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On Logarithmic Hodge-Witt Cohomology

of Regular Schemes

By Atsushi Shiho

Abstract. In this paper, we prove the purity of the logarithmic
Hodge-Witt cohomology for an excellent regular pair of characteristic
p > 0 and the Gersten-type conjecture for the p-primary part of the
Kato complex (the arithmetic Bloch-Ogus complex) of the spectrum
of an excellent regular local ring of characteristic p > 0. They are
generalizations of results of Gros and Suwa to regular schemes which
are not necessarily smooth over a perfect field.
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1. Introduction

Let p be a prime. In this paper, we prove the following two theorems con-

cerning the logarithmic Hodge-Witt cohomology of regular schemes: First,

we prove the purity for the logarithmic Hodge-Witt cohomology of an excel-

lent regular pair Z ↪→ X of characteristic p. Second, we prove the Gersten-

type conjecture for the p-primary part of the Kato complex (the arithmetic

Bloch-Ogus complex in [Kat3]) of the spectrum of an excellent regular lo-

cal ring of characteristic p. The first theorem is proved by Gros and Suwa

([G], [Su]) in the case of smooth pairs over a perfect field and the second

theorem is also essentially proved by them ([G-Su]) when the spectrum in

consideration is the localization of a smooth scheme over a perfect field of
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characteristic p > 0. (See also a recent work of Jannsen-Saito-Sato [J-Sai-

Sat].) So, our result is a generalization of their results and the proof is done

by reducing to them.

Let us explain our theorems briefly. Fix a non-negative integer N and

let X be an equidimensional excellent regular scheme of characteristic p

such that [κ(x) : κ(x)p] = pN holds for any generic point x of X. Then we

can define the logarithmic Hodge-Witt sheaf WmΩj
X,log (see Section 2). It is

expected that there exists the following canonical isomorphism for a regular

closed immersion Z ↪→ X of pure codimension r

Hq(Z,WmΩi−r
Z,log)

∼−→ Hq+r
Z (X,WmΩi

X,log)

in the case q = 0 or q > 0, i = N . (This does not hold in the case q >

0, i �= N . See [G, p.45, p.48].) In this paper, we prove this expectation

(which is called purity) is true. It is known when Z ↪→ X is a smooth pair

over a perfect field (Gros [G, II,Thm 3.5.8, (3.5.19)], Suwa [Su, Cor 2.6]).

Note also that the similar theorem in the case of l-adic etale cohomology is

already known ([SGA 4] in smooth case, [F1] in equicharacteristic case and

[F2] in general case).

Next we explain the Gersten-type conjecture for Kato complex. For

a field k of characteristic p, we have the logarithmic Hodge-Witt sheaf

WmΩi
Spec k,log. On the other hand, let KM

i (k) be the Milnor K-group of

k. Then, by Bloch-Gabber-Kato theorem, the symbol map induces the iso-

morphism

KM
i (k)/pm ∼−→ H0(k,WmΩi

Spec k,log).

Moreover, there is an interpretation of the first cohmology group

H1(k,WmΩi
Spec k,log) in terms of the typical part of K-groups introduced

by Bloch. ([Bl], [Kat1]. See also [J-Sai-Sat].) So there is a close relation

between the logarithmic Hodge-Witt cohomologies and K-groups.

Let m ∈ N, s, i ∈ Z and let X be an excellent scheme over Fp satisfying

the following condition:

(∗) When s = i + 1 holds, we have [κ(x) : κ(x)p] ≤ pi for any closed

point x ∈ X.
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For such X, Kato defined in [Kat3] the complex of the form

Cs,i
pm,X : · · · −→

⊕
x∈Xj

Hs−i(x,WmΩi+j
x,log) −→ · · ·

−→
⊕
x∈X1

Hs−i(x,WmΩi+1
x,log) −→

⊕
x∈X0

Hs−i(x,WmΩi
x,log) −→ 0

(where the last non-zero term is sitting at degree 0) by using K-theoretic

method. This complex can be regarded as a generalization of the p-primary

part of the Hasse principle for a funtion field to higher dimensional case.

(In fact, Kato defines the complex Cs,i
n,X for any n ∈ N and for any excellent

scheme X satisfying the condition similar to (∗).) He gave conjectures on

the cohomology of the complex Cs,i
n,X (particularly in the case s = i+1) and

proved them in certain cases. (For the precise form of the conjectures and

the known results, see [Kat3], [CT-Sa-So], [CT], [Sai2], [J-Sai] and a recent

work of Jannsen-Saito.)

Now let us fix non-negative integers n,N with n ≤ N and assume more-

over that X is of pure dimension n satisfying [κ(x) : κ(x)p] = pN for any

generic point x of X. In this case, we denote the shift by −n of the complex

Ci−n+q,i−n
pm,X by Cq,i

m (X)•. (By the condition (∗), it is defined and non-zero

only if q = 0 or (q, i) = (1, N).) The complex Cq,i
m (X)• is regarded as the

analogue of Brown-Gersten-Quillen complex in algebraic K-theory. So, as

an analogue of Gersten conjecture, one can expect that the following claim

is true: Assume moreover that X is the spectrum of an excellent regular

local ring. Then we have

Hr(Cq,i
m (X)•) =

{
Hq(X,WmΩi

X,log), r = 0,

0, r > 0.

In this paper, we prove that this claim is true (when q = 0 or (q, i) = (1, N)

holds).

Let us explain the method of the proof. The key ingredient for the proof

of the purity is the following two propositions: The first one is a result

of Popescu ([Po1], [Po2], [Po3], [Ogo]) which says that any regular local

ring of characteristic p > 0 can be written as a filtering inductive limit of

finitely generated smooth algebras over Fp. (This is used by Panin [Pa] to

prove the equicharacteristic case of the Gersten conjecture for K-theory.)
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The second one is the proposition which claims that a regular scheme X

such that the absolute Frobenius OX,x −→ OX,x is finite for any point

x ∈ X is, flat relatively perfect locally, isomorphic to an affine space over

Fp. (See Definition 2.14 and Remark 2.16.) Using the first proposition, we

can reduce the proof of purity for q = 0 to the smooth case. With some

more calculation using the second proposition, we can prove the purity for

q > 0, i = N .

The key to the proof of the Gersten-type conjecture for Kato complex

is the Bloch-Ogus complex (denoted by Bq,i
m (X)•)

0 −→
⊕
x∈X0

Hq
x(X,WmΩi

X,log) −→
⊕
x∈X1

Hq+1
x (X,WmΩi

X,log) −→ · · ·

−→
⊕
x∈Xs

Hq+s
x (X,WmΩi

X,log) −→ · · · ,

which is defined as the complex of E•,q
1 -terms of the coniveau spectral se-

quence ([Bl-Ogu], see also [CT-Ho-Kah])

Es,t
1 =

⊕
x∈Xs

Hs+t
x (X,WmΩi

X,log) =⇒ Es+t = Hs+t(X,WmΩi
X,log).

First we prove that the Bloch-Ogus complex satisfies the Gersten-type con-

jecture: In the case where X is a localization of a smooth scheme over a

perfect field, it is due to Gros-Suwa ([G-Su, Thm 1.4]). In general case, we

prove it by using a technique of Panin in [Pa]. Via the purity theorem which

we already proved, each term of Kato complex Cq,i
m (X)• is isomorphic to that

of Bloch-Ogus complex Bq,i
m (X)•. So we expect that the purity isomorphism

induces an isomorphism of complexes Cq,i
m (X)•

∼−→ Bq,i
m (X)• up to sign. (If

it is true, then the Gersten conjecute for Kato complex is true.) This expec-

tation means the coincidence between the K-theoretically defined complex

Cq,i
m (X)• and the sheaf-theoretically defined complex Bq,i

m (X)•, and so we

think it is interesting itself. Gros-Suwa ([G-Su, Rem 4.19]) and Suwa ([Su,

Rem 1.3, 2.12]) claimed that this is true for smooth X, but their proofs seem

to be incomplete. Recently, Jansenn-Saito-Sato have given a complete proof

for smooth X, by using the trace map for logarithmic de Rham-Witt coho-

mology developped by Ekedahl ([E]) and Gros ([G]). In this paper, we prove

that this expectation is true for m = 1 and excellent regular X, by using the

trace map for generalized residual complex developped by Hartshorne ([Ha],
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[Ha2]). This result is sufficient to deduce the Gersten-type conjecture for

the Kato complex. If we can develop a satisfactory theory of trace maps for

logarithmic Hodge-Witt cohomology for regular schemes, we will be able to

prove the coincidence (up to explicit sign) of the Bloch-Kato complex and

the Kato complex for arbitrary m and excellent regular X. We hope to do

it in a future paper.

The results in this paper seem to be useful if one would like to study

the arithmetic of the spectrum of excellent regular rings of characteristic

p > 0 or smooth schemes over them. In fact, it seems to the author that

our results were already used, for example, in [Sai1]. They are used also in

[Ma].

The content of each section is as follows: In Section 2, we give a review

of the de Rham-Witt complex and the logarithmic Hodge-Witt sheaf. We

extend some basic properties of them to the case of regular schemes. In

Section 3, we give a proof of the purity. In Section 4, we give a proof of

the Gersten-type conjecture for the Bloch-Ogus complex. In Section 5, we

compare the Bloch-Ogus complex and the Kato complex and deduce the

Gersten-type conjecture for the Kato complex.
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Notation. Throughout this paper, p will be a fixed prime, unless oth-

erwise stated. For integers a, b, we denote the set {n ∈ Z | a ≤ n ≤ b}
simply by [a, b]. For a scheme X, we denote the set of points of codi-

mension i (resp. dimension i) by Xi (resp. Xi). For a scheme X over

Fp, we denote the differential module Ωi
X/Fp

simply by Ωi
X and we denote
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Ker(d : Ωi
X −→ Ωi+1

X ) simply by ZΩi
X . For a complex C := (C•, d•), we de-

note the complex (C•+n, (−1)nd•+n) by C[n] and the complex (C•+n, d•+n)

by C{n}. A diagram of (sheaves of) abelian groups of the form

A
f−−−→ B

f ′
� g

�
C

g′−−−→ D

is said to be (−1)n-commutative (n ∈ Z) if we have g◦f(a) = (−1)ng′◦f ′(a)
for any a ∈ A. Sheaves are considered on small etale site unless otherwise

stated. (Note that the exceptions occur in Section 5.)

2. Preliminaries

In this section, we give the definition of the logarithmic Hodge-Witt sheaf

for a regular scheme of characteristic p and prove some basic properties of

the de Rham-Witt complexes and the logarithmic Hodge-Witt sheaves of

regular schemes. The results in this section are known in the case of smooth

schemes over a perfect field. So our task is to extend them to the regular

case by reducing to the smooth case.

First, let us recall two results which are important when we try to reduce

the propositions to the smooth case. The first one is the following theorem

of Popescu ([Po1], [Po3], [Ogo]):

Theorem 2.1 (Popescu). Any regular local ring R of characteristic p

can be written as a filtering inductive limit lim−→ λRλ of finitely generated

smooth algebras over Fp.

The second one is the following theorem of Grothendieck ([SGA 4,

VII,Thm 5.7],[Pa, Thm 6.6]):

Theorem 2.2. Let X be a Noetherian scheme and let {Xi}i∈I be a

filtering projective system of Noetherian schemes such that each transition

morphism is affine and that X = lim←− i∈IXi holds. Let us denote the canon-

ical projection X −→ Xi by ϕi. Let {Fi} be a compatible system of sheaves

on {Xi,τ} (where τ = Zar or et), and put F := lim−→ i∈Iϕ
−1
i (Fi). Then we
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have the isomorphism

Hj(Xτ , F )
∼
= lim−→ i∈IH

j(Xi,τ , Fi).

For a scheme X of characteristic p, let WmΩ•
X be the de Rham-Witt

complex of X. The degree 0 part WmΩ0
X is written by WmOX and it is called

the sheaf of rings of Witt vectors of OX . Let WmX be the Witt scheme

(that is, the ringed space (|X|,WmOX)). It is known that WmΩi
X is a quasi-

coherent WmOX -module for any i. For x ∈ OX , let x := (x, 0, · · · , 0) ∈
WmOX be the Teichmüller representative.

Denote the differential WmΩi
X −→WmΩi+1

X by d and let

F : WmΩ•
X −→Wm−1Ω

•
X , V : WmΩ•

X −→Wm+1Ω
•
X ,

R : WmΩ•
X −→Wm−1Ω

•
X

be Frobenius, Verschiebung and the projection of W•Ω•
X , respectively. The

Frobenius operator induces the endomorphism WmOX −→ WmOX , which

we denote also by F . For precise definition and the basic properties of

WmOX , WmΩ•
X , F, V,R, see [I].

For m,n ∈ N, the canonical filtration FilnWmΩ•
X of WmΩ•

X is defined

in the following way:

FilnWmΩ•
X :=



WmΩ•

X , if n = 0,

Ker(Rm−n : WmΩ•
X −→WnΩ•

X), if 1 ≤ n < m,

0. if n ≥ m.

Then we have the following proposition (cf. [I, I.3.2]).

Proposition 2.3. Let X be a regular scheme over Fp. Then we have

the equality

FilnWmΩi
X = V nWm−nΩi

X + dV nWm−nΩi−1
X .

Proof. It is easy to see that the right hand side is contained in the

left hand side. Let us prove the converse. To prove it, we may assume that
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X is strictly local. Let {Xj}j∈J be a projective system of affine schemes

which are smooth over Fp satisfying X
∼
= lim←− j∈JXj . (The existence of such

a system is assured by Theorem 2.1.) Then, by Theorem 2.2, we have

H0(X,FilnWmΩi
X)

∼
= lim−→ j∈JH

0(Xj ,FilnWmΩi
Xj )

∼
= lim−→ j∈JH

0(Xj , V
nWm−nΩi

Xj + dV nWm−nΩi−1
Xj

)

∼
= H0(X,V nWm−nΩi

X + dV nWm−nΩi−1
X ),

since the assertion is known in smooth case ([I, I.3.2]). Hence we obtain the

assertion. �

We put grnWmΩi
X := FilnWmΩi

X/Filn+1WmΩi
X . Then it is easy to see

the equality grnWmΩi
X = FilnWn+1Ω

i
X . Concerning the structure of it, let

us recall the following result of Illusie ([I, I.3.9]):

Proposition 2.4. Let X be a smooth scheme over a perfect field and

let n, i ∈ N. Let us regard grnWmΩi
X = FilnWn+1Ω

i
X and FilnWn+1Ω

i
X/

dV nΩi−1
X as OX-modules by (a, ω) �→ ϕ(a)ω, where ϕ is the composite OX =

Wn+1OX/VWn+1OX
F−→ Wn+1OX/pWn+1OX . Then they are locally free

OX-module of finite type.

Later in this section, we extend the above proposition to certain regular

schemes. (See Proposition 2.20.)

Next, for a scheme X over Fp, let C−1 : Ω•
X −→ H•(Ω•

X) be the Cartier

inverse homomorphism, that is, the homomorphism of graded algebras char-

acterized by the following properties:

(1) C−1(aω) = apC−1(ω) (a ∈ OX , ω ∈ Ω•
X).

(2) C−1(dx) := [xp−1dx] (x ∈ OX), where [?] denotes the class of ?.

In the case where X is smooth over a perfect field, it is well-known that

C−1 is an isomorphism. We can extend it to the regular case:

Proposition 2.5. If X is a regular scheme over Fp, the Cartier in-

verse homomorphism C−1 is an isomorphism.

Proof. We may assume that X is strictly local, and in this case, we

can reduce to the smooth case by using Theorems 2.1, 2.2. The detail is left

to the reader. �
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For a regular scheme X over Fp, we define the Cartier homomorphism

C : H•(Ω•
X) −→ Ω•

X by C := (C−1)−1. We denote the composite

ZΩi
X −→ H i(Ω•

X)
C−→ Ωi

X

also by C, by abuse of notation.

Next we recall the definition of the logarithmic Hodge-Witt sheaf (the

logarithmic part of the de Rham-Witt sheaf) and prove some exact se-

quences which we need later.

Definition 2.6. Let X be a scheme over Fp and let i,m ∈ N. Then

we define the logarithmic Hodge-Witt sheaf WmΩi
X,log by

WmΩi
X,log := Im(s : (O×

X)⊗i −→WmΩi
X),

where s is defined by

s(x1 ⊗ · · · ⊗ xi) := dlog x1 ∧ · · · ∧ dlog xi.

(Here Im is considered in the category of sheaves on Xet.) We denote

W1Ω
i
X,log simply by Ωi

X,log.

This definition is the naive generalization of that in [I], where the loga-

rithmic Hodge-Witt sheaves are studied in the case of smooth schemes over

a perfect field.

The following lemma is a generalization of [I, I.3.3] to the regular case:

Lemma 2.7. Let X be a regular scheme over Fp. Then the Frobe-

nius operator F : Wm+1Ω
i
X −→ WmΩi

X induces the homomorphism F :

WmΩi
X −→ WmΩi

X/dV m−1Ωi−1
X . (We will denote this homomorphism also

by F.)

Proof. This is clear by Proposition 2.3 and the equations

FV mΩi
X = pV m−1Ωi

X = 0, FdV mΩi−1
X = dV m−1Ωi−1

X . �

The following exact sequence is a generalization of [CT-Sa-So, §1,

Lemme 2] to the regular case:
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Proposition 2.8. Let X be a regular scheme over Fp and let i,m ∈ N.

Then we have the exact sequence

0 −→WmΩi
X,log −→WmΩi

X
1−F−→WmΩi

X/dV m−1Ωi−1
X −→ 0.

