Strong Stability of the Homogeneous Levi Bundle

By Indranil BISWAS

Abstract. Let G be a connected semisimple linear algebraic group defined over an algebraically closed field. Let $P \subset G$ be a parabolic subgroup without any simple factor, and let L(P) denote the Levi quotient of P. In this continuation of [Bi], we prove that the principal L(P)-bundle $(G \times L(P))/P$ over the homogeneous space G/P is stable with respect to any polarization on G/P. When the characteristic of the base field is positive, this principal L(P)-bundle is shown to be strongly stable with respect to any polarization on G/P.

1. Introduction

We begin by recalling the main result of [Bi].

Fix a connected semisimple linear algebraic group G defined over an algebraically closed field k. Let $P \subset G$ be a reduced parabolic subgroup without any simple factor. This means that the image of P in any simple quotient of G is a reduced proper parabolic subgroup. The principal P-bundle over the homogeneous space G/P defined by the quotient morphism $G \longrightarrow G/P$ will be denoted by E_P . Let V be a finite dimensional irreducible left P-module. Let $E_P(V) := (G \times V)/P$ be the vector bundle over G/P associated to the principal P-bundle E_P for the P-module V. The main result of [Bi] says that $E_P(V)$ is a stable vector bundle with respect to any polarization on G/P (see [Bi, page 135, Theorem 2.1]).

We note that in [Um], Umemura proved that the vector bundle $E_P(V)$ is stable with respect to any polarization on G/P under the assumption that the characteristic of the base field k is zero (see [Um, page 136, Theorem 2.4]). He asked the question in the introduction of [Um] whether $E_P(V)$ is also stable when the characteristic of k is positive. Our earlier paper [Bi] originated from this question of Umemura.

²⁰⁰⁰ Mathematics Subject Classification. Primary 14L30; Secondary 14F05. Key words: Strongly stable bundle, homogeneous space, Levi quotient.

Let L(P) denote the Levi quotient of P. So L(P) is the quotient of P by the unipotent radical of P, and L(P) is also the maximal reductive quotient of P (see [Hu, page 125]).

Let

$$E_P(L(P)) := (G \times L(P))/P$$

be the principal L(P)-bundle over G/P obtained by extending the structure group of the above defined principal P-bundle E_P using the quotient homomorphism $P \longrightarrow L(P)$.

Our aim here is to prove the following theorem (see Theorem 4.1):

THEOREM 1.1. The principal L(P)-bundle $E_P(L(P))$ over G/P is stable with respect to any polarization on G/P. When the characteristic of the base field k is positive, the principal L(P)-bundle $E_P(L(P))$ is strongly stable with respect to any polarization on G/P.

When the characteristic of k is positive, a principal bundle over G/P, with a reductive group as the structure group, is called strongly stable (respectively, strongly semistable) if all the iterated pullbacks of it by the Frobenius morphism of G/P are stable (respectively, semistable) principal bundles; the details of these definitions are given in the next section.

The proof of Theorem 1.1 relies heavily on the above mentioned result of [Um] and [Bi]. We first show that $E_P(L(P))$ is strongly semistable with respect to any polarization on G/P, and then we show that $E_P(L(P))$ is strongly stable. The above mentioned result of [Um], [Bi] is used in both of these two parts of the proof of Theorem 1.1.

2. Preliminaries

Let k be an algebraically closed field of arbitrary characteristic. Henceforth, the characteristic of k will be denoted by p. Let G be a connected semisimple linear algebraic group defined over the field k. We fix a reduced proper parabolic subgroup

$$P \subsetneq G$$

without any simple factor.

Fix an ample line bundle ξ over G/P, which is also called a *polarization* on G/P. It is known that any ample line bundle over G/P is very ample.

The degree of any torsionfree coherent sheaf on G/P will be defined using ξ . If E is a vector bundle defined over a nonempty Zariski open dense subset $U \subseteq G/P$ such that the complement $(G/P) \setminus U$ is of codimension at least two, then the direct image ι_*E is a torsionfree coherent sheaf on G/P, where $\iota : U \longrightarrow G/P$ is the inclusion map. For such a vector bundle E, by degree(E) we will mean degree(ι_*E).

