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On Logarithmic Hodge- Witt Cohomology
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Abstract. In this paper, we prove the purity of the logarithmic
Hodge-Witt cohomology for an excellent regular pair of characteristic
p > 0 and the Gersten-type conjecture for the p-primary part of the
Kato complex (the arithmetic Bloch-Ogus complex) of the spectrum
of an excellent regular local ring of characteristic p > 0. They are
generalizations of results of Gros and Suwa to regular schemes which
are not necessarily smooth over a perfect field.
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1. Introduction

Let p be a prime. In this paper, we prove the following two theorems con-
cerning the logarithmic Hodge-Witt cohomology of regular schemes: First,
we prove the purity for the logarithmic Hodge-Witt cohomology of an excel-
lent regular pair Z — X of characteristic p. Second, we prove the Gersten-
type conjecture for the p-primary part of the Kato complex (the arithmetic
Bloch-Ogus complex in [Kat3]) of the spectrum of an excellent regular lo-
cal ring of characteristic p. The first theorem is proved by Gros and Suwa
([G], [Su]) in the case of smooth pairs over a perfect field and the second
theorem is also essentially proved by them ([G-Su]) when the spectrum in
consideration is the localization of a smooth scheme over a perfect field of
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characteristic p > 0. (See also a recent work of Jannsen-Saito-Sato [J-Sai-
Sat].) So, our result is a generalization of their results and the proof is done
by reducing to them.

Let us explain our theorems briefly. Fix a non-negative integer N and
let X be an equidimensional excellent regular scheme of characteristic p
such that [k(x) : k(2)?] = p’¥ holds for any generic point = of X. Then we
can define the logarithmic Hodge-Witt sheaf WmQJ)‘(JOg (see Section 2). It is
expected that there exists the following canonical isomorphism for a regular
closed immersion Z < X of pure codimension r

H(Z, WinZ_,lZ)g) — H?_T(X? WmQ%X,lOg)

in the case ¢ = 0 or ¢ > 0,7 = N. (This does not hold in the case ¢ >
0,7 # N. See [G, p.45, p.48].) In this paper, we prove this expectation
(which is called purity) is true. It is known when Z — X is a smooth pair
over a perfect field (Gros |G, II,Thm 3.5.8, (3.5.19)], Suwa [Su, Cor 2.6]).
Note also that the similar theorem in the case of [-adic etale cohomology is
already known ([SGA 4] in smooth case, [F1] in equicharacteristic case and
[F2] in general case).

Next we explain the Gersten-type conjecture for Kato complex. For
a field k of characteristic p, we have the logarithmic Hodge-Witt sheaf
Wmﬂépeck,log' On the other hand, let KM(k) be the Milnor K-group of
k. Then, by Bloch-Gabber-Kato theorem, the symbol map induces the iso-
morphism

KzM(k)/pm — Ho(k7 WmQ%peck,log)'

Moreover, there is an interpretation of the first cohmology group
H(E, WmQépeck,Iog) in terms of the typical part of K-groups introduced
by Bloch. ([Bl], [Katl]. See also [J-Sai-Sat].) So there is a close relation
between the logarithmic Hodge-Witt cohomologies and K-groups.

Let m € N, s,i € Z and let X be an excellent scheme over I}, satisfying

the following condition:

(x)  When s = i + 1 holds, we have [k(x) : x(z)P] < p* for any closed
point z € X.
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For such X, Kato defined in [Kat3] the complex of the form

s —i i+j
pn Xt T @ H* Z(x’WmQx,log) -
JJEXJ'
i - i ‘
— P B, W) — €D B (w, Win 2l 1) — 0
zeX1 z€Xo

(where the last non-zero term is sitting at degree 0) by using K-theoretic
method. This complex can be regarded as a generalization of the p-primary
part of the Hasse principle for a funtion field to higher dimensional case.
(In fact, Kato defines the complex C’le for any n € N and for any excellent
scheme X satisfying the condition similar to (x).) He gave conjectures on
the cohomology of the complex CfLZX (particularly in the case s = i+1) and
proved them in certain cases. (Fof the precise form of the conjectures and
the known results, see [Kat3], [CT-Sa-So|, [CT], [Sai2], [J-Sai] and a recent
work of Jannsen-Saito.)

Now let us fix non-negative integers n, N with n < N and assume more-
over that X is of pure dimension n satisfying [k(z) : k(z)?] = pV for any
generic point x of X. In this case, we denote the shift by —n of the complex
C’;;’f;q’i_n by C&'(X)®. (By the condition (%), it is defined and non-zero
only if ¢ = 0 or (¢,i) = (1,N).) The complex C%'(X)* is regarded as the
analogue of Brown-Gersten-Quillen complex in algebraic K-theory. So, as
an analogue of Gersten conjecture, one can expect that the following claim
is true: Assume moreover that X is the spectrum of an excellent regular
local ring. Then we have

H(C3i(X)") = {Hq(X’ Win o) 7= 0,

0, r > 0.
In this paper, we prove that this claim is true (when ¢ = 0 or (¢,7) = (1, N)
holds).

Let us explain the method of the proof. The key ingredient for the proof
of the purity is the following two propositions: The first one is a result
of Popescu ([Pol], [Po2], [Po3], [Ogo]) which says that any regular local
ring of characteristic p > 0 can be written as a filtering inductive limit of
finitely generated smooth algebras over [F,. (This is used by Panin [Pa] to
prove the equicharacteristic case of the Gersten conjecture for K-theory.)
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The second one is the proposition which claims that a regular scheme X
such that the absolute Frobenius Ox, — Ox is finite for any point
x € X is, flat relatively perfect locally, isomorphic to an affine space over
[F,. (See Definition 2.14 and Remark 2.16.) Using the first proposition, we
can reduce the proof of purity for ¢ = 0 to the smooth case. With some
more calculation using the second proposition, we can prove the purity for
qg>0,i=N.

The key to the proof of the Gersten-type conjecture for Kato complex
is the Bloch-Ogus complex (denoted by B%'(X)®)

0—s @ HI(X, Wi 10g) — @ HITH (X, Wi Q1) — « -

zeX0 zeX!
+s )

@ H;g (X7 WmQX,log) o

reXSs

which is defined as the complex of E}*!-terms of the coniveau spectral se-
quence ([Bl-Ogu], see also [CT-Ho-Kah])

Bt = @ HE (X, W 10,) = B5 = HY (X, Wi Qi 10,)-
reXs

First we prove that the Bloch-Ogus complex satisfies the Gersten-type con-
jecture: In the case where X is a localization of a smooth scheme over a
perfect field, it is due to Gros-Suwa ([G-Su, Thm 1.4]). In general case, we
prove it by using a technique of Panin in [Pa]. Via the purity theorem which
we already proved, each term of Kato complex cL (X)® is isomorphic to that
of Bloch-Ogus complex B?,’f(X )®. So we expect that the purity isomorphism
induces an isomorphism of complexes C%'(X)* —- BL'(X)® up to sign. (If
it is true, then the Gersten conjecute for Kato complex is true.) This expec-
tation means the coincidence between the K-theoretically defined complex
C%Y(X)* and the sheaf-theoretically defined complex B%'(X)®, and so we
think it is interesting itself. Gros-Suwa ([G-Su, Rem 4.19]) and Suwa ([Su,
Rem 1.3, 2.12]) claimed that this is true for smooth X, but their proofs seem
to be incomplete. Recently, Jansenn-Saito-Sato have given a complete proof
for smooth X, by using the trace map for logarithmic de Rham-Witt coho-
mology developped by Ekedahl ([E]) and Gros ([G]). In this paper, we prove
that this expectation is true for m = 1 and excellent regular X, by using the
trace map for generalized residual complex developped by Hartshorne ([Hal,
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[Ha2]). This result is sufficient to deduce the Gersten-type conjecture for
the Kato complex. If we can develop a satisfactory theory of trace maps for
logarithmic Hodge-Witt cohomology for regular schemes, we will be able to
prove the coincidence (up to explicit sign) of the Bloch-Kato complex and
the Kato complex for arbitrary m and excellent regular X. We hope to do
it in a future paper.

The results in this paper seem to be useful if one would like to study
the arithmetic of the spectrum of excellent regular rings of characteristic
p > 0 or smooth schemes over them. In fact, it seems to the author that
our results were already used, for example, in [Sail]. They are used also in
[Mal].

The content of each section is as follows: In Section 2, we give a review
of the de Rham-Witt complex and the logarithmic Hodge-Witt sheaf. We
extend some basic properties of them to the case of regular schemes. In
Section 3, we give a proof of the purity. In Section 4, we give a proof of
the Gersten-type conjecture for the Bloch-Ogus complex. In Section 5, we
compare the Bloch-Ogus complex and the Kato complex and deduce the
Gersten-type conjecture for the Kato complex.
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Notation. Throughout this paper, p will be a fixed prime, unless oth-
erwise stated. For integers a,b, we denote the set {n € Z|a < n < b}
simply by [a,b]. For a scheme X, we denote the set of points of codi-
mension i (resp. dimension i) by X (resp. X;). For a scheme X over
[F,, we denote the differential module le /F, simply by Q% and we denote



572 Atsushi SHIHO

Ker(d : Q% — Q41) simply by ZQ%. For a complex C := (C*,d*), we de-
note the complex (C*T", (—1)"d**™) by C[n] and the complex (C*T" d®*T")
by C{n}. A diagram of (sheaves of) abelian groups of the form

ALB

rl el
c-—.p

is said to be (—1)™-commutative (n € Z) if we have go f(a) = (—1)"¢'o f'(a)
for any a € A. Sheaves are considered on small etale site unless otherwise
stated. (Note that the exceptions occur in Section 5.)

2. Preliminaries

In this section, we give the definition of the logarithmic Hodge-Witt sheaf
for a regular scheme of characteristic p and prove some basic properties of
the de Rham-Witt complexes and the logarithmic Hodge-Witt sheaves of
regular schemes. The results in this section are known in the case of smooth
schemes over a perfect field. So our task is to extend them to the regular
case by reducing to the smooth case.

First, let us recall two results which are important when we try to reduce
the propositions to the smooth case. The first one is the following theorem
of Popescu ([Pol], [Po3], [Ogo]):

THEOREM 2.1 (Popescu). Any regular local ring R of characteristic p
can be written as a filtering inductive limit lim xRy of finitely generated
smooth algebras over IF,.

The second one is the following theorem of Grothendieck ([SGA 4,
VII,Thm 5.7],[Pa, Thm 6.6]):

THEOREM 2.2. Let X be a Noetherian scheme and let {X;}icr be a
filtering projective system of Noetherian schemes such that each transition
morphism is affine and that X = liLnieIXi holds. Let us denote the canon-
ical projection X — X; by ¢;. Let {F;} be a compatible system of sheaves
on {X;;} (where T = Zar oret), and put F := h_n}lielgoi_l(Fi). Then we
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have the isomorphism

HY (X, F) S lim e/ HY (Xi -, F).

For a scheme X of characteristic p, let W;,,2% be the de Rham-Witt
complex of X. The degree 0 part Wmﬂg( is written by W,,Ox and it is called
the sheaf of rings of Witt vectors of Ox. Let W,, X be the Witt scheme
(that is, the ringed space (| X |, W,,,Ox)). It is known that W, Q% is a quasi-
coherent W,,,Ox-module for any i. For z € Ox, let z := (x,0,---,0) €
Wi Ox be the Teichmiiller representative.

Denote the differential W,,,Q% — W, Q4" by d and let

F:W,Q% — Wp1Q%, V:W,Q% — Win1Q%,
R:W,Q% — Wn1Q%

be Frobenius, Verschiebung and the projection of W,{1%, respectively. The
Frobenius operator induces the endomorphism W,,0x — W,,Ox, which
we denote also by F. For precise definition and the basic properties of
WinOx, WiQ%, F,V, R, see [I].

For m,n € N, the canonical filtration Fil"W,,,Q% of W,,Q% is defined
in the following way:

WnS2%, if n =0,
Fil"Wp,,Q% = < Ker(R™™™ : W Q% — WoQ%), if1<n<m,
0. if n >m.

Then we have the following proposition (cf. [I, 1.3.2]).

PROPOSITION 2.3. Let X be a reqular scheme over F,,. Then we have
the equality

Fil"W,, Q% = V"W, Q% + dV" W, Q'

PrOOF. It is easy to see that the right hand side is contained in the
left hand side. Let us prove the converse. To prove it, we may assume that
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X is strictly local. Let {X;};cs be a projective system of affine schemes
which are smooth over F), satisfying X = lim je s X;. (The existence of such
a system is assured by Theorem 2.1.) Then, by Theorem 2.2, we have

HO (X, Fil"Wiy Q) = lim je s HO (X, Fil'W,, Q)
= HO X, V"W nQ + dV Wiy,

since the assertion is known in smooth case ([I, I.3.2]). Hence we obtain the
assertion. [

We put gr"W,, Q% := Fil"W,, Q% /Fil" ™1 W,,,Q% . Then it is easy to see
the equality gr"W,,Q% = Fil"W,,11Q%. Concerning the structure of it, let
us recall the following result of Illusie ([I, 1.3.9]):

PROPOSITION 2.4. Let X be a smooth scheme over a perfect field and
let n,i € N. Let us regard gr”Wng( = Fil”WnHQS( and Fil"WnHQ&/
AVt as Ox-modules by (a,w) — ¢(a)w, where ¢ is the composite Ox =
Wint10x /VW,1:10x £, Wint10x /pWy+1O0x. Then they are locally free
Ox -module of finite type.

Later in this section, we extend the above proposition to certain regular
schemes. (See Proposition 2.20.)

Next, for a scheme X over F, let C~1: Q% — H*(Q%) be the Cartier
inverse homomorphism, that is, the homomorphism of graded algebras char-
acterized by the following properties:

(1) Caw) = a?C7H(w) (a € Ox,w € Q%).
(2) C~Y(dx) := [#P~'dz] (x € Ox), where [?] denotes the class of ?.

In the case where X is smooth over a perfect field, it is well-known that
C~! is an isomorphism. We can extend it to the regular case:

PROPOSITION 2.5. If X s a regular scheme over F,, the Cartier in-
verse homomorphism C~1 is an isomorphism.

ProoF. We may assume that X is strictly local, and in this case, we
can reduce to the smooth case by using Theorems 2.1, 2.2. The detail is left
to the reader. [J
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For a regular scheme X over IFj,, we define the Cartier homomorphism
C:H*(Q%) — Q% by C:= (C~1)~L. We denote the composite

20 — H'(2%) =
also by C', by abuse of notation.
Next we recall the definition of the logarithmic Hodge-Witt sheaf (the
logarithmic part of the de Rham-Witt sheaf) and prove some exact se-
quences which we need later.

DEFINITION 2.6. Let X be a scheme over F, and let ¢,m € N. Then
we define the logarithmic Hodge-Witt sheaf WmeX,log by

WmQé{,log = Im(s: (0%)%" — W, Q%),
where s is defined by
s(r1® - @) :=dlogzy A--- Adlogz;.