Proof. We may assume that X is strictly local, and in this case, we

can reduce to the smooth case by using Theorems 2.1, 2.2. In smooth case,

the proposition is proved in [CT-Sa-So, §1, Lemme 2]. �

Let W•Ωi
X,log, W•Ωi

X be the pro-objects {WnΩi
X,log, R}n∈N, {WnΩi

X ,

R}n∈N, respectively. Then we have the following corollary:

Corollary 2.9. With the notation above, the following sequence of

pro-sheaves is exact:

0 −−−→ W•Ωi
X,log −−−→ W•Ωi

X
R−F−−−→ W•Ωi

X −−−→ 0.

Proof. The assertion follows from the proposition and the fact that

the natural projection W•Ωi
X −→ W•Ωi

X/dV •−1Ωi−1
X is an isomorphism as

a homomorphism of pro-sheaves. �

The following exact sequence, which is well-known in the smooth case

([I]), is also useful:

Proposition 2.10. Let X be a regular scheme over Fp. Then we have

the following exact sequence:

0 −−−→ Ωi
X,log −−−→ ZΩi

X
C−1−−−→ Ωi

X −−−→ 0.

Proof. We may assume that X is strictly local, and in this case, we

can reduce to the smooth case by using Theorems 2.1, 2.2. �
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Remark 2.11. As for the relation between the exact sequence in

Proposition 2.8 and that in Proposition 2.10, we have the following commu-

tative diagram

0 −−−→ Ωi
X,log −−−→ Ωi

X
1−F−−−→ Ωi

X/dΩi−1
X −−−→ 0∥∥∥ 
 C−1



0 −−−→ Ωi

X,log −−−→ ZΩi
X

C−1−−−→ Ωi
X −−−→ 0,

where the upper (resp. the lower) horizontal line is the exact sequence in

Proposition 2.8 for m = 1 (resp. Proposition 2.10) and the middle vertical

arrow is the canonical inclusion.

We also need the following exact sequence (cf. [CT-Sa-So, Lemme 3]):

Proposition 2.12. Let X be a regular scheme over Fp and let n,m

be positive integers. Then the multiplication by pm Wn+mΩi
X,log −→

Wn+mΩi
X,log induces a homomorphism pm : WnΩi

X,log −→Wn+mΩi
X,log and

the following sequence is exact:

0 −−−→ WnΩi
X,log

pm

−−−→ Wn+mΩi
X,log

Rn−−−→ WmΩi
X,log −−−→ 0.

Proof. All the assertions can be reduced to the smooth case and they

are proved in [CT-Sa-So, Lemme 3] in smooth case. �

Corollary 2.13. Let X be a regular scheme over Fp. Then the fol-

lowing sequence of pro-sheaves is exact:

0 −−−→ W•Ωi
X,log

pm

−−−→ W•Ωi
X,log

proj.−−−→ WmΩi
X,log −−−→ 0.

Proof. Immediate. �

Let C be the category of regular schemes of characteristic p such that,

for any x ∈ X, the absolute Frobenius OX,x −→ OX,x of the local ring OX,x

is finite. We would like to extend Proposition 2.4 to the schemes in the
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category C. To do this, we recall the definition and basic properties of the

relatively perfect morphism of schemes.

Definition 2.14. A morphism f : X −→ Y of schemes over Fp is said

to be relatively perfect if the following diagram is Cartesian:

X
FX−−−→ X

f

� f

�
Y

FY−−−→ Y,

where FX , FY are the absolute Frobenius morphisms.

The following facts are known: An etale morphism is relatively perfect,

and a relatively perfect morphism is formally etale [EGA IV, (0.21.2.7)]. A

relatively perfect morphism X −→ Y with Y locally noetherian and regular

is flat (Gabber, [Kat4, Prop 5.2]).

We give typical examples of relatively perfect morphisms which we use

later.

Proposition 2.15.

(1) Let k be a field of characteristic p > 0 with [k : kp] = pi and let

x1, · · · , xi be a p-basis of k. Then, the morphism

Spec k[[xi+1, · · · , xn]] −→ Spec Fp[t1, · · · , tn]

induced by tj �→ xj (1 ≤ j ≤ n) is flat relatively perfect.

(2) Let X = SpecA be a scheme in the category C with A local. Let I

be an ideal of A and let Â be the I-adic completion of A. If we put

Y := Spec Â, the natural morphism Y −→ X is flat relatively perfect.

Proof. The assertion (1) is easy and the proof is left to the reader.

Let us prove the assertion (2). Let M be the A-module A on which the

structure of the A-module is defined by A × M −→ M, (a,m) �→ apm.

Since X is in the category C, M is a finite A-module. So we have M̂
∼
=

Â ⊗A M , where ˆ denotes the I-adic completion. Let I(p) be the ideal

of A generated by the elements xp (x ∈ I). Then, by definition, we have
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M̂
∼
= lim←− nA/(I(p))n. Since the system {(I(p))n}n is cofinal with the system

{In}n, M̂ is isomorphic to Â. So the homomorphism of rings Â⊗A,FA
F⊗i−→ Â

(where i : A→ Â is the natural homomorphism) is an isomorphism. So we

are done. �

Remark 2.16. The above proposition shows that a scheme X in the

category C is isomorphic to an affine space over Fp ‘flat relatively perfect

locally’. Indeed, for each x ∈ X, the map SpecOX,x −→ X is flat relatively

perfect and the map Spec ÔX,x −→ SpecOX,x is flat relatively perfect by

Proposition 2.15 (2). So the map Spec ÔX,x −→ X is flat relatively perfect.

On the other hand, ÔX,x has the form κ(x)[[x1, · · · , xn]] for some n. So we

have a flat relatively perfect morphism of the form Spec ÔX,x −→ Am
Fp

for

some m, by Proposition 2.15 (1).

The following property of the relatively perfect morphism is important:

Proposition 2.17.

(1) Let f : X −→ Y be a flat relatively perfect morphism of schemes over

Fp. Then the induced morphism Wmf : WmX −→ WmY is formally

etale and flat for any m and the following diagrams are Cartesian:

Wm−1X
R∗

−−−→ WmX

Wm−1f

� Wmf

�
Wm−1Y

R∗
−−−→ WmY,

WmX
F ∗

−−−→ WmX

Wmf

� Wmf

�
WmY

F ∗
−−−→ WmY,

where R∗ (resp. F ∗) is the morphism induced by R : Wm? −→Wm−1?

(resp. F : Wm? −→Wm?) (? = OX ,OY ).

(2) Let f : X −→ Y be a flat relatively perfect morphism of schemes over

Fp, and let g : Z −→ Y be any morphism. Then the following diagram

is Cartesian:

Wm(X ×Y Z)
Wm(f×id)−−−−−−→ WmZ

Wm(id×g)

� Wmg

�
WmX

Wmf−−−→ WmY.
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Proof. The formal etaleness and flatness of the morphism Wmf is

proved in [Kat2, Lemma 2]. One can verify the other assertions by using

the proof of [Kat2, Lemma 1]. The detail is left to the reader. �

As a consequence, one can check that the construction of the de Rham-

Witt complex is compatible with flat relatively perfect morphism:

Proposition 2.18. Let f : X −→ Y be a flat relatively perfect mor-

phism of schemes over Fp. Then the natural homomorphism

WmOX ⊗WmOY WmΩ•
Y −→WmΩ•

X

is an isomorphism.

Proof. One can prove the proposition in the same way as Proposition

1.14 in [I]. (Indeed, he only uses the properties in Proposition 2.17 to prove

the assertion of this proposition.) �

Proposition 2.19. Let f : X −→ Y be a flat relatively perfect mor-

phism over Fp. Let us regard grnWmΩi
? = FilnWn+1Ω

i
? and FilnWn+1Ω

i
?/

dV nΩi−1
? as O?-modules by (a, ω) �→ ϕ(a)ω, where ϕ is the composite O? =

Wn+1O?/VWn+1O?
F−→ Wn+1O?/pWn+1O? (? = X,Y ). Then there exist

canonical isomorphisms

OX ⊗OY grnWmΩi
Y

∼
= grnWmΩi

X ,

OX ⊗OY FilnWn+1Ω
i
Y /dV

nΩi−1
Y

∼
= FilnWn+1Ω

i
X/dV nΩi−1

X .

Proof. First, by Proposition 2.18 and the flatness of Wmf : WmX −→
WmY , we have the isomorphism

WmOX ⊗WmOY grnWmΩi
Y

∼
= grnWmΩi

X ,(2.1)

where we regard grnWmΩi
? (? = X,Y ) as WmO?-module in the canonical

way. By using the Cartesian diagrams in Proposition 2.17 (1), one can see

that the left hand side (resp. the right hand side) of the isomorphism (2.1)

is isomorphic to OX ⊗OY grnWmΩi
Y (resp. grnWmΩi

X), where we regard

grnWmΩi
? (? = X,Y ) as O?-modules. So we obtain the first isomorphism.
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Let (Ωi−1
? )′ (? = X,Y ) be the O?-module Ωi−1

? on which the structure

of O?-module is defined by (a, ω) �→ apn+1
ω (a ∈ O?, ω ∈ Ωi−1

? ). Then,

Proposition 2.18 for m = 1 and the flat relative perfectness of f imply the

isomorphism

OX ⊗OY (Ωi−1
Y )′

∼
= (Ωi−1

X )′.(2.2)

On the other hand, the homomorphism

dV n : (Ωi−1
? )′ −→ FilnWn+1Ω

i
? (? = X,Y )

is O?-linear. Hence the first isomorphism and the isomorphism (2.2) imply

the second isomorphism. So we are done. �

Now we extend Proposition 2.4 to the schemes in the category C:

Proposition 2.20. Let X be a scheme in the category C. Let us regard

grnWmΩi
X = FilnWn+1Ω

i
X and FilnWn+1Ω

i
X/dV nΩi−1

X as OX-modules as

in Proposition 2.19. Then they are locally free OX-module of finite type.

Proof. For a scheme S, let MS be grnWmΩi
S or FilnWn+1Ω

i
S/

dV nΩi−1
S . To prove the assertion, we may assume X is local. Then, by

Proposition 2.15, we can take the diagram of the form X
f← Y

g→ Z = AN
Fp

in the category C, where f and g are flat relatively perfect and f is faith-

fully flat. (See Remark 2.16.) Then we have, by Proposition 2.19, the

isomorphisms

OY ⊗OX MX
∼
= MY , OY ⊗OZ MZ

∼
= MZ .

So MX is locally free of finite type if and only if so is MY , and MY is locally

free of finite type if so is MZ . So we can reduce to the smooth case, and it

is nothing but Proposition 2.4. Hence the proof is finished. �

Remark 2.21. Let X = SpecA be a scheme in the category C with

A local. Then Ω1
X is a free A-module by the above proposition. Let m be

the maximal ideal of A. Let x1, · · · , xr ∈ A be a lift of p-basis of k := A/m

and let xr+1, · · · , xn be a regular parameter of A. Here we remark that

the elements dxi (1 ≤ i ≤ n) forms a free basis of Ω1
X . Indeed, to prove
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it, we may replace A by the completion Â of A by Proposition 2.19 and

in the complete case, it is easy to see the assertion because we have the

isomorphism A
∼
= k[[xr+1, · · · , xn]] such that the images of xi (1 ≤ i ≤ r)

forms a p-basis of k.

Finally, we give a simple equivalent condition for a regular scheme X to

be in the category C. Recall that a Noetherian ring A is called excellent if

A is a universally catenary G-ring such that, for any finitely generated A-

algebra B, the regular locus of SpecB is an open subset. (See [M2, p.260],

[M1, (34.A)], [EGA IV, (7.8.2)].) A locally Noetherian scheme X is called

excellent if it is covered by spectra of excellent rings ([EGA IV, (7.8.5)]).

Proposition 2.22. Let X be a regular scheme. Then the following are

equivalent:

(1) X is in the category C.

(2) For any x ∈ X, OX,x is excellent and [κ(x) : κ(x)p] <∞ holds.

(3) For any x ∈ X0, OX,x is excellent and [κ(x) : κ(x)p] <∞ holds.

Proof. Note that X is in the category C if and only if SpecOX,x is

in the category C for any x. Then the equivalence of (1) and (2) follows

immediately from [Ku, Cor 2.6].

It is obvious that (2) implies (3). So it suffices to prove (2) assuming

(3). Let x be a point of X and let y be a closed point of X contained in

{x}. Then the excellence of OX,y implies that of OX,x and, by [Ku, Cor

2.6, 2.7], the finiteness of [κ(y) : κ(y)p] implies that of [κ(x) : κ(x)p]. So we

have the assertion (2). Hence the proposition is proved. �

In particular, any excellent regular scheme X over Fp satisfying [κ(x) :

κ(x)p] < ∞ for any x ∈ X0 belongs to the category C. Note that, by [Ku,

Cor 2.6, 2.7], the condition ‘[κ(x) : κ(x)p] < ∞ for any x ∈ X0’ can be

replaced by the condition ‘[κ(x) : κ(x)p] <∞ for any x ∈ X0’.

3. Purity

Let k be a perfect field of characteristic p. Let X, Z be smooth schemes

over k with X of pure dimension n, and let ι : Z ↪→ X be a regular closed
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immersion of codimension r. Then the following theorem, which is usually

called the purity for the logarithmic Hodge-Witt cohomology, is proved by

Gros ([G, II,Thm 3.5.8, (3.5.19)]) in the case q = 0 and by Suwa ([Su, Cor

1.6]) in the case q > 0, i = n:

Theorem 3.1 (Gros, Suwa). Let the situation be as above and let m ∈
N. Then, there exists a canonical isomorphism

θq,i,log
ι,m : Hq(Z,WmΩi−r

Z,log)
∼=−→ Hq+r

Z (X,WmΩi
X,log)

for q = 0 or q > 0, i = n.

In this section, we generalize the above theorem to the case of certain

regular schemes. Namely, we prove the following theorem:

Theorem 3.2 (Purity in regular case). Let X, Z be regular schemes

and let ι : Z ↪→ X be a regular closed immersion of codimension r. Assume

moreover that we have [κ(x) : κ(x)p] = pN for any x ∈ X0. Then there

exists a canonical isomorphism

θq,i,log
ι,m : Hq(Z,WmΩi−r

Z,log)
∼=−→ Hq+r

Z (X,WmΩi
X,log)

if q = 0 holds or if q > 0, i = N holds and X is in the category C.

We recall some preliminary facts and give the definition of θq,i,log
ι,m .

Let X, Z be regular schemes over Fp and let ι : Z ↪→ X be a regular

closed immersion of codimension r defined by t1, · · · , tr ∈ OX . Let U be

X − Z and for I ⊂ [1, r], let UI be the open subscheme of X on which

the elements ti (i ∈ I) are invertible. Denote the open immersion UI −→
X by jI . (In particular, we have U∅ = X and j∅ = id.) For a quasi-

coherent sheaf F on X(� WmX) and an integer s, let us define Cs(F)

by Cs(F) :=
⊕

|I|=s jI,∗j
∗
IF . Then, Cs(F)’s form a complex C•(F) in

natural way (the differential Cs(F) −→ Cs+1(F); (fI)I �→ (gI)I is given by

gi1,...,is+1 :=
∑s+1

j=1(−1)j+1fi1,...,̌ij ,...,is+1
) and one can check that there exists

a quasi-isomorphism

RΓZ(X,F) � C•(F).(3.1)
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In particular, we have a quasi-isomorphism RΓZ(X,WmΩi
X) � C•(WmΩi

X),

hence an isomorphism

Hr
Z(X,WmΩi

X) = j∗WmΩi
U/

∑
|I|=r−1

jI,∗WmΩi
UI
.(3.2)

The following lemma is a generalization of [G, (3.3.20)]:

Lemma 3.3. Let X, Z be regular schemes over Fp and let ι : Z ↪→ X

be a regular closed immersion of codimension r. Then we have

Hj
Z(X,WmΩi

X) = 0, Hj
Z(X,WmΩi

X/dV m−1Ωi−1
X ) = 0 for j �= r.

Proof. It suffices to prove the vanishing Hj
Z(X,WmΩi

X) = 0,

Hj
Z(X,WmΩi

X/dV m−1Ωi−1
X ) = 0 for j �= r under the assumption that X

is local. In this case, there exist elements t1, · · · , tr ∈ OX which defines the

closed immersion ι. Let {Xk}k∈K be a projective system of affine schemes

smooth over Fp such that X = lim←− k∈KXk holds. By localizing Xk’s and re-

placing K, we may assume that each Xk is a localization of a smooth scheme

over Fp and that t1, · · · , tr define a regular closed immersion Zk ↪→ Xk of

codimension r with Zk smooth over Fp. Then, by Theorem 2.2, we have the

isomorphisms

Hj
Z(X,WmΩi

X) = lim−→ k∈KHj
Zk

(Xk,WmΩi
Xk

),

Hj
Z(X,WmΩi

X/dV m−1Ωi−1
X ) = lim−→ k∈KHj

Zk
(Xk,WmΩi

Xk
/dV m−1Ωi−1

Xk
).

So we may assume that X, Z are localizations of smooth schemes over Fp

and that there exist elements t1, · · · , tr which define the closed immersion

Z ↪→ X.

In this case, the lemma is proved in [G, (3.3.20)]: it suffices to show

the vanishing Hj(X,C•(WmΩi
X)), Hj(X,C•(WmΩi

X/dV m−1Ωi−1
X )) (j �= r)

and by using Proposition 2.4, we can reduce to showing the vanishing

Hj(X,C•(OX)) (j �= r), which we can check directly. �

Corollary 3.4. Let the notations be as above. Then we have

Hj
Z(X,WmΩi

X,log) = 0 for j �= r, r + 1.

