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Massera Criterion for Linear Functional Equations in

a Framework of Hyperfunctions

By Yasunori Okada∗

Abstract. We introduce a sheaf of bounded hyperfunctions at
infinity in one variable, and consider periodic linear functional equa-
tions. We show that a Massera type theorem holds in this framework.
Moreover we consider its vector-valued variants and give applications
to partial differential equations periodic with respect to one variable.

1. Introduction

In [13], Massera studied the existence of periodic solutions to periodic

ordinary differential equations in several situations. In the linear setting,

the following result was given ([13, Theorem 4]).

Theorem 1.1. Consider a system of ordinary differential equations

d

dt
x = a(t)x + b(t),

where a(t) and b(t) are R
m×m-valued and R

m-valued continuous functions.

Assume that a(t) and b(t) are 1-periodic. Then the existence of a solution

which is bounded in the future implies the existence of a 1-periodic solution.

This criterion “the existence of a solution bounded in the future” for

the existence of a periodic solution is called the Massera criterion, and has

been studied by many authors for a variety of equations.

Concerning to linear equations, we refer to Chow-Hale [2] for functional

differential equations with retarded type, to Hino-Murakami [5] and [4] for

equations with infinite delay, to Li-Lin-Li [11] for equations with advance

and delay, and to Li-Cong-Lin-Liu [10] for evolution equations. Refer also to
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Shin-Naito [18] for the abstract functional differential equations. Zubelevich

[19] gave a similar result for discrete dynamical systems in locally convex

spaces with the Montel property, as well as for those in reflexive Banach

spaces, with some interesting applications.

In this article, we are interested in a similar property for linear functional

equations in a framework of hyperfunctions.

The notion of hyperfunction was introduced by Sato [15] and [16], and

studied by many researchers, mainly in the context of linear ordinary and

partial differential equations. When we study a Massera type criterion in

hyperfunctions, the main obstacle seems to come from the lack of a notion

of boundedness for usual hyperfunctions.

A notion of boundedness for hyperfunctions was first introduced by

Chung-Kim-Lee [3]. They defined, using duality, the spaces of hyperfunc-

tions with Lp growth (1 < p ≤ ∞) in several variables, which can be em-

bedded into the space of globally defined Fourier hyperfunctions, and they

studied bounded hyperfunctions using the heat kernel method. On the other

hand, to study a Massera type criterion, we need a notion of boundedness

for hyperfunctions in a neighborhood of infinity in terms of defining func-

tions (in the sense of Sato [15]), which we can apply to ordinary differential

operators directly. Therefore, we introduce here the sheaf of (univariate)

bounded hyperfunctions at infinity, in a similar manner to the original co-

homological definitions of hyperfunctions and Fourier hyperfunctions given

in the one-dimensional case in Sato [14].

Though our sheaf is defined only in the one-dimensional case, we also

consider its vector-valued variants applicable to partial differential equa-

tions. We study the properties of our bounded hyperfunctions, define some

classes of differential operators and of functional differential operators which

act on them, and give our main result, that is, a Massera type theorem

(Theorem 4.3) in a framework of hyperfunctions. Since Theorem 4.3 has

somewhat an abstract nature, we also give some applications to partial dif-

ferential equations.

The plan of this paper is as follows. We define the sheaf of bounded

hyperfunctions at infinity and study the properties and the relation with

Chung-Kim-Lee’s space of bounded hyperfunctions in section 2. We also

define its vector-valued variants in a parallel manner. Then we define some

classes of operators acting on bounded hyperfunctions in section 3. Non-
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local operators such as difference operators are also considered as well as

local operators. The notion of periodicity for hyperfunctions and bounded

hyperfunctions is also studied in this section, since we define the periodicity

using difference equations. In section 4, after recalling the notion of the

Montel property for locally convex spaces, we give our main result. In the

final section 5, we give applications to partial differential equations periodic

with respect to one of the variables. There we study solutions in the space

of hyperfunctions with real analytic parameters and those with holomorphic

parameters.

2. Bounded Hyperfunctions at Infinity

In this section, we define the sheaf of bounded hyperfunctions at infinity.

We give its canonical embedding into the sheaf of Fourier hyperfunctions

and show that the global sections coincide with Chung-Kim-Lee’s bounded

hyperfunctions. As was already mentioned, we follow the argument in Sato

[14]. Refer also to Sato [15], Kawai [8], Sato-Kawai-Kashiwara [17], and

Kaneko [7], for hyperfunctions, Fourier hyperfunctions, and related topics.

For the vector-valued hyperfunctions, Ion-Kawai [6] made a comprehensive

study. But here we use an elementary method valid only in one-dimensional

case, since it is unclear to the author, at this moment, if their approach is

applicable to our situation under the boundedness condition at infinity.

2.1. Sheaf �L∞ of bounded hyperfunctions

At first, we briefly recall the notion of Fourier hyperfunctions in the one-

dimensional case. Let D
1 = [−∞,+∞] = R ∪ {±∞} be a compactification

of R, and we identify C with the subset R + iR in D
1 + iR. We take a

coordinate t for R or D
1 and w for C. We denote by �̃ the sheaf of slowly

increasing holomorphic functions on D
1 + iR, where �̃(U) on an open set

U ⊂ D
1 + iR is given by

{f ∈ �(U ∩ C); for any compact subset K ⊂ U and for any ε > 0,

sup
w∈K∩C

|f(w)|e−ε|Rew| < +∞}.

The sheaf � of Fourier hyperfunctions on D
1 is defined by � := �1

D1(�̃). We

list up several properties of � and introduce some notations.
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(i) � becomes a flabby sheaf on D
1, and the restriction of � on R is

isomorphic to the sheaf � of hyperfunctions. Therefore the canonical

map �(D1)→ �(R) is surjective, but it is not injective.

(ii) The sections are given by

�(Ω) = lim−→
U

�̃(U \ Ω)

�̃(U)
,

where U runs through open sets in D
1 + iR including Ω as a closed

subset. We call such U a complex neighborhood of Ω. Moreover

the Fourier hyperfunction represented by a function f ∈ �̃(U \ Ω)

is denoted by [f ] or f(t + i0) − f(t − i0) and f is called a defining

function of [f ]. Note that the notion of “defining function of a Fourier

hyperfunction” used in [3] is different from that in this paper.

(iii) A function f ∈ L1
loc(Ω ∩ R) satisfying the estimate

∀ε > 0,∀K � Ω, ess sup
t∈K∩R

|f(t)|e−ε|t| < +∞

can be naturally regarded as a section in �(Ω). Especially, f = 0 in

L1
loc(Ω ∩ R) if its embedded image in �(Ω) is zero. When the closure

of supp f in Ω is compact, the image of f can be given, for example,

by a defining function

f̃(w) := − 1

2πi

∫
Ω∩R

f(s)
e−(w−s)2

w − s
ds ∈ �̃(D1 + iR \ D

1).

Note that this is always the case when Ω = D
1.

Now we introduce the notion of bounded hyperfunction at infinity. We

define the sheaf �L∞ of bounded holomorphic functions at infinity on D
1+iR

by

�L∞(U) := {f ∈ �(U ∩ C); for any compact subset K ⊂ U,

‖f‖K := sup
w∈K∩C

|f(w)| < +∞},

for any open set U ⊂ D
1 + iR. It is easily seen that the correspondence

U �→ �L∞(U) becomes actually a sheaf and the restriction of �L∞ on C is

nothing but the sheaf � of holomorphic functions.
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Note that a section f ∈ �L∞(U), which is a function on U ∩ C, is not

in general bounded on the whole U ∩ C. For example, consider the case

when U is a tube domain D
1 + i]a, b[. A function f ∈ �(R + i]a, b[) belongs

to �L∞(D1 + i]a, b[) if and only if it is bounded on R + i]a + δ, b − δ[ for

any δ > 0. The space �L∞(U) is endowed with the Fréchet topology by the

family of seminorms ‖·‖K (K � U).

We also give the notion of vector-valued bounded holomorphic func-

tions. Throughout this paper, E denotes a sequentially complete separated

locally convex space over C. We define the sheaf E�L∞ of E-valued bounded

holomorphic functions at infinity on D
1 + iR by

E�L∞(U) := {f ∈ E�(U ∩ C); for any compact subset K ⊂ U ,

and for any continuous seminorm p of E,

‖f‖K,p := sup
w∈K∩C

p(f(w)) < +∞}.

Here we denote by E� the sheaf of E-valued holomorphic functions on C.

We refer to Bochnak-Siciak [1] for the several properties of holomorphic

functions taking values in a locally convex space. We endow E�L∞(U) with

a locally convex topology by the family of seminorms ‖·‖K,p.

Now we give,

Definition 2.1 (Sheaf of bounded hyperfunctions at infinity). We de-

fine the sheaf �L∞ of bounded hyperfunctions at infinity on D
1 as the sheaf

associated with the presheaf

D
1

open
⊃ Ω �→ lim−→

U

�L∞(U \ Ω)

�L∞(U)
,(2.1)

where U runs through complex neighborhoods of Ω. Similarly we define
E�L∞ as the sheaf associated with the presheaf

D
1

open
⊃ Ω �→ lim−→

U

E�L∞(U \ Ω)
E�L∞(U)

.(2.2)

It is an immediate consequence of this definition that the restriction of

�L∞ on R is isomorphic to the sheaf � of hyperfunctions.
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Remark 2.2. Chung-Kim-Lee [3] used the symbol BL∞ for the space

of bounded hyperfunctions defined via duality in several variables. We in-

troduced here the similar symbol �L∞ , not for a space but for a sheaf, which

we hope would not cause a confusion. We will show later that their space

BL∞ in the sense of [3] in one-dimensional case can be identified with the

space �L∞(D1) of the global sections of our sheaf �L∞ .

