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Proper Actions of SL(2,R) on SL(n,R) –

Homogeneous Spaces

By Katsuki Teduka

Abstract. This paper gives a necessary and sufficient condition
for the homogeneous spaces of SL(n,R) to admit proper actions of
SL(2,R), or equivalently, to admit an infinite discontinuous group
generated by a unipotent element. The method of our proof is based
on Kobayashi’s criterion for proper actions on homogeneous spaces of
reductive type.

1. Introduction and Statement of Main Results

Let G be a reductive linear Lie group, andH a closed reductive subgroup

of G. Then, there exists a pseudo-Riemanian metric on G/H induced from

a G-invariant bilinear form on the Lie algebra g of G (e.g. the Killing form)

such that G acts on G/H as isometries. Semisimple symmetric spaces are

a classic example.

Let Γ be a discrete subgroup of G. Then Γ is regarded as a discrete

group consisting of isometries of the pseudo–Riemannian manifold G/H.

We are interested in the Γ-action on G/H when H is non-compact. Then,

the action of a discrete subgroup Γ on G/H is not automatically prop-

erly discontinuous. In fact, it may happen that there does not exist an

infinite discrete subgroup Γ of G which acts properly discontinuously on

G/H. This phenomenon was first discovered by E.Calabi and L.Markus

[2] for (G,H) = (SO(n, 1), SO(n − 1, 1)), and is called the Calabi–Markus

phenomenon. T.Kobayashi [4] proved that the Calabi–Markus phenomenon

occurs if and only if rankRG = rankRH. The more difficult part is the

‘only if’ part, because the proof involves a deeper understanding of proper

2000 Mathematics Subject Classification. Primary 22F30; Secondary 22E40, 53C30,
53C35, 57S30.

Key words: proper action, homogeneous space, reductive group, properly discontin-
uous action, Fuchs group.

1



2 Katsuki Teduka

actions and the construction of an infinite discrete subgroup Γ acting prop-

erly discontinuously on G/H if rankRG > rankRH. In [4], this subgroup Γ

is taken to be a free abelian group generated by a semisimple element of G.

In this paper, we consider the following question:

Question 1.1. Does there exist a free abelian subgroup Γ generated

by a unipotent element γ of G such that Γ acts properly discontinuously on

G/H?

It is proved in [14] that Question 1.1 is equivalent to the following:

Question 1.2. Does there exist a subgroup L of G having the follow-

ing two properties?

(1) L acts properly on G/H.

(2) The Lie algebra of L is isomorphic to sl(2,R).

We also ask:

Question 1.3. Does there exist a discrete subgroup Γ of G having the

following two properties?

(1) Γ acts properly discontinuously on G/H.

(2) Γ is isomorphic to a Fucks group.

Since a Fucks group is realized as a discrete subgroup of SL(2,R), we

have the following implications:

Question 1.1 ⇔ Question 1.2 ⇒ Question 1.3

Suppose that Question 1.1 has an affirmative answer for the homoge-

neous space G/H. Then, the above equivalence implies that there exists

also a free abelian subgroup generated by a semisimple element which acts

properly discontinuously on G/H. By the criterion of the Calabi–Markus

phenomenon, we have rankRG > rankRH in this case.

The aim of the paper is to examine to which extent the converse state-

ment holds, namely, to which extent Question 1.1 has an affirmative answer
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for the homogeneous space G/H under the assumption that rankRG >

rankRH. We shall focus on the test case G = SL(n,R).

To be more explicit, we shall deal with the following homogeneous

spaces:

(1) SL(n,R)/SL(k,R) (1 ≤ k ≤ n− 1),

(2) SL(n,R)/SO(p, q) (1 ≤ p+ q ≤ n),

(3) SL(n,R)/Sp(m,R) (2m ≤ n),

(4) SL(n,R)/SL(m,C) (2m ≤ n),

(5) SL(n,R)/ρ(SL(2,R)) where ρ is an n-dimensional irreducible repre-

sentation.

In (1)–(4), we shall consider the action of SL(2,R). On the other hand, in

(5) we shall consider the action of more general subgroups of SL(n,R).

