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Classification of Log del Pezzo Surfaces of Index Two

By Noboru NAKAYAMA

Abstract. In this article, a log del Pezzo surface of index two
means a projective normal non-Gorenstein surface S such that (.9, 0)
is a log-terminal pair, the anti-canonical divisor —Kg is ample and
that 2Kg is Cartier. The log del Pezzo surfaces of index two are
shown to be constructed from data (X, E,A) called fundamental
triplets consisting of a non-singular rational surface X, a simple
normal crossing divisor E of X, and an effective Cartier divisor A
of E satisfying a suitable condition. A geometric classification of
the fundamental triplets gives a classification of the log del Pezzo
surfaces of index two. As a result, any log del Pezzo surface of index
two can be described explicitly as a subvariety of a weighted projec-
tive space or of the product of two weighted projective spaces. This
classification does not use the theory of K3 lattices, which is essen-
tial for the classification by Alexeev—Nikulin [4]. The comparison
between two classifications is also discussed.

Contents

[y

NS h b=

Introduction

Elimination of Zero-Dimensional Subschemes

Del Pezzo Pairs and Basic Pairs

Fundamental Triplets

Deformations

The Structure of Log del Pezzo Surfaces of Index Two
Description of Log del Pezzo Surfaces of Index Two

Introduction

293
302
319
354
390
408
454

In this article, we classify a certain class of generalized del Pezzo surfaces.
Since 19th century, study of del Pezzo surfaces (non-singular projective sur-

faces with ample anti-canonical divisor) has been one of the principal topics
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in the theory of algebraic surfaces (for instance, see [10]). From the view
point of logarithmic birational geometry, the classical notion of del Pezzo
surface is naturally generalized to the notion of del Pezzo pair (S, B), where
S is a normal projective surface (or a normal complete algebraic space of
dimension two) and B is an effective Q-divisor on S with —(Kg + B) being
ample in some sense (a precise definition of del Pezzo pairs will be given
in Section 3.1 below). A log del Pezzo surface in the sense of Alexeev and
Nikulin is, by definition, a normal projective surface S such that (5,0) is a
del Pezzo pair with only log-terminal singularities.

An important invariant of a given log del Pezzo surface is the inderz,
which is defined to be the smallest positive integer ¢ such that ¢ Kg is Cartier.
Log del Pezzo surfaces of index one, i.e., projective surfaces with only ra-
tional double points and with ample anti-canonical divisor, have been in-
tensively studied in many papers ([8], [10], [13], [14], [31], [32], [33]). The
subject of the present paper is the next case: log del Pezzo surfaces of index
two.

Log del Pezzo surfaces S of index two defined over the complex number
field C were studied by Alexeev and Nikulin [4] (cf. [1], [2], [3]) through the
theory of K3 lattice. Roughly speaking, their argument is as follows:

(1) (SmooTH DI1visor THEOREM) A general member C' € |-2Kg| is a
non-singular curve of genus > 2.

(2) Fix the general member C' € |-2Kg| and construct a surface X as
the double-covering of S branching along C' U Sing S.

(3) The minimal desingularization X of X is a K3 surface with a non-
symplectic involution § and Y = X /() is non-singular. The bira-
tional morphism Y — S is called the right resolution in [4] or the
canonical resolution by Horikawa, and the connected components of
the exceptional locus are completely determined.

(4) Via the correspondence above, the classification of (S, C') is reduced
to that of (X,#), the pair of a K3 surface X and a non-symplectic
involution € which fixes a non-singular curve of genus > 2 in X.

(5) By the Torelli Theorem, the classification of (X, ), up to deforma-
tion, is described in terms of the invariant sublattice S of the K3
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lattice by the action of . Moreover, S is classified by certain numer-
ical data of the lattice, which are called the main invariants.

(6) The nef cone of X gives another information on S, which is called the
root invariant. The main and root invariants determine a finer defor-
mation equivalence class of the pair (X, #). The root invariants are all
constructed from extremal ones by suitable combinatorial methods,
and the extremal root invariants are completely classified.

Depending on the period map for K3 surfaces, the argument of Alexeev
and Nikulin [4] requires many notions of the lattice theory, is far from being
geometric, and does not give the classification of the isomorphism classes of
log del Pezzo surfaces of index two. It would make sense to seek for a more
geometric and direct classification. In this direction, Kojima has succeeded
in classifying such surfaces with Picard number one by using the theory of
open surfaces.

In this paper, we present a complete geometric classification of log
del Pezzo surfaces of index two, over an algebraically closed field k of any
characteristic. Our main idea, which stems from a technique used in [15],
enables us to classify all the isomorphism classes of log del Pezzo pairs of
index one or two. In the most essential part of the classification, we consider
the following three objects:

e A del Pezzo pair (5, B) of index at most two of a certain class dis-
cussed from Section 3.2.

o A basic pair (M, Epr) consisting of a non-singular projective rational
surface M and an effective divisor s satisfying the condition C in
Definition 3.13.

o A fundamental triplet (X, E,A) consisting of a rational surface X
isomorphic to a Hirzebruch surface F,, or P2, of an effective divisor
FE of X, and of a zero-dimensional subscheme A C E which satisfy
the conditions in Section 4.1.

These objects are related as follows: From a del Pezzo pair (S, B) of index
two in the class above, we have a basic pair (M, Es) by the minimal desingu-
larization a: M — S and by the formula —2K); = a*(—2(Kg + B)) + Eu.
For a basic pair (M, E)ps), the linear system |Ljs| is base point free for
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Ly = —2Kj3; — Eyp by Theorem 3.18, which gives another proof of the
SMOOTH DIVISOR THEOREM in [4] when chark = 0. The linear system
|Lps| defines the minimal desingularization a: M — S of a normal pro-
jective surface S in which (S, B) is a del Pezzo pair of the class above for
B = (1/2)asEyp. By the cone and the contraction theorems (cf. [23]) in
the minimal model theory, from a basic pair (M, Eys), we have a minimal
basic pair (X, E) (cf. Section 3.2) and a birational morphism ¢: M — X
with Ky + Ly = ¢*(Kx + L) for L = —2Kx — E. Here, X is a Hirzebruch
surface F,, or P2. There exists a zero-dimensional subscheme A C E such
that vp(A) =1 for any P € A (cf. Definition 2.2) and that ¢ is expressed
as the elimination of A (cf. Definition 2.5, Proposition 2.9). The triplet
(X, E,A) is a quasi-fundamental triplet (cf. Definition 4.1), but we can re-
place the birational morphism ¢: M — X so that (X, E, A) to satisfy the
additional condition required for fundamental triplets. The fundamental
triplet (X, E, A) is determined uniquely by the basic pair (M, Ejs) with the
exception mentioned in Theorem 4.9 (cf. Example 4.12). The minimal basic
pairs are classified by an elementary calculation (cf. Section 3.3). The fun-
damental triplets are classified also by an information of A, which is done
in Theorem 4.6. The type of the fundamental triplet (X, E, A) defined in
Theorem 4.6 depends only on the associated del Pezzo pair (S, B) (cf. The-
orem 4.9). The list of types gives essentially the geometric classification of
del Pezzo pairs of the class.

The information on fundamental triplets enables us to study the struc-
ture of del Pezzo pairs in detail. For example, we can determine the dual
graph of exceptional divisors of the minimal desingularization of S for any
the rational del Pezzo pairs (S, B) of index two (cf. Section 4.3), and also we
can study several deformation types on (S, B), (M, Ep), and on (X, E, A)
(cf. Section 5). For a log del Pezzo surface S of index two, we shall show
in Theorem 5.16 that S is deformed to a non-singular del Pezzo surface of
the same genus g = Kg + 1 under a Q-Gorenstein deformation. The author
was informed the result from Yongnam Lee in the case of chark = 0. For
the positive characteristic case, we need a local Q-Gorenstein smoothing of
the singularity of type K, which is prepared in Section 4.4.

There are exactly 41 types for the log del Pezzo surfaces S of index two,
which are listed in TABLE 6. The list of types corresponds to the list of
equi-singular deformation types of (M, Ejs) with one exception: basic pairs
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of type [2;1,2]p and of type [0;1, 1]y are connected by equi-singular defor-
mation (cf. Theorem 6.1, Proposition 5.10). We can show in Theorem 6.28
below that if chark ## 2, then the equi-singular deformation type of a log
del Pezzo surface S of index two is determined by the type of S and by the
dual graph of curves on M with negative self-intersection number.

By TABLE 6, we infer that the list of equi-singular deformation type of
(M, Epr) corresponds to the list of the main invariants (r,a, ) of S given in
[4]. The numerical information of A for a given E seems to correspond to the
root invariant of S. It is interesting to define a root invariant directly from
the data of fundamental triplet for the comparison between the classification
of [4] and our classification by fundamental triplets. By Theorem 6.28,
it is almost true that Alexeev and Nikulin have classified in [4] not the
isomorphism classes but the equi-singular deformation types of log del Pezzo
surfaces of index two.

We can describe a log del Pezzo surface of index two as a subvariety
of a weighted projective space or of the product of two weighted projective
spaces with explicit defining equations (cf. Section 7, TABLE 14). The idea
of description follows from a description of the blowing up of X along A
as a divisor of a P!-bundle over X (cf. Section 2.3). We have a morphism
from S into a toric variety W by a certain linear system on the P!-bundle.
If the nef divisor Kx + L = —(Kx + E) is big, then the morphism is an
embedding, and if Kx + L is not big, then it is a double-covering. In some
cases, W is a weighted projective space or is realized as a subvariety of
a weighted projective space. In the case where E is a minimal section of
X =~ Ty, the description of S and W seems to be complicated, and we
consider another method of description. In this case, S is obtained as the
blowing up of P(1,1,4) along a zero-dimensional subscheme of degree 4 —n
(cf. Proposition 7.1). In particular, S ~ P(1,1,4) is case n = 4. For other
n, S is realized as a subvariety of the product P(1,1,n) x P(1,1,4) in case
n > 0, and of the product P! x P(1,1,4) in case n = 0. In the case where
S — W is a double-covering, W is P(1,1,4) or P(1,1,2). Using some ad
hoc method, we can describe S as a divisor of a weighted projective space
of dimension three. In the recent paper [16], we find another method of
describing the defining equations of S in a weighted projective space when
chark = 0 and the genus is small.