As for vector-valued variants, Ion-Kawai [6] introduced the sheaf E� of

E-valued hyperfunctions for a Fréchet space E on real analytic manifolds.

When E is Fréchet, the restriction of our sheaf E�L∞ on R coincides with
E� for the one-dimensional euclidean case.

2.2. Fundamental properties of �L∞

In the C-valued case, the presheaf given by (2.1) itself becomes a flabby

sheaf and a section on Ω is an equivalent class [f ] of f ∈ �L∞(U \ Ω)

with a complex neighborhood U of Ω, as we will see later. In the general

case, we will show that a section on a compact set can be represented in

a similar manner. In the sequel, we use the conventions Bd := ]−d, d[ and

Ḃd := Bd \ {0} for d > 0.

Proposition 2.3. Let Ω ⊂ D
1 be an open set with a complex neigh-

borhood U . Then the canonical map

E�L∞(U \ Ω)
E�L∞(U)

→ E�L∞(Ω)(2.3)

is always injective.

On the other hand, let K be a compact set in D
1. Then we have

E�L∞(K) = lim−→
Ω,d>0

E�L∞(Ω + iḂd)
E�L∞(Ω + iBd)

,(2.4)

ΓK(D1,E�L∞) = lim−→
d>0

E�L∞(D1 + iBd \K)
E�L∞(D1 + iBd)

,(2.5)

where Ω in the inductive limit in (2.4) runs through open neighborhoods of

K in D
1.

Proof. Let � denote the presheaf (2.2), that is, �(Ω) :=

lim−→ U
E�L∞ (U\Ω)
E�L∞ (U)

. Then, we can easily see the following two properties:
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(i) the map
E�L∞ (U\Ω)
E�L∞ (U)

→ �(Ω) is always injective.

(ii) for any open covering Ω =
⋃

λ Ωλ and for any u ∈ �(Ω),

∀λ, u|Ωλ
= 0 implies u = 0.(2.6)

The property (ii) implies the injectivity of �(Ω) → E�L∞(Ω), which, to-

gether with (i), proves the injectivity of (2.3). Moreover, from the property

(ii), we can see that a section u of E�L∞ on an open set Ω is given by a

family (uλ)λ∈Λ ∈
∏

λ∈Λ �(Ωλ) with respect to an open covering Ω =
⋃

λ Ωλ,

which satisfies the compatibility condition

∀λ,∀µ ∈ Λ, uλ|Ωλ∩Ωµ − uµ|Ωλ∩Ωµ = 0 in �(Ωλ ∩ Ωµ).

Thus, by a standard argument, the equality (2.4) can be reduced to the

following

Lemma 2.4. Consider two sections fj ∈ �(Ωj) on connected open sets

Ωj ⊂ D
1, (j = 1, 2). Assume that f1|Ω1∩Ω2 = f2|Ω1∩Ω2 in �(Ω1∩Ω2). Then

there exists h ∈ �(Ω), (Ω := Ω1 ∪ Ω2), such that h|Ωj = fj, (j = 1, 2).

Proof. The conclusion is trivial if Ω coincides with Ω1 or Ω2. Thus

we may assume from the beginning that there exists a ∈ Ω1 ∩ Ω2 ∩ R such

that

(Ω1 ∩ [−∞, a]) ∪ (Ω2 ∩ [a,+∞]) = Ω1 ∪ Ω2.

Moreover since � satisfies (2.6), it suffices to construct a section h ∈ �(Ω)

such that h = f1 on Ω1 ∩ [−∞, a] and h = f2 on Ω2 ∩ [a,+∞].

We take defining functions f̃j ∈ E�L∞(Uj \Ωj) of fj (j = 1, 2) with some

complex neighborhoods Uj of Ωj , satisfying Uj \ Ωj = Uj \ D
1. Then, from

the assumption, we can take d > 0 such that {w ∈ C; |w−a| < 2d} ⊂ U1∩U2

and that f̃1− f̃2 extends to a section g ∈ E�L∞({w ∈ C; |w−a| < 2d}). We

define two functions g1(w) on Rew < a, |Imw| < d and g2(w) on Rew > a,

|Imw| < d by

gj(w) =
1

2πi

∫ a+id

a−id

g(s)

s− w
ds,
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where the path of integration is the line segment with the endpoints a± id.

Then by a contour deformation, the function g1 extends holomorphically

from {Rew < a, |Imw| < d} to {Rew < a + d, |Imw| < d} and defines a

section g1 ∈ E�L∞(V1), (V1 := [−∞, a+ d[ + iBd). Similarly g2 extends and

defines a section g2 ∈ E�L∞(V2), (V2 := ]a − d,+∞] + iBd). Moreover we

have

g1(w)− g2(w) = g(w) on V1 ∩ V2.

Now we consider two sections f̃j−gj of E�L∞ on (Uj∩Vj)\D1, (j = 1, 2).

They coincide on the common domain of definition and define a global

section h̃ ∈ E�L∞((U1∩V1)∪ (U2∩V2)\D
1). Since (U1∩V1)∪ (U2∩V2) is a

complex neighborhood of Ω, h := [h̃] ∈ �(Ω) becomes a desired section. �

To complete the proof of Proposition 2.3, we note that the representation

(2.5) follows from (2.4) and from the definition of the support. �

As for the C-valued case, we give

Theorem 2.5. A C-valued bounded hyperfunction on an open set is

given by the right hand side of (2.1), that is,

�L∞(Ω) = lim−→
U

�L∞(U \ Ω)

�L∞(U)
.(2.7)

Moreover the sheaf �L∞ is flabby.

Proof. We will prove (2.7), equivalently, �L∞(Ω) = �(Ω), where �
denotes the presheaf given by (2.1). That is, � is the same presheaf as in

the proof of Proposition 2.3 under E = C. Since �L∞ |R = �, and since

�(Ω) = �(U\Ω)
�(U) for any open set Ω ⊂ R and for any complex neighborhood

U of Ω, it suffices to show that �L∞(Ω) = �(Ω) in the case that Ω contains

+∞ or −∞. Assume at first that +∞ ∈ Ω and −∞ �∈ Ω. Then we can take

a compact subset K := [a,+∞] ⊂ Ω and define Ω1 := Ω ∩ ]−∞, a + 1[. Let

u ∈ �L∞(Ω). Applying (2.4) to u|K , we can take an open neighborhood

Ω2 = ]a− δ,+∞] of K such that u|Ω2 ∈ �(Ω2). On the other hand, u|Ω1 ∈
�(Ω1) since Ω1 ⊂ R. Then u|Ω1 and u|Ω2 satisfy the assumption of Lemma

2.4, and we can take h ∈ �(Ω) which must be equal to u. In the case
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−∞ ∈ Ω and +∞ �∈ Ω, the argument is the same. In the case ±∞ ∈ Ω,

take compact neighborhoods K1 of −∞ and K3 of +∞ in Ω, and also take

an open set Ω2 ⊂ R so that Ω = K1 ∪Ω2 ∪K3. Then we can use the similar

argument twice.

The flabbiness of �L∞ is reduced to the surjectivity of the restriction

map

�L∞(D1)→ �(R).(2.8)

In fact, let u be a section in �L∞(Ω) for an open set Ω ⊂ D
1. Then

since �L∞ |R = � is flabby, there exists an extension u1 ∈ �(R) of u|Ω∩R.

Assume that there exists an extension u2 ∈ �L∞(D1) of u1. Then Ω′ :=

R∪({±∞}\Ω) becomes an open set satisfying Ω∪Ω′ = D
1 and Ω∩Ω′ = Ω∩R.

The two sections u ∈ �L∞(Ω) and u′ := u2|Ω′ ∈ �L∞(Ω′) coincide on Ω∩Ω′

and defines a global section ũ ∈ �L∞(D1), which is an extension of u.

The surjectivity of (2.8) was given already in Sato [14, §10]. Also see

Theorem 8.4.4 and Corollary 8.4.5 of Kaneko [7] with their proof, for a little

bit more explicit argument. �

The sheaf �L∞ is a subsheaf of �̃, as is easily seen from their definitions.

The embedding �L∞ ↪→ �̃ defines the standard morphism �L∞ → �. From

the next proposition, we can regard �L∞ as a subsheaf of �.

Proposition 2.6. The standard morphism �L∞ → � is injective.

Proof. Since they coincide on R, it suffices to show that the maps

between the stalks at ±∞ are injective.

Let u be a germ of �L∞ at +∞. There exists a defining function f ∈
�L∞(]a,+∞] + iḂd) with some a ∈ R and d > 0. Assume that u is zero as

a germ of � at +∞. Then f belongs to �̃(]a′,+∞]+ iBd′) with some a′ ≥ a

and 0 < d′ ≤ d. Under these conditions, we want to show that [f ] vanishes

in a neighborhoods of +∞, that is, f belongs to �L∞(]a′′,+∞] + iBd′′)

with some a′′ ≥ a′ and 0 < d′′ ≤ d′. Thus, it suffices to prove that f ∈
�L∞(]a,+∞] + iḂd) ∩ �̃(]a,+∞] + iBd) implies f ∈ �L∞(]a,+∞] + iBd).

