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Push-out of Schemes

By Kezheng Li∗

Abstract. We study the existence of a push-out for two mor-
phisms Z → X and Z → Y in the category of schemes. Push-out is
a generalization of quotient of groupoid. We give a necessary and suf-
ficient condition for the existence of a push-out in the flat projective
case. We also give a sufficient condition for the existence of a push-out
in the finite normal case, which does not assume any flatness. In par-
ticular, this gives a sufficient condition for the existence of a quotient
of a finite groupoid on a normal scheme, which does not assume any
flatness.

0. Introduction

Let p : Z → X and q : Z → Y be morphisms of schemes over a base

scheme S. A commutative diagram over S

Z
p−−−→ X

q



� f



�

Y
g−−−→ T

is called a push-out if for any S-scheme T ′ and any S-morphisms f ′ : X → T ′

and g′ : Y → T ′ such that f ′ ◦ p = g′ ◦ q, there is a unique morphism

φ : T → T ′ such that f ′ = φ ◦ f and g′ = φ ◦ g. This is the dual concept

of pull-back (i.e. fiber product) in the category of schemes. Unlike pull-

back, a push-out may not exist at all (for the given p, q). However, in many

interesting cases we can see the existence of a push-out, and push-out is a

useful tool.

A special case of push-out is the quotient of a groupoid. Along this line

there have been many works and results (cf. e.g. [3], [4]). In many cases we

need to use the existence of quotients of groupoids, for example in moduli

theory (cf. [6], [8], [11], [13], [14], [15], [16], [17], [19], and see Example 2.4
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below). We will use quotients of groupoids to construct push-out. A special

and important case of groupoid is group scheme action (cf. [1], [7], [10],

[12], [18], and see Example 1.1 below).

Assume Z is a closed subscheme of X×S Y . For the existence of a push-

out of p = pr1 : Z → X and q = pr2 : Z → Y which is also a pull-back, a

very basic necessary condition is

Z ×X Z ×Y Z = Z ×Y Z ×X Z ⊂ X ×S X ×S Y ×S Y(∗)

In the language of presheaves, this can be expressed as: For any S-scheme

U and any x, x′ ∈ X(U) and y, y′ ∈ Y (U), if (x, y), (x, y′), (x′, y′) ∈ Z(U),

then (x′, y) ∈ Z(U).

In §1 we define push-out and some related basic concepts for general

categories. We also give some examples for the existence or non-existence

of a push-out.

In §2 we give a criteria of push-out. A special case is: for any two

faithfully flat morphisms f : X → S and g : Y → S of finite type, S is a

push-out of pr1 : X ×S Y → X and pr2 : X ×S Y → Y .

In the following sections we give some sufficient conditions for the exis-

tence of push-out in several cases. In §3 we study the flat projective case,

the method can be used to study push-out for a general category (see Theo-

rem 1.1). In §4 we study the finite case, here we don’t assume any flatness.

In particular, this gives a criterion for the existence of quotients of finite

groupoids without any assumption of flatness. In §5 we study a partially

flat case. In each case we see that condition (∗) plays a key role.

We give some examples, which show the connections of push-out with

several subjects.
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1. Push-out in a Category

Let C be a category. For any two morphisms f : X → T , g : Y → T in

C, if there is an object Z of C together with two morphisms p : Z → X and

q : Z → Y satisfying

a) The following diagram is commutative:

Z
p−−−→ X

q



� f



�

Y
g−−−→ T

(1)

b) If there is another object Z ′ together with morphisms p′ : Z ′ → X,

q′ : Z ′ → Y such that f ◦ p′ = g ◦ q′, then there is a unique morphism

φ : Z ′ → Z such that p′ = p ◦ φ and q′ = q ◦ φ,

then we say Z (or (1), or (Z, p, q)) is a (categorical) pull-back of f and g in

C.

The main background of this concept is in geometry: A category of some

geometric objects (e.g. the category of topological spaces, the category

of differentiable manifolds, the category of complex analytic spaces, the

category of schemes, or the category of algebraic stacks, etc.) usually has

a pull-back for any two morphisms f : X → T and g : Y → T , which is

the fiber product X ×T Y in the category. For this reason, we also call the

pull-back Z in (1) (in an arbitrary category C) a fiber product of X and Y

over T , denoted by X ×T Y (or more exactly Xf×g Y ), and denote pr1 = p,

pr2 = q, called the first and second projection respectively.

We often use the “language of presheaves” for the definition of fiber prod-

uct. For any object X ∈ Ob(C), denote by X = MorC(·, X) : Cop →((sets))

the contravariant functor from C to ((sets)) sending any S ∈ Ob(C) to

MorC(S,X). (If C is a category of some geometric objects, then a mor-

phism S → X can be understood as an “S-point” of X.) Then conditions

a) and b) can be restated as a natural equivalence Z ∼= Xf×g Y , i.e. a

morphism Z ′ → Z is equivalent to two morphisms p′ : Z ′ → X, q′ : Z ′ → Y

such that f ◦p′ = g ◦q′. Hence we can restate the definition of fiber product

as

X ×T Y = Xf×g Y ∼= Xf×g Y = X ×T Y(2)
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In the following we will often use notation like this, for example, if x ∈
Mor(S,X) and y ∈ Mor(S, Y ) satisfy f ◦ x = g ◦ y, we can denote (x, y) ∈
Mor(S,X ×T Y ) the morphism corresponding to (x, y) ∈ Mor(S,X) ×
Mor(S, T ); and for any morphism φ : X → X ′ and any S-point x ∈
Mor(S,X), we can denote φ(x) = φ ◦ x.

Push-out is the dual concept of pull-back.

Definition 1. Let p : Z → X, q : Z → Y be two morphisms in

a category C. If there is an object T of C together with two morphisms

f : X → T and g : Y → T satisfying

a) The following diagram is commutative:

Z
p−−−→ X

q



� f



�

Y
g−−−→ T

(3)

b) If there is another object T ′ together with morphisms f ′ : X → T ′,
g′ : Y → T ′ such that f ′ ◦ p = g′ ◦ q, then there is a unique morphism

ψ : T → T ′ such that f ′ = ψ ◦ f and g′ = ψ ◦ g,

then we say T (or (3), or (T, f, g)) is a (categorical) push-out of p and q in

C.

Unlike pull-back, in a category C of some geometric objects, a push-out

usually may not exist for two general morphisms p : Z → X and q : Z → Y ,

as we will see below. But in many cases we are interested to see whether a

push-out exists, and push-out is a useful tool.

A special case is the quotient of a groupoid. Let C be a category having

products and fiber products. By a groupoid in C we mean morphisms p1, p2 :

X1 → X0 and q1, q2, q3 : X2 → X1 satisfying the following conditions:

i) (“reflexivity”) The diagonal morphism ∆ : X0 → X0 × X0 factors

through (p1, p2) : X1 → X0 ×X0;

ii) (“symmetricity”) There is an automorphism φ of X1 such that

(p1, p2) ◦ φ = (p2, p1) : X1 → X0 ×X0;
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iii) (“transitivity”) p1 ◦ q1 = p1 ◦ q2, p2 ◦ q2 = p2 ◦ q3, (q1, q2) : X2 →
X1 ×X0 X1 and (q2, q3) : X2 → X1 ×X0 X1 are epimorphisms, and

there is an automorphism ψ of X2 such that q12 ◦ ψ = q23 : X2 →
X0×X0×X0, where q12 is the composition of (q1, q2) and (p1, p2)p1×p1

(p1, p2) : X1p1×p1 X1 → (X0 × X0)p1×p1 (X0 × X0) ∼= X0 × X0 ×
X0 (where (X0 × X0)p1×p1 (X0 × X0) ∼= X0 × X0 × X0 is given by

((x1, x2), (x1, x3)) �→ (x1, x2, x3)), and q23 is the composition of (q2, q3)

and (p1, p2)p2×p1 (p1, p2) : X1p2×p1 X1 → (X0 ×X0)p2×p1 (X0 ×X0) ∼=
X0 ×X0 ×X0 (where (X0 ×X0)p2×p1 (X0 ×X0) ∼= X0 ×X0 ×X0 is

given by ((x1, x2), (x2, x3)) �→ (x1, x2, x3)).

Intuitively, for any object U , these conditions give an eqivalence relation

on Mor(U,X0). The case of a group object acting on an object is a basic

example of groupoid (see Example 1 below). For the groupoid, if there is a

morphism p : X0 → Y such that

i) p ◦ p1 = p ◦ p2;

ii) If p′ : X0 → Y ′ is a morphism such that p′ ◦ p1 = p′ ◦ p2, then there is

a unique morphism h : Y → Y ′ such that p′ = h ◦ p,

then we say Y (or p) is a quotient of the groupoid, and denote Y = X0/X1.

Note that for any two morphisms g, h : X0 → Y ′ such that g ◦ p1 = h ◦ p2 :

X1 → Y ′, by reflexivity we have g = h. Hence a quotient of the groupoid is

a push-out of p1 and p2. In other words, quotient of a groupoid is a special

case of push-out. However, we often use quotients of groupoids to construct

push-out (see Theorem 3.1, Theorem 4.2 and Corollary 4.2).

We often consider the case when (q1, q2) and (q2, q3) : X2 → X1 ×X0 X1

are isomorphisms. In this case condition iii) of groupoid can be simplified

as:

There is an automorphism ψ of X1 ×X0 X1 such that q12 ◦ ψ = q23 :

X1 ×X0 X1 → X0 × X0 × X0, where q12 = (p1, p2)p1×p1 (p1, p2) and

q23 = (p1, p2)p2×p1 (p1, p2).