The case (1) is a non-symmetric space for which the existence problem

of compact Clifford–Klein form was discussed in [5, 6, 10, 11, 15] by various

approaches, see also [8, 9] for the survey of different methods. The cases

(2), (3), (4) include essentially all the semisimple symmetric spaces of G =

SL(n,R) except for rankRG = rankRH such as SL(n,R)/S(GL(p,R) ×
GL(n−p,R)), where the Calabi–Markus phenomenon occurs. On the other

hand, Margulis [12] proved that there does not exist a cocompact lattice for

SL(n,R)/ρ(SL(2,R)) if n > 4 by using the restriction of unitary represen-

tations.

We note that rankRG > rankRH except for (p, q, n) = (1, 1, 2) in (2),

(m,n) = (1, 2) in (3), and n = 2 in (5).

In this paper, applying the criterion of proper actions [4], we will prove

the following:

Theorem 1.4. Let (G,H) be (SL(n,R), SL(k,R)) (1 ≤ k ≤ n − 1).

Question 1.1 (equivalently, Question 1.2) has an affirmative answer if and

only if either n is even or n is odd and k + 1 < n.

Remark 1.5. It is proved in [5, 6] that SL(n,R)/SL(k,R) does not

admit a compact Clifford–Klein form if n > 3
2k (k even), or n > 3

2k + 3
2

(k odd) (see [7,Example 5.19]), and in [1] if n = k+1 and n odd. The latter
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condition is precisely when there is no proper action of SL(2,R) by Theorem

1.4. Different approaches such as using the theory of ergodic actions also

give similar results to the former condition, see [10, 11, 15]. See also the

survey [8, §5.14] or [9] for more details.

Theorem 1.6. Let (G,H) be (SL(n,R), SO(p, q)) for 1 ≤ p + q ≤ n.
Question 1.1 (equivalently, Question 1.2) has an affirmative answer if and

only if n− 2 min(p, q) ≥ 2.

Remark 1.7. It is proved in [7, Example 5.18] that SL(n,R)/SO(p, q)

does not admit a compact Clifford–Klein form if p + q < n or p = q. In

particular, SL(n,R)/SO(p, q) (p+ q < n− 1) does not admit a cocompact

discontinuous group, but admits a discontinuous group isomorphic to Fuchs

group.

Theorem 1.8. Let (G,H) be (SL(n,R), Sp(m,R)) (2m ≤ n). Ques-

tion 1.1 (equivalently, Question 1.2) has an affirmative answer if and only

if n− 2m ≥ 2.

Remark 1.9. It is proved in [7, Example 5.18] that SL(n,R)/Sp(m,R)

does not admit a compact Clifford–Klein form if 2m ≤ n − 2. By Theo-

rem 1.8, this is precisely the case where there exists a proper action of

SL(2,R) on SL(n,R)/Sp(m,R). Therefore, the pseudo–Riemanian mani-

folds SL(n,R)/Sp(m,R) (2m ≤ n − 2) admits a discontinuous group iso-

morphic to Fuchs groups, but does not admit a cocompact discontinuous

group.

Theorem 1.10. Let (G,H) be (SL(n,R), SL(m,C)) (2m ≤ n). Ques-

tion 1.1 (equivalently, Question 1.2) has an affirmative answer for all m.

Finally, we switch the role of L and H:

Theorem 1.11. Let ρ : SL(2,R) → SL(n,R) be an irreducible real

representation of SL(2,R), and let L be one of SL(k,R), SO(p, q),

Sp(m,R), SL(m,C) which are standard subgroups of G.

Then, we have the following list of L whether or not L acts properly on

G/ρ(SL(2,R)).
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L proper not proper

SL(k,R) (1 ≤ k ≤ n− 1) n : even

n : odd, k + 1 < n n : odd, k + 1 = n

SO(p, q) (p+ q ≤ n) n− 2 min(p, q) ≥ 2 n− 2 min(p, q) = 0 or 1

Sp(m,R) (1 ≤ 2m ≤ n) n− 2m ≥ 2 n− 2m = 0 or 1

SL(m,C) (1 ≤ 2m ≤ n) all cases no case

2. Review of the Criterion for Proper Actions

Let G be a real reductive linear Lie group. Then, there exists a Cartan

involution θ of G. Then, K = {g ∈ G : θg = g} is a maximal compact sub-

group of G. We write g = k+p for the +1 and −1 eigenspace decomposition

of the differential of θ.