We recall that a torsionfree coherent sheaf E defined over G/P is called stable (respectively, semistable) if

$$\frac{\operatorname{degree}(E')}{\operatorname{rank}(E')} < \frac{\operatorname{degree}(E)}{\operatorname{rank}(E)}$$

(respectively, $\frac{\text{degree}(E')}{\text{rank}(E')} \leq \frac{\text{degree}(E)}{\text{rank}(E)}$) for every coherent subsheaf $E' \subset E$ with 0 < rank(E') < rank(E).

If the characteristic p of the base field k positive, then

$$(2.1) F: G/P \longrightarrow G/P$$

will be the Frobenius morphism of the variety G/P. For notational convenience, F will denote the identity morphism of G/P when p = 0.

A vector bundle E over G/P is called *strongly stable* (respectively, *strongly semistable*) if for each integer $n \ge 1$, the *n*-fold iterated pull back

$$(F^n)^*E := (\overbrace{F \circ \cdots \circ F}^{n-\text{times}})^*E$$

is a stable (respectively, semistable) vector bundle, where F is the map defined above (it is the Frobenius morphism in (2.1) when p > 0, and it is the identity morphism of G/P when p = 0).

We note that a strongly stable (respectively, strongly semistable) vector bundle is stable (respectively, semistable). Indeed, if E is not stable (respectively, not semistable) then the pullback F^*E is not stable (respectively, not semistable). We also note that by our convention, when p = 0, a strongly stable (respectively, strongly semistable) vector bundle is simply a stable (respectively, semistable) vector bundle.

We will now recall the definition of a (semi)stable principal bundle. Let H be a connected reductive linear algebraic group defined over the field k. A principal H-bundle E_H over G/P is called *stable* (respectively, *semistable*) if for every triple of the form (Q, U, σ) , where

Indranil BISWAS

- $Q \subset H$ is a reduced maximal proper parabolic subgroup,
- $U \subseteq G/P$ is a Zariski open dense subset such that the codimension of the complement $(G/P) \setminus U$ is at least two, and
- $\sigma : U \longrightarrow (E_H/Q)|_U$ is a reduction of structure group to the subgroup Q, over U, of the principal H-bundle E_H ,

the following inequality holds:

$$\operatorname{degree}(\sigma^* T_{\operatorname{rel}}) > 0$$

(respectively, degree($\sigma^*T_{\rm rel}$) ≥ 0), where $T_{\rm rel} \longrightarrow E_H/Q$ is the relative tangent bundle for the natural projection $E_H/Q \longrightarrow G/P$ (see [Ra, page 129, Definition 1.1] and [Ra, page 131, Lemma 2.1]); as before, the degree is defined using the polarization ξ on G/P.

A principal H-bundle E_H over G/P is called *strongly stable* (respectively, *strongly semistable*) if for each integer $n \geq 1$, the iterated n-fold pullback $(F^n)^* E_H$ is a stable (respectively, semistable) principal H-bundle, where the map F, as before, is the Frobenius morphism in (2.1) when p > 0 and it is the identity morphism of G/P when p = 0.

So, by our convention, when p = 0, a strongly stable (respectively, strongly semistable) principal bundle is just a stable (respectively, semistable) principal bundle. Also, a strongly stable (respectively, strongly semistable) principal bundle is automatically stable (respectively, semistable).

REMARK 2.1. For any vector E of rank r over G/P, there is a corresponding principal $\operatorname{GL}(r,k)$ -bundle over G/P defined by the space of all linear isomorphisms of $k^{\oplus r}$ with the fibers of E. It is straight-forward to check that the vector bundle E is stable (respectively, semistable) if and only if the corresponding principal $\operatorname{GL}(r,k)$ -bundle over G/P is stable (respectively, semistable). Similarly, E is strongly stable (respectively, strongly semistable) if and only if the corresponding principal $\operatorname{GL}(r,k)$ -bundle over G/P is strongly stable (respectively, strongly semistable).

Let

$$R_u(P) \subset P$$

be the unipotent radical of the parabolic subgroup P of G. So, in particular, $R_u(P)$ is a normal subgroup of P. The quotient

$$(2.2) L(P) := P/R_u(P),$$

which is called the *Levi quotient* of P, is a connected reductive linear algebraic group defined over k. Let

$$(2.3) q : P \longrightarrow L(P)$$

be the quotient map.

The natural projection $G \longrightarrow G/P$ defines a principal *P*-bundle over the projective variety G/P. This principal *P*-bundle over G/P will be denoted by E_P . Let

(2.4)
$$E_P(L(P)) := (G \times L(P))/P$$

be the principal L(P)-bundle over G/P obtained by extending the structure group of the principal P-bundle E_P using the homomorphism q in (2.3). We recall that in the construction of the quotient in (2.4), the action of any point $z \in P$ sends any point

$$(g,h) \in G \times L(P)$$

to $(gz, q(z^{-1})h) \in G \times L(P)$.