Furthermore, we often consider the case when (p1, p2) : X1 → X0 ×X0 is a

monomorphism, hence q12 and q23 are monomorphisms (note that for any

two morphisms f : X → T and g : Y → T , if f is a monomorphism, then

pr2 : X ×T Y → Y is a monomorphism). In this case conditions i-iii) can

be written as:
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i′) ∆(X0) ⊂ X1 ⊂ X0 ×X0;

ii′) (p2, p1)(X1) = X1 ⊂ X0 ×X0;

iii′) X1p1×p1 X1 = X1p2×p1 X1 ⊂ X0 ×X0 ×X0.

and we say X1 is an equivalence relation on X0.

The following two facts are obvious.

Lemma 1. Let (3) be a push-out in a category C.

i) If ψ : Z ′ → Z is an epimorphism, then

Z ′ p◦ψ−−−→ X

q◦ψ


� f



�

Y
g−−−→ T

is also a push-out.

ii) If f and g have a pull-back in C (i.e. there is a fiber product X×T Y ),

then the following diagram

X ×T Y
pr1−−−→ X

pr2



� f



�

Y
g−−−→ T

is also a push-out.

In the following we assume C has fiber products (i.e. any two morphisms

f : X → T and g : Y → T in C have a pull-back).

Definition 2. Let C be a category having fiber products. A push-

out (3) is called geometric if the induced morphism Z → X ×T Y is an

epimorphism. Furthermore, a push-out (3) is called universal if for any

morphism τ : T ′ → T , the following diagram is also a push-out:

Z ×T T ′ p×T τ−−−→ X ×T T ′

q×T τ



� f×T τ



�

Y ×T T ′ g×T τ−−−→ T ′
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Remark 1. When C is the category of schemes, after this section we

will replace “epimorphism” by “strong epimorphism” in Definition 2 (see

the beginning of §2).

Note that if (3) is a push-out, then

X ×T Y
pr1−−−→ X

pr2



� f



�

Y
g−−−→ T

is a geometric push-out by Lemma 1.

We use the same terminologies for groupoids (this is slightly different

from the terminologies in [13]). Intuitively, a quotient p : X0 → X0/X1

of a groupoid is geometric means that for any object U , the fibers of p∗ :

Mor(U,X0) → Mor(U, Y ) are just the equivalence classes in Mor(U,X0).

Example 1. Let C be a category having fiber products with a terminal

object S (hence C has products which are just fiber products over S). A

group object in C is an object G together with morphisms m : G×G → G

(“multiplication”), o : S → G (“unit section”) and ι : G → G (“inverse”)

such that

i) m ◦ (idG ×m) = m ◦ (m× idG) : G×G×G → G (“associativity”);

ii) m ◦ (o× idG) = m ◦ (idG × o) = idG : G ∼= S ×G → G;

iii) m◦(ι×idG)◦∆ = m◦(idG×ι)◦∆ = 0 : G → G, where ∆ : G → G×G

is the diagonal morphism, and 0 : G → G is the composition of o and

the unique morphism G → S.

Let G be a group object in C and X be an object in C. An action of G

on X is a morphism ρ : G×X → X satisfying

i) ρ ◦ (idG × ρ) = ρ ◦ (m× idX) : G×G×X → X;

ii) ρ ◦ (o× idX) = idX : X ∼= S ×X → X.

In this case, it is easy to check that ρ,pr2 : X1 = G × X → X = X0 can

be extended to a groupoid. If this groupoid has a quotient Y (i.e. Y is a
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push-out of ρ and pr2), we call Y a quotient of ρ, and denote Y = X/ρ (or

Y = X/G if there is no confusion).

If ρ is the multiplication action of G = C× on X = C, then ρ has two

orbits C× and {0}. In the category of sets, ρ has a quotient which has two

elements. But in the category of C-schemes (or in the category of Hausdorff

spaces), ρ has a quotient which has just one point, and it is not a geometric

quotient.

This shows that a categorical quotient depends on the choice of the

category.

Example 2. Let C be the category of schemes over an algebraically

closed field k. Let X = A2
k − {(0, 0)}. In X ×k X let x, y (resp. x′, y′) be

the coordinates of the first (resp. second) copy of X. Let W ⊂ X ×k X be

the union of two subschemes {x = x′, y = y′} and {x = x′ = 0}. It is not

hard to check that W is an equivalence relation on X (i.e. the line x = 0

is an equivalence class, while every other equivalence class consists of one

single point).

Though there is a set-theoretic quotient of X modulo this equivalence

relation, there is no (categorical) quotient X/W in the category of schemes.

To show this, first let R = k[x, xyr|r = 1, 2, ...] (which is not noetherian),

Y ′ = SpecR, f : X → Y ′ be the morphism induced by the inclusion

R ↪→ k[x, y], and g : Y ′ → A2
k be the morphism induced by the inclu-

sion k[x, xy] ⊂ R (note that g induces a topological isomorphism from Y ′

to g(Y ′) = g(f(X))). Then one checks that the induced morphism X → Y ′

equilizes pr1 and pr2 : W → X. Suppose there is a quotient Y = X/W .

Then f factors through Y , and one can check (locally, point by point, or

use Remark 4.2 below) that Y → Y ′ is an isomorphism. On the other hand,

the morphism X → P1
k given by (x, y) �→ (x : y) also equilizes pr1 and

pr2 : W → X, hence there is an induced morphism φ : Y → P1
k sending

f(x, y) to (x : y). Therefore for any point P ∈ P1
k we have (0, 0) ∈ φ−1(P ),

this is absurd. In fact we have shown that there is no categorical push-out

for pr1 and pr2 : W → X.

If we take k = C, the above argument can also show that the equivalence

relation W has no quotient in the category of topological spaces.
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Lemma 2. Suppose the push-out (3) is also a pull-back, i.e. Z
�→ X×T

Y . Then we have

Z ×X Z ×Y Z = Z ×Y Z ×X Z ⊂ X ×X × Y × Y(4)

where Z×X Z×Y Z → X×X×Y ×Y is given by ((x, y), (x, y′), (x′, y′)) �→
(x, x′, y, y′), and Z×Y Z×X Z → X ×X ×Y ×Y is given by ((x, y), (x′, y),
(x′, y′)) �→ (x, x′, y, y′).

This is because Z ×X Z ×Y Z and Z ×Y Z ×X Z are both equal to

X×T X×T Y ×T Y in X×X×Y ×Y . In the language of presheaves, (4) can

be expressed as: For any object U and any x, x′ ∈ X(U) and y, y′ ∈ Y (U),

if (x, y), (x, y′), (x′, y′) ∈ Z(U), then (x′, y) ∈ Z(U).

Conversely, given a monomorphism Z → X × Y , it is often the case

that (4) is a sufficient or almost a sufficient condition for the existence of a

(geometric) push-out (3). We now explain this.

Suppose in C there are given some morphisms called fine morphisms,

which satisfy the following conditions:

A) The fine morphisms are epimorphisms; any isomorphism is fine.

B) Let f : X → T be a fine morphism and g : Y → T be a morphism.

Then pr2 : X ×T Y → Y is a fine morphism. Furthermore, g is a

monomorphism (resp. epimorphism, isomorphism) iff pr1 : X×T Y →
X is so.

C) For any two morphisms f : X → Y and g : Y → Z, if two of f , g,

g ◦ f are fine, then the third is fine.

D) If f : X → T and g : Y → T are fine morphisms, then T is a push-out

of pr1 : X ×T Y → X and pr2 : X ×T Y → Y .

E) Let Z ⊂ X × X be an equivalence relation. If pr1 : Z → X is fine,

then there is a universal geometric quotient X/Z, and the projection

X → X/Z is also fine.

For example, if C is the category of quasi-projective schemes over a

noetherian base, we can define fine morphisms to be faithfully flat projective

morphisms (see Remark 3.2). It is also not hard to show that if C is the
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category of differentiable manifolds, or the category of complex analytic

spaces, we can define fine morphisms to be smooth proper epimorphisms.

Theorem 1. Let C be a category having products and fiber products.

Suppose fine morphisms are defined in C satisfying conditions A-E). Let

p : Z → X, q : Z → Y be fine morphisms in C such that (p, q) : Z → X ×Y

is a monomorphism. If (4) holds, then there is a universal geometric push-

out T of p and q. Furthermore, X → T and Y → T are also fine.

Theorem 1 shows that (4) is a fundamental condition for the existence

of push-out. For the proof of Theorem 1, one can follow the argument in

the proof of Theorem 3.1 step by step. We omit the details here, because

in the proof of Theorem 3.1 one can see the key ideas more intuitively.

In the following sections we only consider the category of schemes.

2. A Criterion of Push-out of Schemes

For the category of schemes, we use terminologies “push-out”,

“groupoid”, “equivalence relation” and “quotient” in the same sense as that

in §1. For convenience we also use the following terminologies: A morphism

of schemes f : X → Y is called a strong epimorphism if f is set-theoretically

onto and f# : OY → f∗OX is a monomorphism. For example, a faithfully

flat morphism is strongly epimorphic. It is easy to see that a strong epi-

morphism is an epimorphism in the category of schemes (but the converse

is not true). A push-out (3) will be called geometric if Z → X ×T Y is a

strong epimorphism (this is different from Definition 1.2, see Remark 1.1),

and this terminology is used for quotients of groupoids, equivalence rela-

tions or group scheme actions in the same sense. The definition of universal

push-out is the same as that in Definition 1.2.

The following proposition is a criterion of push-out in the category of

schemes.

