h) ∈ V (∆′)log

as (t, ψt,u, h). Then ψt,u is described as follows. Let (µ, x) ∈ (∆′)∨ and

let s be the image of t in S. Then if x ∈ Xσ(s), there exists µ′ ∈ σ(s)

such that (µ′, x) ∈ ∆∨. We have ψt,u(µ, x) = |µ(s)||µ′(s)|−uψ(µ′, x)u. If

x /∈ Xσ(s), then ψt,u(µ, x) = 0. Let u0 ∈ [0, 1], (t0, ψ0, h0) ∈ V (∆)log,

and assume (u, t, ψ, h) ∈ [0, 1] × V (∆)log converges to (u0, t0, ψ0, h0). It

is sufficient to prove that for each (µ, x) ∈ (∆′)∨, ψt,u(µ, x) converges to

(ψ0)t0,u0(µ, x). Let s0 be the image of t0 in S, and let s be the image of t

in S. First assume x ∈ Xσ(s0). Then if s is sufficiently near to s0, we have

σ(s) ⊃ σ(s0) and hence x ∈ Xσ(s). By 3.4.7 (3), there exists µ′ ∈ σ(s0) such

that (µ′, x) ∈ ∆∨. We have ψt,u(µ, x) = |µ(s)||µ′(s)|−uψ(µ′, x)u, and µ(s)

converges to µ(s0), µ
′(s) converges to µ′(s0) &= 0 and ψ(µ′, x) converges to

ψ0(µ
′, x) ∈ R>0. Hence ψt,u(µ, x) converges to (ψ0)t0,u0(µ, x). Next assume

x /∈ Xσ(s0). Then (ψ0)t0,u0(µ, x) = 0. We prove that ψt,u(µ, x) converges

to 0. Take µ′, µ′′ ∈ S such that µ = µ′µ′′, (µ′, x) ∈ ∆∨ and µ′′ /∈ σ(s0).

If x /∈ Xσ(s), then ψt,u(µ, x) = 0. Assume x ∈ Xσ(s). Then by 3.4.7 (3),

there exists µs such that µs ∈ σ(s) and (µ, x) ∈ ∆∨. We have ψt,u(µ, x) =

|µ′′(s)||µ′(s)||µs(s)|−uψ(µs, x)u. Since |µs(s)|−uψ(µs, x)u belongs to the in-

terval between 1 and |µs(s)|−1ψ(µs, x), |µ′(s)||µs(s)|−uψ(µs, x)u belongs to

the interval between |µ′(s)| and |µ′(s)||µs(s)|−1ψ(µs, x) = ψ(µ′, x). Since

µ′(s) converges to µ′(s0) and ψ(µ′, x) converges to ψ0(µ
′, x),

|µ′(s)||µs(s)|−uψ(µs, x)u is bounded in R. By this and by the fact

that µ′′(s) converges to µ′′(s0) = 0, we see that ψt,u(µ, x) =

|µ′′(s)||µ′(s)||µs(s)|−uψ(µs, x)u converges to 0.
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Finally we prove (2). Take a lifting S → MS,s of S → MS,s/O×
S,s. Let

n ≥ 1 be an integer such that the n-th power of the maximal ideal m of OS,s
is zero. Take ∆′ as in 3.4.8, and by replacing ∆ by ∆′, we take ∆′ again and

so on, and we have ∆′ satisfying the following condition. If (µ, x) ∈ (∆′)∨

and x /∈ σ(s), then there exist elements µ′ and µ′′
i (1 ≤ i ≤ n) of S such that

(µ′, x) ∈ ∆∨ and µ′′
i /∈ σ(s). Let µ′′ =

∏
1≤i≤n µ

′′
i . The image of µ′′

i in OS,s
belongs to the maximal ideal, and hence the image of µ′′ in OS,s is zero.

The rest of the proof goes in the same way as the proof of the condition (i)

in (1). �

3.6. From HS to AS
In this subsection, we prove that for an fs log analytic space S and for

an object H of HS , Ext1(Z, H) is a log complex torus over S. For this, we

study Ext1(Z, H) by embedding it in a bigger group Ext1
naive(Z, H).

3.6.1. For an fs log analytic space S and for an object H of HS , define

a sheaf of abelian groups VH on (fs/S)log by

VH = Olog
S ⊗OS

(HO/F
0HO).

3.6.2. Proposition. Let Ext1
naive be the Ext1 for the category of pre-log

mixed Hodge structures. Then we have a canonical isomorphism

Ext1
naive(Z, H) � τ∗(HZ\VH).

Proof. We will prove this by an explicit construction of the extension

in the same way as in the classical case explained in 3.1.1.

For z ∈ τ∗(HZ\VH), the extension H ′ of Z by H corresponding to z

is given as follows. Let 0 → HZ → H ′
Z → Z → 0 be the extension on

(fs/S)log obtained as the pull back of 0 → HZ → VH → HZ\VH → 0 by

Z → HZ\VH ; 1 �→ z. Let F 0(Olog
S ⊗H ′

Z) be the kernel of Olog
S ⊗H ′

Z→ VH .

We give the local description of this construction. Lift z locally on Slog to

sections zi ∈ (Olog
S ⊗HO)(Ui), where (Ui → Slog) is an open covering. On

Ui, we have then

H ′
Z = Z⊕HZ,
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F p(Olog
S ⊗H ′

Z) = Olog
S ⊗H ′

Z for p ≤ −1, F p(Olog
S ⊗H ′

Z) = 0 for p ≥ 1,

F 0(Olog
S ⊗H ′

Z) = Olog
S (1,−zi) + (0, F 0(Olog

S ⊗HZ)).

(Note that H ′
Z does not necessarily coincide with the direct sum Z ⊕ HZ

locally on S.) By this description, we see that there is an exact sequence

0 → F 0(Olog
S ⊗HZ) → F 0(Olog

S ⊗H ′
Z) → Olog

S → 0, and that H ′ is a pre-log

mixed Hodge structure.

Conversely, if we have an extension H ′ of Z by H, we have exact se-

quences

0 → HZ→ H ′
Z→ Z → 0, 0 → F 0HO → F 0H ′

O → OS → 0,

and hence, locally on Slog, there exist a section a of H ′
Z whose image in Z is 1,

and a section b of F 0H ′
O whose image in OS is 1. Let z = a−b ∈ Olog

S ⊗HO.

Then the class of z in HZ\VH is independent of the choices of a and b, and

gives a global section of HZ\VH . These z �→ H ′ and H ′ �→ z give mutually

inverse isomorphisms between τ∗(HZ\VH) and Ext1
naive(Z, H). �

3.6.3. By 3.6.2, τ−1(Ext1
naive(Z, H)) is regarded as a subsheaf of

HZ\VH , and hence τ−1(Ext1(Z, H)) is also regarded as a subsheaf of HZ\VH .

Let UH ⊂ VH be the inverse image of τ−1(Ext1(Z, H)). We have an exact

sequence

0 → HZ→ UH → τ−1(Ext1(Z, H)) → 0.

3.6.4. Proposition. Assume that H comes from an object

(H,X, Y, e) of H̃S. Let (X,Y, 〈 , 〉) be the corresponding pairing into

Gm,log, and let Hom(X,L)(Y ) ⊂ Hom(X,L) be the inverse image of

τ−1(Hom(X,Gm,log)
(Y )). Then the composite

Hom(X,L)(Y ) → Hom(X,Olog
S ) → Olog

S ⊗ZHZ→ VH

is injective and the image coincides with UH so that it induces an isomor-

phism

Hom(X,L)(Y ) 
→ UH .
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Proof. The injectivity of Hom(X,L)(Y ) → VH is clear by Olog
S ⊗OS

HO = Hom(X,Olog
S )⊕Olog

S ⊗OS
F 0HO.

Let v be a section of τ∗(HZ\VH). It is sufficient to prove that v belongs

to Ext1(Z, H) if and only if v belongs to the image of Hom(X,Gm,log)
(Y ).

Let 0 → HZ → L → Z → 0 be the extension on (fs/S)log obtained as the

pull back of 0 → HZ → VH → HZ\VH → 0 by v : Z → HZ\VH . For s ∈ S

and for a face σ of the monodromy cone at s, define an increasing filtration

on LQ = LQ|s by W (σ)k(LQ) = LQ for k ≥ 0 and W (σ)k(LQ) = W (σ)k(HQ)

for k ≤ −1. Then as is easily checked, if v belongs to Ext1(Z, H), then the

family of weight filtrations on LQ associated to faces of C(s) must coincide

with this. Furthermore it is easily checked that v belongs to Ext1(Z, H) if

and only if for any s ∈ S and for any homomorphism N : MS,s/O×
S,s → N,

if we denote the kernel of N by σ, then the image of the log of the local

monodromy on LQ corresponding to N is contained in W (σ′)−2(LQ) =

Hom (X/Xσ,Q). Here σ′ is the annihilator of σ.

On the other hand, we show that if v belongs to Ext1(Z, H), then

v belongs to the image of Hom(X,Gm,log). In fact, the exact sequence

0 → Y → Hom(X,Olog
S /Z) → HZ\VH → 0 gives an exact sequence

Hom(X,Gm,log) → Ext1
naive(Z, H)

∂→ Y ⊗ Gm,log/Gm via τ∗(Olog
S /Z) =

τ∗(L/Z) = Gm,log (3.2.5). Further, we see ∂(Ext1(Z, H)) = 0 because for

s ∈ S and for t ∈ Slog lying over s, and for an element e of Lt which

lifts 1 ∈ Z = Lt/HZ,t, the image of e under the logarithm N of any local

monodromy is an element of Hom (X,Z(1)) ⊂ HZ,t. Hence v comes from

Hom(X,Gm,log).

Now the above element of Hom (X,Z(1)) is obtained as the image of a

lifting ϕ of v in Hom(X,Gm,log)s under the composite

Hom (X,Mgp
S,s) → Hom (X,Mgp

S,s/O×
S,s)

N→ Hom (X,Z).

Hence v belongs to Ext1(Z, H) if and only if for any s, N , σ as above, the

homomorphism ϕ : X →Mgp
S,s corresponding to v satisfies Nϕ(Xσ) = 0.

Hence it is sufficient to prove that for s ∈ S and for a homomorphism

ϕ : X → Mgp
S,s, ϕ belongs to Hom(X,Gm,log)

(Y )
s if and only if Nϕ(Xσ) = 0

for any homomorphism N : MS,s/O×
S,s → N, where σ = Ker (N). Assume

that ϕ belongs to Hom(X,Gm,log)
(Y )
s . Let x ∈ Xσ. Then there exists y, y′ ∈

Y such that 〈x, y〉|ϕ(x)|〈x, y′〉 at s. Since 〈x, y〉, 〈x, y′〉 mod O×
S,s belong to
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σgp and since N annihilates σ, this shows Nϕ(x) = 0. Conversely assume

that Nϕ(Xσ) = 0 for any N : MS,s → N (σ = Ker (N)). Take a chart S →
MS at s such that S 
→ MS,s/O×

S,s, and regard the pairing into Mgp
S,s/O×

S,s

as a pairing into Sgp. Let C be as in 3.4.2. Then the assumption on ϕ

shows (N,Nϕ) ∈ C for any N : MS,s/O×
S,s → N. Let ∆ be the saturation

of {(N,Nϕ) |N : MS,s/O×
S,s → N} in Hom (S,N) × Hom (X,Z). Then ∆

is a finitely generated subcone of C. Furthermore we have ϕ ∈ V (∆).

Indeed, if (µ, x) ∈ ∆∨, then µϕ(x) ∈ Mgp
S,s belongs to MS,s because for any

homomorphism N : MS,s/O×
S,s → N, we have N(µϕ(x)) = N(µ) +Nϕ(x) ≥

0 since (N,Nϕ) ∈ ∆. By 3.5.4, we have ϕ ∈ Hom(X,Gm,log)
(Y )
s . �

Now we can prove

3.6.5. Proposition. (1) For an object H of HS, Ext1(Z, H) is a log

complex torus.

(2) We have a commutative diagram of categories

H̃S � ÃS
↓ ↓
HS → AS .

Here the right vertical arrow is to take the associated quotient, and the lower

horizontal arrow is H �→ Ext1(Z, H).

(3) An object of AS comes locally on S, from HS.

Proof. Let (H,X, Y, e) be an object of H̃S and let (X,Y, 〈 , 〉) be the

corresponding object of ÃS . Then by 3.6.4,

Ext1(Z, H) � HZ\Hom(X,L)(Y ) � Y \Hom(X,Gm,log)
(Y ).

By the definition of log complex torus, any object of AS comes locally

on S from ÃS .

Hence it remains to show that any object H of HS comes locally on S

from an object (H,X, Y, e) of H̃S . It is enough to find X and Y at each

point s of S. Consider H ′ := gr
W (C(s))
−1 H(s). Then H ′ is a Hodge structure

of weight −1 so that there is a sublattice L′ of H ′
Z such that H ′

Z/L
′ is torsion

free and such that H ′
C = L′

C⊕ F 0. Let L be the inverse image of L′ in HZ.

Then X := Hom (L,Z(1)) and Y := HZ/L are the desired ones. (Note that

the above construction gives X and Y which are constant locally on S, not

only on Slog). �
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3.7. From AS to HS

In this subsection, we prove the equivalence HS � AS by constructing

the inverse functor AS → HS .

3.7.1. Lemma. Let S be an fs log analytic space, let V be an fs log

analytic space over S, and let τ−1(V ) be the inverse image on (fs/S)log of

the sheaf V on (fs/S). Then we have an equivalence of topoi

{sheaf on τ−1(V )} � {sheaf on (fs/V )log}

defined as follows. Here the left category is the category of sheaves on the

site of objects (U, T ) of (fs/S)log endowed with a section of τ−1(V ) on (U, T ).

For a sheaf F on τ−1(V ), the corresponding sheaf on (fs/V )log is defined

by (U, T ) �→ F (U, T ), where we endow (U, T ) with the canonical section of

τ−1(V ) on (U, T ).

Proof. In general, let C be a site, let Z be a pre-sheaf on C, and

let Za be the associated sheaf on C. Let C/Z (resp. C/Za) be the site of

objects of C endowed with a section of Z (resp. Za). Then the evident

functor gives an equivalence of topoi

{sheaf onC/Za} 
→ {sheaf onC/Z}.

In the case C = (fs/S)log and Z is the presheaf represented by the pair

(V log, V ), we have Za = τ−1(V ) and C/Z = (fs/V )log. �

3.7.2. Let the notation be as in 3.7.1. Denote the structure morphism

V → S by f , and let

f log : {sheaf on τ−1(V )} � {sheaf on (fs/V )log} → {sheaf on (fs/S)log}

be the canonical morphism of topoi. We will often denote the derived functor

Rmf log
∗ by Hm(τ−1(V ), ). We regard it as the m-th cohomology sheaf of

the “space” τ−1(V ).

Let S be an fs log analytic space.

3.7.3. Proposition. Let H be an object of HS, and let A be the cor-

responding log complex torus over S. Then the exact sequence

0 → HZ→ UH → τ−1(A) → 0
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in 3.6.3 induces an isomorphism

Hom(HZ,Z)

→ Ext1(τ−1(A),Z).

Proof. Since the problem is local on S, we may assume that H comes

from an object (H,X, Y, e) of H̃S . Let (X,Y, 〈 , 〉) be the corresponding

pairing into Gm,log. Write Ψ = Hom(X,Gm,log)
(Y ). Then the exact sequence

0 → Hom (X,Z(1)) → Hom(X,L)(Y ) → τ−1(Ψ) → 0 gives a canonical

homomorphism X(−1) → Ext1(τ−1(Ψ),Z). By the exact sequence 0 →
Y → Ψ → A → 0, we have the lower exact sequence of the commutative

diagram on Slog

0 → Hom (Y,Z) → Hom(HZ,Z) → X(−1) → 0

‖ ↓ ↓
0 → Hom (Y,Z) → Ext1(τ−1(A),Z) → Ext1(τ−1(Ψ),Z) → 0.

Hence it is sufficient to prove that the map X(−1) → Ext1(τ−1(Ψ),Z) is an

isomorphism. We define the inverse map of it as follows. Let

T = Hom(X,Gm) ⊂ Ψ.

Then with the notation in 3.7.2, we have homomorphisms

Ext1(τ−1(Ψ),Z) → Ext1(τ−1(T ),Z) → H1(τ−1(T ),Z) � X(−1).

The composition X(−1) → Ext1(τ−1(Ψ),Z) → X(−1) coincides with

the identity map. Hence we are reduced to proving the injectivity of

Ext1(τ−1(Ψ),Z) → H1(τ−1(T ),Z).

Let U be an open set of Slog and let (fs/S)log
U be the full subcategory

of (fs/S)log consisting of all objects over (U, S), and let τ−1(Ψ)U be the

restriction of τ−1(Ψ) to (fs/S)log
U . Let 0 → Z → F → τ−1(Ψ)U → 0 be

an exact sequence whose extension class becomes 0 in H1(T log
U ,Z), where

T log
U = T log ×Slog U . It is sufficient to prove that this sequence splits locally

on U . We may work locally on S, and hence we may assume that there is an

fs monoid S, a pairing X × Y → Sgp, and a homomorphism S → MS/O×
S

such that the induced pairing X×Y →Mgp
S /O×

S coincides with the original

pairing X×Y → Gm,log modulo Gm. Fix a splitting s0 of the induced exten-

sion on T log
U . Let C be as in 3.4.2. By 3.5.4, τ−1(Ψ)U =

⋃
∆ τ−1(V (∆))U ,
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where ∆ ranges over all finitely generated subcones of C. Let ∆ be a

finitely generated subcone of C containing S∨ × {0}, and take a finitely

generated subcone ∆′ of C containing ∆ and satisfying the conditions in

3.5.6 (1). Then by 3.5.6 (1)(iii), the homomorphism H1(V (∆′)log
U ,Z) →

H1(V (∆)log
U ,Z) factors through H1(T log

U ,Z), the image of the extension class

in H1(V (∆)log
U ,Z) = H1(τ−1(V (∆))U ,Z) vanishes, and s0 induces a mor-

phism s∆ : τ−1(V (∆))U → F whose composite with F → τ−1(Ψ)U coincides

with the inclusion morphism τ−1(V (∆))U → τ−1(Ψ)U . This s∆ is indepen-

dent of the choice of ∆′. Then s∆’s for all ∆ are compatible and give a

morphism s : τ−1(Ψ)U =
⋃

∆ τ−1(V (∆))U → F . Replacing s by s − s(e),

where e is the unit section of τ−1(T )U , we may assume s(e) = 0. We prove

that s is a homomorphism. In fact, h : τ−1(Ψ)U × τ−1(Ψ)U → F ; (x, y) �→
s(x + y) − s(x) − s(y) has values in Z and is zero on the unit section. We

prove h = 0. For each ∆, by taking a big ∆′ as above, we see that h induces

the zero map on τ−1(V (∆))U × τ−1(V (∆))U . This shows h = 0. �

3.7.4. Proposition. Let A be a log complex torus over an fs log ana-

lytic space S. Then:

(1) Ext1(τ−1(A),Z) is a locally constant sheaf of finitely generated free

abelian groups on (fs/S)log.

(2) Define HZ = HomZ(Ext1(τ−1(A),Z),Z). If A = Ext1(Z, H ′) for an

object H ′ of HS, we have a canonical isomorphism HZ � H ′
Z.

(3) Define HO = τ∗(Olog
S ⊗ZHZ). Then the OS-module HO is locally free

of finite rank, and

Olog
S ⊗OS

HO

→ Olog

S ⊗ZHZ.

Proof. By 3.6.5 (3), A comes from HS locally on S.

To prove (1), we may work locally on S and hence we may assume that

A comes from HS . Then (1) was shown in 3.7.3.

(2) is clear from the construction.

To prove (3), we may work locally on S and we may assume that A

comes from an object H ′ of HS . Then HZ � H ′
Z and (3) is evidently true if

we replace HZ by H ′
Z. �

3.7.5. Let A be a log complex torus over an fs log analytic space S,
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and let HZ be as in 3.7.4. Then

Ext1(τ−1(A), HZ) � Ext1(τ−1(A),Z)⊗ZHZ � Hom(HZ,Z)⊗ZHZ

� HomZ(HZ, HZ)

and we have a canonical element of Ext1(τ−1(A), HZ) corresponding to the

identity of HZ. The exact sequence

0 → HZ→ UA → τ−1(A) → 0

corresponding to this element is defined up to canonical isomorphisms be-

cause

Hom(τ−1(A), HZ) = 0

as is shown below.

If A comes from H ′, then UA is identified with UH′ in 3.6.3.

We prove Hom(τ−1(A), HZ) = 0. Since Hom(τ−1(A), HZ) �
Hom(τ−1(A),Z)⊗HZ, it is sufficient to prove Hom(τ−1(A),Z) = 0. Hence

it is sufficient to prove Hom(τ−1(Ψ),Z) = 0 with Ψ = Hom(X,Gm,log)
(Y )

for a non-degenerate pairing X × Y → Gm,log. By using τ−1(Ψ) =⋃
∆ τ−1(V (∆)) and taking a big ∆′ for each ∆, we can prove it by arguments

as in the proof of 3.7.3.

3.7.6. To complete the definition of AS → HS , we need preparations

on Lie.

For an fs log analytic space S and for a sheaf of groups F on (fs/S)log,

let Lie(F ) be the sheaf of groups on (fs/S)log defined as follows. For an

object (U, T ) of (fs/S)log,

Lie(F )(U, T ) = Ker (F (U, T [ε]/(ε2)) → F (U, T )),

where T [ε]/(ε2) is as in 1.3.11.

We have Lie(τ−1(A)) = τ−1(Lie(A)).

3.7.7. Proposition. Let A and UA be as above. Then there is a unique

homomorphism of sheaves of groups

. : UA → Olog
S ⊗OS

Lie(A)
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such that Lie(.) : Lie(UA) → Lie(Olog
S ⊗OS

Lie(A)) = Olog
S ⊗OS

Lie(A) is the

homomorphism induced by the canonical isomorphism Lie(UA) → Lie(A).

Proof. We first prove the uniqueness of .. We may assume that

A comes from an object (H ′, X, Y, e) of H̃S . Then UA � Hom(X,L)(Y ).

Any . must coincide on Hom(X,OS). Hence it is sufficient to prove that

any homomorphism Hom(X,L)(Y )/Hom(X,OS) → Olog
S is zero. Since

Hom(X,L)(Y )/Hom(X,OS) = τ−1(Ψ/T ) and τ∗(Olog
S ) = OS , we are re-

duced to proving that any homomorphism h : Ψ/T → OS is zero. Since

OS,s for s ∈ S injects to the inverse limit of OS,s/mn
sOS,s, we can replace

S by the fs log analytic space whose underlying set is {s}, whose sheaf of

rings is OS,s/mn
S,s, and whose log structure is the inverse image of that of

S. Hence we may assume that the underlying set of S is a one point set

{s}. Since Ψ =
⋃

∆ V (∆), it is sufficient to prove that the composition

V (∆) → Ψ/T → OS is zero for each finitely generated subcone ∆ of C.