3. Strong Semistability of Associated Vector Bundles

Let

$$(3.1) Z(L(P)) \subset L(P)$$

denote the subgroup-scheme of L(P) defined by the center of L(P). It is straight-forward to see that Z(L(P)) is a normal subgroup-scheme of L(P). Since the quotient group L(P)/Z(L(P)) is semisimple, it does not admit any nontrivial character.

Let V be a finite dimensional left L(P)-module satisfying the following condition: the action of Z(L(P)) on V is the trivial action, that is, Z(L(P))is contained in the kernel of the homomorphism $L(P) \longrightarrow \operatorname{GL}(V)$ defined by the action of L(P) on V. Indranil BISWAS

Consequently, the action of L(P) on V factors through the quotient L(P)/Z(L(P)). Hence V is also a left L(P)-module.

LEMMA 3.1. The vector bundle $E_{L(P)}(V)$ over G/P associated to the principal L(P)-bundle $E_P(L(P))$ in (2.4) for the above left L(P)-module V is semistable of degree zero with respect to any polarization on G/P.

PROOF. Fix a filtration

 $(3.2) 0 = V_0 \subset V_1 \subset \cdots \subset V_{\ell-1} \subset V_\ell = V$

of the left L(P)-module V such that each successive quotient V_i/V_{i-1} , $1 \leq i \leq \ell$, is an irreducible left L(P)-module.

For any integer $0 \leq i \leq \ell$, let $E_{L(P)}(V_i)$ denote the vector bundle over G/P associated to the principal L(P)-bundle $E_P(L(P))$ (defined in (2.4)) for the left L(P)-module V_i in (3.2). As $V_{\ell} = V$, the vector bundle $E_{L(P)}(V_{\ell})$ will also be denoted by $E_{L(P)}(V)$. So $E_{L(P)}(V)$ is the vector bundle associated to the principal L(P)-bundle $E_P(L(P))$ for the left L(P)module V. The filtration of L(P)-modules in (3.2) gives a filtration of subbundles

$$(3.3) \quad 0 = E_{L(P)}(V_0) \subset E_{L(P)}(V_1) \subset \cdots \subset E_{L(P)}(V_{\ell-1}) \subset E_{L(P)}(V_{\ell}) \\ = E_{L(P)}(V)$$

of the vector bundle $E_{L(P)}(V)$.

For any integer $1 \leq i \leq \ell$, the quotient vector bundle $E_{L(P)}(V_i)/E_{L(P)}(V_{i-1})$ (for the filtration in (3.3)) is identified with the vector bundle over G/P associated to the principal L(P)-bundle $E_P(L(P))$ for the L(P)module V_i/V_{i-1} in (3.2). Since each successive quotient V_i/V_{i-1} , where $1 \leq i \leq \ell$, is an irreducible L(P)-module, from [Bi, page 135, Theorem 2.1] and [Um, page 136, Theorem 2.4] we conclude the following:

For each integer $1 \leq i \leq \ell$, the associated vector bundle $E_{L(P)}(V_i)/E_{L(P)}(V_{i-1})$ is stable with respect to any polarization on G/P.

We will next show that

$$\operatorname{degree}(E_{L(P)}(V_i)/E_{L(P)}(V_{i-1})) = 0$$

for each $i \in [1, \ell]$.

Since Z(L(P)) (defined in (3.1)) acts trivially on V, we conclude that Z(L(P)) acts trivially on each quotient L(P)-module V_i/V_{i-1} , where $1 \leq i \leq \ell$. In other words, the action of L(P) on V_i/V_{i-1} factors through the quotient group L(P)/Z(L(P)). We noted earlier that L(P)/Z(L(P)) does not admit any nontrivial character. Hence the one-dimensional L(P)-module $\bigwedge^{\text{top}}(V_i/V_{i-1})$ is isomorphic to the trivial L(P)-module of dimension one. This immediately implies that the associated line bundle

$$L_i := \bigwedge^{\text{top}} (E_{L(P)}(V_i) / E_{L(P)}(V_{i-1}))$$

is isomorphic to the trivial line bundle over G/P, where $1 \leq i \leq \ell$. Note that L_i is the line bundle over G/P associated to the principal L(P)-bundle $E_P(L(P))$ for the L(P)-module $\bigwedge^{\text{top}}(V_i/V_{i-1})$. In particular, we have

$$\operatorname{degree}(E_{L(P)}(V_i)/E_{L(P)}(V_{i-1})) = \operatorname{degree}(L_i) = 0$$

for all $1 \leq i \leq \ell$ and with respect to every polarization on G/P.