Proposition 1. Let S be a noetherian scheme, f : X → S and g :

Y → S be morphisms of finite type, where g is faithfully flat and f is

strongly epimorphic. Then S is a geometric push-out of pr1 : X ×S Y → X

and pr2 : X ×S Y → Y , which is a universal geometric push-out if f is also

flat.
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Proof. Let f ′ : X → S′ and g′ : Y → S′ be morphisms such that

f ′ ◦ pr1 = g′ ◦ pr2. For any y ∈ Y , let s = g(y), then there exists x ∈ X

such that f(x) = s (since f is set-theoretically onto). For any y′ ∈ g−1(s)

there exists z ∈ X ×S Y such that pr1(z) = x and pr2(z) = y′, hence all of

the points in g−1(s) map to the same point s′ = g′(y) ∈ S′ under f ′ ◦ pr1;

similarly all of the points in f−1(s) map to s′ under g′ ◦ pr2. Therefore

there is a (unique) induced map of sets φ : S → S′ satisfying set-theoretic

equations φ ◦ g = g′ and φ ◦ f = f ′. Since g is an open map (of topological

spaces), we see φ is a continuous map of topological spaces.

Let U ′ = SpecR′ ⊂ S′ be an affine open subscheme. For any s ∈
φ−1(U ′) and any y ∈ Y such that g(y) = s, there exists an affine open

neighborhood U = SpecR ⊂ φ−1(U ′) of s and an affine open neighborhood

W = SpecB ⊂ g−1(U) of y such that g(W ) = U . Note that B is faithfully

flat over R, hence g∗ : R → B is monomorphic and M = B/g∗(R) is a

flat R-module. Let V = f−1(U) and A = OX(V ), then f∗ : R → A is a

monomorphism because f is strongly epimorphic. Since R → B is flat, we

have OX×SY (V ×S W ) ∼= A ⊗R B. Now we have a commutative diagram

with exact rows

0 →R
g∗−−−→ B

λ−−−→ M → 0


�f∗



�q∗



�η

0 →A
p∗−−−→ A⊗R B

µ−−−→ A⊗R M→ 0

(5)

Since η is a monomorphism and η ◦ λ ◦ g′∗ = µ ◦ q∗ ◦ g′∗ = µ ◦ p∗ ◦ f ′∗ =

0 : R′ → A ⊗R M , we have λ ◦ g′∗ = 0 : R′ → M , hence there is a

(unique) induced homomorphism φ∗ : R′ → R such that f∗ ◦ φ∗ = f ′∗

and g∗ ◦ φ∗ = g′∗. Therefore we can define φ as a morphism and we have

equations of morphisms φ ◦ f = f ′, φ ◦ g = g′.
The last statement holds because faithful flatness is preserved under

base change. �

Example 1. Let ρ be the action of G = O2(C) on X = A2
C =

SpecC[x, y]. Let W be the image of (ρ,pr2) : G ×C X → X ×C X, and

p : X → Y = A1
C be induced by C[x2 + y2] ⊂ C[x, y]. Then one checks that

Y is a categorical quotient of W but not a geometric quotient (p maps three

ρ-orbits {x =
√
−1y}, {x = −

√
−1y} and {(0, 0)} to one point). In fact W
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has no geometric quotient (because a geometric quotient is isomorphic to

the categorical quotient).

Let X ′ = X − {(0, 0)} and, by abuse of notation, denote the restriction

of W on X ′ still by W . Let U1, U2 ⊂ X be open subschemes defined by

{x �=
√
−1y}, {x �= −

√
−1y} respectively. Then one checks by Proposition

1 that U1/W ∼= Y and U2/W ∼= Y , both being geometric quotients. Hence

by Proposition 1, there is a geometric quotient X ′/W which is isomorphic

to the affine line with original doubled. Note that this is not a separated

scheme over C, and W is not a closed subscheme of X ×CX.

Note that for any morphisms X → T , Y → T and T → S, if T → S

is separated, then X ×T Y is a closed subscheme of X ×S Y . Hence if

W ⊂ X×S Y is not a closed subscheme but pr1 : W → X and pr2 : W → Y

have a geometric push-out T , then T is not separated over S.

Example 2. Let S be a noetherian scheme, X be an S-scheme of finite

type and G be a group scheme of finite type over S. An action ρ : G×SX →
X of G on X is called transitive if (ρ,pr2) : G×S X → X ×S X is a strong

epimorphism. If ρ has a geometric quotient X/G which is a locally closed

subscheme of S, then ρ is transitive by definition; on the other hand, if

X → S is faithfully flat and ρ is transitive, then there is a geometric quotient

X/G ∼= S by Proposition 1 and Lemma 1.1.

Example 3. For a noetherian scheme X, denote by OXet the presheaf

in the étale topology on X shch that OXet(U) = OU for any étale morphism

U → X. It is well known that OXet is an étale sheaf, this means that for any

étale morphism U → X and any two étale covers q1 : U1 → U , q2 : U2 → U ,

if a1 ∈ Γ(OU1), a2 ∈ Γ(OU2) satisfy pr∗1(a1) = pr∗2(a2) ∈ Γ(OU1×UU2), then

there is a unique section a ∈ Γ(OU ) such that q∗1(a) = a1, q
∗
2(a) = a2.

This fact can be easily shown using Proposition 1. Indeed, it can be

reduced to the case when q1 and q2 are of finite type, note that a global

section of OU is equivalent to a morphism U → A1, hence the problem is

equivalent to that for any two morphisms f1 : U1 → A1, f2 : U2 → A1

such that f1 ◦ pr1 = f2 ◦ pr2 : U1 ×U U2 → A1, there is a unique morphism

f : U → A1 such that f1 = q1 ◦ f , f2 = q2 ◦ f . This is clear because U is a

push-out of pr1 : U1 ×U U2 → U1 and pr2 : U1 ×U U2 → U2, by Proposition

1.
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Example 4. Let Ag,d,n be the moduli scheme of abelian varieties of

genus (= dimension) g with a polarization of degree d2 and a level n-

structure. Note that Ag,d,n is defined over Z[ 1
n ], and is a fine moduli scheme

when n ≥ 3. In particular Ag,d,1 = Ag,d, the coarse moduli scheme of abelian

varieties of genus g with a polarization of degree d2. If n|m, then there is

a canonical projection pm,n : Ag,d,m → Ag,d,n (i.e. a level m-structure gives

a level n-structure). Let m,n > 2 be coprime integers, then we have a

commutative diagram

Ag,d,mn ⊗ Z[ 1
mn ]

pmn,n−−−→ Ag,d,n ⊗ Z[ 1
mn ]



�pmn,m



�pn,1

Ag,d,m ⊗ Z[ 1
mn ]

pm,1−−−→ Ag,d ⊗ Z[ 1
mn ]

(6)

Let S be a noetherian scheme over Z[ 1
mn ], and X be an abelian scheme

of genus g over S with a polarization of degree d2. Then we can take an

étale cover em : Sm → S (resp. en : Sn → S) such that X ×S Sm has a level

m-structure (resp. X ×S Sn has a level n-structure). Let Smn = Sm ×S Sn,

then on X ×S Smn there are an induced level m-structure and an induced

level n-structure, which together give a level mn-structure. Denote by q1 :

Smn → Sm and q2 : Smn → Sn the projections respectively. By Proposition

1, S is a push-out of q1 and q2.

There are induced morphisms fm : Sm → Ag,d,m ⊗ Z[ 1
mn ], fn : Sn →

Ag,d,n ⊗ Z[ 1
mn ] and fmn : Smn → Ag,d,mn ⊗ Z[ 1

mn ] satisfying pmn,m ◦ fmn =

fm◦q1 and pmn,n◦fmn = fn◦q2. If T is a scheme and g1 : Ag,d,m⊗Z[ 1
mn ] → T ,

g2 : Ag,d,n ⊗ Z[ 1
mn ] → T are morphisms satisfying g1 ◦ pmn,m = g2 ◦ pmn,n,

then there is a commutative diagram

Smn
q2−−−→ Sn



�q1



�g2◦fn

Sm
g1◦fm−−−−→ T

(7)

Hence there is a unique induced morphism S → T . This shows that there

is a natural transformation from the functor

S �→ {abelian schemes of genus g over S with a polarization of degree d2}
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to T . Since Ag,d is a coarse moduli scheme, there is a unique morphism

φ : Ag,d ⊗Z[ 1
mn ] → T such that φ ◦ pm,1 = g1 and φ ◦ pn,1 = g2. This shows

that (6) is a push-out.

3. The Existence of Push-out: Flat Projective Case

For convenience we will use the following terminology: A morphism

X → S is called relatively projective (resp. relatively quasi-projective) if X

is a closed (resp. locally closed) subscheme of P(E) for some coherent sheaf

E on S. In this case we usually fix a tautological invertable sheaf OX(1),

especially when we talk about a Hilbert polynomial.

The following Lemma can be found in [1, p.276], here we give a proof

with some different ideas which will be used below.

Lemma 1. Let S be a noetherian scheme, X → S be a relatively quasi-

projective morphism and W ⊂ X ×S X be a locally closed subscheme which

is an equivalence relation of X over S. Suppose that pr1 : W → X is proper

and flat. Then there is a universal geometric quotient Y = X/W which is

relatively quasi-projective (and relatively projective if X → S is so) over S.

Furthermore, X → Y is faithfully flat and relatively projective.

Proof. Let X1 be a connected component of X and W1 = pr−1
1 (X1) ⊂

W . Let X2 = pr2(W1) (this makes sense since pr2 is proper). Then by the

definition of equivalence relation (see §1), we see that pr−1
1 (X2) = W ∩

(X2 ×S X2) which gives a restriction of W on X2. Hence for simplicity we

may assume X = X2.