Now we consider a holomorphic function fε(w) := f(w)e−εw2
on Uδ :=

]a + δ,+∞[ + iBd−δ ⊂ C for arbitrarily fixed δ > 0 and ε > 0. Since
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f ∈ �̃(]a,+∞] + iBd), fε is bounded on Uδ. Therefore, by the Phragmén-

Lindelöf principle, we have

sup
w∈Uδ

|fε(w)| = sup
w∈∂Uδ

|fε(w)|.

On the other hand, since f ∈ �L∞(]a,+∞]+iḂd) and since f is holomorphic

in a neighborhood of a + δ, f is bounded on ∂Uδ and satisfies

sup
w∈∂Uδ

|fε(w)| ≤ sup
w∈∂Uδ

|f(w)| · sup
w∈∂Uδ

e−εRew2 ≤ cδe
ε(d−δ)2 ,

where cδ := supw∈∂Uδ
|f(w)| < +∞. From these estimates, we have the

estimate supw∈Uδ
|fε(w)| ≤ cδe

ε(d−δ)2 , or equivalently,

|f(w)| ≤ cδ exp ε
[
(d− δ)2 + Rew2

]
for any w ∈ Uδ.

By taking the limit ε ↓ 0, we obtain

sup
w∈Uδ

|f(w)| ≤ cδ.

Since δ > 0 was arbitrary, f belongs to �L∞(]a,+∞] + iBd). �

Bounded measurable functions can be naturally considered as a section

of �L∞ .

Proposition 2.7. Let Ω ⊂ D
1 be a connected open set.

(i) A function f(t) ∈ L∞(Ω ∩ R) can be naturally regarded as a section

in �L∞(Ω). The image of f is given by a defining function

− 1

2πi

∫
Ω∩R

f(s)
e−(w−s)2

w − s
ds(2.9)

which belongs to �L∞(D1 + iR \ D
1). This map L∞(Ω ∩ R) → �L∞(Ω) is

injective.

(ii) A bounded continuous map f : Ω∩R → E can be naturally regarded

as a section in E�L∞(Ω). The image of f is again given by a defining

function (2.9), which in this case belongs to E�L∞(D1 + iR \ D
1). This

correspondence is injective.



Massera Criterion in Hyperfunctions 25

Proof. (i) The fact that the convolution integral (2.9) belongs to

�L∞(D1 + iR \ D
1) can be seen easily. The injectivity follows from the

injectivity of the composition map L∞(Ω ∩ R) → �L∞(Ω) → �(Ω ∩ R),

where the second map is the restriction.

(ii) The well-definedness is proved in a similar manner. Then we can

show that the integral over Ω ∩ R is holomorphic outside Ω ∩ R. Thus to

show the injectivity, it suffices to prove that for an open interval I � Ω∩R,

if the section [g] given by

g(w) := − 1

2πi

∫
I
f(s)

e−(w−s)2

w − s
ds

is 0 on I, then f = 0 on I.

From the assumption, g ∈ E�(C \ ∂I). For any h ∈ E′, we have

h(g(w)) = − 1

2πi

∫
I
h(f(s))

e−(w−s)2

w − s
ds,

which implies that h◦g is a defining function of h◦f , and belongs to �(C\∂I).
Now the conclusion follows from (i) and the Hahn-Banach theorem. �

Remark 2.8. We also give another embedding of not only bounded

functions but also locally integrable functions satisfying some “bounded-

ness” conditions at infinity as follows. A function f(t) ∈ L1
loc(]a,+∞[)

satisfying the condition

sup
b≥a
‖f(t)‖L1(]b,b+1[) < +∞(2.10)

can be naturally regarded as a section in �L∞(]a,+∞]). The image of f is

given by the same convolution integral (2.9) with the domain of integration

Ω ∩ R replaced by ]a,+∞[.

2.3. Relation between �L∞(D1) and BL∞

We recall the notion of Chung-Kim-Lee’s bounded hyperfunctions in [3].

They introduced the space BLp (1 < p ≤ ∞) of hyperfunctions of Lp growth

as the dual space of the locally convex space ALq with 1/p+ 1/q = 1. Here

the spaces ALq (1 ≤ q <∞) are defined by

ALq := lim−→
h>0

Aq,h,
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Aq,h := {ϕ ∈ C∞(Rn); ‖ϕ‖Lq ,h := sup
α

‖∂αϕ‖Lq(Rn)

h|α|α!
< +∞},

and endowed with locally convex inductive limit topologies. The space BL∞

for the case p = ∞, (that is, q = 1), was called the space of bounded

hyperfunctions.

We will now prove that the space �L∞(D1) is isomorphic to BL∞ . In the

first part, we give another description of AL1 by a similar argument used in

Kim-Chung-Kim [9, §1].

Lemma 2.9. A function ϕ(t) ∈ Aq,h is real analytic and extends holo-

morphically to the tube domain {w ∈ C
n; maxj |Imwj | < 1/h}.

Proof. Using the Sobolev embedding theorem, we have

‖∂αϕ‖L∞(Rn) ≤ c
∑

|β|≤N

‖∂α+βϕ‖Lq(Rn) ≤ c‖ϕ‖Lq ,h

∑
|β|≤N

h|α+β|(α + β)!

for some constant c and N depending only on n and q. Thus for any h′ > h,

‖∂αϕ‖L∞(Rn)

h′|α|α!
≤ c‖ϕ‖Lq ,h

∑
|β|≤N

β!h|β|
(
α + β

α

)( h

h′

)|α|
.

Using the estimate supα
(
α+β
α

)
xα ≤

∑
α

(
α+β
α

)
xα =

∏n
j=1(1 − xj)

−βj−1 for

x ∈ [0, 1[n, we obtain

sup
α

‖∂αϕ‖L∞(Rn)

h′|α|α!
≤ cch

(1− h/h′)N+n
‖ϕ‖Lq ,h,(2.11)

where ch =
∑

|β|≤N β!h|β| is a constant depending only on n, N and h.

Therefore ϕ extends holomorphically to {maxj |Imwj | < 1/h′}. Since h′ > h

was arbitrary, this completes the proof. �

Lemma 2.10. Let ϕ(t) ∈ Aq,h and denote by ϕ(w) its holomorphic ex-

tension to {maxj |Imwj | < 1/h}. Then for any fixed s ∈ R
n with maxj |sj | <

1/h, the function t �→ ϕ(t + is) belongs to Lq(Rn) ∩ L∞(Rn). Moreover for

any 0 < d < 1/h, there exists a constant c′d independent of ϕ such that

sup
s∈[−d,d]n

‖ϕ(·+ is)‖Lq(Rn) ≤ c′d‖ϕ‖Lq ,h,(2.12)

sup
s∈[−d,d]n

‖ϕ(·+ is)‖L∞(Rn) ≤ c′d‖ϕ‖Lq ,h.(2.13)
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Proof. Since ϕ(t + is) =
∑

α
∂αϕ(t)

α! (is)α, we have, for s ∈ [−d, d]n,

‖ϕ(·+ is)‖Lq(Rn) ≤
∑
α

‖∂αϕ‖Lq(Rn)

α!
|sα| =

∑
α

‖∂αϕ‖Lq(Rn)

h|α|α!
|(hs)α|

≤ ‖ϕ‖Lq ,h

n∏
j=1

1

1− h|sj |
≤ ‖ϕ‖Lq ,h

(1− hd)n
.

As for the L∞-norm, it follows from (2.11) that

‖ϕ(·+ is)‖L∞(Rn) ≤
∑
α

‖∂αϕ‖L∞(Rn)

α!
|sα| ≤ cch‖ϕ‖Lq ,h

(1− h/h′)N+n

∑
α

|(h′s)α|

≤ cch‖ϕ‖Lq ,h

(1− h/h′)N+n(1− h′d)n
,

where h′ is a fixed number satisfying h < h′ < 1/d. Then the conclusion

follows if we take

c′d := max{(1− hd)−n, cch(1− h/h′)−N−n(1− h′d)−n}. �

Consider the case q = 1. We denote by A1,d the space of functions ϕ,

holomorphic in the tube domain {maxj |Imwj | < d} and continuous in its

closure {maxj |Imwj | ≤ d}, satisfying

‖ϕ‖A1,d := sup
s∈[−d,d]n

‖ϕ(·+ is)‖L1(Rn) + sup
s∈[−d,d]n

‖ϕ(·+ is)‖L∞(Rn) < +∞.

Note that sups∈[−d,d]n‖ϕ(· + is)‖L∞(Rn) = ‖ϕ‖L∞({maxj |Imwj |≤d}), and that

the space A1,d endowed with the norm ‖·‖A1,d is a Banach space.

Lemma 2.11. AL1 is topologically isomorphic to lim−→ d>0A
1,d.

Proof. Lemma 2.10 shows that the inclusion A1,h → A1,d is continu-

ous if d < 1/h.

Conversely, let ϕ be a function in A1,d. We have from the Cauchy

formula that, for 0 < r < d,

|∂αϕ(t)| ≤ α!

r|α|

∫
{∀j,|wj |=r}

|ϕ(t + w)| |dw1| · · · |dwn|
(2πr)n

.
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We put h := 1/r > 1/d. By integrating in the t variable and using Fubini’s

theorem, we have

‖∂αϕ‖L1(Rn)

h|α|α!
≤

∫
{∀j,|wj |=r}

‖ϕ(·+ w)‖L1(Rn)
|dw1| · · · |dwn|

(2πr)n

≤ sup
maxj |sj |≤r

‖ϕ(·+ is)‖L1(Rn),

which implies that the inclusion A1,d → A1,h is continuous if h > 1/d. �

Assume moreover n = 1. We define a pairing between �L∞(D1 + iḂd)

and A1,d by the formula

〈f, ϕ〉 :=

∫
γ(s+)−γ(s−)

f(w)ϕ(w)dw(2.14)

for ϕ ∈ A1,d and f ∈ �L∞(D1 + iḂd), where s± are arbitrary constants with

−d < s− < 0 < s+ < d(2.15)

and γ(s) denotes the contour R � t �→ t + is ∈ C.