(Here Im is considered in the category of sheaves on X.) We denote
WleX,log simply by QfX,log'

This definition is the naive generalization of that in [I], where the loga-
rithmic Hodge-Witt sheaves are studied in the case of smooth schemes over
a perfect field.

The following lemma is a generalization of [I, 1.3.3] to the regular case:

LEMMA 2.7. Let X be a regular scheme over F,. Then the Frobe-

nius operator F : WmHQg{ — WmeX induces the homomorphism F' :
Wi Qe — Wi /dVT 1O (We will denote this homomorphism also
by F.)

ProoOF. This is clear by Proposition 2.3 and the equations

FV™QYy =pV™ Q= 0, FdV™QL' =dvmloit. O

The following exact sequence is a generalization of [CT-Sa-So, §1,
Lemme 2] to the regular case:
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PROPOSITION 2.8. Let X be a regular scheme over IF,, and let i,m € N.
Then we have the exact sequence

0 — WinQ 10y — WinQ 5 Wy Qi /dV™ 10T — 0.

Proor. We may assume that X is strictly local, and in this case, we
can reduce to the smooth case by using Theorems 2.1, 2.2. In smooth case,
the proposition is proved in [CT-Sa-So, §1, Lemme 2]. [J

Let W.Qg(ylog, We % be the pro-objects {Wan(JOg,R}neN, {W, 0%,
R},eN, respectively. Then we have the following corollary:

COROLLARY 2.9. With the notation above, the following sequence of
pro-sheaves is exact:

0 —— Walipy —— Waly 0 Wy —— 0.

PROOF. The assertion follows from the proposition and the fact that
the natural projection W.Qfx — W.Qg( / dV'_lQZ)gl is an isomorphism as
a homomorphism of pro-sheaves. [

The following exact sequence, which is well-known in the smooth case
([1]), is also useful:

ProprosITION 2.10. Let X be a reqular scheme over F,. Then we have
the following exact sequence:
i c—-1

0 —— QX,log —_— ZQ& QZX — 0.

PrROOF. We may assume that X is strictly local, and in this case, we
can reduce to the smooth case by using Theorems 2.1, 2.2. [
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REMARK 2.11. As for the relation between the exact sequence in
Proposition 2.8 and that in Proposition 2.10, we have the following commu-
tative diagram

0 —— Q

VA T 1 1
Xlog — Qy —— Q/dYy —— 0

H I al

0 —— Uy, —— 20 5 0y —— 0,
where the upper (resp. the lower) horizontal line is the exact sequence in
Proposition 2.8 for m = 1 (resp. Proposition 2.10) and the middle vertical

arrow is the canonical inclusion.
We also need the following exact sequence (cf. [CT-Sa-So, Lemme 3]):

PROPOSITION 2.12. Let X be a regular scheme over I, and let n,m
be posit?ve integers.  Then the multiplication 'by P Wn+mQ§{,log —
Wn+mQ§<,1og induces a homomorphism p™ : WanXJOg — ”"‘ng(,log and
the following sequence is exact:

. p™ ) R" )
7 = 7 7
0 > WHQX,lOg ” n"‘mQX,log —_— WmQX,lOg —_— O

ProoF. All the assertions can be reduced to the smooth case and they
are proved in [CT-Sa-So, Lemme 3] in smooth case. [J

COROLLARY 2.13. Let X be a regular scheme over F,. Then the fol-
lowing sequence of pro-sheaves is exact:

m

0 —— Wl o, —— Waldy, —— Wi Qi —— 0.
Proor. Immediate. O
Let C be the category of regular schemes of characteristic p such that,

for any x € X, the absolute Frobenius Oy , — Ox , of the local ring Ox ,
is finite. We would like to extend Proposition 2.4 to the schemes in the
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category C. To do this, we recall the definition and basic properties of the
relatively perfect morphism of schemes.

DEFINITION 2.14. A morphism f : X — Y of schemes over F), is said
to be relatively perfect if the following diagram is Cartesian:

x =X x

A

yi,y;

where F'x, Fy are the absolute Frobenius morphisms.

The following facts are known: An etale morphism is relatively perfect,
and a relatively perfect morphism is formally etale [EGA IV, (0.21.2.7)]. A
relatively perfect morphism X — Y with Y locally noetherian and regular
is flat (Gabber, [Kat4, Prop 5.2]).

We give typical examples of relatively perfect morphisms which we use
later.

PRrRoPOSITION 2.15.

(1) Let k be a field of characteristic p > 0 with [k : kP] = p' and let
1, ,x; be a p-basis of k. Then, the morphism

Speck[[@it1,- -+, xn]] — SpecFplt1, - 1]
induced by t; — x; (1 < j < n) is flat relatively perfect.

(2) Let X = Spec A be a scheme in the category C with A local. Let I
be an ideal of A and let A be the I-adic completion of A. If we put
Y := Spec A, the natural morphism' Y — X is flat relatively perfect.

PRrROOF. The assertion (1) is easy and the proof is left to the reader.
Let us prove the assertion (2). Let M be the A-module A on which the
structure of the A-module is defined by A x M — M, (a,m) — aP’m.
Since X is in the category C, M is a finite A-module. So we have M =
A ®4 M, where ~ denotes the I-adic completion. Let I® be the ideal
of A generated by the elements zP (z € I). Then, by definition, we have
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M= li_mnA/(I(p))”. Since the system {(I?))"},, is cofinal with the system

{I"}n, M is isomorphic to A. So the homomorphism of rings A®A,FA rer 4
(where i : A — A is the natural homomorphism) is an isomorphism. So we
are done. [

REMARK 2.16. The above proposition shows that a scheme X in the
category C is isomorphic to an affine space over I, ‘flat relatively perfect
locally’. Indeed, for each x € X, the map Spec Ox ,; — X is flat relatively
perfect and the map Spec @X@ — Spec Ox , is flat relatively perfect by
Proposition 2.15 (2). So the map Spec @X’:c — X is flat relatively perfect.
On the other hand, O, has the form k(z)[[x1,- - - , ]| for some n. So we
have a flat relatively perfect morphism of the form Spec @X,:r — Aﬁ for
some m, by Proposition 2.15 (1).

The following property of the relatively perfect morphism is important:

PRrRopPoOSITION 2.17.

(1) Let f: X — Y be a flat relatively perfect morphism of schemes over
Fy. Then the induced morphism Wy, f : Wp, X — W,,)Y is formally
etale and flat for any m and the following diagrams are Cartesian:

WX -2 W, X W, X -2 WX

Wmflfl Wme/ Wmfl Wme/

WY — WY, WnY — WY,

where R* (resp. F*) is the morphism induced by R : Wp,? — Wp,_17?
(resp. F: Wp,? — Wp,7) (7 = Ox, Oy).

(2) Let f: X — Y be a flat relatively perfect morphism of schemes over
Fp, and let g : Z — Y be any morphism. Then the following diagram
is Cartesian:

W (f xid)
e

Win(X xy Z) W,,Z
Wm(idxg)l ngl
W, X Wl Wy
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PrRoOOF. The formal etaleness and flatness of the morphism W, f is
proved in [Kat2, Lemma 2]. One can verify the other assertions by using
the proof of [Kat2, Lemma 1]. The detail is left to the reader. O

As a consequence, one can check that the construction of the de Rham-
Witt complex is compatible with flat relatively perfect morphism:

PROPOSITION 2.18. Let f : X — Y be a flat relatively perfect mor-
phism of schemes over IF,,. Then the natural homomorphism

WmOX ®WmOY WmQ;/ — WmQB(
18 an isomorphism.

PROOF. One can prove the proposition in the same way as Proposition
1.14 in [I]. (Indeed, he only uses the properties in Proposition 2.17 to prove
the assertion of this proposition.) O

PROPOSITION 2.19. Let f: X — Y be a flat relatively perfect mor-
phism over Fp,. Let us regard gr"W,,Q% = Fil"W, 119} and Fil"W, 19/
dV”fo1 as Oz-modules by (a,w) — p(a)w, where ¢ is the composite Op =
Wint102 / VW, 1109 £, Wint1092 /oW, 109 (7 = X, Y). Then there exist
canonical isomorphisms

Ox @0y gr" W, Q% = g W,

Ox ®oy Fian”+1Q§//anQ§f_1 = FﬂanHQg(/dV"Q;l.

ProoOF. First, by Proposition 2.18 and the flatness of W,,, f : W, X —
WY, we have the isomorphism

(2.1) WinOx @w,, 0y e Wiy = gr"W,,Q,

where we regard gr”WmQ?} (7 = X,Y) as W,,,07-module in the canonical
way. By using the Cartesian diagrams in Proposition 2.17 (1), one can see
that the left hand side (resp. the right hand side) of the isomorphism (2.1)
is isomorphic to Ox ®o, gr"W,, Q% (resp. gr"W,, %), where we regard
gr" Wi, Q% (7= X,Y) as Or-modules. So we obtain the first isomorphism.
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Let (Q51) (? = X,Y) be the Or-module Q%! on which the structure
of @r-module is defined by (a,w) — " w(a € Oy w € Q41). Then,
Proposition 2.18 for m = 1 and the flat relative perfectness of f imply the
isomorphism

(2.2) Ox ®oy () = (%)
On the other hand, the homomorphism
av" (Y — Fil'"W,1 Q% (?=X,Y)

is O¢-linear. Hence the first isomorphism and the isomorphism (2.2) imply
the second isomorphism. So we are done. [

Now we extend Proposition 2.4 to the schemes in the category C:

ProrosITION 2.20. Let X be a scheme in the category C. Let us regard
gt" W = Fil"W,11Q% and Fil"W,, 11 Q% /dV"QZ as Ox-modules as
in Proposition 2.19. Then they are locally free Ox-module of finite type.

PROOF. For a scheme S, let Mg be gt" W, Q% or Fil"W,11Q%/
dV"Ql_l. To prove the assertion, we may assume X is local Then, by

Proposition 2.15, we can take the diagram of the form X Ly s z- AIE‘
in the category C, where f and g are flat relatively perfect and f is faith-
fully flat. (See Remark 2.16.) Then we have, by Proposition 2.19, the
isomorphisms

Oy ®oy Mx = My, Oy ®o, Mz = M.

So Mx is locally free of finite type if and only if so is My, and My is locally
free of finite type if so is Mz. So we can reduce to the smooth case, and it
is nothing but Proposition 2.4. Hence the proof is finished. [J

REMARK 2.21. Let X = Spec A be a scheme in the category C with
A local. Then Q is a free A-module by the above proposition. Let m be
the maximal ideal of A. Let x1,--- ,x, € A be a lift of p-basis of k := A/m
and let x,11, -+ ,2, be a regular parameter of A. Here we remark that
the elements dz; (1 < i < n) forms a free basis of QL. Indeed, to prove
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it, we may replace A by the completion A of A by Proposition 2.19 and
in the complete case, it is easy to see the assertion because we have the
isomorphism A = k[[x, 11, -+ ,,]] such that the images of x; (1 < i < 7)
forms a p-basis of k.

Finally, we give a simple equivalent condition for a regular scheme X to
be in the category C. Recall that a Noetherian ring A is called excellent if
A is a universally catenary G-ring such that, for any finitely generated A-
algebra B, the regular locus of Spec B is an open subset. (See [M2, p.260],
[M1, (34.A)], [EGA 1V, (7.8.2)].) A locally Noetherian scheme X is called
excellent if it is covered by spectra of excellent rings ([EGA IV, (7.8.5)]).

ProPOSITION 2.22. Let X be a regular scheme. Then the following are
equivalent:

(1) X is in the category C.
(2) For any x € X, Ox is excellent and [k(z) : k(z)P] < oo holds.

(3) For any x € Xo, Ox 5 is excellent and [k(x) : k(x)P] < 0o holds.

Proor. Note that X is in the category C if and only if Spec Ox , is
in the category C for any z. Then the equivalence of (1) and (2) follows
immediately from [Ku, Cor 2.6].

It is obvious that (2) implies (3). So it suffices to prove (2) assuming
(3). Let x be a point of X and let y be a closed point of X contained in
m. Then the excellence of Ox, implies that of Ox, and, by [Ku, Cor
2.6, 2.7], the finiteness of [k(y) : k(y)P] implies that of [k(z) : k(z)P]. So we
have the assertion (2). Hence the proposition is proved. [J

In particular, any excellent regular scheme X over F), satisfying [k(z) :
k(z)P] < oo for any = € X belongs to the category C. Note that, by [Ku,
Cor 2.6, 2.7], the condition ‘[k(z) : k(x)P] < oo for any = € Xy’ can be
replaced by the condition ‘[k(x) : k(x)P] < oo for any z € X

3. Purity

Let k be a perfect field of characteristic p. Let X, Z be smooth schemes
over k with X of pure dimension n, and let ¢ : Z <— X be a regular closed
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immersion of codimension r. Then the following theorem, which is usually
called the purity for the logarithmic Hodge-Witt cohomology, is proved by
Gros (|G, II,Thm 3.5.8, (3.5.19)]) in the case ¢ = 0 and by Suwa ([Su, Cor
1.6]) in the case ¢ > 0,i = n:

THEOREM 3.1 (Gros, Suwa). Let the situation be as above and let m €
N. Then, there exists a canonical isomorphism

92]7,72;;10g : Hq(Z7 WmQZZle(‘)g) i H%+T(X’ WmeX,log)
forq=0o0rq>0,i=n.

In this section, we generalize the above theorem to the case of certain
regular schemes. Namely, we prove the following theorem:

THEOREM 3.2 (Purity in regular case). Let X, Z be regular schemes
and let v : Z — X be a regular closed immersion of codimension r. Assume
moreover that we have [k(x) : k(x)P] = pN for any x € X°. Then there
exists a canonical isomorphism

ezfﬁlog : Hq(Z’ WmQZZjlf)g) i H%+T (X7 WmeX,log)
if g =0 holds or if ¢ > 0,9 = N holds and X is in the category C.

We recall some preliminary facts and give the definition of HEfﬁlog )

Let X, Z be regular schemes over F,, and let + : Z — X be a regular
closed immersion of codimension r defined by ¢1,--- ,t, € Ox. Let U be
X — Z and for I C [1,r], let Ur be the open subscheme of X on which
the elements t; (i € I) are invertible. Denote the open immersion Uy —
X by jr. (In particular, we have Uy = X and jy = id.) For a quasi-
coherent sheaf F on X(~ W,,X) and an integer s, let us define C*(F)
by C*(F) = @=sJ1«J7F. Then, C*(F)’s form a complex C*(F) in
natural way (the differential C*(F) — C*T1(F); (f1)1 — (g1)1 is given by
Giroiiars = S (1)L ) and one can check that there exists

j=1 1 yeeslseenslist1
a quasi-isomorphism

(3.1) R ,(X,F) ~C*(F).
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In particular, we have a quasi-isomorphism RI , (X, W,,Q% ) ~ C*(W,,,Q%),
hence an isomorphism

(3.2) HYy(X, W) = 5 W%/ > i1 Wn,.
[I|l=r—1

The following lemma is a generalization of [G, (3.3.20)]:

LEMMA 3.3. Let X, Z be reqular schemes over I, and let v : Z — X

be a regular closed immersion of codimension . Then we have
H,(X, Wy Q) =0, H, (X, Wn,Qy /dV™ QL) = 0 for j # 7.