Take a relatively projective scheme X̄ → S which contains X as an open

dense subscheme such that i# : OX̄ → i∗OX is a monomorphism (where i :

X → X̄ is the inclusion), and fix an OX̄(1). Then W is a closed subscheme

of X̄ ×S X since W → X is proper. The above assumption guarantees that

all of the fibers of pr2 : W → X have one and the same Hilbert polynomial,

say χ. Let H = Hilbχ
X̄/S

be the Hilbert scheme representing the following

functor:

((S-schemes)) → ((sets))

T �→ {closed subschemes of X̄ ×S T , flat over T with χ as

the Hilbert polynomial of each fiber over T}
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and Z ⊂ X̄ ×S H be the universal subscheme. Then W induces an S-

morphism φ : X → H such that W = Z ×H X (as closed subschemes of

X̄ ×S X). Let Ȳ ⊂ H be the closed subscheme defined by the ideal sheaf

ker(OH → φ∗OX), and Z̄ = Z×H Ȳ ⊂ X̄×S Ȳ . Then W = Z̄×Ȳ X. Denote

by q : X → Ȳ , p1 : Z̄ → X̄, p2 : Z̄ → Ȳ and p : W → Z̄ the projections.

Then p2 is faithfully flat, hence p is dominant and p# : OZ̄ → p∗OW is a

monomorphism. Note that pr1 = p1 ◦p : W → X̄, hence p1 is onto (because

it is dominant and proper), thus strongly epimnorphic.

The pull-back of Z̄ → Ȳ and q ◦ pr2 : W → Ȳ is equal to the pull-back

W22 of pr2 and pr2, while the pull-back of Z̄ → Ȳ and q ◦ pr1 : W → Ȳ is

equal to the pull-back W12 of pr1 and pr2. Since W12 = W22 (condition iii′)
in the definition of equivalence relation), by the universality of H we have

q ◦ pr1 = q ◦ pr2 : W → Ȳ . Hence

q ◦ p1 ◦ p = q ◦ pr1 = q ◦ pr2 = p2 ◦ p(8)

Let Z = p−1
1 (X). By abuse of notation we still denote by p1 : Z → X,

p2 : Z → Ȳ and p : W → Z the projections. Note that p1 ◦ p : W →
Z → X is proper, hence p : W → Z is also proper. Since OȲ → q∗OX

is a monomorphism by the definition of Ȳ , and p2 : Z → Ȳ is flat, we

see OZ → pr1∗OW is a monomorphism, hence p : W → Z is a strong

epimorphism, therefore (8) gives

q ◦ p1 = p2 : Z → Ȳ(9)

Hence p : W ∼= Z ×Ȳ X → Z has a section. Since p2 : Z̄ → Ȳ is an open

map we can define Y = p2(Z) = q(X) which is an open dense subscheme of

Ȳ . Furthermore we have W ⊂ X ×Y X, hence in X ×S X ×S X we have

Z ×Y W ⊂ Z ×Y (X ×Y X) = W ×Y X = W ×Z (Z ×Y X)

= W ×Z W ⊂ W ×X W = Z ×Y W

i.e. Z ×Y W = Z ×Y (X ×Y X), thus W = X ×Y X because Z is faithfully

flat over Y . Therefore

Z ×Y W = W21 = W12 = W ×Y Z = X ×Y X ×Y Z = X ×Y W(10)

Now (10)×WZ (via the section Z → W of p) gives

Z ×Y Z ∼= X ×Y Z(11)
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hence p1 : Z → X is an isomorphism because Z is faithfully flat over Y .

Finally, let Z ′ = p−1
2 (Y ), then W = Z ′ ×Y X, hence W is faithfully flat

over Z ′. This shows Z ′ = Z ∼= X, hence q : X → Y is proper and faithfully

flat. We see that Y is a universal geometric quotient X/W by Proposition

2.1. �

Remark 1. In Lemma 1, it is essential to assume that W → X is both

proper and flat. However, without the assumption of flatness, at least W

has a “rational quotient” when X is reduced. To explain this, we need to

use the following terminologies.

Definition 1. Let X → S be a scheme and W ⊂ X×SX be a locally

closed subscheme. We say W is a rational equivalence relation of X over S

if

i) (“reflexivity”) ∆(X) ⊂ W ;

ii) (“symmetricity”) Let ι : X ×S X → X ×S X be the morphism by

switching factors, then ι(W ) = W ;

iii) (“rational transitivity”) Let Wij (i, j = 1 or 2) be the pull-back of

pri : W → X and prj : W → X, viewed as a subscheme of X×SX×SX

(W11 = W pr1×pr1 W → X×SX×SX is given by ((x1, x2), (x1, x3)) �→
(x1, x2, x3), and W21 = W pr2×pr1 W → X ×S X ×S X is given by

((x1, x2), (x2, x3)) �→ (x1, x2, x3), etc.), then there is an open dense

subscheme U ′ ⊂ X such that W11 ∩ pr−1
1 (U ′) = W21 ∩ pr−1

1 (U ′).

(If U ′ = X, this is just the definition of equivalence relation.) For a ra-

tional equivalence relation W , if pr1 and pr2 : W → X have a push-out

Y , then we still call Y a quotient of X with respect to W , and denote

Y = X/W . Furthermore, a rational map p : X ······>Y over S is called a

rational quotient of W if there is an open dense subscheme U ⊂ Y and an

open dense subscheme V ⊂ X such that p can be defined as a morphism

V → U , W ′ = W ∩ (V ×S V ) ⊂ V ×U V , and U is a push-out of pr1 and

pr2 : W ′ → V (cf. [5]).

More generally, Let p : Z → X, q : Z → Y be two morphisms of schemes.

If there is a scheme T and open dense subschemes X ′ ⊂ X, Y ′ ⊂ Y together

with morphisms f : X ′ → T , g : Y ′ → T such that p−1(X ′) = q−1(Y ′) and
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T is a push-out of p|p−1(X′) : p−1(X ′) → X ′ and q|p−1(X′) : p−1(X ′) → Y ′,
then we say T is a rational push-out of p and q.

Corollary 1. Let S be a noetherian scheme, X be a reduced scheme,

X → S be a relatively quasi-projective morphism and W ⊂ X ×S X be a

locally closed subscheme defining a rational equivalence relation. Suppose

that pr1 : W → X is generically proper. Then there is an open dense

subscheme X ′ ⊂ X such that the rational equivalence relation of X ′ given

by W ′ = W ∩ X ′ ×S X ′ has a universal geometric quotient. Furthermore,

X ′/W ′ → S is relatively quasi-projective and X ′ → X ′/W ′ is faithfully flat

and relatively quasi-projective.

Proof. For simplicity we may assume X → S is relatively projective

and W is closed. Hence there is an open dense subscheme X ′ ⊂ X such

that W ∩ (X×SX
′) is relatively projective and flat over X ′. As in the proof

of Lemma 1, we may assume that under a choice of OX(1), this induces a

morphism of finite type φ : X ′ → H = HilbχX/S for some Hilbert polynomial

χ. By further shrinking X ′ we may assume φ maps X ′ onto a locally closed

subscheme Y ′ ⊂ H. Let W ′ = W ∩(X ′×SX
′). Then by the proof of Lemma

1 we can see W ′ = X ′ ×Y ′ X ′ and X ′ → Y ′ is faithfully flat, hence Y ′ is a

universal geometric quotient X ′/W ′ by Proposition 2.1. �

Therefore under the conditions of Corollary 1, there exists a rational

quotient of X with respect to W .

Theorem 1. Let S be a noetherian scheme, X → S and Y → S be

relatively quasi-projective morphisms and W ⊂ X ×S Y be a locally closed

subscheme satisfying

W ×X W ×Y W = W ×Y W ×X W ⊂ X ×S X ×S Y ×S Y(12)

(i.e. equation (4) in this case). Suppose that pr1 : W → X and pr2 : W → Y

are faithfully flat and proper. Then there is a universal geometric push-out

Z of pr1 and pr2 which is relatively quasi-projective (and relatively projective

if X → S and Y → S are so) over S. Furthermore, X → Z and Y → Z

are faithfully flat and relatively projective.

Proof. Let X1 = W ×XW , viewed as a (relatively projective) scheme

over Y2 = Y ×S Y . Then X1 gives an equivalence relation of W over S and
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W/X1
∼= X, by Proposition 2.1. Let W1 = X1 ×Y W . Then it is easy to see

(by the language of presheaves) that

W1 = X1 ×Y2 X1(13)

Indeed, for any S-scheme U , a morphism U → W1 is equivalent to 3 mor-

phisms (x, y), (x, y′), (x′, y′) ∈ MorS(U,W ) (where x, x′ ∈ MorS(U,X) and

y, y′ ∈ MorS(U, Y )), while a morphism U → X1 ×Y2 X1 is equivalent to 4

morphisms (x, y), (x, y′), (x′, y′), (x′, y) ∈ MorS(U,W ) (see §1). Hence W1

gives an equivalence relation on X1 over Y2. Furthermore, pr1 : W1 → X1

is faithfully flat and relatively projective, hence by Lemma 1 there is a uni-

versal geometric quotient Y3 = X1/W1, and X1 → Y3 is faithfully flat and

relatively projective. By (13) we have

X1 ×Y3 X1 = W1 = X1 ×Y3 (Y3 ×Y2 X1)

hence X1
∼= Y3 ×Y2 X1 because X1 is faithfully flat over Y3. By the same

reason we see ∆ : Y3 → Y3 ×Y2 Y3 is an isomorphism, hence Y3 → Y2 is a

closed immersion (a proper morphism T → T ′ is a closed immersion iff ∆ :

T → T ×T ′ T is an isomorphism). Furthermore, the following commutative

diagram

X1
pr2−−−→ W



�



�

Y3
pr2−−−→ Y

(14)

is a pull-back, i.e. X1
∼= Y3 ×Y W , this comes from

X1 ×Y3 X1
∼= W1 = X1 ×Y W ∼= X1 ×Y3 (Y3 ×Y W )(15)

(and that X1 → Y3 is faithfully flat). Hence pr2 : Y3 → Y is faithfully flat

and relatively projective (since the composition Y3 ↪→ Y2 → Y is relatively

quasi-projective and proper).