In many arguments in our study, the case of type [1;2, 2]y and the case
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of chark = 2 appear as exceptional cases. The log del Pezzo surfaces in the
cases seem to have interesting and complicated structure.

This article is organized as follows: The notion of elimination is in-
troduced in Section 2. The notions of del Pezzo pair and basic pair are
introduced in Section 3, where the minimal basic pairs are classified, and
the anti log-canonical rings of del Pezzo pairs of index at most two are stud-
ied. The notion of fundamental triplet is introduced and the fundamental
triplets are classified by types in Section 4.2. Here, in TABLES 3 and 4, the
list of the dual graphs of exceptional divisors for the minimal desingulariza-
tion of non-Gorenstein singular points of S is given. Section 5 is devoted to
the study of deformation. Especially, deformations of fundamental triplets,
and equi-singular deformations of (M, E)js) and of (S, B) are studied. In
Sections 6 and 7, we consider only the log del Pezzo surfaces of index two.
The structure of the minimal desingularization M is studied in Section 6.
Here, we determine all the curves on M with negative self-intersection num-
ber. Using it, we study the equi-singular deformations of (M, Ejs) and of S.
The comparison with the classification by Alexeev—Nikulin [4] is explained
in Section 6.6. Section 7 is devoted to giving an explicit description of the
log del Pezzo surface from the data of fundamental triplet.
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Notation and terminology. We work in the category of algebraic
schemes (or algebraic spaces) over a fixed algebraically closed field k. A
scheme (or an algebraic space) proper over k is called complete. If k is
the complex number field C, then the completeness is equivalent to the
compactness of the associated analytic space.

First, we explain things on divisors on a normal variety. Let X be a
normal variety.

e A divisor on X means a Weil divisor. Thus a Q-divisor is a linear
combination D = Y a;I"; of prime divisors I'; with rational coeffi-
cients a;. The Q-divisor D is called effective and we write D > 0
if all a; > 0. A Q-divisor D is called Q-Cartier if some positive
multiple mD is a Cartier divisor.

e For a reflexive sheaf £ of rank one, a global section £ of £ defines
a homomorphism Ox — L. If £ # 0, then the image of the dual
homomorphism £Y = Homo, (£,0x) — Ox is the ideal sheaf of
an effective divisor. The divisor is denoted by div(§) = div(§)z. If
D = div(§)z, then & is called a defining equation of D in L. In this
case, there is an injection from L into the sheaf of germs of rational
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functions of X sending & to 1. The image is just the sheaf Ox (D) of
germs of rational functions f with div(f) 4+ D > 0. The cohomology
group H' (X, Ox (D)) is denoted by H'(X, D), for short.

Suppose that X is complete. A Cartier divisor D is called nef if
DC' > 0 for any irreducible curve C', where DC' denotes the intersec-
tion number of D and C. A Cartier divisor D is called big if some
positive multiple mD is linearly equivalent to A + E for an ample
divisor A and an effective divisor E. Note that a nef Cartier divisor
D is big if and only if D™ > 0 for n = dim X. The intersection
theory is generalized to divisors on normal surfaces by the Mumford
pullback (cf. Section 3.1).

Second, we explain things related to surfaces. Let S be a non-singular

surface.

e An irreducible complete curve v on S is called a negative curve if the

self-intersection number +? is negative. If v ~ P! in addition, then

is called a (—d)-curve for d = —~2.

The dual graph of a reduced divisor D = ) D; on S is defined as
follows in the case where irreducible components D; are all non-
singular: A vertex corresponds to an irreducible component D;. Let
v; be the vertex corresponding to D;. If D;D; = 0 for two irreducible
components D;, D;, then there is no edge joining v; and v;. If D;D; =
1, then v; and v; are joined by a (simple) line. If D;D; = k > 1,
then v; and v; are joined by a thick line with the numbered box :
If the vertices v; are written as black circles labelled by D;, then

D; D; D; D;
®— @ incase D;D; =1, in case D;D; =k > 1.
The set of vertices of such a dual graph I" is denoted by Ver(I").

In the dual graphs of divisors, a vertex corresponding to a (—d)-curve
is expressed as follows:

(—1)-curve | (—2)-curve | (—3)-curve | (—4)-curve | (—d)-curve

O L ® © @
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On the other hand, an arbitrary irreducible curve is expressed by the
symbol @ when it is not necessarily a (—d)-curve.

e A straight chain of non-singular curves of length n on a non-singular
surface means a divisor D = D7 + Dy + -+ + D,, such that

(1) any irreducible component D; of D is a non-singular projective

curve,
(2) D;ND; = for |i — j| > 1,
(3) D1Dy = DaDy = --- = Dp_1Dy, = 1.

The dual graph of D is written as:

D, D, D3 D,1 D,
%, % % - %, %

e Let F,, — P! denote the P'-bundle associated with the locally free
sheaf O @ O(n) of P! for n > 0. The surface F,, is called the Hirze-
bruch surface of degree n. A section o C F,, with 02 = —n is called
a manimal section. If n > 0, then the minimal section is called the
negative section since it is a unique negative curve on F,,. The con-
traction of the negative section is denoted by F,, — F,,. Here, F,, is
isomorphic to the weighted projective space P(1,1,n). A section o
with o N os = 0, which is necessarily linearly equivalent to o + n/
for a fiber /, is called a section at infinity.

Finally, we explain additional things.

e A weighted projective space P(ag,ai,...,q;) over k is defined as
Proj R for the graded polynomial ring R = k[Xo, X1, ... ,X;] where X;
is a homogeneous element of degree a; for 1 < i < [. The tautological
sheaf O(n) for n € Z is defined as R(n)~. If a; | n for any i, then O(n)
is invertible. A homogeneous coordinate (Yo, ... ,Y;) of P(ag,... ,a;)
means that Y; is a global section of O(a;) for any ¢ and P(aq, ... ,a;) =~
Proj k[YQ, ... ,Yl].

e A lattice S means a free abelian group S of finite rank together with
a non-degenerate symmetric integral bilinear form (., .): SxS — Z.
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e The intersection C' N E of subschemes C, E C X means the scheme-
theoretic intersection.

2. Elimination of Zero-Dimensional Subschemes

We introduce the notion of elimination for a zero-dimensional subscheme
of a non-singular surface satisfying a suitable condition. A typical example
of such a subscheme is the scheme-theoretic intersection C' N E of a non-
singular curve C' and an effective divisor F with C' ¢ E. The notion of
elimination is a generalization of the notion of separation introduced in

[15].

2.1. Succession of blowups
Let X be a non-singular surface and let A be a zero-dimensional sub-
scheme of X. The defining ideal sheaf of A is denoted by Za.

DEFINITION 2.1 (weak transform). Let f: Z — X be a proper bira-
tional morphism from a non-singular surface.

(1) Then the image ZAOyz of f*Zn — Oy is written as Oz(—G)J for
an effective f-exceptional divisor G of Z and an Oz-ideal J defining
a subscheme of Z of dimension < 0. The ideal 7 is called the weak
transform of Ta. Similarly, the subscheme Az defined by J is called
the weak transform of A.

(2) Let E be an effective divisor on X. We define E2 to be the effective
divisor f*E — f*E A G, where G is the f-exceptional divisor in (1)
and

FENG = ZF min{multp(f*E), multp(G)}T".

REMARK. If A is a subscheme of an effective divisor E, i.e., Ox(—F) C
IAa C Ox, then the weak transform Az is a subscheme of Eﬁ. In fact, the
inclusion Oz (—f*E) C InOyz = JOz(—G) implies that E2 = f*E—G > 0
and Oz(—Eé) cJ= IAZ'

The following is related to the notion of multiplicity of A at a point:

DEFINITION 2.2. Let P be a point of the zero-dimensional subscheme
A.
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(1) The multiplicity multp(A) at P is defined as the length of the Ar-
tinian local ring Oa p.
(2) The degree deg A coincides with h’(Oa) = 3~ 5o o multp(A).
(3) Let us define another invariant vp(A) by
vp(A) =max{v € N|Za C mp},

where mp C Ox is the maximal ideal at P.

REMARK. For an effective divisor D and for a point P, we have

max{v € N| Ox(—D) C mp}
= min{multp(C' N D) | a non-singular curve C' ¢ D passing through P}.

This number is called the multiplicity of D at P and is denoted by multp(D).
For two effective divisors D1, D9 with no common irreducible components,

the local intersection number (Di,Ds)p at a point P is defined by
multp(D1 N Dg).

REMARK. wvp(A) =1 if and only if A is an effective divisor of a non-
singular curve over a neighborhood of P. In fact, if vp(A) =1, then Zp p =
(z,y*) for a system of parameters (x,y) of the regular local ring Oy p and
for k = multp(A).

LEMMA 2.3. Assume that Supp A is a point P with vp(A) = 1 and
kE=multp(A) > 2. Let V — X be the blowing-up along A. Then V is nor-
mal and has a unique singular point QQ € V', which is an Ai_1-singularity.

PROOF. We may assume that X = Speck|x,y] and Za = (x,y*). Then
V =Vyulj for

Vo ~ Specklx, y,z]/(xz — yk) and V) ~ Specklx,y,w]/(x — wyk).

Here, V is non-singular and Vj has the unique singular point (0,0,0) of
type Ap_1. O

In what follows in Sections 2.1-2.3, we assume that vp(A) = 1 for any
PeA.



304 Noboru NAKAYAMA

We shall investigate the weak transform of A by blowups. Let pu: ¥ — X
be the blowing-up at a point P € A. If multp(A) = 1, then ZAoOy =
Oy (—1) for the exceptional curve [ = u~!(P) and hence the weak transform
Ay is empty. If multp(A) > 1, then ZAOy = Oy (1) ® Za, and LN Ay =
{P'} for a point P’, where vp/(Ay) = 1 and mult pr(Ay) = multp(A)—1. In
fact, if Za p = (v, y") for a local coordinate (x,y), then Za, pr = (z/,y*1)
and (z,y) = (2'y,y') for a local coordinate (z/,y’) around P’. For an
effective divisor E on X, we have EQ = pu*E—lincase P € F and EQ =u*kE
in case P ¢ E.