Proor. It suffices to prove the vanishing H%(X, WmQ’X) = 0,
Hé(X, Wmﬂ%/dvm_lQégl) = 0 for j # r under the assumption that X
is local. In this case, there exist elements ¢1,--- ,t, € Ox which defines the
closed immersion ¢. Let {Xj}rex be a projective system of affine schemes
smooth over I, such that X = lim s Xy holds. By localizing Xj’s and re-
placing K, we may assume that each X, is a localization of a smooth scheme
over F), and that ¢,--- ,t, define a regular closed immersion Z; — X}, of
codimension r with Zj, smooth over F,. Then, by Theorem 2.2, we have the
isomorphisms

HL(X, W Q) = ankeKHék(Xk, Wi, ),

HY (X, Wi Qx /dV Q) = lim pe e HY (Xi, WinQ, /dV™ QD).
So we may assume that X, Z are localizations of smooth schemes over [,
and that there exist elements t¢1,--- ,%, which define the closed immersion
Z — X.

In this case, the lemma is proved in [G, (3.3.20)]: it suffices to show
the vanishing H’ (X, C®(W,,Q%)), H (X, C* (W, /dVTIQUN) (5 # 1)
and by using Proposition 2.4, we can reduce to showing the vanishing
HI(X,C*(Ox)) (j # r), which we can check directly. (]

'COROLLARY 3.4. Let the notations be as above. Then we have
Hy (X, Wiy 10g) = 0 for j #rr + 1.

ProoOF. It is immediate from the previous lemma and the long exact
sequence associated to the exact sequence

0 — Wi 1o — WinQx 5 Wi /dV™ 10 — 0. O
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Let X, Z be affine regular schemes over F, and let ¢ : Z — X be a
regular closed immersion of codimension 1 defined by ¢t € Ox. Then we
have the following lemma:

LEMMA 3.5. Let the notations be as above. Then, for an element w €
Wmﬂizfl, there exists a lift 0 € Wme{l of w, and the image of dlogt A
O € Wy in j Wi, /Wil is independent of the choice of the lift
@. (Hence we will sometimes denote the image by dlogt A w, by abuse of
notation.)

Proor. First, let us recall that, for a scheme Y over F),, there exists
a functorial surjective homomorphism of differential graded algebras my :
Oy vy — Wiy, over W, Oy . So there exists the following commutative

diagram:
i—1 (Wme)* i—1
D, x Q.. z
nxl nzl
W, ict Wy it

Since (Wp,t)* and 7z are surjective, Wy, (v*) is a surjection of quasi-coherent
W Ox-modules. Hence there exists a lift © € Wme;l of w.

Next we prove the independence of the image of the element dlogt A ©
in J*WmQZU/WmQ:LX To prove this, we may assume that X is local. Then,
X can be written as the projective limit X = lim je;X; of affine schemes
X; which are smooth over F,. We may assume moreover that ¢ defines a
regular closed immersion Z; — X, of codimension 1 with Z; smooth over
F, for any j € J. Then it suffices to prove the desired independence for
Zj — X;. So we can reduce the proof to the smooth case. Then, since we
may work etale locally, we may assume that the closed immersion Z — X
has a section s : X — Z.

Now we prove the desired independence under the assumption that the
closed immersion Z — X admits a section s. The claim in this case is
used in [G, p.40] (in more generalized form), but here we give a detailed
proof because the proof is omitted there. Since mx is surjective, it suffices
to prove the following claim:
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(x)  For any n € Ker(W,,(¢*) o mx), we have dlogt A mx () € W, Q.
Let us consider the following commutative diagram:

(Wms)* (me)*

Ot Ol x ot
ﬂzl le wzl
Wit Wl gy gict Wl gy git,

Since s o ¢ = id holds, the composites of the horizontal arrows are equal to
identity. For n € Ker(W,,(¢*) o mx), define 1 and ny by n1 := (W,,s)* o
(Wimt)*(n),n2 :==n — m. Then we have

mx(m) = mx o (Wips)" o (Wnt)*(n) = Win(s") o mz o (Wine)*(n)
= Win(s") o Wi (") omx(n) = 0.
Hence we have dlogt Amx(n) = dlogt Amx(n2). On the other hand, we have
(Wint)*(m2) = (Wine)* (1) — (Wint)" o (Wis)™ o (Wit)*(n) = 0.

Hence it suffices to show the following claim:
(xx)  For any n € Ker((Wy,t)*), we have dlogt A mx(n) € W, Q.

Now put Z := tOx and define W,,,7 by W,,,Z := {221:7)1 Véxa|2zq € T}.
Then we have W,,Z = Ker(W,,0Ox — W,,0z) ([I, 0.1.5.6,(i)]). So one
can see that Ker((W,,¢)*) is generated over W,,,Ox by the elements of the
following forms:

an (e W, Z,n € Q%;,:LX), dann (a e WpI,n € QWiX)
Hence the claim (x#) is reduced to the following:

CramM. For o € W, Z,n € Wng;l and 7/ € W,, Q2. the elements
dlogt A an,dlogt A da A’ are contained in WmWX

PrOOF OF CLAIM. We may assume o = V%(xt) for some a € N,z €
Ox. Then we have the following equations:

dlogt A an = V% (xt)dlogt A n
= V*(atdlogt A F*(n))
€ VI(Wi_ay) C W, Q.
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dlogt Ada An = dlogt AdV(zt) A7/
= —d(V*(at)dlogt A7) — V(at)dlogt A dnf
= —dV*(ztdlogt A F*(n)) — V*(atdlogt A F*(dn))
€ AV Wi oUis ) 4+ VE(Wp_a Q) € W, Q.

Hence the claim is proved. [
Since the claim is proved, the proof of the lemma is finished. [J

Now, for regular schemes X, Z over F,, and a regular closed immersion
t: Z — X of codimension r, we will define the homomorphism

Pf,m : WmQ?T — H%(X, WmQZX)

by induction on 7. First, we assume r = 1 and assume moreover that X
is affine and that ¢ is defined by an element t € Ox. Then we define the
homomorphism pf , ,, : Wiy ' — H} (X, W, Q) by the composite

W Qo — Wi Q% /Wi Qs =2 H (X, W),

where the first map is defined as w — dlogtAw and the second isomorphism
is given by (3.2) (with » = 1), using t. Then we have the following:

LEMMA 3.6. The map pf’t’m is independent of the choice of t.

PROOF. Let t' be another element which also induces the closed im-
mersion ¢. To prove the lemma, we may assume that X is local. Then, X
can be written as the projective limit X = lim je;X; of affine schemes Xj;
which are smooth over F,. We may assume moreover that ¢,t' define the
same regular closed immersion Z; — X for each j € J. Then we have

Putm = liQJEJIOLj,t,rm pa,t’,m - h_r)nJGJpLj,t’,m'

So it suffice to prove the claim for regular closed immersion Z; — X, that
is, we may reduce to the smooth case.

In smooth case, the lemma is due to Gros: Indeed, in In [G, II(1.2.6),
I1(3.4.1-3)], Gros defines a homomorphism of sheaves

P W Qo — HY(X, W Q)
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by using Ekedahl’s duality ([E]) without using ¢ and in [G, (I1.3.4)], he
proves the equality p = pit’m for any ¢ defining the closed immersion ¢. (See
also Remark 3.7 below.) Hence Pﬁ,t,m is independent of ¢t and so the proof
is finished. [J

REMARK 3.7. In [G, II(3.4)], Gros writes that the map p in the
proof above has the form p(w) = w A dlogt € 7 W, Q% ,/W,Q, =
H, (X, W,,Q%). However, we remark here that p has in fact the form
p(w) = dlogt A w, as we claim in the above proof. His calculation in [G,
I11(3.4)] depends on the calculation of the Gysin map in de Rham cohomol-
ogy by Berthelot [Be, VI,Prop 3.1.3|, which is described as follows: Let
i: Z < X be a regular immersion of codimension 1 of schemes smooth over
Spec Z/p"Z defined by t € Oy. Then the Gysin map

07" — H(X, k)
is given by the composite
05— Q% Qg — Ext!(0z, Q%) — HE(X,Qk).

Here wz/x is the conormal sheaf N, > X The first map is induced by the
exact sequence
0— Nz/x — iy — 0L —0

and so it is written as w — @ A dt ® tV (where @ is a lift of w.) The second
map is the fundamental local isomorphism of Hartshorne ([Ha, III,7.2]).
The third map is the canonical map induced from the map of functors
Hom(Oz,—) — H%(X,—). In conclusion, it is claimed that the Gysin
map is given by w +— @ A dlogt, if we identify H5(X, Q%) with Q4 _ - /Q%.
However, Conrad points out in [Co] that, in order that the Gysin map
is well-behaved in the duality theory, the fundamental local isomorphism
should be corrected to wz,x ® QY — Ext}(Oz,9%). Then the Gysin map
should be corrected to the composite

05— wzyxy @Oy — Ext'(0z,0%) — HE(X,Q%),

and so it should be written as w +— dlogt A@. By taking this correction into
account and arguing in the same way as [G, 11(3.4)], we see that p has the
form p(w) = dlogt A w.
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Let ¢ : Z — X be a regular closed immersion of codimension 1 between
regular schemes over IF,,. Locally on X, X is affine and ¢ is defined by an
element t € Ox. So we can define the map pf%m locally and it is independent
of ¢ by Lemma 3.6. Hence we can define the map pf,m : WinZ_l —
H, (X, W, Q%) globally, by glueing the maps ,of,t’m.

Now let us consider the case that ¢ : Z — X is a regular immersion
of codimension r between regular schemes over F,. Locally on X, we can

factorize « as Z < Y <& X , where ¢/ is a regular closed immersion of
codimension » — 1 and ¢ is a regular closed immersion of codimension 1.
We define the map ¢! : Wi Q" — HY% (X, WiQY) by the composite

LY,m

i—1

. P / .
W, Q" 28 (Y, W, Q00

ﬂ;ﬁl(l)i// m) . i o . i
" HTNY, Hy (X, Wi Q) — Hiy (X, Wi Qy),

where the third map is induced by the Leray spectral sequence and Lemma
3.3. Then we have the following:

LEMMA 3.8. The map pf vm 8 independent of the choice of Y.

PROOF. Let Z — Y’ < X be another factorization satisfying the same
condition as Z — Y — X. To prove the lemma, we may assume that X
is local and so X can be written as the projective limit X = lim jc ;X of
affine schemes X; which are smooth over [F,. We may assume moreover that
there are factorizations Z; — Y; — X;,Z; — Y;-’ — X; with Yj, Yj’ smooth
over F,, which induce Z — Y — X,Z — Y’ — X respectively when we
pull them back by X — X;. Denote the closed immersion Z; — X by ¢;.
Then we have

i i T
PYm = anjerLj,Yj,mv PLy'm = h_n>1j€JpLj,Yj’7m'

So it suffice to prove the claim for Z; < X, that is, we may reduce to the
smooth case.

In smooth case, the lemma is again due to Gros: In [G, II(1.2.6),
I1(3.4.1-3)], Gros defines a homomorphism of sheaves p : W, Q)" —
H7, (X, W, ) for any regular closed immersion Z — X of smooth schemes
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over [, with p = pf}m if ¢ is of codimension 1, and he proves that this map
satisfies the transitivity. So, by induction on r, we can prove the equalities

(p for Zj = Xj) = pl, v, mr (pfor Zj = X;) = 0] y1,
So we are done. (J

By Lemma 3.8, we can define the map Pf,m . WinZ—r N
H% (X, W, Q) globally, by glueing the maps 'y .

REMARK 3.9. It would be possible to give the definition of pim in more
explicit way without using induction on r, by using [G, I11(3.4)]: However, we
would like to adopt the inductive definition given above to avoid calculation
involving complicated signs later in this paper.

Let ¢+ : Z — X be a regular immersion of codimension r between regular
schemes over F),. Then it is easy to see that the map pim we defined above
is compatible with respect to m. So the family of maps {pf,m}m induces the
homomorphism of pro-sheaves

P e Wally " — HY(X, WaQ).

It is easy to see from the definition that pi, is compatible with 1 — F'. So,
by the exact sequence

0— W.Q%’log

— W.Q% = W.Qg —0
for (?,7) = (Z,i—r),(X,i), pi . induces the homomorphism
P s WaQg oy — Hy (X, Wal jog).

Then, by the exact sequence

J P Vi J
0— W'Q?,log — W'Q?,log — WmQ?,log

— 0
for (7,5) =(Z,i —r),(X,1), pf’,l.og induces the homomorphism

i,log . =T T I
PiE s Wy — Hy (X, WinQ 10)-
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g

Using p! .m and pim hio , we define the homomorphisms

0: HO(Z, Wi Q") — Hy (X, WnQY),

eq,z,log Hq(Z W Qsz;g) H%"'T(X’ WmQ?X’]og)v
by the composite

0 11— HO (,0, m) 0 T 7
(3.3) HO(Z, W2 HO(Z, Hy (X, W)

=, Hy (X, W),

i \ HiplrE
(3.4) HY(Z W7 ) 2 52, HY (X, Wi 1))

- H%+T(X’ WmQX,log)’

where the second homomorphisms are induced by Leray spectral sequences.
(Here we use Lemma 3.3 and Corollary 3.4.) The map 6%, € is the one
which appears in the statements in Theorems 3.1, 3.2.

Now we give a proof of Theorem 3.2, that is, we prove that 6/, 108 ig an
isomorphism if ¢ = 0 holds or if ¢ > 0,5 = N holds and X is in the category
C. First we prove it in the case ¢ = 0:

PROOF OF THEOREM 3.2, Step 1: The case ¢ = 0. In this case, the
second map in (3.4) is an isomorphism. So it suffices to prove that pl’ lf’ng is
an isomorphism. To show this, we may assume X is local. Then, X can be
written as the projective limit X = lim je;X; of affine schemes X; which
are smooth over [F,,. We may assume moreover that there exists a projective
system of regular closed immersions {4+ Zy — X}y with Z = lim e Z;.
Then we have pb me = lim lim je J,OL . S0 the claim is reduced to showing that

,lo
Pi e is an isomorphims in the case where Z, X are smooth over F,. This is

proven by Gros (|G, II,Thm 3.5.8]). So we are done. [J
Next we prove Theorem 3.2 in the case ¢ > 0,7 = N:

PROOF OF THEOREM 3.2, Step 2: The case ¢ > 0,i = N and X 1is
in the category C. First let us note that it suffices to prove the following
claim:
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CramM 1. With the notation of the theorem, we have
HNX, W, QN ) =0.
=7 » PPmEt X log

Indeed, if we have this claim, we see that the second map in (3.4) is an
isomorphism. (We also use Corollary 3.4.) Since we have already proved
that pf’}%g is an isomorphism, the first map in (3.4) is an isomorphism and
SO 0?;,’;;10“% is an isomorphism. Hence the theorem is reduced to the claim 1.