Lemma 2.12. The right hand side of (2.14) converges and does not

depend on the choice of s±. Therefore 〈f, ·〉 defines a continuous linear

functional of A1,d.

Proof. The convergence of the integral follows from the facts f(· +
is±) ∈ L∞(R) and ϕ(·+ is±) ∈ L1(R).

From the same facts and the Lebesgue convergence theorem, we have

the equality∫
γ(s±)

f(w)ϕ(w)dw = lim
ε↓0

∫
γ(s±)

f(w)ϕ(w)e−εw2
dw.

Since ϕ(· + is±) ∈ L∞(R), a usual contour deformation argument proves

that each
∫
γ(s±) f(w)ϕ(w)e−εw2

dw is independent of s±, for fixed ε > 0.

Once the well-definedness is established, the estimate

|〈f, ϕ〉| ≤ ‖f(·+ is+)‖L∞(R)‖ϕ(·+ is+)‖L1(R)

+ ‖f(·+ is−)‖L∞(R)‖ϕ(·+ is−)‖L1(R)
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for fixed s± shows the continuity of 〈f, ·〉. �

Now we give

Theorem 2.13. The pairing (2.14) induces a pairing between

�L∞(D1) and AL1. Moreover �L∞(D1) is isomorphic to the dual space

A′
L1.

Proof. For f ∈ �L∞(D1 + iBd) and ϕ ∈ A1,d, we have

∫
γ(s+)−γ(s−)

f(w)ϕ(w)ds = lim
ε↓0

∫
γ(s+)−γ(s−)

f(w)ϕ(w)e−εw2
ds

and the integral in the right hand side vanishes from a usual contour defor-

mation argument, which proves 〈f, ·〉 = 0 on A1,d. By taking the inductive

limit in d > 0, it is proved that 〈·, ·〉 : �L∞(D1)×AL1 → C is well-defined.

The continuity of 〈[f ], ·〉 on AL1 follows from the continuity of 〈f, ·〉 on every

A1,d′ (0 < d′ < d).

In this way, we have constructed the linear map

�L∞(D1) � [f ] �→ 〈[f ], ·〉 ∈ A′
L1 .(2.16)

We will prove its bijectivity.

To show the injectivity of (2.16), assume that f ∈ �L∞(D1+iḂd) satisfies

〈[f ], ·〉 = 0 on AL1 . Then fix s with 0 < s < d and consider the integral

gs(w) := − 1

2πi

∫
γ(s)−γ(−s)

f(w′)
e−(w−w′)2

w − w′ dw′(2.17)

for Imw �= ±s. If |Imw| > s, the integral is equal to 〈f,− 1
2πi

e−(w−·)2

w−· 〉 and

vanishes from the assumption. In fact, in this case − 1
2πi

e−(w−·)2

w−· ∈ A1,d′ for

s < d′ < |Imw|. When 0 < Imw < s, we take another s′ with 0 < s′ < Imw

so that gs′(w) = 0, and obtain

gs(w) = gs(w)− gs′(w) = − 1

2πi

∫
γ(s)−γ(s′)

− 1

2πi

∫
−γ(−s)+γ(−s′)

.

Since the integrand is holomorphic outside {w}∪R, and decays exponentially

with Rew′ → ±∞ locally uniformly in Imw′, the second term vanishes and
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the first term is equal to Resw′=w

[
f(w′) e

−(w−w′)2

w−w′

]
= f(w). We can similarly

argue also in the case −s < Imw < 0 and get

gs(w) = f(w) for 0 < |Imw| < s.

On the other hand, in view of (2.17), we can easily see that gs(w) is holo-

morphic on {|Imw| < s} and bounded on each domain {|Imw| < s′} for

any s′ < s. Therefore gs gives an extension of f ∈ �L∞(D1 + iḂd) to

�L∞(D1 + iBs), which proves [f ] = 0 in �L∞(D1).

To show the surjectivity of (2.16), consider an element ψ ∈ A′
L1 and

define

f(w) := − 1

2πi
ψ
(e−(w−·)2

w − ·
)

for w ∈ C \ R. Note that for fixed d > 0, the map {|Imw| > d} � w �→
e−(w−·)2

w−· ∈ A1,d belongs to A1,d
�L∞(D1 + i(R \ [−d, d])), i.e., it is A1,d-valued

holomorphic function and the family { e−(w−·)2

w−· }|Imw|>d′ is bounded for every

d′ > d. Thus f(w) ∈ �L∞(D1 + iR \ D
1) and represents a global section

[f ] ∈ �L∞(D1). It suffices to show that 〈[f ], ϕ〉 = ψ(ϕ) for any ϕ ∈ AL1 .

When ϕ ∈ A1,d, we take a contour γs := γ(s)− γ(−s) with some 0 < s < d,

and calculate as follows.

〈f, ϕ〉 =

∫
γs

f(w)ϕ(w)dw
♠
= lim

ε↓0

∫
γs

f(w)ϕ(w)e−εw2
dw

= − 1

2πi
lim
ε↓0

∫
γs

ψ
(e−(w−·)2

w − ·
)
ϕ(w)e−εw2

dw

♣
= lim

ε↓0
ψ
(
− 1

2πi

∫
γs

e−(w−·)2

w − · ϕ(w)e−εw2
dw

)

= lim
ε↓0

ψ
(
ϕ(·)e−ε(·)2

) ♥
= ψ(ϕ).

Here we used the Lebesgue convergence theorem at ♠, the convergence

of
∫
γs

e−(w−·)2

w−· ϕ(w)e−εw2
dw in A1,d′ for some 0 < d′ < s at ♣, and the

convergence limε↓0 ϕ(·)e−ε(·)2 = ϕ(·) in A1,d′ for 0 < d′ < d at ♥. �
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3. Operators for Bounded Hyperfunctions

In this section we consider some classes of operators acting on bounded

hyperfunctions. Some are sheaf morphisms, typically some differential op-

erators, while others are families of linear maps PΩ : E�L∞(Ω + K) →
E�L∞(Ω) for Ω ⊂ D

1 with a closed interval K ⊂ R, typically some dif-

ference operators. Here Ω + K denotes the set {t + s; t ∈ Ω, s ∈ K} with

convention ±∞ + s = ±∞ for s ∈ R. Note also that for an open set

U ⊂ D
1 + iR, we denote by U + K the set {w + s;w ∈ U, s ∈ K} under

similar conventions w + s = w for Rew = ±∞, s ∈ R.

Then we introduce the notion of periodicity for hyperfunctions, bounded

hyperfunctions and operators acting on bounded hyperfunctions, using dif-

ference operators.

3.1. Operators commuting with restrictions

Let I be an open set in D
1 with a complex neighborhood U . A sheaf

endomorphism P of E�L∞ (resp. E�L∞ |U ) canonically induces a sheaf en-

domorphism of E�L∞ (resp. E�L∞ |I).

Example 3.1. We denote by Lb(E) the space of the linear continuous

operators E → E endowed with the topology of uniform convergence on

bounded subsets. That is, the topology of Lb(E) is given by the family of

seminorms qS,p defined by

qS,p(L) := sup
x∈S

p(Lx) for L ∈ Lb(E),

where S runs through bounded subsets in E and p runs through continuous

seminorms of E. A section P ∈ Lb(E)�L∞(U) defines a sheaf endomorphism

of E�L∞ |U , and therefore a sheaf endomorphism of E�L∞ |I . In particular,

in the case E = C, a section a(t) ∈ �L∞(D1) defines a multiplier a· on

�L∞ , and in the case E = C
m (thus, Lb(E) " C

m2
), a matrix A(t) =

(aij(t))1≤i,j≤m with entries in �L∞(D1) defines A· on (�L∞)m.

Example 3.2. The differentiation ∂w = d/dw defines a sheaf endomor-

phism of E�L∞ , and therefore a sheaf endomorphism ∂t of E�L∞ . Moreover

for k ∈ Γ{0}(R,�), consider the endomorphism f �→ k ∗ f of E� given by

the convolution

(k ∗ f)(w) := −2πiResw′=0

[
k̃(w′)f(w − w′)

]
,(3.1)
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where k̃ is a defining function of k. The operator k∗ does not depend on the

choice of k̃, and extends to an endomorphism of E�L∞ , and that of E�L∞ .

These operators k∗ cover differential operators with constant coefficients,

not only of finite order but also of infinite order.

Now we define sheaves of ordinary differential operators with vector-

valued holomorphic coefficients bounded at infinity.

Definition 3.3. Let F be a C-algebra endowed with a sequentially

complete separated locally convex topology which admits a continuous ho-

momorphism

F → Lb(E).