Let a be any maximal abelian subspace in p. All such subspaces are

mutually conjugate by an element of K. The dimension of a is called the

real rank of G, denoted by rankRG. A subspace in g conjugate to a in

G is called a maximally split abelian subspace. Let M ′ (resp. M) be the

normalizer (resp. centralizer) of a in K. Then, the quotient group M ′/M
is a finite group, to be denoted by W , which is called the Weyl group for

the restricted root system of g with respect to a.

Let H be a closed subgroup of G with at most finitely many connected

components.

Definition 2.1. We say that H is reductive in G if there exists a

Cartan involution θ′ of G such that θ′(H) = H.

Then, θ′|H is a Cartan involution ofH, andK ′∩H is a maximal compact

subgroup of H, whereK ′ := {g ∈ G : θ′g = g}. Any two Cartan involutions

θ and θ′ are conjugate to each other, namely, there exists an element g ∈ G
such that

θ = Ad(g) ◦ θ′ ◦ Ad(g−1).

This means that gHg−1 is θ-stable, i.e. θ(gHg−1) = gHg−1.

We note that the Lie algebra h is a reductive Lie algebra, namely, the

direct sum of semisimple Lie algebras and abelian Lie algebras. Let a(H)

be a maximally split abelian subspace for H. Then, a(H) is not necessarily

contained in a, however, we can find g ∈ G such that Ad(g)a(H) ⊂ a. Such
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a subspace Ad(g)a(H) is uniquely determined by H up to the conjugation

by the Weyl group W . From now, we set

aH := Ad(g)a(H).(1)

The criterion for proper actions is discovered in [4, Theorem 4.1] as follows.

Fact 2.2. Let L, H be subgroups which are reductive in a real reductive

linear group G. Let aL, aH ⊂ a be as in (1). Then the following three

conditions on L and H are equivalent:

(i) L acts on G/H properly.

(ii) H acts on G/L properly.

(iii) For any w ∈W, waL ∩ aH = {0}.

3. Classification of a(ρ(SL(2,R))) in SL(n,R)

Let G = SL(n,R). We will take a maximally split abelian subspace a to

be the diagonal subspace in the matrix form, and identify a with the vector

space

a :=
{
(x1, . . . , xn) ∈ R

n :
∑
xj = 0

}
.

The Weyl group W is isomorphic to the symmetric group Sn which acts on

a as permutations of coodinates.

In this section, we shall determine all possible aL for a subgroup L of G

such that L is locally isomorphic to SL(2,R). We note that the condition

on L is equivalent to the fact that the Lie algebra l of L is isomorphic to

sl(2,R).

For a positive integer m, we set

(m) := (m− 1,m− 3, . . . ,−(m− 1)) ∈ Z
m.(2)

We shall also use the following notation such as

((a), (b)) = (a− 1, a− 3, . . . ,−(a− 1), b− 1, b− 3, . . . ,−(b− 1)) ∈ Z
a+b.

For subsets a1, a2 in a, we write

a1 ∼ a2 mod Sn
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if there exist w ∈ Sn(=W ) such that a1 = wa2.

Lemma 3.1. Suppose L is a subgroup of SL(n,R), which is locally iso-

morphic to SL(2,R). Then, there exists a partition n = n1 + · · · + nl such

that at least one of nis is greater than one and that

aL ∼ R((n1), (n2), . . . , (nl)) mod Sn.

Conversely, for any partition n = n1 + · · ·+ nl such that at least one of nis

is greater than one, we can find a subgroup L which is locally isomorphic to

SL(2,R) such that aL ∼ R((n1), . . . , (nl)) mod Sn.

Proof. Suppose the Lie algebra l of L is isomorphic to sl(2,R). This

means that we have an injective Lie algebra homomorphism

dρ : sl(2,R) → sl(n,R).(3)

Let H :=

(
1 0

0 −1

)
. Then, a(L) := Rdρ(H) is a maximally split abelian

subspace of l.