Take ∆′ for which the morphism of analytic spaces V (∆) → V (∆′) fac-

tors through V (∆) → Tσ(s) (3.5.6 (2)). Since T → Ψ/T → OS is zero,

Tσ(s) → OS is also zero. Hence V (∆) → OS is zero.

We prove the existence of .. By the uniqueness, we may work locally

on S and hence we may assume that A comes from an object (H ′, X, Y, e)
of H̃S . In this case, UA is identified with Hom(X,L)(Y ), and Lie(UA) =

Hom(X,OS) and Olog
S ⊗OS

Lie(UA) = Hom(X,Olog
S ). Then we have the

existence of ., which is the canonical map induced by the inclusion L →
Olog
S . �

3.7.8. Let A be a log complex torus over an fs log analytic space S, and

define HZ and HO be as above. We define a canonical OS-homomorphism

HO → Lie(A). The homomorphism . in 3.7.7 induces Olog
S ⊗Z HZ →

Olog
S ⊗OS

Lie(A). (We omitted τ−1 on the right hand side.) By applying τ∗,

we obtain HO → Lie(A) because τ∗(Olog
S ) = OS .

3.7.9. Proposition. Let A be a log complex torus over an fs log ana-

lytic space S, and define HZ, HO, and HO → Lie(A) as above.

(1) The homomorphism HO → Lie(A) is surjective.

(2) If A comes from an object H ′ of HS (then H ′
O = HO), the kernel of

HO → Lie(A) coincides with F 0H ′
O.
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(3) Define F pHO = HO if p ≤ −1, F 0HO = Ker (HO → Lie(A)), and

F pHO = 0 for p ≥ 1. Then H becomes an object of HS.

Proof. (1), (2) and (3) are shown by assuming that A comes from

an object H ′ of HS . In this case HZ = H ′
Z and HO = H ′

O. It suffices to

show that H ′
O → Lie(A) induces an isomorphism H ′

O/F
0H ′

O
∼=−→ Lie(A).

By the definition of ., HO → Lie(A) kills F 0H ′
O. Further, the com-

posite Hom(X,OS) � H ′
O/F

0H ′
O → Lie(A) is an isomorphism. Hence

H ′
O/F

0H ′
O → Lie(A) is an isomorphism. �

3.7.10. Now we prove the equivalence HS

−→ AS . We have defined a

functor AS → HS above. It is clear that the composite HS → AS → HS is

isomorphic to the identity functor. Since any object of AS comes from HS

locally on S, this shows that AS → HS is fully faithful. Hence HS → AS
and AS → HS are equivalences of categories.

3.7.11. We have a commutative diagram of categories

H̃S � ÃS
↓ ↓
HS � AS .

3.7.12. Remark. Let H∗
S be the category of log Hodge structures of

weight 1 over S satisfying F 0HO = HO and F 2HO = 0. Then we have an

anti-equivalence between HS and H∗
S given by the Z-dual. By composing

with the equivalenceHS � AS , we have an anti-equivalence betweenH∗
S and

AS . It is given by H∗
S → AS ;H �→ Ext1(H,Z), and the inverse functor A �→

H has the property HZ = Ext1(τ−1(A),Z). Here is a beautiful symmetry

between H �→ Ext1(H,Z) and A �→ Ext1(τ−1(A),Z).

3.8. The dual log complex tori and polarizations

Here we define the dual log complex torus of a log complex torus, we

define and consider a polarization of a log complex torus, and then prove

the equivalence A+
S � H+

S in 3.1.5.

Let A be a log complex torus over an fs log analytic space S.

3.8.1. We define the dual log complex torus A∗ of A as follows. Let

H be the log Hodge structure of weight −1 corresponding to A, and let H∗
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be the Z-dual of H (so H∗ is of weight 1). Then A∗ is defined to be the log

complex torus corresponding to the twist H∗(1) of H∗.

3.8.2. We define a polarization of a log complex torus as a homomor-

phism p : A→ A∗ corresponding to a polarization H → H∗(1) in the sense

of 2.5.1.

In 3.8.10, we will give a criterion on a homomorphism p : A→ A∗ to be

a polarization, not going to the log Hodge side but staying in the geometric

side.

3.8.3. Let (X,Y, 〈 , 〉) be an object of ÂS , that is, a pairing 〈 , 〉 :

X × Y → Gm,log.

We call the object (Y,X,t 〈 , 〉) the dual of (X,Y, 〈 , 〉). Here t〈 , 〉 is the

transpose of 〈 , 〉, that is, the pairing Y ×X → Gm,log; (y, x) �→ 〈x, y〉. Via

the equivalence ÂS � ĤS , this duality in ÂS corresponds to the duality

(H,X, Y, e) �→ (H∗(1), Y,X, e∗(1)) in ĤS , where e∗(1) denotes the exact

sequence 0 → Hom(Y,Z(1))
i→ H∗

Z(1) → X → 0. Here the injection i is

−1 times of the canonical one. Hence in the case (X,Y, 〈 , 〉) belongs to

ÃS and A is the associated log complex torus, A∗ is the log complex torus

associated to (Y,X,t 〈 , 〉).

3.8.4. Proposition. Let (X,Y, 〈 , 〉) be an object of ÂS, and let

(H,X, Y, e) be the corresponding object of ĤS. Let p : Y → X be a

homomorphism such that 〈p(y), z〉 = 〈p(z), y〉 for all y, z ∈ Y , and let

pH : (H,X, Y, e) → (H∗(1), Y,X, e∗(1)) be the morphism of ĤS correspond-

ing to the morphism (X,Y, 〈 , 〉) → (Y,X,t 〈 , 〉) in ÂS induced by p. Then

p is a polarization (1.2.7) if and only if pH : H → H∗(1) is a polarization.

Remark. The homomorphism p having the above symmetry corre-

sponds bijectively to an anti-symmetric homomorphism H ⊗ H → Z(1)

which kills Hom(X,OS) × Hom(X,OS). Thus a polarization of a pair-

ing corresponds bijectively to a polarization H ⊗ H → Z(1) which kills

Hom(X,OS)×Hom(X,OS).

3.8.5. Corollary. For an object of ÃS, and for p as above, p is a

polarization if and only if the induced homomorphism A → A∗ is a polar-

ization, where A is the associated quotient.
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We first prove

3.8.6. Lemma. Proposition 3.8.4 is true in the case where S is Spec(C)

with the trivial log structure.

Proof. Let (X,Y, 〈 , 〉) be a pairing into C× and let p : Y → X be

a homomorphism such that 〈p(y), z〉 = 〈p(z), y〉 for all y, z ∈ Y . We prove

that p is a polarization if and only if pH is a polarization. Recall that pH is

a polarization if and only if the Hermitian form c : (f1, f2) �→ pH(f1⊗ f̄2) on

F 0HC is positive definite. As is shown below, c coincides with the composite

F 0HC× F 0HC→ C⊗Z Y × C⊗Z Y → C,

where the last arrow is (u ⊗ y, v ⊗ z) �→ 2uv̄b(p(y), z) and b is the pairing

R ⊗ZX × R ⊗Z Y → R in 3.3.8. Hence c is positive definite if and only if

b(p(−),−) is positive definite.

We prove the above description of c by b.

Let hj ∈ HZ (j = 1, 2) and write hj = fj + gj with fj ∈ F 0HC and

gj ∈ Hom (X,C). Let yj be the image of hj in Y . Then for x ∈ X,

b(x, yj) = −+(gj(x)). From this, we obtain b(p(y1), y2) = −+(g2(p(y1))).

On the other hand, by using pH(f1, f2) = 0 and by using the fact that

Hom (X,C) is orthogonal to itself with respect to the pairing pH , we have

pH(f1, f̄2) = pH(f1, f̄2 − f2) = pH(h1 − g1, g2 − ḡ2)

= pH(h1, g2 − ḡ2) = −(g2 − ḡ2)(p(y1)) = −2+(g2(p(y1))). �

We consider the general case of 3.8.4. Note that by 1.2.8 and 3.8.6, we

may assume that the local monodromy of HQ is admissible. We may assume

further that S = {s} is an fs log point. By 3.8.6 applied to gr
W (C(s))
−1 , p is a

polarization if and only if H with pH is a polarized mixed Hodge structure

with respect to W (C(s)) in the sense of Cattani-Kaplan-Schmid [7]. By the

theorem [7] (4.66), the last condition is equivalent to that it generates a

nilpotent orbit, and hence, by [19] Proposition 2.5.5, equivalent to that it is

a polarized log Hodge structure. Thus 3.8.4 is proved.

3.8.7. Lemma. A polarization on an object of HS comes, locally on S,

from a polarization of a pairing into Gm,log.
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Proof. We have to show that for any object H of HS and any polar-

ization p on it, locally over the base, there is (X,Y, e) such that (H,X, Y, e)

belongs to H̃S and such that p killsHom(X,OS)×Hom(X,OS) (cf. Remark

after 3.8.4). It is shown in the same way as in the proof of 3.6.5. In fact,

at a point of S, consider W−1 and W−2 of the weight filtration associated

to the whole monodromy cone. Then the intersection form on HZ induces

an anti-symmetric Q-bilinear form on W−1/W−2. Take a totally isotropic

subspace V of W−1/W−2 whose dimension is the half of that of W−1/W−2.

Let V ′ be the inverse image of V in HQ and let X = Hom (V ′ ∩HZ,Z(1)),

Y = HZ/(HZ∩V ′). Then we have an exact sequence 0 → Hom (X,Z(1)) →
HZ→ Y → 0 and p kills Hom(X,OS)×Hom(X,OS). �

3.8.8. By 3.8.4 and by 3.8.7, we see that the equivalence HS � AS
induces an equivalence H+

S � A+
S . We also see that in this equivalence, an

object of A+
S is locally polarizable in the sense of 1.3.9 if and only if the

corresponding object of H+
S is locally polarizable.

3.8.9. To state the next proposition, we make some preliminaries.

Assume that the underlying space of the base S is {s} = Spec C. Let

S = MS,s/O×
S,s. Then to a log complex torus A over S, we associate

finitely generated free abelian groups XA and YA, the canonical pairing

(XA, YA, 〈 , 〉A) into Sgp, and the abelian variety B over C as follows. Let

(X,Y, 〈 , 〉) be a non-degenerate pairing such that A is its associated quo-

tient. Let σ = {1} be the minimal face of S. Let XA := X/Xσ, YA := Y/Yσ,

〈 , 〉A the induced pairing, and B := Hom (Xσ,C
×)/Yσ.

These definitions are independent of choices of pairings. We will prove

this fact in the proof of the next proposition together with the fact that a

homomorphism A → A∗ induces homomorphisms B → B∗ and YA → XA

naturally.

3.8.10. Proposition. Let A be a log complex torus over S. A ho-

momorphism p : A → A∗ is a polarization if and only if its pull back to

any s ∈ S is a polarization. When the underlying analytic space of S is

Spec C = {s}, p is a polarization if and only if the induced B → B∗ is

a polarization in the usual sense, and the induced YA → XA satisfies the

condition that for any y ∈ YA − {1}, 〈p(y), y〉A ∈MS,s/O×
S,s − {1}.
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Proof. First we prove the statements before the proposition. Let the

base be an fs log point.

Let H be the log Hodge structure of weight −1 corresponding to A.

Then

YA = HZ/(HZ∩W (C(s))−1HQ) = HZ/τ
−1τ∗HZ,

XA = Hom (HZ∩W (C(s))−2HQ,Z(1)) = (H∗
Z/τ

−1τ∗H
∗
Z)(1),

and B is the abelian variety corresponding to the (classical) Hodge structure

induced on gr
W (C(s))
−1 H. This shows the statements before the proposition.

Now we prove the proposition. The former statement is clear. For the

latter, we take p0 : Y → X satisfying 〈p0(y), z〉 = 〈y, p0(z)〉 for any y, z ∈ Y

which induces p. This is seen possible as in the proof of 3.8.7. By 3.8.4, it

is enough to show that p0 is a polarization if and only if p1 : Yσ → Xσ is a

polarization and p2 : YA = Y/Yσ → X/Xσ = XA satisfies

(∗) For any y ∈ Y/Yσ − {1}, 〈p2(y), y〉A ∈MS,s/O×
S,s − {1}.

We prove the if part. First note that (∗) implies that p2 is injective.

Since rankY = rankX and rankYσ = rankXσ, this implies that p0 is

injective and its cokernel is finite. Let y ∈ Y − {1}. If y &∈ Yσ, then (∗)
implies 〈p(y), y〉 ∈ MS,s −O×

S,s and the canonical map α : MS → OS sends

〈p(y), y〉 to 0. Otherwise, 〈p(y), y〉 ∈MS,s and |α(〈p(y), y〉)| < 1 because p1

is a polarization.

We prove the only if part. It is clear that if p0 is a polarization, then p1

is a polarization. If 〈p(y), y〉 ∈ O×
S,s, then y ∈ Yσ by 3.4.5 (4). �

3.8.11. Remark. By 3.8.7, at least locally on the base, a polarization

of A comes from a polarization of a pairing into Gm,log.

3.8.12. Remark. As we will see in a forthcoming paper ([13] Theorem

6.1), the expression of the dual complex torus A∗ � Ext1(A,Gm) in the

usual algebraic geometry has the log version

Ext1(A,Gm) ⊂ A∗ ⊂ Ext1(A,Gm,log)

for the dual log complex torus A∗ of a log complex torus A.
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3.9. Extensions from open sets

As an application of main results in this section, here we discuss when

a log complex torus or a log abelian variety on an open subspace of a log

smooth fs log analytic space can extend to the ambient space.

3.9.1. Proposition. Let S be a log smooth fs log analytic space. Let

Striv be the largest open subspace where the log structure is trivial. Then

the restriction to Striv gives a fully faithful functor from the category of log

complex tori on S to the category of complex tori on Striv.

Proof. We consider the Hodge side via 3.1.5. The local system on

Striv extends uniquely to Slog. If a homomorphism HZ → H ′
Z preserves

the Hodge filtration after restricted to U = Striv, it preserves the filtration

because H ′
O/F

′0 → j∗((H ′
O/F

′0)|U ) is injective. Here j : U ↪→ S is the

inclusion. �

3.9.2. Proposition. A polarized abelian variety on Striv with unipo-

tent local monodromy extends to a polarized log abelian variety on S. Here

we say the local monodromy is unipotent when the extension to Slog of the

corresponding local system HZ has the unipotent local monodromy.

Again via 3.1.5, this follows from the nilpotent orbit theorem of W.

Schmid ([32]) on the Hodge side. See [15] 2.4 and 2.5 for the details.

3.9.3. Example of a complex torus on (∆∗)2 which does not extend to

a log complex torus over ∆2.

Let S = ∆2 with the coordinate functions q1, q2, endowed with the log

structure by the divisor {q1 = 0} ∪ {q2 = 0}. Let X = Y = Z2. Let

〈 , 〉 : X × Y → Gm,log be the pairing defined by 〈e1, e1〉 = 1, 〈e1, e2〉 = q1,

〈e2, e1〉 = q1, 〈e2, e2〉 = q2. Let σ be the face of MS,0/O×
S,0 generated by the

image of q1. Then Xσ is generated by e1 and Yσ is also generated by e1, and

the restriction of 〈 , 〉 to Xσ × Yσ is trivial (cf. 1.2.3). Hence the induced

pairing into Gm,log/Gm is not admissible.

On (∆∗)2, it gives a complex torus. This is because the matrix(
0 log(|q1|)

log(|q1|) log(|q2|)

)
has determinant < 0 on (∆∗)2 since |q1| < 1 there.

This complex torus on (∆∗)2 can not extend to a log complex torus over

∆2.
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3.10. Liftings from closed sets

Here we prove that a log complex torus or a locally polarizable log

abelian variety on a closed subspace of an fs log analytic space can lift to

the ambient space at least locally.

3.10.1. Proposition. Let S be an fs log analytic space. Then the ad-

missibility of a given pairing into Gm,log/Gm over S and the non-degener-

ation of a given pairing into Gm,log over S are open conditions.

Proof. The former is by 1.2.9.

Let (X,Y, 〈 , 〉) be a pairing into Gm,log and assume that its pull back

to a point s ∈ S is non-degenerate. We prove that the pull backs to the

points z near s are also non-degenerate. By the former, we may assume

that the induced pairing into Gm,log/Gm is admissible. We may assume

that there is a chart β : S →MS such that S →MS,s/O×
S,s is bijective. Let

σ be a face of S. It is enough to show that there exists a neighborhood

U of s such that for any z ∈ U ∩ {z |β−1(O×
S,z) = σ}, the pairing f(z) :=

− log |〈 , 〉(z)| : R ⊗ Xσ × R ⊗ Yσ → R is non-degenerate. We may assume

that σ = S because the induced pairing Xσ × Yσ → Gm,log,S′ is also non-

degenerate at s, where S′ is the fs log analytic space whose underlying

space is the same as S and whose log structure is given by σ. Denote by

〈 , 〉1 : X × Y → Mgp
S,s/O×

S,s
∼= Sgp ↪→ Mgp

S the induced pairing and by

〈 , 〉2 : X × Y → O×
S the pairing such that 〈 , 〉 = 〈 , 〉1 · 〈 , 〉2. Then we have

f(z) = − log |〈 , 〉1(z)| − log |〈 , 〉2(z)|.
Now for each z ∈ Striv, we have a homomorphism z : S → C×. Write

as N ′(z) the induced homomorphism − log(| |(z)) : Sgp → R. Then

− log |〈 , 〉1(z)| coincides with the pairing X×Y →Mgp
S,s/O×

S,s
∼= Sgp N ′(z)−→ R.

Take a set of generators (N ′
j)1≤j≤n of the monodromy cone C(s) and denote

by Nj (1 ≤ j ≤ n) the induced pairing X × Y → Mgp
S,s/O×

S,s

N ′
j−→ R. Then,

since the N ′(z) for z near s is written as
∑

yjN
′
j for y1, · · · , yn 0 0, the

− log |〈 , 〉1(z)| for z near s is written as
∑

yjNj for y1, · · · , yn 0 0.

On the other hand, take a compact set B of pairings R⊗X×R⊗Y → R

satisfying the following conditions (i) and (ii).

(i) The restriction R ⊗ X{1} × R ⊗ Y{1} → R of each member of B is

non-degenerate.

(ii) For each z near s, the pairing − log |〈 , 〉2(z)| belongs to B.
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Such a B exists because the pairing R ⊗X{1} × R ⊗ Y{1} → R induced

by − log |〈 , 〉2(s)| is non-degenerate by the assumption.

Let fb(y1, · · · , yn) = b+
∑

yjNj , where b ∈ B and y1, · · · , yn > 0. Then

the f(z) for z near s is fb(y1, · · · , yn) for some b ∈ B and y1, · · · , yn 0 0.

Now the rest is to show that there exists C > 0 such that if yj > C (1 ≤ j ≤
n) and b ∈ B, then fb(y1, · · · , yn) is non-degenerate; the same proof as that

for the statement before 3.3.15, which can be regarded as a special case of the

above statement where B consists of a single pairing, works for it. In fact,

let α ∈ [0, 1]n with αn = 0 and write as gb(y1, · · · , yn) and gα,b the pairings

defined from b,N1, · · · , Nn exactly in the same way as g(y1, · · · , yn) and gα
are defined from ba, N1, · · · , Nn in 3.3.15 and 3.3.16. Then fb(y1, · · · , yn)
is non-degenerate if and only if gb(y1, · · · , yn) is non-degenerate. Further,

gα,b is non-degenerate. (The proofs are the same.) In the following, taking

bases of X and Y , we regard Hom (X ⊗ Y,R) as a metric space. Since B is

compact, we easily see that gb(y1, · · · , yn) converges to gα,b uniformly with

respect to b ∈ B when (yj+1/yj)1≤j≤n converges to α. Since {gα,b | b ∈ B} is

also compact, we see then that there exists a neighborhood Uα of α in [0, 1]n

such that fb(y1, · · · , yn) is non-degenerate for any b ∈ B and yj (1 ≤ j ≤ n)

such that (yj+1/yj)1≤j≤n ∈ Uα, where yn+1 denotes 1. From this, we have

the desired C > 0. �

3.10.2. Proposition. Let S be an fs log analytic space. Let (X,Y, 〈 , 〉)
be a pairing into Gm,log over S. Let p : Y → X be a homomorphism satis-

fying the conditions (i) and (ii) in the definition of polarization of a pairing

into Gm,log,S in 1.2.7. Then (iii) in 1.2.7 for p is an open condition.

Proof. The proof is similar to the previous one. Assume that p is a

polarization at s and prove that it is so near s. Take β and σ as before. If

y ∈ Y −Yσ, then 〈p(y), y〉 ∈ S−σ (the proof of 3.4.5 (4)), and |α(〈p(y), y〉)| =
0 on Sσ := {z |β−1(O×

S,z) = σ}. Hence it is enough to show that there

exists a neighborhood U of s such that for any z ∈ U ∩ Sσ, the pairing

f(z) := − log |〈 , 〉(z)| is positive definite after composed with p × id. We

may assume that σ = S. (Note that p induces Yσ → Xσ by (1) in the proof

of 1.2.5.) Let 〈 , 〉1, 〈 , 〉2, N1, · · · , Nn, and B be also as in the proof of

the previous proposition. In this time, we may assume that the restrictions

R⊗X{1} × R⊗ Y{1} → R of the members of B are positive definite. (Here

and hereafter we identify XR and YR via p.) Now the rest is to show that
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b +
∑

yjNj is positive definite for any b ∈ B and y1, · · · , yn 0 0. Fix

y0 ∈ YR. Since YR/R
× is compact, it is enough to show that there exists a

neighborhood V of y0 such that (b +
∑

yjNj)(y, y) > 0 for y ∈ V , b ∈ B

and y1 · · · , yn 0 0. Assume first that y0 &∈ Y{1}. Then, by the assumption,

(
∑

Nj)(y0, y0) > 0. Hence for some j, there exists a neighborhood V of y0

such that Nj(y, y) > 0 for y ∈ V . Since B is compact, this V is sufficient.

In case y0 ∈ Y{1}, the value b(y0, y0) is positive. Again by the compactness

of B, we can find a V such that b(y, y) > 0 for y ∈ V and b ∈ B. �

3.10.3. Proposition. Let S ⊂ T be an exact closed immersion of fs

log analytic spaces. Let A be a log complex torus (resp. a locally polarizable

log abelian variety) over S. Then for each s ∈ S, there exists an open

neighborhood U of s in T such that the restriction of A to U ∩ S extends to

a log complex torus (resp. a polarizable log abelian variety) over U .