By the argument above on the blowing-up at a point, we infer that if
deg(A) = n < oo, then there exists a succession of blowups

(2-1) o M=Y,—-Y, 11— =YV -Y =X
such that

(1) the weak transform Ay, of A in Y; is not empty for i < n and
AYn = ®a

(2) Yiy1 — Y; is the blowing-up at a point P; € Ay, for i < n.

In particular, the weak transform of A is eliminated by the succession of
blowups (2-1).

LEMMA 2.4. The non-singular surface M in (2-1) is isomorphic over
X to the minimal desingularization of the blowup V of X along A.

PROOF. By construction, ZanOp; = Oy (—G) for the ¢-exceptional ef-
fective divisor G ~ Kj; — ¢*Kx. By the universality of blowing up, there
is a morphism A: M — V over X such that A*Oy (1) ~ Oy (—G), where
Oy (1) denotes the tautological invertible sheaf associated to the graded
Ox-algebra @,,~oZX. In particular, Ky ~ \*Ky. Hence, \: M — V is
the minimal desingularization. [

DEFINITION 2.5 (elimination). Let M — V be the minimal desingu-
larization for the blowing up V along A. The composite ¢: M — X is
called the elimination of A.

Even though the definition of elimination can be applied to arbitrary
zero-dimensional subscheme A, we consider only the case where vp(A) =1
for any P € A.
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REMARK 2.6. The elimination ¢: M — X of A is characterized by the
following two conditions:

(1) The weak transform of A is empty;

(2) Ky ~ ¢*Kx + G for the effective divisor G determined by Zo Oy =
Ou(—G).

In fact, there is a birational morphism A\: M — V by (1) and A is the
minimal desingularization by (2). Conversely, the elimination ¢: M — X
satisfies these two conditions by Lemma 2.4.

LEMMA 2.7. Let ¢: M — X be the elimination of A.

(1) Let A’ be a subscheme of A. Then ¢ factors through the elimination
of A.

(2) Let E be an effective divisor on X containing A as a subscheme.
Then EJ\AJ s a unique effective divisor of M such that @Eﬁ =F
and Ky + E§y ~ ¢*(Kx + E).

(3) For an effective divisor E on X, let M' — X be the elimination of
ANE. Then EAA/[ 1s the total transform of Eﬁ/. In particular, if £

is non-singular at AN E, then EAA/[ is the proper transform of E in
M.

(4) Let E be an effective divisor on X such that ANE consists of finitely
many points. Then the difference © = ¢*E — Ef/[ is a complete ¢-
exceptional effective divisor satisfying

-0 = —OKy = OFEf = deg(ANE).

(5) For two complete effective divisors D and E on X,

D5 ES = DE — deg(ANDNE).

PROOF. (1): In the expression (2-1) of the elimination ¢ of A as a
succession of blowups at points, we can choose the center of blowing-up
Y41 — Y; from points of the weak transform of A’ whenever the weak
transform is not empty. Hence ¢ factors through the elimination of A’.
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(2): Let G be the effective divisor on M such that O (—G) = ZaOyy.
Then G < ¢*E by Ox(—E) C Za. Since G ~ Ky — ¢*Kx, we have
ES =¢"E—G~¢*(Kx +E)— K.

(3): ZanpOrr = Opp(—G') for the ¢'-exceptional effective divisor G
on M’ with Ky ~ ¢"Kx + G'. The equality ZAOyp + Oy (=9 E) =
IaneOyp implies Ay N EAAW = (). For the induced morphism ¢": M —
M, there is an effective divisor G” such that Za, , Oy = Op(—G") and
G = ¢""G' + G". Hence, E5; = ¢""EY;,.

(4): © is complete by the assumption and it coincides with ¢"*G" in the
proof of (3). Thus —0% = -G’ = deg(A N E), and

—OKy = -0G = -0%=0(—¢*E + E,) = OE%,

by the equality G = ¢"*G' + G".
(5): We may assume A C D by (3). Thus ¢*D — D%, = G. Hence, by
(4), we have

DY ES = (¢"D — G)(¢*E —©) = DE+ GO = DE —deg(ANDNE). O

REMARK. Let C be a non-singular curve and let E be a non-zero effec-
tive divisor with C' ¢ E. Then the scheme-theoretic intersection A = CNFE
satisfies vp(A) = 1 for any P € A. The separation of C' and E defined in
[15] is nothing but the elimination of A.

The following well-known result is important for showing some vanish-
ing of cohomologies and for showing the base point freeness of some linear
systems, especially in characteristic p > 0 (cf. [5], [6]):

LEMMA 2.8. Let E be a one-dimensional projective scheme satisfying
HYE,Op) = 0. If L is a nef invertible sheaf of E, then L is generated by
global sections and H'(E, L) = 0.

Proor. Let Eq, Es, ..., E; be the one-dimensional irreducible com-
ponents of E. We may assume that F is connected, and hence F = U§:1 E;.
Let J; C Og be the ideal sheaf defining F;. Then J is a skyscraper sheaf
for n > 0. We set

l
a(E) = Zizl ano ranko, Ji'/JiH
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Note that a(F) is an invariant for any one-dimensional algebraic scheme E.
We also set d; = deg(L|g,) > 0.

We first consider the case where £ is numerically trivial; we shall show
that if d; = 0 for any 4, then £ ~ Og. There is an exact sequence

0—-L®J;—L— 0 —0

for any E;, since E; ~ P!, Note that J; is regarded as an Op,-module for a
subscheme D; C E such that dim D; < 0 or that dim D; = 1 with a(D;) =
a(E)—1. By using the induction on a(E), we may assume L® J; ~ J;. The
surjection HY(E, Op) — H(E;, Og,) ~ k and the vanishing H'(E, Og) = 0
induce H'(J;) = 0. Therefore, the restriction map

m: HY(E, L) — H°(E;, OF,)

is surjective for any i. There is a section s € H*(E, £) such that m;(s) # 0
for any i. Let F be the cokernel of the homomorphism O — L sending
1 tos. Then F ® O, = 0 for any ¢. Thus O — L is surjective, and is
isomorphic.

Next, we consider the general case. For any i, let us take an arbitrary
point P; € E; not contained in other irreducible components E;. Then there
is an effective Cartier divisor B; of E with Supp B; = {F;} and B;|g, = P;.
In fact, an open neighborhood U of P; can be regarded as a subscheme of an
affine space A and there is a regular function f on A with div(f)NE;NU =
P;. Therefore the invertible sheaf £ ® Og(—B) is numerically trivial for
the effective Cartier divisor B = > d;B;. Hence, £ ~ Og(B). Thus L is
generated by global sections by the freeness of the choice of {P;}. Since
0 — Op — L ~0Op(B) — 0O — 0 is exact, we have HY(E,£) = 0. O

REMARK. In Lemma 2.8, we have H'(E’, Op/) = 0 for any subscheme
E’' C E. In particular, if F is an effective divisor of a non-singular surface,
then Fi.q = Y E; is a simple normal crossing divisor consisting of rational
curves whose dual graph is a tree.

ProPOSITION 2.9. Let ¢: M — X be a non-isomorphic proper bira-
tional morphism of non-singular surfaces such that —Kpy; is ¢-nef. Let G
be the ¢-exceptional effective divisor with G ~ Ky — ¢*Kx and let A C X
be the zero-dimensional scheme defined by the ideal Zn = ¢.Op(—G). Then
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vp(A) =1 for any P € A, and ¢ is the elimination of A. If Ey be an
effective divisor of M such that Ky + Epy is ¢o-numerically trivial, then A
1s a subscheme of the non-zero effective divisor E = ¢ FEp and Ey = Eﬁ,

ProOOF. First, we shall show the following two properties to be satisfied
for any ¢-nef divisor D:

(1) R ¢.0n(D) = 0;
(2) Onp(D) is ¢p-generated, i.e., p*p.Opn (D) — Op(D) is surjective.

Let B be a ¢-exceptional effective divisor of M. Then H!(Op) = 0 by
R! .0y = 0. Thus HY(Op ® Oy(D)) = 0 by Lemma 2.8. Hence, we have
the vanishing R! ¢.O5/(D) = 0 by the theorem of holomorphic functions:

(R' .00 (D))" = lim ,, HY(Op5 ® Oar(D)),

where x is an arbitrary point of X and B is an effective divisor of M with
Supp B = ¢~ !(z). Since D — G ~ D — K); + ¢*Kx is ¢-nef, R* ¢, O (D —
G) =0, p.0p (D) — ¢.O0c(D]q) is surjective, and Og(D|q) is generated
by global sections (cf. Lemma 2.8). Hence, Op(D) is ¢-generated, since
Supp G is the exceptional locus of ¢.

Second, we shall show that ¢ is the elimination of A by the characteriza-
tion in Remark 2.6. Since Oy (—G) is ¢-generated, ZaOyr = Op(—G). In
particular, the weak transform of A in M is empty. Since Kj; ~ ¢*Kx + G,
¢ is just the elimination of A.

Finally, we shall show the remaining thing. It is derived from 0 < Ej; =
¢*E — G. In fact, it induces Ox(—FE) C Za; hence A is a subscheme of E
and Ey = B by Lemma 2.7, (2). O

2.2. Transformation of an effective divisor

Let E be a non-zero effective divisor of X containing A as a subscheme,
i.e., Ox(—FE) C Za. Note that A is a Cartier divisor of E if and only if
Ia/Ox(—E) is a locally free Og-module. We shall study the divisor E%;
for the elimination ¢: M — X of A.

The following is easily derived from Lemma 2.7:

LEMMA 2.10. Suppose that E is non-singular and A is supported on a
point P of E. Then, for the elimination ¢: M — X of A, the set-theoretic
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inverse image ¢~ (P) is a straight chain Z§:1 I'; of non-singular rational
curves, Eﬁ is the proper transform of E in M, and the dual graph of ¢~ (E)
is as follows (cf. Notation and terminology):

I Iy Ty.1 Ty Eg
o e —© O %)

LEMMA 2.11. If A is supported on a singular point P of E, then there
exists a non-singular curve C' on an open neighborhood of P in X such that
A C CNE. If furthermore A is a Cartier divisor of E, then one can choose
the non-singular curve C' so that A = CNE.

