
J. Math. Sci. Univ. Tokyo
14 (2007), 499–510.

On the SU(2, 1) Representation Space of

the Brieskorn Homology Spheres

By Vu The Khoi

Abstract. We give an explicit parameterization of the SU(2, 1)
representation space of the Brieskorn homology spheres using the trace
coordinates. As an application, we give an example of a Brieskorn
homology sphere for which the orbifold Toledo invariant defined by
M. Krebs does not distinguish all the connected components of the
PU(2, 1) representation space.

1. Introduction

Let M be a manifold with the fundamental group π1(M) and G be a

Lie group. The representation space of M, denoted by RG(M), is the space

of representations from π1(M) into the Lie group G, modulo conjugation:

RG(M) := Hom(π1(M), G)/G.

We denote by R∗
G(M) the subset of the representation space which consists

of irreducible representations. The representation space of 3-manifolds has

been studied extensively in the case where G = SU(2),SU(3) or SL(2,C) in

connection with the Casson invariants and hyperbolic geometry (see [2, 3,

5, 6, 7, 9]).

Let us recall that SU(2, 1) is the special unitary group corresponding to

the indefinite inner product 〈Z,W 〉2,1 = Z1W 1 +Z2W 2−Z3W 3 on C3. The

group PU(2, 1) is the quotient of SU(2, 1) by its center.

In this paper we study the SU(2, 1) representation space RSU(2,1)(M).

The motivation for this study comes from complex hyperbolic geometry

where RPU(2,1)(M) serves as the local model for the deformation space of

spherical CR structures on M. For convenience, we will work with the group

SU(2, 1) and then deduce results for the PU(2, 1) case.
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Let p, q, r be pairwise coprime positive integers, the Brieskorn homology

sphere Σ(p, q, r) is defined to be the link of singularity in C3, that is :

Σ(p, q, r) := {(x, y, z)| xp + yq + zr = 0} ∩ S5
ε .

It is well known that the fundamental group of Σ(p, q, r) may be given

as

π1(Σ(p, q, r)) = 〈x, y, z, h| h central, xpha = yqhb = zrhc = xyz = 1〉,

where a, b, c are integers satisfying

a

p
+
b

q
+
c

r
=

1

pqr
.

In this paper, for simplicity, we will denote by tA the trace of a matrix

A and [A,B] the commutator ABA−1B−1. The notations 	 and 
 stand

for the real and imaginary part of a complex numbers respectively. Our

main theorem shows that R∗
SU(2,1)(M) can be parameterized by certain trace

coordinates.

Theorem 3.1. Two irreducible representations ρ, ρ′ : π1(Σ(p, q, r)) −→
SU(2, 1) are conjugate if and only if the image under ρ and ρ′ of each x, y, h

are conjugate and satisfy the relations

tρ(xy) = tρ′(xy), tρ(x−1y) = tρ′(x−1y), 
(tρ([x,y])) = 
(tρ′([x,y])).

The rest of this paper is organized as follows. In section 2 we study the

trace identities for the free group of rank two. Using algebraic results about

the invariant ring of matrices, we are able to deduce the coordinates and

relations for the SU(2, 1) representation space of the free group of rank two.

Section 3 is devoted to the proof of the main result. In this section, we also

show how to find the constraint for the parameters of the representation

spaces in practice. Finally, in section 4, we apply our results to give explicit

descriptions of the representation spaces of the Brieskorn homology spheres

Σ(2, 3, 11) and Σ(2, 3, 13).



On the SU(2, 1) Representation Space 501

2. Trace Calculus for Free Group of Rank Two

We first recall some known results about matrices in SU(2, 1). The

reader should consult [4, 8] for details. Let V and V0 be the two subsets

of C3 defined by V := {Z = (z1, z2, z3) ∈ C3| 〈Z,Z〉2,1 < 0} and V0 :=

{Z = (z1, z2, z3) ∈ C3| 〈Z,Z〉2,1 = 0}. We denote by P : C3 \ {0} → CP 2

the canonical projection onto the complex projective space. Then P (V )

equipped with the Bergman metric is the model of the complex hyperbolic

space H2
C. The boundary ∂H2

C in CP 2 is P (V0 \ {0}).
The elements of SU(2, 1) can be classified according to their action on

the complex hyperbolic space H2
C [4]. Namely, a matrix is called elliptic if

it has a fixed point in H2
C. We call it parabolic if it has a unique fixed point

in H2
C which lies on ∂H2

C. And finally, an element is called loxodromic if it

has exactly two fixed points in H2
C which lie on ∂H2

C.