Proof. It is immediate from the previous lemma and the long exact

sequence associated to the exact sequence

0 −→WmΩi
X,log −→WmΩi

X
1−F−→WmΩi

X/dV m−1Ωi
X −→ 0. �
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Let X, Z be affine regular schemes over Fp and let ι : Z ↪→ X be a

regular closed immersion of codimension 1 defined by t ∈ OX . Then we

have the following lemma:

Lemma 3.5. Let the notations be as above. Then, for an element ω ∈
WmΩi−1

Z , there exists a lift ω̃ ∈ WmΩi−1
X of ω, and the image of dlog t ∧

ω̃ ∈ j∗WmΩi
U in j∗WmΩi

U/WmΩi
X is independent of the choice of the lift

ω̃. (Hence we will sometimes denote the image by dlog t ∧ ω, by abuse of

notation.)

Proof. First, let us recall that, for a scheme Y over Fp, there exists

a functorial surjective homomorphism of differential graded algebras πY :

Ω•
WmY −→ WmΩ•

Y over WmOY . So there exists the following commutative

diagram:

Ωi−1
WmX

(Wmι)∗−−−−→ Ωi−1
WmZ

πX

� πZ

�
WmΩi−1

X

Wm(ι∗)−−−−→ WmΩi−1
Z .

Since (Wmι)∗ and πZ are surjective, Wm(ι∗) is a surjection of quasi-coherent

WmOX -modules. Hence there exists a lift ω̃ ∈WmΩi−1
X of ω.

Next we prove the independence of the image of the element dlog t ∧ ω̃

in j∗WmΩi
U/WmΩi

X . To prove this, we may assume that X is local. Then,

X can be written as the projective limit X = lim←− j∈JXj of affine schemes

Xj which are smooth over Fp. We may assume moreover that t defines a

regular closed immersion Zj ↪→ Xj of codimension 1 with Zj smooth over

Fp for any j ∈ J . Then it suffices to prove the desired independence for

Zj ↪→ Xj . So we can reduce the proof to the smooth case. Then, since we

may work etale locally, we may assume that the closed immersion Z ↪→ X

has a section s : X −→ Z.

Now we prove the desired independence under the assumption that the

closed immersion Z ↪→ X admits a section s. The claim in this case is

used in [G, p.40] (in more generalized form), but here we give a detailed

proof because the proof is omitted there. Since πX is surjective, it suffices

to prove the following claim:
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(∗) For any η ∈ Ker(Wm(ι∗) ◦ πX), we have dlog t ∧ πX(η) ∈WmΩi
X .

Let us consider the following commutative diagram:

Ωi−1
WmZ

(Wms)∗−−−−−→ Ωi−1
WmX

(Wmι)∗−−−−→ Ωi−1
WmZ

πZ

� πX

� πZ

�
WmΩi−1

Z

Wm(s∗)−−−−−→ WmΩi−1
X

Wm(ι∗)−−−−→ WmΩi−1
Z .

Since s ◦ ι = id holds, the composites of the horizontal arrows are equal to

identity. For η ∈ Ker(Wm(ι∗) ◦ πX), define η1 and η2 by η1 := (Wms)∗ ◦
(Wmι)∗(η), η2 := η − η1. Then we have

πX(η1) = πX ◦ (Wms)∗ ◦ (Wmι)∗(η) = Wm(s∗) ◦ πZ ◦ (Wmι)∗(η)

= Wm(s∗) ◦Wm(ι∗) ◦ πX(η) = 0.

Hence we have dlog t∧πX(η) = dlog t∧πX(η2). On the other hand, we have

(Wmι)∗(η2) = (Wmι)∗(η)− (Wmι)∗ ◦ (Wms)∗ ◦ (Wmι)∗(η) = 0.

Hence it suffices to show the following claim:

(∗∗) For any η ∈ Ker((Wmι)∗), we have dlog t ∧ πX(η) ∈WmΩi
X .

Now put I := tOX and define WmI by WmI := {
∑m−1

a=0 V axa |xa ∈ I}.
Then we have WmI = Ker(WmOX −→ WmOZ) ([I, 0.1.5.6,(i)]). So one

can see that Ker((Wmι)∗) is generated over WmOX by the elements of the

following forms:

αη (α ∈WmI, η ∈ Ωi−1
WmX), dα ∧ η′ (α ∈WmI, η′ ∈ Ωi−2

WmX).

Hence the claim (∗∗) is reduced to the following:

Claim. For α ∈ WmI, η ∈ WmΩi−1
X and η′ ∈ WmΩi−2

X , the elements

dlog t ∧ αη,dlog t ∧ dα ∧ η′ are contained in WmΩi
X .

Proof of Claim. We may assume α = V a(xt) for some a ∈ N, x ∈
OX . Then we have the following equations:

dlog t ∧ αη = V a(xt)dlog t ∧ η

= V a(xtdlog t ∧ F a(η))

∈ V a(Wm−aΩ
i
X) ⊆WmΩi

X .
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dlog t ∧ dα ∧ η′ = dlog t ∧ dV a(xt) ∧ η′

= −d(V a(xt)dlog t ∧ η′)− V a(xt)dlog t ∧ dη′

= −dV a(xtdlog t ∧ F a(η′))− V a(xtdlog t ∧ F a(dη′))

∈ dV a(Wm−aΩ
i−1
X ) + V a(Wm−aΩ

i
X) ⊆WmΩi

X .

Hence the claim is proved. �

Since the claim is proved, the proof of the lemma is finished. �

Now, for regular schemes X, Z over Fp and a regular closed immersion

ι : Z ↪→ X of codimension r, we will define the homomorphism

ρi
ι,m : WmΩi−r

Z −→ Hr
Z(X,WmΩi

X)

by induction on r. First, we assume r = 1 and assume moreover that X

is affine and that ι is defined by an element t ∈ OX . Then we define the

homomorphism ρi
ι,t,m : WmΩi−1

Z −→ H1
Z(X,WmΩi

X) by the composite

WmΩi−1
Z −→WmΩi

X−Z/WmΩi
X
∼= H1

Z(X,WmΩi
X),

where the first map is defined as ω �→ dlog t∧ω and the second isomorphism

is given by (3.2) (with r = 1), using t. Then we have the following:

Lemma 3.6. The map ρi
ι,t,m is independent of the choice of t.

Proof. Let t′ be another element which also induces the closed im-

mersion ι. To prove the lemma, we may assume that X is local. Then, X

can be written as the projective limit X = lim←− j∈JXj of affine schemes Xj

which are smooth over Fp. We may assume moreover that t, t′ define the

same regular closed immersion Zj ↪→ Xj for each j ∈ J . Then we have

ρi
ι,t,m = lim−→ j∈Jρ

i
ιj ,t,m, ρi

ι,t′,m = lim−→ j∈Jρ
i
ιj ,t′,m.

So it suffice to prove the claim for regular closed immersion Zj ↪→ Xj , that

is, we may reduce to the smooth case.

In smooth case, the lemma is due to Gros: Indeed, in In [G, II(1.2.6),

II(3.4.1–3)], Gros defines a homomorphism of sheaves

ρ : WmΩi−1
Z −→ Hr

Z(X,WmΩi
X)
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by using Ekedahl’s duality ([E]) without using t and in [G, (II.3.4)], he

proves the equality ρ = ρi
ι,t,m for any t defining the closed immersion ι. (See

also Remark 3.7 below.) Hence ρi
ι,t,m is independent of t and so the proof

is finished. �

Remark 3.7. In [G, II(3.4)], Gros writes that the map ρ in the

proof above has the form ρ(ω) = ω ∧ dlog t ∈ j∗WmΩi
X−Z/WmΩi

X
∼=

H1
Z(X,WmΩi

X). However, we remark here that ρ has in fact the form

ρ(ω) = dlog t ∧ ω, as we claim in the above proof. His calculation in [G,

II(3.4)] depends on the calculation of the Gysin map in de Rham cohomol-

ogy by Berthelot [Be, VI,Prop 3.1.3], which is described as follows: Let

i : Z ↪→ X be a regular immersion of codimension 1 of schemes smooth over

Spec Z/pnZ defined by t ∈ OX . Then the Gysin map

Ωi−1
Z −→ H1

Z(X ,Ωi
X )

is given by the composite

Ωi−1
Z −→ Ωi

X ⊗ ωZ/X −→ Ext1(OZ ,Ω
i
X ) −→ H1

Z(X ,Ωi
X ).

Here ωZ/X is the conormal sheaf N∨
Z/X . The first map is induced by the

exact sequence

0 −→ NZ/X −→ i
∗Ω1

X −→ Ω1
Z −→ 0

and so it is written as ω �→ ω̃ ∧ dt⊗ t∨ (where ω̃ is a lift of ω.) The second

map is the fundamental local isomorphism of Hartshorne ([Ha, III,7.2]).

The third map is the canonical map induced from the map of functors

Hom(OZ ,−) −→ H0
Z(X ,−). In conclusion, it is claimed that the Gysin

map is given by ω �→ ω̃ ∧ dlog t, if we identify H1
Z(X ,Ωi

X ) with Ωi
X−Z/Ω

i
X .

However, Conrad points out in [Co] that, in order that the Gysin map

is well-behaved in the duality theory, the fundamental local isomorphism

should be corrected to ωZ/X ⊗Ωi
X −→ Ext1(OZ ,Ωi

X ). Then the Gysin map

should be corrected to the composite

Ωi−1
Z −→ ωZ/X ⊗ Ωi

X −→ Ext1(OZ ,Ω
i
X ) −→ H1

Z(X ,Ωi
X ),

and so it should be written as ω �→ dlog t∧ ω̃. By taking this correction into

account and arguing in the same way as [G, II(3.4)], we see that ρ has the

form ρ(ω) = dlog t ∧ ω.
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Let ι : Z ↪→ X be a regular closed immersion of codimension 1 between

regular schemes over Fp. Locally on X, X is affine and ι is defined by an

element t ∈ OX . So we can define the map ρi
ι,t,m locally and it is independent

of t by Lemma 3.6. Hence we can define the map ρi
ι,m : WmΩi−1

Z −→
H1

Z(X,WmΩi
X) globally, by glueing the maps ρi

ι,t,m.

Now let us consider the case that ι : Z ↪→ X is a regular immersion

of codimension r between regular schemes over Fp. Locally on X, we can

factorize ι as Z
ι′
↪→ Y

ι′′
↪→ X, where ι′ is a regular closed immersion of

codimension r − 1 and ι′′ is a regular closed immersion of codimension 1.

We define the map ιiι,Y,m : WmΩi−r
Z −→ Hr

Z(X,WmΩi
X) by the composite

WmΩi−r
Z

ρi−1
ι′,m−→ Hr−1

Z (Y,WmΩi−1
Y )

Hr−1
Z (ρi

ι′′,m)

−→ Hr−1
Z (Y,H1

Y (X,WmΩi
X))

∼=−→ Hr
Z(X,WmΩi

X),

where the third map is induced by the Leray spectral sequence and Lemma

3.3. Then we have the following:

Lemma 3.8. The map ρi
ι,Y,m is independent of the choice of Y .

Proof. Let Z ↪→ Y ′ ↪→ X be another factorization satisfying the same

condition as Z ↪→ Y ↪→ X. To prove the lemma, we may assume that X

is local and so X can be written as the projective limit X = lim←− j∈JXj of

affine schemes Xj which are smooth over Fp. We may assume moreover that

there are factorizations Zj ↪→ Yj ↪→ Xj , Zj ↪→ Y ′
j ↪→ Xj with Yj , Y

′
j smooth

over Fp which induce Z ↪→ Y ↪→ X,Z ↪→ Y ′ ↪→ X respectively when we

pull them back by X −→ Xj . Denote the closed immersion Zj ↪→ Xj by ιj .

Then we have

ρi
ι,Y,m = lim−→ j∈Jρ

i
ιj ,Yj ,m, ρi

ι,Y ′,m = lim−→ j∈Jρ
i
ιj ,Y ′

j ,m
.

So it suffice to prove the claim for Zj ↪→ Xj , that is, we may reduce to the

smooth case.

In smooth case, the lemma is again due to Gros: In [G, II(1.2.6),

II(3.4.1–3)], Gros defines a homomorphism of sheaves ρ : WmΩi−r
Z −→

Hr
Z(X,WmΩi

X) for any regular closed immersion Z ↪→ X of smooth schemes
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over Fp with ρ = ρi
ι,m if ι is of codimension 1, and he proves that this map

satisfies the transitivity. So, by induction on r, we can prove the equalities

(ρ for Zj ↪→ Xj) = ρi
ιj ,Yj ,m, (ρ for Zj ↪→ Xj) = ρi

ιj ,Y ′
j ,m

.

So we are done. �

By Lemma 3.8, we can define the map ρi
ι,m : WmΩi−r

Z −→
Hr

Z(X,WmΩi
X) globally, by glueing the maps ρi

ι,Y,m.

Remark 3.9. It would be possible to give the definition of ρi
ι,m in more

explicit way without using induction on r, by using [G, II(3.4)]: However, we

would like to adopt the inductive definition given above to avoid calculation

involving complicated signs later in this paper.

Let ι : Z ↪→ X be a regular immersion of codimension r between regular

schemes over Fp. Then it is easy to see that the map ρi
ι,m we defined above

is compatible with respect to m. So the family of maps {ρi
ι,m}m induces the

homomorphism of pro-sheaves

ρi
ι,• : W•Ω

i−r
Z −→ Hr

Z(X,W•Ω
i
X).

It is easy to see from the definition that ρi
ι,• is compatible with 1− F . So,

by the exact sequence

0 −→W•Ω
j
?,log −→W•Ω

j
?

1−F−→W•Ω
j
? −→ 0

for (?, j) = (Z, i− r), (X, i), ρi
ι,• induces the homomorphism

ρi,log
ι,• : W•Ω

i−r
Z,log −→ Hr

Z(X,W•Ω
i
X,log).

Then, by the exact sequence

0 −→W•Ω
j
?,log

pm−→W•Ω
j
?,log −→WmΩj

?,log −→ 0

for (?, j) = (Z, i− r), (X, i), ρi,log
ι,• induces the homomorphism

ρi,log
ι,m : WmΩi−r

Z,log −→ Hr
Z(X,WmΩi

X,log).
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Using ρi
ι,m and ρi,log

ι,m , we define the homomorphisms

θi
ι,m : H0(Z,WmΩi−r

Z ) −→ Hr
Z(X,WmΩi

X),

θq,i,log
ι,m : Hq(Z,WmΩi−r

Z,log) −→ Hq+r
Z (X,WmΩi

X,log),

by the composite

H0(Z,WmΩi−r
Z )

H0(ρiι,m)
−→ H0(Z,Hr

Z(X,WmΩi
X))(3.3)

∼=−→ Hr
Z(X,WmΩi

X),

Hq(Z,WmΩi−r
Z,log)

Hq(ρi,logι,m )−→ Hq(Z,Hr
Z(X,WmΩi

X,log))(3.4)

−→ Hq+r
Z (X,WmΩi

X,log),

where the second homomorphisms are induced by Leray spectral sequences.

(Here we use Lemma 3.3 and Corollary 3.4.) The map θq,i,log
ι,m is the one

which appears in the statements in Theorems 3.1, 3.2.

Now we give a proof of Theorem 3.2, that is, we prove that θq,i,log
ι,m is an

isomorphism if q = 0 holds or if q > 0, j = N holds and X is in the category

C. First we prove it in the case q = 0:

Proof of Theorem 3.2, Step 1: The case q = 0. In this case, the

second map in (3.4) is an isomorphism. So it suffices to prove that ρi,log
ι,m is

an isomorphism. To show this, we may assume X is local. Then, X can be

written as the projective limit X = lim←− j∈JXj of affine schemes Xj which

are smooth over Fp. We may assume moreover that there exists a projective

system of regular closed immersions {ιj : Zj ↪→ Xj}j with Z = lim←− j∈JZj .

Then we have ρi,log
ι,m = lim−→ j∈Jρ

i,log
ιj ,m. So the claim is reduced to showing that

ρi,log
ι,m is an isomorphims in the case where Z,X are smooth over Fp. This is

proven by Gros ([G, II,Thm 3.5.8]). So we are done. �

Next we prove Theorem 3.2 in the case q > 0, i = N :

Proof of Theorem 3.2, Step 2: The case q > 0, i = N and X is

in the category C. First let us note that it suffices to prove the following

claim:
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Claim 1. With the notation of the theorem, we have

Hr+1
Z (X,WmΩN

X,log) = 0.

Indeed, if we have this claim, we see that the second map in (3.4) is an

isomorphism. (We also use Corollary 3.4.) Since we have already proved

that ρi,log
ι,m is an isomorphism, the first map in (3.4) is an isomorphism and

so θq,i,log
ι,m is an isomorphism. Hence the theorem is reduced to the claim 1.

To prove claim 1, we may replace X by its strict henselization. In this

case, the claim is nothing but the vanishing Hr+1
Z (X,WmΩN

X,log) = 0. Now

let us prove the following claim:

Claim 2. Let X̂ be the completion of X along Z. Then, for any i, j,

we have the canonical isomorphism Hj
Z(X,WmΩi

X,log)
∼
= Hj

Z(X̂,WmΩi
X̂,log

).