Proof. On an open neighborhood V of s in S, take a pairing

(X,Y, 〈 , 〉) into Gm,log,S which induces A|V . If A is locally polarizable,

we may assume that there is a polarization p : Y → X on A|V . Since

Mgp
T,s →Mgp

S,s is surjective, there is an open neighborhood U ′ of s in T such

that U ′ ∩ S ⊂ V and a lifting 〈 , 〉 : X × Y → Gm,log,U ′ of 〈 , 〉|U ′∩S . If

A is locally polarizable, we may also assume that p satisfies the conditions

(i) and (ii) in 1.2.7 on U ′. Then the quotient associated to (X,Y, 〈 , 〉) is

a log complex torus (resp. a polarizable log abelian variety) in an open

neighborhood U of s in U ′. This follows from 3.10.1 (resp. 3.10.2). �

4. Moduli of Log Abelian Varieties

The aim of this section is to prove that the toroidal compactifications

and the Satake-Baily-Borel compactifications of the moduli spaces over C

of abelian varieties (with additional structures) are moduli spaces of log

abelian varieties (with additional structures).

These compactifications were constructed, not necessarily as moduli

spaces. Here we have moduli interpretations of these compactifications.

We prove that the toroidal compactifications are the fine moduli of polar-

ized log abelian varieties (with additional structures) (Theorem 4.4.4) and

the Satake-Baily-Borel compactifications are, in a sense, the coarse mod-

uli (Theorem 4.6.3, 4.6.4, 4.6.5, cf. 4.6.10, 4.7.8). The subsequent Parts of
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this series of papers will mainly concern the algebraic theory of log abelian

varieties. There we will prove the arithmetic versions of the above results,

which are closely related to the works [10], [11] (cf. 4.1.10).

The result for the Satake-Baily-Borel compactifications is reduced to

that for the toroidal compactifications. For the latter, we have two proofs.

One proof is as follows. In [19], moduli spaces of polarized log Hodge struc-

tures were studied. In particular, [19] contains the corresponding result that

the toroidal compactifications are the fine moduli of polarized log Hodge

structures of a specific Hodge type. We can deduce from this the result in

this section on the relation between toroidal compactifications and moduli

of log abelian varieties, through the equivalence proved in §3 between the

category of log abelian varieties and the category of log Hodge structures

of the specific Hodge type (cf. 4.1.9). This is one proof. But, actually, we

give another, direct proof in this section by using only basic properties of

log abelian varieties, not via [19].

4.1. Introduction to §4
In this subsection, to present the pictures of our ideas and results, we

first introduce the results of this section, for simplicity, in a special case (the

case of principal polarization, standard level structures, with no coefficient

ring of endomorphisms), and then describe the organization of this section.

The general results and the proofs are given in later subsections.

4.1.1. Let g ≥ 1 and let Hg be the Siegel upper half space of de-

gree g consisting of all complex symmetric (g, g)-matrices whose imaginary

parts are positive definite. The group Sp (2g,R) of real symplectic (2g, 2g)-

matrices acts on Hg.

For n ≥ 1, let

Γ(n) = Ker (Sp (2g,Z) → Sp (2g,Z/nZ)).

Then the toroidal compactifications (Mumford compactifications) of

Γ(n) \Hg ([3], [5], [25]), which we denote by D̄g,n,Σ, and the Satake-Baily-

Borel compactification of Γ(n) \Hg ([31]), which we denote by D̄g,n, are

defined. They are compact normal analytic spaces containing Γ(n) \Hg as

an open analytic subspace. The toroidal compactifications D̄g,n,Σ are de-

fined depending on choices of admissible cone decomposition Σ ([3], cf. 4.7.1)

of the space of semi-positive definite real symmetric (g, g)-matrices. In the
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case g = 1, Σ is unique, D̄1,n,Σ = D̄1,n, and this space is the modular curve

with cusps corresponding to Γ(n) which is the unique compactification of

Γ(n) \H1. For g ≥ 2, there are many Σ. There is a canonical surjective

morphism D̄g,n,Σ → D̄g,n which is not an isomorphism, and which induces

the identity morphism on Γ(n) \Hg.

4.1.2. As is well-known, for n ≥ 3, the quotient analytic space

Γ(n) \Hg is the fine moduli space of principally polarized abelian varieties

of dimension g with n-level structures, as we will state more precisely soon.

By using the group structures of log abelian varieties, we can general-

ize the notions principal polarization and n-level structure, to log abelian

varieties, as follows.

Let S be an fs log analytic space and let A be a log abelian variety over

S.

A polarization p : A → A∗ of A is called a principal polarization if p is

an isomorphism.

For n ≥ 1, an n-level structure on A is an isomorphism nA � (Z/nZ)2g

of sheaves of abelian groups, where nA = Ker (n : A→ A) and g = dim(A).

4.1.3. Let (an) be the category of analytic spaces. For n ≥ 1, let

Φg,n : (an) → (Set)

be the following contravariant functor. For an analytic space S, Φg,n(S)

is the set of isomorphism classes of triples (A, p, l), where A is an abelian

variety over S, p is a principal polarization of A, and l is an n-level structure

of A satisfying the following condition (i).

(i) The composition

nA× nA
1×p−→ nA× n(A

∗) → (Z/nZ)(1),

where the last arrow is the Weil pairing, is compatible via l with the standard

symplectic pairing (Z/nZ)2g × (Z/nZ)2g → (Z/nZ)(1) which sends (ej , ek)

to 2πi mod nZ(1) if k = j − g, to −2πi mod nZ(1) if k = j + g, and to 0

otherwise.

As is said in the above, if n ≥ 3, Φg,n is represented by Γ(n) \Hg.
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Let (fs) be the category of fs log analytic spaces. For n ≥ 1, we denote

the composition

(fs) → (an)
Φg,n−→ (Set),

where the first arrow is forgetting the log structure, by the same letter Φg,n.

Then, for n ≥ 3, this Φg,n is represented by Γ(n) \Hg with the trivial log

structure.

For n ≥ 1, let

Φ̄g,n : (fs) → (Set)

be the following contravariant functor. For an fs log analytic space S,

Φ̄g,n(S) is the set of isomorphism classes of triples (A, p, l), where A is a

log abelian variety over S, p is a principal polarization of A and l is an

n-level structure on A satisfying the same condition (i) as above. (See 4.4.2

for the definition of the Weil pairing on a log abelian variety.)

We have

Φg,n ⊂ Φ̄g,n.

4.1.4. We endow D̄g,n,Σ and D̄g,n with the log structures consisting

of all holomorphic functions which are invertible on Γ(n) \Hg. If g ≥ 2,

the log structure of D̄g,n is trivial because the complement of Γ(n) \Hg is

of codimension ≥ 2. On the other hand, the complement of Γ(n) \Hg in

D̄g,n,Σ is a divisor, the log structure of D̄g,n,Σ is not trivial, and D̄g,n,Σ is a

log smooth fs log analytic space.

If g = 1 and n ≥ 3, Φ̄1,n is represented by the unique compactification

D̄1,n of Γ(n) \H1, the modular curve of full level n structure with cusps. If

g ≥ 2, Φ̄g,n is not representable but still it is closely related with D̄g,n as in

the following theorem, which is a rough version of the result in 4.6. See 4.6

for the precise formulation. Cf. 4.6.10, 4.7.8 for a discussion about coarse

moduli spaces.

4.1.5. Theorem. For g, n ≥ 1, endow D̄g,n with the log structure as

above. Then the fs log analytic space D̄g,n is described in terms of Φ̄g,n.

Further, D̄g,n is the universal one among all Hausdorff fs log analytic spaces

endowed with a morphism from Φ̄g,n.
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4.1.6. Next, fix an admissible cone decomposition Σ of the space of

semi-positive definite real symmetric (g, g)-matrices. Then we have a sub-

functor Φ̄g,n,Σ of Φ̄g,n for each n ≥ 1 such that

Φg,n ⊂ Φ̄g,n,Σ ⊂ Φ̄g,n.

By definition, the class of a triple (A, p, l) in Φ̄g,n(S) belongs to Φ̄g,n,Σ(S)

if and only if the pull back of (A, p, l) to (fs/s) for any s ∈ S satisfies the

following condition (i). (When this condition is satisfied, we say that the

local monodromies of A are in the direction of Σ. See 4.1.9 below.)

(i) (A, p) comes from a polarized object (Y0, Y0, 〈 , 〉) in Ãs (〈 , 〉 : Y0 ×
Y0 → Gm,log,s, the identity map id : Y0 → Y0 is assumed to be a polarization)

such that there exists σ ∈ Σ having the following property: For any N in

the monodromy cone C(s), the composition

Y0 × Y0 →Mgp
S,s/O×

S,s
N→ R

belongs to σ. (See 3.3.1 for Ãs.)

4.1.7. Theorem. Endow D̄g,n,Σ with the log structure as in 4.1.4. If

n ≥ 3, Φ̄g,n,Σ is represented by D̄g,n,Σ.

4.1.8. We can generalize this theorem to the case of non-principal po-

larization, a Γ-level structure, and to the case with a fixed ring of endo-

morphisms. Note that since log abelian varieties have group structures, the

notion of homomorphism between log abelian varieties and the notion of

endomorphism are defined. The main result is stated in 4.4.4.

4.1.9. As is said before, we can easily reduce this 4.4.4 to a part of

[19] via the equivalence proved in §3. As an illustration, we give here a

proof of the special case 4.1.7. First we remark that the condition (i) in

4.1.6 is equivalent to the following condition (i′), which says that the local

monodromy of the corresponding log Hodge structure to A is in the direction

of Σ. Let (H, pH) be the polarized log Hodge structure over s corresponding

to (A, p).

(i′) There exist σ ∈ Σ and a surjection f : HZ→ Y0 of local systems on

τ−1(s) satisfying the following conditions (a) and (b).
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(a) The kernel L of f is contained in W−1HZ, contains W−2HZ and

satisfies pH(L,L) = 0.

(b) For any γ ∈ C(s), the pairing Y0 × Y0 → R induced via f by

HZ×HZ→ R ; (h1, h2) �→
1

2πi
pH(Nγ(h1), h2)

belongs to σ. Here Nγ is the logarithm of the action of γ.

Let w = −1, h−1,0 = h0,−1 = g, hp,q = 0 if (p, q) &= (−1, 0), (0,−1), H0 =

Z2g, and let 〈 , 〉0 be the non-degenerate and anti-symmetric pairing on

H0 defined by the matrix

(
0 −1g
1g 0

)
. Then [19] shows that the functor

associating, with each S ∈ (fs), the isomorphism classes of PLH on S of

type (w, (hp,q)p+q=w, H0, 〈 , 〉0,Γ(n),Σ) is represented by D̄g,n,Σ. By the

equivalence of (i) and (i′) remarked above, this functor coincides with Φ̄g,n,Σ
via our 3.1.5. This completes the proof of 4.1.7.

As is said before, in the following in this section, we give a direct proof

for the general case 4.4.4 including 4.1.7 without appealing to [19].

4.1.10. Toroidal compactifications of moduli spaces of abelian varieties

over schemes were constructed by Faltings and Chai [10]. The theory for

abelian varieties with coefficients was established in Fujiwara’s work [11].

In the sequel of this paper, we will give interpretations of their compactifi-

cations as the moduli spaces of log abelian varieties. (See [1], [23], [30] for

other moduli interpretations.)

4.1.11. Organization of this section is as follows. In 4.2, we review the

theory of moduli without degeneration in a general case, that is, the case of

non-principal polarization, Γ-level structure, and with a coefficient ring of

endomorphisms. In 4.3, we review the theory of toroidal compactifications

and the Satake-Baily-Borel compactifications in a general case in the sense

as above. In 4.4, we describe the moduli problems of log abelian varieties

and state one of the main results 4.4.4 in this section, which includes the

above 4.1.7 as its special case. In 4.5, we prove 4.4.4 by a different method

from that explained in 4.1.9. In 4.6, we state the other main results, which

concern the Satake-Baily-Borel compactifications, precisely. They include

the above 4.1.5. In 4.6–4.7, we prove them.
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4.1.12. For such generality explained in 4.1.11, it is better to formulate

fans in the space End (HR) as in [3], [19], not in the space of (g, g)-matrices

as in this subsection. See 4.3.3 for the definition of fans. A fan Σ in the

sense of this subsection induces a fan Σ′ in the sense of 4.3.3. See 4.3.12

for details. We remark that, as suggested in (i′) in 4.1.9, this formulation

of fans enables us to replace the condition (i) in 4.1.6 with the following

simpler equivalent condition (i′′) when we describe moduli problems of log

abelian varieties in 4.4. See 4.4.3 for details.

(i′′) Let t ∈ slog and take an isomorphism f : H1(τ
−1(A),Z)t � Z2g

which preserves the intersection forms. Then there is a σ ∈ Σ′ such that

via f , the logarithms of all positive local monodromy of H1(τ
−1(A),Z) at t

belong to σ.

4.2. Moduli spaces of abelian varieties (review)

In this subsection, we review the moduli theory without degeneration,

that is the theory of Shimura’s families ([33]), based on [8].

4.2.1. We fix a finite dimensional Q-vector space V and a semi-simple

Q-subalgebra L of EndQ(V ). Assume that we are given an anti-symmetric

non-degenerate Q-bilinear form

ψ : V × V → Q(1)

such that for any . ∈ L, there is .∗ ∈ L satisfying

ψ(.x, y) = ψ(x, .∗y) for all x, y ∈ V.

We will sometimes fix a finitely generated Z-submodule VZ of V such

that Q⊗ VZ = V and ψ(VZ, VZ) ⊂ Z(1).

4.2.2. For R = R,C, let VR = R ⊗Q V , LR = R ⊗Q L. Let D be the

set of all LC-submodules F of VC satisfying the following three conditions

(i)–(iii).

(i) ψ(F, F ) = 0.

(ii) VC = F ⊕ F̄ .

Here F̄ denotes {v̄ | v ∈ F} in which v̄ means the image of v under

VC→ VC; a⊗ x �→ ā⊗ x (a ∈ C, x ∈ V ).



Logarithmic Abelian Varieties 141

(iii) The hermitian form

F × F → C ; (x, y) �→ ψ(x, ȳ)

is positive definite. Here we denote the C-bilinear form VC×VC→ C induced

by ψ, by the same letter ψ.

4.2.3. Example. In the case L = Q, there is a Q-basis (ej)1≤j≤2g of V

such that

ψ(ej , ek) = 2πi if j = k + g, ψ(ej , ek) = −2πi if k = j + g,

ψ(ej , ek) = 0 otherwise.

In this case, if we fix such basis, D is identified with Siegel’s upper half space

Hg of degree g consisting of all symmetric (g, g)-matrices whose imaginary

parts are positive definite. For z ∈ Hg, the corresponding F is the C-

subspace of VC generated by ej+g + zej (1 ≤ j ≤ g).

4.2.4. Remark. Let L =
∏
j Lj be the presentation of L as a prod-

uct of simple Q-algebras, and let V = ⊕jVj be the corresponding direct

decomposition. If D is not empty, then the following (i)–(iii) hold.

(i) ψ(x, y) = 0 if x ∈ Vj , y ∈ Vk with j &= k.

(ii) For any j and . ∈ Lj , .
∗ belongs to Lj in the decomposition of L.

(iii) TrLj/Q(xx∗) > 0 for any j and for any non-zero element x of Lj .

Here TrLj/Q: Lj → Q is the trace map.

4.2.5. If we fix VZ as in 4.2.1, D is identified with the set of all de-

creasing filtrations (F p)p on VC by LC-submodules such that the Z-module

VZ with the filtration (F p)p and with the pairing ψ is a polarized Hodge

structure of weight −1. Here we identify F ∈ D with the filtration defined

by F p = VC for p ≤ −1, F 0 = F , F p = 0 for p ≥ 1.

4.2.6. By 4.2.5 and by the correspondence between abelian varieties

and Hodge structures, we see that in the category (an) of analytic spaces,

D represents the following functor

Φ : (an) → (Set).
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First, we give the definition of Φ fixing VZ.

For an analytic space S, we define Φ(S) to be the set of all isomorphism

classes of 4-ples (A, i, p, k), where A is an abelian variety over S, i is a

homomorphism of Q-algebras L → Q ⊗ End(A), p is a polarization of A,

and k is an isomorphismH1(A,Z) � VZ which is compatible with the actions

of L after ⊗Q and which sends the pairing ψp : H1(A,Z)×H1(A,Z) → Z(1)

induced by p to ψ. Here H1(A,Z) denotes the homology sheaf of A/S of

degree one, that is, HomZ(R1(A → S)∗Z,Z), and “induced by p”means

that ψp is the composite of id×p and the canonical pairing.

Next, if we do not fix VZ, the above functor Φ for any fixed VZ is canon-

ically identified with the following functor.

For an analytic space S, Φ(S) is the set of all isomorphism classes of

4-ples (A, i, p, k), where A is an object of the category Q ⊗ AS of abelian

varieties over S mod isogeny, i is a homomorphism of Q-algebras L →
EndQ⊗AS

(A), p is a polarization of A in Q⊗AS (locally on S, it has the form

(1/n)⊗p′ with n ≥ 1 and with p′ a usual polarization of the abelian variety A

over S), and k is an isomorphismH1(A,Q) � V which is compatible with the

actions of L and which sends the pairing ψp : H1(A,Q)×H1(A,Q) → Q(1)

induced by p to ψ.

4.2.7. Let G(Q) be the group of all automorphisms of the L-module

V which preserve ψ. In the case where we fix VZ, we denote the subgroup

{γ ∈ G(Q) | γVZ = VZ} of G(Q) by G(Z).

We will consider a subgroup Γ of G(Q) satisfying the following condition

(C).

(C) Γ ⊂ G(Z) for some choice of VZ (that is, Γ preserves VZ for some

choice of VZ).

If Γ is a subgroup of G(Z) of finite index for some choice of VZ, we call

Γ an arithmetic subgroup of G(Q).

We say Γ is neat if for any γ ∈ Γ, the subgroup of C× generated by all

the eigenvalues of the action on VC of γ is torsion free.

It can be shown that for any subgroup Γ of G(Q) satisfying (C), there

is a neat subgroup of Γ of finite index.

4.2.8. Example. Assume L = Q, and fix a basis (ej) as in 4.2.3. Then

G(Q) is identified with Sp(2g,Q). For VZ = ⊕jZej , G(Z) is identified with



Logarithmic Abelian Varieties 143

Sp(2g,Z). Define an arithmetic subgroup Γ(n) (n ≥ 1) of G(Q) by

Γ(n) = Ker (Sp(2g,Z) → Sp(2g,Z/nZ)).

Then Γ(n) is neat if n ≥ 3.

4.2.9. (Shimura’s families.) Let Γ be a subgroup of G(Q) satisfying

(C). Then Γ \D is regarded as an analytic space in the usual way. That is,

the topology of Γ \D is the quotient of the topology of D. For an open set

U of Γ \D, O(U) is the set of all C-valued functions on U whose pull backs

on the inverse image of U in D are holomorphic.

If Γ is neat, D → Γ \D is locally an isomorphism of analytic spaces.

If Γ is neat, Γ \D represents the following functor

ΦΓ : (an) → (Set),

which is defined for any Γ satisfying (C), not necessarily neat.

First, fix VZ which is stable under Γ.

For an analytic space S, we define ΦΓ(S) to be the set of all isomorphism

classes of 4-ples (A, i, p, k), where A is an abelian variety over S, i is a

homomorphism of Q-algebras L→ Q⊗ZEnd(A), p is a polarization ofA, and

k is a section of the quotient sheaf Γ \ I of the following sheaf I on S. Here I

is the sheaf of isomorphisms H1(A,Z) � VZ which are compatible with the

actions of L after Q⊗ and which send the pairing ψp : H1(A,Z)×H1(A,Z) →
Z(1) induced by p to ψ, and γ ∈ Γ acts on I by h �→ γ ◦h for a local section

h : H1(A,Z) → VZ of I.

Next, if we do not fix VZ, the above functor ΦΓ for any fixed VZ which

is stable under Γ is canonically identified with the following functor.

For an analytic space S, ΦΓ(S) is the set of all isomorphism classes of

4-ples (A, i, p, k), where A is an object of the category Q ⊗ AS of abelian

varieties over S mod isogeny, i is a homomorphism of Q-algebras L →
EndQ⊗AS

(A), p is a polarization of A in Q ⊗ AS , and k is a section of the

quotient sheaf Γ \ I of the following sheaf I on S. Here I is the sheaf of

isomorphisms H1(A,Q) � V which are compatible with the actions of L

and which send the pairing ψp : H1(A,Q)×H1(A,Q) → Q(1) induced by p

to ψ.

The above k (whether we fix VZ or not) is called a Γ-level structure.
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4.2.10. Example. Assume L = Q, fix a basis (ej) as in 4.2.3, and take

Γ = Γ(n) ⊂ G(Q) with n ≥ 1. Then ΦΓ is identified with the functor Φg,n
in 4.1.3.

This identification follows from the fact that via the canonical homo-

morphism nA � H1(A,Z)/nH1(A,Z) � H1(A,Z/nZ), the Weil pairing cor-

responds to the canonical perfect pairing H1(A,Z/nZ) ×H1(A
∗,Z/nZ) →

Z/nZ(1).

4.3. Compactifications (review)

We review the toroidal compactifications and the Satake-Baily-Borel

compactifications ([3], [5], [25], [31]).

We fix V , L, and ψ as in §4.2.

We first review toroidal compactifications of Γ \D and then the Satake-

Baily-Borel compactification of Γ \D defined for arithmetic subgroups Γ of

G(Q).

First, toroidal compactifications depend on choices of fans (4.3.3).

4.3.1. Definition. A monodromy cone is a set σ of LR-linear maps

VR→ VR satisfying the following conditions (i)–(iv).

(i) There is a finite family (Nj)l≤j≤n of Q-linear maps V → V such that

σ = {
∑

1≤j≤n
ajNj | aj ∈ R, aj ≥ 0}.

(ii) ψ(N(x), y) + ψ(x,N(y)) = 0 for any N ∈ σ and any x, y ∈ VR.

(iii) NN ′ = 0 for any N,N ′ ∈ σ.

(iv) iψ(N(x), x) ≥ 0 for any N ∈ σ and any x ∈ VR.

For a monodromy cone σ and for R = R,C, we denote by σR the R-

subspace of EndR(VR) generated by σ.

4.3.2. Definition. For a monodromy cone σ, a subset τ of σ is called

a face of σ if the following conditions (i)–(iii) are satisfied.

(i) 0 ∈ τ .

(ii) If a, a′ ∈ R, a, a′ ≥ 0, N,N ′ ∈ τ , then aN + a′N ′ ∈ τ .
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(iii) If N,N ′ ∈ σ and N +N ′ ∈ τ , then N,N ′ ∈ τ .

There are only finitely many faces of σ.

A face of a monodromy cone is also a monodromy cone.

4.3.3. Definition. By a fan, we mean a non-empty set Σ of mon-

odromy cones satisfying the following conditions (i) and (ii).