A classification of conjugacy classes of elements of SU(2, 1) can be found

in [4]. In particular it says that two elliptic elements are conjugate if and

only if they have the same positive and negative class of eigenvalues (counted

with multiplicity). An explanation of terminology should be added here: we

say that an eigenvalue λ of an elliptic element is of positive type (respectively

negative type) if it has an λ-eigenvector v such that 〈v, v〉2,1 is positive

(respectively negative). It has been shown that every eigenvalue of an elliptic

element has either positive or negative type.

The next proposition gives several trace identities for a pair of matrices

in SU(2, 1). These identities will be crucial in getting a coordinate system

on the representation space.

Proposition 2.1. Let A and B be a pair of matrices in SU(2, 1). Then

the following equations hold:

i) tA−1 = tA.

ii) tA2 = t2A − 2tA.

iii) tA3 = t3A − 3|tA|2 + 3.

iv) tA2B = tAtAB − tAtB + tA−1B.

v) tA2B2 = tAtBtAB − t2AtB + tAtA−1B − tAt
2
B + tAtB + tBtA−1B.

vi) tABAB−1 = tABtA−1B + tABtB + tBtA−1B + tA(1 − |tB|2).
vii) tABA2B2 = t[A,B] + tABtA2B2 − tABtAB.

Proof. The first identity follows from the definition of SU(2, 1). The
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next two identities follow from the fact that the characteristic polynomial

of A has the form A3 − tAA
2 + tAA− I (see the proof of Theorem 6.2.4 in

[8]).

Notice that by the Cayley-Hamilton theorem we have A3−tAA2+tAA−
I = 0. Now by multiplying this equality from the right by A−1B and then

taking the trace, we obtain iv).

By multiplying the Cayley-Hamilton identity for A by A−1B2 from the

right and using previous identities we get v).

To prove vi) we will combine two equalities. The first one is obtained

by multiplying the Cayley-Hamilton identity for AB from the right by

(AB)−1B−2:

ABAB−1 − tABAB
−1 + tABB

−2 −B−1A−1B−2 = 0.

The second one is obtained by multiplying the Cayley-Hamilton identity

for B from the left by (AB)−1B−2 :

B−1A−1B − tBB
−1A−1 + tBB

−1A−1B−1 −B−1A−1B−2 = 0.

It is not hard to see that when combining these two equalities and sim-

plifying things by the previously proved identities we get the result.

The last identity can be obtained by multiplying the Cayley-Hamilton

identity for AB by (AB)−1B−1AB2. �

We now state some algebraic results on the algebra of invariants of ma-

trices. Let C[M⊕m
n ] be the coordinate ring for the space of m-tuples of

n× n matrices (Ak = (akij))k=1,...,m, i.e., C[M⊕m
n ] := C[akij |1 ≤ i, j ≤ n, 1 ≤

k ≤ m]. Consider the action of GLn := GL(n,C) by simultaneous conjuga-

tion of m matrices. Algebraists are interested in the algebra of invariants

Cn,m := C[M⊕m
n ]GLn

The following result of Teranishi [13] will be useful for us: The algebra

C3,2 of invariants of two matrices X,Y in GL(3,C), is generated by :

tX , tY , tX2 , tXY , tY 2 , tX3 , tX2Y , tXY 2 , tY 3 , tX2Y 2 , tX2Y 2XY

This result means that the trace of any word in X,Y can be expressed

as a polynomial in the eleven traces above. When working with the group

SU(2, 1) we can reduce the number of generators greatly by using Proposi-

tion 2.1. We get the following :
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Proposition 2.2. Let A and B be a pair of matrices in SU(2, 1) then

the trace of any word in A,B can be written as a polynomial of the following

variables and their complex conjugates:

tA, tB, tAB, tA−1B, t[A,B].