PROOF. For a local defining equation 1 of E around P, we have € m%
for the maximal ideal mp at P. Thus the ideal Za contains 7 and another
function £ € mp \ m%, since vp(A) = 1. Hence the divisor C' = div() is
non-singular at P and A C C' N E. If A is a Cartier divisor of F, then we
can choose £ so that Za is generated by n and &; thus A =C N E. [

LEMMA 2.12. Suppose that E = E1 + Ey for non-singular divisors Fq,
FEs and that B and Es intersect transversally at a unique point P = F1NEs.
Suppose also that the zero-dimensional subscheme A is supported on P.
Then A is contained in an effective Cartier divisor A of E supported on P

with vp(A) = 1. In particular, min{multp(A N E1),multp(A N Ey)} = 1.
Furthermore, the following conditions are mutually equivalent:

(1) A is a Cartier divisor of E;
(2) A is neither a subscheme of E1 nor Es;

(3) multp(A) = multp(A N E7) + multp(AN Ey).

PROOF. We may assume that div(z;) = E; for a regular function z; of
X fori=1, 2. Since vp(A) =1, Zp, p contains a function £ € mp\m%;. We
may assume that

&= )\1$T2 + )\2$;n1
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for unit functions A;, Ay at P and for positive integers my, meo with
min{m,ms} = 1. Let A be the subscheme div(¢) N E, i.e., the subscheme
defined by the ideal (¢, z1x2). Then A satisfies the required property. More-
over, multp(ﬁ) = mq + ms, and multp(ﬁ NE;) =m; for i = 1, 2. Suppose
that m; = 1 and A # A. Then Inp = (f,$1$2,$’f) = (xlf,wg) for some
1 < k < mg. Hence, A C Ep, multp(A) = k, multp(A N E;) = 1, and
multp(A N Ey) = k. Thus the condition: A = A, is equivalent to all the
conditions (1)—(3) above. O

COROLLARY 2.13. In the situation of Lemma 2.12, suppose that A is
a Cartier divisor of E. If A" C A is a Cartier divisor of E, then A" = or
A= A.

LEMMA 2.14. Suppose that E = E1+ Ey satisfies the same assumption
as in Lemma 2.12. Suppose furthermore that A is an effective Cartier
divisor of E supported on P with multp(ANE;) =1 and multp(ANEy) =
b > 1. Then, for the elimination ¢ of A, the set-theoretic inverse image
¢~ 1(P) is a straight chain Zsi% I'; of non-singular rational curves, ES =
Eim + Eo v+ 22:1 I'; for the proper transform E; zr of E; for i =1, 2,
and the dual graph of ¢~ (E) is as follows:

Eim Iy | IV Iy Es v
%) o - o %)

| A

PROOF. Let ¢f: M* — X be the elimination of A N Fy. By Lemma
2.10, (¢*)~1(P) is a straight chain 22:1 FE of non-singular rational curves.

For the proper transform Ef of E; for i =1, 2, the dual graph of the union
(")~ HP)U E§ U Eg is written as follows:

#
BT N I, E
o>—@——@—0O0—0
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The weak transform A, of A in M* is just a point P* € I‘g \ (I’g71 U Eg),
where F(ﬁ) = E% in case b = 1. The elimination M of A is obtained as
the blowing-up M — M?* at P!. Therefore, the expected dual graph of
¢~ 1(E) is obtained. Here, ',y is the exceptional curve for M — M?*, and
E1, v, Eo, T'j for j < b are the proper transforms in M of E&, Eg, Fg.,
respectively. The divisor Eﬁ is just Eyar + Eo v + Z?’:l r;. 0

REMARK 2.15. In the situation of Lemma 2.14, the ideal Za is ex-
pressed as

In = (8% <mP1i ® O <_ Z?zljrg» '

Therefore, A is determined by a point P* lying on Fg \ (T 2_1 U Eg) The
point P! ¢ I’g corresponds to the point (A{(P):A2(P)) € P! for A, Ao
appearing in the proof of Lemma 2.12.

LEMMA 2.16. Suppose that A is supported on a point P of E and that
E =mEy for a non-singular divisor Eg and for a positive integer m. Then
multp(A) < mmultp(A N Ey), where the equality holds if and only if A is
a Cartier divisor of E.

PROOF. We may assume that m > 2 and that Ey = div(x) for a regular
function z. Then 2™ € Za. By using the induction on m, we may assume
that 2™~ & Ta. There is another regular function £ such that (&,2™) C Za
and £ € mp \ m%. If A is a Cartier divisor of E, then we can choose ¢ so
that Za = (£, 2™) by Lemma 2.11.

Suppose that multp(AN Ey) = 1. Then we may assume that £ = y for a
local coordinate system (z,y) around P. Then Za = (z™,y) since 2! ¢
Za. Thus A is a Cartier divisor of E with multp(A) = m, multp(ANEy) =
1.

Suppose that multp(A N Ey) = 1 > 2. Then we may assume that £ =
x+ey! for a local coordinate system (z, i) around P and a unit function ¢ at
P. Here, (z+ey',2™) = (z+ey',y™). Thus Za = (z+ey', y*) for a positive
integer k with (m — 1)l < k < ml, since (z +eyt, 2™ 1) = (x4 eyt,ym D).
Hence, the required inequality follows from multp(A) = k. Moreover if
k = ml, then A is a Cartier divisor of E. [J
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LEMMA 2.17. In the situation of Lemma 2.16, let Fogr C M be the
proper transform of Eqg for the elimination ¢: M — X of A. Then

Lo k .
ES; = mEqg + Zizl i(m— 1) + Z¢:l+1(ml — )Ty

for the straight chain ¢~ (P) = Zi-c:l I'; of non-singular rational curves,
where k = multp(A) and | = multp(A N Ey). If k =1, then the dual graph
of $~Y(Eo) is the same graph as in Lemma 2.10. If k > I, then the dual
graph of ¢~ (Ey) is written as follows:

Fl Fl Fk—l Fk
o - —@—0

@ Eo,m

PROOF. The inverse image ¢~ !(P) is a straight chain Zle I'; of non-
singular rational curves where an end curve I'y is the unique (—1)-curve of
the chain. Let ¢f: M* — X be the elimination of AN Ey and let ¢': M —
M* be the induced morphism. Then the curves I'; for i > [ are ¢'-exceptional
and the images Fti ¢'(T;) for i < [ form the straight chain (¢f)~!(P) =
Zi:l F? of rational curves. The proper transform Eg C M?* of Ej intersects
only the unique (—1)-curve F? in the chain (¢*)~!(P). Here, we have

(6%)* Eo = B} + Zizl it
= (¢")*(mEy) — (Kyps — (1) Kx) = mE} + zz_ — 1)l

Thus we are done in the case where k = [, since A C Ep and ¢ = ¢!. Hence,
we may assume k > [. Then the morphism ¢’ is the elimination of the weak
transform A? ¢ M?* of A. The weak transform A’ is supported on a point
Pt of I’? which is not contained in other components of (¢)* Ey. Thus

2y = ((m = 0im8) >+ @) (B3 — (m— 103
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Let us consider the special case where k = m and [ = 1. Then Za =
(z™,y) and Ey = div(z) for a local coordinate system (x,y) around P.
Thus ¢f: M? — M is nothing but the blowing up at P. Thus there is
a local coordinate (zf,y*) around P! such that F% = div(af) and Zn; =
((z®)™=1, y*). Thus we have

m—1
Efy =mEoy +) ~ (m—i)l

by induction on m.

For a general case, by the proof of Lemma 2.16, we may assume Za =
(z,y*) and Ey = div(z — ey') for a local coordinate system (z,y) around
P and for a unit function € at P. Then there is a local coordinate system
(zf,y*) around P* such that F? = div(z?) and Zx: = ((z%)*,¢%) around
P*. Thus the situation Af C (k — l)F§i belongs to the special case above.
Hence,

# #
(tm=1irf) ™" =t = K@) + (k= )
— (mi — k) (Fl + Z;‘:i rm)
k—DI + Zf:l_l(k — =)l

- —1le+2]_ m — 1) — )T

Thus we are done. J

2.3. Global description

Assume that A is an effective Cartier divisor of a non-zero effective
divisor E of X and that there is a divisor L of X with L|g ~ A, ie.,
Ox(L)|p ~ Og(A). We shall describe the blowup V' — X along A explicitly
under the assumption.

We have an extension
(2-2) 0—-0Ox(L-—E)—&—0x—0
of locally free sheaves which makes the commutative diagram

0 —— Ox(L—F) —— IaAOx(L) —— O —— 0

| I |

0 —— Ox(L—E) —— & —— O0x —— 0
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of exact sequences, where the top sequence is derived from Ox(—FE) C
Za and from the isomorphism Ox(L)|g ~ Og(A). The diagram induces
another exact sequence

(2-3) 0— Ox(—F)— & —ZIaOx(L)— 0.

Let p: P:=Px(£) — X be the P!-bundle associated with £ and let Og(1)
denote the tautological line bundle of P with respect to £.

LEMMA 2.18. The blowing up V of X along A is realized as a Cartier
diwisor of P with Op(V) ~ Og¢(1) @ p*Ox(E).

PROOF. By the exact sequence (2-3), we infer that @ -, IZ is a quo-
tient algebra of the symmetric algebra of the locally free sheaf £ ® Ox(—L).
Hence, V is isomorphic to a closed subspace of P. The inclusion Ox(—FE) C
E of (2-3) defines an irreducible Cartier divisor D C P with Op(D) ~
Op(1) ®p*Ox(F)and V C D. Thus V =D. O

PROPOSITION 2.19. The extension (2-2) is split if and only if div(&) N
E = A for a global section & of Ox(L). In the split case, V is isomorphic
to the divisor

V(&) == div (p*(§)v —p"(nu) C P

for a defining equation 1 of E, where the section v € HY(P,O0g(1) ®
p*Ox(E — L)) corresponds to the injection Ox(L — E) — &€ of (2-2) and
the section u € HY(P, Og(1)) corresponds to a splitting Ox — &.