(i) If σ ∈ Σ, any face of σ belongs to Σ.

(ii) If σ, τ ∈ Σ, then σ ∩ τ is a face of σ and is also a face of τ .

4.3.4. Let Γ be a subgroup of G(Q) satisfying (C) in 4.2.7 and let Σ

be a fan.

We say Γ and Σ are compatible if the following condition (i) is satisfied.

(i) γσγ−1 ∈ Σ for any σ ∈ Σ and any γ ∈ Γ.

We say Γ and Σ are strongly compatible if they are compatible and if

the following condition (ii) is satisfied for any σ ∈ Σ. Let

Γ(σ) = Γ ∩ exp(σ),

where the intersection is taken in the set of all R-automorphisms of VR.

(ii) σ coincides with the set of all linear combinations with non-negative

real coefficients of log(γ) for all γ ∈ Γ(σ).

The following fact is shown easily. If Γ is an arithmetic subgroup of

G(Q) and if Γ and Σ are compatible, then Γ and Σ are strongly compatible.

4.3.5. Let Γ be a subgroup of G(Q) satisfying (C), let Σ be a fan,

and assume that they are strongly compatible. Then the partial toroidal

compactification D̄Γ,Σ of Γ \D with respect to Σ is defined.

It is an analytic space containing Γ \D as a dense open analytic sub-

space. It is called a toroidal compactification if it is compact. For the

compactness, see 4.3.10.

4.3.6. For a monodromy cone σ, define the increasing filtration W (σ)

on V associated to σ as follows. The subspace Ker (N) (resp. Image(N))

of V for N in the interior of σ is independent of N . Define Wm(σ) = V
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for m ≥ 0, W (σ) = 0 for m ≤ −3, and W−1(σ) = Ker (N), W−2(σ) =

Image(N) for such N .

4.3.7. We describe the partial toroidal compactification D̄Γ,Σ of Γ \D
with respect to Σ first in a special local situation in which the theory of

toroidal embeddings plays an important role.

We say the pair (Γ,Σ) is local if there is a monodromy cone σ such that Σ

is the fan consisting of all faces of σ, and Γ = Γ(σ)gp = {ab−1 | a, b ∈ Γ(σ)}.
In this case, Γ is a finitely generated free abelian group, and Γ is neat

since the actions of elements of Γ on V are unipotent.

Assume that (Γ,Σ) is local. Consider the analytic space exp(σC)D of

LC-submodules of VC obtained by applying exp(N) for N ∈ σC to elements

of D. The quotient spaces Γ \ exp(σC)D and exp(σC) \ exp(σC)D have the

following structures of analytic spaces. The topologies are the quotients

of the topology of exp(σC)D. For an open set U , O(U) is the set of all

C-valued functions whose pull backs on the inverse image of U in exp(σC)D

are holomorphic.

The projection exp(σC)D → Γ \ exp(σC)D is locally an isomorphism of

analytic spaces.

Let

T = Γ \ exp(σC) � C× ⊗ Γ.

Then Γ \ exp(σC)D is a T -torsor over exp(σC) \ exp(σC)D.

Let Γ(σ)∨ be the dual fs monoid of Γ(σ). That is, Γ(σ)∨ is the monoid

of all homomorphisms Γ(σ) → N. Consider the toric variety T̄ =

Spec(C[Γ(σ)∨])an. Then T acts on T̄ = Hom (Γ(σ)∨,Cmult) (Cmult denotes

C regarded as a multiplicative monoid) in the natural way. For q ∈ T̄ , let

σ(q) be the face of σ characterized as follows. For a ∈ σC, exp(a)q = q if

and only if a ∈ σ(q)C.

We now perform the toroidal embedding

Γ \ exp(σC)D
⊂−→ (Γ \ exp(σC)D)×T T̄ .

Here, when T acts on sets P,Q, P×TQ denotes the quotient of P×Q by the

relation (tx, y) ∼ (x, ty) (x ∈ P, y ∈ Q, t ∈ T ). Then (Γ \ exp(σC)D) ×T T̄

is a T̄ -bundle over exp(σC) \ exp(σC)D.

In the case (Γ,Σ) is local, D̄Γ,Σ is defined to be the subset of

(Γ \ exp(σC)D)×T T̄ consisting of all classes of (F, q) (F ∈ exp(σC)D, q ∈ T̄ )

satisfying the following conditions (i) and (ii).
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(i) F is a mixed Hodge structure for the weight filtration W (σ(q)).

(ii) The decreasing filtration on gr
W (σ(q))
−1 (V )C induced by F is polarized

by gr
W (σ(q))
−1 (ψ).

(If (F, q) ∼ (F ′, q′), the condition (i) (resp. (ii)) is satisfied by (F, q) if

and only if it is satisfied by (F ′, q′).)
Then D̄Γ,Σ is open in (Γ \ exp(σC)D)×T T̄ . Hence we have an analytic

structure on D̄Γ,Σ as an open analytic subspace of (Γ \ exp(σC)D)×T T̄ .

We remark that for an element of D̄Γ,Σ, we have a representative (F, q)

such that F ∈ D.

4.3.8. We describe the partial toroidal compactification D̄Γ,Σ of Γ \D
with respect to Σ in general.

For each σ ∈ Σ, let Σ(σ) be the set of all faces of σ. Then (Γ(σ)gp,Σ(σ))

is local in the sense of 4.3.7. Hence we have an analytic space D̄Γ(σ)gp,Σ(σ),

which we denote by Uσ for simplicity.

We define D̄Γ,Σ as the quotient of the disjoint union of Uσ for all σ ∈ Σ

by the following equivalence relation. For σ, σ′ ∈ Σ, an element a of Uσ and

an element a′ of Uσ′ are equivalent if and only if there are τ ∈ Σ, γ, γ′ ∈ Γ,

b ∈ Uτ such that γτγ−1 ⊂ σ, γ′τ(γ′)−1 ⊂ σ′, the unique analytic map

Uτ → Uσ which is compatible with γ : D → D sends b to a, and the unique

analytic map Uτ → Uσ′ which is compatible with γ′ : D → D sends b to a′.
The topology of D̄Γ,Σ is the quotient topology. For an open set U of

D̄Γ,Σ, O(U) is the set of all C-valued functions on U whose pull backs to

the inverse image of U in Uσ are holomorphic for any σ ∈ Σ.

If Γ is neat, the canonical projections D̄Γ(σ)gp,Σ(σ) → D̄Γ,Σ are locally

isomorphisms of analytic spaces.

4.3.9. Example. In the situation as in 4.2.10, let Σ be an admissible

cone decomposition. Then Σ corresponds to a fan Σ′ which is strongly

compatible with Γ(n) (4.3.12 below), and D̄Γ(n),Σ′ is D̄g,n,Σ in 4.1.1.

4.3.10. Concerning the compactness:

Let Σ be a fan. We say Σ is complete if for any monodromy cone τ , the

set {τ ∩σ |σ ∈ Σ} makes a finite subdivision of τ . If Σ is complete, then its

support
⋃
σ∈Σ σ coincides with the union of all monodromy cones, that is,

the set of all LR-linear maps N : VR→ VR satisfying the following (i)–(iv).
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(i) ψ(N(x), y) + ψ(x,N(y)) = 0 for any x, y ∈ VR.

(ii) N2 = 0.

(iii) iψ(N(x), x) ≥ 0 for any x ∈ VR.

(iv) The kernel of N is Q-rational.

Let Σ be a complete fan. Let Γ be a subgroup of G(Z) for some choice

of VZ and assume that Γ and Σ are strongly compatible. Then the partial

toroidal compactification of Γ \D with respect to Σ is compact and Γ is of

finite index in G(Z).

4.3.11. If Γ is an arithmetic subgroup of G(Q), there exists a complete

fan which is strongly compatible with Γ.

4.3.12. It is sometimes simpler to formulate facts about fans in a dif-

ferent way.

Take a maximal one among all L-submodules V ′ of V such that the re-

striction of ψ to V ′×V ′ is trivial. Any two maximal V ′ are G(Q)-equivalent.

Let V ′′ ⊂ V be the annihilator of V ′ for ψ. Consider monodromy cones

σ such that N(V ′′) = 0 and N(V ) ⊂ V ′ for any N ∈ σ. Since a Q-linear

map N : V → V satisfying this condition and the condition ψ(N(x), y) +

ψ(x,N(y)) = 0 for any x, y ∈ V is identified with a symmetric bilinear

form V/V ′′× V/V ′′ → Q(1) (N is identified with the bilinear form (x, y) �→
ψ(x,N(y))), we can define a monodromy cone as a rational polyhedral cone

in the space of the positive semi-definite symmetric bilinear forms on V/V ′′.
Further, we can formulate a fan as a set of monodromy cones in this sense. It

is clear that a fan in the sense of 4.3.3 induces a fan in this sense (by taking

only cones contained in the set {N |N(V ′′) = 0, N(V ) ⊂ V ′}). Conversely,

if Γ is a subgroup of G(Q) satisfying (C) and if any two maximal totally

isotropic subspaces of ψ are Γ-equivalent, then a fan in the sense of 4.3.3

which is compatible with Γ is determined by the induced fan in the sense

here. For example, in the situation as in 4.2.10, for a given admissible cone

decomposition Σ on the space of symmetric bilinear forms Sym2(Zg,Z),

there is a unique fan which is compatible with Γ(1) and which induces Σ.

4.3.13. Next, we review the Satake-Baily-Borel compactification of

Γ \D.

For an arithmetic subgroup Γ of G(Q), the Satake-Baily-Borel compact-

ification of Γ \D, which we denote by D̄Γ, is defined as follows.
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Let D̄ be the set of all pairs (W,F ), where W is an increasing filtration

on V by L-submodules such that W0 = V , W−3 = 0, and W−1 coincides with

the annihilator of W−2 under ψ, and F is an LC-submodule of grW−1(V )C
satisfying the following conditions (i)–(iii).

(i) For the Q-bilinear form grW−1(ψ) : grW−1(V )×grW−1(V ) → Q(1) induced

by ψ, we have grW−1(ψ)(F, F ) = 0.

(ii) grW−1(V )C = F ⊕ F̄ .

(iii) The hermitian form F × F → C ; (x, y) �→ grW−1(ψ)(x, ȳ) is positive

definite.

We have the embedding

D
⊂→ D̄ ; F �→ (W triv, F ),

where W triv is the increasing filtration defined by W triv
−1 = V and W triv

−2 = 0.

The action of Γ on D naturally extends to an action of Γ on D̄.

As a set,

D̄Γ = Γ \ D̄.

The analytic structure of D̄Γ is as follows.

For any local pair (Γ′,Σ(σ)) with Γ′ ⊂ Γ, we have a canonical map

D̄Γ′,Σ(σ) → D̄Γ ; (F, q) �→ (W (σ(q)), gr
W (σ(q))
−1 (F )),

where gr
W (σ(q))
−1 (F ) denotes the decreasing filtration on gr

W (σ(q))
−1 (V )C in-

duced by F .

Fix any strongly compatible pair (Γ,Σ) with Σ complete. Then these

maps given for the local pairs (Γ(σ)gp,Σ(σ)) for all σ ∈ Σ glue to a map

D̄Γ,Σ → D̄Γ.

This map is surjective. The topology of D̄Γ is the quotient of the topology

of D̄Γ,Σ with respect to this surjection. For any open set U of D̄Γ, O(U) is

the set of all C-valued functions on U whose pull backs on the inverse image

of U in D̄Γ,Σ are holomorphic. This analytic structure does not depend

on the choices of Σ. We endow D̄Γ with the log structure consisting of all

holomorphic functions which are invertible on Γ \D.
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4.3.14. Example. In the situation as in 4.2.10, D̄Γ(n) is nothing but

D̄g,n in 4.1.1. In this case, the above description is specialized as follows.

Let (H0, 〈 , 〉0) be as in 4.1.9. Let H̄g be the set of all pairs (W,F ), where

W is an increasing filtration on H0,Q such that W0 = H0,Q, W−3 = 0, and

W−1 is the annihilator of W−2 with respect to the pairing 〈 , 〉0 : H0,Q ×
H0,Q→ Q(1), and F is a decreasing filtration on C⊗QW−1/W−2 such that

((H0 ∩W−1)/(H0 ∩W−2), F ) is a polarized Hodge structure with respect to

the pairing W−1/W−2 ×W−1/W−2 → Q(1) induced by 〈 , 〉0. We have

Hg ⊂ H̄g

by F �→ (W,F ), where W is the increasing filtration defined by W−1 = H0,Q

and W−2 = 0.

As a set,

D̄g,n = Γ(n) \ H̄g.

4.4. Log abelian varieties and toroidal compactifications

Fix V,L, ψ as in 4.2.1.

4.4.1. Let Γ be a subgroup of G(Q) satisfying (C).

We denote the composition

(fs) → (an)
ΦΓ−→ (Set),

where the first arrow is to forget the log structure, by the same letter ΦΓ.

Then, if Γ is neat, this ΦΓ is represented by Γ \D with the trivial log

structure.

We define a moduli functor of log abelian varieties

Φ̄Γ : (fs) → (Set)

such that ΦΓ ⊂ Φ̄Γ as follows.

As a preliminary, we define homology sheaves of log abelian varieties.

Let A be a log abelian variety over an fs log analytic space S. We de-

fine H1(τ
−1(A),Z) = HomZ(Ext1(τ−1(A),Z),Z) (cf. 3.1.6). We remark

that, as seen in [13], Ext1(τ−1(A),Z) = H1(τ−1(A),Z), where, in general,

for an fs log analytic space S and a sheaf F on (fs/S)log, we denote by

Hm(F,−) the right derived functor of the direct image functor (abelian
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sheaf on (fs/S)log/F ) → (abelian sheaf on (fs/S)log). Thus we can call

H1(τ
−1(A),Z) the homology sheaf of A/S of degree one.

Now we define Φ̄Γ.

First, fix VZ which is stable under Γ.

For an fs log analytic space S, we define Φ̄Γ(S) to be the set of all

isomorphism classes of 4-ples (A, i, p, k), where A is a log abelian variety

over S, i is a homomorphism of Q-algebras L → Q ⊗Z End(A), p is a

polarization of A, and k is a section of the quotient sheaf Γ \ I on Slog.

Here I is the sheaf on Slog of isomorphisms H1(τ
−1(A),Z) � VZ which

are compatible with the actions of L after Q⊗ and which send the pairing

ψp : H1(τ
−1(A),Z)×H1(τ

−1(A),Z) → Z(1) induced by p to ψ.

Next, we do not fix VZ. The above functor Φ̄Γ for any fixed VZ which is

stable under Γ is canonically identified with the following functor.

For an fs log analytic space S, Φ̄Γ(S) is the set of all isomorphism classes

of 4-ples (A, i, p, k), where A is an object of the category Q ⊗ AS of log

abelian varieties over S mod isogeny, i is a homomorphism of Q-algebras

L→ EndQ⊗AS
(A), p is a polarization of A in Q⊗AS , and k is a section of

the quotient sheaf Γ \ I on Slog. Here I is the sheaf on Slog of isomorphisms

H1(τ
−1(A),Q) � V which are compatible with the actions of L and which

send the pairing ψp : H1(τ
−1(A),Q)×H1(τ

−1(A),Q) → Q(1) induced by p

to ψ.

4.4.2. Example. Assume L = Q, fix a basis (ej) as in 4.2.3, and take

Γ = Γ(n) ⊂ G(Q) with n ≥ 1. Then Φ̄Γ is identified with the functor Φ̄g,n
in 4.1.3. Here we give the definition of the Weil pairing of a log abelian

variety A. Let H be the log Hodge structure corresponding to A. Then

the exact sequence 0 → HZ → UH → τ−1(A) → 0 in 3.6.3 induces a

homomorphism τ−1(nA) → HZ/nHZ and hence a homomorphism nA →
τ∗(HZ/nHZ). Similarly we have nA

∗ → τ∗(H∗(1)Z/nH
∗(1)Z). The pairing

HZ × H∗(1)Z → Z(1) induces a pairing HZ/nHZ × H∗(1)Z/nH
∗(1)Z →

Z/nZ(1) and this induces the Weil pairing nA × nA
∗ → Z/nZ(1). (The

homomorphism τ−1(nA) → HZ/nHZ is always injective since UH is torsion

free, and it is an isomorphism if A has an n-level structure.)

4.4.3. Let Γ be as in 4.4.1 and let Σ be a fan which is strongly com-

patible with Γ. We define a functor Φ̄Γ,Σ : (fs) →(Set) such that

ΦΓ ⊂ Φ̄Γ,Σ ⊂ Φ̄Γ
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as follows. Consider here the definition of Φ̄Γ without fixing VZ.

For an fs log analytic space S, the class of 4-ple (A, i, p, k) of Φ̄Γ(S)

belongs to Φ̄Γ,Σ(S) if and only if it satisfies the following condition (i) for

any t ∈ Slog.

(i) Let a : H1(τ
−1(A),Q)t � V be a representative of k at t. Let s

be the image of t in S. Then there is σ ∈ Σ such that for any element

γ of π1(τ
−1(s)) which belongs to Hom (MS,s,N) ⊂ π1(τ

−1(s)), the ho-

momorphism V → V corresponding to the action of log(γ) = γ − 1 on

H1(τ
−1(A),Q)t via a belongs to σ.

Roughly speaking, this condition (i) says that the local monodromies of

A are in the direction of Σ.

4.4.4. Theorem. Let Γ be a neat subgroup of G(Q) satisfying the con-

dition (C) in 4.2.7. Let Σ be a fan which is strongly compatible with Γ.

Endow the partial toroidal compactification D̄Γ,Σ with the fs log structure

{f ∈ O | f is invertible on Γ \D}. Then Φ̄Γ,Σ is represented by D̄Γ,Σ.

Thus D̄Γ,Σ for (Γ,Σ) as in Theorem 4.4.4 is a fine moduli space of the

moduli functor Φ̄Γ,Σ.

For an arithmetic and neat Γ and for Σ which is strongly compatible

with Γ, we will have a commutative diagram

ΦΓ ⊂ Φ̄Γ,Σ ⊂ Φ̄Γ

(| (| ↓
Γ \D ⊂ D̄Γ,Σ → D̄Γ.

4.4.5. Remark. In the algebraic context in a forthcoming Part of this

series of papers, instead of using Γ-level structures as above, we are to formu-

late the moduli problem of log abelian varieties by using K-level structures

on their Tate modules, where K is a compact open subgroup of G(Af ). Here

Af is the ring of finite adeles. There we are to regard the Tate modules of

log abelian varieties as sheaves on the Kummer étale sites ([12]) rather than

the usual étale ones.

4.5. Proof of Theorem 4.4.4

We prove Theorem 4.4.4. How to relate the toroidal embeddings in §4.3

to log abelian varieties is, roughly speaking, the following. We can twist an
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abelian variety (with additional structures) by a torus action. When our

twisting reaches infinity corresponding to a boundary point of a toric variety

of the toroidal embedding, we obtain a log abelian variety (cf. 4.5.3).

4.5.1. First we reduce 4.4.4 to the local case. Let Γ and Σ be as in

4.4.4. As in 4.3.8, D̄Γ,Σ is defined by gluing D̄Γ(σ)gp,Σ(σ) (σ ∈ Σ) in the

notation there. On the other hand, we have a

4.5.2. Lemma. Φ̄Γ,Σ is a sheaf.

Proof. This follows from the assumption that Γ is neat. �

By this, Φ̄Γ,Σ is obtained by gluing Φ̄Γ(σ)gp,Σ(σ) (σ ∈ Σ). It is easy to see

that the local isomorphisms D̄Γ(σ)gp,Σ(σ)
∼= Φ̄Γ(σ)gp,Σ(σ) constructed below

are compatible so that we have the desired global isomorphism D̄Γ,Σ
∼= Φ̄Γ,Σ.

4.5.3. In the rest of this subsection, we prove the local case of 4.4.4.

Assume that (Γ,Σ) is local in the sense of 4.3.7. We define a morphism

D̄Γ,Σ → Φ̄Γ,Σ. Recall that in this case, Σ is the set of all faces of a mon-

odromy cone σ.

We use here the definition of Φ̄Γ,Σ given by fixing VZ which is stable

under Γ, but it will be easy to see that if we use the definition without

fixing VZ, this morphism is independent of the choice of VZ.

Let S be an fs log analytic space and assume that we are given a mor-

phism f : S → D̄Γ,Σ. We define an element of Φ̄Γ,Σ(S) corresponding to f .

In the following, we work locally on S. The local sections we will give glue

into a section over S. Locally on S, lift f to a morphism (F, q) : S → D× T̄ .

Here we can take D (not exp(σC)D) in the target space by the last remark

in 4.3.7. The morphism F is identified with an OS-submodule of OS ⊗Q V

stable under the action of L. Let A be an abelian variety VZ\(OS ⊗QV )/F

over S corresponding to F whose H1(A,Z) is identified with VZ.

Let W (σ)−2,Z = W (σ)−2 ∩ VZ and let X ′ = Hom (W (σ)−2,Z,Z(1)).

Then, for the above q : S → T̄ , the composition

S
q→ T̄

⊂→ Γ⊗Gm,log → Hom(VZ,W (σ)−2,Z)⊗Gm,log,

where the third arrow is induced by Γ → Hom (VZ,W (σ)−2,Z); γ �→ (v �→
(γ − 1)(v)), defines a homomorphism h : VZ → Hom(X ′,Gm,log). The



154 Takeshi Kajiwara, Kazuya Kato and Chikara Nakayama

morphism Hom(X ′,OS) = OS ⊗ W (σ)−2 → Lie(A) = (OS ⊗Q V )/F

is injective and hence by Gm � OS/Z(1), it induces an injective homo-

morphism Hom(X ′,Gm) → Lie(A)/W (σ)−2,Z. Let J be the push for-

ward of Hom(X ′,Gm,log) ← Hom(X ′,Gm) → Lie(A)/W (σ)−2,Z. Then

we have a homomorphism VZ → J as the product of the canonical ho-

momorphism VZ → Lie(A) and h : VZ → Hom(X ′,Gm,log). Let J →
Hom(X ′,Gm,log/Gm) be the canonical projection (Lie(A) is killed here),

and let J (VZ) ⊂ J be the inverse image of the subgroup sheaf

Hom(X ′,Gm,log/Gm)(VZ) of Hom(X ′,Gm,log/Gm), and let A′ be the cok-

ernel of VZ→ J (VZ).

Claim 1. A′ is a log abelian variety.

Proof. To see this, we need not consider the action of L. First, choose

a Q-subspace V ′ of V such that dimQ(V ′) = dimQ(V )/2 and such that

W (σ)−2 ⊂ V ′ ⊂ W (σ)−1, ψ(V ′, V ′) = 0. Let V ′
Z = V ′ ∩ VZ, Y = VZ/V

′
Z,

X = Hom (V ′
Z,Z(1)). Let φ : Y → X be the unique homomorphism such

that for any y ∈ Y and h ∈ Hom (X,Z(1)) = V ′
Z, we have h(φ(y)) = ψ(h, y).