Since the real dimension of SU(2, 1) is 8, the real dimension of the repre-

sentation space of the free group of rank 2 should also be 8. Therefore there

should be a relation among these 5 traces. Fortunately, this relation has

been computed in [1, 12] as the defining relation for the algebra of invariants.

In particular, it has been shown that the algebra of invariants of two matri-

ces in GL(3,C) is defined by a single relation which expresses tX2Y 2XY as

a solution of a quadratic equation whose coefficients are polynomials in the

other ten traces. After plugging our variables into the formula in Theorem

1.2 of [1] and simplifying by MAPLE, we get the following result.

Proposition 2.3. Let A and B be two matrices in SU(2, 1). If we de-

note tA, tB, tAB, tA−1B by a, b, c, d respectively, then the following identities

hold:

	(t[A,B]) =
1

2
(|ab|2 + |a|2 + |b|2 + |c|2 + |d|2

− abc− abc− abd− abd− 3).


(t[A,B])
2 = −1

4
(|ab|2 − |a|2 − |b|2 + |c|2 + |d|2 − abc− abc− abd− abd)2

+2	(−a3|b|2 + a2b
2
d+ a2b2c− a|b|2dc− |a|2b3 − |a|2bcd

+ a2cd+ a2bc+ a2db+ ab2d− 2abc2 + acd2 + bdc2 + b2ca

− 2bd2a+ c2da+ a3 +
3

2
abc+

3

2
abd− 3acd+ b3 + b2cd

− 3bcd+ c3 + d3 + d2bc)

+
5

2
|ab|2 + |cd|2 − 9

2
(|a|2 + |b|2 + |c|2 + |d|2) +

27

4
.

3. Parameterization of the Representation Space

In this section we will show that the traces of certain elements give a

coordinate system for the irreducible part of the representation space of the
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Brieskorn homology sphere. Furthermore we also show how to determine

the constraint region for the coordinates.

Theorem 3.1. Two irreducible representations ρ, ρ′ : π1(Σ(p, q, r)) −→
SU(2, 1) are conjugate if and only if the image under ρ and ρ′ of each x, y, h

are conjugate and satisfy the relations

tρ(xy) = tρ′(xy), tρ(x−1y) = tρ′(x−1y), 
(tρ([x,y])) = 
(tρ′([x,y])).

Proof. If ρ and ρ′ are conjugate, then the required relations are ob-

viously satisfied. On the contrary suppose the relations hold. Since ρ and

ρ′ are irreducible, ρ(h) and ρ′(h) should be in the center Z(SU(2, 1)) of

SU(2, 1). Notice that the images of x, y, z under a representation are elliptic

elements, and they are diagonalizable. Moreover, it also follows from the

irreducibility that either ρ(x) or ρ(y) has three distinct eigenvalues since

otherwise ρ would have a non-trivial invariant subspace by dimensional rea-

son. The same holds for ρ′. So, after conjugation, we may assume that

ρ(x) = ρ′(x) = diag(eiθ1 , eiθ2 , eiθ3), where eiθ1 , eiθ2 , eiθ3 are distinct numbers

and diag(a, b, c) denotes the diagonal matrix whose diagonal elements are

a, b, c.

To prove the theorem, it is enough to show that we can conjugate ρ(y)

to ρ′(y) by a diagonal matrix. To show this we prepare a small lemma.

Lemma 3.2. Let A = diag(eiθ1 , eiθ2 , eiθ3), where eiθ1 , eiθ2 , eiθ3 are three

distinct numbers. Suppose that B = (bij) and B′ = (b′ij) are two 3 × 3

matrices satisfying tB = tB′ , tAB = tAB′ , tA−1B = tA−1B′. Then the diagonal

elements of B and B′ are equal.