Proof of Claim 2. By the exact sequences

0 −→W•Ω
i
?,log

pm−→W•Ω
i
?,log −→WmΩi

?,log −→ 0,

0 −→W•Ω
i
?,log −→W•Ω

i
?

1−F−→W•Ω
i
? −→ 0

for ? = X, X̂, it suffices to show that the canonical homomorphism

Hj
Z(X,WmΩi

X) −→ Hj
Z(X̂,WmΩi

X̂
)

is an isomorphism. Let us take elements t1, · · · , tr defining the closed im-

mersion ι : Z ↪→ X. Then we have the isomorphism

Hj
Z(X,WmΩi

X)
∼
= Hj(X,C•(WmΩi

X)),

and the similar isomorphism holds also for X̂. Since the morphism X̂ −→ X

is flat relatively perfect, the functor − ⊗WmOX WmOX̂ is compatible with

the canonical filtrations of de Rham-Witt sheaves. Hence it suffices to show

that the canonial homomorphism

Hj(X,C•(grkWmΩi
X)) −→ Hj(X̂, C•(grkWmΩi

X̂
))

is an isomorphism.

For a sheaf of Wk+1O?-moduleM (? = X, X̂), letM′ be be the sheafM
on which the structure of O?-modules is defined by (a, ω) �→ ϕ(a)ω, where
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ϕ is the composite O? = Wk+1O?/VWk+1O?
F−→Wk+1O?/pWk+1O?. Then

we have

jI,∗j
∗
I (grkWmΩi

X)′ = (jI,∗j
∗
I grkWmΩi

X)′

and similar equality holds also for X̂. Moreover, by Proposition 2.20 and

the flat relative perfectness of X̂ −→ X, the sheaf (grkWmΩi
X)′ is a free

OX -module of finite type and that the canonical homomorphism

(grkWmΩi
X)′ ⊗OX OX̂ −→ (grkWmΩi

X̂
)′

is an isomorphism. Hence it suffices to show that the homomorphism

Hj(X,C•(OX)) −→ Hj(X̂, C•(OX̂))

is an isomorphism.

When j �= r holds, both hand sides are equal to zero. Let us consider

the case j = r. For l ∈ N, let I(l) be the ideal of A := Γ(X,OX) generated

by tl1, · · · , tlr. Then we have

Hr(X,C•(OX)) = H0(X, j∗OU/
∑

|I|=r−1

jI,∗OUI ) = lim−→ l∈NA/I(l),

where the transition map A/I(l) −→ A/I(l′) (l ≤ l′) is defined by the multi-

plication by (t1 · · · tr)l
′−l. Similarly, we have

Hr(X̂, C•(OX̂)) = lim−→ l∈NÂ/I(l)Â,

where we put Â := Γ(X̂,OX̂). Since (t1, · · · , tr)(l−1)r+1 ⊂ I(l) holds, we

have the natural isomorphism A/I(l) ∼
= Â/I(l)Â. Hence Hr(X,C•(OX)) is

naturally isomorphic to Hr(X̂, C•(OX̂)). So the assertion is proved. �

By claim 2, we may assume X
∼
= SpecOZ [[t1, · · · , tr]] to prove the claim

1. Now we prove claim 1:

Proof of Claim 1. By using the exact sequence

0 −→Wm−1Ω
N
X,log −→WmΩN

X,log −→ ΩN
X,log −→ 0,

one can reduce to the case m = 1. So one can reduce to the following as-

sertion (∗):
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(∗): Let r,N ∈ N, N ≥ r and let Z = SpecA be a strictly local regular

scheme in C such that [κ(z) : κ(z)p] = pN−r holds for the generic point z of

Z. Let ι : Z ↪→ X be the closed immersion SpecA ↪→ SpecA[[x1, · · · , xr]].

Then Hr+1
Z (X,ΩN

X,log) = 0 holds.

We prove the assertion (∗). Put B := A[[x1, · · · , xr]] and let m be the

maximal ideal of A. In the situation of (∗), we can take a local parameter

xr+1, · · · , xr+s of m and a p-basis xr+s+1, · · · , xN of A/m for some s. By

the exact sequence

0 −→ ΩN
X,log −→ ΩN

X
C−1−→ ΩN

X −→ 0,

it suffices to show that the homomorphism C − 1 : Hr
Z(X,Ωn

X) −→
Hr

Z(X,Ωn
X) is surjective. Let us recall the isomorphism

Hr
Z(X,ΩN

X)
∼
= ΩN

B [x−1
1 , · · · , x−1

r ]/

r∑
j=1

ΩN
B [x−1

1 , · · · , x̌−1
j , · · · , x−1

r ]

defined by x1, · · · , xr. Denote the right hand side by Ω. Since the above

isomorphism is compatible with the action of C − 1, it suffices to show that

the homomorphism C − 1 : Ω −→ Ω is surjective.

Put M :=
∑r

j=1 ΩN
B [x−1

1 , · · · , x̌−1
j , · · · , x−1

r ], and let dlog x := dlog x1 ∧
· · ·∧dlog xr, dx := dxr+1∧· · ·∧dxN ∈ ΩN−r

A . (Note that ΩN−r
A is isomorphic

to the free A-module A·dx. See Remark 2.21.) For l ∈ N, let us define Hl ⊂ Ω

by

Hl := {ω ∈ Ω |ω ∈
∑

−l≤l1,··· ,lr≤0

al1···lrx
l1
1 · · ·xlr

r dx ∧ dlog x + M

(for some al1···lr ∈ A)}.

Then we have Hl ⊆ Hl+1 (l ∈ N) and
⋃

l∈NHl = Ω. For ω = axl1
1 · · ·xlr

r dx∧
dlog x (a ∈ A), One can calculate C(ω) as follows: C(ω) has the form

bx
l1/p
1 · · ·xlr/p

r dx ∧ dlog x (for some b ∈ A) if p|li holds for all 1 ≤ i ≤ r

and is equal to 0 otherwise. Hence we have CHl ⊆ Hl−1 for l ≥ 1 and

CH0 ⊆ H0. Hence C l′Hl ⊆ H0 holds for l′ ≥ l. Then, for ω ∈ Ω, we have

ω = (C − 1)

(
l−1∑
i=0

Ci(−ω)

)
+ C lω ∈ (C − 1)Ω + H0,



Logarithmic Hodge-Witt Cohomology 595

for sufficiently large l. Hence it suffices to show the surjectivity of C −
1 : H0 −→ H0. Since we have (C − 1)(adx ∧ dlog x) = (C − 1)(adx) ∧
dlog x, it suffices to prove the surjectivity of C − 1 : ΩN−r

A −→ ΩN−r
A . Put

x := xr+1 · · ·xN . For an element a ∈ A, take an element b ∈ A satisfying

b− bpxp−1 = a. (Note that such an element b ∈ A always exists, since A is

henselian.) Then we have

(C − 1)(bpxp−1dx) = bdx− bpxp−1dx

= adx.

So C − 1 is surjective and the proof of the claim is finished. �

Since we have proved claim 2, the proof of the theorem is finished. �

Remark 3.10. It seems not easy to prove Theorem 3.2, Step 2 directly

by reducing to the smooth case, since if we write X as a projective limit

of affine smooth schemes X = lim←− jXj , we cannot control the dimension of

Xj ’s.

Remark 3.11. Let X be a regular scheme over Fp with [κ(y) : κ(y)p] =

pN for any y ∈ X0, let x be a point of codimension r of X and denote the

localization of X at x by Xx. Then we have Hr
x(X,F) = Hr

x(Xx,F) for any

abelian sheaf F . So ρi
x↪→Xx,m

has the form WmΩi−r
x −→ Hr

x(X,WmΩi
X).

We denote the map ρi
x↪→Xx,m

by ρi
x↪→X,m, by abuse of notation. Then the

map ρi
x↪→X,m induces the maps

ρi,log
x↪→X,m :WmΩi−r

x,log −→ Hr
x(X,WmΩi

X,log),

θi
x↪→X,m :H0(x,WmΩi−r

x ) −→ Hr
x(X,WmΩi

X),

θq,i,log
x↪→X,m :Hq(x,WmΩi−r

x,log) −→ Hq+r
x (X,WmΩi

X,log)

in the same way as explained in this section and by Theorem 3.2, the last

map is an isomorphism if q = 0 holds or if q = 1, i = N holds and X is in

the category C.

Finally in this section, we give two remarks on some compatibilities

concerning the maps θi
ι,m, θq,i,log

ι,m .
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Remark 3.12. Let ι : Z ↪→ X be a regular immersion of codimension

r between regular schemes in the category C, and assume that we have

[κ(x) : κ(x)p] = pN for any x ∈ X0. Let

δ0
Z : H0(Z,WmΩi−r

Z,log) −→ H0(Z,WmΩi−r
Z ),

δ0
X : Hr

Z(X,WmΩi
X,log) −→ Hr

Z(X,WmΩi
X)

be the homomorphisms induced by the inclusion WmΩ∗
?,log ↪→ WmΩ∗

? for

(?, ∗) = (Z, i− r), (X, i) respectively, and let

δ1
Z : H0(Z,WmΩi−r

Z ) −→ H1(Z,WmΩi−r
Z,log),

δ1
X : Hr

Z(X,WmΩi
X) −→ Hr+1

Z (X,WmΩi
X,log),

be the composites

H0(Z,WmΩi−r
Z ) −→ H0(Z,WmΩi−r

Z /dV m−1Ωi−r−1
Z ) −→ H1(Z,WmΩi−r

Z,log),

Hr
Z(X,WmΩi

X) −→ Hr
Z(X,WmΩi

X/dV m−1Ωi−1
X ) −→ Hr+1

Z (X,WmΩi
X,log),

where the first maps are induced by the natural projection WmΩ∗
? −→

WmΩ∗
?/dV

m−1Ω∗−1
? and the second maps are the connecting homomorphism

associated to the exact sequence

0 −−−→ WmΩ∗
?,log −−−→ WmΩ∗

?
1−F−−−→ WmΩ∗

?/dV
m−1Ω∗−1

? −−−→ 0

for (?, ∗) = (Z, i− r), (X, i), respectively.

Then, as for the compatibility of the maps θi
ι,m, θq,i,log

ι,m , δ∗? (∗ = 0, 1, ? =

Z,X), we have the following claim:

Claim. The diagram

H0(Z,WmΩi−r
Z,log)

θ0,i,log
ι,m−−−−→ Hr

Z(X,WmΩi
X,log)

δ0
Z

� δ0
X

�
H0(Z,WmΩi−r

Z )
θiι,m−−−→ Hr

Z(X,WmΩi
X)

(3.5)
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is commutative and the diagram

H0(Z,WmΩi−r
Z )

θiι,m−−−→ Hr
Z(X,WmΩi

X)

δ1
Z

� δ1
X

�
H1(Z,WmΩi−r

Z,log)
θ1,i,log
ι,m−−−−→ Hr+1

Z (X,WmΩi
X,log)

(3.6)

is (−1)r-commutative.

Proof of Claim. First we claim that there exists the following com-

mutative diagram, where the horizontal lines are exact:

Indeed, the exactness of the lower horizontal line follows from Lemma 3.3.

The commutativity of the square is reduced to the case r = 1 by induction,

and in this case, the commutativity follows from the following calculation

in H1
Z(X,WmΩi

X) for ω ∈ Ωn−2
Z :

−dV m−1(dlog t ∧ ω̃) = −dV m−1(Fm−1dlog t ∧ ω̃) = −d(dlog t ∧ V m−1ω̃)

= dlog t ∧ dV m−1ω̃ = dlog t ∧ ˜dV m−1ω,

where ˜ means a lift of elements in W∗Ω
i−2
Z to those in W∗Ω

i−2
X for ∗ = 1

or m.

The above diagram allows us to define the morphism

(ρi
ι,m)′ : WmΩi−r

Z /dV m−1Ωi−r−1
Z −→ Hr

Z(X,WmΩi
X/dV m−1Ωi−1

X )

which is compatible with ρi
ι,m. Then, as homomorphisms of pro-sheaves, we

have the equality ρi
ι,• = (ρi

ι,•)
′. By this fact and by definition of ρi,log

ι,m , one

obtain the following commutative diagram, where the horizontal lines are

exact:

(3.7)
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(The exactness of the lower horizontal line follows from Lemma 3.3.)

Now we prove the commutativity of the diagram (3.5). The diagram

(3.5) is factorized as

The left square is (the transpose of) H0 of the left square in the diagram

(3.7) and so it is commutative. The right square is commutative due to the

functoriality of the Leray spectral sequence. So we have shown that (3.5) is

commutative.

Next we prove the (−1)r-commutativity of the diagram (3.6). If we

denote the map

WmΩi−r
Z,log

ρi,logι,m−→ Hr
Z(X,WmΩi

X,log) −→ RΓZ(X,WmΩi
X,log)[−r]

also by ρi,log
ι,m , then the diagram (3.7) induces the commutative diagram

(3.8)

where the lower horizontal arrow is a distinguished triangle. Now let us

note that the diagram (3.6) is factorized as

The upper left square is commutative since it is (the transpose of) H0 of the

right square of the diagram (3.8), and the lower left square is also commuta-

tive since it is the connecting homomorphism induced by (3.8). The upper

right square is commutative by functoriality and the lower right square is
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(−1)r-commutative because the degree of the connecting homomorphisms

α, β differs by r. So the diagram (3.6) is (−1)r-commutative. �

Remark 3.13. Let ι : Z ↪→ X be a regular closed immersion of codi-

mension r between regular schemes over Fp and assume that ι admits a

factorization Z
ι′
↪→ Y

ι′′
↪→ X, where ι′, ι′′ is a regular closed immersion of

codimension r′, r′′, respectively. In this remark, we prove the transitivity of

the map ρi,log
ι,m : That is, we prove that the composite

WmΩi−r
Z,log

ρi−r
′′,log

ι′,m−→ Hr′
Z (Y,WmΩi−r′′

Y,log)

Hr
′
Z (ρi,log

ι′′,m)

−→ Hr′
Z (Y,Hr′′

Y (X,WmΩi
X,log))−→Hr

Z(X,WmΩi
X,log)

(where the last map is induced by Leray spectral sequence) is equal to ρi,log
ι,m .

By the commutativity of the left square in the diagram (3.7), the claim

is reduced to the corresponding claim for ρi
ι,m, that is, it suffices to prove

that the composite

WmΩi−r
Z

ρi−r
′′

ι′,m−→ Hr′
Z (Y,WmΩi−r′′

Y )

Hr
′
Z (ρi

ι′′,m)

−→ Hr′
Z (Y,Hr′′

Y (X,WmΩi
X))

∼=−→ Hr
Z(X,WmΩi

X)

is equal to ρi
ι,m. To prove it, we may assume that X is local and then we can

reduce to the smooth case using Theorems 2.1, 2.2. In this case, the claim

(transitivity) is proved by Gros (see [G, proof of II,Prop 2.1.1, II(3.4.1–3)]).

So we are done.

From the above claim, we can deduce that the composite

Hq(Z,WmΩi−r
Z,log)

θq,i−r
′′,log

ι′,m−→ Hq+r′

Z (Y,WmΩi−r′′
Y,log)

Hq+r
′

Z (ρi,log
ι′′,m)

−→ Hq+r′

Z (Y,Hr′′
Y (X,WmΩi

X,log))

−→ Hq+r
Z (X,WmΩi

X,log)

is equal to θq,i,log
ι,m .
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4. Gersten-type Conjecture (I)

Let X be an equidimensional scheme over Fp. Then we have the coniveau

spectral sequence ([Bl-Ogu], see also [CT-Ho-Kah])

Es,t
1 =

⊕
x∈Xs

Hs+t
x (X,WmΩi

X,log) =⇒ Es+t = Hs+t(X,WmΩi
X,log)

converging to the logarithmic Hodge-Witt cohomology. We call the complex

of E•,q
1 -terms

0 −→
⊕
x∈X0

Hq
x(X,WmΩi

X,log) −→
⊕
x∈X1

Hq+1
x (X,WmΩi

X,log) −→ · · ·

−→
⊕
x∈Xs

Hq+s
x (X,WmΩi

X,log) −→ · · ·

the Bloch-Ogus complex and denote it by Bq,i
m (X)•. It is a cohomological

analogue of the Brown-Gersten-Quillen complex in algebraic K-theory. As

an analogue of Gersten conjecture in algebraic K-theory, it is natural to

expect that, if X is the spectrum of a regular local ring over Fp, the complex

Bq,i
m (X)• is acyclic in positive degree. In fact, we have the following:

Theorem 4.1 (Gersten-type conjecture for Bloch-Ogus complex). Let

X be the spectrum of an equidimensional regular local ring over Fp. Then

we have

Hn(Bq,i
m (X)•) =

{
Hq(X,WmΩi

X,log) (n = 0),

0 (n > 0).
(4.1)

The purpose of this section is to give a proof of the above theorem. It

is proved in the case where X is a localization of a smooth scheme over a

perfect field by Gros-Suwa([G-Su, Thm 1.4]). We will reduce the general

case to the smooth case by using a technique of Panin ([Pa]). (In the paper

[Pa], he proves the Gersten conjecture for K-groups in equicharacteristic

case.)

First let us note that, by the argument in the proof of Proposition 3.3

and Corollary 3.4, both Hq(X,WmΩi
X,log) and Bq,i

m (X)s are zero in the case

q > 1. So the assertion is automatically true when q > 1. Moreover, one
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can prove the theorem for q = 1 by an easy diagram chase from the theorem

for q = 0. So we may assume q = 0 to prove the theorem.

We prepare some preliminary results which we need for the proof of

Theorem 4.1.