PRrROOF. If such a section & of Ox (L) exists, then £ gives an injection
Ox — IaOx (L) inducing a splitting Ox — & of (2-2).

Next, suppose that (2-2) is split. Then we have € = Ox(L—E)vdOxu.
For the injection Ox(—F) — £ of (2-3) and for the surjection & — Ox of
(2-2), the composite n: Ox(—E) — & — Ox is an injection defining E.
Thus 7 is regarded as a defining equation of E. For the other projection
& — Ox(L — E)v, the composite Ox(—F) — & — Ox(L — E)v defines a
section £ of Ox(L). Replacing £ with —&, we infer that

e the twist Ox — £ ® Ox(E) of the injection Ox(—FE) — & of (2-3)
is given by 1 +— nu — £v, and
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e the surjection &€ — ZaOx (L) in (2-3) is given by
Ox(L = E) ® Ox > (s1,52) = (511 + $29).
Therefore, V =V ({,n) and div(§) N E = A. O

REMARK. If HY(X,L—E) =0 and if Bs|L— E| = (), then ZAOx(L) is
generated by global sections. In fact, (2-2) is split by HY(X, L— E) = 0, and
thus & is generated by global sections by Bs|L — E| = ). Hence, ZAOx (L)
is so by the exact sequence (2-3).

2.4. Simultaneous elimination

LEMMA 2.20. Let X — T be a smooth family of surfaces over a non-
singular curve T and let A C X be a subscheme such that A — T is finite
and flat and that the fiber Ay = A xr {t} satisfies vp(A¢) =1 for any point
P € A; as a zero-dimensional subscheme of the fiber X; = X xp {t} over
any t € T. Then there exist a finite ramified covering 7: T' — T from an-
other non-singular curve T' and a simultaneous elimination M— X xp T’
of A xp T in the following sense: M is smooth over T and the fiber of
M xp:{t'} over any point t' € T' is the elimination of Ay C X fort = 7(t').

PROOF. Taking a succession of base changes I — T from the normal-
izations T of irreducible components I' of Supp A we may assume that any
irreducible component of A is a section of X — T. For a point P € A we
have a local coordinate system (x,y,t) of X such that X — T is given by
(x,y,t) — t and that the defining ideal N p of A at P contains y. Thus,

locally on T, A is a subscheme of a d1V1sor E cX which is smooth over
T. Then A is regarded as an effective divisor > n;T; of E for sections I'; of
E—T. Hence, we may write

IA p= = (v,x"¢)

for a regular function ¢ at P, where {x =y = 0} =I'1 and } 5ol is
defined by ¢ =y = 0. Let u: Y — X be the blowing-up along the section
I'y. Then Y — T is smooth and the weak transform Ay of A is defined by

(yl ™M~ IH*90>
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for a coordinate system (x',y’,t) of ¥ satisfying pu*x = ¥/, p*y = x'y/,
w't = t. Thus K? — T is finite and flat, and the degree of AY — T
is less than the degree of A—=T by one. Hence, we have a simultaneous
elimination by taking a succession of blowups along sections. [

PrOPOSITION 2.21. Suppose that E is a complete simple normal cross-
ing divisor of a non-singular surface X. Let A1 and As be zero-dimensional
subschemes of E& such that

(a) deg(A1 N E;) = deg(Aa2 N Ej) for any irreducible component E; of
E,

(b) multp(A1) = multp(Asz) and multp(A; NE;) = multp(Agy N E;) for
any node P of E and for any Ej,

(c) vp,(A;) =1 for any Py € A; fori=1, 2.

Then there exist a connected curve T, a subscheme A of E xT flat and
finite over T', and two points t1, to € T' satisfying the following properties
where Ay is the restriction AN (E x {t}) fort € T:

(1) Atl == Al and At2 = Ag.
(2) deg(Ay N Ej) =deg(A1NEj) foranyt € T and Ej;.

(3) multp(Ay) = multp(Aq) and multp(A; N E;) = multp(Ay N Ej) for
any t € T, Ej, and for any node P of E.

(4) vp,(Ay) =1 for anyt € T and P, € Ay.

In particular, there is a birational morphism gg: M — X x T such that M
is smooth over T and the fiber

Ole,: M xp{t;} — X x {t;} =X
is the elimination of A; fori=1, 2.

PROOF. Let A3 C A; N Ag be the subscheme supported on nodes of
FE such that

multp(As) = max{multp(A; N E;) | P € E;}
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for any node P of E. Note that if P € E1 N Ey and multp(Ay N Ey) = 1,
then Az = Ay N By near the point P. Let (l)ﬁ: M* — X be the elimination
of Asz. Let Ag be the weak transform of A; in M* for i = 1, 2, and set

Ef = B3 ~ oF (Kx + E) — Ky

Then Ag is empty or an effective divisor supported on the non-singular part
E*\ Sing E! by Lemma 2.12 (cf. Remark 2.15). Since the degrees of A’i and
Ag on an irreducible component of E* coincide, the divisors Ati and Ag of E*
are algebraically equivalent to each other. Therefore, we have a connected
non-singular curve T" and a relative effective Cartier divisor At C Ef xT
such that Ag = AN (E* x {t;}) for a suitable point ¢; € T for i = 1, 2. By
Lemma 2.20, we have a simultaneous elimination M — M* x T of Al by

replacing 7" with a finite ramified covering of T'. The subscheme A C X x T
defined by the ideal

(gzﬁti X idT)*I&nOMuxT(—Eﬂ xT)C Oxxr

satisfies the required conditions and 5 :M — M!XT — X x T is the
simultaneous elimination. [J

LEMMA 2.22. Let Ey, Ey be non-singular prime divisors of a non-
singular surface X which intersect transversely at one point P. Let A
be a zero-dimensional subscheme of E = Ei + Ea supported at {P} with
vp(A) = 1, multp(ANE;) = 1, and multp(AN Ey) = k > 1. Then
there exist a connected non-singular curve T', a point 0 € T, a subscheme
ACEXT satisfying the following conditions:

(1) A = T is flat and finite;

(2) A is isomorphic to the fiber Ag = A xp {0} over the point 0 € T;
(3) P & Ay for the fiber Ay = A xp {t} over any point t # 0.

PROOF. Let (x,y) be a local coordinate system of X around P such

that £y = div(x) and Ey = div(y). We may assume that the defining ideal
I is one of the following two ideals by the proof of Lemma 2.12:

(1) Za=(y,x");  (2) Za=(xy,y+exb),
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where ¢ is a unit function at P. Let T be the affine line A’ = Speck[t]. We
choose mutually distinct non-zero constants ai, as, ... , a; € k. In case (1),
the subscheme A of X x T defined by the ideal

(T, x a0

satisfies the required conditions. In case (2), the subscheme Aof X xT
defined by the ideal

k
(s 4T - am)
satisfies the required conditions. [

LEMMA 2.23. Let Ey be a non-singular prime divisor of a non-singular
surface X and let A be a zero-dimensional subscheme of E = mEy for some
m > 1 such that A is supported at one point P € Ey. Then there exist a
connected non-singular curve T, a point 0 € T, a subscheme ACEXT
satisfying the following conditions:

(1) A = T is flat and finite;
(2) A is isomorphic to the fiber Ag = A xp {0} over the point 0 € T;

(3) A¢N Ey is reduced for the fiber Ay = A xr {t} over any point t # 0.

PROOF. Let (x,y) be a local coordinate system of X around P such
that Fp = div(x). We may assume that A ¢ (m—1)Ep and multp(ANE)) =
[ > 2. If m = 1, then the defining ideal Za_p at P can be written as (x,y'). If
m > 2, then, by the proof of Lemma 2.16, we may assume that the defining
ideal T p at P is written as (x + ey!, y*) for an integer (m — 1)l < k < ml
and for a unit function € at P. Let T be the affine line A! = Speck]t].
We choose mutually distinct non-zero constants a1, as, ..., a; € k. In case
m = 1, the subscheme A of X x T defined by the ideal

<x, 1o~ ait)>
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satisfies the required condition. In case m > 2, the subscheme Aof X xT
defined by the ideal

<X +e Hizl(y —a;t), (Hi:1(y . ait))m_ H;:im—l)l(y B afc))

satisfies the required condition. [
3. Del Pezzo Pairs and Basic Pairs

We introduce the notions of del Pezzo pair and of basic pair in this sec-
tion. The first one is a generalization of the notion of del Pezzo surface to
pairs (S, B) of surfaces S and Q-divisors B, where the del Pezzo property for
(S, B) are considered in the most general situation. If (.5, 0) is a log-terminal
del Pezzo pair, then S is called a log del Pezzo surface. The notion of basic
pair naturally comes from studying the minimal desingularization of .S for
del Pezzo pairs (S, B) of index at most two. The set of isomorphism classes
of basic pairs is in one-to-one correspondence with the set of isomorphism
classes of rational del Pezzo pairs (S, B) of index at most two and of genus
at least two which are not (S,0) of index one. Applying a kind of minimal
model program to a basic pair, we have a birational morphism to a mini-
mal basic pair, which is expressed as the elimination of a zero-dimensional
subscheme. The minimal basic pairs are classified by some numerical data.

3.1. Definition of del Pezzo pairs

Let S be an irreducible normal algebraic space of dimension two proper
over Speck. There is a birational morphism «: M — S from a non-singular
algebraic surface projective over Speck, by Chow’s lemma and by the reso-
lution of singularities of algebraic surfaces. We may assume that there is no
(—1)-curve of M contracted to a point by a. Then « is uniquely determined
up to isomorphism and is called the minimal resolution of singularities (or
the minimal desingularization) of S.

Let © be a Q-divisor of S. The Mumford pullback a*© (cf. [24]) is
defined to be a Q-divisor of the form

O + Z a;E;,

where O is the proper transform of © in M, Ej; is an irreducible component
of the exceptional locus of «, and the coefficients a; are rational numbers
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determined by the condition: O F; = 0 for any i. We say that © is
numerically Cartier if a*© is Cartier. For another Q-divisor ©' of S, the
intersection number OO’ is well-defined to be (a*©)(a*@’). We say that ©
is nef if ©O' > 0 for any irreducible curve I' on S. Similarly, we say that ©
is numerically ample if OI' > 0 for any irreducible curve I' on S and if the
self-intersection number ©2 is positive.