Proof. It follows from our assumption that the following equations

hold:




(b11 − b′11) + (b22 − b′22) + (b33 − b′33) = 0

(b11 − b′11)e
iθ1 + (b22 − b′22)e

iθ2 + (b33 − b′33)e
iθ3 = 0

(b11 − b′11)e
−iθ1 + (b22 − b′22)e

−iθ2 + (b33 − b′33)e
−iθ3 = 0
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Consider this as a system of linear equations in (bii − b′ii). Since the deter-

minant

det


 1 1 1

eiθ1 eiθ2 eiθ3

e−iθ1 e−iθ2 e−iθ3


 = −(1 − ei(θ1−θ2))(1 − ei(θ2−θ3))(1 − ei(θ3−θ1))

ei(θ1+θ2+θ3)

is not zero, we get the conclusion of the lemma. �

Now come back to the proof of our theorem, suppose that ρ(y) = (yij)

and ρ′(y) = (y′ij). From our assumption and Proposition 2.3, we have tρ(w) =

tρ′(w) for every word w(x, y). Applying Lemma 3.2 for A = ρ(x), B = ρ(y)

and B′ = ρ′(y), we obtain

(∗) yi,i = y′i,i (i = 1, 2, 3).

Applying Lemma 3.2 again for A = ρ(x), B = ρ([x, y]) and B′ = ρ′([x, y]),
we conclude that the corresponding diagonal elements of ρ([x, y]) and

ρ′([x, y]) are equal. For the first diagonal element, we have:

|y11|2+|y12|2ei(θ1−θ2)−|y13|2ei(θ1−θ3) = |y′11|2+|y′12|2ei(θ1−θ2)−|y′13|2ei(θ1−θ3).

Using the fact that ρ(x), ρ(y) belong to SU(2, 1) and y11 = y′11, we get the

following equations:

{
(|y12|2 − |y′12|2) −(|y13|2 − |y′13|2) = 0

(|y12|2 − |y′1,2|2)ei(θ1−θ2) −(|y1,3|2 − |y′1,3|2)ei(θ1−θ3) = 0.

From these equations, it follows that |y12| = |y′12| and |y13| = |y′13|. Arguing

similarly for other diagonal elements of ρ([x, y]) and ρ′([x, y]), we obtain

that

(∗∗) |yij | = |y′ij | (i �= j).

Applying Lemma 3.2 one more time for A = ρ(x), B = ρ(y2) and B′ =

ρ′(y2), it follows that the corresponding diagonal elements of ρ(y2) and

ρ′(y2) are equal. Combining with (∗), we obtain the following equalities :

(∗ ∗ ∗) yijyji = y′ijy
′
ji (i �= j).

Now consider three pairs (yij , yji) for i < j. By the irreducibility of ρ, at least

two pairs are not equal to (0, 0). Without loss of generality, we may assume
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that, say, y12 �= 0 and y31 �= 0. By conjugate ρ by diag(eiφ1 , eiφ2 , eiφ3) for

appropriate values of φi and using (∗∗), we may assume that y12 = y′12 and

y31 = y′31. Furthermore, using (∗ ∗ ∗), we get that y21 = y′21 and y13 = y′13.

Moreover, since ρ(y) and ρ′(y) are in SU(2, 1), we obtain

y11y12 + y21y22 − y31y32 = 0, y′11y
′
12 + y′21y

′
22 − y′31y

′
32 = 0.

It follows that y32 = y′32. By a similar argument, we also get y23 = y′23 and

thus our theorem is proved. �

To describe the representation space, for each h ∈ Z(SU(2, 1)), x =

diag(λ1, λ2, λ3), y = Pdiag(µ1, µ2, µ3)P
−1, P ∈ SU(2, 1) such that xpha =

yqhb = I, we need to answer the following two questions:

- Does there exist P such that z = (xy)−1 satisfies zrhc = I?

- What are the possible values of tx−1y?

In other words, we need to find the image of the following map in terms

of λ = (λ1, λ2, λ3) and µ = (µ1, µ2, µ3) :

Φλ,µ : SU(2, 1) −→ C2

P �→ (txy, tx−1y),

where x = diag(λ1, λ2, λ3) and y = Pdiag(µ1, µ2, µ3)P
−1.

If we write P = (pij),, then we have

P−1 =


 p11 p21 −p31

p12 p22 −p32

−p13 −p23 p33


 .

Let us denote by P̂ the matrix

P̂ =


 |p11|2 |p12|2 −|p13|2

|p21|2 |p22|2 −|p23|2
−|p31|2 −|p32|2 |p33|2


 .