We have already shown that the vector bundle $E_{L(P)}(V_i)/E_{L(P)}(V_{i-1})$ is stable with respect to any polarization on G/P. Therefore, we conclude that (3.3) is a filtration of subbundles of the vector bundle $E_{L(P)}(V)$ such that each successive quotient is a stable vector bundle of degree zero (with respect to any polarization on G/P). This immediately implies that $E_{L(P)}(V)$ is a semistable vector bundle of degree zero (with respect to any polarization on G/P). This completes the proof of the lemma. \Box

Using Lemma 3.1, we will prove the following stronger version of it.

PROPOSITION 3.2. Let V be a finite dimensional left L(P)-module on which Z(L(P)) acts trivially. Then the associated vector bundle $E_{L(P)}(V)$ in Lemma 3.1 is strongly semistable.

PROOF. Let

$$(3.4) F_{L(P)} : L(P) \longrightarrow L(P)$$

be the Frobenius morphism of the algebraic group L(P), if the characteristic of the base field k is positive; if p = 0, then $F_{L(P)}$ will denote the identity morphism of L(P). Let

$$\delta : L(P) \longrightarrow \operatorname{GL}(V)$$

be the homomorphism giving the action of L(P) on V. For any integer $n \geq 1$, let V(n) denote the left L(P)-module constructed using the following composition homomorphism

(3.5)
$$L(P) \xrightarrow{F_{L(P)}^{n}} L(P) \xrightarrow{\delta} \operatorname{GL}(V),$$

where

$$F_{L(P)}^{n} = \overbrace{F_{L(P)} \circ \cdots \circ F_{L(P)}}^{n-\text{times}}$$

with $F_{L(P)}$ being the self-map of L(P) in (3.4). Note that we have

$$F_{L(P)}^n(Z(L(P))) \subset Z(L(P)),$$

where Z(L(P)) is defined in (3.1). In view of this and the fact that Z(L(P)) acts trivially on V, from the above definition of the L(P)-module V(n) it follows immediately that Z(L(P)) also acts trivially on V(n).

Let $E_{L(P)}(V(n))$ denote the vector bundle over G/P associated to the principal L(P)-bundle $E_P(L(P))$ for the left L(P)-module V(n) constructed in (3.5). We noted above that Z(L(P)) acts trivially on V(n). Substituting V(n) in place of V in Lemma 3.1 we conclude that for each integer $n \geq 1$, the vector bundle $E_{L(P)}(V(n))$ is semistable with respect to any polarization on G/P.

From the definition of $E_{L(P)}(V(n))$ it follows that the vector bundle $E_{L(P)}(V(1))$ over G/P is identified with the pullback $F^*E_{L(P)}(V)$, where F, as in (2.1), is the Frobenius morphism of G/P when p > 0 and it is the identity morphism of G/P when p = 0. Consequently, using induction on n, for any integer $n \geq 1$, the vector bundle $E_{L(P)}(V(n))$ is identified with the n-fold iterated pullback $(F^n)^*E_{L(P)}(V)$.

We already noted above that the vector bundle $E_{L(P)}(V(n))$ is semistable with respect to any polarization on G/P. Hence $(F^n)^*E_{L(P)}(V)$ is semistable with respect to any polarization on G/P. In other words, the vector bundle $E_{L(P)}(V)$ is strongly semistable with respect to any polarization on G/P. This completes the proof of the proposition. \Box

4. Strong Stability of the Levi Bundle

Our aim in this section is to prove the following theorem.

THEOREM 4.1. The principal L(P)-bundle $E_P(L(P))$ over G/P, defined in (2.4), is stable with respect to any polarization on G/P. When the characteristic of the base field k is positive, the principal L(P)-bundle $E_P(L(P))$ is strongly stable with respect to any polarization on G/P.

PROOF. As the first step in the proof of the theorem, we will prove the following lemma.

LEMMA 4.2. The principal L(P)-bundle $E_P(L(P))$ is strongly semistable with respect to any polarization on G/P.