We now show that Y3 gives an equivalence relation of Y over S. The

commutativity is obvious. For the reflexivity, note that the composition

W
∆→ W ×X W = X1 → Y3 → Y2(16)
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is equal to the composition W → Y
∆→ Y2, where W → Y is a strong

epimorphism. For the transitivity, we need to show Y311 = Y312 ⊂ Y ×S

Y ×S Y , where Y3ij (i, j = 1 or 2) is the pull-back of pri : Y3 → Y and

prj : Y3 → Y . It is enough to show that X1 ×Y3 Y311 = X1 ×Y3 Y312 in

X ×S Y ×S Y ×S Y . But by (14) we have

X1 ×Y3 Y311
∼= X1 ×Y Y3

∼= W ×X W ×Y Y3
∼= W ×X X1

∼= W ×X W ×X W

similarly we have X1 ×Y3 Y312
∼= W ×X W ×X W , hence we get an iso-

morphism X1 ×Y3 Y311 → X1 ×Y3 Y312 compatible with the inclusions to

X ×S Y ×S Y ×S Y .

By Lemma 1, there is a universal geometric quotient Z = Y/Y3 which is

relatively quasi-projective over S, and Y → Z is faithfully flat and relatively

projective. By (14) we see that W → Z equilizes pr1 and pr2 : X1 → W ,

hence W → Z factors through W/X1
∼= X. Since W → X and W → Z are

both faithfully flat and relatively projective, we see that X → Z is faithfully

flat and relatively projective. Furthermore,

W ×X (X ×Z Y ) ∼= W ×Z Y ∼= W ×Y (Y ×Z Y )(17)

∼= W ×Y Y3
∼= X1

∼= W ×X W

Hence W → X ×Z Y is an isomorphism. The statements then follow by

Proposition 2.1. �

Remark 2. If we define a fine morphism to be a faithfully flat proper

morphism, then the conditions A-E) in §1 obviously hold for the category

of relatively quasi-projective schemes over a noetherian base S (with strong

epimorphism instead of epimorphism). One checks that these are all of the

conditions we need in the proof of Theorem 1, hence it is not hard to change

the argument of Theorem 1 to a proof of Theorem 1.1.

4. The Existence of Push-out: Finite Case

In this section we study push-out of finite morphisms. We will not

need any assumption of flatness. The following proposition plays the role

of Proposition 2.1 for the finite case.

Proposition 1. Let S be a noetherian normal scheme. Let f : X →
S, g : Y → S be finite strong epimorphisms which map associated points to
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generic points. Then the following diagram is a push-out.

X ×S Y
pr1−−−→ X

pr2



� f



�

Y
g−−−→ S

Proof. We need only prove the case when S is affine, and then the

general case can be shown by the functoriality of pull-back. For simplicity

we may assume S is integral. Let S = SpecR, X = SpecA, Y = SpecB, and

let K = q.f.(R). By assumption, the associated primes of A (resp. B) all

lie over the zero ideal of R, hence A ↪→ A⊗RK (resp. B ↪→ B⊗RK). This

implies that the canonical homomorphisms A → A⊗R B and B → A⊗R B

are injective. Thus A and B can be viewed as subrings of A⊗RB containig

R. Define φ : A ⊕ B → A ⊗R B by φ(a, b) = a ⊗R 1 − 1 ⊗R b, and let

R′ = ker(φ). Then R′ can be viewed as A ∩ B in A ⊗R B, hence is an

R-subalgebra of A, also a finitely generated R-module of A. Now A ⊗R K

and B⊗RK can be viewed as K-subalgebras of A⊗RB⊗RK, and obviously

A⊗RK ∩B⊗RK = K in A⊗RB⊗RK, hence R′ ⊂ K. Since R′ is integral

over R and R is integrally closed, we have R = R′, hence S is a push-out of

pr1 : X ×S Y → X and pr2 : X ×S Y → Y . �

The following theorem gives a sufficient condition of the existence of a

quotient in finite case.

Theorem 1. Let X be a normal scheme which is separated of finite

type over a noetherian scheme S, and W ⊂ X ×S X be a closed subscheme

which is a rational equivalence relation on X such that pr1 : W → X is

finite. Suppose that

A) pr1 : W → X maps generic points to generic points;

B) any point x ∈ X has an open affine neighborhood U ⊂ X such that

pr2(pr−1
1 (U)) = U ;

C) either W is reduced or X is of positive characteristic (i.e. for each

irreducible component V of X, it holds that ch(K(V )) > 0),

then there is a quotient Y = X/W and
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i) Y is of finite type over S and X → Y is finite;

ii) for any open subscheme U ⊂ Y , WU = W ×Y U gives a rational

equivalence relation on XU = X×Y U which has a quotient XU/WU
∼=

U ;

iii) W gives a set-theoretical equivalence relation on X, under which the

fibers of X → Y are just the equivalence classes in X (as sets);

iv) if W has no embedded points, then Y is normal.

v) There is an open dense subscheme Y ′ ⊂ Y whose inverse image X ′ ⊂
X is flat over Y , and W ×Y Y ′ = X ′ ×Y X ′ ⊂ X ×S X which is an

equivalence relation on X ′ (hence Y ′ = X ′/(W ×Y Y ′) is a universal

geometric quotient).

Proof. By B) and the separatedness of X → S, it is enough to prove

the case when X and S are affine (then by ii) we can deduce the general

case). Let S = SpecR, X = SpecA and W = SpecB. For simplicity

we can also assume that all of the generic points of X are in one and

the same equivalence class (since X is normal). Let X1 = SpecA1, ...,

Xn = SpecAn be the irreducible components of X and W1, ...,Wm be the

irreducible components of W with reduced induced scheme structure. By

Corollary 3.1, W has a rational quotient X ······>Y ′. Let K = K(Y ′).

Case 1. W is reduced. In this case each K(Xi) is separable over K

because K(Xi) ⊗K K(Xi) is reduced. Hence for any Wi, Wi → pr1(Wi) is

generically separable, so K(Wi) is separable over K also. Take a finite Galois

extension L ⊃ K such that every K(Wi) is isomorphic to an intermediate

field of L ⊃ K over K. For each i, take a K-homomorphism K(Xi) → L

and let Ãi be the integral closure of Ai in L. The induced morphisms

X̃i = Spec(Ãi) → Xi (1 ≤ i ≤ n) together give a strong epimorphism

q : X̃ → X, where X̃ = SpecÃ is the disjoint union of all X̃i’s. Let

W̃ = SpecB̃ be the union of irreducible components of X̃ ×X W ×X X̃

whose generic points map to the generic points of X̃ under pr1, with reduced

induced scheme structure. Then W̃ ⊂ X̃ ×S X̃ gives a rational equivalence

relation on X̃ with rational quotient Y ′.
Let W̃1 = Spec(B̃1), ..., W̃r = Spec(B̃r) be the irreducible components

of W̃ with reduced induced scheme structure. Then by our choice of L,
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we have K(W̃i) ∼= L (1 ≤ i ≤ r). For any i, j (1 ≤ i, j ≤ n), there is

a W̃t such that pr1(W̃t) = X̃i and pr2(W̃t) = X̃j . Since Ãi is integrally

closed and B̃t is integral over Ãi, by K(X̃i) ∼= L ∼= K(W̃t) we see Ãi → B̃t

is an isomorphism, i.e. pr1 : W̃t → X̃i is an isomorphism. By the same

reason pr2 : W̃t → X̃j is an isomorphism, hence there is an S-isomorphism

σ = pr2 ◦ pr−1
1 : X̃i → X̃j . Let Σ be the set of such isomorphisms (for

all i, j). For any σ ∈ IsoS(X̃i, X̃j) ∩ Σ and any σ′ ∈ IsoS(X̃j , X̃k) ∩ Σ, we

have σ′ ◦ σ ∈ Σ since W̃ gives a rational equivalence relatioin on X̃. Also

idX̃i
∈ Σ for each i. Hence Gi = AutS(Xi)∩Σ is a finite group. By checking

at the generic fibers of W̃ ······>Y ′, we see that Gi
∼= Gal(L/K). Furthermore,

for any j and any σ ∈ IsoS(X̃i, X̃j) ∩ Σ, we have Gj = σGiσ
−1. Let

C = ÃGi
i (which is integrally closed in K) and Y = SpecC ∼= X̃i/Gi. Then

Y ∼= X̃j/Gj for each j, and Y ′ can be identified with an open subscheme

of Y . Since Gal(L/K(Xj)) ⊂ Gal(L/K), each X̃j → Y factors through Xj ,

hence we have an induced morphism X → Y which coincides with X ······>Y ′.
Note that we have an exact sequence of R-modules

0 → C → Ã
pr∗1−pr∗2−−−−−→ B̃(18)

This gives an exact sequence of R-modules

0 → C → A
pr∗1−pr∗2−−−−−→ B(19)

because A → Ã and B → B̃ are monomorphisms. Since Ã is integral over

C and A is a finitely generated R-algebra, we see X is finite over Y , hence

there is a finitely generated R-subalgebra C ′ ⊂ C such that X is finite over

SpecC ′. Since C ′ is noetherian and A is a finitely generated C ′-module, we

see C is a finitely generated C ′-module, hence Y → S is of finite type.