We define the sheaf F�L∞ of ordinary differential operators with F�L∞

coefficients on D
1 + iR as the sheaf associated with the presheaf

U �→ {P (w, ∂w) :=
m∑
j=0

aj(w)∂jw;m ∈ N, aj ∈ F�L∞(U)}.(3.2)

The presheaf (3.2) is not a sheaf, but the right hand side of (3.2) coin-

cides with F�L∞(U) when U consists of finite connected components. The

sheaf F�L∞ is endowed with the usual Hörmander-Leibniz product, and

becomes a sheaf of C-algebra. Moreover, an operator P ∈ F�L∞(U) acts

continuously on every E�L∞(V ), V ⊂ U , and also defines a sheaf endomor-

phism on E�L∞ |U∩D1 .

When F = C, we usually omit F and denote it by �L∞ . The restriction

�L∞ |C coincides with the sheaf � of ordinary differential operators with

holomorphic coefficients.

Example 3.4. We can also consider a convolution k∗ with kernel hyper-

function k ∈ �(R) with compact support. If supp k ⊂ −K := {t ∈ R;−t ∈
K} with some compact set K, then k∗ defines a continuous linear map

E�L∞(U + K)→ E�L∞(U)

for any U ⊂ D
1 + iR. Therefore k∗ induces a family of linear maps

E�L∞(Ω + K)→ E�L∞(Ω), Ω
open
⊂ D

1.
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As typical examples other than differential operators, we give a transla-

tion operator

δ−ω∗ : E�L∞(Ω + ω) � u �→ u(·+ ω) ∈ E�L∞(Ω),

and a difference operator

(δ−ω − δ)∗ : E�L∞((Ω + ω) ∪ Ω) � u �→ u(·+ ω)− u(·) ∈ E�L∞(Ω),

where ω is a real constant and δ−ω = δ(· + ω) ∈ Γ{−ω}(R,�) denotes the

Dirac delta distribution at −ω. We denote the operator δ−ω∗ by Tω, and

the operator (δ−ω − δ)∗ by Tω − 1.

Let F be as in Definition 3.3. For a compact set in K ⊂ R and an open

set U ⊂ D
1 + iR, consider a linear combination of convolution operators

with coefficients in F�L∞(U):

P :=
finite∑
j

aj(w)kj∗, aj ∈ F�L∞(U), kj ∈ Γ−K(R,�).(3.3)

Then P defines a family of continuous linear maps

PV : E�L∞(V + K)→ E�L∞(V ) for V ⊂ U,

and a family of linear maps

PΩ : E�L∞(Ω + K)→ E�L∞(Ω) for Ω ⊂ U ∩ D
1.

These families of maps are not sheaf endomorphisms, but satisfy a com-

mutativity condition with restrictions. That is, we have the commutative

diagrams, where the vertical arrows are the restrictions: for V2 ⊂ V1 in U ,

E�L∞(V1 + K)
PV1−−−→ E�L∞(V1)�

�
E�L∞(V2 + K)

PV2−−−→ E�L∞(V2),

(3.4)

and for Ω2 ⊂ Ω1 in U ∩ D
1,

E�L∞(Ω1 + K)
PΩ1−−−→ E�L∞(Ω1)�

�
E�L∞(Ω2 + K)

PΩ2−−−→ E�L∞(Ω2).

(3.5)
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More generally, we give

Definition 3.5. Let K ⊂ R be a compact set and U ⊂ D
1+iR an open

set. A family P = {PV }V⊂U of linear maps PV : E�L∞(V +K)→ E�L∞(V )

is called an operator of type K on U for E�L∞ , if each PV is continuous

and each diagram (3.4) is commutative for any V2 ⊂ V1.

An operator P of type K automatically induces a family {PΩ}Ω of linear

maps with commutative diagrams (3.5). For f ∈ E�L∞(V ), we say that u is

an E�L∞-solution to the equation Pu = f on V if u ∈ E�L∞(V +K) and if

PV u = f . Similarly, for f ∈ E�L∞(Ω), we say that u is an E�L∞-solution

to Pu = f on Ω if u ∈ E�L∞(Ω + K) and PΩu = f . The commutativity

condition implies that the restriction of a solution on Ω1 to Ω2+K (Ω2 ⊂ Ω1)

is a solution on Ω2. Therefore, when P is an operator of type K on a

neighborhood U of +∞, and f is a germ of E�L∞ at +∞, it makes sense

to consider an (E�L∞)+∞-solution to an equation Pu = f .

Let F be as in Definition 3.3. Then P ∈ F�L∞(U) is an operator of

type {0} on U for E�L∞ . From now on, whenever we consider operators of

type K, we take K as a closed interval, so that Ω +K becomes an interval

for any interval Ω.

3.2. Periodic hyperfunctions and periodic operators

Now we consider periodic real analytic functions and periodic hyper-

functions with period ω > 0. Let I ⊂ R be an open interval and K the

closed interval [0, ω]. First note that if an E-valued holomorphic function

f(w) defined in a complex neighborhood I + K + iBd of I + K satisfies

the periodicity condition f(t + ω) = f(t) for any t ∈ I, then it extends

holomorphically to a tube domain R + iBd and satisfies f(w + ω) = f(w)

for any w ∈ R + iBd, which implies f ∈ E�L∞(D1 + iBd). In other words, a

local E�-solution to an equation (Tω − 1)f = 0 always extends to a global
E�L∞-solution on a tube domain. Moreover we give also a local solvability

result in E� of an equation (Tω − 1)u = f .

Lemma 3.6. Let L = [a, b] + iBd be a compact rectangle. For any

f ∈ E�(L), there exists u ∈ E�(L + K) satisfying (Tω − 1)u = f on L.

Proof. Assume that f is defined on ]a − 3δ, b + 3δ[ + iBd+3δ with

some δ > 0. We define f1 on U1 := ]−∞, b + δ[ + iBd+δ and f2 on U2 :=
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]a− δ,+∞[ + iBd+δ by

fj(w) =
1

2πi

∫
γj

f(s)
e−(s−w)2

s− w
ds,

where γ2 is the line segment from a − 2δ + i(d + 2δ) to a − 2δ − i(d + 2δ)

and γ1 = ∂(]a− 2δ, b + 2δ[ + iBd+2δ)− γ2. Therefore it follows that

|fj(w)| ≤ ce−|Rew|2

on Uj respectively, and that f1 + f2 = f on U1 ∩U2 = ]a− δ, b+ δ[ + iBd+δ.

Then u1 :=
∑∞

k=1 T−kωf1 converges in E�(U1 + K) and solves an equation

(Tω − 1)u1 = f1, and u2 :=
∑∞

k=0 Tkωf2 converges in E�(U2) and solves

(Tω − 1)u2 = f2. Since L + K ⊂ (U1 + K) ∩ U2, u := u1 + u2 is a desired

solution. �

As for periodic hyperfunctions, we define

Definition 3.7. Let ω be a positive constant. We say that a hy-

perfunction f ∈ E�(R) is ω-periodic if f is a solution to the equation

(Tω − 1)f = 0.

We can also consider globally defined ω-periodic bounded hyperfunctions

and locally defined ω-periodic hyperfunctions. Periodic hyperfunctions are

also studied in Chung-Kim-Lee [3] in several variables in C-valued case. We

give here the following

Proposition 3.8. Let Ω ⊂ R be an open interval and K the closed

interval [0, ω]. The restriction maps E�L∞(D1) → E�(R) and E�(R) →
E�(Ω + K) induce the following isomorphisms respectively.

{f ∈ E�L∞(D1); (Tω − 1)f = 0} → {f ∈ E�(R); (Tω − 1)f = 0},(3.6)

{f ∈ E�(R); (Tω − 1)f = 0} → {f ∈ E�(Ω + K); (Tω − 1)f = 0}.(3.7)

Moreover, any ω-periodic hyperfunction g ∈ E�(R) has an ω-periodic defin-

ing function f ∈ E�L∞(D1 + iḂd) with some d > 0.

Proof. The well-definedness and the linearity of these maps are clear.
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The bijectivity of (3.7) follows from the fact that E� is a sheaf. In fact,

let f ∈ E�(R) be an ω-periodic hyperfunction which satisfies f |Ω+K = 0.

Then we have f |Ω+K−jω = (Tjωf)|Ω+K−jω = Tjω(f |Ω+K) = 0 for any j ∈ Z

and f = 0. Similarly we assume that g is an element of the right hand side

of (3.7), that is, g ∈ E�(Ω + K) satisfies (Tω − 1)g = 0 on Ω. Then the

sections Tjωg ∈ E�(Ω + K − jω) for j ∈ Z can be patched together and

defines an extension f ∈ E�(R) of g, satisfying (Tω − 1)f = 0.

In order to show the surjectivity of (3.6), assume that we are given an

arbitrary g ∈ E�(R) satisfying (Tω − 1)g = 0. We fix an open interval

Ω = ]a, b[ and take a local boundary value representation g = [g̃] on a

neighborhood of Ω + K, using Proposition 2.3. That is, we may assume

that g̃ ∈ E�(]a − d, b + d + ω[ + iḂ2d) for some d > 0 and that g = [g̃] on

]a − d, b + d + ω[. The ω-periodicity of g implies that (Tω − 1)g̃ extends

to a section h ∈ E�(]a − d, b + d[ + iB2d). We use Lemma 3.6 to take a

solution u ∈ E�(Ω + K + iBd) to (Tω − 1)u = h, and define f := g̃ − u ∈
E�(Ω + K + iḂd). From the ω-periodicity of f , it extends holomorphically

to R+ iḂd and defines a section in E�L∞(D1 + iḂd), which we again denote

by f . Since [u] = 0 on Ω + K, [f ] gives an ω-periodic extension of g|Ω+K .

Therefore we proved the surjectivity of the composition of (3.6) and (3.7),

the latter of which is bijective. Note that the existence of f for g also assures

the last statement.