Proposition 4.2. Let ι : Z ↪→ X be a regular closed immersion of

codimension r between regular schemes. Denote the subcomplex

0 −→
⊕
x∈Z0

Hr
x(X,WmΩi

X,log) −→
⊕
x∈Z1

Hr+1
x (X,WmΩi

X,log) −→ · · ·

(where the first non-zero term is sitting in degree r) of B0,i
m (X)• by

B0,i
m,Z(X)•. Then the isomorphisms

ψx := θ0,i,log
x↪→X,m ◦ (θ0,i−r,log

x↪→Z,m )−1 : Hs
x(Z,WmΩi−r

Z,log) −→ Hs+r
x (X,WmΩi

X,log)

(x ∈ Zs, s ∈ N)

induce the isomorphism of complexes B0,i−r
m (Z)•

∼=−→ B0,i
m,Z(X)•[r].

Proof. By Remark 3.13, ψx is the composite

Hs
x(Z,WmΩi−r

Z,log)
Hsx(ρ

i,log
Z↪→X,m)
−→ Hs

x(Z,Hr
Z(X,WmΩi

X,log))(4.2)

−→Hs+r
x (X,WmΩi

X,log),

where the second arrow is induced by Leray spectral sequence. Take points

y ∈ Zs−1, x ∈ Zs. Then the (y, x)-component of the boundary map of

B0,i
m,Z(X)• is non-zero only if x ∈ {y} =: Y holds and in this case, it is the

connecting homomorphism in the long exact sequence

· · · −→ Hj
Yx

(Xx,WmΩi
X,log) −→ Hj

y(Xx − x,WmΩi
X,log)(4.3)

−→ Hj+1
x (Xx,WmΩi

X,log) −→ · · · ,

where Xx, Yx denotes the localization of X,Y at x, respectively. (Note that

we have Hj
y(X,WmΩi

X,log) = Hj
y(Xx−x,WmΩi

X,log), H
j+1
x (X,WmΩi

X,log) =

Hj+1
x (Xx,WmΩi

X,log) by excision.) Similar description is true also for the
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boundary map of B0,i−r
m (Z)•. So it suffices to prove that, in the diagram

(where the horizontal lines are defined as in (4.2) and the vertical lines are

the connecting homomorphisms arising from the long exact sequences like

(4.3)), the large rectangle is (−1)r-commutative. In fact, it is true because

the left square is commutative and the right square is (−1)r-commutative.

(The sign (−1)r arises from the difference of the degrees.) So we are done. �

Lemma 4.3. Let X = SpecA be as in Theorem 4.1, let t be a lo-

cal parameter in A and let us denote the scheme SpecA[1/t] by Xt. De-

note the canonical morphism of sites Xet −→ XZar by α. Then we have

Hn(Xt,Zar, α∗WmΩi
X,log) = 0 for n > 0.

Proof. First let us consider the case where X is a localization of

a smooth scheme over a perfect field. Let Z be the closed subscheme of

X defined by the equation t = 0. Then we have the exact sequence of

complexes

0 −→ B0,i
m,Z(X)• −→ B0,i

m (X)• −→ B0,i
m (Xt)

• −→ 0,

and by Proposition 4.2, we have the isomorphism B0,i−1
m (Z)• ∼=

B0,i
m,Z(X)•[1]. By the Gersten-type conjecture in smooth case by Gros-Suwa,

we have Hn(B0,i−1
m (Z)•) = 0, Hn(B0,i

m (X)•) = 0 for n > 0. Hence we have

Hn(B0,i
m (Xt)

•) = 0 for n > 0. On the other hand, let B0,i
m (Xt)

• be the Zariski

sheafification of B0,i
m (Xt)

•. Then, we have B0,i
m (Xt)

• = Γ(Xt, B
0,i
m (Xt)

•) and

each term of B0,i
m (Xt) is flasque. Moreover, by the Gersten-type conjecture

in smooth case, the complex B0,i
m (Xt)

• is a resolution of the sheaf α∗Ωn
Xt,log.

Hence we have Hn(Xt, α∗WmΩi
X,log) = Hn(B0,i

m (Xt)
•) = 0 for n > 0. Hence

the assertion is proved in the case where X is a localization of a smooth

scheme over a perfect field.

In general case, X can be written as a projective limit of localizations

of smooth schemes Xj (j ∈ J) over Fp such that t is a local parameter in
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each OXj . Then we have

Hn(Xt, α∗WmΩi
X,log) = lim−→ j∈JH

n(Xj,t, α∗WmΩi
Xj ,log) = 0

for n > 0. �

Lemma 4.4. With the notation in Lemma 4.3, the sequence

0→ H0(X,WmΩi
X,log)→ H0(Xt,WmΩi

X,log)→ H1
Z(X,WmΩi

X,log)→ 0

induced by the localization sequence is exact.

Proof. It suffices to prove the injectivity of the morphism H1(X,

WmΩi
X,log) −→ H1(Xt,WmΩi

X,log) and the vanishing H0
Z(X,WmΩi

X,log) =

0. Both assertions can be reduced to the smooth case, by using Theorems

2.1, 2.2. Hence we assume that X is a localization of a smooth scheme over

a perfect field. Then, by Theorem 4.1 for smooth case, we have

H1(Xt,WmΩi
X,log) ⊂

⊕
x∈X0

t

H1
x(Xt,WmΩi

X,log),

H1(X,WmΩi
X,log) ⊂

⊕
x∈X0

H1
x(X,WmΩi

X,log)

and the restriction H1(X,WmΩi
X,log) −→ H1(Xt,WmΩi

X,log) is compatible

with the canonical identification⊕
x∈X0

H1
x(X,WmΩi

X,log) =
⊕
x∈X0

t

H1
x(Xt,WmΩi

X,log).

Hence we obtain the first assertion. The second assertion can be proved in

the same way as Corollary 3.4. �

Now we give the proof of Theorem 4.1.

Proof of Theorem 4.1. We already have reduced the theorem to

the case q = 0. So we assume this and prove the theorem by induction on

the dimension of X. The case dimX = 1 follows from Lemma 4.4. Let us

consider the general case. Let us take a local parameter t and let Xt, Z, α
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be as in Lemma 4.3. Then, by Proposition 4.2, we have B0,i−1
m (Z)• ∼=

B0,i
m,Z(X)•[1] and we have the exact sequence

0 −→ B0,i
m,Z(X)• −→ B0,i

m (X)• −→ B0,i
m (Xt)

• −→ 0.(4.4)

By induction hypothesis, the theorem is true for Z, that is, we have iso-

morphisms H0(Z,WmΩi−1
Z,log) = H0(B0,i−1

m (Z)), Hn(B0,i−1
m (Z)) = 0 (n >

0). So we obtain the isomorphisms H1
Z(X,WmΩi

X,log) = H1(B0,i
m,Z(X)•),

Hn(B0,i
m,Z(X)) = 0 (n ≥ 2). On the other hand, let B0,i

m (Xt)
• be the Zariski

sheafification of B0,i
m (Xt). Then we have

Hn(B0,i
m (Xt)

•) = Hn(H0(Xt,Zar, B
0,i
m (Xt)

•))

= Hn(Xt,Zar, B
0,i
m (Xt)

•) (B0,i
m (Xt)

• is flasque)

= Hn(Xt,Zar, α∗WmΩi
X,log) (induction hypothesis)

=

{
H0(Xt,WmΩi

X,log), n = 0

0, n > 0
(Lemma 4.3).

Then, by the exact sequence (4.4), we have Hn(B0,i
m (X)•) = 0 (n ≥ 2).

Moreover, we have the following commutative diagram induced from the

localization sequence and the exact sequence (4.4)

where the horizontal lines are exact (the exactness of the upper horizon-

tal line follows from Lemma 4.4) and the middle and the right vertical

arrows are isomorphisms. From this diagram, one can deduce the equali-

ties H0(B0,i
m (X)•) = H0(X,WmΩi

X,log) and H1(B0,i
m (X)•) = 0. So we are

done. �

5. Gersten-type Conjecture (II)

In the paper [Kat3], Kato constructed a complex similar to the Bloch-

Ogus complex (which we call Kato complex) for an excellent scheme sat-

isfying certain condition. In the case where X is of characteristic p, the
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p-primary part of the Kato complex is constructed via K-theoretic method.

The aim of this section is to prove the Gersten-type conjecture for the p-

primary part of the Kato complex for schemes of characteristic p.

Let us roughly recall the definition of the p-primary part of the Kato

complex for schemes over Fp. For a field k of characteristic p > 0, let

us denote the n-th Milnor K-group of k by KM
n (k). Denote the symbol

map KM
n (k)/pm −→ Hn(Spec k,WmΩn

Spec k,log), which is characterized by

{a1, · · · , an} �→ dlog a1 ∧ · · · ∧ dlog an, by hn
k . By Bloch-Gabber-Kato

theorem ([Bl-Kat]), hn
k is an isomorphism. For a discrete valuation field

K with integer ring O and residue field k, let us denote by ∂ the tame

symbol KM
n+1(K) −→ KM

n (k), which is characterized by {t, a1, · · · , an} �→
{a1, · · · , ar} for ai ∈ O× and a uniformizer t (where ai denotes the residue

class of ai).

Let m ∈ N, s, i ∈ Z and let X be an excellent scheme over Fp satisfying

the following condition:

When s = i + 1 holds, we have [κ(x) : κ(x)p] ≤ pi for any closed point

x ∈ X.

For such X, the Kato complex Cs,i
pm,X (or (Cs,i,•

pm,X , d•
Cs,ipm,X

)) is defined and it

has the form

Cs,i
pm,X : · · · −→

⊕
x∈Xj

Hs−i(x,WmΩi+j
x,log) −→ · · ·

−→
⊕
x∈X1

Hs−i(x,WmΩi+1
x,log) −→

⊕
x∈X0

Hs−i(x,WmΩi
x,log) −→ 0

(where the last non-zero term is sitting at degree 0). Let us recall the defi-

nition of the boundary map of the complex. (Note that it suffices to define

in the case s = i, i + 1 because all the terms are equal to zero otherwise.)

First, let K be a discrete valuation field of characteristic p > 0 with

residue field k satisfying [k : kp] ≤ pi if s = i + 1. Then we define the

homomorphism

∂K,k : Hs−i(K,WmΩi+1
SpecK,log) −→ Hs−i(k,WmΩi

Spec k,log)
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as follows: When s = i holds, it is defined as the composite

H0(K,WmΩi+1
SpecK,log)

(hi+1
K )−1

−→ KM
i+1(K)/pm ∂/pm−→ KM

i (k)/pm

hik−→ H0(k,WmΩi
Spec k,log).

When s = i + 1 holds, it is defined as the composite

H1(K,WmΩi+1
SpecK,log) −→ H1(K̂,WmΩi+1

Spec K̂,log
)

∼
= H1(k,H0(K̂sh,WmΩi+1

Spec K̂sh,log
))

H1(∂
K̂sh,k

)
−→ H1(k,WmΩi

Spec k,log),

where K̂ denotes the completion of K, K̂sh denotes the maximal unram-

ified extension of K̂ and k denotes the separable closure of k. Note that

the second isomorphism follows from the facts cdp(k) ≤ 1 and H1(K̂sh,

WmΩi
K̂,log

) = 0.

Now let X be as above and let y ∈ Xj+1, x ∈ Xj . (Note that we have

[κ(y) : κ(y)p] ≤ pi+j+1 in the case s = i + 1 ([Ku, Cor 2.6, 2.7]).) Then the

(y, x)-component

∂y,x : Hs−i(y,WmΩi+j+1
y,log ) −→ Hs−i(x,WmΩi+j

x,log)

of the boundary map of the complex Cs,i
pm,X is defined as follows: If x is

not contained in the closure {y} of y in X, we define ∂y,x := 0. If we

have x ∈ {y}, let π : Y −→ X be the normalization of {y}, and put

S := {v ∈ Y |π(v) = x}. Then ∂y,x is defined by

∂y,x :=
∑
v∈S

Corκ(v)/κ(x) ◦ ∂κ(y),κ(v),

where ∂κ(y),κ(v) is as in the previous paragraph, and Corκ(v)/κ(x) : Hs−i(v,

WmΩi+j
v,log) −→ Hs−i(x,WmΩi+j

x,log) is the ‘corestriction map’: In the case

s = i, it is defined as the composite

Hs−i(v,WmΩi+j
v,log)

(hi+j
κ(v)

)−1

−→ KM
i+j(κ(v))/pm N/pm−→ KM

i+j(κ(x))/pm

hi+j
κ(x)−→ Hs−i(x,WmΩi+j

x,log),
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where N/pm is induced by the norm map N : KM
i+j(κ(v)) −→ KM

i+j(κ(x))

of Milnor K-groups. In the case s = i + 1, see the following remark.

Remark 5.1. Let m, i ∈ Z,m > 0, i ≥ 0. For a finite extension

K ⊂ K ′ of fields of characteristic p > 0, Kato defined in [Kat1, p.658]

the corestriction map

H1(K ′,WmΩi
SpecK′,log) −→ H1(K,WmΩi

SpecK,log)

by using Bloch’s theory of typical part of K-groups. (Note that the group

H1(K,WmΩi
SpecK,log) is denoted as P i

m(K) in [Kat1]. See also [J-Sai-Sat].)

Let us denote the above homomorphism by Corm,i
K′/K . Then the homomor-

phism Corκ(v)/κ(x) used in the definition of Kato complex in the case s = i+1

is nothing but the map Corm,i+j
κ(v)/κ(x) in this notation.

We omit the definition of Corm,i
K′/K : Here we just give some properties

which they satisfy.

(1) Let { , }K : H1(K,Z/pmZ) × Ki(K)/pm −→ H1(K,WmΩi
SpecK,log)

be the composite of the symbol map hi
K and the cup product,

and let α : H1(K,Z/pmZ) −→ H1(K ′,Z/pmZ), β : Ki(K)/pm −→
Ki(K

′)/pm be the maps induced by the inclusion K ⊂ K ′ of fields.

Then we have

Corm,i
K′/K{α(x), y}K′ = {x,N(y)}K ,

Corm,i
K′/K{x, β(y)}K′ = {Corm,0

K′/K(x), y}K ,

where N is the norm map of K-groups.

(2) For finite extensions K ⊂ K ′ ⊂ K ′′ of fields of characteristic p > 0,

we have the transitivity

Corm,i
K′/K ◦ Corm,i

K′′/K′ = Corm,i
K′′/K .

(3) Let us identify H1(L,Z/pmZ) with WmL/(1− F )WmL (L = K,K ′)
by the isomorphism induced by the connecting homomorphism of the

exact sequence

0 −→ Z/pmZ −→WmOSpecL
1−F−→WmOSpecL −→ 0.
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Then, if K ⊂ K ′ is separable, Corm,0
K′/K is identical with the map

WmK ′/(1 − F )WmK ′ −→ WmK/(1 − F )WmK induced by the trace

map WmK ′ −→ WmK in classical sense (note that the extension

WmK ⊂WmK ′ is finite etale).

(4) The following diagram is commutative:

H1(K ′,WmΩi
SpecK′,log)

Corm,i
K′/K−−−−−→ H1(K,WmΩi

SpecK,log)

R

� R

�
H1(K ′,Wm−1Ω

i
SpecK′,log)

Corm−1,i

K′/K−−−−−→ H1(K,Wm−1Ω
i
SpecK,log).

(The assertion (1) are proved in [Kat1, 3.2, Lem 1], and one can check the

assertions (2), (3), (4) by looking at the definition of Corm,i
K′/K carefully. In

this paper, we only use the assertions (1), (2), (3) in the case m = 1.)

Let q, i,m, n ∈ N and let X be an n-dimensional excellent scheme over

Fp satisfying the following condition:

When q = 1 holds, we have [κ(x) : κ(x)p] ≤ pi for any x ∈ X0.

For such X, we denote the complex Ci−n+q,i−n
pm,X {−n} (that is, the com-

plex (Ci−n+q,i−n,•−n
pm,X , d•−n

Ci−n+q,i−npm,X

)) by Cq,i
m (X)• (or (Cq,i

m (X)•, d•
Cq,im (X)

)) and

we also call it the Kato complex. The main result in this section is the

following:

Theorem 5.2. (Gersten-type conjecture for Kato complex). Let X be

the spectrum of an excellent regular local ring over Fp such that [κ(x) :

κ(x)p] = pN holds for x ∈ X0. Let q, i,m ∈ N and assume that i ≥ N holds

in the case q = 1. (In this case, the complex Cq,i
m (X)• is defined.) Then we

have

Hn(Cq,i
m (X)•) =

{
Hq(X,WmΩi

X,log) (n = 0),

0 (n > 0).
(5.1)
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Remark 5.3. We can see that both hand sides are zero if q > 1 holds

or i > N holds. So it suffices to prove the theorem in the case q = 0 and

the case (q, i) = (1, N).

Let X, q, i,m,N be as in the statement of Theorem 5.2 and suppose

either q = 0 or (q, i) = (1, N). For x ∈ X, denote the canonical inclusion

x ↪→ X by ιx. Then, for x ∈ Xs, we have the isomorphism of purity

θq,i,log
ιx,m : Hq(x,WmΩi−s

x,log)
∼=−→ Hq+s

x (X,WmΩi
X,log)

and it induces the isomorphism θs : Cq,i
m (X)s −→ Bq,i

m (X)s of each terms of

the complexes Bq,i
m (X)•, Cq,i

m (X)•. However, it is not a priori clear whether

θs’s induce the isomorphism of these complexes. The key result for the proof

of Theorem 5.2 is the following theorem, which gives a partial answer to the

above question:

Theorem 5.4. Let X be an excellent regular scheme over Fp such that

[κ(x) : κ(x)p] = pN holds for any x ∈ X0. Let q, i ∈ N and assume that

either q = 0 or (q, i) = (i,N) holds. Then the maps θs : Cq,i
1 (X)s −→

Bq,i
1 (X)s (s ∈ N) defined above induces the isomorphism of complexes

C
q,i
1 (X)• −→ Bq,i

1 (X)•,

where C
q,i
1 (X)• denotes the complex (Cq,i

1 (X)•, (−1)•−1d•
Cq,i1 (X)

).