Then we have

txy = (λ1, λ2, λ3) P̂ (µ1, µ2, µ3)
T , tx−1y =

(
1

λ1
,

1

λ2
,

1

λ3

)
P̂ (µ1, µ2, µ3)

T .

Let D to be the set of 3 × 3 matrices M such that there exists P =

(pij) ∈ SU(2, 1) satisfying M = P̂ . An explicit description of D in the

following lemma will help us to find the image of Φλ,µ in practice.
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Lemma 3.3. Let M be the matrix

M =


 m11 m12 −m13

m21 m22 −m23

−m31 −m32 m33




such that mij ≥ 0 and the sum of every row or column is 1. Then M is an

element of D if and only if the following triangle inequalities hold:

√
m1km2k ≤

∑
i�=k

√
m1im2i (k = 1, 2, 3).

Proof. We first show the if part: If M ∈ D then there exist θij such

that the matrix (
√
mije

iθij ) belongs to SU(2, 1)., and hence we have

√
m11m21e

i(θ11−θ21) +
√
m12m22e

i(θ12−θ22) −√
m13m23e

i(θ13−θ23) = 0.

It implies that the three numbers
√
m1im2i (i = 1, 2, 3) must satisfy the

triangle inequalities and the lemma follows.

We next show the “only if” part: Now suppose that three numbers√
m1im2i (i = 1, 2, 3) satisfy the triangle inequalities. Then there exist

angles θij satisfying

√
m11m21e

i(θ11−θ21) +
√
m12m22e

i(θ12−θ22) −√
m13m23e

i(θ13−θ23) = 0.

Put pij =
√
mije

iθij (i = 1, 2, j = 1, 2, 3), then we get the first two rows of

the matrix P. Let v = (p31, p32, p33) be the vector which is orthogonal to

these two rows with respect to the indefinite inner product 〈, 〉2,1, and also

satisfies 〈v, v〉2,1 = −1. Then it is not hard to check P = (pij) ∈ SU(2, 1).

and M = P̂ . �

4. Examples

Example 1. The first example is the manifold Σ(2, 3, 11). Its funda-

mental group has the following presentation.

π1(Σ(2, 3, 11)) = 〈x, y, z, h| h central, x2h−1 = y3h = z11h2 = xyz = 1〉.

In this example the irreducible representation space consists of isolated

points.
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For each h = diag(ε, ε, ε), with ε3 = 1, we look for λ and µ satisfying

λ2
i = ε, µ3

i = ε−1 (i = 1, 2, 3), λ1λ2λ3 = 1, µ1µ2µ3 = 1

such that the image of Φλ,µ contains a point whose first coordinate is of the

form eiθ1 + eiθ2 + eiθ3 with θ1 + θ2 + θ3 = 2kπ and e11iθi = ε2 for all i.

A small computer search tells us that there are five irreducible represen-

tations into SU(2, 1), all corresponding to the case ρ(h) = I. The parameters

of these representations are given below. Here we use ∼ to denote the con-

jugacy relation.

1) ρ(x) ∼ diag(1,−1,−1), ρ(y) ∼ diag(1, e4πi/3, e2πi/3),

tρ(xy) = tρ(x−1y) = e10πi/11 + e16πi/11 + e18πi/11, 
(tρ([x,y])) = 0.

2) ρ(x) ∼ diag(1,−1,−1), ρ(y) ∼ diag(e2πi/3, 1, e4πi/3),

tρ(xy) = tρ(x−1y) = e4πi/11 + e6πi/11 + e12πi/11, 
(tρ([x,y])) = 0.

3) ρ(x) ∼ diag(−1,−1, 1), ρ(y) ∼ diag(1, e4πi/3, e2πi/3),

tρ(xy) = tρ(x−1y) = e4πi/11 + e8πi/11 + e10πi/11, 
(tρ([x,y])) = 0.

4) ρ(x) ∼ diag(−1,−1, 1), ρ(y) ∼ diag(e2πi/3, 1, e4πi/3),

tρ(xy) = tρ(x−1y) = e12πi/11 + e14πi/11 + e18πi/11, 
(tρ([x,y])) = 0.