We complexify the R–Lie algebra homomorphism (3), and use the same

letter dρ : sl(2,C) → sl(n,C). Then this is a complex representation, and

therefore is decomposed into a direct sum of irreducible representations

because any finite dimensional representation of sl(2,C) is completely re-

ducible. By taking a suitable basis, we will have its irreducible decomposi-

tion as C
n = C

n1 ⊕ · · · ⊕ C
nl where n = n1 + · · · + nl is a partition.

By changing a basis in each C
nj (1 ≤ j ≤ l) if necessary, we may assume

that dρ(H) is of the following diagonal matrix:

A :=



D1 0 . . . 0

0 D2 . . . 0
...

...
. . .

...

0 0 . . . Dk


 where

Di :=



ni − 1 0 . . . 0

0 ni − 3 . . . 0
...

...
. . .

...

0 0 . . . 1 − ni


 .
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Thus, we have found g ∈ GL(n,C) such that

Ad(g)−1
a(L) = ((n1), . . . , (nk)).(4)

Next, we claim that there exists g ∈ SL(n,R) satisfying (4). The first

step is to show that we can take g ∈ GL(n,R). To see this, suppose

g = P + iQ ∈ GL(n,C) satisfies dρ(H)(P + iQ) = (P + iQ)A. Since

dρ(H) ∈ sl(n,R), we have dρ(H)P = PA and dρ(H)Q = QA. On the

other hand, det(P + tQ) is not identically zero as a polynomial of t be-

cause det(P + iQ) �= 0. Therefore, there exists a real number t0 such

that det(P + t0Q) �= 0. We set g0 := P + t0Q ∈ GL(n,R). Then,

dρ(H)g0 = g0A. Hence, we have shown Ad(g0)
−1dρ(H) = A. We take

a diagonal matrix g1 := diag(det g−1
0 , 1, . . . , 1), and set g := g0g1. Then

det g = det g0 det g1 = 1, and Ad(g)−1dρ(H) = Ad(g1)
−1 Ad(g0)

−1dρ(H) =

Ad(g1)
−1A = A. Therefore g ∈ SL(n,R) satisfies (4). Thus, we have proved

the first statement of Lemma 3.1.

The second statement of Lemma 3.1 follows by taking the direct sum of

irreducible representations of SL(n,R) of dimensions n1, n2, . . . , nl. �

4. Proof of Main Theorems

4.1. Proof for SL(n,R)/SL(k,R) (k < n)

In this subsection, we complete the proof of of Theorem 1.4. More than

this, we shall give its refinement in Lemma 4.2, which provides a criterion

for the proper action for each homomorphism ρ from SL(2,R) to SL(n,R).

Lemma 4.1. For H = SL(k,R) in G = SL(n,R) (1 ≤ k ≤ n− 1), we

have

aH ∼ {(y1, . . . , yk, 0, . . . , 0︸ ︷︷ ︸
n−k

) :
∑
yj = 0, y1, . . . , yk ∈ R} mod Sn.(5)

Proof. Obvious from the definition (1) of aH . �

Lemma 4.2. Let ρ : SL(2,R) → SL(n,R) be a representation, and we

set L := ρ(SL(2,R)). Since ρ is completely irreducible, we have a partition

n = n1 + · · · + nl, according to the dimensions nj (1 ≤ j ≤ l) of irreducible

summands of ρ.
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Then, waL ∩ aH = {0} (∀w ∈W ) if and only if

,{1 ≤ i ≤ k : ni is odd} < n− k.(6)

Proof. In light of the definition (2), the number of 0s in ((n1),

(n2), . . . , (nl)) equals ,{1 ≤ i ≤ k : ni is odd}. If (6) holds, then clearly

waL ∩ aH = {0} for any w ∈ W = Sn by Lemma 4.1. Conversely, sup-

pose (6) does not hold. Then, if we sort ((n1), (n2), . . . , (nl)) and (5) in

descending order, they have a non-trivial intersection. Therefore, Lemma is

proved. �

Proof of Theorem 1.4. If n is even, we can take ρ to be irreducible,

namely, n1 = n. Then, (6) holds because the left-hand side of (6) is zero.