Remark 5.5. We expect that the maps θs : Cq,i
m (X)s −→ Bq,i

m (X)s

(s ∈ N) induces the isomorphism of complexes C
q,i
m (X)• −→ Bq,i

m (X)•

for any m ∈ N, where C
q,i
m (X)• denotes the complex (Cq,i

m (X)•,
(−1)•−1d•

Cq,im (X)
). In the case where X is a smooth scheme over a perfect

field, this claim (for general m) is stated in [G-Su, Rem 4.19], [Su, Rem 1.3]

in the case q = 0 and in [Su, Rem 2.12] in the case (q, i) = (1, N). However,

the proofs given there seem to be incomplete. In a recent work of Jannsen-

Saito-Sato [J-Sai-Sat], they give a complete proof of the claim for general

m in the case where X is a smooth scheme over a perfect field, by using a

theory of trace map in de Rham-Witt cohomology developped by Ekedahl

[E] and Gros [G]. Our proof (for m = 1 and X is excellent regular) uses

the theory of trace map for generalized residual complex by Hartshorne. It
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seems that, if we can develop a satisfactory theory of trace map in de Rham-

Witt cohomology for regular schemes which are not necessarily smooth over

a perfect field, the proof of Jansenn-Saito-Sato or us would be generalized

to the case where X is excellent regular and m is arbitrary.

Before the proof of Theorem 5.4, we give a proof of Theorem 5.2 admit-

ting Theorem 5.4:

Proof of Theorem 5.4 =⇒ Theorem 5.2. By Theorem 4.1 and

Theorem 5.4, we see that Theorem 5.2 is true for m = 1. Moreover, we

have the exact sequence of complexes

0 −→ Cq,i
1 (X)•

pm−1

−→ Cq,i
m (X)• −→ Cq,i

m−1(X)• −→ 0 :

Indeed, the case q = 0 follows from Bloch-Gabber-Kato theorem and the

case q = 1 follows from the case q = 0. Then we can prove Hn(Cq,i
m (X)•) = 0

for n > 0 by induction on m, using the above exact sequence. Moreover, we

have a commutative diagram

where the vertical arrows are the maps induced by the restriction Hq(X,

WmΩi
X,log) −→

⊕
x∈X0 Hq(x,WmΩi

x,log) and the horizontal lines are exact.

Then, by induction on m, we can also prove the equality H0(Cq,i
m (X)•) =

Hq(X,WmΩi
X,log) (under the condition q = 0 or (q, i) = (1, N) holds). So

we are done. �

Now we fix some notations for the proof of Theorem 5.4. Fix r ∈ N

and take points y ∈ Xr−1, z ∈ Xr such that z ∈ {y} holds. For q = 0 or

(q, i) = (1, N), let

∂q
B : Hq+r−1

y (X,Ωi
X,log) −→ Hq+r

z (X,Ωi
X,log),

∂q
C : Hq(y,Ωi−r+1

y,log ) −→ Hq(z,Ωi−r
z,log),
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be the (y, z)-component of the boundary map of the complex Bq,i
1 (X)•,

Cq,i
1 (X)•. To prove Theorem 5.4, it suffices to show the equality

(−1)rθq,i,log
z↪→X,1 ◦ ∂

q
C = ∂q

B ◦ θ
q,i,log
y↪→X,1.

Since the homomorphisms ∂q
B, ∂

q
C are unchanged when we localize X

at z, we may assume that X is local with closed point z. Let π : X̂ −→
X be the completion of X along z, and put π−1(y) = {y1, · · · , yl}. Let

π∗
i : Hq(κ(y),WmΩN−r+1

y,log ) −→ Hq(κ(yi),WmΩN−r+1
yi,log ) (1 ≤ i ≤ l) be the

homomorphism induced by π. Then one can check that, for ? = B,C, we

have the following equality:

(∂q
? for (X, y, z)) =

l∑
i=1

(∂q
? for (X̂, yi, z)) ◦ π∗

i .

(Here we use claim 2 in the proof of Theorem 3.2, Step 2.) Hence we may

assume that X is the spectrum of a complete regular local ring with closed

point z. Under this assumption, let us denote the closure of y in X by Y .

Then Y is a one-dimensional integral closed subscheme of X.

By definition, the map ∂q
B is the connecting homomorphism in the long

exact sequence

· · · −→ Hj
Y (X,Ωi

X,log) −→ Hj
y(X − z,Ωi

X−z,log)

−→ Hj+1
z (X,Ωi

X,log) −→ · · · .

We define a related map ∂̃B : Hr−1
y (X,Ωi

X) −→ Hr
z (X,Ωi

X) as the connect-

ing homomorphism in the long exact sequence

· · · −→ Hj
Y (X,Ωi

X) −→ Hj
y(X − z,Ωi

X−z) −→ Hj+1
z (X,Ωi

X) −→ · · · .

On the other hand, Let us define the maps

∂
q
C : Hq(y,Ωi−r+1

y,log ) −→ Hq+1
z (Y,Ωi−r+1

Y,log ),

∂̃C : H0(y,Ωi−r+1
y ) −→ H1

z (Y,Ωi−r+1
Y )

as the connecting homomorphism of the localization sequence for z ↪→ Y ←↩

Y − z.

Now let us give a proof of Theorem 5.4 in the case where Y is regular,

that is, the case where OY is a discrete valuation ring. First we treat the

case q = 0:
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Proof of Theorem 5.4, Step 1: The case Y is regular and q = 0.

First, let us prove the following claim:

Claim. ∂0
C is factorized as

H0(y,Ωi−r+1
y,log )

−∂
0
C−→ H1

z (Y,Ωi−r+1
Y,log )

(θ0,i−r+1,log
z↪→Y,1 )−1

−→ H0(z,Ωi−r
z,log).

Proof of Claim. Let us note the following commutative diagrams

where the vertical arrows are induced by the inclusion Ω∗
?,log ↪→ Ω∗

?. Noting

the definition of θi−r+1
z↪→Y,1, we see that the proof is reduced to the following

claim:

Let t be a uniformizer of OY , let y1, · · · , yi−r ∈ O×
Y and denote dlog y1 ∧

· · · ∧ dlog yi−r by dlog y. Then we have the equality ∂̃C(dlog t ∧ dlog y) =

−dlog t ∧ dlog y, if we identify H1
z (Y,Ωi−r+1

Y ) with Ωi−r+1
y /Ωi−r+1

Y by using

t (see (3.2)).

We prove this claim. The map ∂̃C is induced by the distinguished triangle

RΓz(Y,Ω
i−r+1
Y ) −→ Ωi−r+1

Y −→ Ωi−r+1
y(5.2)

and the following exact sequence of complexes (of length 2) gives an acyclic

resolution of the triangle (5.2):

0 −−−→ Ωi−r+1
Y

incl−−−→ Ωi−r+1
Y ⊕ Ωi−r+1

y
proj−−−→ Ωi−r+1

y −−−→ 0� � �
0 −−−→ Ωi−r+1

y −−−→ Ωi−r+1
y −−−→ 0 −−−→ 0.
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Here incl denotes the inclusion into the first factor and proj denotes the

projection to the second factor. The left vertical arrow is given by ω �→ ω|y
and the central vertical arrow is given by (ω, η) �→ ω|y − η. By using this

resolution and the snake lemma, we see that the map ∂̃C is given by η �→ −η.
So we are done. �

Now let us define the maps

θ
q,i,log
Y ↪→X,1 : Hq+1

z (Y,Ωi−r+1
Y,log ) −→ Hq+r

z (X,Ωi
X,log),

θ
i
Y ↪→X,1 : H1

z (Y,Ωi−r+1
Y ) −→ Hr

z (X,Ωi
X),

by the composite

Hq+1
z (Y,Ωi−r+1

Y,log )
Hq+1
z (ρi,logY ↪→X,1)
−→ Hq+1

z (Y,Hr
Y (X,Ωi

X,log))

−→ Hq+r
z (X,Ωi

X,log),

H1
z (Y,Ωi−r+1

Y )
H1
z (ρ

i
Y ↪→X,1)
−→ H1

z (Y,Hr
Y (X,Ωi

X,log)) −→ Hr+1
z (X,Ωi

X,log),

respectively. Then, by Remark 3.13, we have θ
q,i,log
Y ↪→X,1◦θq,i−r+1,log

z↪→Y,1 = θq,i,log
z↪→X,1.

By this fact and the above claim, the theorem is reduced to showing the

equality (−1)r−1θ
0,i,log
Y ↪→X,1 ◦ ∂

0
C = ∂0

B ◦ θ
0,i,log
y↪→X,1 and then it is reduced to the

equality (−1)r−1θ
i
Y ↪→X,1 ◦ ∂̃C = ∂̃B ◦ θi

y↪→X,1. This equality follows from the

following diagram

H0(y,Ωi−r+1
y )

H0(y,ρiy↪→X,1)
−−−−−−−−−→ H0(y,Hr−1

y (X,Ωi
X)) −−−→ Hr−1

y (X,Ωi
X),

∂̃C

� � ∂̃B

�
H1

z (Y,Ωi−r+1
Y )

H1
z (Y,ρiY ↪→X,1)

−−−−−−−−−→ H1
z (Y,Hr−1

Y (X,Ωi
X)) −−−→ Hr

z (X,Ωi
X)

(where the middle vertical arrow is also induced by localization sequence),

where the left square is commutative and the right square is (−1)r−1-

commutative (the sign (−1)r−1 coming from the difference of the degree).

So the proof is finished. �

Next we treat the case (q, i) = (1, N):
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Proof of Theorem 5.4, Step 2: The case Y is regular and (q, i) =

(1, N). We prove the following claim:

Claim. ∂1
C is factorized as

H1(y,ΩN−r+1
y,log )

−∂
1
C−→ H2

z (Y,ΩN−r+1
Y,log )

(θ1,N−r+1,log
z↪→Y,1 )−1

−→ H1(z,ΩN−r
z,log).

Proof of Claim. Let us consider the following diagram:

(Here the left horizontal arrows are the inverse of the map induced by the

Hochschild-Serre spectral sequence.) Then the left square is commutative by

the functoriality of spectral sequence and the right square is commutative by

the claim in the case q = 0. Moreover, by definition, the map ∂1
C is equal to

the composite of top horizontal arrows and the map (θ1,N−r+1,log
z↪→Y,1 )−1 is equal

to the composite of bottom horizontal arrows. So the claim is proved. �

By the above claim, the theorem is reduced to the equality

(−1)r−1θ
1,N,log
Y ↪→X,1 ◦ ∂

1
C = ∂1

B ◦ θ
1,N,log
y↪→X,1. Let us note that, in the diagram

H1(y,ΩN−r+1
y,log )

∂
1
C−−−→ H2

z (Y,ΩN−r+1
Y,log )

θ
1,N,log
Y ↪→X,1−−−−−→ Hr+1

z (X,ΩN
X,log)
 
 


H0(y,ΩN−r+1
y )

∂̃C−−−→ H1
z (Y,ΩN−r+1

Y )
θ
N
Y ↪→X,1−−−−−→ Hr

z (X,ΩN
X)

(where the vertical arrows are defined as in δ1
X in Remark 3.12), the left

square is (−1)-commutative and the right square is (−1)r−1-commutative.

(The former is standard and the latter can be proved in the same way as
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Remark 3.12.) On the other hand, in the diagram

H1(y,ΩN−r+1
y,log )

θ1,N,log
y↪→X,1−−−−→ Hr

y(X,ΩN
X,log)

∂1
B−−−→ Hr+1

z (X,ΩN
X,log)
 
 


H0(y,ΩN−r+1
y )

θNy↪→X,1−−−−→ Hr−1
y (X,ΩN

X)
∂̃B−−−→ Hr

z (X,ΩN
X),

the left square is (−1)r−1-commutative by Remark 3.12 and the right square

is (−1)-commutative. By these properties and the surjectivity of the map

H0(y,ΩN−r+1
y ) −→ H1(y,ΩN−r+1

y,log ), the theorem is reduced to the claim

(−1)r−1θ
N
Y ↪→X,1 ◦ ∂̃C = ∂̃B ◦ θN

y↪→X,1 and it is already proved in Step 1. So

we are done. �

Remark 5.6.

(1) The above proof works even if we replace Ω∗
? and Ω∗

?,log by WmΩ∗
? and

WmΩ∗
?,log, respectively.

(2) It seems to the author that, in the papers [G-Su] and [Su], they give

a proof of Theorem 5.4 only when Y is regular.

To give a proof of Theorem 5.4 in the remaining cases, we need to

develop a theory of trace map for generalized residual complex associated

to differential modules, based on [Ha2]. (See also [Ha], [Co].) First we give

a brief review on the trace map of generalized residual complexes which is

defined in [Ha], [Ha2] (see also [Co]).

For a Noetherian scheme X, let C+
c (X) be the category of bounded below

complexes of sheaves of OX -modules on XZar with coherent cohomologies,

let D+
c (X) be the derived category of C+

c (X) and let Q : C+
c (X) −→ D+

c (X)

be the canonical functor. For a smooth morphism f : X −→ Y of Noethe-

rian schemes of relative dimension n, let f 3 : D+
c (Y ) −→ D+

c (X) be the

functor Ωn
X/Y [n]⊗Lf∗(−). For a finite morphism f : X −→ Y of Noetherian

schemes, let f 4 : D+
c (Y ) −→ D+

c (X) be the functor f
∗
RHomOY (f∗OX ,−),

where f is the morphism (X,OX) −→ (Y, f∗OX). Fundamental local iso-

morphism [Ha, III.7.3] says that, if f : X −→ Y is a regular closed im-

mersion of pure codimension n, there exists the canonical isomorphism of

functors f 4 ∼= ωX/Y [−n]⊗L Lf∗(−).
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The functors f 3 and f 4 satisfy several compatibilities. Here we recall

some of them:

(1) If X
f−→ Y

g−→ Z is a morphism of Noetherian schemes such that f

and g are smooth (resp. finite), then we have (g ◦ f)3 = g3 ◦ f 3 (resp.

(g ◦ f)4 = g4 ◦ f 4).

(2) If f : X −→ Y is a smooth morphism of Noetherian schemes of rel-

ative dimension n which admits a section s, we have the canonical

isomorphism id ∼= s4 ◦ f 3. When s is defined by a regular sequence

t1, · · · , tn, the isomorphism is expressed, via the fundamental local

isomorphism, as

F −→ ωY/X [−n]⊗ Ωn
Y/X [n]⊗F = s4 ◦ f 3F ;

x �→ (t∨1 ∧ · · · ∧ t∨n)⊗ dtn ∧ · · · ∧ dt1 ⊗ x.

(3) If we have the following Cartesian diagram with g smooth and h finite

X ×Z Y
h′

−−−→ Y

g′
� g

�
X

h−−−→ Z,

we have the canonical isomorphism (h′)4 ◦ g3 ∼−→ (g′)3 ◦ h4.

(4) If X
f−→ Y

g−→ Z be morphisms of Noetherian schemes such that f

is finite, g is smooth and h := g ◦ f is finite, we have the canonical

isomorphism of functors f 4 ◦ g3 ∼= h4. If we denote the graph of f by

γ, the above isomorphism is given by the composite

f 4 ◦ g3
(1)∼= γ4 ◦ (h′)4 ◦ g3

(3)∼= γ4 ◦ (g′)3 ◦ h4
(2)∼= h4,

where g′ and h′ are as in (3).

For an equidimensional Noetherian scheme X and F• ∈ D+
c (X), we

denote by E(F•) the Cousin complex

0 −→
⊕
x∈X0

H0
x(X,F•) −→

⊕
x∈X1

H1
x(X,F•) −→ · · · ,
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where
⊕

x∈X0 H0
x(X,F•) is sitting at degree 0. (It is nothing but the com-

plex of E•,0
1 -terms of the sheafified coniveau spectral sequence.)

A residual complex (resp. generalized residual complex) on a scheme X

is a bounded below complex K• of quasi-coherent flasque OX -modules with

coherent cohomology which admits an isomorphism
⊕

n∈ZK
n ∼

=
⊕

x∈X Jx

(resp.
⊕

n∈ZK
n ∼

= (
⊕

x∈X Jx)
r for some r), where Jx denotes the sheaf

ix∗Ix, where ix : x ↪→ X and Ix is the injective hull of κ(x) over OX,x.

In the case where X is an equidimensional regular scheme, the complex

E(F)[n] is a residual complex (resp. generalized residual complex) if F is

an invertible sheaf (resp. a locally free sheaf of finite rank) and n ∈ Z. We

denote the category of generalized residual complexes by Gres(X). Then,

for a morphism of Noetherian schemes of finite type f : X −→ Y with

Gres(Y ) �= ∅, we can define the functor

f∆ : Gres(Y ) −→ Gres(X)

such that f∆(K•) = E(f 4QK•) holds if f is finite and f∆(K•) = E(f 3QK•)
holds if f is smooth. For a finite morphism f : X −→ Y of Noetherian

schemes with Gres(Y ) �= ∅, let us define the morphism ρf : f∗f∆(K•) −→
K• by the composite

f∗f
∆(K•)

∼
= f∗f

∗HomOY (f∗OX ,K•) = HomOY (f∗OX ,K•)
ev−→ K•,

where ev is the evaluation at 1. Then we have the following theorem ([Ha,

VI.4.2, VII.2.1], [Ha2, p.31]):

Theorem 5.7.