We now show that Y is a quotient of W . Let φ : X → Z be an S-

morphism which equilizes pr1 and pr2 : W → X, then ψ = φ ◦ q : X̃ → Z

equilizes pr1 and pr2 : W̃ → X̃. Hence for any open affine subscheme

U ⊂ Z and any x ∈ ψ−1(U) ∩ X̃i, we have Gix ⊂ ψ−1(U). Let I ⊂ Ãi

be the ideal defining X̃i − ψ−1(U). Let p1, ..., ps ⊂ Ãi be the prime ideals

corresponding to the points of Gix. Then for each j (1 ≤ j ≤ u), there is

an element aj ∈ I − pi. Since pj � pk for any k �= j, we can take aj such

that aj ∈ pk∀k �= j. Then a =
∑

j aj ∈ I − ∪jpj . Let b =
∏

σ∈Gi
σa, then

b ∈ C and Gix ⊂ (X̃i)b ⊂ ψ−1(U). By (18) we have an exact sequence

0 → Cb → Ãb
pr∗1−pr∗2−−−−−→ B̃b

(20)
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hence (X̃i)b → U factors uniquely through Yb. From this we see that φ

factors uniquely through Y . Thus i) is proved. This also shows ii).

When W has no embedded points, the non-zero elements of C are non-

zero divisors in B, hence C is integrally closed. This shows iv).

Note that W̃ gives an equivalence relation on X̃, and X̃/W̃ ∼= Y is a

geometric (and hence set-theoretic) quotient. Furthermore, the points in

each fiber of X̃ → X are in one and the same equivalence class, hence W̃

induces a set-theoretical equivalence relation ∼ on X, and X/ ∼ ∼= Y as

sets. It is easy to see that ∼ is determined by W , i.e. for any x, x′ ∈ X,

x ∼ x′ iff there exists w ∈ W such that pr1(w) = x, pr2(w) = x′. This

shows iii).

Case 2. X is of positive characteristic, for simplicity we may assume S

is an Fp-scheme for some prime number p. Basically we can use the argument

in Case 1, hence we mainly write down the points which are different from

Case 1. First, in this case K(Wi) may not be separable over K, we can only

take a finite normal extension L ⊃ K such that every K(Wi) is isomorphic

to an intermediate field of L ⊃ K over K. Then we can define X̃ and W̃

as in Case 1, but W̃ may not give a rational equivalence relation on X̃. We

can still define the actions of Gal(L/K) on each Ãi. Let C0 = ÃGi
i , then

(18) still holds, i.e. C0 = ker(pr∗1 − pr∗2). Here C0 may not be in Ai, but

for large enough N , CpN

0 ⊂ Ai. Again define C by (19). Then C ⊂ C0 as

subrings of Ã. Note that in (19) pr∗1 − pr∗2 maps CpN

0 into the nilradical of

B, hence for N large enough we have CpN

0 ⊂ C. Let C1 = R[CpN

0 ] ⊂ C, i.e.

the R-subalgebra of C generated by CpN

0 . Then C1 is a finitely generated

R-algebra and C is a finitely generated C1-module, hence is also a finitely

generated R-algebra.

Let Y = Spec(C). Note that Y → Spec(C1) is set-theoretically one-to-

one. We can use the argument in Case 1 to show that Y is a quotient X/W ,

and i-iii) hold (or see Remark 2 below).

When W has no embedded point, the associated primes of B all lie over

the zero ideal of C. Let K = q.f.(C), then B → B⊗CK is a monomorphism.

Therefore if a ∈ C0 ∩K then a ∈ C, hence C is integrally closed. Thus iv)

holds also.

Finally, in either case, note that W → X is generically flat, hence it

is easy to take an open dense subscheme Y ′ ⊂ Y whose inverse image
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X ′ ⊂ X is flat over Y ′, such that W ×Y Y ′ ⊂ X ×S X is flat over X ′ and

is an equivalence relation on X ′. Therefore by ii) and Corollary 3.1, we see

Y ′ = X ′/(W ×Y Y ′) is a universal geometric quotient. This shows v). �

Remark 1. The conditions in Theorem 1 are almost necessary in the

following sense: Let X be a normal scheme which is separated of finite type

over a noetherian scheme S, and W ⊂ X×SX be a closed subscheme which

gives a rational equivalence relation on X such that pr1 : W → X is finite.

Suppose there is a quotient Y = X/W satisfying i) and ii) in Theorem

1. Let W ′ = X ×Y X. Then by Corollary 3.1, W is a closed subscheme

of W ′ which is generically equal to W ′, i.e. any irreducible component

of W ′ which is not in W does not dominate any irreducible component

of X. Furthermore, W ′ gives an equivalence relation on X which has a

quotient X/W ′ ∼= Y (see Lemma 1.1). From this we see that B) holds.

Furthermore, if Y is connected and ch(K(Y )) = 0, then there is an open

dense subscheme U ⊂ Y such that X ×Y X ×Y U is reduced, hence W is

generically reduced, in other words condition C) holds in the rational sense.

By removing the irreducible components of W which do not dominate any

irreducible components of X, we get a closed subscheme W0 ⊂ W which

also gives a rational equivalence relation on X, and there is a quotient

Y ′ = X/W0 which is finite and birational over Y . In particular, if Y is

normal, then Y ′ ∼= Y , hence in this case we may assume A) also holds.

Corollary 1. Let X1

p1

⇒
p2

X0 be a groupoid which is separated of finite

type over a noetherian scheme S, where X0 is normal and p1 is finite.

Suppose that

A) p1 maps generic points to generic points;

B) any point x ∈ X0 has an open affine neighborhood U ⊂ X0 such that

p2(p
−1
1 (U)) = U ;

C) either X1 is reduced or X0 is of positive characteristic,

then there is a quotient Y = X0/X1 which is of finite type over S, and

X0 → Y is finite. Furthermore, if X1 is reduced then Y is normal.
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Proof. Let X = X0 and W be the image of X1
(p1,p2)−→ X ×S X.

Then W gives a rational equivalence relation on X (because X1 → W is

generically flat), hence we can apply Theorem 1 to get Y = X/W , and by

Lemma 1.1 we see that Y is a quotient of X0 by X1. The other statements

all come from Theorem 1. �

Using Theorem 1 we can set up a criterion of the existence of push-out

in the finite normal case, just like Theorem 3.1. Here the key condition is

still (12), but in the “rational sense” (i.e. over an open dense subscheme of

X).

Theorem 2. Let S be a noetherian scheme, X and Y be normal

schemes of finite type over S, and W ⊂ X ×S Y be a closed subscheme

satisfying the following condition:

(∗) There is an open dense subscheme U ⊂ X such that

W ×X W ×Y W ×X U = W ×Y W ×X W ×X U ⊂ X ×S X ×S Y ×S Y

where W ×X W ×Y W ×X U→X×S X×S Y ×S Y is given by ((x, y), (x, y′),
(x′, y′)) �→ (x, x′, y, y′), and W ×Y W ×X W ×X U → X ×S X ×S Y ×S Y

is given by ((x, y), (x′, y), (x′, y′)) �→ (x, x′, y, y′) (this can be viewed as a

“rational version” of (4)). Suppose that pr1 : W → X and pr2 : W → Y are

finite strong epimorphisms, and that

A) pr1 : W → X and pr2 : W → Y map generic points to generic points;

B) for any point x ∈ X, there is an open affine neighborhood U1 ⊂ X

of x and an open affine subscheme U2 ⊂ Y such that pr−1
1 (U1) =

pr−1
2 (U2) ⊂ W ;

C) either W is reduced or X is of positive characteristic,

then there is a push-out Z of pr1 and pr2. Furthermore,

i) Z is of finite type over S, and X → Z, Y → Z are finite;

ii) any open subscheme U ⊂ Z is a push-out of pr1 : W ×Z U → X ×Z U

and pr2 : W ×Z U → Y ×Z U ;
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iii) Z is a set-theoretic push-out of pr1 and pr2;

iv) if W has no embedded point (in particular if W is reduced), then Z is

normal.

v) There is an open dense subscheme Z ′ ⊂ Z whose inverse images X ′ ⊂
X and Y ′ ⊂ Y are flat over Z, such that X ′ ⊂ U and W ×Z Z ′ =

X ′ ×Z Y ′ ⊂ X ×S Y (hence Z ′ is a universal geometric push-out of

pr1 : W ×Z Z ′ → X ′ and pr2 : W ×Z Z ′ → Y ′).

Proof. We follow the steps in the proof of Theorem 3.1. For simplicity

we only write down the details of the points which are different from that of

Theorem 3.1. For convenience we use the following notation: for two closed

subschemes V1, V2 of an X-scheme T , if there is an open dense subscheme

U ⊂ X such that V1×X U = V2×X U , then we denote V1 ≈ V2 (for example

(∗) can be written as W ×X W ×Y W ≈ W ×Y W ×X W ).

Let X ′ = W ×X W , viewed as a finite scheme over Y2 = Y ×S Y . Let

X1 ⊂ X ′ be the closed subscheme such that X1 ≈ X ′ and the associated

points of X1 are all generic. Let W1 = X1 ×Y W . Then by the proof of

Theorem 3.1 we have W1 ≈ X1 ×Y2 X1 (which gives a rational equivalence

relation on X1). Let Y ′
3 = im(X1 → Y2) (which can be viewed as the

rational quotient X1/W1). By discarding the irreducible components of Y ′
3

whose generic points do not lie over the generic points of Y , we get a closed

subscheme Y3 ⊂ Y ′
3 . By the proof of Theorem 3.1, we see that Y3 gives a

rational equivalence relation on Y over S, hence by Theorem 1 we have a

quotient Z ′ = Y/Y3.