To prove claim 1, we may replace X by its strict henselization. In this
case, the claim is nothing but the vanishing H7 (X, WmQ%,log) = 0. Now
let us prove the following claim:

CLAIM 2. Let X be the completion of X along Z. Then, for any i, 7,
we have the canonical isomorphism Hy (X, Wi, Q. \.) = Hy (X, mef{,log)'

ProoF orF CrLAIM 2. By the exact sequences

0 — Wal 1oy 2 WO

Z?,log WmQ‘l?,log 0’

0 — Waldh 1o, — Walds 75 WeQ) — 0
for 7 = X, X, it suffices to show that the canonical homomorphism
HY (X, Winly) — HH(X, WinfY)

is an isomorphism. Let us take elements t1,--- ¢, defining the closed im-
mersion ¢ : Z — X. Then we have the isomorphism

HL (X, W Q) = HI (X, C*(Wn ),

and the similar isomorphism holds also for X. Since the morphism X — X
is flat relatively perfect, the functor — @w, 0, WnOx is compatible with
the canonical filtrations of de Rham-Witt sheaves. Hence it suffices to show
that the canonial homomorphism

HI (X, C*(gr* W, Q) — HI (X, C*(gr* W, Q%))

is an isomorphism.
For a sheaf of Wy 1O7-module M (? = X, X), let M’ be be the sheaf M
on which the structure of O-,-modules is defined by (a,w) +— ¢(a)w, where
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¢ is the composite Q7 = Wi 1107 /VWi 1107 £, Wi1102/pWi 1109, Then
we have

J1ad7 (@ W) = (red7er" Winlx )’
and similar equality holds also for X. Moreover, by Proposition 2.20 and

the flat relative perfectness of X — X, the sheaf (grkaQfX)’ is a free
Ox-module of finite type and that the canonical homomorphism

(e Winy) ©oy O — (e Wiy
is an isomorphism. Hence it suffices to show that the homomorphism
HI(X,C*(0x)) — HI(X,C*(0y))

is an isomorphism.

When j # r holds, both hand sides are equal to zero. Let us consider
the case j = r. For [ € N, let I() be the ideal of A := I'(X, Ox) generated
by tll, e ,tfn. Then we have

H'(X,C*(Ox)) = H(X,j.0u/ Y jr+Ov,) = lim enA/1%,
[I|=r—1

where the transition map A/I) — A/T®) (1 <1') is defined by the multi-
plication by (¢; - - - t,)" !, Similarly, we have

H™(X,C*(0y)) = limenA/ IV A,

where we put A = F(X',OX). Since (ti,--- ,t,) =+ < 10 holds, we
have the natural isomorphism A/T® = A/TMA. Hence H"(X,C*(Oy)) is
naturally isomorphic to H"(X,C*(O¢)). So the assertion is proved. [J

By claim 2, we may assume X = Spec Oz|[[t1,- - ,t,]] to prove the claim
1. Now we prove claim 1:

Proor or CLAIM 1. By using the exact sequence
N N N
0 Wm—lQX,log WmQX,log QX,log 0,

one can reduce to the case m = 1. So one can reduce to the following as-
sertion (x):
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(x):  Let r,N € NN > r and let Z = Spec A be a strictly local regular
scheme in C such that [k(2) : k(2)P] = pV =" holds for the generic point z of
Z. Let v : Z — X be the closed immersion Spec A — Spec A[[z1,- -, x,]].
Then H}"'(X, Q) = 0 holds.

We prove the assertion (x). Put B := A[[z1,---,2,|] and let m be the
maximal ideal of A. In the situation of (x), we can take a local parameter
Tpyl, -, Trps of m and a p-basis Tp4541, - ,zy of A/m for some s. By
the exact sequence

O—>QX10g—>QNc 1QX—>0

it suffices to show that the homomorphism C — 1 : H,(X,Q%) —
H7 (X, Q%) is surjective. Let us recall the isomorphism

HE(X’QN) QNI:xl 7"'7 ™ ZQle y T Vfl"“?'x;l]

defined by x1,- -+ ,z,. Denote the right hand side by . Since the above
isomorphism is compatible with the action of C'— 1, it suffices to show that
the homomorphism C' —1: Q — Q is Surjective
Put M := Y OF[ay !, @5+ 271, and let dloga := dlogay A
<-Adlog xy, dx := dry i1 A -ANdxy € Qg ". (Note that Qg " is isomorphic
to the free A-module Adz. See Remark 2.21.) For [ € N, let us define H; C 2

by

H ={weQlwe Z a2t - xlrde A dlogz + M
—I<ly, 1, <0

(for some aj,..;, € A)}.

Then we have H; C Hj (I € N) and (J;eyH = Q. For w = axlll calrda A
dlogz (a € A), One can calculate C(w) as follows: C(w) has the form
bxlll/p---xir/pdx A dlogz (for some b € A) if p|l; holds for all 1 < i < r
and is equal to 0 otherwise. Hence we have CH; C H;_; for [ > 1 and
CH, C Hy. Hence CV H; C Hy holds for I’ > I. Then, for w € 2, we have

-1
w=(C-1) (Z Ci(—w)) + Clw € (C = 1)Q + Hy,
1=0
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for sufficiently large [. Hence it suffices to show the surjectivity of C' —
1: Hy — Hyp. Since we have (C — 1)(adz A dlogz) = (C — 1)(adx) A
dlog x, it suffices to prove the surjectivity of C' — 1 : Q]X_T — Q]X_T. Put
T = Tpy1---xN. For an element a € A, take an element b € A satisfying
b— tPxP~! = a. (Note that such an element b € A always exists, since A is
henselian.) Then we have

(C —1)(bP2P~Ydx) = bdx — bP2P~Ldx

= adx.

So C' — 1 is surjective and the proof of the claim is finished. [J
Since we have proved claim 2, the proof of the theorem is finished. [

REMARK 3.10. It seems not easy to prove Theorem 3.2, Step 2 directly
by reducing to the smooth case, since if we write X as a projective limit
of affine smooth schemes X = lim ; X;, we cannot control the dimension of
X’s.

J

REMARK 3.11. Let X be a regular scheme over [, with [k(y) : k(y)?] =
p™ for any y € X©, let  be a point of codimension r of X and denote the
localization of X at = by X,. Then we have H(X,F) = H..(X,, F) for any
abelian sheaf 7. So /?;%Xx,m has 'the form W, Q0" — HY (X, W, Q% ).
We denote the map pj. .y . by p... x,,, by abuse of notation. Then the
map pt. x.m induces the maps

P WanSl g — H (X, Wi 1oy,
rxm HO (2, W Q) — H (X, W),
O H Wi 7,) — I (X, Wi o)

r—X,m z,log
in the same way as explained in this section and by Theorem 3.2, the last
map is an isomorphism if ¢ = 0 holds or if ¢ = 1,7 = N holds and X is in
the category C.

Finally in this section, we give two remarks on some compatibilities

. i i,10
concerning the maps 6}, ., 0L7,%8.
9



596 Atsushi SHIHO

REMARK 3.12. Let ¢: Z — X be a regular immersion of codimension
r between regular schemes in the category C, and assume that we have
[k(z) : k(z)P] = p for any 2 € XO. Let

8y : H(Z, W) — H(Z, W),

69( : HE(X7 WmeX,log) - HE(Xv WmQ:LX)

be the homomorphisms induced by the inclusion W,,2
(7,%) = (Z,i—r),(X,1) respectively, and let

— W, Q5 for

*
?,log

by HNZ, Wi Q") — H'(Z, W),

8% + Hy(X, W Q) — Hp ™ (X, Wi 1og),

be the composites
HY(Z, Wi Q") — H(Z, W, Q7 /dVT™ 1Y) — HY(Z, WS 1),

Hy (X, Wi Qy) — Hy(X, Wn Q5 /dV™ Q) — HPH (X, Wi QK 100)
where the first maps are induced by the natural projection W;,25 —
W5/ de_lS);*l and the second maps are the connecting homomorphism
associated to the exact sequence

0 —— Wi, —— Wi = W /dVm=105 —— 0

*
?,log
for (7,%) = (Z,i —r),(X,1), respectively. '

Then, as for the compatibility of the maps Hf,m, G?jﬁbg, 65 (x=0,1,7 =
Z, X), we have the following claim:

CrLAamM. The diagram

HO,i,log
L

H(Z, WinZTlT(;g) —"— Hj(X, Wng(,log)

(3.5) 5% | 69{

] eLm y
HYZ,W,Q, ") —"=  HL(X,WnQy)
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is commutative and the diagram
. ¢ .
HY(Z,W,Q, ") —"  HL(X,W,Q%)
(3.6) 54 5;{

al,i,log

HY(Z, WinZ_,lzg) — HEH (X, Wng(,log)

is (—1)"-commutative.

PrROOF OF CLAIM. First we claim that there exists the following com-
mutative diagram, where the horizontal lines are exact:

W WL WuQLT AVl

(—1>rplel pz.ml

0 —— ETZ(X’QZXTl) dv'™

0 — Q!

A (X, Wi Q) —— HY(X, Wy /dV =100 —— 0.

Indeed, the exactness of the lower horizontal line follows from Lemma 3.3.
The commutativity of the square is reduced to the case r = 1 by induction,
and in this case, the commutativity follows from the following calculation
in HY(X, W) for w e QL2

—dV™ Hdlogt A @) = —dV™ H(F™ Ldlogt A @) = —d(dlogt A V™LD)

=dlogt AdV™ % = dlogt A dV™ 1w,

where ~ means a lift of elements in W*QiZ_2 to those in I/V*QiX_2 for x =1
or m.
The above diagram allows us to define the morphism

(bl ) Wnl2l5 ™ J AV 10071 s H (X, Wi V1)

which is compatible with pf’m. Then, as homomorphisms of pro-sheaves, we
have the equality ,of’, = (pa,)’ . By this fact and by definition of pf;ﬁg, one
obtain the following commutative diagram, where the horizontal lines are
exact:

0 ——  WaOhr, ——  WayT S WRQpT/avmiopTt —— 0

(3.7) oix | bion | i |

0 —— Hy(X, WO 10,) —— Hy(X, W Q) —— Hy(X, Wy Qi /dV™ 1057,
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(The exactness of the lower horizontal line follows from Lemma 3.3.)
Now we prove the commutativity of the diagram (3.5). The diagram
(3.5) is factorized as

i HO(p{08) , ~ ,
HO(Z, W) —"— HO(Z, Hy (X, Wil 10,) —— HH(X, Wi 10,)

3] ! s

. HO(p? . o~ .
HO(Z, W) 2l 07, (X, W) —2 HY (X, W),

The left square is (the transpose of) H? of the left square in the diagram
(3.7) and so it is commutative. The right square is commutative due to the
functoriality of the Leray spectral sequence. So we have shown that (3.5) is
commutative.

Next we prove the (—1)"-commutativity of the diagram (3.6). If we
denote the map

. fii%g . .
WSt ™ HY (X, Wi 105) — BT (X, Wi 100)[ 7]

also by pfjlﬁg , then the diagram (3.7) induces the commutative diagram

1-F
E—

0 —— Wi g — WROLT WuQy " jdvmtosr=t 0

(3.8) e | om | Ghon |
RD (X, WinS 00)[=7] —— H (X, W) == HY (X, Wy V™05,
where the lower horizontal arrow is a distinguished triangle. Now let us

note that the diagram (3.6) is factorized as

) 0( i . o
HO(Z, W27 Hbim), HO(Z, HYy (X, W) = Hy (X, W)

l l l

: HO((pl ) . . o~ .
HO(Z, W QLT JdV =101 ), oz, by (x, Wi Qi /AVmIQ ) ——s HY (X, Wi Qi /dV =100

| ° dl

HY(Z, Wiy, A HMZRD (X, W) —r]) o HPPU(X, WO,
The upper left square is commutative since it is (the transpose of ) H of the
right square of the diagram (3.8), and the lower left square is also commuta-
tive since it is the connecting homomorphism induced by (3.8). The upper

right square is commutative by functoriality and the lower right square is
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(—1)"-commutative because the degree of the connecting homomorphisms
a, (3 differs by r. So the diagram (3.6) is (—1)"-commutative. O

REMARK 3.13. Let ¢ : Z — X be a regular closed immersion of codi-
mension 7 between regular schemes over I, and assume that ¢ admits a

. . J ! . . .
factorization Z — Y — X, where //,/” is a regular closed immersion of
codimension 7/, r”, respectively. In this remark, we prove the transitivity of

the map pfji%g : That is, we prove that the composite

if'r//,log
Wiy, = Hy (Y, WnQyp0,)
EE/ (pz;}?fn) » Pl i r i
—" HZ(Y.Hy (X, WmQX,log))%ﬂZ(‘Xn WmQX,log)

(where the last map is induced by Leray spectral sequence) is equal to pf’,l,%g.

By the commutativity of the left square in the diagram (3.7), the claim
is reduced to the corresponding claim for pfﬂm, that is, it suffices to prove
that the composite

-7
i—r Pf/,:b r! i—r"
Wi 2 HY (Y, W)

ET/ (pi// m) ! 1 . [a=) .
TS (Y, HY (X, W) — Hy (X, Wi Q)

is equal to pf,m. To prove it, we may assume that X is local and then we can
reduce to the smooth case using Theorems 2.1, 2.2. In this case, the claim
(transitivity) is proved by Gros (see [G, proof of II,Prop 2.1.1, I1(3.4.1-3)]).
So we are done.

From the above claim, we can deduce that the composite

q,ifr//,log
. / / ; "
q i—r vym q+r i—r
HYZ, W0 ) ™ HET (Y, W)

+ / .71
H% " (pillog)

" T (Y, HY (X, Wi 1og))
— H%—i—r (X, Wng(,log)

is equal to ga:ilog.
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4. Gersten-type Conjecture (I)

Let X be an equidimensional scheme over I,,. Then we have the coniveau
spectral sequence ([Bl-Ogu], see also [CT-Ho-Kah])

Bl = @D HiM (X Wanliy) = B = HOV(X, Wi 1)
reXs

converging to the logarithmic Hodge-Witt cohomology. We call the complex
of E}"%-terms

0— @ HI(X, Wi Q% 10g) — @ HIT (X, Wi Q1) —

LEEXO CEGXl
+s 7

@ Hg (Xv WmQX,log) e

zeXs

the Bloch-Ogus complex and denote it by B?r’f(X )*. It is a cohomological
analogue of the Brown-Gersten-Quillen complex in algebraic K-theory. As
an analogue of Gersten conjecture in algebraic K-theory, it is natural to
expect that, if X is the spectrum of a regular local ring over F,, the complex
B,q,{i(X )® is acyclic in positive degree. In fact, we have the following:

THEOREM 4.1 (Gersten-type conjecture for Bloch-Ogus complex). Let
X be the spectrum of an equidimensional reqular local ring over Fy,. Then
we have

(41) Hn(Bg,;Z(X).) _ {OHQ(X, Wng(,log) EZ i 8;7

The purpose of this section is to give a proof of the above theorem. It
is proved in the case where X is a localization of a smooth scheme over a
perfect field by Gros-Suwa([G-Su, Thm 1.4]). We will reduce the general
case to the smooth case by using a technique of Panin ([Pa]). (In the paper
[Pa], he proves the Gersten conjecture for K-groups in equicharacteristic
case.)