In order to show the injectivity of (3.6), assume that u ∈ E�L∞(D1)

is ω-periodic and that u|R = 0. We take, again using Proposition 2.3, a

global defining function f ∈ E�L∞(D1 + iḂ2d) of u. Then u|R = 0 implies

that f ∈ E�(R + iB2d), and the ω-periodicity of u implies that g := (Tω −
1)f ∈ E�L∞(D1 + iB2d). If we show that f ∈ E�L∞(D1 + iBd), then the

conclusion holds. Now fix an arbitrary continuous seminorm p on E. Since

Cp := ‖g‖
D1+iBd,p

< ∞ and since f(w + ω) = f(w) + g(w), we have the

estimate

sup
w∈[jω,(j+1)ω]+iBd

p(f(w)) ≤ Cp|j|+ sup
w∈[0,ω]+iBd

p(f(w)),

or,

p(f(w)) ≤ cp,1|Rew|+ cp,2, if |Imw| ≤ d,

for some positive constants cp,1 and cp,2. Once we have this global a priori

estimate for f , the remainder of the proof is almost a repetition of the
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Phragmén-Lindelöf argument in the proof of Proposition 2.6, and we omit

the details. Note that the maximum principle for holomorphic functions

holds also in E-valued case if we replace |·| on C by an arbitrarily fixed

continuous seminorm on E. �

We also define the notion of periodic operator.

Definition 3.9. Let ω be a positive constant, K a closed interval in

R, I a connected open neighborhood of 0 in R, and U = D
1 + iI a tube

domain in D
1 + iR. An operator P = {PV }V⊂U of type K on U for E�L∞

is called ω-periodic, if it commutes with Tω, that is, the diagram

E�L∞(V + ω + K)
PV +ω−−−→ E�L∞(V + ω)

Tω

�
�Tω

E�L∞(V + K)
PV−−−→ E�L∞(V ),

(3.8)

commutes for any V ⊂ U .

The commutative diagrams (3.8) induce a commutative diagram

E�L∞(Ω + ω + K)
PΩ+ω−−−→ E�L∞(Ω + ω)

Tω

�
�Tω

E�L∞(Ω + K)
PΩ−−−→ E�L∞(Ω),

(3.9)

for any Ω ⊂ D
1. Note that ω-periodic operators preserve the ω-periodicity

of their operands.

Example 3.10. Let F be as in Definition 3.3, and U := D
1 + iBd a tube

domain. Consider P (w, ∂w) ∈ F�L∞(U) given by

P (w, ∂w) =
m∑
j=0

aj(w)∂jw,

where aj are ω-periodic. Then P becomes an ω-periodic operator of type

{0}.
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Similarly, consider an operator P of the form (3.3) on a tube domain

U , where the coefficients aj are ω-periodic. Then P becomes an ω-periodic

operator of type K.

The isomorphism (3.6) in Proposition 3.8 plays an important role in

the study of ω-periodic solutions to ω-periodic equations. Consider an ω-

periodic equation

Pu = f on R,(3.10)

where P is an ω-periodic operator of type K and f ∈ E�(R) is an ω-

periodic E-valued hyperfunction. From Proposition 3.8, f has naturally an

ω-periodic extension f̃ ∈ E�L∞(D1) and we can also consider an ω-periodic

equation

Pũ = f̃ on D
1.(3.11)

If we have an ω-periodic solution ũ ∈ E�L∞(D1) to (3.11), then the re-

striction u := ũ|R becomes an ω-periodic solution to (3.10). On the other

hand, assume that we are given an ω-periodic solution u ∈ E�(R) to

(3.10). Then, again from Proposition 3.8, u admits an ω-periodic exten-

sion ũ ∈ E�L∞(D1). Now we claim that ũ is an ω-periodic solution to

(3.11). In fact, since Pũ− f̃ ∈ E�L∞(D1) is ω-periodic and vanishes on R,

the injectivity of (3.6) implies that Pũ− f̃ vanishes also on D
1.

4. Massera Type Theorem

In this section, we give our main result after a preparation of a Montel

type theorem.

Let E be a sequentially complete separated locally convex space. We

consider the following Montel property for E as in Zubelevich [19].

(M) Any bounded sequence in E has a convergent subsequence.

Theorem 4.1. Assume that E satisfies the Montel property (M). Then

for any bounded sequence (fj)j in E�L∞(U), we can take a subsequence

(fjk)k which converges in E�(U ∩ C). The limit f ∈ E�(U ∩ C) of such a

convergent subsequence belongs to E�L∞(U).
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Proof. Note that the second statement follows immediately from the

first one. Moreover, since a bounded sequence in E�L∞(U) is bounded in
E�(U ∩ C), it suffices to show the existence of a convergent subsequence

in the case U ⊂ C. That is, what we should prove is that any bounded

sequence in E�(U) has a convergent subsequence.

The proof goes in almost the same way as in the C-valued case, but

we give it here, in order to clarify that the topology of E may be given

by uncountably many seminorms, and that the sequential completeness and

the Montel property of E are enough.

First we fix a countable dense subset Q of U . Then from the assumption

(M) for E, we can take a subsequence (fjk)k such that (fjk(w))k is conver-

gent for any w ∈ Q, by a standard diagonal method. It suffices to show that

(fjk)k is a convergent sequence. Thus we may assume, from the beginning,

that (fj(w))j converges for any w ∈ Q. In what follows we will prove that

(fj)j converges in E�(U).

For any compact K ⊂ U and any continuous seminorm p of E, the

boundedness of (fj)j implies the uniform boundedness of (fj)j on K:

p(fj(w)) ≤ CK,p for w ∈ K, j ∈ N,

where CK,p := supj‖fj‖K,p < +∞. We can also show that supj‖∂fj‖K,p is

finite. In fact, we can take d > 0 such that Kd := {w ∈ C; dist(w,K) ≤
d} � U . Then from the Cauchy estimate, it follows that

sup
j
‖∂fj‖K,p ≤ sup

j
d−1‖fj‖Kd,p ≤ d−1CKd,p.

We choose such dK := d for each K and denote d−1CKd,p by C ′
K,p. Note that

for any w ∈ K and w′ ∈ C with |w−w′| < dK , the line segment connecting

them is included in KdK , from which follows the uniform equicontinuity of

(fj)j on K:

p(fj(w)− fj(w
′)) ≤ C ′

K,p|w − w′| for w ∈ K, |w − w′| < dK , j ∈ N.

Let K � U be again an arbitrary compact set, on which we want to show

the uniform convergence of (fj)j . Replacing K by a neighborhood of K, we

may assume that K ∩Q is dense in K. From the pointwise convergence of

(fj)j on K ∩ Q and the equicontinuity of (fj)j on K, we can show, using
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the Ascoli-Arzelà argument, that for any continuous seminorm p of E and

for any ε > 0, there exists a number N such that

p(fj(w)− fk(w)) < ε for j, k ≥ N , w ∈ K.(4.1)

Then it follows from (4.1) and the sequential completeness of E that (fj)j
converges uniformly on K. This concludes the proof. �

Remark 4.2. Under the hypothesis of the theorem, (fj)j may not have

a convergent subsequence in E�L∞(U), even in the C-valued case.

Consider, in fact, a sequence (fj)j in �L∞(U) given by fj(w) := eiw/j

for the case E = C and U = D
1 + i]0,∞[. It follows from the estimate

sup
Imw>0

|fj(w)| = 1

that fj ∈ �L∞(U) and they are uniformly bounded. We can easily see that

(fj)j converges to 1 uniformly on any compact subset in the upper half

plane. Therefore, if some subsequence (fjk)k converges in �L∞(U), then the

limit must be 1 and the estimate

lim
k→∞

sup
1/N≤Imw≤N

|fjk(w)− 1| = 0.

must hold for any N . But, since

sup
1/N≤Imw≤N

|fj(w)− 1| ≥ |fj(πj + i)− 1| = |−e−1/j − 1| j→∞−−−→ 2,

no subsequence can converge to 1.

Now we state our main theorem.

Theorem 4.3. Let E be a sequentially complete separated locally con-

vex space, K a closed interval in R, and ω a positive number. Consider an

ω-periodic operator P of type K on D
1 + iBd for E�L∞ with some d > 0 and

an ω-periodic E-valued hyperfunction f . Assume that E satisfies the Montel

property (M). Then the equation Pu = f has an ω-periodic E-valued hyper-

function solution if and only if it has an E�L∞-solution in a neighborhood

of +∞.



Massera Criterion in Hyperfunctions 41

Proof. In view of Proposition 3.8, the necessity is trivial. Thus we

will prove the sufficiency.

Assume that the equation Pu = f has an E�L∞-solution u on a

neighborhood of +∞. Then, also from Proposition 3.8, we can take ũ ∈
E�L∞(U̇ + K), f̃ ∈ E�L∞(D1 + iḂd′), and g ∈ E�L∞(U) such that f̃ is an

ω-periodic defining function of f and that

Pũ− f̃ = g in E�L∞(U̇),

where U and U̇ are given by

U := ]a,+∞] + iBd′ , U̇ := ]a,+∞] + iḂd′ = U \ D
1,

with some a ∈ R and 0 < d′ < d. Since P and f̃ are ω-periodic, we have

P (Tjωũ)− f̃ = Tjωg(4.2)

for any j ∈ N as sections in E�L∞(U̇ + (−jω)), but the commutativity of P

with restrictions asserts that the equality (4.2) holds in E�L∞(U̇). We will

continue using the commutativity of operators of type K with restrictions

without an explicit mention each time.