Let s(X×Y,Gm) (resp. s(X×Y,Gm,log)) be the sheaf of pairings b : X×Y →
Gm (resp. Gm,log) satisfying b(φ(y), z) = b(φ(z), y) for any y, z ∈ Y . Then

we have a commutative diagram

Γ \ exp(σC)D −→ s(X × Y,Gm)

∩ ∩
(Γ \ exp(σC)D)×T T̄ −→ s(X × Y,Gm,log),

(1)

where the horizontal arrows are defined as follows.

The upper horizontal arrow in (1) is as follows. For an analytic space S,

a morphism S → exp(σC)D defines an OS-submodule F of OS ⊗Q V such

that OS ⊗Q V = F ⊕Hom(X,OS). The commutative diagram

V ′
Z = Hom (X,Z(1))

∩ ∩
VZ → (OS ⊗Q V )/F


← Hom(X,OS)

defines a homomorphism Y = VZ/V
′
Z → Hom(X,OS)/Hom (X,Z(1)) =

Hom(X,Gm) which belongs to s(X × Y,Gm).
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The lower horizontal arrow in (1) sends (F, q) (F : S → exp(σC)D,

q : S → T̄ ) to the product of X×Y → Gm defined by F and X×Y → Gm,log

induced by q and

T̄
⊂→ Γ⊗Gm,log → Hom (Y, V ′

Z)⊗Gm,log = Hom(Y,Hom(X,Gm,log)),

where the second arrow is induced by γ �→ (v �→ (γ−1)(v)) (γ ∈ Γ, v ∈ VZ).

The A′ constructed in the above is the quotient associated to the pairing

X×Y → Gm,log which is the image of the given (F, q) by the lower horizontal

map in (1). From this, we see that A′ is a log abelian variety. �

The ring homomorphism L→ Q⊗ End(A′) is given by the actions of L

on V , Lie(A), and W (σ)−2.

The Γ-level structure is given as follows. Locally on Slog, take a lifting

q̃ ∈ Γ ⊗ L of q ∈ Γ ⊗ Gm,log. Then this gives h̃ : VZ → Hom(X ′,L). Let

J̃ be the push forward of Hom(X ′,L) ← Hom(X ′,OS) → Lie(A), and let

J̃ (VZ) ⊂ J̃ be the inverse image of J (VZ). Then we have a homomorphism

VZ→ J̃ (VZ) as the product of the canonical homomorphism VZ→ Lie(A) and

h̃, and this is a local isomorphism VZ → HZ. Here HZ = H1(τ
−1(A′),Z).

Such local definition gives a Γ-level structure globally.

We define a polarization of A′. It is HZ×HZ → Z(1) obtained from ψ

through the Γ-level structure.

Claim 2. This is a polarization. �

It is easy to see that the map D × T̄ → Φ̄Γ,Σ which we have defined

factors through the surjection D × T̄ → D̄Γ,Σ. Thus we have defined a

morphism D̄Γ,Σ → Φ̄Γ,Σ in the local case.

4.5.4. We prove that the morphism D̄Γ,Σ → Φ̄Γ,Σ we have defined in

the local case is in fact an isomorphism, which completes the proof of 4.4.4.

First, we can prove this in the case L = Q using the commutative

diagram (1) in 4.5.3, because this diagram shows that to perform a local

toroidal embedding can be interpreted as to extend the space of the pairings

into Gm to the space of the pairings into Gm,log.

Next, we consider the case for general L. By the result in the case L = Q,

the map D̄Γ,Σ → Φ̄Γ,Σ is injective as a morphism of sheaves. To prove that

it is also surjective, assume that we are given a log abelian variety A′ with
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additional structures. Then, by the result in the case L = Q, we can find

an abelian variety A (without the action of L) which yields our log abelian

variety A′ (without the action of L) via the morphism constructed in 4.5.3.

Since the action of L is compatible with that of Γ and with Σ, and since

L acts on A′, we see that L acts on A. Thus we have proved the desired

surjectivity of the morphism D̄Γ,Σ → Φ̄Γ,Σ. �

4.6. Log abelian varieties and Satake-Baily-Borel compactifica-

tions

The last two subsections of this section are devoted to studying Satake-

Baily-Borel compactifications in view of log abelian varieties. In the sub-

section 4.4, we proved that the toroidal compactifications are described in

terms of the moduli functors of log abelian variety (with additional struc-

tures): they are nothing but the fine moduli spaces which represent the

functors. In this subsection and the next, we show that the Satake-Baily-

Borel compactifications are also described as fs log analytic spaces in terms

of the moduli functors of log abelian varieties. This result means that

Satake-Baily-Borel compactifications are coarse moduli spaces in a sense

for the moduli functors of log abelian varieties (with additional structures).

(See 4.6.10 and 4.7.8 for a discussion about formulations of coarse moduli

spaces.)

4.6.1. First, we give preliminary definitions to describe the point set

of Satake-Baily-Borel compactifications in terms of the moduli functors.

Let F : (fs) → (Set) be a contravariant functor.

Let |F | be the set (not necessarily belonging to the fixed universe) of all

equivalence classes of (a, f), where a is an fs log point and f is a morphism

a→ F . Here we say (a, f) and (b, g) are equivalent if and only if there are fs

log points c0, c1, · · · , c2k (k ≥ 0) with morphisms hj : cj → F (0 ≤ j ≤ 2k)

and morphisms c0 → a, c2k → b, c2j → c2j+1 (0 ≤ j < k), c2j → c2j−1

(0 < j ≤ k) over F .

Let P be an fs log analytic space. If we regard P as the functor (fs) →
(Set) represented by P , we have clearly |P | = P .

4.6.2. Consider the moduli functor F = Φ̄Γ of log abelian varieties

with Γ an arithmetic subgroup of G(Q). Define ||F || as the quotient of

|F | by the following equivalence relation: For j = 1, 2, let aj be an fs log
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point. Let (Aj , ij , pj , kj) ∈ F (aj). Let (Hj , ij , pj , kj) be the corresponding

polarized log Hodge structure with coefficient and with level structure over

aj . Let tj ∈ alog
j . Assume that there is an isomorphism between two Z-

modules H1,Z,t1 and H2,Z,t2 which respects ij , pj , kj , which preserves the

weight filtrations W (j) with respect to the whole monodromy cone of aj ,

and which induces an isomorphism of the polarized Hodge structures with

coefficient and with level structure on grW
(j)

−1 . Then the two classes of |F |
defined by (Aj , ij , pj , kj) are equivalent. This definition of the equivalence

relation does not depend on choices.

Remark. As is explained in 4.6.10 below, in general, ||F || does not

necessarily coincide with |F |.

4.6.3. Theorem. The Satake-Baily-Borel compactification D̄Γ is de-

scribed by the moduli functor F = Φ̄Γ of log abelian varieties (with additional

structures), as follows.

(1) As a point set, D̄Γ is ||F ||.

(2) The topology of D̄Γ is given as follows. For a subset U of ||F ||, U
is open if and only if for any fs log analytic space P and any morphism of

functors P → F , the inverse image of U in P under P = |P | → |F | →
||F || = D̄Γ is open.

(3) The structure of ringed space of D̄Γ is given as follows. Let R be

the sheaf of rings on D̄Γ defined as follows. For an open set U of ||F ||,
R(U) is the set of morphisms of functors FU → Ga, where FU denotes the

subfunctor of F defined as follows, and Ga is the sheaf T �→ OT (T ) on (fs).

Then R is isomorphic to the structure sheaf of D̄Γ.

The definition of FU is as follows:

FU (T ) = {a ∈ F (T ) | the image of T → |F | → D̄Γ induced by a is con-

tained in U}.

(4) Let N be the sheaf on D̄Γ defined as follows. For an open set U of

||F ||, N(U) is the set of morphisms of functors FU → [M ], where [M ] is

the sheaf T �→MT (T ) on (fs). Then N is isomorphic to the log structure of

D̄Γ.
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From this theorem, we have the following consequence (for the reason

why the following theorem is a consequence of the above theorem, see 4.6.9

below).

4.6.4. Theorem. There is a canonical morphism of functors F → D̄Γ,

which induces the canonical map |F | → ||F || = D̄Γ and which has the

following universal property.

For an fs log analytic space Q, we have a functorial bijection :

{a morphism D̄Γ → Q} ↔ {a morphism F → Q such that |F | → Q

factors through ||F ||}.

In the next section, we prove a stronger theorem in the case with no

coefficient.

4.6.5. Theorem. Assume that L = Q and Γ = Γ(n) for some n ≥ 1

so that D̄Γ = D̄g,n. Then, for any Hausdorff fs log analytic space Q and

any morphism F → Q, the map |F | → Q factors through ||F ||.
Consequently (by 4.6.4), for a Hausdorff fs log analytic space Q, we have

a functorial bijection :

{a morphism D̄g,n → Q} ↔ {a morphism F → Q}.

We prove the first theorem 4.6.3. For this, we prepare a lemma.

4.6.6. Lemma. Let F be a sheaf on the category (fs) of fs log analytic

spaces, and assume that we are given fs log analytic spaces Pj (j = 1, 2) and

morphisms aj : Pj → F (j = 1, 2).

(1) Assume that the following (i)–(iii) are satisfied.

(i) a1 is relatively represented by morphisms which are locally base

changes of birational proper equivariant morphisms of toric varieties, that

is, for any fs log analytic space T and any morphism T → F , the fiber

product P1 ×F T is represented and the base change P1 ×F T → T of a1 is,

locally on T , a base change of a birational proper equivariant morphism of

toric varieties.

(ii) a2 is a surjection of sheaves.

(iii) P2 is log smooth.
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Then, if P is an fs log analytic space and if two morphisms f, g : F → P

satisfy f ◦ a1 = g ◦ a1, we have f = g.

(2) Assume that we are given an fs log analytic space P and a morphism

p : P1 → P , and assume that the above conditions (i)–(iii) and the following

conditions (iv) and (v) are satisfied. (Note that, in (v), the map P1 → |F |
induced by a1 : P1 → F is surjective by (i).)

(iv) The morphism a2 is relatively represented by log smooth morphisms.

(v) The map of the underlying sets P1 → P of p factors through the

surjection P1 → |F |.

Then there exists a unique morphism q : F → P such that p = q ◦ a1.

(3) Let the assumptions be as in (2), and assume further the following

(vi).

(vi) p is proper and surjective, and the O and the M of P are the direct

images of O and M of P1 under p, respectively.

Then the fs log analytic space structure of P is described in terms of F

as follows.

(a) A subset U of P is open if and only if for any fs log analytic space

Q and any morphism Q→ F , the inverse image of U in Q is open.

(b) For an open set U of P , let FU be the subsheaf F ×P U of F , that

is,

FU (T ) = {a ∈ F (T ) | the image of T by a in P is contained in U}.

Then

OP (U) = Mor (FU ,Ga), MP (U) = Mor (FU , [M ]).

Proof. We prove (1). By the condition (ii), it is sufficient to prove

f ◦ a2 = g ◦ a2. Let P ′
2 = P1 ×F P2. By the condition (i), the canonical

projection b : P ′
2 → P2 has the same property as a1 described in (i). Hence

we have:

(vii) b is surjective, and the topology of P2 is the image of the topology

of P ′
2.
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Furthermore, by the condition (iii), the fact that b has the same property

as a1 in (i) shows:

(viii) The O and the M of P2 are the direct images of those of P ′
2 under

b, respectively.

By (vii), (viii), the fact f ◦ a2 ◦ b = g ◦ a2 ◦ b shows f ◦ a2 = g ◦ a2.

Next we prove (2). The uniqueness of q follows from (1). We prove the

existence of q. By (v), we have a map of sets P2 → P as the composition

P2 → |F | → P . Since b : P ′
2 → P2 satisfies the above (vii) and (viii), there

exists a unique morphism h : P2 → P whose underlying map is the above

map P2 → P such that the composition h◦b coincides with the composition

P ′
2 → P1 → P . We will prove that h factors through the surjection of

sheaves a2 : P2 → F and hence gives q : F → P . For this, it is sufficient

to prove h ◦ pr1 = h ◦ pr2, where prj (j = 1, 2) is the j-th projection

R := P2×F P2 → P2. Let R′ := P ′
2×P1 P

′
2 = P1×F R, and let c : R′ → R be

the canonical morphism. Then c has the same property as a1 in (i). Hence

(ix) c is surjective, and the topology of R is the image of the topology

of R′.

By (iii) and (iv), R is log smooth. Hence the fact that c has the same

property in (i) shows

(x) The O and the M of R are the direct images of those of R′, respec-

tively.

By (ix), (x), the fact h ◦ pr1 ◦ c = h ◦ pr2 ◦ c shows h ◦ pr1 = h ◦ pr2.

Finally we prove (3). (a) follows from the fact that P1 → P is proper

and surjective. We prove (b). Let U be an open set of P . Then we have

maps

Mor(U,Ga) → Mor(FU ,Ga) → Mor(P1 ×P U,Ga),

Mor(U, [M ]) → Mor(FU , [M ]) → Mor(P1 ×P U, [M ])

such that the compositions are bijective by (vi). By applying (1) to the case

where F , P1, P2, P in (1) are FU , P1×P U , P2×P U ,Ga (resp. [M ]), we have

the injectivity of Mor(FU ,Ga) → Mor(P1×P U,Ga) (resp. Mor(FU , [M ]) →
Mor(P1 ×P U, [M ])). This shows that Mor(U,Ga) → Mor(FU ,Ga) and

Mor(U, [M ]) → Mor(FU , [M ]) are bijective. �
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4.6.7. Now we prove 4.6.3. We apply 4.6.6. First we assume that Γ is

neat. The general case will be treated in 4.6.8. Let F = Φ̄Γ, P1 = D̄Γ,Σ for

some complete fan Σ which is strongly compatible with Γ, P = D̄Γ and let

P2 be the disjoint union of Uσ, where σ ranges over the set of all monodromy

cones and Uσ = D̄Γ(σ)gp,Σ(σ) in the notation in 4.3.8. Let P1 → F be the

canonical morphism (4.3.13) and let P2 → F be the morphism whose σ-

component is the composite Uσ → Φ̄Γ(σ)gp,Σ(σ) ⊂ Φ̄Γ(σ)gp → Φ̄Γ, where the

first homomorphism is the one we constructed in 4.5.3. Then it is easy to

see that the conditions (i)–(v) are satisfied.

Hence by 4.6.6 (2), there exists a unique morphism q : Φ̄Γ → D̄Γ such

that the composition D̄Γ,Σ = Φ̄Γ,Σ ⊂ Φ̄Γ → D̄Γ coincides with the canonical

morphism D̄Γ,Σ → D̄Γ.

By the definition of D̄Γ as a set (4.3.13), (1) of 4.6.3 is clear. To see

(2)–(4) of it, it is enough to apply 4.6.6 (3), which is possible because the

condition (vi) in 4.6.6 (3) is satisfied (4.3.13). This completes the proof of

4.6.3 in case where Γ is neat.

4.6.8. We will complete the proof of 4.6.3 by reducing the general case

to the case where Γ is neat, which is already proved. First, (1) of 4.6.3 is

clear. To see (2)–(4), we take a neat subgroup Γ′ of Γ of finite index. Then

D̄Γ′ is described in termes of Φ̄Γ′ . Since the map D̄Γ′ → D̄Γ is closed, we

deduce (2) for Γ. Similarly, we deduce (3) and (4). This completes the proof

of 4.6.3.

The second theorem 4.6.4 follows from the first theorem 4.6.3 by the

following general lemma.

4.6.9. Lemma. Let F be a sheaf on (fs) and P an fs log analytic space.

If the point set of P is a quotient ||F || of |F | and if the topology of P , the

ringed space structure of P , and the log structure of P are determined by

F as those of D̄Γ are determined by Φ̄Γ in 4.6.3, then we have a functorial

bijection for an fs log analytic space Q:

{a morphism P → Q} ↔ {a morphism F → Q such that |F | → Q factors

through ||F ||}.

Proof. First we define the canonical morphism F → P . Let T be an

fs log analytic space and T → F a morphism. Then, we have a morphism of
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sets T → |F | → ||F || = P , which is continuous by the assumption. Further,

by the assumption, it extends to a morphism of fs log analytic spaces, that is,

gives an element of P (T ), where we identify P with the functor represented

by P . We easily see that the above correspondence makes a morphism

F → P . By composing this morphism F → P , we can define a map of sets

from the left hand side to the right hand side in the desired bijection in the

statement of the lemma. Again by the assumption, it is straightforward to

verify that this map is bijective. �

4.6.10. Discussion about coarse moduli.

First we review the non-log case. Let F : (an) → (Set) be a contravariant

functor. An analytic space P is a coarse moduli space of F if the following

(i)0 and (ii)0 are satisfied.

(i)0 As a point set, P is F (Spec C).

(ii)0 For an analytic space Q, there is a functorial bijection :

{a morphism P → Q} ↔ {a morphism F → Q}.
Since F (Spec C) is the set of morphisms from a point Spec C to F , the set

|F | which we introduced in 4.6.1 for a contravariant functor F : (fs) → (Set)

is an analogue of it in the log case. However, we do not formulate the

coarse moduli using |F | because for the moduli functor F = Φ̄Γ of log

abelian varieties (with additional structures), |F | does not coincide with

||F || = D̄Γ. In fact, for example, in case where g = 2 and Γ = Γ(n)

for n ≥ 3, consider the open subfunctor of F ′ of F which is defined by

discarding the totally degenerate locus. Then, F ′ is represented by the

partial Mumford compactification with respect to the fan consisting of all

one-dimensional monodromy cones. Hence the subset |F ′| of |F | coincides

with this partial Mumford compactification. But the map from this partial

Mumford compactification to the Satake-Baily-Borel compactification is not

injective, which shows that |F | does not coincide with the Satake-Baily-

Borel compactification.

Nevertheless, if we define a coarse moduli for a pair (F, ||F ||), where F

is a contravariant functor F : (fs) → (Set) and ||F || is a quotient of |F |, to

be the fs log analytic space P which satisfies the following (i) and (ii), then

the Satake-Baily-Borel compactification D̄Γ for any arithmetic subgroup Γ

of G(Q) is the coarse moduli for the pair (Φ̄Γ, ||Φ̄Γ||), where ||Φ̄Γ|| is the

quotient set defined in 4.6.2. This is nothing but 4.6.4.
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(i) As a point set, P is ||F ||.
(ii) For an fs log analytic space Q, there is a functorial bijection :

{a morphism P → Q} ↔ {a morphism F → Q such that |F | → Q

factors through ||F ||}.

We will discuss another formulation in case of no coefficient in 4.7.8 in

the next subsection.

4.7. Proof of 4.6.5

In this subsection, we prove 4.6.5.

Let g, n ≥ 1. Let the notation be as in 4.1 (cf. 4.3.14). In this subsection,

we work without coefficient rings.

4.7.1. To prove 4.6.5, we use the result 4.1.7 for the toroidal com-

pactifications, which is a special case of 4.4.4. We use an admissible cone

decomposition, which is precisely as follows.

Let Y0 be a finitely generated free abelian group of rank g. Let

Sym2(Y0,R) be the set of all symmetric Z-bilinear forms Y0 × Y0 → R.

Let Σ be an admissible cone decomposition of Sym2(Y0,R) in the sense of

[3], that is, a set of finitely generated (sharp) rational polyhedral cones in

Sym2(Y0,R) satisfying the following conditions:

(1) For σ ∈ Σ, every face of σ is in Σ;

(2) For σ, τ ∈ Σ, the intersection σ ∩ τ is a face of σ;

(3) Σ is stable under the action of AutZ(Y0). Here α ∈ AutZ(Y0) acts

on Sym2(Y0,R) by 〈 , 〉 �→ 〈α(·), α(·)〉;
(4) The number of the AutZ(Y0)-orbits in Σ is finite;

(5) For any σ ∈ Σ, any element of σ is positive semi-definite, i.e., 〈y, y〉 ≥
0 for any 〈 , 〉 ∈ σ and any y ∈ Y0;

(6) For each positive definite symmetric bilinear form 〈 , 〉 : Y0×Y0 → R,

there exists a unique σ ∈ Σ for which 〈 , 〉 is contained in the interior of σ.

Let D̄g,n,Σ be the toroidal compactification associated to Σ. Then, we

have a surjective morphism D̄g,n,Σ → D̄g,n (cf. 4.3.13).

4.7.2. We give a preparation for the proof of 4.6.5.

Let Jg be the sheaf on (fs) defined as follows: For an fs log analytic space

T , Jg(T ) is the set of all pairings Zg × Zg → Mgp
T for which the identity

map of Zg is a polarization.
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Let Sym2(Zg,Z) be the set of all symmetric bilinear forms Zg × Zg →
Z, and let Sym2

(+)(Z
g,Z) be the subcone of Sym2(Zg,Z) consisting of all

positive semi-definite forms. For a finitely generated subcone α of

Sym2
(+)(Z

g,Z), let Jg,α be the subsheaf of Jg defined as follows. For an

fs log analytic space T , Jg,α(T ) is the set of all b ∈ Jg(T ) such that for any

t ∈ T and any homomorphism N : MT,t/O×
T,t → N, the induced pairing

Zg × Zg → Mgp
T,t/O×

T,t
N→ Z belongs to α. If α∨ ⊂ Hom (Sym2(Zg,Z),Z) =

Sym2
Z(Zg) denotes the dual cone of α consisting of all elements of Sym2

Z(Zg)

which send α into N, then by Proposition 3.10.2, Jg,α is represented by

an open subspace of the toric variety Spec(C[α∨])an with the natural log

structure.

Let sn : Jg → Φ̄g,n be the morphism which sends b ∈ Jg(T ) to (A, p, l) ∈
Φ̄g,n(T ), where A is the quotient associated to the pairing Zg × Zg →
Mgp
T ; (y, z) �→ b(y, z)n, p is the polarization induced by the identity map of

Zg, and l is the level structure (ej)1≤j≤2g, where ej is the n-division point

of A defined as follows. Let (fj)1≤j≤g be the standard base of Zg. Then for

1 ≤ j ≤ g, ej is the image of b(fj ,−) : Zg → Gm,log in A. If g < j ≤ 2g,

ej is the image of the element of Hom (Zg,C×) ⊂ Hom (Zg,Gm,log) which

sends fj to exp(2πi/n) and fk (k &= j) to 1.

Then, as is easily seen, when γ ranges over Sp(2g,Z/nZ), Φ̄g,n is the

union of the images of γ ◦ sn : Jg → Φ̄g,n. Furthermore, Jg is the union of

Jg,α, where α ranges over all finitely generated subcones of Sym2
(+)(Z

g,Z).