First let us note that, by the argument in the proof of Proposition 3.3
and Corollary 3.4, both H?(X, Wmﬁéﬂog) and B%'(X)® are zero in the case
g > 1. So the assertion is automatically true when g > 1. Moreover, one
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can prove the theorem for ¢ = 1 by an easy diagram chase from the theorem
for ¢ = 0. So we may assume g = 0 to prove the theorem.

We prepare some preliminary results which we need for the proof of
Theorem 4.1.

PROPOSITION 4.2. Let v : Z — X be a regular closed immersion of
codimension 1 between reqular schemes. Denote the subcomplex

0— @ H;(X7 Wmﬂé(,log) — @ H:Z—H(X? WmQ%X,log) -

zeZ0 ezl

(where the first non-zero term is silting in degree r) of BS,?(X) by

B%Z(X)'. Then the isomorphisms

o 1= 000 0 (000 708 Th  HE(Z, W) — H T (X, Wi 1)

r—X,m r—Zm
(x € Z°,s € N)
induce the isomorphism of complezes By "(Z)* =, B%Z(X)'[r].

ProoOF. By Remark 3.13, v, is the composite

0,1
S( ZfX,m)

s i—r Hz(p s T i
(42) Hx(Zv WmQZ,log) - H:E(Zv ﬂZ(Xv WmQX,log))
— HT (X, Wi 1)

where the second arrow is induced by Leray spectral sequence. Take points
y € Z5~1 2 € Z%. Then the (y,r)-component of the boundary map of
B%Z(X)' is non-zero only if x € {y} =: Y holds and in this case, it is the
connecting homomorphism in the long exact sequence

4.3) - — H{/z (X, Win 2 10g) — HI (X — 2, Wi 1)

SN H£+1(Xx, Wmﬂé(,log) —_—

where X, Y, denotes the localization of X,Y at x, respectively. (Note that
we have Hj (X, W@y \.) = Hj(Xo— 2, Win Q% 1), HET (X, W Q%

Hg“(Xm, WmQé{,log) by excision.) Similar description is true also for the

710g) ,log)



602 Atsushi SHIHO

boundary map of Bo; "(Z)®. So it suffices to prove that, in the diagram

1/ i,log
v (P2 x m)

HS I(Z WmQZlog Hs_l(Z*ﬂ%()Q WmﬂiY‘log)) - H;_H‘_l(X’ WinX‘log)‘r

l l l

HS(Z W Ql r ) (plzlf—%Xm>
Z,log

H(Z, Hy (X, WinQy 1) ——  H" (X, Wi 1)

(where the horizontal lines are defined as in (4.2) and the vertical lines are
the connecting homomorphisms arising from the long exact sequences like
(4.3)), the large rectangle is (—1)"-commutative. In fact, it is true because
the left square is commutative and the right square is (—1)"-commutative.
(The sign (—1)" arises from the difference of the degrees.) So we are done. [J

LEMMA 4.3. Let X = SpecA be as in Theorem /4.1, let t be a lo-
cal parameter in A and let us denote the scheme Spec A[1/t] by X;. De-
note the canonical morphism of sites Xot — Xgzar by a. Then we have

H™( X} 7ar, a*WmeX,log) =0 forn > 0.

PROOF. First let us consider the case where X is a localization of
a smooth scheme over a perfect field. Let Z be the closed subscheme of
X defined by the equation t = 0. Then we have the exact sequence of
complexes

0 — BY ,(X)* — BY%(X)* — BY(X;)* — 0,

and by Proposition 4.2, we have the isomorphism BY1 (Z)*
ngf »(X)*[1]. By the Gersten-type conjecture in smooth case by Gros-Suwa,

we have H"(BY " 1(Z)®) = 0, H"(BY'(X)*) = 0 for n > 0. Hence we have
H™(BY'(X,)*) = 0for n > 0. On the other hand let B%(X;)* be the Zariski
sheafification of By (X;)®. Then, we have By (X;)® = I'(X;, B%(X,)*) and
each term of BY%!(X}) is flasque. Moreover, by the Gersten-type conjecture
in smooth case, the complex B%(X;)* is a resolution of the sheaf 0%, 1og-
Hence we have H"™(X;, Wi QY 1) = H™(B%(X;)*) = 0 for n > 0. Hence
the assertion is proved in the case where X is a localization of a smooth
scheme over a perfect field.

In general case, X can be written as a projective limit of localizations
of smooth schemes X (j € J) over F, such that ¢ is a local parameter in
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each Ox;. Then we have
Hn(Xt7 a*WmQ&',log) = h_H>1jEJHn(Xj7t7 a*WmQ%j,log) =0
forn > 0.0

LEMMA 4.4. With the notation in Lemma 4.3, the sequence
0— HO(X7 WmQé(,log) - HO(Xt’ Wng(,log) - Hé(X7 Wmﬂé(,log) —0
induced by the localization sequence is exact.

PrOOF. It suffices to prove the injectivity of the morphism H'(X,
Wmﬂg(,log) — HY(Xy, WmQ§(7log) and the vanishing H)(X, WinX,log) =
0. Both assertions can be reduced to the smooth case, by using Theorems
2.1, 2.2. Hence we assume that X is a localization of a smooth scheme over
a perfect field. Then, by Theorem 4.1 for smooth case, we have

Hl(Xtv Win)(,log) - @ H:% (Xt7 WmQé(,log)?
reXy

Hl(Xu Wng{,log) - @ H:% (X’ Wng(,log)
zeX0

and the restriction H'(X, Wmﬂgglog) — H'(Xy, nggf,log) is compatible
with the canonical identification

D Ho(X, Wik o) = D) Har (Xo, Winy 1og)-
zeX0 zeXy

Hence we obtain the first assertion. The second assertion can be proved in
the same way as Corollary 3.4. [

Now we give the proof of Theorem 4.1.

Proor or THEOREM 4.1. We already have reduced the theorem to
the case ¢ = 0. So we assume this and prove the theorem by induction on
the dimension of X. The case dim X = 1 follows from Lemma 4.4. Let us
consider the general case. Let us take a local parameter ¢t and let X;, Z, «
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be as in Lemma 4.3. Then, by Proposition 4.2, we have Bg{i*l(Z)' =
BS,;Z (X)*[1] and we have the exact sequence

(4.4) 0 — By ,(X)* — By/(X)* — BY/(X)* — 0.

By induction hypothesis, the theorem is true for Z, that is, we have iso-
morphisms HO(Z, W@y ) = HO(By' ™' (2)), H"(By' " (2)) = 0(n >
0). So we obtain the isomorphisms H} (X, WmQ:L‘X,log) = HI(B%Z(X)'),
H”(B%Z(X)) =0(n >2). On the other hand, let B%(X;)* be the Zariski
sheafification of By’ (X;). Then we have

H™(By'(Xy)*) = H"(H* (X4 zar, By (X2)%))
H™( Xt zar, BY/ (X0)®)  (BY(Xy)* is flasque)
= H" (Xt zar, a*WmQ&ylog) (induction hypothesis)

B {HO(Xt,WngUOg), n=0

(Lemma 4.3).
0, n>0

Then, by the exact sequence (4.4), we have H"(BY%' (X)®*) = 0(n > 2).
Moreover, we have the following commutative diagram induced from the
localization sequence and the exact sequence (4.4)

0 —— HOX, W) —— HOXp, Wil ) —— HL(X, Wiy ) —— 0

| | |

0 —— HYBN(X)") —— HYBY(X)*) —— HY(BY, (X)) —— HY(BY(X)*) — 0,

where the horizontal lines are exact (the exactness of the upper horizon-
tal line follows from Lemma 4.4) and the middle and the right vertical
arrows are isomorphisms. From this diagram, one can deduce the equali-
ties HO(Bpi'(X)*) = HO(X, Wiy ) and HY(Bp'(X)®) = 0. So we are
done. J

5. Gersten-type Conjecture (II)

In the paper [Kat3], Kato constructed a complex similar to the Bloch-
Ogus complex (which we call Kato complex) for an excellent scheme sat-
isfying certain condition. In the case where X is of characteristic p, the
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p-primary part of the Kato complex is constructed via K-theoretic method.
The aim of this section is to prove the Gersten-type conjecture for the p-
primary part of the Kato complex for schemes of characteristic p.

Let us roughly recall the definition of the p-primary part of the Kato
complex for schemes over F,. For a field k of characteristic p > 0, let
us denote the n-th Milnor K-group of k by KM (k). Denote the symbol
map KM(k)/p™ — H"(Spec ks Win Q25 pec k. 10g)» Which is characterized by
{a1,---,an} — dloga; A --- A dloga,, by h. By Bloch-Gabber-Kato
theorem ([Bl-Kat]), A} is an isomorphism. For a discrete valuation field
K with integer ring O and residue field k, let us denote by 9 the tame
symbol KM | (K) — K} (k), which is characterized by {t,a1, - ,a,} —
{a1,--- ,a,} for a; € O* and a uniformizer ¢ (where @; denotes the residue
class of a;).

Let m € N, s,¢ € Z and let X be an excellent scheme over I, satisfying
the following condition:

When s = i + 1 holds, we have [k(z) : k(x)P] < p' for any closed point
reX.

For such X, the Kato complex C;;;X (or (C52° d?... ))is defined and it

p'm7X;
pm,X
has the form

ER A s—i 1+J
X EBH (2, Win Q) — -+

IEXJ'

s—1 i+1 s—1 A
— P B @, W) — @ B (@, Wi ) — 0
zeX1 z€Xo

(where the last non-zero term is sitting at degree 0). Let us recall the defi-
nition of the boundary map of the complex. (Note that it suffices to define
in the case s = 4,7 + 1 because all the terms are equal to zero otherwise.)

First, let K be a discrete valuation field of characteristic p > 0 with
residue field k satisfying [k : kP] < p' if s = i + 1. Then we define the
homomorphism

Orck - H* 7 (K Wi g 10g) — H* 7" (B Wi Qe tog)
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as follows: When s = 7 holds, it is defined as the composite

i (R~ 3/p™
HO (K, Wi Q5L 1) K RN 2 M (k)

hi .
— Ho(k> WmQZSpec k,log)‘
When s =i+ 1 holds, it is defined as the composite

HY(K, W,, Q4! ) — HYK, W, Q! )

Spec Klog Spec K log
~ 1 0 sh i+1
= H (b HOR™ Wi )
Hl (8}%Sh E)

—’ Hl (k7 WmQépec k,log)>

where K denotes the completion of K, KM denotes the maximal unram-
ified extension of K and %k denotes the separable closure of k. Note that
the second isomorphism follows from the facts cd,(k) < 1 and H LK,
Wmﬂklog) =0.

Now let X be as above and let y € X 1,2 € X;. (Note that we have
[k(y) : k(y)P] < p"H+1 in the case s =i+ 1 ([Ku, Cor 2.6, 2.7]).) Then the
(y, x)-component

Oy + H* 7y, WonS0, 0) — H (2, W2, 1)

of the boundary map of the complex C m X is defined as follows: If z is

not contained in the closure {y} of y in X, we define 9,, = 0. If we
have z € {y}, let 7 : Y — X be the normalization of {y}, and put
S :={veY|n(v) ==x}. Then 9, is defined by

Oy = COTyv)/n(a) © Ou(y) ()

veES
where Oy x(v) is as in the previous paragraph, and Cory () k() : Hs (v,
w, Qﬁgg) — H5 7z, W, Q;Jrlf)g) is the ‘corestriction map’: In the case

s =1, it is defined as the composite

( itj )1

= (0, W25 ) 0 1 (o)) L B, ((2))

z-H

“(3‘) sS—1 7
H ™ (2, W0,
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where N/p™ is induced by the norm map N : KMJ( k(v)) — K%]( k(z))
of Milnor K-groups. In the case s =i + 1, see the following remark.

REMARK 5.1. Let m,i € Z,m > 0,7 > 0. For a finite extension
K C K’ of fields of characteristic p > 0, Kato defined in [Katl, p.658]
the corestriction map

Hl(KI7WmQépecK’ ) - HI(K’ WinSpecK,log)

;log

by using Bloch’s theory of typical part of K-groups. (Note that the group
HY(K, W,, Qi ) is denoted as P! (K) in [Katl]. See also [J-Sai-Sat].)
Let us denote the above homomorphism by Cor?}i 5+ Then the homomor-
phism Cory(,)/x(2) used in the definition of Kato complex in the case s = i+1

is nothing but the map Corm( )Jr/] (x) | in this notation.

Spec K,log

We omit the definition of Cor’ % / 5+ Here we just give some properties
which they satisfy.

(1) Let { , }x : H(K,Z/p"Z) x Ki(K)/p™ — H' (K, WnQ% ek 1og)
be the composite of the symbol map hK and the cup product,
and let a : HY(K,Z/p™Z) — HYK',Z/p™7Z), B : K;(K)/p™ —
K;(K')/p™ be the maps induced by the inclusion K C K’ of fields.
Then we have

Cory) e{a(®), y}ir = {2, N(y)} i,

Corys) e fa, B(y) i = {Cors)  (x), y}xc,

where N is the norm map of K-groups.

(2) For finite extensions K C K’ C K" of fields of characteristic p > 0,
we have the transitivity

Cor™? o Cor™ = Cor™"

K//K K///K/ K///K

(3) Let us identify H'(L,Z/p™Z) with W,,L/(1 — F)W,,L. (L= K,K')
by the isomorphism induced by the connecting homomorphism of the
exact sequence

0— Z/me I WmOSpecL ﬂ WmOSpeCL — 0.
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Then, if K ¢ K’ is separable, Cor?}(} ;18 identical with the map
WnK'/(1 — FYWp,K' — W, K/(1 — F)W,,,K induced by the trace
map W, K' — W,,K in classical sense (note that the extension
WK C W, K' is finite etale).

(4) The following diagram is commutative:

m,i
CorK,/K

Hl(K/a WmQépec K’,log) - HI(K’ Wmﬂépeﬁ KJOg)

dl gl

Corm—l,z
1 et i K'/K 1 i
HY (K W1 Qspec i 1og) — H U Win 1 Qe ¢ 1og)-

(The assertion (1) are proved in [Katl, 3.2, Lem 1], and one can check the
assertions (2), (3), (4) by looking at the definition of Cor;?}z/ 5 carefully. In
this paper, we only use the assertions (1), (2), (3) in the case m = 1.)

Let ¢,7,m,n € N and let X be an n-dimensional excellent scheme over
IF,, satisfying the following condition:

When ¢ = 1 holds, we have [k(z) : k(z)P] < p’ for any z € X©.