(1) For each morphism f : X −→ Y of finite type between Noetherian

schemes with Gres(Y ) �= ∅, there exists a morphism

Trf : f∗f
∆ −→ 1

of functors from Gres(Y ) to the category of graded OY -modules (where

1 denotes the forgetful functor) such that Trg◦f = Trg ◦ g∗Trf holds

and that Trf = ρf holds if f is finite.

(2) (Residue Theorem) Let f : X −→ Y be as above and assume more-

over that it is proper. Then, for any K• ∈ Gres(Y ), the trace mor-

phism

Trf : f∗f
∆K• −→ K•
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is a homomorphism of complexes.

For a scheme X in the category C (for definition of C, see Section 2), the

complex E(Ωi
X) is a generalized residual complex. Now we define, for an

lci morphism (for definition, see below) f : X −→ Y between schemes in C,
the trace map of the form trf : f∗E(Ωi+∗

X )[∗] −→ E(Ωi
Y ) (for some ∗ ∈ Z),

essentially following Hartshorne ([Ha2, II,§2]).

First let is consider the case where f : X −→ Y is a smooth morphism

of relative dimension n between schemes in C. In this case, we have a

canonical map Ωi+n
X −→ Ωn

X/Y ⊗f∗Ωi
Y induced by the exact sequence 0 −→

f∗Ω1
Y −→ Ω1

X −→ Ω1
X/Y −→ 0. Using this map, we define the trace map

trf : f∗E(Ωi+n
X )[n] −→ E(Ωi

Y ) as the composite

f∗E(Ωi+n
X )[n] −→ f∗E(Ωn

X/Y ⊗ f∗Ωi
Y )[n] = f∗f

∆E(Ωi
Y )

Trf−→ E(Ωi
Y ).

Next let us consider the case where f : X −→ Y is a regular closed

immersion of codimension n between schemes in C. In this case, we have

the canonical map Ωi−n
X −→ ωX/Y ⊗ Ωi

Y which is locally defined by ω �→
(t∨1 ∧· · ·∧t∨n)⊗(dtn∧· · ·∧dt1∧ω), using the elements t1, · · · , tn ∈ OY defining

f . Using this map, we define the trace map trf : f∗E(Ωi−n
X )[−n] −→ E(Ωi

Y )

as the composite

f∗E(Ωi−n
X )[−n] −→ f∗E(ωX/Y ⊗ Ωi

Y )[−n] = f∗f
∆E(Ωi

Y )
Trf−→ E(Ωi

Y ).

If we have morphisms X
f−→ Y

g−→ Z such that each of f, g, g ◦ f is

either a smooth morphism or a regular closed immersion, we have trg◦f =

trg ◦ g∗trf . (This follows from Theorem 5.7 (1).) Moreover, one can see

that, if we have a Cartesian diagram

X ′ g′−−−→ X

f ′
� f

�
Y ′ g−−−→ Y

with f smooth and g a regular closed immersion, we have trg ◦ g∗trf ′ =

trf ◦ f∗trg′ .
Now let us given a morphism f : X −→ Y between schemes in C which

admits locally a factorization X
i
↪→ Z

g−→ Y , where i is a regular closed
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immersion of codimension m and g is a smooth morphism of relative dimen-

sion n. (Such a morphism is called an lci morphism.) For such f , we define

the trace map trf : f∗E(Ωi+n−m
X )[n − m] −→ E(Ωi

Y ) by trf = trg ◦ g∗tri.
This definition is independent of the factorization and so the trace map is

well-defined: Indeed, if we have another factorization X
i′
↪→ Z ′ g′−→ Y and if

we denote the morphisms X −→ Z ×Y Z ′, Z ×Y Z ′ −→ Z,Z ×Y Z ′ −→ Z ′

by i′′, p1, p2 respectively, we have

trg◦g∗tri = trg◦g∗trp1 ◦(g◦p1)∗tri′′ = trg′ ◦g′∗trp2 ◦(g′◦p2)∗tri′′ = trg′ ◦g′∗tri′ .

Note that the trf is also factorized as

f∗E(Ωi+n−m
X )[n−m] −→ f∗E(ωX/Z ⊗ Ωi+n

Z )[n−m]

−→ f∗E(ωX/Z ⊗ Ωn
Z/Y ⊗ Ωi

Y )[n−m]

= f∗i
∆g∆E(Ωi

Y ) = f∗f
∆E(Ωi

Y )
Trf−→ E(Ωi

Y ).

For an lci morphism f : X −→ Y , the trace map trf is a map of graded

sheaves and if f is proper, it is a map of complexes. (It follows from Theorem

5.7.) We can check also that, if we have a diagram X
f−→ Y

g−→ Z such

that f and g are lci morphisms berween regular schemes in C, then so is

g ◦ f and we have the equality trg◦f = trg ◦ g∗trf .

To apply the theory of the trace maps to the proof of Theorem 5.4,

we need to calculate them in special cases: First, we prove a coincidence

between trace map trι and the map θi
ι,1 for certain ι:

Proposition 5.8. Let X be a regular scheme of dimension r in C, let

z be a closed point in X and denote the canonical closed immersion z −→ X

by ι. Let us denote the z-component of the trace map trι

H0(z,Ωi−r
z ) −→ Hr

z (X,Ωi
X)

by trι,z. Then we have the equality trι,z = θi
ι,1.

Proof. We may assume X is local. We prove the proposition by

induction on r.
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First consider the case r = 1. Let t be a regular element of OX defining

the closed immersion ι. Then trι,z is given by the composite

Ωi−1
z −→ ωz/X ⊗ Ωi

X

∼=−→ Ext1(Oz,Ω
i
X) ∼= H1(Hom•(OX

t→ OX ,Ωi
X))

∼= H1(Hom•(OX
t→ OX ,Ωi

X−z → H1
z(X,Ωi

X)))

∼= H1(Hom•(Oz,Ω
i
X−z → H1

z(X,Ωi
X)))

= Hom(Oz, H
1
z(X,Ωi

X))
ev−→ H1

z(X,Ωi
X),

where the first map is given by ω �→ t∨ ⊗ (dt ∧ ω), the second map is the

fundamental local isomorphism of Hartshorne (corrected by Conrad), the

next three isomorphisms are the standard ones. The composite of the second

map and the next isomorphism sends t∨ ⊗ (dt ∧ ω) to the class of −dt ∧
ω ∈ Ωi

X = Hom1(OX
t→ OX ,Ωi

X), since the isomorphism of the complxes

[Hom(OX ,Ωi
X)

−◦t→ Hom(OX ,Ωi
X)] = Hom•(OX

t→ OX ,Ωi
X) involves the

sign −1 at degree 1 (see [Co, (1.3.15,27,28)]). By the next isomorphism, it

is sent to the class of (−dt ∧ ω, 0) ∈ Ωi
X−z ⊕ H1

z(X,Ωi
X) = Hom1(OX

t→
OX ,Ωi

X−z → H1
z(X,Ωi

X)). Now note that the boundary map Ωi
X−z −→

Ωi
X−z ⊕ H1

z(X,Ωi
X) of Hom•(OX

t→ OX ,Ωi
X−z → H1

z(X,Ωi
X)) is defined

by η �→ (−tη,−η) (via the identification H1
z(X,Ωi

X) ∼= Ωi
X−z/Ω

i
X using

t), because of the sign convention in [Co, p.10] and the description of the

boundary map in localization sequence given in the proof of Theorem 5.4,

Step 1. So the class of (−dt∧ω, 0) ∈ Ωi
X−z ⊕H1

z(X,Ωi
X) is the same as the

class of (0,dlog t ∧ ω). Then, by following the above description of trι,z, we

can see that the map trι,z is given by ω �→ dlog t ∧ ω. So the map trι,z is

equal to the map θi
ι,1 in the case r = 1.

Now let us prove the proposition for general r. Let us take a factorization

z ↪→ Y ↪→ X of ι such that the first (resp. the second) map is a regular

closed immersion of codimension 1 (resp. r − 1) and put y := Y − z. Then

we have the following (−1)r−1-commutative diagram

H0(y,Ωi−r+1
y )

∂̃C−−−→ H1
z (Y,Ωi−r+1

Y )

θiy↪→X,1

� θ
i
Y ↪→X,1

�
Hr−1

y (X,Ωi
X)

∂̃B−−−→ Hr
z (X,Ωi

X)
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(where the notations are as in the proof of Theorem 5.4, Step 1). On the

other hand, we have the (−1)r−1-commutative diagram

H0(y,Ωi−r+1
y )

∂̃C−−−→ H1
z (Y,Ωi−r+1

Y )

trY ↪→X,y

� trY ↪→X,z

�
Hr−1

y (X,Ωi
X)

∂̃B−−−→ Hr
z (X,Ωi

X)

(where trY ↪→X,y, trY ↪→X,z are the y-component, z-component of the map

trY ↪→X , respectively), since trY ↪→X is a map of complexes E(Ωi−r+1
Y )[1 −

r] −→ E(Ωi
X). By induction hypothesis, we have θi

y↪→X,1 = trY ↪→X,y. So

the above diagrams and the surjectivity of ∂̃C implies the equality θ
i
Y ↪→X,1 =

trY ↪→X,z. Then we can see the equality

θi
z↪→X,1 = θ

i
Y ↪→X,1 ◦ θi−r+1

z↪→Y,1 = trY ↪→X,z ◦ trz↪→Y,z = trz↪→X,z,

again by using induction hypothesis. So we have proved the proposition in

general case. �

Second, we give an explicit calculation of the trace map for the map of

schemes induced by a purely inseparable extension of fields. (The author

thinks that this calculation is interesting itself.)

Let k be a field of characteric p > 0 with [k : kp] = pn < ∞ and let

k′ be a purely inseparable extension field of k with [k′ : k] = p. We write

k′ = k(α), α = x
1/p
1 for some x1 ∈ k. Let X := Spec k′, Y := Spec k[t], Z :=

Spec k and define the morphism f : X −→ Y, g : Y −→ Z by the ones in-

duced by the ring homomorphisms k[t] −→ k′; t �→ α, k ↪→ k[t], respectively.

Let us denote the composite g ◦f by h. We would like to compute the trace

map trh : Ωi
k′ −→ Ωi

k.

By definition, trh is defined as the composite

Ωk′
i

ϕ1−→ ωk′/k[t] ⊗ Ωi+1
k[t]

ϕ2−→ ωk′/k[t] ⊗ Ω1
k[t]/k ⊗ Ωi

k

= f 4 ◦ g3Ωi
k

(∗)∼= h4Ωi
k = Homk(k

′,Ωi
k)

ev−→ Ωi
k,

where ϕ1 is given by ω �→ (tp − x1)
∨ ⊗ (−dx1 ∧ ω̃) (where ω̃ is a lift of ω),

ϕ2 is the natural one and ev is the evaluation at 1. The identification (∗) is
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given by the composite

ωk′/k[t] ⊗ Ω1
k[t]/k ⊗ Ωi

k

ϕ3∼= k[t]/(tp − x1)⊗ Ω1
k[t]/k ⊗ Ωi

k

ϕ4∼= Ext1k[t](k
′,Ω1

k[t]/k ⊗ Ωi
k)

ϕ5∼= Homk[t](k
′[t],Ω1

k[t]/k ⊗ Ωi
k)/(t− α)

ϕ6∼= (Ω1
k′[t]/k′ ⊗k′ Homk(k

′,Ωi
k))/(t− α)

ϕ7∼= Homk(k
′,Ωi

k),

where ϕ3 is the map (tp− x1)
∨⊗ω⊗ η �→ 1⊗ω⊗ η, ϕ4 is the identification

via the free resolution

0 −→ k[t]
tp−x1−→ k[t] −→ k′ −→ 0,

ϕ5 is the identification via the free resolution

0 −→ k′[t]
t−α−→ k′[t] −→ k′ −→ 0,

ϕ6 is the natural map and ϕ7 is the map dt⊗ ψ �→ ψ.

Let x2, · · · , xi be elements of k and put dlog x := dlog x2 ∧ · · · ∧ dlog xi.

Then we can explicitly calculate the trace map trh as follows:

Proposition 5.9. Let the notations be as above. Then, for an integer

l with 0 ≤ l ≤ p− 1, we have

trh(αldlogα ∧ dlog x) =

{
dlog x1 ∧ dlog x, l = 0,

0, l > 0.

Proof. By the equality αldlogα ∧ dlog x = (1/x1)α
p−1+ldα ∧ dlog x,

we have ϕ1(α
ldlogα ∧ dlog x) = −(tp − x1)

∨ ∧ dlog x1 ∧ tp−1+ldt ∧ dlog x =

(tp − x1)
∨ ∧ tp−1+ldt ∧ dlog x1 ∧ dlog x. It is sent by ϕ3 ◦ ϕ2 to tp−1+ldt ⊗

dlog x1 ∧ dlog x. The map ϕ5 ◦ ϕ4 is induced by the commutative diagram

0 −−−→ k[t]
tp−x1−−−→ k[t] −−−→ k′ −−−→ 0
 
 ∥∥∥

0 −−−→ k′[t]
t−α−−−→ k′[t] −−−→ k′ −−−→ 0,
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where the first vertical arrow is given by αj �→ 0 (0 ≤ j ≤ p− 2), αp−1 �→ 1

and the second map is given by αj �→ tj (0 ≤ j ≤ p − 1). So the element

tp−1+ldt⊗dlog x1∧dlog x is sent, by ϕ6◦ϕ5◦ϕ4, to the class of tp−1+ldt⊗ψp−1,

where ψk is the map satisfying ψk(α
j) = 0 (j �≡ kmod p), ψk(α

k) = dlog x1∧
dlog x. It is sent by ϕ7 to the element αp−1+lψp−1 = ψ−l and then sent by

ev to 0 when l �= 0 and to dlog x1 ∧ dlog x when l = 0. So we are done. �

Remark 5.10. The similar (but much more easier) calculation shows

that, for y ∈ k, we have trh(dlog y ∧ dlog x) = 0. Indeed, we see that

ϕ2 ◦ ϕ1(dlog y ∧ dlog x) = 0.

Now we can give a proof of Theorem 5.4 in the case where Y is not

regular:

Proof of Theorem 5.4, Step 3: The case Y is not regular and q = 0.

Let π : Y ′ −→ Y be the normalization of Y . Then, since dimY = 1, Y ′ is

regular and the morphism π is projective. Hence we can form the following

commutative diagram:

z′ −−−→ Y ′ −−−→ X ′� π

� �
z −−−→ Y −−−→ X,

where X ′ := Pa
X for some a, z′ := π−1(z), and the horizontal arrows are

closed immersions. Let y′ be π−1(y) (note that it is isomorphic to y via π),

and put i′ := i + a, r′ := r + a. First, let us note the following claim:

Claim 1. Let us consider the following diagram
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where the maps are defined as follows: The maps δ0
? , δ

0
?,?? are the ones

induced by the inclusion Ω∗
?,log ↪→ Ω∗

?. For a morphism Y1 −→ Y2 and a

point y2 ∈ Y2, trY1→Y2,y2 is the map defined as the y2-component of trace

map for Y1 −→ Y2. (∂0
B)′, (∂̃B)′ are the maps ∂0

B, ∂̃B for (X ′, y′, z′). Then

the squares other than (♠) is commutative and the square (♠) is (−1)a-

commutative.

Proof of Claim 1. The commutativity of the squares (♥) is obvi-

ous. The commutativity of the squares (♦) is proved as follows (we discuss

only the commutativity of the lower right square): By Proposition 5.8, we

have trz↪→X,z = θi
z↪→X,1, Then the commutativity follows from the claim

in Remark 3.12. The commutativity of the squares (♣) follows from the

transitivity of trace maps. Finally, The (−1)a-commutativity of the square

(♠) follows from the fact that the trace map is a map of Cousin complexes

E(Ωi′
X′)[a] −→ E(Ωi

X), because X ′ −→ X is proper. �

Let us denote the maps ∂0
B, ∂

0
C for (X ′, y′, z′) by (∂0

B)′, (∂0
C)′. Since Y ′

is regular, we have

(−1)r
′
θ0,i′,log
z′↪→X′,1 ◦ (∂0

C)′ = (∂0
B)′ ◦ θ0,i′,log

y′↪→X,1.

By using the diagram in claim 1 and the fact that y′ is isomorphic to y, we

can deduce the following equality:

(−1)rtrz↪→X,z ◦ trz′→z,z ◦ δ0
z′ ◦ (∂0

C)′ = δ0
X,z ◦ ∂0

B ◦ θ0,i,log
y↪→X,1.(5.3)

Now let us admit the validity of the following claim for the moment:

Claim 2. The following diagram is commutative:

H0(z′,Ωi−r
z′,log)

δ0
z′−−−→ H0(z′,Ωi−r

z′ )

Corκ(z′)/κ(z)

� trz′→z,z

�
H0(z,Ωi−r

z,log)
δz−−−→ H0(z,Ωi−r

z ),

where Corκ(z′)/κ(z) is as in the definition of Kato complex.