4.7.3. Let Q be a Hausdorff fs log analytic space. Let Φ̄g,n → Q be

a morphism. To prove 4.6.5, since any fs log point has a morphism from

the standard log point p = (Spec C,C× ⊕ N), it is sufficient to prove the

following:

Let (A1, p1, l1) and (A2, p2, l2) ∈ Φ̄g,n(p) be principally polarized log

abelian varieties with n-level structures over the standard log point p. As-

sume that their images in D̄g,n(p) coincide. Then their images in Q coincide.

Such (A1, p1, l1) and (A2, p2, l2) come from b1, b2 ∈ Jg(p) having the

following property (∗) below, via γ ◦ sn : Jg → Φ̄g,n for a common γ. Let

2g′ be the rank of gr−1.

(∗) The pairing hj : Zg × Zg → Mgp
p /O×

p � Z induced by bj kills

(Zg
′ ⊕ {0}g−g′) × Zg for j = 1, 2. The pairing ({0}g′ ⊕ Rg−g

′
) × ({0}g′ ⊕
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Rg−g
′
) → R induced by hj is non-degenerate for j = 1, 2. The pairings

(Zg
′⊕{0}g−g′)× (Zg

′⊕{0}g−g′) → O×
p = C× induced by b1 and b2 coincide.

It is sufficient to prove that the images of b1, b2 in Q coincide. We will

prove this in 4.7.5 after a preparation in the next subparagraph.

4.7.4. We give preparations on finitely generated subcones of

Sym2
(+)(Z

g,Z).

Let

ψ : Sym2(Zg,Z) � Sym2(Zg
′
,Z)×Hom (X,Z)× Sym2(Zg−g

′
,Z)

with X = (Zg
′
)g−g

′
, be the canonical isomorphism, where the first compo-

nent of ψ is defined by the restriction to (Zg
′ ⊕ {0}g−g′)× (Zg

′ ⊕ {0}g−g′),
the second component of ψ is defined by the restriction to (Zg

′ ⊕{0}g−g′)×
({0}g′ ⊕ Zg−g

′
), and the third component of ψ is defined by the restriction

to ({0}g′ ⊕ Zg−g
′
)× ({0}g′ ⊕ Zg−g

′
).

Fix a finitely generated subcone α′ of Sym2
(+)(Z

g′ ,Z) such that (α′)gp =

Sym2(Zg
′
,Z). Let S = Jg′,α′ and let s ∈ S be the unique point such that

the image of any element of (α′)∨ − {1} in O(s) = C is zero.

Now in 3.4, take S as above and take Y,X,S as follows. Let Y = X =

(Zg
′
)g−g

′
, S = (α′)∨ the set of all elements of Sym2

Z(Zg
′
) which send α′ into

N, and let

〈 , 〉 : (Zg
′
)g−g

′ × (Zg
′
)g−g

′ → Sym2
Z(Zg

′
) = Sgp

be the canonical pairing ((uj)1≤j≤g−g′ , (vj)1≤j≤g−g′) �→
∑

1≤j≤g−g′ uj ⊗ vj

(uj , vj ∈ Zg
′
). Then this pairing is S-admissible. This is because the canon-

ical pairing Zg
′×Zg

′ → Sym2
Z(Zg

′
) = Sgp; (u, v) �→ u⊗v is S-admissible, for

this pairing is identified with the canonical pairing Zg
′ × Zg

′ → Mgp
S,s/O×

S,s

and S is identified with MS,s/O×
S,s.

Let C ⊂ Hom (S,N)×Hom (X,Z) be the cone defined in 3.4.

Claim 1. Let N ∈ α′ = Hom (S,N) ⊂ Sym2(Zg
′
,Z) and let . ∈

Hom (X,Z). Then (N, .) ∈ C if and only if there exist f ∈ Sym2
(+)(Z

g,Z)

and m ∈ Sym2(Zg−g
′
,Z) such that ψ(f) = (N, .,m).

Proof of Claim 1. We prove the “if part”. Assume that f,m as

above exist. For 1 ≤ j ≤ g− g′, let .j : Zg
′ → Z be the j-th component of ..
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Let x = (xj)1≤j≤g−g′ ∈ X = (Zg
′
)g−g

′
(xj ∈ Zg

′
), and assume x ∈ XKer (N).

This last assumption means that {xj} × Zg
′

is killed by the pairing Zg
′ ×

Zg
′ → Sgp N→ Z for any 1 ≤ j ≤ g−g′. To prove (N, .) ∈ C, it is sufficient to

prove .(x) = 0. We will prove .j(xj) = 0 for any j. Let (δj)1≤j≤g−g′ be the

standard base of Zg−g
′
. For any real number c, we have f(cxj+δj , cxj+δj) ≥

0, where we regard xj as an element of Zg
′⊕{0}g−g′ and δj as an element of

{0}g′⊕Zg−g
′
. Since f(cxj+δj , cxj+δj) = c2N(xj , xj)+2c.j(xj)+m(δj , δj)

and since N(xj , xj) = 0, we have 2c.j(xj)+m(δj , δj) ≥ 0. By taking c→∞,

we obtain .j(xj) ≥ 0. By taking c → −∞, we obtain .j(xj) ≤ 0. Hence

.j(xj) = 0.

Next we prove the “only if part”. Assume (N, .) ∈ C. Fix any positive

definite symmetric bilinear form m0 : Zg−g
′×Zg−g

′ → Z. Let Z ⊂ Zg
′
be the

set of all z ∈ Zg
′
such that N(z,Zg

′
) = 0. Then since (N, .) ∈ C, .j(Z) = 0

for any j. Since N induces a positive definite symmetric bilinear form

Zg
′
/Z × Zg

′
/Z → Z, for any sufficiently large integer c > 0, the symmetric

bilinear form fc : Zg×Zg → Z characterized by ψ(fc) = (N, ., cm0) induces a

positive definite symmetric bilinear form (Zg
′
/Z⊕Zg−g

′
)×(Zg

′
/Z⊕Zg−g

′
) →

Z and in particular belongs to Sym2
(+)(Z

g,Z). �

We now consider finitely generated subcones α of Sym2
(+)(Z

g,Z) having

the following properties (i) and (ii).

(i) The restriction of each member of α to Zg
′ ×Zg

′
= (Zg

′ ⊕{0}g−g′)×
(Zg

′ ⊕ {0}g−g′) is contained in α′.

(ii) Let α0 be the face of α consisting of all elements of α which kill

(Zg
′ ⊕ {0}g−g′)× Zg, and regard α0 as a set of symmetric Z-bilinear forms

({0}g′ ⊕ Zg−g
′
) × ({0}g′ ⊕ Zg−g

′
) → Z. Then (α0)

gp coincides with the set

of all symmetric Z-bilinear forms ({0}g′ ⊕ Zg−g
′
)× ({0}g′ ⊕ Zg−g

′
) → Z.

Claim 2. Let α be a finitely generated subcone of Sym2
(+)(Z

g,Z) sat-

isfying the above (i) and (ii), and let σ be the image of α in Sym2(Zg
′
,Z)×

Hom (X,Z) under the first and the second components of ψ. Then σ is a

finitely generated subcone of C.

This follows from the “if part” of Claim 1.
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Claim 3. For any finitely generated subcone σ of C, there is a finitely

generated subcone α of Sym2
(+)(Z

g,Z) satisfying the above (i) and (ii) whose

image in Sym2(Zg
′
,Z)⊕Hom (X,Z) coincides with σ.

This follows from the “only if part” of Claim 1.

Let α and σ be as in Claim 2.

Note that α0 is the kernel of α → σ. Let α∨ ⊂ Sym2
Z(Zg) be the dual

cone of α, let σ∨ ⊂ Sgp ×X be the dual cone of σ which we identify with

the annihilator of α0 in α∨, and let I be the complement of σ∨ in α∨. Let

Rα be the closed analytic subspace of Jg,α defined by the ideal generated

by I. We endow Rα with the inverse image of the natural log structure of

Jg,α.

The restriction to (Zg
′ ⊕ {0}g−g′)× Zg defines a canonical morphism

Rα → V (σ),

where V (σ) → S is as in 3.5.

Claim 4. The underlying morphism of analytic spaces of Rα → V (σ)

(we forget the log structures here) is an isomorphism.

Proof of Claim 4. This is because α∨ is the disjoint union of σ∨

and I, Rα is the inverse image of S in Spec(C[α∨]/(I))an, and V (σ) is the

inverse image of S in Spec(C[σ∨])an. �

4.7.5. Now we prove that for b1, b2 ∈ Jg(p) satisfying (∗) in 4.7.3, the

images of b1 and b2 in Q coincide. (This will complete the proof of Theorem

4.6.5).

Fix α′ as in 4.7.4. Let S, s, S, X, C be as in 4.7.4.

Take any α satisfying (i) and (ii) such that α0 contains h1 and h2 in

4.7.3. Let σ be the image of α in Hom (S,N)×Hom (X,Z), and let I ⊂ α∨

be as in 4.7.4. Then b1, b2 ∈ Jg(p) are contained in Jg,α(p). Furthermore,

b1, b2 ∈ Rα(p). In fact, I does not kill α0 and hence does not kill any element

in the interior of α0. Since hj (j = 1, 2) induces a positive definite pairing

({0}g′ ×Rg−g
′
)× ({0}g′ ×Rg−g

′
) → R, hj belongs to the interior of α0, and

hence I does not kill hj . This shows that the pull backs of the elements of

I in O(p) = C are zero. Hence b1, b2 belong to Rα(p).
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Let F = Jg. Let T = Rα ×S Rα (recall that S = Jg′,α′). We have

two morphisms f, g : T ⇒ Q induced by the two projections T ⇒ Rα. It

is enough to show that the underlying morphisms of these two morphisms

T ⇒ Q coincide. Let T ′ be the fiber product T ×Q×QQ ⊂ T in the category

of analytic spaces, where T → Q × Q is (f, g) and Q → Q × Q is the

diagonal. It is sufficient to prove T ′ = T . Since Q is Hausdorff, T ′ is

closed in T . Let Λ be the set of all infinitesimal neighborhoods of s in S,

that is, the set of all closed analytic subspaces of S whose underlying sets

coincide with s. For λ ∈ Λ, let Tλ = T ×S λ. Since T ′ is a closed analytic

subspace of T , it is sufficient to show that for any λ, the morphism Tλ → T

factors through a morphism Tλ → T ′, that is, the underlying morphisms of

analytic spaces of f, g : Tλ ⇒ Q coincide. Fix λ ∈ Λ. By Proposition 3.5.6

(2), for a sufficiently large finitely generated subcone τ of C, the underlying

morphism of analytic spaces of V (σ) ×S λ → V (τ) ×S λ factors through

the canonical projection V (σ) ×S λ → λ. By Claim 3, there is a finitely

generated subcone β of Sym2
(+)(Z

g,Z) which contains α and whose image

in Hom (S,N) × Hom (X,Z) coincides with τ . By Claim 4, the underlying

morphism of analytic spaces of Rα ×S λ → Rβ ×S λ factors through the

canonical projection Rα ×S λ → λ. Hence the underlying morphisms of

analytic spaces of the two morphisms Tλ ⇒ Rβ ×S λ→ Q coincide.

4.7.6. Remark. The generalization of 4.6.5 to the case with coefficient

rings does not necessarily valid. But, for example, the generalization is valid

if there is an L-submodule V ′ of V satisfying dim(V ′) = dim(V )/2 and

ψ(V ′, V ′) = 0. The proof is similar and we do not discuss it in detail here.

4.7.7. Remark. The above 4.7.3–4.7.5 are roughly outlined in terms

of the previous subsection 4.3 as follows. Let the notation be as in 4.3.7. As-

sume that (Γ,Σ) is local. The problem is roughly to show that any fiber of

the map from the maximally degenerate locus of D̄Γ,Σ to the Satake-Baily-

Borel compactification maps on one point of a Hausdorff Q. Since this

map factors through the base exp(σC) \ exp(σC)D of the toroidal embed-

ding performed there, and since the underlying morphism of the morphism

from the maximally degenerate locus of D̄Γ,Σ to exp(σC) \ exp(σC)D is an

isomorphism (cf. Claim 4), it is essential to consider fibers of the factored

morphism from exp(σC) \ exp(σC)D to the Satake-Baily-Borel compactifi-

cation. The last map is, as in the subsection 4.5, described as a restriction
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of the map from the space of the pairings Zg × Zg
′ → Gm to the space of

the pairings Zg
′ × Zg

′ → Gm, its fibers are (usual) abelian varieties A of

dimension g(g − g′), and it is not at all trivial that each A maps on one

point of Q. What we did above is to take a log abelian variety A′ which is

a total degeneration of this A and apply a theory in the preceding section

to this A′. Then we saw that A′ mapped on one point. Then the original

A also mapped on one point.

4.7.8. Further discussion about coarse moduli. This is a continuation

of 4.6.10. Let F : (fs) → (Set) be an arbitrary contravariant functor. At

present, we do not have any appropriate candidate of what should be the

point set of F . As explained in 4.6.10, we do not think that the naive

candidate |F | is good. (However, |F | is useful. For example, we used it in

the proof of 4.6.3).

Another candidate is ||F || which is defined below. The above proof of

4.6.5 shows that, in case of F = Φ̄g,n, this ||F || coincides with the point

set of D̄g,n, so that if we formulate the coarse moduli for an F with this

||F ||, then we can say that D̄g,n is the coarse moduli for Φ̄g,n. But, as is

suggested in 4.7.6, this ||F || does not necessarily coincide with the point set

of the Satake-Baily-Borel compactification in the case of coefficient rings.

So we do not think that ||F || is always good, neither.

Here is the definition of ||F ||, where F : (fs) → (Set) is a contravariant

functor. Let ||F || be the quotient set of |F | by the equivalence generated

by the following relation.

Let T be an fs log analytic space, let f, g : T → F be morphisms and let

p ∈ T . Assume that there exists a family (Tλ) of closed analytic subspaces

of T satisfying the following (i) and (ii). Then the classes of f : p→ F and

g : p→ F in |F | are equivalent.

(i) For any closed analytic subspace T ′ of T such that the morphism of

analytic spaces Tλ → T factors through a morphism Tλ → T ′ for any λ, we

have p ∈ T ′.

(ii) For each λ, there are an fs log analytic space Vλ, morphisms fλ, gλ :

Tλ → Vλ and a morphism hλ : Vλ → F such that hλ ◦ fλ coincides with the

restriction of f to Tλ, hλ ◦ gλ coincides with the restriction of g to Tλ, and

the underlying morphism of analytic spaces of fλ coincides with that of gλ.
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We add a remark about the condition (i). Consider the condition

(i′) The point p belongs to the closure of the union of all the sets Tλ in

T .

Then we have (i′) ⇒ (i). However, the converse is not true. For example, if

T = C and the family (Tλ) is the family (Spec(C[x]/(xn))an)n≥1, then the

closure of the union of all the sets Tλ is {0}, but the condition (i) holds for

any point p in C.

Note that if P is a Hausdorff fs log analytic space, then the canonical

map P → ||P || is bijective. This is essentially proved in 4.7.5.

5. Proper Models

5.1. Results

5.1.1. Let (X,Y, 〈 , 〉) be a non-degenerate pairing into Gm,log over an

fs log analytic space S. We denote by A the associated log complex torus.

Let S be an fs monoid. Assume that we are given an S-admissible pairing

X × Y → Sgp and a homomorphism S → MS/O×
S such that the induced

map X × Y →Mgp
S /O×

S coincides with 〈 , 〉 modulo Gm.

5.1.2. Now we consider the cone C (3.4.2). A cone decomposition Σ

is by definition a fan in Hom (Sgp × X,Q) whose support is contained in

the cone CQ of the non-negative rational linear combinations of elements

of C. Note that Σ may not cover C. Assume that Σ is stable under

the action of Y , where y ∈ Y acts on C by (N, l) �→ (N, l + N(〈 , y〉)).
Then we define the subsheaf A(Σ) of A as Y \Hom(X,Gm,log,S)(Σ), where

Hom(X,Gm,log,S)(Σ) =
⋃

∆∈Σ V (∆) (3.5.2). We show that A(Σ) is repre-

sentable in 5.3, and call the representing object, which is also denoted by

A(Σ), the model of A associated to Σ. We say that a model is a proper

(resp. projective) model if it is proper (resp. projective) over S.

A vague form of the result in this section is the following. See 5.2, 5.3

and 5.4 for the precise statements. Let A be a log complex torus over S.

5.1.3. Theorem. A “nice” cone decomposition exists at least locally

on the base S. The model associated to it is a proper model. If A is a

polarizable log abelian variety, then at least locally on S, there is a “nice”

cone decomposition which produces a projective model.
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5.2. Cone decomposition

In this section, we show the following theorem.

5.2.1. Theorem. Let 〈 , 〉 : X × Y → Sgp be an admissible pairing.

Then there exists a fan Σ in (Sgp)∗Q ⊕ X∗
Q satisfying the following four

conditions:

(1) The support of Σ is equal to the cone CQ of the non-negative rational

linear combinations of elements of C in 3.4.2;

(2) The fan Σ is stable under the action of Y on CQ defined by (N, l) �→
(N, l +N(〈?, y〉)) for y ∈ Y ;

(3) Σ has only finitely many Y -orbits;

(4) For any cone ∆ ∈ Σ and y ∈ Y , the intersection ∆∩(∆+y) coincides

with {(N, l) ∈ ∆;N(〈?, y〉) = 0}.
Here we denote by + the Y -action, and by (?)∗Q the set Hom (?,Q) of

homomorphisms to Q.

5.2.2. Remark. If 〈 , 〉 has a polarization p : Y → X as in Lemma

1.2.5, then it yields a natural cone decomposition of C satisfying (1)—(4)

above. See [27], [22] and [10]. Cf. also 5.4.

5.2.3. By a combinatorial lemma 5.2.14 proved later, to prove Theo-

rem 5.2.1, it is enough to show that there is a finite set J of finitely generated

Q≥0-subcones of CQ satisfying the following three conditions:

(1) CQ =
⋃

∆∈J,y∈Y (∆ + y).

(2) For any ∆ ∈ J and y ∈ Y , ∆ ∩ (∆ + y) is a face of ∆ and a face of

∆ + y. The action ? �→? + y is the identity on ∆ ∩ (∆ + y).

(3) For any ∆,∆′ ∈ J , the set of cones {∆ ∩ (∆′ + y); y ∈ Y } is finite.

We remark that in (2), that ∆ ∩ (∆ − y) is a face of ∆ implies that (∆ ∩
(∆− y)) + y = ∆∩ (∆ + y) is a face of ∆ + y. Thus the phrase “and a face

of ∆ + y” in (2) could be deleted.

We will construct such a J .

5.2.4. Definition. For every face σ of S, we fix bases (xσ,i)i of Xσ,

and an element sσ in the interior of σ. Let a = (aσ,i)σ,i and b = (bσ,i)σ,i be

collections of rational numbers with aσ,i ≤ bσ,i for each σ and i. Then we

define a (finitely generated) cone Ca,b ⊂ Hom (S,N)⊕Hom (X,Z)

Ca,b := {(N, l); aσ,iN(sσ) ≤ l(xσ,i) ≤ bσ,iN(sσ) for each σ, i}.
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In 3.4.9, we made a similar construction. The cone C(a) (a ∈ N) there

is C−a,a here.

In the following, we fix (xσ,i)i and sσ as above.

The next is proved similarly as 3.4.10.

5.2.5. Lemma. Let the notation be as above.

(1) Ca,b ⊂ C for every a, b.

(2) C =
⋃

−∞<a≤b<+∞Ca,b. Here −∞ < a = (aσ,i) ≤ b = (bσ,i) < +∞
means that −∞ < aσ,i ≤ bσ,i < +∞ for each face σ of S and i.

Proof. (1) Suppose (N, l) ∈ Ca,b and set σ := KerN . Then N(sσ) =

0 implies that l(xσ,i) = 0 for all i. Hence l(Xσ) = 0 and (N, l) ∈ C.

(2) Let us take (N, l) ∈ C. We show that there exist (sufficiently small)

a = (aσ,i) and (sufficiently big) b = (bσ,i) such that

aσ,iN(sσ) ≤ l(xσ,i) ≤ bσ,iN(sσ) for all σ, i.

If N(sσ) = 0, then l(xσ,i) = 0. If N(sσ) &= 0, then N(sσ) > 0 by definition.

So, the assertion is clear. �

In the followings, we denote Q≥0 ⊗NCa,b by Ca,b by abuse of notation.

Before constructing a J , we first propose three lemmas.

5.2.6. Lemma. For a sufficiently small ε > 0, the following holds:

For any collections of rational numbers

a = (aσ,i)σ,i, b = (bσ,i)σ,i,

a′ = (a′σ,i)σ,i, b
′ = (b′σ,i)σ,i

such that for any σ, i,

0 ≤ bσ,i − aσ,i < ε

0 ≤ b′σ,i − a′σ,i < ε,

the following holds:

For any y, z ∈ Y and any N ∈ Hom (S,Q≥0), if

Ca,b ∩ (Ca′,b′ + y) ∩ (the fiber of N) &= ∅ and

Ca,b ∩ (Ca′,b′ + z) ∩ (the fiber of N) &= ∅,
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then y ≡ z mod Yσ, where σ := Ker (N). (Here the fiber of N means the

inverse image of N by CQ −→ Hom (S,Q≥0); (N, l) �→ N.)

5.2.7. Lemma. For any collections of rational numbers a, b, a′, b′, there

exist a finite set of elements y1, . . . , yk of Y such that for any y ∈ Y and

N ∈ Hom (S,Q≥0), if Ca,b ∩ (Ca′,b′ + y)∩ (the fiber of N) &= ∅, then there

exists i such that y ≡ yi mod Yσ, where σ = Ker (N).

5.2.8. Lemma. Let W be a compact subset of R⊗ Y . Then, for some

rational numbers a1 0 and b0 0, the following holds:

If y ∈W ∩ (Q⊗ Y ), N ∈ Hom (S,Q≥0), then (N,N〈?, y〉) ∈ Ca,b.

(Here a, b of Ca,b means the collections aσ,i = a, bσ,i = b for any σ, i.)

5.2.9. We deduce the existence of J from Lemmas 5.2.6, 5.2.7 and

5.2.8. Let the situation be as in Theorem 5.2.1. Take an ε > 0 satisfying

the condition in Lemma 5.2.6. On the other hand, take a compact subset

W of R⊗Y satisfying R⊗Y =
⋃
y∈Y (W +y), and take rational numbers a, b

satisfying the condition in Lemma 5.2.8 for W . Next, take a finite number

of rational numbers c0, . . . , ck such that

a = c0 ≤ c1 ≤ · · · ≤ ck = b, ci − ci−1 < ε (i = 1, . . . , k).

For each map f : {(σ, i)} −→ {1, . . . , k}, define the finitely generated

subcone Cf of CQ as

Cf = Cp,q,

where pσ,i = cf(σ,i)−1 and qσ,i = cf(σ,i). Let J be the set of all such Cf (f

runs). Then this J satisfies the three conditions in 5.2.3. In fact,

(1): By the admissibility, any element of CQ has the form (N,N〈?, z〉),
N ∈ Hom (S,Q≥0), z ∈ Q ⊗ Y . Take a y ∈ Y such that z − y ∈ W .