For such X, we denote the complex C’;;";q’i_"{—n} (that is, the com-

plex (C "y gorn )) by CLH(X)* (or (CL(X)®,d )) and

Com 32" TOR(X)
we also call it the Kato complex. The main result in this section is the
following;:

THEOREM 5.2. (Gersten-type conjecture for Kato complex). Let X be
the spectrum of an excellent reqular local ring over F), such that [k(x) :
k(z)P] = p™ holds for x € X°. Let q,i,m € N and assume that i > N holds
in the case ¢ = 1. (In this case, the complez C%'(X)* is defined.) Then we
have

HU(X, Wy Q1) (n=0),

(5.1) H™(CEH(X)*) = {0 (n>0).
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REMARK 5.3. We can see that both hand sides are zero if ¢ > 1 holds

or i > N holds. So it suffices to prove the theorem in the case ¢ = 0 and
the case (q,7) = (1, N).

Let X,q,i,m, N be as in the statement of Theorem 5.2 and suppose
either ¢ = 0 or (¢,7) = (1,N). For x € X, denote the canonical inclusion
x — X by ty. Then, for x € X*, we have the isomorphism of purity

OL08 - H (w, Wi Q05 ) — HIT (X, Wi Q1)
and it induces the isomorphism 6° : CLY(X)* — BE(X)* of each terms of
the complexes BL'(X)®, CL'(X)®. However, it is not a priori clear whether
0%’s induce the isomorphism of these complexes. The key result for the proof
of Theorem 5.2 is the following theorem, which gives a partial answer to the
above question:

THEOREM 5.4. Let X be an excellent reqular scheme over IF,, such that
[k(z) : K(x)P] = p" holds for any v € XY. Let q,i € N and assume that
either ¢ = 0 or (q,i) = (i, N) holds. Then the maps 6° : C’f’i(X)S —
B‘f’i(X)S (s € N) defined above induces the isomorphism of complezes

O (0 — BI'(X)",

where 63’1()()' denotes the complex (C’i”(X)', (_1).716%‘”()())'
1

REMARK 5.5. We expect that the maps 6% : C&'(X)* — B%(X)
(s € N) induces the isomorphism of complexes CV (X)* — B%'(X
for any m € N, where C¥'(X)* denotes the complex (CL'(X)*,
1 g
field, this claim (for general m) is stated in [G-Su, Rem 4.19], [Su, Rem 1.3]
in the case ¢ = 0 and in [Su, Rem 2.12] in the case (¢,7) = (1, N). However,
the proofs given there seem to be incomplete. In a recent work of Jannsen-
Saito-Sato [J-Sai-Sat], they give a complete proof of the claim for general
m in the case where X is a smooth scheme over a perfect field, by using a
theory of trace map in de Rham-Witt cohomology developped by Ekedahl
[E] and Gros [G]. Our proof (for m = 1 and X is excellent regular) uses
the theory of trace map for generalized residual complex by Hartshorne. It

)
).

). In the case where X is a smooth scheme over a perfect
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seems that, if we can develop a satisfactory theory of trace map in de Rham-
Witt cohomology for regular schemes which are not necessarily smooth over
a perfect field, the proof of Jansenn-Saito-Sato or us would be generalized
to the case where X is excellent regular and m is arbitrary.

Before the proof of Theorem 5.4, we give a proof of Theorem 5.2 admit-
ting Theorem 5.4:

PrOOF OF THEOREM 5.4 =—> THEOREM 5.2. By Theorem 4.1 and
Theorem 5.4, we see that Theorem 5.2 is true for m = 1. Moreover, we
have the exact sequence of complexes

0 — CP(X)" " Gl — OBy (X)" — 0

Indeed, the case ¢ = 0 follows from Bloch-Gabber-Kato theorem and the
case ¢ = 1 follows from the case ¢ = 0. Then we can prove H"(C%'(X)*) =0
for n > 0 by induction on m, using the above exact sequence. Moreover, we
have a commutative diagram

m—1

HI(X, Wi QY 0,) L HIX, Wi ) —— HI(X, Wi 1 Qo)

l l l

m—1

0 —— HICY (X)*) — HUCK(X)) ——  HACH(X)) —— 0,

where the vertical arrows are the maps induced by the restriction H9(X,

Wi log) — Drexo Hi(z, WL log) and the horizontal lines are exact.

Then, by induction on m, we can also prove the equality HO(C%'(X)*) =
HY(X, W, Q% log) (under the condition ¢ = 0 or (¢,4) = (1, N) holds). So
we are done. [

Now we fix some notations for the proof of Theorem 5.4. Fix r € N
and take points y € X"~!, 2 € X" such that z € {y} holds. For ¢ = 0 or
(g,i) = (1, N), let

a% : HZ(J]JrTil(X’ QfX,log) - H,ngT(X’ Qg(,log)’

o+ H(y, Qéﬂgl) — HI(z, Qijlgg),
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be the (y,z)-component of the boundary map of the complex B‘f’i(X) ,
CY'(X)*. To prove Theorem 5.4, it suffices to show the equality
(= )Tﬂgi};’(gl 00} =dpo 953??1

Since the homomorphisms 0% ,8% are unchanged when we localize X
at z, we may assume that X is local with closed point z. Let m: X —
X be the completion of X along z, and put 7~ '(y) = {y1,---,y}. Let
mr s HY(k(y), W0 or ) — HY(k(yi), W2 0H) (1 < i < 1) be the
homomorphism induced by 7. Then one can check that, for 7 = B, C, we

have the following equality:
!
(0F for (X,y, z Z (07 for (X, yi,z)) o).
=1

(Here we use claim 2 in the proof of Theorem 3.2, Step 2.) Hence we may
assume that X is the spectrum of a complete regular local ring with closed
point z. Under this assumption, let us denote the closure of y in X by Y.
Then Y is a one-dimensional integral closed subscheme of X.

By definition, the map 0% is the connecting homomorphism in the long
exact sequence

T H{/(Xv Qé(,log) - ng(X — % Qg(—z,log)

SN Hg+1(X, Qé{,log) —_ ...

We define a related map Jp : H;_I(X, Q%) — HI(X, Q%) as the connect-
ing homomorphism in the long exact sequence

C s HY (X, Q) — HJ(X 2, Q%) — HIPY(X, Q%) —
On the other hand, Let us define the maps
T HO(y, Qi) — BI040,

y,log
Oc + HO(y, Qi) — HL(Y, Q41

as the connecting homomorphism of the localization sequence for z — Y «
Y —z.

Now let us give a proof of Theorem 5.4 in the case where Y is regular,
that is, the case where Oy is a discrete valuation ring. First we treat the
case ¢ = O:
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PROOF OF THEOREM 5.4, Step 1: The case Y is reqular and q = 0.
First, let us prove the following claim:

CLAIM. 8% is factorized as

( O,i77'+1,10g)_1

o _a° - oy, -
HO(y, Qi r iy =S HA(Y, Qp b)) 775 T HO (2,007 ).

PROOF OF CLAIM. Let us note the following commutative diagrams

. 2, . o ghimples .
Hy, Qioy) —— HIY,Qyth)  HO(,900,) ——— HI(Y, 0yt

l I I I

i—T

i~ 5/‘ i~ i 0z;» .
HOU. 9 e V0, oo S gy i),

where the vertical arrows are induced by the inclusion (2 — Q3. Noting

*
) ?.log
the definition of 92_(_7:;511, we see that the proof is reduced to the following

claim:

Let t be a uniformizer of Oy, let y1, -+ ,yi—r € Oy and denote dlogy; A
.- Adlogyi_, by dlogy. Then we have the equality dc(dlogt A dlogy) =
—dlogt A dlogy, if we identify H}(Y, Q") with Q41 /Qi7" ! by using
t (see (3.2)).

We prove this claim. The map d¢ is induced by the distinguished triangle
(5.2) EZ(K Q;—r—i—l) N Qg/—r—i-l N Q;—T-‘rl

and the following exact sequence of complexes (of length 2) gives an acyclic
resolution of the triangle (5.2):

— incl i . roj .
0 ng r41 _ Inc Q%/ r+1@9§/ r4+1 _ProJ sz r+1 , 0

| I |

0 —— QZ_H'I s Qé"’"‘*‘l s 0 — 0.
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Here incl denotes the inclusion into the first factor and proj denotes the
projection to the second factor. The left vertical arrow is given by w — w|y
and the central vertical arrow is given by (w,n) +— w|, — 7. By using this
resolution and the snake lemma, we see that the map Do is given by n — —n.
So we are done. [

Now let us define the maps
74:i:log 1 i—r+1 ]
Oyl x, s HEPNY, Qy ) — HIT(X, Q 1og),

Byx 1 HIY, Q) — HI(X, Q).
by the composite

q+1( i,log
z

i— H Py—x,1 i
Hg+1(K Q§f7l7(;—g|;—1) - H;H_l (Y7 ETY (X7 QfX’,log))
- Hg_'_T(X’ QZX,log)v
1 imrp1y T Pvoxa) g r i r+1 i
Hz (K QY ) - Hz (YvﬁY(Xv QX,log)) - Hz (Xv QX,log)?
tively. Then, by Remark 3.13, we have f0'%% | 0p%i 1 HLlos — pailos
respectively. Then, by Remark 3.13, we have 0y x 100,y =0.0x1-
By this fact and the above claim, the theorem is reduced to showing the

. 0,1 =0 ; .
equality (—1)" 10y 5%, 0 0p = 9% o 92;:1;’?1 and then it is reduced to the

equality (—l)r_lgi/f_, X10° dc = dpo 02(_) x.1- This equality follows from the
following diagram

H®y.pl x 1)
_ 7 T

Ho(yaQZ_T—H) HO(:%EZ_I(Xv Qf){)) - H;_l(X7 QlX)v
o | | o |
. HY(Y,pb 1) 4 ‘
mi(y, ity O iy gy o)) . HI(XLO4)

(where the middle vertical arrow is also induced by localization sequence),
where the left square is commutative and the right square is (—1)""!-
commutative (the sign (—1)"~! coming from the difference of the degree).
So the proof is finished. []

Next we treat the case (¢,7) = (1, N):
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PROOF OF THEOREM 5.4, Step 2: The case Y is regular and (q,i) =
(1, N). We prove the following claim:

CLAIM. aé is factorized as

1 Nert1y =06 172 Nori1y GO N
— —Uo — z—7Y, -
H(y, Q) or ) =8 H2(Y, Qff et H(2,)00)-

PrOOF OF CLAIM. Let us consider the following diagram:

_ = _ Hl(zvao) _
H'(y, Q) —— H'(z, H(y, Q) ) ——5  H'(z,90))
%) | H
2 N—r+1 =~ 1 1 Neril Hl(z)pivg;ﬁl.log)—l . N
H2(Y, QY ) —— H'(z, HA(Y, Q) 0H) ~ HY (2,000,

(Here the left horizontal arrows are the inverse of the map induced by the
Hochschild-Serre spectral sequence.) Then the left square is commutative by
the functoriality of spectral sequence and the right square is commutative by
the claim in the case ¢ = 0. Moreover, by definition, the map 8(11 is equal to
the composite of top horizontal arrows and the map (Qiiv;?l’log)*l is equal
to the composite of bottom horizontal arrows. So the claim is proved. [

By the above claim, the theorem is reduced to the equality

—1,N,1 =1 . .
(—1)“191}4;2%1 00y =040 H;LV)I(OE Let us note that, in the diagram
51 gl,N,log
1 N-r+1 c 2 N—r+4ly Y—X1 1 N
H (y7 Qy,log ) HZ (Y7 QY,log ) H§+ (X7 QX,log)

N

_ "
HO(y, QN-r+1) 2 gy, ) 22NN gy, of)

(where the vertical arrows are defined as in 6% in Remark 3.12), the left
square is (—1)-commutative and the right square is (—1)"~!-commutative.
(The former is standard and the latter can be proved in the same way as
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Remark 3.12.) On the other hand, in the diagram

1,N,log 1

_ y—X, 8
H (y, Qi) === Hy(X, 08 ,,) —— HITH(X,0%,,)

0N 5
HO(y, Q)= =55 HTH(XL0F)

HZ(X, %),
the left square is (—1)"~!-commutative by Remark 3.12 and the right square
is (—1)-commutative. By these properties and the surjectivity of the map

HO(y, Q)Y 1) — Hl(y, Qévlggﬂ), the theorem is reduced to the claim

(—1)’"*1§¢MX71 0dc = dpo 05],_>X71 and it is already proved in Step 1. So
we are done. [

REMARK 5.6.

(1) The above proof works even if we replace 25 and €2
WmQ?lOg, respectively.

by W,,€5 and

*
?,log

(2) It seems to the author that, in the papers [G-Su] and [Su], they give
a proof of Theorem 5.4 only when Y is regular.

To give a proof of Theorem 5.4 in the remaining cases, we need to
develop a theory of trace map for generalized residual complex associated
to differential modules, based on [Ha2]. (See also [Hal, [Co].) First we give
a brief review on the trace map of generalized residual complexes which is
defined in [Hal, [Ha2] (see also [Co]).

For a Noetherian scheme X, let C.F (X) be the category of bounded below
complexes of sheaves of Ox-modules on X7z, with coherent cohomologies,
let DF(X) be the derived category of C.F (X) and let Q : CFH(X) — DI (X)
be the canonical functor. For a smooth morphism f : X — Y of Noethe-
rian schemes of relative dimension n, let f* : D (Y) — DZF(X) be the
functor Qg(/y[n] @L f*(—). For a finite morphism f : X — Y of Noetherian
schemes, let f* : D (Y) — D7 (X) be the functor f RHome, (f.Ox,—),
where f is the morphism (X, Ox) — (Y, f.Ox). Fundamental local iso-
morphism [Ha, II1.7.3] says that, if f : X — Y is a regular closed im-
mersion of pure codimension n, there exists the canonical isomorphism of
functors f” = wx/y[—n] QLLf*(-).
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The functors ff and f? satisfy several compatibilities. Here we recall
some of them:

(1) If X oy % Zisa morphism of Noetherian schemes such that f

and g are smooth (resp. finite), then we have (g o f)* = gf o f¥ (resp.
(gof) =g"of).

(2) If f: X — Y is a smooth morphism of Noetherian schemes of rel-
ative dimension n which admits a section s, we have the canonical
isomorphism id 2 s” o ff. When s is defined by a regular sequence
t1,- -+ ,1n, the isomorphism is expressed, via the fundamental local
isomorphism, as

.7:—>wY/X[—n]®Q’{//X[n]®}":sbofﬁ}";
T (A AL @dty A Adt @ .

(3) If we have the following Cartesian diagram with g smooth and h finite

Xx, Yy Moy

g/l gl
h
x sz

we have the canonical isomorphism (')’ o gf —= (g')f o h’.