Then the left hand side of the equation (5.3) can be rewritten as follows:

LHS of (5.3) = (−1)rtrz↪→X,z ◦ δ0
z ◦ Corκ(z′)/κ(z) ◦ (∂0

C)′

= (−1)rδ0
X,z ◦ θ0,i,log

z↪→X,1 ◦ ∂0
C .
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So we obtain the equality

(−1)rθ0,i,log
z↪→X,1 ◦ ∂0

C = θ0,i,log
y↪→X,1 ◦ ∂0

B.

Hence it suffices to prove the above claim to finish the proof in this case.

Proof of Claim 2. It suffices to prove the following: Let K be a

field of characteristic p > 0 and let K ′ be a finite extension of K. Then the

following diagram is commutative:

H0(K ′,Ωi
K′,log) −−−→ H0(K ′,Ωi

K′)

Cor

� tr

�
H0(K,Ωi

K,log) −−−→ H0(K,Ωi
K),

where Cor, tr denotes the corestriction map and the trace map respectively,

and the horizontal maps are induced by the inclusion Ωi
?,log ↪→ Ωi

?. Since

both Cor and tr satisfy the transitivity, we may assume that K ′/K is sep-

arable or K ′/K is purely inseparable of degree p.

First let us consider the case that the extension K ′/K is separable. Then

there exists a Galois extension K ⊂ L such that K ′ ⊗K L
∼
=
∏n

j=1 L holds

for some n ∈ N. Note that both Cor and tr are compatible with base change

by the morphism SpecL −→ SpecK (in the case of Cor, it follows from the

compatibility with base change of norm maps of K-groups, and in the case

of tr, it follows from the definition). Then we may replace the extension

K ⊂ K ′ by L ⊂ K ′ ⊗K L
∼
=
∏n

j=1 L to prove the claim in separable case,

that is, it suffices to show the commutativity of the following diagram:⊕n
j=1 H

0(L,Ωi
L,log) −−−→

⊕n
j=1 H

0(L,Ωi
L)

Cor

� tr

�
H0(L,Ωi

L,log) −−−→ H0(L,Ωi
L).

But it is trivial, since both Cor and tr are equal to the map ‘taking sum’.

Next, let us consider the case where K ′/K is purely inseparable of degree

p. By the argument in the previous paragraph, we may replace K by its sep-

arable closure. In this case, it is known ([Ba-Ta]) that KM
i (K ′) is generated

by the elements of the form {x1, · · · , xi}, where x1 ∈ K ′, x2, · · · , xi ∈ K.
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By Bloch-Gabber-Kato theorem, it suffices to show the following equality

to prove the claim:

tr(dlog x1 ∧ · · · ∧ dlog xi) = hi
K ◦N({x1, · · · , xi}),

where N is the norm map of K-groups. By Proposition 5.9 and Remark

5.10, the left hand side is equal to dlog xp
1 ∧ dlog x2 ∧ · · · ∧ dlog xi, and we

can calculate the right hand side as follows:

hi
K ◦N({x1, · · · , xi}) = hi

K({xp
1, x2, · · · , xi}) (projection formula for N)

= dlog xp
1 ∧ dlog x2 ∧ · · · ∧ dlog xi.

Hence the assertion is proved. �

Since the claim is proved, the proof of Theorem 5.4, Step 3 is finished. �

Finally we treat the remaining case.

Proof of Theorem 5.4, Step 4: The case Y is not regular and (q, i) =

(1, N). First we prove a technical claim on logarithmic Hodge-Witt coho-

mology:

Claim 1. Let k be a field of characteristic p > 0 with [k : kp] = pi.

Let x1, · · · , xi be a p-basis of k and put dlog x := dlog x1∧ · · · ∧dlog xi. Let

a ∈ N and put k0 := kpa , K := k((t)). Then the homomorphism

H1(k0,Z/p
mZ) −→ H1(K,Ωi+1

K,log); y �→ ydlog t ∧ dlog x

is surjective.

Proof of Claim 1. Since we have the isomorphism H1(K,Ωi+1
K,log)

∼=
Ωi+1

K /(C − 1)Ωi+1
K , it suffices to prove the following: Any element in Ωi+1

K

has the form ydlog t∧dlog x (y ∈ k0) modulo (C−1)Ωi+1
K . (See also Remark

2.11.)

First let us prove the weaker assertion which claims that any element

in Ωi+1
K has the form ydlog t ∧ dlog x (y ∈ k) modulo (C − 1)Ωi+1

K . For an

integer l ≥ −1, let us define Hl ⊂ Ωi+1
K by

Hl := {
∑
j≥−l

ajt
jdlog t ∧ dlog x | aj ∈ k}.
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Then we have
⋃

l≥−1 Hl = Ωi+1
K . Since we have the equality

C(
∑
j≥−l

ajt
jdlog t ∧ dlog x) =

∑
j≥−l
p|j

bjt
j/pdlog t ∧ dlog x

for some bj ∈ k (j ≥ −l, p|j), we have CHl ⊂ Hl−1 for l > 0 and CH0 ⊂ H0.

So, for any ω ∈ Ωi+1
K , we have

ω = C lω − (C − 1)(

l−1∑
j=1

Cj)ω ∈ H0 + (C − 1)Ωi+1
K

for sufficiently large l. Since we have H0 = {ydlog t∧dlog x | y ∈ k}+H−1, it

suffices to show the inclusion H−1 ⊂ (C−1)H−1. Let us prove it. Note that

there exists an additive homomorphism D : k −→ k such that D(xp) = x

holds and that, for any ω =
∑

j ajt
jdlog t ∧ dlog x ∈ Ωi+1

K , we have the

equality (C − 1)ω =
∑

j(D(apj) − aj)t
jdlog t ∧ dlog x. For any element

η :=
∑

j≥1 bjt
jdlog t ∧ dlog x ∈ H−1, let us define aj ∈ k (j ≥ 1) inductively

as follows:

aj :=

{
0, (j, p) = 1,

(bj/p + aj/p)
p, p|j.

Put ω =
∑

j≥1 ajt
jdlog t ∧ dlog x ∈ H−1. Then we have

(C − 1)ω =
∑
j≥1

(D(apj)− aj)t
jdlog t ∧ dlog x

=
∑
j≥1

((bj + aj)− aj)t
jdlog t ∧ dlog x = η.

Hence we have H−1 ⊂ (C − 1)H−1. So the weaker assertion is proved.

Now we prove the claim. By the result in the previous paragraph, it

suffices to prove that any element in Ωi+1
K of the form zdlog t∧dlog x (z ∈ k)

has in fact the form ydlog t ∧ dlog x (y ∈ k0) modulo (C − 1)Ωi+1
K . Write z

as

z =

pa−1∑
n1,··· ,ni=0

bp
a

n1···nix
n1
1 · · ·x

ni
i (bn1···ni ∈ k)
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and put

b00···0 =

pa−1∑
n1,··· ,ni=0

cp
a

n1···nix
n1
1 · · ·x

ni
i (cn1···ni ∈ k).

Let d be b00···0 − cp
a

00···0. Then we have

zdlog t ∧ dlog x + (C − 1)(Ca−1 + · · ·+ C + 1)((z + d)dlog t ∧ dlog x)

= zdlog t ∧ dlog x + (Ca − 1)((z + d)dlog t ∧ dlog x)

= (z + b00···0 − z − d)dlog t ∧ dlog x = cp
a

00···0dlog t ∧ dlog x.

Hence we obtain the assertion. �

Now let us begin the proof of the theorem. Let the notations be as in

Step 3 and put N ′ := N + a. Then we have the following claim:

Claim 2. Let us consider the following diagram

where (∂1
B)′ is the map ∂1

B for (X ′, y′, z′) and the maps δ1
? , δ

1
?,?? are the ones

defined as the composite of the homomorphism of cohomologies induced by

the projection

WmΩ∗
? −→WmΩ∗

?/dV
m−1Ω∗−1

?

and the connecting homomorphism of the exact sequence

0 −→WmΩ∗
?,log −→WmΩ∗

?
1−F−→WmΩ∗

?/dV
m−1Ω∗−1

? −→ 0.

(The other maps are defined as in Step 3.) Then the squares (♥) are (−1)-

commutative, the square (♦)l is (−1)l-commutative (l = r − 1, r, r′ − 1, r′),
the square (♠) is (−1)a-commutative and the other squares are commuta-

tive.



Logarithmic Hodge-Witt Cohomology 629

Proof of Claim 2. The (−1)l-commutativity of the squares (♦)l and

the (−1)-commutativity of the squares (♥) follow from Proposition 5.8,

Remark 3.12 and the results in the proof of Theorem 5.4, Step 2. The

(−1)a-commutativity of (♠) and the commutativity of the other squares

are proved in Step 3, claim 1. �

Let t be a uniformizer of OY ′ . Then we have OY ′ = κ(z′)[[t]]. Let

x1, · · · , xi be a p-basis of κ(z′) and put dlog x := dlog x1 ∧ · · · ∧ dlog xi.

Denote the separable closure of κ(z) in κ(z′) by k. Now define V ⊂ ΩN−r+1
y′

by V := {bdlog t ∧ dlog x | b ∈ k}. Then, by claim 1, the homomorphism

δ1
y′ |V : V −→ H1(y′,ΩN−r+1

y′,log ) is surjective.

Let η be an element in H1(y′,ΩN−r+1
y′,log )(= H1(y,ΩN−r+1

y,log )) and take an

element a ∈ k satisfying δ1
y′(adlog t ∧ dlog x) = η. Then, by the results in

the proof of Theorem 5.4, Step 2 and Proposition 5.8, we have the following

equality:

(∂̃B)′ ◦ try′↪→X,y′(adlog t ∧ dlog x)

= (−1)r
′−1θ

N
Y ′↪→X′,1 ◦ (∂̃C)′(adlog t ∧ dlog x)

= (−1)r
′
θ
N
Y ′↪→X′,1(adlog t ∧ dlog x)

= (−1)r
′
θN
z′↪→X′,1(adlog x) = (−1)r

′
trz′↪→X′,z′(adlog x).

By using the upper three squares of the diagram in the claim 2, we can

deduce the equality (−1)r
′
(∂1

B)′ ◦θ1,N ′,log
y′↪→X′,1(η) = θ1,N ′,log

z′↪→X′,1 ◦δ1
z′(adlog x). From

this and the main result in Step 2, we deduce the equality

δ1
z′(adlog x) = (∂1

C)′(η).(5.4)

On the other hand, by using the diagram in claim and the fact that y′ is

isomorphic to y, we can deduce the following equality:

(−1)r∂1
B ◦ θ1,N,log

y↪→X,1(η) = θ1,N,log
z↪→X,1 ◦ δ1

z ◦ trz′→z,z(adlog x).(5.5)

Now assume for the moment that we have the equality

δ1
z ◦ trz′→z,z(adlog x) = Corκ(z′)/κ(z) ◦ δ1

z′(adlog x),

where

Corκ(z′)/κ(z) : H1(z′,ΩN−r
z′,log) −→ H1(z,ΩN−r

z,log)
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be as in the definition of Kato complex. Then the right hand side in the

equation (5.5) can be rewritten as follows:

RHS of (5.5) = θ1,N,log
z↪→X,1 ◦ Corκ(z′)/κ(z) ◦ δ1

z′(adlog x)

= θ1,N,log
z↪→X,1 ◦ Corκ(z′)/κ(z) ◦ (∂1

C)′(η) = θ1,N,log
z↪→X,1 ◦ ∂1

C(η).

So we have the desired equality (−1)r∂1
B ◦ θ

1,N,log
y↪→X,1 = θ1,N,log

z↪→X,1 ◦∂1
C . So the

proof of the theorem is reduced to the following claim:

Claim 3. Let K be a field of characteristic p > 0 with [K : Kp] = pi

and let K ′ be a finite extension of K. Let K0 be the separable closure of K

in K ′. Let us consider the following diagram (Attention: we do not know

the commutativity):

H0(K ′,Ωi
K′)

γK′−−−→ H1(K ′,Ωi
K′,log)

trK′/K

� CorK′/K

�
H0(K,Ωi

K)
γK−−−→ H1(K,Ωi

K,log),

where trK′/K , CorK′/K denotes the trace map and the corestriction map

(the map Cor1,iK′/K in the notation in Remark 5.1) respectively, and the

homomorphism γ? (? = K,K ′) is defined as the composite of the homomor-

phism H0(?,Ωi
?) −→ H0(?,Ωi

?/dΩ
i−1
? ) induced by the natural projection

and the connecting homomorphism associated to the exact sequence

0 −→ Ωi
?,log −→ Ωi

?
1−F−→ Ωi

?/dΩ
i−1
? −→ 0.

Let x1, · · · , xi be a p-basis of K ′ and put dlog x := dlog x1 ∧ · · · ∧ dlog xi.

Then, for a ∈ K0, we have the equality

γK ◦ trK′/K(adlog x) = CorK′/K ◦ γK′(adlog x).

Proof of Claim 3. It suffices to prove the following two assertions:

(1) When K ′/K is purely inseparable, we have the equality

γK ◦ trK′/K(adlog x) = CorK′/K ◦ γK′(adlog x).
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(2) When K ′/K is separable, we have γK ◦ trK′/K = CorK′/K ◦ γK′ .

First we prove the assertion (1). We may assume that x1 is not contained

in K. Put K ′′ := K(xp
1, x2, · · · , xi). Then xp

1, x2, · · · , xi forms a p-basis

of K ′′. By induction on [K ′ : K], it suffices to prove the following two

equalities:

trK′/K′′(adlog x) = adlog xp
1 ∧ dlog x2 ∧ · · · ∧ dlog xi.(5.6)

γK′′ ◦ trK′/K′′(adlog x) = CorK′/K′′ ◦ γK′(adlog x).(5.7)

The equality (5.6) follows from Proposition 5.9 and the K ′′-linearity of

TrK′/K′′ . Let us prove the equality (5.7). We denote the class of a in

K ′′/(1 − F )K ′′ ∼
= H1(K ′′,Z/pmZ) by a. Then, in the notation in Remark

5.1, we have

LHS of (5.7) = {a, {xp
1, x2, · · · , xi}}K′′ .

On the other hand, we can calculate the right hand side as follows:

RHS of (5.7) = CorK′/K′′{α(a), {x1, · · · , xi}}K′ = {a,N{x1, · · · , xi}}K′′

= {a, {xp
1, x2, · · · , xi}}K′′ (projection formula).

Hence the equality (5.7) is proved and the proof of the assertion (1) is

finished.

Next let us prove the assertion (2). Let y1, · · · , yi be a p-basis of K and

put dlog y := dlog y1 ∧ · · · ∧ dlog yi. Then, since y1, · · · , yi forms a p-basis

of K ′, any element of H0(K ′,Ωi
K′) has the form adlog y (a ∈ K ′). Let L

be the Galois closure of K ′/K and put G := Gal(L/K), H := Gal(L/K ′).
Then we have L⊗K K ′ =

∏
τ∈G/H L. Note that we have the commutative

diagram with injective horizontal arrows

H0(K ′,Ωi
K′) −−−→

⊕
τ∈G/H H0(L,Ωi

L)

trK′/K

� tr(
∏
τ∈G/H L)/L

�
H0(K,Ωi

K) −−−→ H0(L,Ωi
L),
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and the homomorphism tr(
∏
τ∈G/H L)/L is nothing but the summation. Hence

we have

trK′/K(ω) =
∑

τ∈G/H

τ(ω).(5.8)

So it suffices to prove the equality

CorK′/K(γK′(adlog y)) = γK((
∑

τ∈G/H

τ(a))dlog y).(5.9)

In the notation of Remark 5.1, we have γK′(adlog y) = {a, β({y1, · · · ,
yi})}K′ . So we have

LHS of (5.9) = CorK′/K{a, β({y1, · · · , yi})}K′

= {Cor1,0K′/K(a), {y1, · · · , yi}}K

= {
∑

τ∈G/H

τ(a), {y1, · · · , yi}}K (Remark 5.1)

= RHS of (5.9).

So the assertion (2) is proved and so the proof of the claim is finished. �

Since the claim 3 is proved, the proof of Theorem 5.4, Step 4 is finished. �

Since we have given the proof of Theorem 5.4 in all the cases, the proof

of Theorem 5.4 is now completed.
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tique p > 0, Lecture Note in Math. 407, Springer Verlag, 1974.

[Bl] Bloch, S., Algebrain K-theory and crystalline cohomology, Publ.
Math. IHES. 47 (1977), 187–268.

[Bl-Kat] Bloch, S. and K. Kato, p-adic étale cohomology, Publ. Math. IHES.
63 (1986), 107–152.



Logarithmic Hodge-Witt Cohomology 633

[Bl-Ogu] Bloch, S. and A. Ogus, Gersten’s conjecture and the homology of
schemes, Ann. Sci. Ec. Norm. Sup. 7 (1974), 181–202.

[CT] Colliot-Thélène, J.-L., On the reciprocity sequence in the higher
class field theory of function fields, in Algebraic K-theory and Al-
gebraic Topology (P. G. Goerss and J. F. Jardine, eds.), NATO
Adv. Sci. Inst. Ser., Kluwer, Dordrecht, 1993, 35–55.

[CT-Ho-Kah] Colliot-Thélène, J.-L., Hoober, R. T., and B. Kahn, Bloch-Ogus–
Gabber theorem, in Algebraic K-theory (Tronto ON 1996), Fields
Inst. Commun. 16 (1997), 31–94.

[Co] Conrad, B., Grothendieck duality and base change, Lecture Note in
Math. 1750, Springer, 2000.

[CT-Sa-So] Colliot-Thélène, J.-L., Sansuc, J.-J. and C. Soulé, Torsion dans le
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