By Lemma 5.2.8, (N,N〈?, z − y〉) ∈ Ca,b. Hence there is an f such that

(N,N〈?, z−y〉) ∈ Cf . (Note that Ca,b =
⋃
f Cf .) This implies (N,N〈?, z〉) ∈

Cf + y.

(2): For y ∈ Y , N ∈ Hom (S,Q≥0) and Cf ∈ J ,

Cf ∩ (Cf + y) ∩ (the fiber of N) &= ∅

implies y ∈ Yσ, where σ = Ker (N). This is seen from Lemma 5.2.6

by letting z = 0. Hence, taking the minimal face σ such that y ∈ Yσ
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(Lemma 3.4.5 (2)), we see that Cf ∩ (Cf + y) is the inverse image of

the face {N ;N(σ) = 0} of Hom (S,Q≥0) by the natural homomorphism

Cf −→ Hom (S,Q≥0). Hence this is a face of Cf on which the action of y is

trivial.

(3): Let Cf , Cf ′ ∈ J . For each y ∈ Y , let σy be the minimal element in

{Ker (N);N ∈ Image (Cf ∩ (Cf ′ + y) −→ Hom (S,Q≥0))}.

Let N be an element of Hom (S,Q≥0) with Ker (N) = σy that belongs to

the image of Cf ∩ (Cf ′ + y). From Lemma 5.2.7, there exists an i such that

y ≡ yi mod Yσy . Thus Cf ∩ (Cf ′ + y) = Cf ∩ (Cf ′ + yi).

5.2.10. We prove Lemmas 5.2.6, 5.2.7 and 5.2.8. To prove 5.2.6 (resp.

5.2.7, resp. 5.2.8), it is enough to show the existence of ε (resp. y1, · · · , yk,
resp. a and b) satisfying the conditions there for every N ∈ Hom (S,Q≥0)

such that KerN coincides with a prescribed face τ of S. In the following,

we fix such a τ and consider such N ’s only.

Take a set of generators N0, . . . , Nn of {N ∈ Hom (S,Q≥0);N(τ) = 0}.
Then we have {N ∈ Hom (S,Q≥0); Ker (N) = τ} = {t0N0 + · · ·+ tnNn; ti ∈
Q, ti > 0}. It is enough to show the existence of ε (resp. y1, · · · , yk, resp.

a and b) satisfying the conditions in Lemma 5.2.6 (resp. 5.2.7, resp. 5.2.8)

for the N = t0N0 + · · ·+ tnNn ∈ Hom (S,Q≥0) with every t0, . . . , tn ∈ Q>0

such that th(0) ≥ th(1) ≥ · · · ≥ th(n), where h : {0, . . . , n} −→ {0, . . . , n}
is a prescribed map. Hence we consider only N = t0N0 + · · · + tnNn with

t0 ≥ · · · ≥ tn.

For α ∈ (0, 1]n, put

Nα := N0 + α1N1 + α1α2N2 + · · ·+ α1 · · ·αnNn.

It is enough to show the existence of ε (resp. y1, · · · , yk, resp. a and b)

satisfying the conditions in 5.2.6 (resp. 5.2.7, resp. 5.2.8) for tNα with every

α ∈ ((0, 1] ∩Q)n and t ∈ Q>0.

Since [0, 1]n is compact, it is enough to show the existence of ε (resp.

y1, · · · , yk, resp. a and b) for tNα with every α ∈ ((0, 1] ∩ Q)n which is

sufficiently near to β and t ∈ Q>0, where β is a prescribed element of

[0, 1]n.

Let I = {(σ, i);σ &⊂ τ}. For α ∈ [0, 1]n, we define an R-linear map

ϕα : R⊗ Y −→ RI
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as follows: for any (σ, i) ∈ I, taking the minimal k such that Nk(σ) &= 0,

writing

Nα,k := Nk + αk+1Nk+1 + αk+1αk+2Nk+2 + · · ·+ (αk+1 · · ·αn)Nn,

we define that the (σ, i)-component of ϕα(y) is
Nα,k(〈xσ,i, y〉)

Nα,k(sσ)
(y ∈ R⊗ Y ).

As is easily seen, if α ∈ (0, 1]n, then the (σ, i)-component of ϕα(y) coincides

with
Nα(〈xσ,i, y〉)

Nα(sσ)
. Note that ϕα is continuous with respect to α, that is,

for a fixed β ∈ [0, 1]n, when α ∈ [0, 1]n converges to β, ϕα converges to ϕβ.

5.2.11. We will complete the proof of Lemma 5.2.8. Fix a β ∈ [0, 1]n.

It is enough to show that, for some a1 0 and b0 0,

y ∈W ∩ (Q⊗ Y ) ⇒ (Nα, Nα〈?, y〉) ∈ Ca,b

for every α ∈ ((0, 1] ∩Q)n sufficiently near to β. But

(Nα, Nα〈?, y〉) ∈ Ca,b

⇐⇒ for any σ, i, aNα(sσ) ≤ Nα〈xσ,i, y〉 ≤ bNα(sσ)

⇐⇒ for any (σ, i) ∈ I, a ≤ the (σ, i)-component of ϕα(y) ≤ b,

and we see that by the compactness of W , when a1 0 and b0 0, the last

condition is satisfied for every α sufficiently near to β.

For the proof of Lemmas 5.2.6 and 5.2.7, we use the next lemma.

5.2.12. Lemma. Let α ∈ [0, 1]n. Then ϕα induces an injection

R⊗ (Y/Yτ ) −→ RI .

Proof. For k, −1 ≤ k ≤ n, we define a face σk of S by σk =⋂
0≤i≤k Ker (Ni) (σ−1 = S). We have σn = τ . Let y ∈ R ⊗ Y and as-

sume that ϕα(y) = 0. By an induction on k, we will show y ∈ R ⊗ Yσk .

(Then we get y ∈ R ⊗ Yτ when k = n.) It is clear that y ∈ R ⊗ Yσ−1 .

Assuming that y ∈ R⊗ Yσk−1
, we show that y ∈ R⊗ Yσk . If Nk(σk−1) = 0,

then σk = σk−1 so that there is nothing to prove. Hence we may assume
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that Nk(σk−1) &= 0. Since the (σk−1, i)-component of ϕα(y) is 0, we see

Nα,k(〈Xσk−1
, y〉) = 0. Hence, by the admissibility, y ∈ R⊗ Yσk−1∩Ker (Nα,k).

Since Ker (Nα,k) ⊂ Ker (Nk), y ∈ R⊗ Yσk−1∩Ker (Nk) = R⊗ Yσk . �

5.2.13. We will complete the proof of Lemmas 5.2.6 and 5.2.7. Fix a

β ∈ [0, 1]n. By Lemma 5.2.12, for a sufficiently small δ > 0, the following

holds: For every α ∈ [0, 1]n sufficiently near to β and every y ∈ Y , if the

absolute values of all components of ϕα(y) < δ, then y ∈ Yτ . Take such a

δ. Let t ∈ Q>0, α ∈ ((0, 1] ∩Q)n, and assume that Ca,b ∩ (Ca′,b′ + y)∩ (the

fiber of tNα) &= ∅. Then for any (σ, i) ∈ I,

(∗) aσ,i − b′σ,i ≤ the (σ, i)-component of ϕα(y) ≤ bσ,i − a′σ,i.

We prove 5.2.6. Let z ∈ Y and assume that Ca,b ∩ (Ca′,b′ + z)∩ (the fiber of

tNα) &= ∅. Then, for any (σ, i) ∈ I,

(∗∗) aσ,i − b′σ,i ≤ the (σ, i)-component of ϕα(z) ≤ bσ,i − a′σ,i.

By (∗) and (∗∗), we have, for any (σ, i) ∈ I,

|ϕα(y)− ϕα(z)| < 4ε.

Thus, taking ε such that 4ε < δ, we have y ≡ z mod Yτ .

We show 5.2.7. By (∗), the (σ, i)-component of ϕα(y) is bounded for

every such y and α near β. Hence the set of such y modulo Yτ is finite.

The next lemma completes the proof of Theorem 5.2.1. The authors

think that it is known, but do not know a suitable reference.

5.2.14. Lemma. Let a group G act on a finite dimensional Q-vector

space V . Let J be a finite set of finitely generated cones in V . Assume that

the following (1) and (2) hold.

(1) For any σ ∈ J and g ∈ G, σ ∩ gσ is a face of σ (and a face of gσ

(cf. a remark in 5.2.3)), on which g acts trivially.

(2) For any σ, τ ∈ J , the set of cones {σ ∩ gτ ; g ∈ G} is finite.

Then there is a fan Σ satisfying the following five conditions:

(a) The support of Σ is equal to
⋃
σ∈J,g∈G gσ;

(b) The fan Σ is stable under the action of G;

(c) Σ has only finitely many G-orbits;
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(d) For any cone τ ∈ Σ and g ∈ G, the intersection τ ∩ gτ coincides

with {t ∈ τ ; g(t) = t}.
(e) For each σ ∈ J , Σ includes a finite subdivision of σ.

For the sake of induction, we generalize the statement.

5.2.15. Definition. Let V be a finite dimensional Q-vector space,

Σ1,Σ2 fans in V .

(1) We denote by Σ1 3 Σ2 the fan {σ1 ∩ σ2;σ1 ∈ Σ1, σ2 ∈ Σ2}.
(2) If Σ1 3 Σ2 is a subfan of Σ1 (i.e., Σ1 3 Σ2 ⊂ Σ1), we say that Σ1

respects Σ2, and denote it by Σ1 � Σ2.

(3) If Σ1 3 Σ2 is a subfan of Σi for i = 1, 2, we say that Σ1 and Σ2 are

compatible, and denote it by Σ1 � Σ2.

We will soon give equivalent definitions and some properties of these

relations.

Now the statement we prove is the following.

5.2.16. Lemma. Let G, V be as in Lemma 5.2.14. Let {Σ1, . . . ,Σm}
be a finite set of finite fans in V .

Assume that the following (1) and (2) hold.

(1) For any i and g ∈ G, Σi and gΣi are compatible, and g acts on

|Σi| ∩ |gΣi| trivially.

(2) For any i, j, the set of fans {Σi 3 gΣj ; g ∈ G} is finite.

Then there is a fan Σ satisfying the following five conditions:

(a) The support of Σ is equal to
⋃
i,g∈G g|Σi|;

(b) The fan Σ is stable under the action of G;

(c) Σ has only finitely many G-orbits;

(d) For any cone τ ∈ Σ and g ∈ G, the intersection τ ∩ gτ coincides

with {t ∈ τ ; g(t) = t}.
(e) For each i, Σ includes a finite subdivision of Σi.

To see this includes 5.2.14, notice that when fans Σ1 and Σ2 consist of

all faces of cones σ1 and σ2 respectively, Σ1 � Σ2 if and only if σ1 ∩ σ2 is

a face of σ1 and a face of σ2.

5.2.17. Proposition. Let V , Σ1, Σ2 be as in Definition 5.2.15.

(1) The following (i) and (ii) are equivalent.
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(i) Σ1 � Σ2.

(ii) For any τ ∈ Σ2, τ ∩ |Σ1| is the union of a set of cones of Σ1.

(2) The following (i)—(v) are equivalent.

(i) Σ1 � Σ2.

(ii) Σ1 � Σ2 and Σ2 � Σ1.

(iii) Σ1 ∪ Σ2 is a fan.

(iv) For any σ1 ∈ Σ1 and σ2 ∈ Σ2, σ1 ∩ σ2 is a face of σ1 and a face of

σ2.

(v) Σ1 3 Σ2 = Σ1 ∩ Σ2.

Proof. Easy. �

5.2.18. Proposition. Let V , Σ1, Σ2 be as in Definition 5.2.15. Let

Σ3 be another fan in V . Then the following hold.

(1) Σ1 is a subdivision of Σ2 if and only if Σ1 � Σ2 and |Σ1| = |Σ2|.
(2) Assume that Σ1 � Σ2 � Σ3. Assume further that |Σ1| ∩ |Σ3| ⊂ |Σ2|

(for example, that Σ1 is a subdivision of Σ2 or that Σ2 is a subdivision of

Σ3) , then Σ1 � Σ3.

(3) Define Σ1 � Σ2 ⇔ |Σ1| ⊂ |Σ2| and Σ1 � Σ2. Then � is a partial

order on the set of the fans in V . In general, Σ1 3 Σ2 = Inf (Σ1,Σ2) with

respect to this ordering. If Σ1 � Σ2, Σ1 ∪ Σ2 = Sup (Σ1,Σ2).

(4) Let Σ1, . . . ,Σk (k ≥ 2) be finite fans. Then there exists a finite

subdivision Σ′
1 of Σ1 which respects Σ2, . . . ,Σk.

(5) Assume that Σ1 � Σ2 and Σ1 3Σ2 is finite. Then there is a fan Σ̃1

supported by |Σ1| ∪ |Σ2| which includes Σ1 and a locally finite subdivision of

Σ2.

Proof. It is easy to see (1)—(3).

(4) We may assume that k = 2. Take a complete finite fan Σ̃′
2 including a

subdivision of Σ2 (cf. [28], the proof of Proposition 2.17). Let Σ′
1 := Σ13Σ̃′

2.

Then Σ′
1 is a finite subdivision of Σ1. Since Σ′

1 � Σ̃′
2, Σ′

1 � Σ′
2, where Σ′

2

is the subdivision of Σ2 included by Σ̃′
2. Hence Σ′

1 � Σ2.

(5) Consider the subfan Σ3 = Σ1 3 Σ2 of Σ1. By the equivariant com-

pactification theorem ([28] p.17), there is a complete finite fan Σ̃3 ⊃ Σ3.

Then Σ′
2 := Σ̃3 3 Σ2 is a locally finite subdivision of Σ2 and contains Σ3.

Since Σ3 ⊂ Σ1 ∩ Σ′
2 and |Σ3| = |Σ1| ∩ |Σ2|, Σ1 � Σ′

2 and Σ̃1 := Σ1 ∪ Σ′
2

satisfies the required condition. �
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5.2.19. We prove Lemma 5.2.16.

First we prove that the condition (1) plus (2) is inherited by the subdi-

visions, that is, if Σ′
1, . . . ,Σ

′
m are subdivisions of Σ1, . . . ,Σm respectively,

then Σ′
1, . . . ,Σ

′
m satisfy the same conditions. We prove that the condition

(1) is inherited first. For this, it is enough to show that (1) is equivalent to

(1)′ For any i, g ∈ G, g acts on |Σi| ∩ g|Σj | trivially and for any σ ∈ Σi,

{s ∈ σ; g(s) = s} is a face of σ.

We prove this equivalence. We may work under the assumption

(0) For any i, g ∈ G, g acts on |Σi| ∩ g|Σj | trivially.

Under it, we have σ ∩ gσ = {s ∈ σ; g(s) = s} for any σ ∈ Σi. Thus

(1) implies (1)′. Further, under the same (0), for any σ, τ ∈ Σi, σ ∩ gτ =

σ ∩ τ ∩ g(σ ∩ τ). Since σ > σ ∩ τ , (1)′ implies (1). To prove (1) plus

(2) is inherited, it is enough to show that under (0), (2) is inherited. Let

Σ′
1, . . . ,Σ

′
m be subdivisions of Σ1, . . . ,Σm respectively. Assume that for

some i, j, g, h ∈ G, Σi 3 gΣj = Σi 3 hΣj . It is enough to show that

Σ′
i 3 gΣ′

j = Σ′
i 3 hΣ′

j . Let σ′
i ∈ Σ′

i, σ
′
j ∈ Σ′

j . Since g−1h trivially acts on

|Σj | ∩ g−1h|Σj |, gh−1 acts on g|Σj | ∩ h|Σj | trivially. Hence it acts trivially

also on |Σi| ∩ g|Σj |= |Σi| ∩ g|Σj | ∩ h|Σj |. It implies σ′
i ∩ gσ′

j = σ′
i ∩ hσ′

j .

The proof of 5.2.16 goes with an induction on m. Before starting it, we

note that the conditions (c) and (d) are deduced from the others automat-

ically. (As for (d), use (1)′ as above.)

Now we start the induction. In case where m = 1, gΣ1, g ∈ G, are

pairwise compatible: for any g, h ∈ G, gΣ1 � hΣ1 because Σ1 � g−1hΣ1.

Hence Σ :=
⋃
g gΣ1 satisfies the required condition.

Assume that the statement is valid for m, and prove it for m + 1. For

each i ≤ m, let Σi 3 g1Σm+1, . . . ,Σi 3 gtΣm+1 be all the members of the set

{Σi 3 gΣm+1; g ∈ G}. By 5.2.18 (4), there is a finite subdivision Σ′
i of Σi

which respects gkΣm+1 for all k. Since Σi 3 gΣm+1 = Σi 3 gkΣm+1 implies

Σ′
i 3 gΣm+1 = Σ′

i 3 gkΣm+1, Σ′
i respects gΣm+1 for all g ∈ G also. By what

we have shown first, we can apply the inductive hypothesis to Σ′
1, . . . ,Σ

′
m,

and let Σ be the resulting fan which includes finite subdivisions Σ′′
i of all Σ′

i

(1 ≤ i ≤ m).

This Σ respects Σm+1 because for any i, g ∈ G, Σ′′
i � g−1Σm+1 implies

gΣ′′
i � Σm+1, and Σ is the union of such gΣ′′

i . Further Σ 3 Σm+1 is finite

because {gΣ′′
i 3Σm+1; g ∈ G} are finite for all i by the inherited assumption

(2). Hence, by 5.2.18 (5), there is a fan Σ̃ supported by |Σ| ∪ |Σm+1| which



180 Takeshi Kajiwara, Kazuya Kato and Chikara Nakayama

includes Σ and a finite subdivision Σ′
m+1 of Σm. The rest is to show that

Σ̃∪{gΣ′
m+1; g ∈ G} is indeed a fan. But Σ̃� gΣ′

m+1 for any g ∈ G because

g−1Σ̃ = Σ̃� Σ′
m+1. Further gΣ′

m+1 � hΣ′
m+1 (g, h ∈ G) comes from the

inherited assumption (1). This completes the proof of Lemma 5.2.16, and

hence completes that of Theorem 5.2.1 also.

5.3. Proper models

5.3.1. Let the notation be as in 5.1.1. For a cone decomposition Σ in

C (5.1.2), let

V (Σ) =
⋃
σ∈Σ

V (σ) ⊂ Hom(X,Gm,log)
(Y ).

It is represented by (and identified with) an fs log analytic space over S

which is log smooth over S, and V (σ) for σ ∈ Σ are open in V (Σ).

Assume that Σ is stable under the action of Y as in 5.1.2. We define a

sheaf A(Σ) on (fs/S) by

A(Σ) = V (Σ)/Y ⊂ A.

We say Σ is complete if it satisfies (1)–(3) of Theorem 5.2.1.

The aim of this subsection is to prove the following theorem.

5.3.2. Theorem. (1) A(Σ) is represented by an fs log analytic space

over S which is log smooth over S.

(2) If Σ is complete, A(Σ) is proper over S.

5.3.3. To prove this theorem, we define below a continuous map

θ : V (Σ)val := lim←−Σ′V (Σ′) → R⊗ Y,

where Σ′ ranges over all subdivisions of Σ. We define the sheaf of rings on

V (Σ)val and the log structure of V (Σ)val as the inductive limit of the inverse

images of those of V (Σ′), respectively. The stalks of the log structure of

V (Σ)val are valuative. That is, for p ∈ V (Σ)val and for two elements f, g in

the stalk Mp at p of the log structure of V (Σ)val, we have either f |g or g|f .

For a finitely generated subcone ∆ of C, let V (∆)val = V ({face of ∆})val.
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If the support of the cone ∆ is contained in the support of a cone decom-

position Σ, V (∆)val is identified with an open set of V (Σ)val. In particular,

V (Σ)val for a complete Σ is independent of Σ.

5.3.4. Let p ∈ V (Σ)val. Then for elements f, g ∈Mgp
p , we say |f | < |g|

(resp. |f | ≤ |g|) at p if g|f at p and the evaluation Mp → C at p sends fg−1

to a complex number of absolute value < 1 (resp. ≤ 1).

5.3.5. Proposition. (1) Let p ∈ V (Σ)val. Then there exists a unique

element z of R⊗ Y satisfying the following condition for any neighborhood

U of z in R⊗ Y .

For each x ∈ X, there exists y, y′ ∈ U ∩ (Q ⊗ Y ) such that |〈x, ny〉| <
|xn| < |〈x, ny′〉| at p for any integer n ≥ 1 such that ny, ny′ ∈ Y .

(2) Write the map V (Σ)val → R⊗ Y ; p �→ z defined by (1), by θ. Then

θ is continuous and is compatible with the actions of Y .

(3) If Σ is complete, the induced map θ̂ : V (Σ)val → S × (R ⊗ Y ) is

proper and surjective.

5.3.6. We deduce Theorem 5.3.2 from the above proposition 5.3.5.

In general, let G be a topological group, let A and B be topological

spaces endowed with continuous actions of G, and let f : A → B be a

continuous map which is compatible with the actions of G. Then, if the

action of G on B is proper and A is Hausdorff, the action of G on A is

proper. If the action of G on A is proper and f is proper and surjective,

then the action of G on B is proper. (See [4], Ch. 3, §4.)

We may assume that S is Hausdorff. Since the action of Y on R ⊗ Y

is proper, 5.3.5 (2) shows that the action of Y on V (Σ)val is proper. Since

V (Σ)val → V (Σ) is proper and surjective, the action of Y on V (Σ) is proper.

Hence the map from V (Σ) to the quotient topological space by Y is a local

homeomorphism. This shows that the sheaf A(Σ) = V (Σ)/Y is represented

by this quotient topological space endowed with O and M transferred from

V (Σ) via this local homeomorphism.

Assume that Σ is complete. Then the properness of θ̂ and the properness

of S× (R⊗Y )/Y over S proves the properness of V (Σ)val/Y over S. Hence

A(Σ) is proper over S.

5.3.7. Before the proof of 5.3.5, we describe the map θ in the case

the log structure of S is trivial. In this case, V (Σ)val = V (∆) = S ×
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Hom (X,C×), and the map V (Σ)val → R⊗ Y is given by Hom (X,C×)
| |−→

Hom (X,R>0)

← R⊗ Y , where the last isomorphism sends a⊗ y for a ∈ R

and y ∈ Y to X → R>0;x �→ |〈x, y〉|a.

5.3.8. We prove (1) of 5.3.5. Let

{1} = τ0 ⊂ τ1 ⊂ · · · ⊂ τm = Mp/O×
p

be all the faces of Mp/O×
p . For each j (1 ≤ j ≤ m), there exists an injective

homomorphism vj : τgp
j /τgp

j−1 → R such that for a ∈ τgp
j , a ∈ τj \ τj−1 if and

only if vj(a) > 0. Such a vj is unique up to the multiplication by a positive

real constant.