(4) If X oy 9 Z be morphisms of Noetherian schemes such that f

is finite, ¢ is smooth and h := g o f is finite, we have the canonical
isomorphism of functors f” o gf 2 k. If we denote the graph of f by
v, the above isomorphism is given by the composite

(1) (3) (2)
fb ogjj it 'yb o (h/)b ogﬁ = 'yb o (g/)jj o b’ = hb,

where ¢’ and h' are as in (3).

For an equidimensional Noetherian scheme X and F* € DI (X), we
denote by E(F*®) the Cousin complex

0— P HUX.F) — P Hy(X, F?) — -,
zeX0 zeX!
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where @, yo Ho(X, F*®) is sitting at degree 0. (It is nothing but the com-
plex of Ef 0_terms of the sheafified coniveau spectral sequence.)

A residual complex (resp. generalized residual complex) on a scheme X
is a bounded below complex K*® of quasi-coherent flasque O x-modules with
coherent cohomology which admits an isomorphism @,,.7 K™ = @,y Jx
(resp. @,z K™ = (B,cx J2)" for some r), where J, denotes the sheaf
izsly, where iy : @ — X and I, is the injective hull of k(x) over Ox .
In the case where X is an equidimensional regular scheme, the complex
E(F)[n] is a residual complex (resp. generalized residual complex) if F is
an invertible sheaf (resp. a locally free sheaf of finite rank) and n € Z. We
denote the category of generalized residual complexes by Gres(X). Then,
for a morphism of Noetherian schemes of finite type f : X — Y with

Gres(Y) # (0, we can define the functor
fA2 : Gres(Y) — Gres(X)

such that f2(K*) = E(f’QK*®) holds if f is finite and f2(K®) = E(fIQK*)
holds if f is smooth. For a finite morphism f : X — Y of Noetherian
schemes with Gres(Y') # 0, let us define the morphism ps : fi f2(K®) —
K* by the composite

fofA(K®) = L] Homo, (£.0x, K*) = Homo, (£.0x, K*) = K*,
where ev is the evaluation at 1. Then we have the following theorem ([Ha,
VI1.4.2, VI1.2.1], [Ha2, p.31]):

THEOREM 5.7.

(1) For each morphism f : X — Y of finite type between Noetherian
schemes with Gres(Y') # 0, there exists a morphism

Trf:f*fA—>1

of functors from Gres(Y') to the category of graded Oy -modules (where
1 denotes the forgetful functor) such that Trgor = Try o g, Try holds
and that Try = py holds if f is finite.

(2) (Residue Theorem) Let f: X — Y be as above and assume more-
over that it is proper. Then, for any K*® € Gres(Y), the trace mor-
phism

Try: f.fAK* — K*
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is a homomorphism of complexes.

For a scheme X in the category C (for definition of C, see Section 2), the
complex E(Q%) is a generalized residual complex. Now we define, for an
lci morphism (for definition, see below) f : X — Y between schemes in C,
the trace map of the form tr; : f. B(QY™)[x] — E(Q%) (for some * € 7Z),
essentially following Hartshorne ([Ha2, I1,§2]).

First let is consider the case where f : X — Y is a smooth morphism
of relative dimension n between schemes in C. In this case, we have a
canonical map Qf{” — Q% 1y ® f *ng induced by the exact sequence 0 —
f*Q%/ — Q}X — Qg(/y
try : fE(QY™)[n] — E(Q}) as the composite

— 0. Using this map, we define the trace map

FEQEM) ] — LBy © O] = £ F2EQ)) =5 BOY).

Next let us consider the case where f : X — Y is a regular closed
immersion of codimension n between schemes in C. In this case, we have
the canonical map Q" — wy/y ® Q% which is locally defined by w
(tY A+ AR (dE, A~ - -Adty Aw), using the elements t1, - - - , ¢, € Oy defining
f. Using this map, we define the trace map try : £ E(Q")[—n] — E(Q})
as the composite

FEQ™[-n] — foE(wxy © Q)[-n] = f [P E(Q) L B(OY).

If we have morphisms X 1.y %, Z such that each of f,9,90 fis
either a smooth morphism or a regular closed immersion, we have trg.; =
trg o g«try. (This follows from Theorem 5.7 (1).) Moreover, one can see
that, if we have a Cartesian diagram

!

X -2 .x

rll
vy 9 v
with f smooth and g a regular closed immersion, we have try o gitry =

trpo fitry.
Now let us given a morphism f : X — Y between schemes in C which

admits locally a factorization X N/ AN Y, where i is a regular closed
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immersion of codimension m and g is a smooth morphism of relative dimen-
sion n. (Such a morphism is called an lci morphism.) For such f, we define
the trace map try : f.E(Q5™ ™) [n —m] — E(%) by try = try o g.tr;.
This definition is independent of the factorization and so the trace map is
well-defined: Indeed, if we have another factorization X i> A <, Y and if
we denote the morphisms X — Z xy 2/, Z xy Z' — Z, Z xy Z' — 7'
by i, p1, p2 respectively, we have

trgogitr; = trgog.try, o(gop1)stryn = try ogitrp, o(g' opa)stryr = tryogitry.
Note that the try is also factorized as

FE@QE™) 0 —m] — fuB(wx/z © Q") n —m]
— fB(wx/z © )y @ Q))[n —m]

= LAAPAEL) = LFAEL) B B,

For an lci morphism f : X — Y, the trace map try is a map of graded
sheaves and if f is proper, it is a map of complexes. (It follows from Theorem

5.7.) We can check also that, if we have a diagram X L.y £, Z such
that f and g are lci morphisms berween regular schemes in C, then so is
go [ and we have the equality tryor = try o gitry.

To apply the theory of the trace maps to the proof of Theorem 5.4,
we need to calculate them in special cases: First, we prove a coincidence
between trace map tr, and the map (931 for certain ¢:

PROPOSITION 5.8. Let X be a reqular scheme of dimension r in C, let
z be a closed point in X and denote the canonical closed immersion z — X
by ¢. Let us denote the z-component of the trace map tr,

H(z, Q") — HI(X, Q%)
by tr, .. Then we have the equality tr, . = 95,1-

Proor. We may assume X is local. We prove the proposition by
induction on 7.
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First consider the case r = 1. Let ¢ be a regular element of Ox defining
the closed immersion ¢. Then tr, . is given by the composite

Q! wx © O o Ext! (0., Q%) = ' (Hom®(Ox % Ox, 9%)
> 1 (Hom* (Ox > Ox, Yy _. — HL(X,04)))
=~ H'(Hom*(0., 0% _, — H(X,0%)))
= Hom(O., HA(X, Q%)) % H(X, 9%,

where the first map is given by w — tV ® (dt A w), the second map is the
fundamental local isomorphism of Hartshorne (corrected by Conrad), the
next three isomorphisms are the standard ones. The composite of the second
map and the next isomorphism sends ¢tV ® (dt A w) to the class of —dt A
w € Q% = Hom!(Ox L oy, Q% ), since the isomorphism of the complxes
[Hom(Ox, Q%) = Hom(Ox, Q% )] = Hom®*(Ox 4 Ox, Q%) involves the
sign —1 at degree 1 (see [Co, (1.3.15,27,28)]). By the next isomorphism, it
is sent to the class of (—dt Aw,0) € Q% @ HL(X,Q%) = Hom'(Ox 4
Ox,Q  — HLX,0%)). Now note that the boundary map Q% , —
O, @ HLY(X, Q) of Hom®*(Ox 5 Ox, Q. — HL(X, ) is defined
by n +— (—tn,—n) (via the identification H.(X, Q%) = QL _/Q% using
t), because of the sign convention in [Co, p.10] and the description of the
boundary map in localization sequence given in the proof of Theorem 5.4,
Step 1. So the class of (—dt Aw,0) € Q%@ HL(X, Q%) is the same as the
class of (0,dlogt Aw). Then, by following the above description of tr, ., we
can see that the map tr, . is given by w +— dlogt A w. So the map tr, , is
equal to the map Gf,l in the case r = 1.

Now let us prove the proposition for general r. Let us take a factorization
z — Y < X of ¢ such that the first (resp. the second) map is a regular
closed immersion of codimension 1 (resp. r — 1) and put y :=Y — z. Then

r—1

we have the following (—1)""*-commutative diagram

HO(y, Q1) 22 HL(Y, Qi)
eng,ll éi/wX,ll

HIZY(X, Q) —2 HI(X, Q)
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(where the notations are as in the proof of Theorem 5.4, Step 1). On the
other hand, we have the (—1)"~!-commutative diagram

i—r b =T
HO(y, Qi) —— HY(Y,Qy ")

trY%X,yl tch-»X,zl

_ , b
H U(X, Q%) ——

HE(X, Q)

(where try xy,try<x . are the y-component, z-component of the map
try x, respectively), since try.,x is a map of complexes E(Q% 1)1 —
r] — E(Q%). By induction hypothesis, we have H;QXJ = tryxy. S0

the above diagrams and the surjectivity of dc implies the equality §§/<_> X1=
try< x, .. Then we can see the equality
. _Z' :
‘92(—>X,1 = 9Y(—>X,1 ° 0’7'2(_7:;11 =ty x, 0tr,ey, =t x 2,

again by using induction hypothesis. So we have proved the proposition in
general case. [J

Second, we give an explicit calculation of the trace map for the map of
schemes induced by a purely inseparable extension of fields. (The author
thinks that this calculation is interesting itself.)

Let k be a field of characteric p > 0 with [k : kP] = p" < oo and let
k" be a purely inseparable extension field of k with [k’ : k] = p. We write
K =k(a),a= x}/p for some z1 € k. Let X := Speck’,Y := Specklt], Z :=
Speck and define the morphism f: X — Y,g:Y — Z by the ones in-
duced by the ring homomorphisms k[t] — k';t +— «, k < k[t], respectively.
Let us denote the composite go f by h. We would like to compute the trace
map try, : Q};, — Qz

By definition, try is defined as the composite

b ioi 9 by N A AT oT]
:f OngEth:Homk(k7Qk)—> k>

where ¢ is given by w — (t# — x1)" ® (—dz; A @) (where @ is a lift of w),
9 is the natural one and ev is the evaluation at 1. The identification (%) is
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given by the composite

. P3 .
W' /k[t] ® Qt[t]/k ® Qi} = k[t]/(tp - xl) ® Qllg[t}/k & QZ
P4 ,
= Extyy (K, Qi e © %)

¥5 .
= Homygg (K'[t], Q1 @ %)/ (E — @)

f\(} 1 e

= (Qk’[t]/k/ ®k’ Homk?(k 7Qk))/(t - Oé)
PT7 .

= Homk(k/7 Q%)’

where (3 is the map (t? —21)" QW @7 +— 1 ®w @7, @4 is the identification
via the free resolution

tP—xq

0 — k[t] — k[t] — K — 0,

w5 is the identification via the free resolution

0— K'[t] =S K[t — K — 0,
g is the natural map and 7 is the map dt ® 1 — ).
Let xo, -+ ,x; be elements of k and put dlogx := dlogzs A - - - A dlog z;.
Then we can explicitly calculate the trace map try as follows:

PROPOSITION 5.9. Let the notations be as above. Then, for an integer
L with0<I<p-—1, we have

try(o!dlog o A dlog ) = {dlogml Adlogz, 1=0,
0, [ >0.

PROOF. By the equality a'dloga A dlogz = (1/x1)a?~*da A dlog z,
we have 1 (a!dloga Adlogz) = —(tP — 21)Y Adlogzy A tP~1Hdt Adlogz =
(tP — 21)Y APt A dlogzy A dlogz. Tt is sent by 3 0 @o to tP~1Hldt ®
dlog z1 A dlogx. The map 5 o ¢4 is induced by the commutative diagram

tP—xq

0 k[t] k[t] K 0

T [

0 K] -2 kY 1% 0,
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where the first vertical arrow is given by o/ — 0(0 < j <p—2),aP 1 1
and the second map is given by o/ +— #/ (0 < j < p — 1). So the element
tP~ 1+ dt@dlog 1 Adlog  is sent, by pgops0py, to the class of tp_1+ldt®wp,1,
where 1, is the map satisfying ¥ (/) = 0 (j #Z kmod p), ¥ (a*) = dlog 21 A
dlog z. It is sent by 7 to the element ozp_l‘pr_l = 1 _; and then sent by
ev to 0 when [ # 0 and to dlogz; A dlogz when | = 0. So we are done. [

REMARK 5.10. The similar (but much more easier) calculation shows
that, for y € k, we have trp(dlogy A dlogxz) = 0. Indeed, we see that
2 0 @1 (dlogy A dlog z) = 0.

Now we can give a proof of Theorem 5.4 in the case where Y is not
regular:

PROOF OF THEOREM 5.4, Step 3: The case Y 1is not reqular and ¢ = 0.
Let m : Y/ — Y be the normalization of Y. Then, since dimY =1, Y’ is
regular and the morphism 7 is projective. Hence we can form the following
commutative diagram:

2 Y’ X’
Lo
z Y X,
where X’ := P% for some a, 2’ := 7 !(2), and the horizontal arrows are

closed immersions. Let 3’ be 7~!(y) (note that it is isomorphic to y via 7),
and put ¢ := i+ a,r’ := r + a. First, let us note the following claim:

CramM 1. Let us consider the following diagram

0,1’ log 0,i,log
1 yl X! / ! %) 7 " 2l X! j—
HOy, ity "= LN (X, 0% ) G g (X7, 105) = HY( Q0T
89 1 ) %y b (@) &l ) 89 |
. tryrexr g ’ M i) ; M trore,xr ot -
HO(y, Qi) Y e ag) P mroe,el) TEE g0 06
try’—»y,y l * trX’—»Xf,y l (9) trX’—»X.z l (*) tr::’—>z,z l
HOu i) TR Ei ey 2 HIXQY) TS A 00)
89 1 () %y 1 (@) 8.1 () 8271

90,1.]05», 90,1.10;;

HO®y, Qi rthy =5 HpUX, Q) o HI(X, Q) HO(zQN00),
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where the maps are defined as follows: The maps (59,69 9o are the ones

induced by the inclusion €2 — 3. For a morphism ¥; — Y5 and a

*
?.log
point y2 € Ya, try, v, 4, is the map defined as the ys-component of trace

map for Y; — Ya. (%), (dp) are the maps 9%, dp for (X',y/,2'). Then

the squares other than (#) is commutative and the square (#) is (—1)%-
commutative.

PROOF OF CrLAIM 1. The commutativity of the squares (©) is obvi-
ous. The commutativity of the squares (<) is proved as follows (we discuss
only the commutativity of the lower right square): By Proposition 5.8, we
have tr,.x . = 02<_>X71, Then the commutativity follows from the claim
in Remark 3.12. The commutativity of the squares (&) follows from the
transitivity of trace maps. Finally, The (—1)%commutativity of the square
(#) follows from the fact that the trace map is a map of Cousin complexes
E(Q%))[a] — E(), because X' — X is proper. [J

Let us denote the maps 9%,02 for (X', y/,2") by (9%)', (0%)'. Since Y’
is regular, we have
100, 1 0,i',]
(—1)7 05719 o (80) = () 0 0%,
By using the diagram in claim 1 and the fact that ¢ is isomorphic to y, we

can deduce the following equality:

(5:3)  (~1)tracxsotra .. 06% 0 (92) = 6% 0 9 0 6)1E,.