Case 1. W has no embedded point. By Proposition 1 we have X ∼=
W/X ′, hence X ∼= W/X1 (see Remark 1). Since W → Z ′ equilizes pr1 and

pr2 : X1 → W , we see W → Z ′ factors through X. Since X1 → W is a

strong epimorphism, we have the following commutative diagram

W
pr1−−−→ X



�pr2



�

Y −−−→ Z ′

(21)

Reducing to the affine case, let X = SpecA, Y = SpecB, W = SpecC

and Z ′ = SpecD′. For simplicity we may assume D′ is a domain. Define
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φ : A ⊕ B → C by φ(a, b) = pr∗1(a) − pr∗2(b). Let D = ker(φ), then D

can be viewed as a subring of C and is a finitely generated D′-module.

Furthermore, by D = A∩B ⊂ C⊗D q.f.(D) we see D is an integrally closed

domain. Let Z = SpecD and let f : X → Z, g : Y → Z be the induced

morphisms. Then f ◦ pr1 = g ◦ pr2. Noting that pr1 and pr2 are generically

flat, it is easy to see v) holds by Theorem 1.v).

For iii), we use the trick in the proof of Theorem 1. For simplicity

assume X,Y,W are affine as above, and Z = SpecD is integral. Take a

finite normal extension L ⊃ q.f.(D) such that for each irreducible component

SpecC ⊂ W×XW×Y W , q.f.(C) can be embedded into L as an intermediate

field of L ⊃ q.f.(D). For each irreducible component SpecA ⊂ X (resp.

SpecB ⊂ Y ), take an integral closure Ã of A (resp. B̃ of B) in L and

replace SpecA (resp. SpecB) by SpecÃ (resp. SpecB̃), thus we replace X

(resp. Y ) by some X̃ (resp. Ỹ ), and the projection X̃ → X (resp. Ỹ → Y )

is a finite strong epimorphism. Replace W by the union W̃ of irreducible

components of X̃ ×X W ×Y Ỹ which maps onto Z (with reduced induced

scheme structure). Then W̃ is isomorphic to a disjoint union of copies of

SpecÃ ∼= SpecB̃. By v) we see that for any two irreducible components

X0 ⊂ X̃ and Y0 ⊂ Ỹ , there is an irreducible component W0 ⊂ W̃ lying

over both X0 and Y0. For any z ∈ Z, Gal(L/q.f.(D)) acts transitively on

the inverse image of z in X0 (resp. Y0). From this we see that Z is a

set-theoretic push-out of pr1 : W̃ → X̃ and pr2 : W̃ → Ỹ . This shows

that for any x ∈ X, y ∈ Y such that f(x) = g(y), there is a point w ∈ W

such that pr1(w) = x, pr2(w) = y. Hence Z is a set-theoretic push-out of

pr1 : W → X and pr2 : W → Y .

We now show that Z is a push-out of pr1 and pr2. Let T be an S-

scheme and f ′ : X → T , g′ : Y → T be S-morphisms such that f ′ ◦ pr1 =

g′ ◦ pr2. By iii), for any z ∈ Z, f ′ ◦ pr1 maps (f ◦ pr1)
−1(z) to one point,

say t ∈ T . Take an open affine neighborhood U = SpecR ⊂ T of t, then

V = Z − f ◦ pr1(W − (f ′ ◦ pr1)
−1(U)) is an open neighborhood of z in Z.

Take d ∈ D such that z ∈ SpecDd ⊂ V , then f ′ and g′ induce Xd → U

and Yd → U respectively. Note that Dd = Ad ∩ Bd, hence R → Cd induces

R → Dd, i.e. a morphism Zd → U . Thus there is a unique morphism

φ : Z → T such that φ ◦ f = f ′, φ ◦ g = g′. Therefore Z is a push-out of pr1
and pr2, and i), ii) and iv) hold.

Case 2. X is of positive characteristic. For simplicity we may assume
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S is an Fp-scheme for some prime number p. Basically we can use the

argument in Case 1, for example we still define D = ker(φ). To deal with

the points different from that in Case 1, we can use the argument in the

proof of Theorem 1, Case 2 (also see Remark 2 below). �

Remark 2. Let C be the category of affine schemes over S. Then

for any X,Y,W ∈ Ob(C), any two S-morphisms p : W → X and q :

W → Y have a push-out in C. Indeed, we may assume S is affine, say

S = SpecR, X = SpecA, Y = SpecB, W = SpecC, define φ : A × B → C

by φ(a, b) = p∗(a) − q∗(b) and let D = ker(φ), then it is easy to see that

D is an R-subalgebra of A × B. Let Z = SpecD and denote f : X → Z,

g : Y → Z the induced morphisms. It is easy to check that Z is a push-

out of p and q in C: for any Z ′ = SpecD′ ∈ Ob(C) and any S-morphisms

f ′ : X → Z ′, g′ : Y → Z ′ such that f ′ ◦ p = g′ ◦ q, let ψ : D′ → A×B be the

homomorphism d �→ (f ′∗(d), g′∗(d)), then φ ◦ψ = 0, hence there is a unique

induced homomorphism D′ → D, i.e. an S-morphism h : Z → Z ′ such that

h ◦ f = f ′, h ◦ g = g′.

Furthermore, if p, q, f , g are set-theoretically surjective and Z is also a

set-theoretic push-out of p and q with quotient topology, then it is a push-out

of p and q in the category of S-schemes. Here Z is a set-theoretic push-out

means that for any z ∈ Z and any x, x′ ∈ f−1(z), there are w1, ..., wn ∈ W

such that pr1(w1) = x, pr1(wn) = x′, and for each i (1 ≤ i < n), either

pr1(wi) = pr1(wi+1) or pr2(wi) = pr2(wi+1). Indeed, for any S-scheme

Z ′ and any S-morphisms f ′ : X → Z ′, g′ : Y → Z ′ such that f ′ ◦ p =

g′ ◦ q, there is an induced continuous map h : Z → Z ′, and we can define

ψ : OZ′ → f ′
∗OX × g′∗OY by ψ(d) = (f ′∗(d), g′∗(d)). Note that φ induces

h∗φ : f ′
∗OX × g′∗OY → (f ′ ◦p)∗OW and h∗φ◦ψ = 0, we see there is a unique

induced homomorphism OZ′ → ker(h∗φ) = h∗OZ . Thus h can be viewed as

a morphism of S-schemes, and h ◦ f = f ′, h ◦ g = g′.

Corollary 2. Let S be a noetherian scheme, X and Y be normal

schemes of finite type over S, and W ⊂ X ×S Y be a closed subscheme

satisfying the conditions in Theorem 2. Let W ′ ⊂ W be a closed subscheme

without embedded points such that pr1 : W ′ → X and pr2 : W ′ → Y are

both strongly epimorphic and map generic points to generic points. Then

there is a push-out Z of pr1 : W ′ → X and pr2 : W ′ → Y . Furthermore,
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i) Z is normal and is of finite type over S, and X → Z, Y → Z are

finite;

ii) any open subscheme U ⊂ Z is a push-out of pr1 : W ′×Z U → X×Z U

and pr2 : W ′ ×Z U → Y ×Z U ;

iii) Z is a set-theoretic push-out of pr1 and pr2;

iv) There is an open dense subscheme Z ′ ⊂ Z whose inverse images X ′ ⊂
X and Y ′ ⊂ Y are flat over Y , such that Z ′ is a universal geometric

push-out of pr1 : W ′ ×Z Z ′ → X ′ and pr2 : W ′ ×Z Z ′ → Y ′).

Proof. By Theorem 2, pr1 : W → X and pr2 : W → Y have a push-

out S′, and X,Y,W ′ are all finite S′-schemes. By Remark 2, pr1 : W ′ → X

and pr2 : W ′ → Y have a push-out Z in the category of affine S′-schemes,

and Z is normal, and the projections f : X → Z and g : Y → Z are finite

morphisms. To show Z is a push-out in the category of S-schemes, it is

enough to show that Z is also a set-theoretic push-out of pr1 : W ′ → X and

pr2 : W ′ → Y , by Remark 2.

Let Ξ be the set of generic points of X. For any x, x′ ∈ Ξ, define

x ∼ x′ when there are generic points w1, ..., wn ∈ W ′ such that pr1(w1) = x,

pr1(wn) = x′, and for each i (1 ≤ i < n), either pr1(wi) = pr1(wi+1)

or pr2(wi) = pr2(wi+1). It is easy to see “∼” is an equivalence relation

in Ξ. (Similarly we can define an equivalence relation “∼” in the set Θ

of generic points of Y .) For any generic point z ∈ Z, f−1(z) ⊂ Ξ is an

equivalence class under ∼. Indeed, if x ∼ x′ ∈ Ξ, it is clear that f(x) =

f(x′), hence f−1(z) is a union of equivalence classes. On the other hand, if

f−1(z) contained an equivalence class Ξ0 properly, say f−1(z) = Ξ0
∐

Ξ1,

let Θ0 = pr2(pr−1
1 (Ξ0)) ⊂ g−1(z) and Θ1 = pr2(pr−1

1 (Ξ1)) ⊂ g−1(z), then

g−1(z) would be a disjoint union of Θ0 and Θ1. Let Z0 ⊂ Z (resp. X0 ⊂
X, X1 ⊂ X, Y0 ⊂ Y , Y1 ⊂ Y ) be the component with generic point z

(resp. union of components with generic points in Ξ0, Ξ1, Θ0, Θ1), and

let W0 = (f ◦ pr1)
−1(Z0) ⊂ W ′. Then it would be easy to see that W0 =

(W0∩(X0×SY0))∪(W0∩(X1×SY1)). Thus Z0
∼= (X0∪X1)×S (Y0∪Y1)/W0

would have at least two connected components, a contradiction.