PROOF. Let $\mathfrak{l}(\mathfrak{p})$ denote the Lie algebra of L(P). The adjoint action of L(P) on $\mathfrak{l}(\mathfrak{p})$ makes it a left L(P)-module. The subgroup-scheme Z(L(P)) defined in (3.1) clearly acts trivially on $\mathfrak{l}(\mathfrak{p})$. The vector bundle associated to the principal L(P)-bundle $E_P(L(P))$ for the L(P)-module $\mathfrak{l}(\mathfrak{p})$ is, by definition, the adjoint vector bundle $\mathrm{ad}(E_P(L(P)))$.

Setting $V = \mathfrak{l}(\mathfrak{p})$ in Proposition 3.2 we conclude that the adjoint vector bundle $\operatorname{ad}(E_P(L(P)))$ over G/P is strongly semistable with respect to any polarization on G/P. Using this we will show that the principal L(P)bundle $E_P(L(P))$ is semistable with respect to any polarization on G/P.

Take any reduction of structure group

$$(4.1) E_Q \subset E_P(L(P))|_U$$

of the principal L(P)-bundle $E_P(L(P))$, to a maximal reduced proper parabolic subgroup $Q \subset L(P)$, over a Zariski open dense subset $U \subseteq G/P$ such that the complement $(G/P) \setminus U$ is of codimension at least two. The dimension of this variety Q will be denoted by m. Let $Gr(\mathfrak{l}(\mathfrak{p}), m)$ be the Grassmann variety that parametrizes linear subspaces of $\mathfrak{l}(\mathfrak{p})$ of dimension m.

We have an embedding

(4.2)
$$f_0: L(P)/Q \longrightarrow \operatorname{Gr}(\mathfrak{l}(\mathfrak{p}), m)$$

that sends any $g \in L(P)/Q$ to $\overline{g}\mathfrak{q}\overline{g}^{-1} \subset \mathfrak{l}(\mathfrak{p})$, where \mathfrak{q} is the Lie algebra of Q, and $\overline{g} \in L(P)$ projects to g. We note that f_0 is equivariant for the left translation actions of L(P) on L(P)/Q and $\operatorname{Gr}(\mathfrak{l}(\mathfrak{p}), m)$.

Since both L(P)/Q and $Gr(\mathfrak{l}(\mathfrak{p}), m)$ are Fano varieties, and

$$\operatorname{Pic}(L(P)/Q) = \mathbb{Z} = \operatorname{Pic}(\operatorname{Gr}(\mathfrak{l}(\mathfrak{p}), m)),$$

there are positive integers a and b such that

(4.3)
$$(f_0^* K_{\operatorname{Gr}(\mathfrak{l}(\mathfrak{p}),m)}^{-1})^{\otimes a} = (K_{L(P)/Q}^{-1})^{\otimes b},$$

where $K_{\operatorname{Gr}(\mathfrak{l}(\mathfrak{p}),m)}^{-1}$ and $K_{L(P)/Q}^{-1}$ are the anticanonical bundles of $\operatorname{Gr}(\mathfrak{l}(\mathfrak{p}),m)$ and L(P)/Q respectively, and f_0 is the embedding in (4.2).

Let $\operatorname{Gr}(\operatorname{ad}(E_P(L(P))), m)$ be the Grassmann bundle over G/P parametrizing all linear subspaces of dimension m in the fibers of the vector bundle $\operatorname{ad}(E_P(L(P)))$. The reduction of structure group E_Q in (4.1) and the map f_0 together define an embedding

(4.4)
$$f : (E_P(L(P))/Q)|_U \longrightarrow \operatorname{Gr}(\operatorname{ad}(E_P(L(P))), m))|_U$$

that commutes with the projections to U.

Let $\mathcal{L}_1 \longrightarrow \operatorname{Gr}(\operatorname{ad}(E_P(L(P))), m)|_U$ be the relative anticanonical line bundle for the natural projection

(4.5)
$$\operatorname{Gr}(\operatorname{ad}(E_P(L(P))), m)|_U \longrightarrow U$$

Similarly, let $\mathcal{L}_2 \longrightarrow (E_P(L(P))/Q)|_U$ be the relative anticanonical line bundle for the projection

(4.6)
$$(E_P(L(P))/Q)|_U \longrightarrow U.$$

From (4.3) it follows that

(4.7)
$$(f^*\mathcal{L}_1)^{\otimes a} = \mathcal{L}_2^{\otimes b},$$

where f is the morphism in (4.4). We note that both the line bundles \mathcal{L}_2 and $f^*\mathcal{L}_1$ are associated to characters of Q, and the character group of Qis isomorphic to \mathbb{Z} . Hence (4.7) follows from (4.3).