Let σj ⊂ S be the inverse image of τj ⊂Mp/O×
p , let grj(X) = Xσj/Xσj−1

for 1 ≤ j ≤ m and let gr0(X) = Xσ0 , and define grj(Y ) (0 ≤ j ≤ m) simi-

larly. Then since the pairing is non-degenerate, 〈Xi, Yj〉 ⊂ σgp
min(i,j) for any

i, j, and the pairing

vj(〈 , 〉) : R⊗ grj(X)× R⊗ grj(Y ) → R

for 1 ≤ j ≤ m and the pairing

− log(|〈 , 〉|) : R⊗ gr0(X)× R⊗ gr0(Y ) → R

are non-degenerate. Hence we have an isomorphism

ep : R⊗ Y

→ ⊕0≤j≤mHom (grj(X),R)

whose j-th component is defined by vj(〈 , 〉) for 1 ≤ j ≤ m and by

− log(|〈 , 〉|(p)) for j = 0. On the other hand, since V (Σ) ⊂
Hom(X,Gm,log)

(Y ) in Hom(X,Gm,log), the image of Xσj in Mgp
p /O×

p un-

der X → Mgp
V (Σ) → Mgp

p /O×
p is contained in τgp

j for any 0 ≤ j ≤ m. For

0 ≤ j ≤ m, let ϕj : grj(X) → R be the homomorphism defined as follows.

If 1 ≤ j ≤ m, we define ϕj to be the composite grj(X) → τgp
j /τgp

j−1

vj−→ R.

For j = 0, the image of X{1} in Mgp
p is contained in O×

p , and we define ϕ0

to be the composition gr0(X) = X{1} → O×
p

− log(| |(p))−→ R. Let z ∈ R ⊗ Y

be the inverse image of (ϕj)0≤j≤m ∈ ⊕0≤j≤mHom (grj(X),R) under the

isomorphism ep.
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It is easily seen that this z is the unique element satisfying the condition

in (1) of the proposition.

5.3.9. If p belongs toHom(X,Gm,S) ⊂ V (Σ)val and if the log structure

of S is trivial at the image s of p in S, z = θ(p) is the image of the element of

Hom (X,C×) defined by p under Hom (X,C×)
log(| |)−→ Hom (X,R)

∼=← R⊗Y ,

where the last arrow is induced by log(|〈 , 〉(s)|).

5.3.10. We prove (2) of 5.3.5. The compatibility with the actions of

Y is clear. We prove the continuity of θ. Locally on S, A comes from a log

complex torus over a log smooth base S′ by a base change S → S′ (3.10.3).

Hence we may assume that S is log smooth. Let U be the part of S on which

the log structure is trivial, which is a dense open set of S. Furthermore,

Hom(X,Gm,S) ×S U is dense in V (Σ)val. It is sufficient to prove that if

p ∈ V (Σ)val and if pλ ∈ Hom(X,Gm,S)×S U converges to p, then the image

zλ of pλ in R⊗ Y converges to the image z of p.

For 1 ≤ j ≤ m, fix an element tj of Mp whose image in Mp/O×
p is

contained in τj but not contained in τj−1. Then, when pλ is sufficiently near

to p, |tj(pλ)| < 1 for 1 ≤ j ≤ m. Hence we may assume that |tj(pλ)| < 1 for

all λ and j. Consider the R-linear map

aλ : R⊗ Y → ⊕0≤j≤mHom (Xσj ,R)

defined as follows. For y ∈ Y and x ∈ Xσj , the j-th component of

aλ(y) sends x to log(|〈x, y〉(pλ)|)vj(tj) log(|tj(pλ)|)−1 if 1 ≤ j ≤ m, and

to − log(|〈x, y〉(pλ)|) if j = 0. On the other hand, let

a = fep : R⊗ Y → ⊕0≤j≤mHom (Xσj ,R),

where ep is the isomorphism R⊗Y → ⊕0≤j≤mHom (grj(X),R) constructed

in 5.3.8, and f is the canonical injection ⊕0≤j≤mHom (grj(X),R) →
⊕0≤j≤mHom (Xσj ,R). That is, for y ∈ Y , the j-th component of a(y)

sends x ∈ Xσj to vj(〈x, y〉) if 1 ≤ j ≤ m, and to − log(|〈x, y〉|) if j = 0. As

is easily seen,

(i) aλ converges to a.

We have also

(ii) aλ(zλ) converges to a(z).
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In fact, for x ∈ Xσj , by 5.3.9, the j-th component of aλ(zλ) sends x to

log(|x(pλ)|)vj(tj) log(|tj(pλ)|)−1 if 1 ≤ j ≤ m (resp. to − log(|x(pλ)|) if j =

0) which converges to vj(x) (resp. − log(|x(p)|)). But the j-th component

of a(z) sends x also to vj(x) (resp. − log(|x(p)|)).
Take a splitting s : ⊕0≤j≤mHom (Xσj ,R) → R ⊗ Y of the injection a.

Then by (i), saλ : R ⊗ Y → R ⊗ Y converges to sa = 1, and hence saλ is

invertible if pλ is sufficiently near to p. Thus we have :

(i′) The inverse (saλ)
−1 of saλ converges to the identity map 1 : R⊗Y →

R⊗ Y .

On the other hand, by (ii),

(ii′) saλ(zλ) converges to sa(z) = z.

By applying (i′) to (ii′), we obtain that zλ = (saλ)
−1(saλ(zλ)) converges

to z.

We prove (3) of the proposition after some preliminaries.

5.3.11. Lemma. Assume that Σ is complete. Let B be a bounded set

in R⊗ Y . Then the inverse image of B in V (Σ)val is contained in V (∆)val

if ∆ is a sufficiently big finitely generated subcone of C.

Proof. For each face σ of S, fix a Z-basis (xσ,j)1≤j≤r(σ) of Xσ. For

each σ, take an element µσ of the interior of σ. We may assume that there

is a finite subset I of Y such that B is the smallest convex set in R ⊗ Y

containing I. For any p ∈ V (Σ)val, let Vp be the valuative submonoid of

Sgp
Q × XQ defined as the inverse image of (Mp/O×

p )Q. Since p ∈ V (Σ)val

is in V (∆)val if and only if Vp ⊃ ∆∨, it is sufficient to find ∆ such that⋂
θ(p)=y Vp ⊃ ∆∨ for any y ∈ B. In the following, we regard 〈 , 〉 as the

pairing XR×YR −→ Sgp
R by scalar extension. Fix an element y ∈ B. By the

definition of θ, the set {Vp | p ∈ V (Σ)val, θ(p) = y} coincides with the set of

valuative submonoids of Sgp
Q ×XQ containing C∨ = S ×X0 the boundary

(= the set of the points which are neither interior nor exterior) of whose

closure in Sgp
R × XR contains vσ,j := (〈xσ,j , y〉, x−1

σ,j) for all σ and j. (Here

X0 := X{1}.) This implies Wy ⊃
⋂
θ(p)=y Vp =

◦
W y ∪ (S ×X0)Q, where Wy

is the Q-cone generated by S and v±1
σ,j for all σ and j, and

◦
W y denotes its

interior. Hence it is enough to show that for a sufficiently big a > 0, the
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dual cone C(a)∨ of the cone

∆ := C(a)

in 3.4.9 is contained in
◦
W y∪(S×X0)Q for any y ∈ B. First, take a > 0 such

that for any σ, j, and y ∈ I, the a-th power µaσ of µσ belongs to 〈xσ,j , y〉σ.

Then any (N, .) ∈W∨
y with y ∈ B satisfies .(xσ,j) = N(〈xσ,j , y〉) ≤ N(µσ)

a

for all σ and j. Thus Wy ⊃ C(a)∨. To prove furthermore
◦
W y∪ (S×X0)Q ⊃

C(a)∨, it is enough to show that (〈x, y〉, x−1)∨ &⊃ C(a) for any x ∈ X −X0

and y ∈ B. For this, fix a finite set of sharp fs cones {τ} of X/X0 such that⋃
τ = X/X0 and fix an N ∈ S∨ whose kernel is trivial. Then for each τ ,

we can take .τ ∈ Hom (X/X0,Z) such that .τ (x) > N(〈x, y〉) for any y ∈ B

and x ∈ XQ lying over τQ−{1}. (Take a homomorphism X/X0 → Z which

sends τ − {1} into N− {0} and multiply it with a sufficiently big integer to

get an .τ .) This means (N, .τ ) &∈ (〈x, y〉, x−1)∨. Therefore, C(a) containing

(N, .τ ) for all τ has the desired property. �

5.3.12. For a finitely generated subcone ∆ of C, a set of generators

(t1, · · · , tn) of ∆∨, and a real number a > 0, let

Ka(∆) = {p ∈ V (∆); |tj | ≤ a at p (1 ≤ j ≤ n)}.

Let Ka(∆)val be the inverse image of Ka(∆) in V (∆)val.

5.3.13. Lemma. Ka(∆) and Ka(∆)val are proper over S.

Proof. We may assume that there exists a chart S →MS which lifts

S → MS/O×
S . For Ka(∆), this can be deduced from the fact that the set

of all homomorphisms from ∆∨ to the multiplicative monoid C which send

every tj into {z ∈ C; |z| ≤ a} is compact. In fact, Ka(∆) → S is the

base change of the proper map from the above subspace of Hom (∆∨,C) to

Hom (S,C) with respect to S → Hom (S,C). For Ka(∆)val, use also that

V (∆)val → V (∆) is proper. �

5.3.14. Now we prove (3) of the proposition. Assume that Σ is com-

plete. We may assume that there exists a chart S → MS which lifts

S →MS/O×
S .
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To prove that θ̂ is proper, it is sufficient to prove that the inverse image

of any compact subset B of S× (R⊗Y ) in V (Σ)val is compact. Let B1 and

B2 be the images of B by the projections to S and R⊗ Y respectively. Let

I ⊂ Y be a finite set satisfying the same condition as in the proof of 5.3.11

for B2. Then 5.3.11 gives a ∆ such that θ−1(B2) is contained in V (∆)val.

Take a set of generators (t1, · · · , tn) of ∆∨. Let the notation be as in the

proof of 5.3.11. Since Wy ⊃
⋂
θ(p)=y Vp ⊃ ∆∨ for each y ∈ B2, there are

sy,j ∈ SQ≥0
and xj ∈ XQ such that tj = sy,j〈xj , y〉x−1

j for each j. Since B1

and B2 are compact, we may assume maxB1,y,j |sy,j | < a for some positive

a. On the other hand, 〈xj , y〉x−1
j has the absolute value 1 on θ−1(y) by

definition of θ. This shows that θ̂−1(B) is a closed subset of Ka(∆)val. By

5.3.13, θ̂−1(B) is proper over S and its image in S is contained in B1. Hence

θ̂−1(B) is compact.

It remains to prove that θ̂ is surjective. For an element (s, yn) ∈ S ×
(Q ⊗ Y ), n ≥ 1, we will show that it is in the image of V (Σ)val. Then the

image of θ̂ is dense. Since θ̂ is proper, this shows that θ̂ is surjective. Let

∆ be the finitely generated subcone of C consisting of all elements (N, .) of

C such that N(〈x, y〉) = n.(x) for any x ∈ X. Then ∆∨ = S · 〈v±1
x |x ∈ X〉,

where vx := (〈x, y〉, x−n) (∆∨ is the direct product of S and 〈v±1
x |x ∈ X〉).

Hence there is a point of V (∆) lying over s at which every vx has the value

1. Any point of V (∆)val lying over this point maps to (s, yn) by θ̂.

5.4. Projective models

Let S be an fs log analytic space. The purpose of this subsection is to

prove:

5.4.1. Theorem. Let A be a locally polarizable log abelian variety over

S. Then A has a projective model locally on S.

This is essentially known and can be proved algebraically as in [22], [10].

We give here an analytic proof by using theta functions as in [2], [26].

5.4.2. Review of the classical theory.

Let 〈 , 〉 : X × Y → C× be a pairing such that (R ⊗ X) × (R ⊗ Y ) →
R; (1⊗ x, 1⊗ y) �→ log(|〈x, y〉|) is a perfect pairing of finite dimensional R-

vector spaces, and let A = T/Y with T = Hom (X,C×) being the associated

complex torus. We denote the group laws of X and Y multiplicatively.
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Let Q be the set of all maps q : Y → C× × X satisfying the following

condition: If we denote q as (a, p), where a : Y → C× and p : Y → X, then

p is a homomorphism and

a(yz) = a(y)a(z)〈p(y), z〉 for all y, z ∈ Y.

Note that for a homomorphism p : Y → X such that

〈p(y), z〉 = 〈p(z), y〉 for all y, z ∈ Y,

if we denote the map Y → C×; y �→ 〈p(y), y〉 by a, then (a, p2) ∈ Q.

For q ∈ Q, we define a line bundle Lq on A as follows. For an open set

U of A, let Ũ be the inverse image of U in T , and define

Lq(U) = {f ∈ O(Ũ) | y∗(f) = q(y)−1f for all y ∈ Y }.

Here y∗ denotes the pull back by the action of y ∈ Y on T , and we re-

gard q(y)−1 as a function on T by identifying an element of X with the

corresponding function on T .

Assume that p is a polarization. Then global sections of Lq have Fourier

expansions.

For x ∈ X, define a function θq,x on T called a theta function by

θq,x =
∑
y∈Y

q(y)〈x, y〉x.

Then θq,x ∈ Lq(A). Furthermore, if R ⊂ X denotes a representative of

Coker (p : Y → X), (θq,x)x∈R is a basis of the C-vector space Lq(A).

5.4.3. Log version.

Let 〈 , 〉 : X × Y → Gm,log,S be a non-degenerate pairing and let A =

Ψ/Y with Ψ = Hom(X,Gm,log)
(Y ) being the associated log complex torus.

Let Q be the set of all maps q : Y → Gm,log,S×X satisfying the following

condition: If we denote q as (a, p), where a : Y → Gm,log,S and p : Y → X,

then p is a homomorphism, a(y) ∈MS for all but finitely many y ∈ Y and

(∗) a(yz) = a(y)a(z)〈p(y), z〉 for all y, z ∈ Y.

Note that for a homomorphism p : Y → X such that

〈p(y), z〉 = 〈p(z), y〉 for all y, z ∈ Y,



188 Takeshi Kajiwara, Kazuya Kato and Chikara Nakayama

if we denote the map Y → Gm,log,S ; y �→ 〈p(y), y〉 by a, then (a, p2) ∈ Q.

Note that 〈 , 〉 modulo Gm lifts locally on S to an S-admissible pairing

into Sgp with an fs chart S → MS . We assume that such a lift is given.

Define the cone C as in 3.4.

Let q = (a, p) ∈ Q, and assume that p satisfies the conditions in 1.2.5.

Note that a modulo Gm lifts locally on S to a map Y → Sgp satisfying (∗) in

Sgp. We assume that such a lift is given. We assume further that a(y) ∈ S
for all but finitely many y ∈ Y . We define a cone decomposition Σ = Σq of

C, which is complete, and a line bundle Lq on A(Σ) = V (Σ)/Y as follows.

These are also essentially known.

First we review how q determines the cone decomposition Σ = Σq. For

y ∈ Y , let σy be the set of all elements of Hom (S,N) ⊕ Hom (X,Z) ⊂
Hom (Sgp ⊕X,Z) which send the images of q(z)q(y)−1 in Sgp ⊕X to non-

negative integers for all z ∈ Y . Then σy is a finitely generated subcone

of C (as in [22] 2.4, this is reduced to the statement that for any finitely

generated subcone τ of C, q(z)q(y)−1 belongs to (S − S×)τ∨ for almost all

z ∈ Y ). Further, for m ≥ 1 and y1, · · · , ym ∈ Y , the cone σy1 ∩ · · · ∩ σym is

a face of σyj for 1 ≤ j ≤ m. Let

Σq = {σy1 ∩ · · · ∩ σym |m ≥ 1, y1, · · · , ym ∈ Y }.
Then Σq is complete.

We show that Σq is stable under the action of Y . Note

q(yz) = q(y) · y∗(q(z)) for all y, z ∈ Y.

This shows V (σyz) = y−1V (σz). (Here we use only the lifted pairing X ×
Y → Sgp.)

We define Lq. First, define a line bundle L̃q on V (Σ) as follows. Let

[q] be the unique global section of Mgp
V (Σ)/O

×
V (Σ) which coincides on V (σy)

(y ∈ Y ) with the image of q(y) in Mgp
V (σy)/O

×
V (σy). Then L̃q is defined to be

the line bundle corresponding to the Gm-torsor [q] on V (Σ).

For an open set U of A(Σ), let Ũ be the inverse image of U in V (Σ), and

define

Lq(U) = {f ∈ L̃q(Ũ) | y∗(fq(z)−1) = fq(yz)−1 inOV (σyz) for all y, z ∈ Y }.
If S is log smooth, by identifying MV (Σ) as a subsheaf of OV (Σ), we can

write also

Lq(U) = {f ∈ L̃q(Ũ) | y∗(f) = q(y)−1f for all y ∈ Y }.
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Here the equality on the right hand side is taken in the space of meromorphic

functions on V (Σ).

Note that for n ≥ 1, Σqn = Σq and Lqn = L⊗n
q . Here for q = (a, p), qn

denotes (an, pn).

5.4.4. Proposition. Let p′ be a polarization and let q = (a, p) ∈ Q,

where a(y) = 〈p′(y), y〉, p(y) = p′(y)2. Then Lq is ample.

Theorem follows from this. We will prove this proposition by construct-

ing sufficiently many global sections, which we call the theta functions.

5.4.5. Proof of Proposition.

We may assume that S is log smooth by 3.10.3. By replacing q by a

power of q, we may assume that q = (q′)n for some q′ ∈ Q and n ≥ 3.

(This assumption is used below to have the very ampleness of a line bundle

Lqp(z)|Y ′ .)

Let s ∈ S. We consider around s. It is sufficient to prove that for some

N ≥ 1, the ratios of global sections of LqN = L⊗N
q give a finite morphism

from A(Σ) to a projective space over S.

Let X ′ = X{1} and Y ′ = Y{1} be the kernels of X × Y →Mgp
S,s/O×

S,s.

Define B = Hom(X ′,Gm)/Y ′. This is an abelian variety over S. We

have a commutative diagram

V (Σ) → Hom(X ′,Gm)

↓ ↓
V (Σ)/Y ′ → Hom(X ′,Gm)/Y ′ = B

↓
V (Σ)/Y = A(Σ).

The map p : Y → X induces Y ′ → X ′.
For x′ ∈ X ′ and for a homomorphism χ : Y → C× which kills Y ′ and

Y N for some integer N ≥ 1, consider the theta function

θqχ,x′ =
∑
y∈Y

q(y)χ(y)〈x′, y〉x′ ∈ Lqχ(A
(Σ)).

(This is well-defined because S is log smooth.) Here qχ ∈ Q is defined by

(aχ, p) (write q = (a, p)), where (aχ)(y) = a(y)χ(y). (Note Σqχ = Σq.) Take
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a representative Z ⊂ Y of Y/Y ′. For each z ∈ Z, let qp(z)|Y ′ : Y ′ → C××X ′

be the map y′ �→ q(y′)〈p(z), y′〉. By the classical theory 5.4.2, we have the

corresponding line bundle Lqp(z)|Y ′ on B. For x′ ∈ X ′, consider

θqp(z)|Y ′ ,x′ =
∑
y′∈Y ′

q(y′)〈p(z), y′〉〈x′, y′〉x′ ∈ Lqp(z)|Y ′ (B).

Here note that a(y′) = 〈p′(y′), y′〉 ∈ O×
S . Let q̂(z) = q(z)χ(z)〈x′, z〉. Then

we have

θqχ,x′ =
∑
z∈Z

q̂(z)θqp(z)|Y ′ ,x′ .

Here we explain roughly how the rest goes. By the classical theory,

Lqp(z)|Y ′ is very ample. Hence when x′ ∈ X ′ ranges, the ratios of θqp(z)|Y ′ ,x′

for a fixed z separate points of B in each fiber over S. On the other hand,

roughly speaking, when z ∈ Z ranges, the ratios of q̂(z) for a fixed x′ give

finite-to-one maps from the fibers over B to projective spaces. From these,

we deduce that, roughly speaking, when both x′ ∈ X ′ and z ∈ Z range, the

ratios of q̂(z)θqp(z)|Y ′ ,x′ give finite-to-one maps from the fibers of A(Σ) over

S to a projective space. Finally, varying χ, we will see that when x′ ∈ X ′

ranges, the ratios of θqχ,x′ give finite-to-one maps from the fibers of A(Σ)

over S to a projective space.

Now we will explain the details. First note that we have V (σzy′) = V (σz)

and q(zy′) ≡ q(z) ≡ q̂(z) mod O×
V (Σ) for all z ∈ Z and y′ ∈ Y ′. For each

z ∈ Z, by the definition of σz, the dual cone of σz is generated over Q≥0

by (q(w)q(z)−1)w∈Z , and hence the family of functions (q̂(w)q̂(z)−1)w∈Z
gives a finite-to-one map from each fiber of V (σz) → Hom (X ′,Gm) to a

projective space over S. Furthermore, when w ranges and when z is fixed,

almost all q̂(w)q̂(z)−1 (w ∈ Z) are zero as C-valued functions on the fibers

of V (σz) over S. Hence, on each fiber of V (σz) → Hom (X ′,Gm), for any

χ, the function θqχ,x′ is a finite linear combination of q̂(z) (x′ is fixed).

Therefore, if we take a sufficiently big N ≥ 1, each q̂(z) is written as a

linear combination of the θqχ,x′ for varying χ for this fixed N . Hence if we

take N ≥ 1 sufficiently large, then the ratios of θqχ,x′ for varying χ with

fixed N and fixed x′ give sufficiently many ratios of q̂(w), w ∈ Z, to give a

finite-to-one map from each fiber of V (σz) → B to a projective space over

S.

On the other hand, as we said before, when x′ ∈ X ′ ranges, the ratios

of θqp(z)|Y ′ ,x′ for a fixed z separate points of B in each fiber over S.
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From these, the θqχ,x′ for varying χ give sufficiently many

q̂(w)θqp(w)|Y ′ ,x′ , w ∈ Z, for the ratios of these sections for varying x′ ∈ X ′

to give a finite-to-one map from each fiber of V (σz) over S to a projective

space over S. Further, when we replace the θqχ,x′ with their N -th powers,

their ratios for varying x′ ∈ X ′ still give a finite-to-one map from each fiber

of V (σz) over S to a projective space over S.

Hence if N ≥ 1 is sufficiently large, the global sections θNqχ,x′ of LqN =

L⊗N
q for varying χ with this fixed N and for varying x′ ∈ X ′ give a finite-

to-one map from A(Σ) to a projective space over S.
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