Likewise if n is odd and n−k > 1, then we can take again ρ to be irreducible

so that n1 = n. Then, (6) holds. On the other hand, if n is odd and n−k = 1,

there does not exist a partition n = n1 + · · · + nl satisfying (6). In fact, if

n− k = 1, the left-hand side of (6) must be zero. This holds only if all nis

are even, whence n must be even. This contradicts to the assumption that

n is odd. Therefore, Theorem 1.4 is proved. �

4.2. Proof for SL(n,R)/SO(p, q) (p+ q ≤ n)
This subsection gives a proof of Theorem 1.6.

Lemma 4.3. For H = SO(p, q) in G = SL(n,R) (p+ q ≤ n),

aH ∼ {(y1, . . . , yl, 0, . . . , 0︸ ︷︷ ︸
n−2 min(p,q)

,−yl, . . . ,−y1) : y1, . . . , yl ∈ R} mod Sn,

where l = min(p, q).

Proof. The Lie algebra h = so(p, q) is given in the matrix form as

h = {
(
A B
tB C

)
: A = −tA, B ∈M(p, q; R), C = −tC}.

Without loss of generality, we may and do assume p ≤ q, that is, l = p.

Then,

a(H) :=
l⊕

j=1

R(Ej,p+j + Ep+j,j)
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is a maximally split abelian subspace for h, where Ei,j(1 ≤ i, j ≤ n) is the

matrix unit. Then, a(H) is conjugate to ⊕l
j=1R(Ej,j−En+1−j,n+1−j). Thus,

Lemma 4.3 is proved. �

Lemma 4.4. Let L = ρ(SL(2,R)) where ρ : SL(2,R) → SL(n,R) is a

representation corresponding to a partition n = n1 + · · · + nl.
Then, waL ∩ aH = {0} for any w ∈W if and only if

,{1 ≤ i ≤ l : ni is odd} < n− 2 min(p, q).(7)

Proof. The proof parallels to that of Lemma 4.2. By Lemma 4.3, the

condition (7) implies waL ∩ aH = {0} for any w ∈ Sn. Conversely, suppose

(7) does not hold. Then if we sort ((n1), (n2), . . . , (nl)) in descending order,

it has a non-trivial intersection with aH . Therefore, Lemma is proved. �

Proof of Theorem 1.6. If n − 2 min(p, q) = 0, then there does not

exist a partition satisfying (7). If n− 2 min(p, q) = 1, then (7) holds if and

only if all nis are even. In particular, nmust be even. Since n−2 min(p, q) =

1, n never becomes even. Thus, (7) does not hold. If n−2 min(p, q) > 1 and

n is even, we can take a partition such that all nis are even. (e.g.n1 = n)

Thus, (7) holds for such a partition. If n − min(p, q) > 1 and n is odd, we

can take a partition such that the left hand side of (7) is one. (e.g.n1 = n)

Then, (7) holds for such a partition. Therefore, this theorem is proved. �

4.3. Proof for SL(n,R)/Sp(m,R) (2m ≤ n)
This subsection gives a proof of Theorem 1.8.

Lemma 4.5. For H = Sp(m,R) in G = SL(n,R) (2m ≤ n),

aH ∼ {(y1, . . . , ym,−y1, . . . ,−ym, 0, . . . , 0︸ ︷︷ ︸
n−2m

) : y1, . . . , ym ∈ R} mod Sn.

Proof. The Lie algebra h = sp(m,R) is given in the matrix form as

h = {
(
A B

C −tA

)
: A,B,C ∈M(m,R), tB = B, tC = C}.
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In this case, a ∩ h is a maximally split abelian subspace of h. Taking

aH := a ∩ h, we have seen the lemma. �

Proof of Theorem 1.8. This proof is the same as Theorem 1.6 by

comparing Lemma 4.3 (p = q = m case) with Lemma 4.5. �

4.4. Proof for SL(n,R)/SL(m,C) (2m ≤ n)
This subsection gives a proof of Theorem 1.10.

Lemma 4.6. For H = SL(m,C) in G = SL(n,R) (2m ≤ n),

aH ∼ {(y1, . . . , ym, y1, . . . , ym, 0, . . . , 0︸ ︷︷ ︸
n−2m

) :

∑
yj = 0, y1, . . . , ym ∈ R} mod Sn.