Let

$$\sigma' := f \circ \sigma : U \longrightarrow (E_P(L(P))/Q)|_U$$

be the section of the projection in (4.5), where σ is the section of the projection in (4.6) defined by the reduction in (4.1) and f is constructed in (4.4). From (4.7) we conclude that

(4.8)
$$((\sigma')^* \mathcal{L}_1)^{\otimes a} = \sigma^* \mathcal{L}_2^{\otimes b}.$$

We have shown earlier that the adjoint vector bundle $\operatorname{ad}(E_P(L(P)))$ is semistable. Hence,

degree
$$((\sigma')^* \mathcal{L}_1) \geq 0$$
.

Therefore, from (4.8) we conclude that

$$\operatorname{degree}(\sigma^* \mathcal{L}_2) \ge 0$$

Consequently, the principal L(P)-bundle $E_P(L(P))$ is semistable with respect to any polarization of G/P.

For each integer $n \geq 1$, the adjoint vector bundle $\operatorname{ad}((F^n)^* E_P(L(P)))$ is clearly identified with the pullback $(F^n)^* \operatorname{ad}(E_P(L(P)))$, where F is the Frobenius morphism in (2.1) (as before, it is the identity morphism of G/Pwhen p = 0). Indeed, this follows immediately from the general fact that taking adjoint bundle commutes with pullback. We noted earlier that from Proposition 3.2 it follows that adjoint vector bundle $\operatorname{ad}(E_P(L(P)))$ is strongly semistable with respect to any polarization on G/P. Therefore, using following the above argument for the semistability of $E_P(L(P))$ we now conclude that the principal L(P)-bundle $E_P(L(P))$ is strongly semistable with respect to any polarization on G/P. This completes the proof of the lemma. \Box

To prove the theorem using contradiction, assume that the principal L(P)-bundle $E_P(L(P))$ is not strongly stable with respect to some polarization ξ on G/P. Fix an integer n_0 such that the principal L(P)-bundle

(4.9)
$$(F^{n_0})^* E_P(L(P)) \longrightarrow G/P$$

is not stable. Therefore, there exists a triple (Q, U, σ) , where

- (i) $Q \subset L(P)$ is a reduced maximal proper parabolic subgroup,
- (ii) $U \subseteq G/P$ is a Zariski open dense subset such that the codimension of the complement $(G/P) \setminus U$ is at least two, and

(4.10)
$$\sigma: U \longrightarrow ((F^{n_0})^* E_P(L(P))/Q)|_U$$

is a reduction of structure group, to the subgroup Q, over the open subset U, of the principal L(P)-bundle $(F^{n_0})^* E_P(L(P))$, with the property that the following inequality holds:

(4.11) $\operatorname{degree}(\sigma^* T_{\operatorname{rel}}) \leq 0,$

where $T_{\rm rel} \longrightarrow (F^{n_0})^* E_P(L(P))/Q$ is the relative tangent bundle for the natural projection $(F^{n_0})^* E_P(L(P))/Q \longrightarrow G/P$.

The principal L(P)-bundle $(F^{n_0})^* E_P(L(P))$ is semistable by Lemma 4.2. Therefore, we have

degree $(\sigma^* T_{\rm rel}) \geq 0$.

Combining this with (4.11) we conclude that

(4.12) $\operatorname{degree}(\sigma^* T_{\mathrm{rel}}) = 0.$

We will need the following proposition.

PROPOSITION 4.3. There is a finite dimensional irreducible nontrivial left L(P)-module

$$(4.13) \qquad \rho : L(P) \longrightarrow \operatorname{GL}(W)$$

such that the image $\rho(Q)$ is contained in a proper parabolic subgroup of GL(W), where Q is the parabolic subgroup in (4.10).

PROOF. First consider the quotient group L(P)/Z(L(P)), where $Z(L(P)) \subset L(P)$ is the subgroup-scheme in (3.1) defined by the center of L(P). Since L(P) is reductive, the group L(P)/Z(L(P)) is a product of simple groups. In other words, we have

(4.14)
$$L(P)/Z(L(P)) = \prod_{i=1}^{d} H_i,$$

where each H_i is a simple linear algebraic group defined over k. Any parabolic subgroup of L(P)/Z(L(P)) is of the form $\prod_{i=1}^{d} P_i$ where P_i is a parabolic subgroup of H_i . We note that a parabolic subgroup need not be a proper subgroup, hence some P_i may coincide with H_i .