5) ρ(x) ∼ diag(−1,−1, 1), ρ(y) ∼ diag(e2πi/3, e4πi/3, 1),

tρ(xy) = tρ(x−1y) = 1 + 2 cos(2π/11), 
(tρ([x,y])) = 0.

It is no surprise that tρ(xy) = tρ(x−1y) and 
(tρ([x,y])) = 0 in all the

cases since ρ(x)2 = I. We can easily check that these representations give

5 distinct irreducible representations when considered as elements of

R∗
PU(2,1)(Σ(2, 3, 11)).

The Toledo invariant for representations of the fundamental group of an

oriented surface into PU(p, 1) is defined in [14]. In [10, 11], M. Krebs defined

the Toledo invariant for orbifold fundamental groups and uses it to obtain a

lower bound for the number of connected components of the PU(2, 1) repre-

sentation space. In particular, it is shown in [10] that R∗
PU(2,1)(Σ(2, 3, 11))

has at least 5 connected components. So in this case the bound obtained

by using the Toledo invariant is sharp.

Example 2. Our next example is the manifold Σ(2, 3, 13) which has the

fundamental group :

π1(Σ(2, 3, 13)) = 〈x, y, z, h| h central, x2h = y3h−1 = z13h−2 = xyz = 1〉.



On the SU(2, 1) Representation Space 509

A similar computer search as in the previous example shows that the ir-

reducible representation space R∗
SU(2,1)(Σ(2, 3, 13)) consists of 8 isolated

points. In the following, we list the parameters of these representations.

Note that ρ(h) = I in all the cases.

1) ρ(x) ∼ diag(−1, 1,−1), ρ(y) ∼ diag(e2πi/3, e4πi/3, 1),

tρ(xy) = tρ(x−1y) = e4πi/13 + e10πi/13 + e12πi/13, 
(tρ([x,y])) = 0.

2) ρ(x) ∼ diag(−1, 1,−1), ρ(y) ∼ diag(e2πi/3, e4πi/3, 1),

tρ(xy) = tρ(x−1y) = e14πi/13 + e16πi/13 + e22πi/13, 
(tρ([x,y])) = 0.

3) ρ(x) ∼ diag(−1, 1,−1), ρ(y) ∼ diag(1, e4πi/3, e2πi/3),

tρ(xy) = tρ(x−1y) = e6πi/13 + e22πi/13 + e24πi/13, 
(tρ([x,y])) = 0.

4) ρ(x) ∼ diag(−1, 1,−1), ρ(y) ∼ diag(1, e2πi/3, e4πi/3),

tρ(xy) = tρ(x−1y) = e2πi/13 + e4πi/13 + e20πi/13, 
(tρ([x,y])) = 0.

5) ρ(x) ∼ diag(−1,−1, 1), ρ(y) ∼ diag(1, e4πi/3, e2πi/3),

tρ(xy) = tρ(x−1y) = e6πi/13 + e8πi/13 + e12πi/13, 
(tρ([x,y])) = 0.

6)ρ(x) ∼ diag(−1,−1, 1), ρ(y) ∼ diag(e2πi/3, e4πi/3, 1),

tρ(xy) = tρ(x−1y) = 1 + 2 cos(2π/13), 
(tρ([x,y])) = 0.

7)ρ(x) ∼ diag(−1,−1, 1), ρ(y) ∼ diag(e2πi/3, e4πi/3, 1),

tρ(xy) = tρ(x−1y) = 1 + 2 cos(4π/13), 
(tρ([x,y])) = 0.

8) ρ(x) ∼ diag(−1,−1, 1), ρ(y) ∼ diag(1, e2πi/3, e4πi/3),

tρ(xy) = tρ(x−1y) = e14πi/13 + e18πi/13 + e20πi/13, 
(tρ([x,y])) = 0.

These representations give us 8 distinct points of R∗
PU(2,1)(Σ(2, 3, 13)).

According to [11](Appendix), in this case there are 7 distinct values of

the orbifold Toledo invariant. So the orbifold Toledo invariant does not

distinguish the connected components of R∗
PU(2,1)(Σ(2, 3, 13)).
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