Now we consider the seminorms ‖·‖L,p of E�L∞(U̇+K) (resp. E�L∞(U)),

where L runs through compact sets of the form

L = {t′ + is; ∃t, t + is ∈ L0, t ≤ t′ ≤ +∞}(4.3)

with some L0 � U̇ + K (resp. L0 � U), and p runs through continuous

seminorms of E. Since L satisfies L0 ⊂ L � U̇ + K (resp. L0 ⊂ L � U)

and L + (−ω) ⊃ L, these seminorms defines the topology of E�L∞(U̇ + K)

(resp. E�L∞(U)), and the translation operators Tjω (j ∈ N) admit

‖Tjωũ‖L,p ≤ ‖ũ‖L,p, ‖Tjωg‖L,p ≤ ‖g‖L,p.(4.4)

We define Sk = 1
k

∑k−1
j=0 Tjω and consider the sequences (Skũ)k≥1 in

E�L∞(U̇ + K) and (Skg)k≥1 in E�L∞(U). Then it follows from (4.4) that

they are bounded, and the equalities (4.2) for j = 0, . . . , k− 1 directly yield

PSkũ− f̃ = Skg in E�L∞(U̇),
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and also in E�(U̇ ∩ C).

By applying Theorem 4.1 twice, we can obtain a subsequence (k(l))l
of (k)k such that (Sk(l)ũ)l converges to a section v ∈ E�L∞(U̇ + K) in

the topology of E�((U̇ + K) ∩ C), and that (Sk(l)g)l converges to a section

h ∈ E�L∞(U) in the topology of E�(U ∩ C). The continuity of the action

of P on E�((U̇ + K) ∩ C) gives us

Pv − f̃ = h in E�(U̇ ∩ C),

which implies the same equality in E�L∞(U̇). In particular, [v] becomes

another E�L∞(]a,+∞])-solution to the equation Pu = f .

Finally we show the periodicity of [v]. We have by a direct calculation

that (Tω − 1)Skũ = k−1(Tkω − 1)ũ, which yields

‖(Tω − 1)Sk(l)ũ‖L,p ≤
2‖ũ‖L,p
k(l)

→ 0 as l→∞(4.5)

for any L � U̇ of the form (4.3) and any continuous seminorm p of E.

Therefore (4.5) holds also for any L � U̇ ∩ C, and (Tω − 1)v = 0 follows

by taking the limit in E�(U̇ ∩ C). This concludes the proof in view of

Proposition 3.8. �

We give a remark.

Remark 4.4. Let F be as in Definition 3.3 and P (w, ∂w) ∈ F�L∞(D1+

iBd) an ω-periodic operator of the form

P (w, ∂w) =

m∑
j=0

aj(w)∂jw.

Assume that the equation Pu = f as in Theorem 4.3 admits a classical

bounded solution u0, that is, a bounded Cm-class map u0 : ]a,+∞[ → E

satisfying
∑m

j=0 aj(t)∂
j
t u0 = f(t). Then from Proposition 2.7, u0 can be

embedded into E�L∞(]a,+∞]) and the assumptions of Theorem 4.3 are

fulfilled.

On the other hand, ω-periodic hyperfunction solutions to ω-periodic

differential equations may be singular generalized functions or unbounded

functions. For example,
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•
∑

n∈Z δ(t + 2n) is 2-periodic and solves (sinπt)u = 0.

• tan(t + i0) is π-periodic and solves (cos2 t)∂tu = 1.

• exp tan(t + i0) is π-periodic and solves ((cos2 t)∂t − 1)u = 0.

In the classical Massera theorem 1.1, solutions are necessarily C1-class

since the differential equation is non-singular. We will see in the examples

given in the next section that some additional ellipticity assumptions for

partial differential equations enable our main theorem to give results about

classical solutions.

5. Applications

We give some applications of Theorem 4.3 to partial differential equa-

tions. In what follows, we often use the conventions �(Ω;E) = E�(Ω),

�L∞(Ω;E) = E�L∞(Ω), �(Ω;E) = E�(Ω), �L∞(Ω;E) = E�L∞(Ω) and so

on, in order to avoid the use of a heavy pre-superscript.

Let us consider the spaces R
n with coordinates x = (x1, . . . , xn) and C

n

with coordinates z = (z1, . . . , zn). We study the sheaf E�L∞ in the case

E = �(V ) for some open domain V ⊂ R
n, and in the case E = �(V ) for

some open domain V ⊂ C
n.

The space �(V ) is endowed with the usual Fréchet-Schwartz topology,

and then the completeness and the Montel property for �(V ) are clear.

As for �(V ), we endow it with a locally convex topology by a formula

�(V ) = lim←−
K�V

�(K),(5.1)

where K runs through compact subsets in V and each �(K) is endowed

with the usual dual Fréchet-Schwartz topology. It is well-known that �(V )

also admits an inductive limit representation �(V ) " lim−→W⊃V �(W ) as a

locally convex space, where W runs through complex neighborhoods of V ,

but we use only the fact that lim−→W⊃V �(W ) → �(V ) is continuous, which

follows immediately from the definition. Though �(V ) is not a Fréchet

space, we can characterize, from (5.1) and the continuity mentioned above,

a bounded set X in �(V ) as the image of a bounded set in �(W ) with a

complex neighborhood W of V . Therefore the sequential completeness and

the Montel property for �(V ) are clear.
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5.1. ��-solutions to partial differential equations

We denote by �� the sheaf of hyperfunctions with real analytic pa-

rameter x defined on R × R
n, and by �� the sheaf �|C×Rn . Let V ⊂ R

n

be an open domain. First we study the relation between �(Ω; �(V )) and

��(Ω × V ) for Ω ⊂ R. Note that for an open set U ⊂ C, there exists a

standard isomorphism �(U ; �(V ))
∼→ ��(U × V ).

Proposition 5.1. (i) The family of maps �(U ; �(V )) → ��(U × V )

for U ⊂ C induces a standard isomorphism

ı : �(Ω; �(V ))
∼→ ��(Ω× V )(5.2)

for Ω ⊂ R, and also an isomorphism

ı : �(V )�
∼→ p∗(��|R×V )(5.3)

between sheaves on R, where p : R× V → R denotes the projection.

(ii) If f ∈ �(Ω; �(V )) satisfies ı(f) ∈ �(Ω × V ), then f is actually a

C∞-class map from Ω to �(V ), that is, f ∈ C∞(Ω; �(V )).

Proof. (i) First we consider a section f ∈ �(Ω; �(V )) which admits

a defining function f̃(w, x) ∈ �(Ω + iḂd; �(V )) " ��((Ω + iḂd)× V ) with

some d > 0. From a local version of Bochner’s tube theorem, each f̃ |± Imw>0

extends holmorphically to a wedge domain

⋃
K�Ω×V

{(t + is, x + iy) ∈ C× C
n; (t, x) ∈ K, cK |y| < ±s < d/2},

where cK are positive constants depending on K. Therefore their boundary

values make sense and define a section g := f̃(t + i0, x) − f̃(t − i0, x) ∈
��(Ω × V ). The section g does not depend on the choice of a defining

function, and the correspondence f �→ g defines the map (5.2) and the sheaf

morphism (5.3) in view of Proposition 2.3.

Assume that ı(f) = 0 in Ω′ × V with Ω′ � Ω. Then a defining function

f̃ of f on Ω′ extends holomorphically to a neighborhood of Ω′×V . Here we

used the fact that the convex hull of the union of the two cones {(s, y) ∈
R×R

n; cK |y| < ±s} ⊂ R×R
n is the whole space R×R

n. Therefore, f = 0

holds on Ω′, from which follows the injectivity of (5.3).
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Let us prove the surjectivity of the maps between stalks. Assume that

we are given a germ fṫ of p∗(��|R×V ) at a point ṫ ∈ Ω represented by

a section f(t, x) ∈ ��(Ω × V ). We fix open intervals Ij (j = 0, 1, 2)

with ṫ ∈ I0 � I1 � I2 � Ω. Then, from the flabbiness of the sheaf of

microfunctions and the exact sequence

0→ �(Ω× V )→ �(Ω× V )→ 	((Ω× V )× Ṙ
1+n)→ 0,

where Ṙ
1+n denotes R

1+n \ {0}, we can find a hyperfunction g ∈ �(Ω× V )

such that

(f − g)|I1×V ∈ �(I1 × V )(5.4)

and that

WFA(g) ⊂WFA(f) ∩ ((I1 × V )× Ṙ1+n),(5.5)

where the closure is taken in (Ω × V ) × Ṙ
1+n, and WFA(f) denotes the

analytic wave front set of f . The estimate (5.5) immediately implies that

g|(Ω\I1)×V ∈ �((Ω \ I1)× V ).(5.6)

Since the right hand side of (5.5) does not meet

{(t, x; 0, ξ); (t, x) ∈ Ω× V, ξ �= 0},

we have g ∈ ��(Ω× V ). Now we denote by χj the characteristic functions

of Ij , (j = 0, 2). From (5.4) and (5.6), the multiplications in the right hand

side of

h := (f − g)χ0 + gχ2

are well-defined, and h satisfies

h ∈ ΓI2×V (Ω× V,��), h|I0×V = f |I0×V .

That is, fṫ has another representative h ∈ ��(Ω×V ) supported in I2×V .