Since Q is a reduced maximal proper parabolic subgroup of L(P), the image of Q in L(P)/Z(L(P)) is a parabolic subgroup of the form

$$P_{j_0} \times (\prod_{i \neq j_0} H_i) \subset \prod_{i=1}^d H_i$$

(see (4.14)), where P_{j_0} is a reduced maximal proper parabolic subgroup of H_{j_0} .

Take any finite dimensional irreducible nontrivial left H_{j_0} -module W'. Let

(4.15)
$$\rho_0 : H_{j_0} \longrightarrow \operatorname{GL}(W')$$

be the corresponding homomorphism. Since P_{j_0} is a proper parabolic subgroup of the simple group H_{j_0} , and W' is a nontrivial irreducible H_{j_0} module, it can be shown that the image $\rho_0(P_{j_0})$ (see (4.15)) is contained in some proper parabolic subgroup Q_0 of GL(W'). To prove this, let

$$R_u(P_{j_0}) \subset P_{j_0}$$

be the unipotent radical. Let

(4.16)
$$0 =: W'_0 \subset W'_1 \subset \cdots \subset W'_{b-1} \subset W'_b = W'$$

be the unique filtration of subspaces of W' satisfying the following two conditions:

• $\rho_0(R_u(P_{j_0}))(W'_i) \subset W'_i$ for all $0 \leq i \leq b$, where ρ_0 is the homomorphism in (4.15), and

•
$$W'_i/W'_{i-1} = (W'/W'_{i-1})^{\rho_0(R_u(P_{j_0}))}$$
 for all $1 \le i \le b$.

Since $R_u(P_{j_0})$ is a normal subgroup of P_{j_0} , the filtration in (4.16) is preserved by the action of P_{j_0} on W'. Therefore,

(4.17)
$$\rho_0(P_{j_0}) \subset Q_0 \subset \operatorname{GL}(W'),$$

where Q_0 is the parabolic subgroup of GL(W') that preserves the filtration in (4.16) by its standard action.

Let

$$\rho : L(P) \longrightarrow \operatorname{GL}(W)$$

be the composition of the homomorphism ρ_0 in (4.15) with the natural projection of L(P) to P_{j_0} . So from (4.17) it follows that

$$\rho(Q) \subset Q_0.$$

This completes the proof of the proposition. \Box

Continuing with the proof of the theorem, fix any L(P)-module Wsatisfying the condition in Proposition 4.3. Let $(F^{n_0})^* E_P(L(P))(W)$ denote the vector bundle over G/P associated to the principal L(P)-bundle $(F^{n_0})^* E_P(L(P))$ for the L(P)-module W, where n_0 is the integer in (4.9).

The proof of the theorem will be completed using the following lemma.

LEMMA 4.4. The above vector bundle $(F^{n_0})^* E_P(L(P))(W)$ over G/Pis not stable with respect to the polarization ξ (the same polarization with respect to which the principal bundle $(F^{n_0})^* E_P(L(P))$ in (4.9) is not stable).

PROOF. Fix a reduced maximal proper parabolic subgroup $Q' \subset \operatorname{GL}(W)$ such that

 $\rho(Q) \subset Q',$

where ρ is the homomorphism in (4.13), and Q is the parabolic subgroup in (4.10). Since the image $\rho(Q)$ is contained in a proper parabolic subgroup of GL(W) (see Proposition 4.3), such a maximal parabolic subgroup $Q' \subset GL(W)$ exists. The homomorphism ρ in (4.13) induces an embedding

(4.18)
$$\widehat{\rho} : L(P)/Q \longrightarrow \operatorname{GL}(W)/Q'.$$

The morphism $\hat{\rho}$ is clearly equivariant for the left translation actions of L(P) on L(P)/Q and $\operatorname{GL}(W)/Q'$.

We note that

$$\operatorname{Pic}(L(P)/Q) = \mathbb{Z} = \operatorname{Pic}(\operatorname{GL}(W)/Q'),$$

and also both L(P)/Q and GL(W)/Q' are Fano varieties. Therefore, there are positive integers a and a' such that

(4.19)
$$(\hat{\rho}^* K_{\mathrm{GL}(W)/Q'}^{-1})^{\otimes a'} = (K_{L(P)/Q}^{-1})^{\otimes a},$$

where $\hat{\rho}$ is the morphism in (4.18).