Now we can use the argument in the proof of Theorem 2.iii) to show Z

is a set-theoretic push-out of pr1 : W ′ → X and pr2 : W ′ → Y . �
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Example 1. Let X = A2
k for a field k, and

W = ∆(X) ∪ {((0, 0), (0, 1)), ((0, 1), (0, 0))} ⊂ X ×k X

Then W is an equivalence relation on X (two points (0,0) and (0,1) form

an equivalence class under W , while every other equivalence class consists

of a single point). By Remark 2, there is a quotient X/W in the category of

affine schemes over k. It is not hard to see that X/W is a topology-theoretic

quotient (by “pinching (0,0) and (0,1) together” in X). Hence X/W is a

scheme-theoretic quotient by Remark 2. Of course X/W is not normal (in

fact X/W ∼= Speck[x, xy, y2 − y, y3 − y]).

Example 2. Let X = Y = A2
C− {(0, 0)}, and

W = {x1 = y1, x2 = y2} ∪ {x1 = y1 = 0, x2 = 2y2} ⊂ X ×C Y

(where x1, x2 and y1, y2 are the coordinates of X and Y respectively). Then

the conditions in Theorem 2 all hold except A). On the other hand, there

is no push-out of pr1 : W → X and pr2 : W → Y . Indeed, if there were

such a push-out Z, then the set T = {(0, 2n)|n ∈ Z} ⊂ X would map to one

point in Z, hence the set V = {x1 = 0} ⊂ X would map to one point since

T is Zariski dense in V . Therefore Z would be a quotient X/W ′, where

W ′ = {x1 = x′1, x2 = x′2} ∪ {x1 = x′1 = 0} (x1, x2 (resp. x′1, x
′
2) being

the coordinates of the first (resp. second) copy of X in X ×CX). This is

impossible by Example 1.2.

Remark 3. In the case when W ⊂ X ×S Y is finite over X and Y ,

without the assumption that X,Y are normal, it is usually much harder to

give a sufficient condition for the existence of a push-out. However, at least

we have the following idea: Take finite strong epimorphisms X ′ → X and

Y ′ → Y , where X ′, Y ′ are normal. Then take a suitable closed subscheme

W ′ ⊂ X ′ ×X W ×Y Y ′, then it might be easier to determine if W ′ → X ′

and W ′ → Y ′ have a push-out, and this might be helpful to determine if

W → X and W → Y have a push-out.

5. The Existence of Push-out: A Partially Flat Case

The following proposition slightly generalizes Theorem 3.1 (compare

Proposition 2.1).
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Proposition 1. Let S be a noetherian scheme, X → S and Y → S be

relatively quasi-projective morphisms and W ⊂ X ×S Y be a locally closed

subscheme satisfying (12). Suppose that pr1 : W → X and pr2 : W → Y

are proper, pr1 : W → X is faithfully flat and pr2 : W → Y is a strong

epimorphism. Then pr2 : W → Y factors through a strong epimorphism

W → Z, where Z → Y is finite and set-theoretically one to one, such that

there is a geometric push-out

W
pr1−−−→ X



�pr2



�

Z −−−→ T

(24)

where T is relatively quasi-projective (and relatively projective if X → S

and Y → S are so) over S, X → T and Z → T are relatively projective,

Z → T is faithfully flat, and X → T is a strong epimorphism.

Proof. Take a relatively projective scheme Ȳ → S which contains Y

as an open dense subscheme such that i# : OȲ → i∗OY is a monomorphism

(where i : Y → Ȳ is the inclusion), and fix an OȲ (1). Then W is a closed

subscheme of X ×S Ȳ since W → X is proper. Let H = HilbȲ /S be the

Hilbert scheme representing the following functor:

((S-schemes)) → ((sets))

S′ �→ {closed subschemes of Ȳ ×S S′, flat over S′}

and Z ⊂ Ȳ ×S H be the universal subscheme. Then W induces an S-

morphism φ : X → H such that W = X ×H Z (as closed subschemes of

X ×S Ȳ ). Let T̄ ⊂ H be the closed subscheme defined by the ideal sheaf

ker(OH → φ∗OX), and Z̄ = Z×H T̄ ⊂ Ȳ ×S T̄ . Then W = X×T̄ Z̄. Denote

by q : X → T̄ , p1 : Z̄ → Ȳ , p2 : Z̄ → T̄ and p : W → Z̄ the projections.

Then p2 is faithfully flat and q# : OT̄ → q∗OX is a monomorphism, hence

p# : OZ̄ → p∗OW is also a monomorphism. Note that pr2 = p1◦p : W → Ȳ ,

hence p1 is proper dominant and p#
1 : OȲ → p1∗OZ̄ is a monomorphism,

i.e. p1 is a strong epimorphism. Let Z = p−1
1 (Y ), then Z → Y is relatively

projective (because Z̄ → Ȳ is so), and W → Z is proper (because W → Y

is proper), hence is a strong epimorphism. Since p2 is faithfully flat, we can

define the image T = p2(Z) which is an open subscheme of T̄ . Then W → T
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is a strong epimorphism. Since W → X is faithfully flat, we see X → T̄

factors through T , and X → T is onto, hence is a strong epimorphism also.

Now W = X ×T p−1
2 (T ), hence W → p−1

2 (T ) is onto, so p−1
2 (T ) ⊂ p−1

1 (Y ),

i.e. p−1
2 (T ) = Z. Therefore T is a geometric push-out of W = X×T Z → X

and W → Z, by Proposition 2.1.

The pull-back of Z → T and q ◦ pr1 : W → T̄ is equal to W ×T Z ∼=
W ×X (X×T Z) ∼= W ×XW , hence the pull-back of Z → T and q◦pr1◦pr1 :

W ×Y W → T̄ is equal to W ×X W ×Y W , and the pull-back of Z → T

and q ◦ pr1 ◦ pr2 : W ×Y W → T̄ is equal to W ×Y W ×X W . By (12) and

abstract nonsense, we see the following diagram is commutative:

W ×Y W
pr1−−−→ W



�pr2



�

W −−−→ T

(25)

This induces a closed immersion W ×Y W → W ×T W .

We now show that W ×Z W → W ×Y W is an isomorphism. Since

W → X is faithfully flat, it is enough to show that W ×Z W ×X W ∼=
W ×Y W ×X W . Note that W ×Z W ×X W ∼= W ×T W , hence we have a

closed immersion

η : W ×Y W ×X W ↪→ W ×T W ×X W
�→ W ×Z W ×X W ×X W(26)

and pr1 ◦ η = pr1, pr3 ◦ η = pr2, pr4 ◦ η = pr3: W ×Y W ×X W → W .

Furthermore, we have pr2 ◦ η = pr2 because pr1 ◦ pr2 ◦ η = pr1 ◦ pr2:

W×Y W×XW → X and pr2◦pr2◦η = pr2◦pr1 = pr2◦pr2: W×Y W×XW →
Y . Thus we have a commutative diagram

W ×Y W ×X W
η−−−→ W ×Z W ×X W ×X W



�ζ



�id

W ×Z W ×X W
idW×Z∆×X idW−−−−−−−−−−→ W ×Z W ×X W ×X W

(27)

where ∆ : W → W ×X W is the diagonal morphism. Hence ζ is a closed

immersion. It is easy to see that the composition of ζ with the closed

immersion W ×Z W ×X W → W ×Y W ×X W is equal to the identity

morphism of W ×Z W ×X W , hence ζ is an isomorphism.
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For a closed point t : Spec(K) ↪→ T (where K is a field), denote by Wt

(resp. Xt, Zt) the fiber of W (resp. X, Z) over t. Then Wt
∼= Xt ×K Zt,

and Wt ×Y Wt ⊂ W ×Y Wt = W ×Z Wt = Wt ×Z Wt, hence Wt ×Y Wt =

Wt ×Z Wt = Wt ×Zt Wt. Note that the following commutative diagram

Wt ×Zt Wt
�−−−→ Wt ×Y Wt



�



�

Zt
∆−−−→ Zt ×Y Zt

(28)

is a pull-back, and Wt ×Y Wt → Zt ×Y Zt is faithfully flat, we see ∆ : Zt →
Zt ×Y Zt is an isomorphism, hence Zt → Y is a closed immersion. This

shows that p1 : Z → Y is set-theoretically one to one, hence finite.

The other statements hold by Proposition 2.1. �

Corollary 1. Under the conditions of Proposition 1, if in addition

that W is reduced and Y is normal, then Z ∼= Y .

Proof. The reducedness of W implies that Z and T are reduced. Let

Y0 ⊂ Y be a connected component and let Z0 = p−1
1 (Y0). Then we can

take an open dense subscheme U ⊂ Y0 such that V = p−1
1 (U) is flat over

U . By (28) we can see that V → V ×U V is an isomorphism over U , hence

deg(V/U) = 1, i.e. V ∼= U . This shows that K(Z0) ∼= K(Y0). But Z → Y

is finite and Y is normal by assumption, we see Z0
∼= Y0. �

Remark 1. From Corollary 1 we see that for two relatively quasi-

projective S-schemes and a closed subscheme W ⊂ X ×S Y , the following

conditions are sufficient for the existence of a geometric push-out T of pr1 :

W → X and pr2 : W → Y :

i) (12) holds;

ii) pr1 : W → X and pr2 : W → Y are proper;

iii) pr1 : W → X is faithfully flat;

iv) pr2 : W → Y is a strong epimorphism;

v) W is reduced and Y is normal.
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In this case the push-out T may not be universal, but any open subscheme

U ⊂ T is a push-out of pr1 : W×TU → X×TU and pr2 : W×TU → Y ×TU .
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