Proof. The Lie algebra h = sl(m,C) is given in the matrix form as

h = {
(
A −B
B A

)
: A,B ∈M(m,R),TraceA = 0, TraceB = 0}.

In this case, a ∩ h is a maximally split abelian subspace of h. Taking

aH := a ∩ h, we have seen the lemma. �

Proof of Theorem 1.10. We consider L = ρ(SL(2,R)) where

ρ : SL(2,R) → SL(n,R) is an irreducible representation. This corresponds

to the partition n = n1. By Lemma 3.1, aL ∼ R(n − 1, n − 3, . . . ,−(n −
1)) mod Sn. In particular, no two coordinates are equal to each other. In

view of Lemma 4.6, we have clearly

waL ∩ aH = {0} for any w ∈W.

Thus, Theorem 1.10 is proved. �

As in the proof of Theorem 1.4, 1.6, 1.8, and 1.10, if Question 1.2 is

affirmative for these homogeneous spaces G/H, then SL(2,R) acts properly

on G/H through an irreducible n–dimensional representation of SL(2,R).

Therefore, the proof of Theorem 1.11 follows from the equivalence of (i) and

(ii) in Fact 2.2.
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140 Birkhäuser, (1996).

[4] Kobayashi, T., Proper action on a homogeneous space of reductive type,
Math. Ann. 285 (1989), 249–263.

[5] Kobayashi, T., Discontinuous groups acting on homogeneous spaces of reduc-
tive type, In: Proceedings of ICM–90 satellite conference on Representation
Theory of Lie Groups and Lie Algebras, Fuji–Kawaguchiko, 1990 (eds. T.
Kawazoe, T. Oshima and S. Sano ), World Scientific, 1992, pp. 59–75.

[6] Kobayashi, T., A necessary condition for the existence of compact Clifford–
Klein forms of homogeneous spaces of reductive type, Duke Math. J. 67
(1992), 653–664.

[7] Kobayashi, T., Discontinuous groups and Clifford–Klein forms of pseudo-
Riemannian homogeneous manifolds. In: Lecture Notes of the European
School, August 1994, (eds. H. Schlichtkrull and B. Ørsted), Perspectives in
Math 17, Academic Press (1996), 99–165.

[8] Kobayashi, T., Discontinuous groups for non-Riemannian homogeneous
spaces, Mathematics Unlimited – 2001 and Beyond, (eds. B. Engquist and
W. Schmid), Springer (2001), 723–747.

[9] Kobayashi, T., Introduction to actions of discrete groups on pseudo-
Riemannian homogeneous manifolds, Acta Appl. Math. 73 (2002), 115–131.

[10] Labourie, F., Mozes, S. and R. J. Zimmer, On manifolds locally modelled
on non-Riemannian homogeneous spaces, Geom. Funct. Anal. 5 (1995), 955–
965.

[11] Labourie, F. and R. J. Zimmer, On the non-existence of cocompact lattices
for SL(n)/SL(m), Math. Res. Lett. 2 (1995), 75–77.

[12] Margulis, G. A., Existence of compact quotients of homogeneous spaces,
measurably proper actions, and decay of matrix coefficients, Bul. Soc. Math.
France. 125 (1997), 447–456.

[13] Margulis, G. A., Problems and conjectures in rigidity theory. In: Mathe-
matics: Frontiers and Perspectives, Amer. Math. Soc. (2000), 161–174.

[14] Teduka, K., Proper action of SL(2,R) on complex semisimple symmetric
spaces, in preparation.

[15] Zimmer, R. J., Discrete groups and non-Riemannian homogeneous spaces,
J. Amer. Math. Soc. 7 (1994), 159–168.

(Received November 19, 2007)



Proper Actions of SL(2,R) on SL(n,R) – Homogeneous Spaces 13

Graduate School of Mathematical Sciences
The University of Tokyo
Meguro-ku, Komaba 3-8-1
Tokyo 153-8914, Japan