We recall the following results related to rational singularities (cf. [5,
Theorem (2.3)]):

THEOREM 3.1. If S has only rational singularities, i.e., R' a,Oyr = 0,
then S is a projective scheme over Speck. For the minimal desingulariza-
tion a: M — S and for any a-nef divisor L of M, R' a.Opr(L) = 0 and
a*a,Op (L) — O (L) is surjective.

PRrROOF. First, we shall show the latter half assertion. Let Z be the
fundamental cycle, i.e., the smallest non-zero effective divisor supported on
the a-exceptional locus |J E; such that —ZF; > 0 for any i. Note that
SuppZ = |JE; and L — nZ is a-nef for any n > 0. Thus H(O,,z(L)) =0
by Lemma 2.8. Hence, the vanishing R! a,Oy(L) = 0 follows from the
theorem of holomorphic functions for algebraic spaces (cf. [19]). Applying
the vanishing for L — Z to the exact sequence

0—0Opu(L—-2)— Op(L)— Oz(L) — 0,

we infer that a,.Op (L) — a.Oz(L) is surjective. Let G(L) be the image
of a*a,Op (L) — Op(L). By Lemma 2.8, Oz(L) is generated by global
sections. Thus G(L) C Oy (L) — Oz(L) is surjective. Since Op(L)/G(L)
is supported in |J E;, we have G(L) = Op(L).

Next, we shall prove the projectivity of S. Let A be a very ample
divisor of M with H!(M, A) = 0 and let H be the pushforward a,A. Then
the Mumford pullback of H is written by

o H =A+ ZalEl

for positive rational numbers a;. By multiplying A, we may assume a; are
all integral; thus o*H is Cartier. By the previous argument, we infer that
Oz(a*H) ~ Oz and a,Op(a*H) — a, Oy is surjective. In particular, there
is an effective divisor D on a Zariski-open neighborhood U of a connected
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component of Z such that D ~ o*H|y and D N Z = (. This implies that
H is Cartier and a*H coincides with the pullback as a Cartier divisor. We
shall show that H is an ample divisor of S. Let E be the effective divisor
> a;E;. From the exact sequence

0— OM(A) — OM(Oz*H) — OE(Q*H) >~ OE —0

and the vanishing H'(M, A) = 0, we infer that |H| is base point free. If
Ca*H = 0 for an irreducible curve C C M, then C' C E. Hence, |H| defines
a finite morphism from S into a projective space. Therefore, H is ample
and S is projective. [J

DEFINITION 3.2. Let B be an effective Q-divisor of S.

(1) The index of (S, B) is defined to be the minimum positive integer a
with a(Kg + B) being numerically Cartier.

(2) Let f: Z — S be a birational morphism from a non-singular projec-
tive surface Z such that the union of f~!(B) and the f-exceptional
locus is a normal crossing divisor ) F;. The pair (S, B) is called
log-terminal (resp. log-canonical) if §; > —1 (resp. §; > —1 ) for any
6; for the formula

Ky =f"(Ks+B)+ > _6FE;.
Note that the condition does not depend on the choice of f: Z — S.
(3) (S, B) is called a del Pezzo pair if —(Kg + B) is numerically ample.
(4) A del Pezzo pair (S, B) is called rational if S is a rational surface.

(5) If (S,0) is a log-terminal del Pezzo pair, then S is called a log
del Pezzo surface.

Note that a del Pezzo surface is a non-singular projective surface with
ample anti-canonical divisor, which is always rational.

PROPOSITION 3.3 (cf. [27, Proposition 4.4]). Let M be a non-singular
projective surface with k(—Kpr) = 2. Then M has only finitely many neg-
ative curves. If p(M) > 2 in addition, then the cone NE(M) of numerical
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classes of effective 1-cycles on M (cf. [23]) is generated by the numerical
classes of negative curves.

ProoOF. —Kjy is Q-linearly equivalent to A+ D for an ample QQ-divisor
A and an effective Q-divisor D. Let I" be a negative curve. If Ky I' < 0,
then I' is a (—1)-curve. If Kj/I" > 0, then I' is an irreducible component of
D.

Assume that there are infinitely many (—1)-curves C; on M. By the
cone theorem [23], we may assume that the limit

¢=lim 75

[Ci]
exists in NE(M) with Kp¢( = 0. Since AC = 1, DC; < 0 for infinitely
many ¢. This is a contradiction, since C; C Supp D. Therefore, M has only
finitely many negative curves.

Suppose that p(M) > 3. Then any extremal ray R C NE(M) with
KjrR < 0 is generated by the class of a (—1)-curve by [23]. Let

A= Rx[l}] C NE(M) C NE(M)

be the polyhedral cone generated by the set {I';} of negative curves on M.
Assume that there is an element z € NE(M)\ A. By the cone theorem [23],
there exists an element (; € A satisfying z —¢; € NE(M) and Ky (z— (1) >
0. Since z # (1, we have A(z — (1) > 0 and D(z — (1) < 0. Thus the
negative part of the Zariski-decomposition of z — (7 is not zero. Hence
z— (1 — (o € NE(M) for some ¢ € A\ {0}. Therefore, 0 < ¢(z) < Az for
the number

c(z) =sup{Ay |y € A,z —y € NE(M)}.

Let {y;} be a sequence of elements of A such that z —y; € NE(M) and
lim; o Ay; = ¢(z). Then we have an accumulation point y», € A of {y;}.
Since z — Yoo € NE(M) \ A, we have a contradiction by 0 < c(z — yoo) <
c(z) — Ayso = 0. Hence NE(M) = A. [J

COROLLARY 3.4. Let (S,B) be a del Pezzo pair and let a: M — S
be the minimal desingularization. Then M has only finitely many negative



Log del Pezzo Surfaces of Index Two 323

curves. If a negative curve I' is not a-exceptional, then T' is a (—1)-curve
or a(I") C Supp B.

PrROOF. For the nef and big Q-divisor L = —a*(Kg + B), there is an
effective Q-divisor £ with —Kj; ~@ L + E. Thus x(—Kp;) = 2. Hence,
M has only finitely many negative curves by Proposition 3.3. Suppose that
" is neither an a-exceptional curve nor a (—1)-curve. Then Ky/T' > 0 and
LT > 0. Hence, ET' < 0 and «(T") C Supp B. O

PROPOSITION 3.5. Let (S, B) be a rational del Pezzo pair of indezx a
and let a: M — S be the minimal desingularization. Then S is a projective
surface with only rational singularities, —a(Kg+ B) is an ample Cartier di-
visor, and the a-exceptional locus is a stmple normal crossing divisor whose
dual graph is a tree.

PROOF. Let By be the proper transform of B. Let b be a positive inte-
ger such that abKg and abB are numerically Cartier. For the a-exceptional
locus |J E;, we define effective divisors E(1), E(3) supported on the locus by

abKM =a* (abKS) - E(l), abBM =a* (abB) - E(g)

Then —E(;) and —E(9) are both a-nef. We set L := —aa*(Kgs + B) and
E = Eq) + E@). Then L is nef and big, LE = 0, and —ab(Ky + By) =
bL + E. Moreover,

(Ky + E)L = Ky L < (Ky + By)L = —a 'L? < 0.

In particular H(M, K); + E) = 0. By duality, we have H?(M,—E) = 0
and thus H'(E,Og) = 0 from the exact sequence 0 — Op(—E) — Oy —
Op — 0. Thus Supp £ is a simple normal crossing divisor whose dual
graph is a tree. Since —FE is a-nef, Supp F is the inverse image of a finite
set of S and HY(E,—jE|g) = 0 for any j > 0 by Lemma 2.8. Hence
HY(mE, O,,g) = 0 for any m > 1 by the exact sequences

0— Op(=(m—=1)E) = Ong — O@m—ng — 0,

and we infer that S has only rational singularities by applying the theorem
of holomorphic functions to R! a,@y;. In particular, S is projective by
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Theorem 3.1 and Oy (L) is the pullback of an invertible sheaf of S. Hence
—a(Kg + B) is Cartier. OJ

PROPOSITION 3.6. Let (S, B) be a del Pezzo pair.
(1) If (S, B) is log-terminal, then S is rational.

(2) Assume that S is not rational. Let ¢: M — X be a birational mor-
phism from the minimal desingularization M of S into a P'-bundle
X over a non-singular curve C of genus g > 1. Then X — C has a
negative section T' with —T'? > 2g — 2. If (S, B) is log-canonical in
addition, then C is an elliptic curve and the proper transform Uy of
I' in M is exceptional for M — S.

PROOF. Suppose that S is not rational. Let a.: M — S be the minimal
desingularization and 7: X — C be the P'-bundle. Then —Kj; ~Q L +
Eyy for the nef and big Q-divisor Ly; = —a*(Kg+ B) and for an effective Q-
divisor Fy;. Thus —Kx ~q L + E for the nef and big Q-divisor L = ¢, Ly,
and the effective Q-divisor F = ¢, E);. Since (—Kx)? = —8(g—1), E is not
nef. Hence, there is a negative curve I' on X with ET" < 0. Moreover, I' is a
unique negative curve of X since the cone NE(X) is spanned by I and a fiber
¢ of w. Since I dominates C, we have (Kx +I')" = 2p,(I") —2 > 29 —2 > 0.
We set ¢ = multp(E) € Q. Then

0< Lt = (*KX*E)ES (*KX *CF)KZQ*CFK,
0<Il=(-Ky -E'<(-Kx — )T = —(Kx +T)T + (1 — )T

Hence, 1 < ¢ < 2 and I' is a section of 7. In particular, (S, B) is not
log-terminal, and (S, B) is log-canonical only when ¢ = 1.

Suppose that c = 1. Then g =1, LI' =0, and F = I'+ D for an effective
Q-divisor D with D NI' =0, Df < 1. In particular, 0 < Ly I'py < LI'=0
and «(I"p7) is a point.