Now let us admit the validity of the following claim for the moment:

CramM 2. The following diagram is commutative:

HO(2, Q57 ) N HO(Z,Q57)
Corﬁ(z/)/n(z)l trzuz,zl
HO(z, Q00 ) —2 HOz,007),
where Cor(,/) /(2 is as in the definition of Kato complex.
Then the left hand side of the equation (5.3) can be rewritten as follows:
LHS of (5.3) = (—=1)"tr,.x.. 06800 Cory(2r) /n(2) © (92

_ r <0 0,,log 0
=(-1)"6x.0 02(—>X,1 o dc-
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So we obtain the equality
(—1)%25&}%1 0 9¢ = ‘9233}())(%1 ° J.
Hence it suffices to prove the above claim to finish the proof in this case.

Proor or CraiM 2. It suffices to prove the following: Let K be a
field of characteristic p > 0 and let K’ be a finite extension of K. Then the
following diagram is commutative:

HOK', Qs 1) — HOK', Q%))

cur| o

HY(K, Qe ) —— HY(K,Q%),

where Cor, tr denotes the corestriction map and the trace map respectively,
and the horizontal maps are induced by the inclusion Q’ilog — Q. Since
both Cor and tr satisfy the transitivity, we may assume that K'/K is sep-
arable or K'/K is purely inseparable of degree p.

First let us consider the case that the extension K’/ K is separable. Then
there exists a Galois extension K C L such that K’ @k L = [T;—; L holds
for some n € N. Note that both Cor and tr are compatible with base change
by the morphism Spec L. — Spec K (in the case of Cor, it follows from the
compatibility with base change of norm maps of K-groups, and in the case
of tr, it follows from the definition). Then we may replace the extension
KCcK byLCcK'®g L= [T}, L to prove the claim in separable case,
that is, it suffices to show the commutativity of the following diagram:

@?:1 HO(LﬂgiL,log) - @?:1 HO(ngiL)

cor| o

HO(L7Q2,log) - H()(L?QZL)

But it is trivial, since both Cor and tr are equal to the map ‘taking sum’.
Next, let us consider the case where K’/ K is purely inseparable of degree
p. By the argument in the previous paragraph, we may replace K by its sep-
arable closure. In this case, it is known ([Ba-Ta]) that KM(K’) is generated
by the elements of the form {z1,---,z;}, where 1 € K',x9,--- ,1; € K.
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By Bloch-Gabber-Kato theorem, it suffices to show the following equality
to prove the claim:

tr(dlogazy A--- Adloga;) = Ry o N({x1,- -+, 2i}),

where N is the norm map of K-groups. By Proposition 5.9 and Remark
5.10, the left hand side is equal to dlogz] A dlogzsy A - -+ A dlog z;, and we
can calculate the right hand side as follows:

teo N({wy, -, 2;}) = By ({ah, 29, --- ,2;}) (projection formula for N)
= dlogz! Adlogzy A - -+ A dlog z;.

Hence the assertion is proved. [

Since the claim is proved, the proof of Theorem 5.4, Step 3 is finished. [

Finally we treat the remaining case.

PROOF OF THEOREM 5.4, Step 4: The caseY is not reqular and (q,i) =
(1, N). First we prove a technical claim on logarithmic Hodge-Witt coho-
mology:

Cram 1. Let k be a field of characteristic p > 0 with [k : kP] = p'.
Let x1,--- ,x; be a p-basis of k and put dlogx := dlogxy A--- Adlogz;. Let
a € N and put ko := k", K := k((t)). Then the homomorphism

Hl(ky,2/p™Z) — HY(K, Qj;;llog); y — ydlog t A dlog x
is surjective.

PROOF OF CLAIM 1. Since we have the isomorphism H!(K, Q?—llog) =
Q1 /(C = 1)Q5 it suffices to prove the following; Any element in QL
has the form ydlogtAdlog x (y € ko) modulo (C' — 1)9?1. (See also Remark
2.11.)

First let us prove the weaker assertion which claims that any element
in Q%! has the form ydlogt A dlogz (y € k) modulo (C — 1)QL!. For an
integer [ > —1, let us define H; C Q’]}H by

H; = {Z a;t!dlogt A dlogz | a; € k}.
==l
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Then we have (J;s | H; = Qi}"l. Since we have the equality

C( Z a;t’dlogt A dlog ) = Z b;t!/Pdlogt A dlog z
==l Jj=—l
plj

for some b; € k (j > —1,p[j), we have CH; C H;—y for I > 0 and CHy C Ho.
So, for any w € QZI'(H, we have

-1
w=Clw—(C-1)()_ Chwe Hy+ (C — 1O

J=1

for sufficiently large I. Since we have Hy = {ydlogtAdlogz |y € k}+H_1, it
suffices to show the inclusion H_; C (C'—1)H_1. Let us prove it. Note that
there exists an additive homomorphism D : k — k such that D(2P) = x
holds and that, for any w = Zj ajtjdlogt Adlogzx € QZH, we have the
equality (C — Dw = > ;(D(ap;) — aj)t/dlogt A dlogz. For any element
ni= i bjt'dlogt Adlogx € H_y, let us define a; € k (j > 1) inductively
as follows:

a: = {07 (j?p):]~7
’ (bj/p + aj/p)p7 plj.

Putw=73"5; ajt’dlogt A dlogz € H_1. Then we have

(C—1Nw= Z(D(apj) — a;)t/dlogt A dlog x
Jj=1

= Z((bj +aj) — a;)t/dlogt A dlogz = .
i>1

Hence we have H_1 C (C'— 1)H_1. So the weaker assertion is proved.
Now we prove the claim. By the result in the previous paragraph, it

suffices to prove that any element in Q?l of the form zdlogtAdlogz (z € k)

has in fact the form ydlogt A dlogz (y € ko) modulo (C — 1)Q5!. Write 2

as
p?—1
a

z= Z b7PZL1~~~ni$rlll o x?l (bnlm € k)

ni,-,n;=0
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and put

a

p*—1
boo..0 = g o xlt (Cnyony € K).

ny,,n;=0

Let d be byo...o — cggmﬂ. Then we have

zdlogt Adlogz + (C — 1)(C*t 4 -+ + C 4+ 1)((z + d)dlog t A dlog z)
= zdlogt A dlogz + (C* — 1)((z + d)dlog t A dlog z)
= (2 + bpo..o — z — d)dlog t A dlogz = by _,dlogt A dlog .

Hence we obtain the assertion. (J

Now let us begin the proof of the theorem. Let the notations be as in
Step 3 and put N’ := N + a. Then we have the following claim:

CrLAIM 2. Let us consider the following diagram

1,N’ log 1,N,log
o Y X, / ’ (0g) ! ’ 2/ X!, —r
Hl(y,ﬁggjj\{,log—l) U_{\ ' H;’(X/WQJ)\([’,]og) _B> Hz’+1(X,7Q%"log) (_\ l Hl(zl’ﬂi\'/.log)
547 Ot oy T ) 81 (O 8L 1
le X!yl ’ / dp)’ ’ ’ e, xr ot _
HO(y/7QZIJ\f—r+1) "y_,\'y H;,_l(X/,Q%,) (d_m, H;,(X',Q%,) '_(__\' Ho(z’,ﬂi\,’ )
try yy | trxoxy | (_‘) trxxz | trozz ]
HO@ Q)+ M= omlned) 2B mnxed)  TEE 0N
51 (©)r-1 syl @ 6k. 1 (O)r 6|
- 6,255 . o} 6.0 -
H](y"Q;\,Ilog+l) J_X>l HL(X7 Q%.log) — H§+1(X’ Q%,log) <—\l HO(ZTQQIIOQ)?

where (%)’ is the map 9} for (X', 4/, 2’) and the maps 6}, 61 ,, are the ones
defined as the composite of the homomorphism of cohomoloéies induced by
the projection

WinS¥s — W5 /dv™ o™t

and the connecting homomorphism of the exact sequence
0 — WS 105 — WinQ2 =5 Wy Q3 /dV™ 1051 — 0.

(The other maps are defined as in Step 3.) Then the squares (©) are (—1)-
commutative, the square (¢); is (—1)'-commutative (I = r — 1,7, —1,7'),
the square (#) is (—1)%-commutative and the other squares are commuta-
tive.
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PROOF OF CLAIM 2. The (—1)!-commutativity of the squares (<{>); and
the (—1)-commutativity of the squares (©) follow from Proposition 5.8,
Remark 3.12 and the results in the proof of Theorem 5.4, Step 2. The
(—1)%commutativity of (#) and the commutativity of the other squares
are proved in Step 3, claim 1. [J

Let ¢t be a uniformizer of Oys. Then we have Oy, = k(2/)[[t]]. Let
x1, -+ ,x; be a p-basis of k(2') and put dlogz := dlogx; A --- A dlog ;.
Denote the separable closure of £(2) in k(2’) by k. Now define V' C Qé\,[_”l
by V := {bdlogt A dlogx |b € k}. Then, by claim 1, the homomorphism
6;,]‘/ :V — HY(y/, Q;},ﬁorg“) is surjective.

Let 1 be an element in H'(y/, Qé\ﬁorgﬂ)(: Hl(y, Qé\ﬁggﬂ)) and take an

element a € k satisfying 5;,(adlogt Adlogz) = n. Then, by the results in
the proof of Theorem 5.4, Step 2 and Proposition 5.8, we have the following
equality:

(Op)" oty x, (adlogt A dlog =)
= (—1)r/*1§)]\/]/(ﬁX/’1 o (0c)'(adlogt A dlog z)
= (—1)TI§¢/_)X/71(adlogt A dlog x)
= (=1)"00_x 1 (adlogz) = (=1)" trorxr s (adlog ).

By using the upper three squares of the diagram in the claim 2, we can

deduce the equality (—1)" (9})’ o@i}ﬂ}?gl (n) = ei;ﬁ'gl(‘igl 06}, (adlog z). From

this and the main result in Step 2, we deduce the equality
(5.4) 8% (adlog z) = (98)'(n).

On the other hand, by using the diagram in claim and the fact that 3 is
isomorphic to y, we can deduce the following equality:

(5.5) (1) 05 00, % (n) = 023% 0 81 ot . (adlog ).
Now assume for the moment that we have the equality
6L otry_, ,(adlogz) = Corye(z1) /() © 61 (adlog ),

where
Corm(z’)/n(z) : HY (Z/, Q- ) — H! (z, QNﬁr)

2! log z,log
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be as in the definition of Kato complex. Then the right hand side in the
equation (5.5) can be rewritten as follows:

RHS of (5.5) = Hiiv)l(?% 0 Cory(21)/n(z) © 61, (adlog 2)
= 0,70% 0 Cory(ar ju(z) 0 (O8) () = 071575 0 0B (m).

So we have the desired equality (—1)"9% o 9;£;§g1 — 01N 0 9L, So the

proof of the theorem is reduced to the following claim:

CrAamM 3. Let K be a field of characteristic p > 0 with [K : K?] = p
and let K’ be a finite extension of K. Let Ky be the separable closure of K
in K'. Let us consider the following diagram (Attention: we do not know
the commutativity):

HO(KCQZ‘K’) l} Hl(K/aQ%’
trK,/KJ/ COI“K//Kl

HOYK, Q) —" HYK,Q.),

,log)

where trg/ /i, Corg/ /i denotes the trace map and the corestriction map
(the map Cor}?, K in the notation in Remark 5.1) respectively, and the

homomorphism 7 (? = K, K') is defined as the composite of the homomor-
phism H(?,Q%) — HO°(?,Q/d0Q5") induced by the natural projection
and the connecting homomorphism associated to the exact sequence

0— QZ:’,log - Q}? E Z7/dQ}771 — 0.

Let x1,--- ,2; be a p-basis of K’ and put dlogz := dlogxz A --- A dlog z;.
Then, for a € Ky, we have the equality

VK o trgr i (adlog z) = Corg i o yi(adlog x).

ProoF orF CrAM 3. It suffices to prove the following two assertions:

(1) When K'/K is purely inseparable, we have the equality

YK o trgr /i (adlog z) = Corgr i o i (adlog x).
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(2) When K'/K is separable, we have v o trg: /g = Corgr /g 0 Ve

First we prove the assertion (1). We may assume that x; is not contained
in K. Put K" := K(2!,29, -+ ,2;). Then o} za, -+ ,x; forms a p-basis
of K”. By induction on [K' : K], it suffices to prove the following two
equalities:

(5.6) trgr kv (adlog z) = adlog 2 A dlog zp A - - - A dlog ;.

(5.7) Y o trgr g (adlog z) = Corgr g 0 g (adlog x).

The equality (5.6) follows from Proposition 5.9 and the K”-linearity of
Trgs k. Let us prove the equality (5.7). We denote the class of a in
K"/(1 — FYK" = HY(K",Z/p™Z) by @. Then, in the notation in Remark
5.1, we have

LHS of (5.7) = {a, {x?, X9, - 7$i}}K”-
On the other hand, we can calculate the right hand side as follows:

RHS of (57) = COI'K//K//{CX(E), {3317 o 7$i}}K/ = {67N{x17 e 7xi}}K”

={a,{z],z2, -+ ,z;}}k» (projection formula).

Hence the equality (5.7) is proved and the proof of the assertion (1) is
finished.

Next let us prove the assertion (2). Let y1,--- ,y; be a p-basis of K and
put dlogy := dlogyi A --- A dlogy;. Then, since y1,--- ,y; forms a p-basis
of K', any element of HY(K’,Q%.,) has the form adlogy (a € K'). Let L
be the Galois closure of K'/K and put G := Gal(L/K), H := Gal(L/K’).
Then we have L @ K' = HTeG/H L. Note that we have the commutative
diagram with injective horizontal arrows

HO(K' Q) —— @, HO(L.2)
trK’/Kl 0 o/ L)/Ll

HO(K, Q) ——  H(L,Q),
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and the homomorphism tr(fy 1)/ is nothing but the summation. Hence

T€G/H
we have
(5.8) trg k(W) = Z T(w).
TeG/H
So it suffices to prove the equality
(5.9) Corer/ic (vx(adlog y)) = vk (( ) 7(a))dlogy).
T€eG/H

In the notation of Remark 5.1, we have v/ (adlogy) = {@, 5({y1, -
Yi})} k. So we have

LHS of (59) = COI‘K//K{E,Q({yl, s 7yi})}K’
- {COI‘}%EJ/K(E), {ylv e 7y2}}K
={ Z 7(a),{y1, - ,vi}}k (Remark 5.1)

TeG/H
— RHS of (5.9).

So the assertion (2) is proved and so the proof of the claim is finished. O

Since the claim 3 is proved, the proof of Theorem 5.4, Step 4 is finished. [

Since we have given the proof of Theorem 5.4 in all the cases, the proof
of Theorem 5.4 is now completed.
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