Therefore, we may assume, from the beginning, that f(t, x) ∈ ΓK×V (R×
V,��) with some compact interval K ⊂ R, and it suffices to show that there

exists a function f̃(w, x) ∈ ��((U \ R) × V ) " �(U \ R; �(V )) with some

complex neighborhood U of R, such that f = f̃(t + i0, x)− f̃(t− i0, x).
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Consider the function

f̃(w, x) := − 1

2πi

∫
R

f(t, x)

w − t
dt ∈ ��((C \K)× V ).(5.7)

Using again a local version of Bochner’s tube theorem, each f̃ |± Imw>0 ex-

tends holomorphically to a suitable wedge domain and defines

g(t, x) := f̃(t + i0, x)− f̃(t− i0, x) ∈ ��(R× V ).(5.8)

In order to establish the equality f = g in ��(R × V ), it suffices to show

f |x=ẋ = g|x=ẋ for each ẋ. The equality g|x=ẋ = f̃(t + i0, ẋ) − f̃(t − i0, ẋ)

follows from (5.8). On the other hand, applying the restriction (·)|x=ẋ to

(5.7), it follows that f̃(w, ẋ) is the standard defining function of f |x=ẋ ∈
ΓK(R,�), since (·)|x=ẋ commutes with

∫
(·)dt for hyperfunctions supported

in {t ∈ K}. Therefore the equality f |x=ẋ = g|x=ẋ holds. The fact that

f |x=ẋ = g|x=ẋ for any ẋ ∈ V implies f = g was originally proved by Oshima

and Kataoka, and written as Theorem 4.4.7’ in Kaneko [7]. See also Liess-

Okada-Tose [12] for related results.

(ii) Since the statement is local in the t variable, we may assume,

from the beginning, that f ∈ �(Ω; �(V )) has a global defining function

f̃ ∈ �(Ω + iḂd; �(V )) with some d > 0. If ı(f) ∈ �(Ω × V ), then each

f̃ |± Imw>0 extends holomorphically to a neighborhood of Ω × V . We de-

note each extension by g±(w, z). For any open Ω′ � Ω and for any open

V ′ � V , we can take a constant d′ > 0 such that g±(w, z) are holomorphic

in Ω′
d′ × V ′

d′ , where Ω′
d′ and V ′

d′ are the complex d′-neighborhoods of Ω′ and

V ′ respectively. Therefore, we can show that the convergence in

∂jt g±(t, z) = lim
s↓0

∂jt f̃(t± is, z) for (t, z) ∈ Ω′ × V ′
d′ , j ∈ N,

is uniform in the (t, z) variables, which implies g± ∈ C∞(Ω; �(V )). Since f

coincides with the embedded image of g+ − g−, the conclusion follows. �

We consider, as an example, the following class of differential operators.

Proposition 5.2. We consider a partial differential operator

P (t, x, ∂t, ∂x) =

finite∑
(j,α)∈Nn+1

aj,α(t, x)∂jt ∂
α
x
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where the coefficients aj,α(t, x) extend holomorphically to aj,α(w, z) ∈ �((R+

iBd)×W ) with some d > 0 and some complex neighborhood W of V . Assume

that aj,α is ω-periodic in the w variable. Then P induces an ω-periodic

operator of type {0} on D
1 + iBd for �(V )�L∞.

Proof. We denote by F [m] the space of differential operators in the

z variable with �(W )-coefficients of order at most m, endowed with a se-

quentially complete separated locally convex topology by

F [m] =
⊕
|α|≤m

�(W )∂αz .

Then we can easily see that F [m] can be continuously embedded to

Lb(�(W )). We write

P =
∑
j

Pj(w, z, ∂z)∂
j
w, Pj(w, z, ∂z) :=

∑
α

aj,α(w, z)∂αz

and take m := maxj ord(Pj). Then the correspondences w �→ Pj(w, z, ∂w)

become ω-periodic sections in �(R + iBd;F [m]), and P becomes an ω-

periodic section in �L∞(D1 + iBd;F [m]). Therefore, from Example 3.10, P

induces an ω-periodic operator of type {0} on D
1 + iBd for �(W )�L∞ .

Replacing W by W ′ with V ⊂ W ′ ⊂ W and taking the inductive limit

in W ′, the conclusion follows. �

Corollary 5.3. Let V ⊂ R
n be an open set, P an operator as in

Proposition 5.2, f ∈ ��(R× V ) a hyperfunction with real analytic param-

eter which is ω-periodic in the t variable. Then the equation

Pu = f

admits a ��(R × V )-solution ω-periodic in the t variable if and only if it

admits an �(V )-valued bounded hyperfunction solution in a neighborhood of

+∞.

Proof. Since we have �(R; �(V ))
∼→ ��(R × V ) from Proposition

5.1, the existence of a ��(R × V )-solution ω-periodic in the t variable is

equivalent to the existence of an ω-periodic �(R; �(V ))-solution. Therefore

the conclusion follows from Theorem 4.3. �
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We also give a result for classical solutions.

Corollary 5.4. We pose the same assumptions as in the previous

corollary. Assume moreover that P is of order m and that the real char-

acteristic variety of P is included in {(t, x; 0, ξ); t ∈ R, x ∈ V, ξ ∈ R
n}. If

the equation Pu = f admits a bounded solution in Cm(]a,+∞[; �(V )) with

some a ∈ R, then there exists a solution in Cm(R × V ) real analytic in x

and ω-periodic in the t variable.

Note that the assumption about the real characteristic variety implies

that ��-solutions to the homogeneous equation necessarily belong to �.

As a topological vector space E, we can take a direct sum of �(V ).

Then, as an example corresponding to Corollary 5.4, we give

Example 5.5. Let Q = (Qij) be a square matrix of differential oper-

ators Qij(x, ∂x) in the x variable with �(V )-coefficients. Assume that Q

is essentially of order less than 1, that is, there exists a positive integer m

such that ord(Qm) < m. Then Corollary 5.4 is applicable to the operator

P = ∂t −Q.

In fact, since Q commutes with ∂t, the characteristic variety of ∂t − Q

is included in that of ∂mt −Qm, which is equal to {(t, x; τ, ξ); τ = 0}.

5.2. ��-solutions to partial differential equations

We denote by �� the sheaf of hyperfunctions with holomorphic param-

eter on R × C
n, and by �� the sheaf �|R×Cn . Let V ⊂ C

n be an open

domain, and we study the relation between �(Ω; �(V )) and ��(Ω×V ). In

this setting, there exists a standard isomorphism �(U ; �(V )) → �(U × V )

for an open set U ⊂ C.

Proposition 5.6. (i) The family of maps �(U ; �(V ))→ �(U ×V ) for

U ⊂ C induces the standard embeddings

ı : �(Ω; �(V )) ↪→ ��(Ω× V ).

for Ω ⊂ R, and

ı : �(V )� ↪→ p∗(��|R×V )
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between sheaves on R, where p : R× V → R denotes the projection. More-

over, if V is Stein, then these embeddings become isomorphisms.

(ii) If f ∈ �(Ω; �(V )) satisfies ı(f) ∈ ��(Ω × V ), then f is actually a

C∞-class map from Ω to �(V ), that is, f ∈ C∞(Ω; �(V )).

Proof. (i) The proof goes in a similar and simpler way as in that of

Proposition 5.1(i). Note that since �(V ) is a Fréchet space, the equality

�(Ω; �(V )) =
�(U \ Ω; �(V ))

�(U ; �(V ))
=

�((U \ Ω)× V )

�(U × V )

holds. (See Ion-Kawai [6, §3].) Also note that if V is Stein, p∗(��|R×V ) is

flabby. (See Kaneko [7, Theorem 7.4.4].)

(ii) Also a similar argument as in Proposition 5.1(ii) proves this case. �

In this case, we can apply our main theorem to a class of partial differ-

ential operators with coefficients ω-periodic in the t variable. The proof is

already given in the proof of Proposition 5.2.

Proposition 5.7. We consider a partial differential operator

P (t, z, ∂t, ∂z) =

finite∑
(j,α)∈Nn+1

aj,α(t, z)∂jt ∂
α
z ,

where the coefficients aj,α(t, z) extend holomorphically to aj,α(w, z) ∈ �((R+

iBd)×V ) with some d > 0. Assume that aj,α is ω-periodic in the w variable.

Then the usual action of P on the sheaf �� induces an ω-periodic operator

of type {0} on D
1 + iBd for �(V )�L∞.

Now we give a result corresponding to Corollary 5.3 in the �� case.

Corollary 5.8. Let V ⊂ C
n be a Stein domain, P a partial differ-

ential operator as in Proposition 5.7, and f ∈ ��(R × V ) a hyperfunction

with holomorphic parameter which is ω-periodic in the t variable. Then, the

equation

Pu = f
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admits a ��(R × V )-solution ω-periodic in the t variable if and only if it

admits an �(V )-valued bounded hyperfunction solution in a neighborhood of

+∞.

If hyperplanes {t = const.} are always non-characteristic for the operator

P , then ��-solutions to the homogeneous equation necessarily belong to

��. Therefore we can give a result for classical solutions.

Corollary 5.9. We pose the same assumptions as in the previous

corollary. Assume moreover that the operator P is of order m and that

am,0(t, z) �= 0 for (t, z) ∈ R× V .

If the equation Pu = f admits a solution in Cm(]a,+∞[ × V ) with some

a ∈ R, holomorphic in the z variable and bounded on ]a,+∞[×K for every

K � V , then there exists a solution in Cm(R × V ) holomorphic in the z

variable and ω-periodic in the t variable.
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