Ife>1,then2g—2<(c—1)(-T?) < -T2 Ifc=1,then 0 =29 -2 <
—I'2. Thus we are done. O

REMARK 3.7. Let X — C be a P'-bundle over a non-singular curve C

of genus g > 1 admitting a negative section o with —o? > 2¢g — 2. Then
X ~ Po(Oc @ Oc(A)) for an ample divisor A with O¢(A) ~ O,(—0).
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Thus there is a section o, with 0 Nos = 0, i.e., a section at infinity. Here
Bs|mos| = 0 for m > 2, since deg(mA — K¢) > 2. For the contraction
morphism p: X — V of g, V is a projective surface of Picard number one,
and Oy (u«00) is an ample generator.

In what follows, we consider only del Pezzo pairs (S, B) of index at most
two.

CONVENTION 3.8. For a del Pezzo pair (S, B) of index at most two, let
a: M — S denote the minimal desingularization of S. Then we can write

Ky =o*(Kg+B) =) _6E;

for &; € (1/2)Z>0, where |J E; is the union of a~1(B) and the a-exceptional
locus. We introduce two Cartier divisors on M by

Ey =2 6E;,  Ly:=-2Ky — Ey.

Note that E); is effective, Ky + Lyy = —Kar — Ey, and 2(Kp + L) =
Ly — Ep. The genus g = g(S, B) is defined by 2g — 2 = (K + Las) L.
In other words, ¢ = (Kg + B)(Kg + 2B) + 1. If —2(Kg + B) is Cartier
and |—2(Kg + B)| contains an irreducible and reduced curve C, then the
arithmetic genus p,(C) equals g(S, B).

REMARK 3.9. Suppose that Fpy = 0. Then B =0 and Ky ~ o*Kg.
Thus —Kg is ample and S has only rational double points as singularities;
in other words, S is a log del Pezzo surface of index one. If (S,0) is a
rational del Pezzo pair of index one, then S has only rational double points
by Proposition 3.5, and hence S is a log del Pezzo surface of index one. The
log del Pezzo surfaces S of index one have been studied by many people
as a degenerate case of del Pezzo surfaces (cf. [8], [10], [13], [14], [31], [32],
[33]). Here, 2 < g = K2+ 1 < 10 and the minimal desingularization M is
obtained as the blowing up of P? at 10 — ¢ points in a general position in
certain sense.

LEMMA 3.10. Let (S,B) be a del Pezzo pair of index alt most two.
Assume that the minimal desingularization M is a P'-bundle over a non-
singular projective curve C' of genus g > 1. Then S is projective, M has a
negative section o, and one of the following cases occurs:
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(1) C is an elliptic curve, Epp = 20, Ly ~ 204 for a section oo at
finity, and a is the contraction morphism of o. In particular, B = 0
and (S,0) is log-canonical of index one with g(S,0) = K% +1 = 2.

(2) C is an elliptic curve, Eny = 20+ 000, Las ~ 000 for a section o at
finity, and « is the contraction morphism of o. In particular, B =
(1/2)as0s0 and (S, B) is log-canonical of index two with g(S, B) = 1.

(3) Erp = 30 + ™A for the projection w: M — C and for an effective
divisor A on C with —o? > 4g — 4 + deg(A). In particular, (S, B)
is of index two but not log-canonical, and g(S,B) = g(C). Here, «
contracts o if and only if —0® = 4g — 4 + deg(A).

PrROOF. By the proof of Proposition 3.6, we infer that M admits a
negative section o with m := mult,(Ey) € {2,3} and admits a section
Ooo at infinity (cf. Remark 3.7). In particular, S is always projective. Let
D be the effective divisor Ej; — mo. By the calculation of (1/2)Lyy =
(=K — (1/2)Ep)y for v = £ and v = o in Proposition 3.6, we have

0<2—(m/2)—(1/2)D¢ and
0<—(29—2)+ (1 —(m/2))o? - (1/2)Do.

If m =2, then g =1, Do =0, and Df < 1; hence, D =0 or D = 0
for a section oo with cNos = 0. If m = 2 and D = 0, then Ly ~
204 for a section o at infinity; this is in the case (1). If m = 2 and
D = 04, then Ly ~ 0s; this is in the case (2). If m = 3, then D¢ =0
and —o? > 4g — 4 + Do; thus D = 7*A for an effective divisor A on C,
and Ly ~ 0o + (A — 2K¢c — A) for a divisor A of C with O¢(A) ~
O, (—c). Thus the case (3) occurs. Since —g? > 2g — 2, S is projective (cf.
Remark 3.7). O

REMARK. In the case (3) of Lemma 3.10, suppose that « contracts o.
Then Kg + B is Q-Cartier if and only if A ~g 2K¢c + A. Here, the Cartier
index of Kg + B is the double of the order of A — 2K — A in Pic?(C).

ProposiTION 3.11. If Kjy + Ly is not nef, then (S, B) is one of the
following:

(1) S ~P? and deg(2B) € {4,5}.
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(2) S~F, and 2B € |30 + 2n+4 — b){| forn < b < 2n+4.

(3) S~P(1,1,n) forn > 2 and 2B € |(n + 4)¢| for a generating line £.
(4) The case (2) of Lemma 3.10.

(5) The case (3) of Lemma 3.10.

In any case above, the genus g(S, B) coincides with the irreqularity of M.

PROOF. There exists an extremal ray R C NE(M) with
(Kpm + Ly)R < 0 by [23]. If R contains the class of a (—1)-curve 7,
then Kp;y = —1 and Lp;y = 0. This contradicts the minimality of a.
Hence, either M ~ P? with deg(Ky + L) < 0 or X is a P-bundle over a
non-singular curve C' with (K + Las)¢ < 0 for a fiber /.

Suppose that M ~ P2. Then (M, (1/2)Ey) ~ (S,B) and Ky + Ly
corresponds to —Kg — 2B. Thus deg(Kgs + B) < 0 and deg(Kgs + 2B) > 0.
Hence, 3 < 2deg B < 6. Since 2B is Cartier, deg(2B) € {4, 5}; equivalently,
deg Ly =1 or 2. Thus g = 0.

Suppose that M ~ F,, for n > 0. Then Ly¢ = 1 for a fiber /. Hence,
Ly ~ o + bl for a minimal section ¢ and b > n. In particular, g = 0. If
n =0, then b > 0. Here, Eyy = —2K); — Ly ~ 30 + (2n 4+ 4 — b)¢. Thus
n<b<2n+44. If b > n, then Ly; is ample and a: M — §' is isomorphic.
If b =n, then n > 0 and S is isomorphic to the cone F,, ~ P(1,1,n) and
2B ~ (n+4){. Here, the case n = 1 does not occur since (Kp;+Ly)o = —1
for the negative section o.

Suppose that M is a P!-bundle over C of genus ¢ > 1. Then (M, Ey)
is in one of the three cases in Lemma 3.10. Here, (Kj; + Las)¢ = 0 in the
case (1), (Kpr + Las)¢ = —1 in the cases (2) and (3). We have g(S, B) = ¢
by Lemma 3.10. U

LEMMA 3.12. If Ky + Ly is nef and g(S,B) = 1, then S is a log
del Pezzo surface of index one and 2B ~ —Kg.

ProoF. By the Hodge index theorem, we infer that Ky; + Ljs is nu-
merically trivial. In particular, —Kj; is nef and big, which implies that
M is rational. Thus S is a log del Pezzo surface of index one. Since
Ey ~ Ly ~ —Kjy, we have the assertion. [
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3.2. Definition of basic pairs

For the classification of del Pezzo pairs of index at most two, there
remains the case where Ey; # 0, Kjr+ Ly is nef, and ¢(S, B) > 2. In order
to study the case, we introduce the following notion of basic pairs:

DEFINITION 3.13. Let X be a non-singular projective surface and let £
be a non-zero effective divisor of X satisfying the following three conditions

(C1)—(C3) for the divisor L = —2Kx — E:
(C1) Kx + L is nef;
(C2) (Kx+ L)L > 0;
(C3) LE; > 0 for any irreducible component F; of E.

If X is rational, then (X, E) is called a basic pair. The positive integer g > 2
defined by 29 — 2 = (Kx + L)L is called the genus of (X, E).

For a del Pezzo pair (S, B) of index at most two of the remaining case,
the pair (M, Epy) satisfies (C1)—(C3) and g(S, B) coincides with the genus
of (M, EM)

LEMMA 3.14. Let (X, E) be a pair satisfying (C1)—(C3). Then the fol-
lowing two conditions are also satisfied:

(C3) L =—-2Kx — E is nef and big;
(C4) K% > 0.
If X is rational, then the following condition is also satisfied:

(C5) HY(E,OF) = 0.

PROOF. We have L2 >0 by 0 < 2(Kx + L)L = L?> — LE < L?. Thus
either L or —L is big by the Riemann—Roch formula for x(X,mL). Now
(Kx+L)L > 0 for the nef divisor Kx+ L. Thus L is big. If L is not nef, then
Ly = (L—FE)vy+E~ < 0 for an irreducible curve . Since L—E = 2(Kx+L)
is nef, 7 is an irreducible component of F, which contradicts the condition
(C3). Hence, L is nef and (C3') is satisfied. The condition (C4) is satisfied
by

(3-1) K% =(Kx +L)>+LE>LE >0.



Log del Pezzo Surfaces of Index Two 329

Suppose that X is rational. We have H*(X, Kx + F) ~ H)(X, - Kx —
L) = 0 by (C1), (C2), and (C3). The Serre duality, the exact sequence
0 — Ox(—F) - Ox — Opg — 0, and the rationality of X imply the
vanishing H?(X, —E) ~ H(E,Og) = 0. Thus (C5) is satisfied. O]

COROLLARY 3.15. Let (X, E) be a pair satisfying (C1)—(C3). Suppose
that X is drrational. Then X is a P'-bundle over an elliptic curve and
E =20 for a negative section o.

Proor. It follows from (C4) and Lemma 3.10. O

COROLLARY 3.16.  An irrational del Pezzo pair (S,B) of index at
most two is one of the three cases in Lemma 3.10. In particular, S is
projective.