Let *m* be the dimension of Q'. Let $Gr((F^{n_0})^*E_P(L(P))(W), m)$ be the Grassmann bundle over G/P parametrizing all linear subspaces of dimension *m* in the fibers of the vector bundle $(F^{n_0})^*E_P(L(P))(W)$.

We now note that the reduction σ in (4.10) and the morphism $\hat{\rho}$ in (4.18) together give an embedding

(4.20)
$$\gamma : ((F^{n_0})^* E_P(L(P))/Q)|_U \longrightarrow \operatorname{Gr}((F^{n_0})^* E_P(L(P))(W), m)|_U$$

which commutes with the projections to U. Let

$$\mathcal{L}' \longrightarrow \operatorname{Gr}((F^{n_0})^* E_P(L(P))(W), m)|_U$$

be the relative anticanonical line bundle for the natural projection

(4.21)
$$\operatorname{Gr}((F^{n_0})^* E_P(L(P))(W), m)|_U \longrightarrow U.$$

Let

$$\mathcal{L} \longrightarrow ((F^{n_0})^* E_P(L(P))/Q)|_U$$

be the relative anticanonical line bundle for the projection

(4.22)
$$((F^{n_0})^* E_P(L(P))/Q)|_U \longrightarrow U$$

From (4.19) it follows that

(4.23)
$$(\gamma^* \mathcal{L}')^{\otimes a'} = \mathcal{L}^{\otimes a}$$

We note that both the line bundles \mathcal{L} and $\gamma^* \mathcal{L}'$ are associated to characters of Q. Also, the character group of Q is isomorphic to \mathbb{Z} . Hence (4.23) follows from (4.19).

Let

$$\sigma' := \gamma \circ \sigma : U \longrightarrow \operatorname{Gr}((F^{n_0})^* E_P(L(P))(W), m)|_U$$

be the section of the projection in (4.21), where σ is the section in (4.10) of the projection in (4.22) and γ is the map in (4.20). From (4.19) we conclude that

$$(\sigma')^*(\mathcal{L}')^{\otimes a'} = \sigma^*\mathcal{L}^{\otimes a}$$

Hence from (4.12) it follows immediately that

$$\operatorname{degree}((\sigma')^*\mathcal{L}') = 0$$

Consequently, the vector bundle $(F^{n_0})^* E_P(L(P))(W)$ is not stable with respect to the polarization ξ on G/P. This completes the proof of the lemma. \Box

Indranil BISWAS

Now we are in a position to complete the proof of the theorem.

Since W in Lemma 4.4 is an irreducible left L(P)-module, the composition

(4.24)
$$L(P) \xrightarrow{F_{L(P)}^{n_0}} L(P) \xrightarrow{\rho} \operatorname{GL}(W)$$

defines an irreducible left L(P)-module, where the homomorphisms $F_{L(P)}^{n_0}$ and ρ are defined in (3.5) and (4.13) respectively. The vector bundle associated to the principal L(P)-bundle $E_P(L(P))$ for this left L(P)-module constructed in (4.24) is identified with the vector bundle $(F^{n_0})^* E_P(L(P))(W)$. Therefore, using [Bi, page 135, Theorem 2.1] and [Um, page 136, Theorem 2.4] we conclude that the vector bundle $(F^{n_0})^* E_P(L(P))(W)$ is stable with respect to any polarization on G/P. This contradicts Lemma 4.4. Hence we conclude that the principal L(P)-bundle $E_P(L(P))$ is strongly stable. This completes the proof of the theorem. \Box

References

- [Bi] Biswas, I., On the stability of homogeneous vector bundles, Jour. Math. Sci. Univ. Tokyo 11 (2004), 133–140.
- [Hu] Humphreys, J. E., *Linear algebraic groups*, Graduate Texts in Mathematics, Vol. 21, Springer-Verlag, New York, Heidelberg, Berlin, 1987.
- [Ra] Ramanathan, A., Stable principal bundles on a compact Riemann surface, Math. Ann. 213 (1975), 129–152.
- [Um] Umemura, H., On a theorem of Ramanan, Nagoya Math. Jour. **69** (1978), 131–138.

(Received December 7, 2004)

School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road Bombay 400005, India E-mail: indranil@math.tifr.res.in