The rational del Pezzo pairs (S, B) of index at most two are classified
by genus g as follows (cf. Remark 3.9):

e If g =0, then (S, B) is a pair in (1)—(3) of Proposition 3.11;
o If g =1, then (5, B) is a pair in Lemma 3.12;

e If g > 2, then (S, B) is either the pair (.5, 0) for a log del Pezzo surface
S of index one or has a basic pair as the minimal desingularization.

Therefore, the classification of del Pezzo pairs of index at most two is re-
duced to the classifications of log del Pezzo surfaces of index one, and of
basic pairs.

Let (X,E) be a basic pair and set L = —2Kx — E. Suppose that
—Ev = (2Kx + L)y < 0 for a (—1)-curve 7. Then (Kx + L)y = 0 and
Ly = FEvy=1. Let 7: X — Z be the blow-down of v to a point P € Z.
Then Ez := 7.(F) is not zero and Kx + L = 7"(Kz + L) for the divisor
Ly; = —2K7 — Ez. Therefore, (Z, Ez) is a basic pair. Here, the genus of
(X, E) equals the genus of (Z, Ez) since (Kx + L)L = (Kz+ Lz)Lz.

A basic pair (X, F) is called minimal if —Evy = (2Kx + L)y > 0 for
any (—1)-curve 7 of X. By the theory of extremal rays [23], if (X, E) is
minimal, then there is an extremal ray R C NE(X) with (2Kx + L)R < 0
such that the contraction morphism of R is either the structure morphism
of a Pl-bundle over P! or the trivial morphism from X ~ P? to a point.
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LEMMA 3.17. Any basic pair (X, E) satisfies the following stronger
condition than (C1) for L = —2Kx — E:

(C1) Bs|Kx +L| = 0.
Moreover, HY(X, m(Kx + L)) = 0 for any m > 0.

PrROOF. By successive contractions of (—1)-curves -~ with
(2Kx + L)y < 0, we may assume that (X, E) is minimal. Then X ~ P? or
X ~ F,. It is well known that H'(X, D) = 0 and Ox (D) is generated by
global sections for any nef divisor D of X. Thus we are done. [J

THEOREM 3.18. Bs|L| = 0 for L = —2Kx — E for any basic pair
(X,E). Moreover H'(X,mL — jE) =0 for any m > j > 0.

PROOF. Since 2(Kx + L) = L — E, we have Bs|L — E| = () and
HY(X,L — E) = 0 by Lemma 3.17. Hence the base point freeness follows
from the exact sequence 0 — Ox (L — E) — Ox (L) — Ogr(L|g) — 0 and
from Lemma 2.8. By the exact sequences

0—Ox(mL—(j+1)E) — Ox(mL —jE) — Og((mL — jE)|g) — 0

and by Lemma 3.17, the vanishing of H'(X,mL — jE) is reduced to the
vanishing of H(E, (mL—jE)|g), which follows from Lemma 2.8 since m.L —
jE=(m—j)L+ j(L—E) is nef. O

PrROPOSITION 3.19. Let (M, Eyr) be a basic pair. Then there exist a
rational del Pezzo pair (S, B) of index at most two with g(S, B) > 2 such that
(M, Eyy) is obtained as the minimal desingularization o: M — S. Here,
(S, B) is log-terminal if and only if Ep is reduced; (S, B) is log-canonical
if and only if L(1/2)Ep is reduced.

PrROOF. Let ®: M — |Ly|Y = P(H°(M, Lys)) be the morphism asso-
ciated to the linear system |Lys|. Let a: M — S be the Stein factorization
of ®. Then S is a normal projective surface and Ly; ~ a*Lg for an ample
divisor Lo of S. Since Ly; = —2K; — Ejpy, we have Ly ~ —2(Kg + B) for
B = (1/2)asEp. Then —(Kg + B) is ample and

(3—2) Ky ~Q a*(KS + B) — (1/2)EM.
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Hence, (S, B) is a rational del Pezzo pair of index at most two. If B = 0,
then the index of (S, B) is two by Ejs # 0. Since Ky + Ly is nef, a is the
minimal desingularization. The log-terminal and log-canonical properties
follow from (3-2) and (C5). O

COROLLARY 3.20. Let (S, B) be a del Pezzo pair of index at most two.
Suppose either that S is rational or that (S, B) is log-canonical. Then the in-
dex of (S, B) coincides with the Cartier index of Kg+ B and Bs |—2m(Kg+
B)| =0 form > 2. If Bs|-2(Kg + B)| # 0, then (S, B) is one of the fol-
lowing:

1) S is a log del Pezzo surface of index one with K% =1 and 2B ~ —Kg;
S

(2) M is a P-bundle over an elliptic curve with a negative section o and
a section 0o at infinity such that 0> = —1, B = (1/2)0.0s0, where
a: M — S is the contraction of o.

In particular, |—2(Kg + B)| contains a non-singular member if chark = 0.

PrROOF. If M is irrational, then Bs|Lj/| can be analyzed by Lemma
3.10. Here, we have the exceptional case (2) above, where a0 is a non-
singular member of | -2(Kg+B)|. Thus, we may assume M to be rational. If
Ejy = 0, then the property Bs |[—2K);| = 0) is well-known. If K+ Ly is not
nef, then M ~ P2 or M ~ IF,, by Proposition 3.11, and hence Bs |L;| = ) for
the nef divisor L. If Kj; + Ljys is nef and g(S, B) = 1, then Ly, ~ —K)
by Lemma 3.12. In this case, it is well known that Bs|—Kjs| = 0 for
K2, > 1 and that, in chark = 0, |—Ky| contains a non-singular member
even if Bs|—Kjs| # 0. The assertion for the remaining case follows from
Theorem 3.18. U

REMARK. A similar result to Corollary 3.20 has been proved as
SMOOTH DI1VISOR THEOREM in [4] in the case where B = 0, E)y is reduced,
and chark = 0, by the use of Kawamata—Viehweg’s vanishing theorem ([17],
[29]). The SmooTH DIVISOR THEOREM asserts that a general member of
|-2Kg| is non-singular for a log del Pezzo surface S of index < 2. Even
if chark > 0, it holds for S with Kg > 2 by Theorem 3.32 below. How-
ever, it does not hold for certain S with Kg = 1 in case chark = 2 as in
Example 7.22 below.
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3.3. Minimal basic pairs

We shall classify all the minimal basic pairs. Let (X, E) be a minimal
basic pair and set L = —2Kx — E. Then, either X ~ P? or X is a P!-
bundle over P!. In the latter case, (2Kx + L){ = —E{ < 0 for a fiber £ of
the P'-bundle structure X — P!

LEMMA 3.21. Let (X, E) be a minimal basic pair with X ~ P2. Then
degE =1 or?2.

PrOOF. This follows from deg L+deg E = deg(—2Kx) = 6 and (Kx+
L)L >0.0

LEMMA 3.22. Let (X, E) be a minimal basic pair with X ~ Fo = P! x
P. Let ¢; be a fiber of the i-th projection p;: X — P! fori =1, 2. Let
(e1,e2) be the pair of non-negative integers determined by E ~ ejly + exls.
Assume that e1 > ea. Then

(e1,e2) € {(1,0),(1,1),(2,0), (2, 1)}.

In particular, & has at most three irreducible components.

PROOF. Since Kx ~ —20; — 20y and L ~ (4 — e1)l1 + (4 — ez)la, we
have 4 > e1 > €5, and

0< (KX —|—L)L = 2(61 —3)(62 —3) — 2.
Hence, e; < 2 and e; < 1. Thus we are done. [

CONVENTION 3.23. In what follows, for a minimal basic pair (X, F)
with X ~ Fy, we fix a Pl-bundle structure 7: X — P! such that E ~
e10 + exf with e; > ey for a fiber £ and for a minimal section o of 7. Here,
we express a fiber of 7 as £ and a fiber of another projection to P! as 0. The
projection 7 is uniquely determined except for the case (e1,e3) = (1,1).

LEMMA 3.24. Let (X,E) be a minimal basic pair with X ~ F, for
n > 1. Let 0 C X be the negative section and let ¢ be a fiber of the P'-
bundle structure m: X — P, Let (e, e2) be the pair of non-negative integers
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determined by E ~ eyo + exl. If E # 20, then n < 4 and (e1, ez) is one of
the following:

Casen=1: (1,0),(1,1),(2,1),(2,2
Casen=2: (1,0),(1,1),(1,2),(2,2),(2,3)
Casen=3: (1,0),(1,1),(2,3),(2,4
Casen=4: (1,0),(2,4).

If E > 20, then e = 2 and 0 < ea < min{n + 1,4}. The number of

irreducible components of E is at most 3 in case E # 20, and is at most 5
i case E > 20.

PrROOF. The formula —Kx ~ 20 + (n + 2)¢ implies L ~ (4 — e1)o +
2n+4—eg)l and Kx + L= (2—e1)0+ (n+2—ez)l. Here, 2—e1 > 0 by
(Kx + L) >0,and e; = B¢ > 0 by (2Kx + L)¢ < 0. Hence e; € {1,2}.
The condition (C1) is equivalent to: n+2 —es > n(2 — e1). Similarly, (C3')
is equivalent to: 2n +4 — ez > n(4 — e;). Therefore
(3-3) eo < min{n(e; — 1)+ 2,n(e; — 2) + 4}

_ Jmin{2,4 —n}, in casee; = 1;
| min{n +2,4}, in case ¢; = 2.
The genus g of (X, E) is calculated as follows:
2g—2=(Kx+ L)L
=-n2—-e)d—e)+2—e)2n+4—e)+(4d—e1)(n+2—e2)
=(2—-e)(nleg—1)+2—e2)+(2—e€1)(4—e2) +2(n+2—ea).

Therefore, we have

(3-4) 9<g— {n + 3 — eo, in case e ;

n+ 6 —2e2, in case e; = 1.

Comparing with the inequality (3—-3), we have a new inequality es < n + 1
in case e; = 2, but no new inequalities in case e; = 1.

IfE Do, thencE =ey—ne; >0. f E Dobut E % 20,then E =0+D
for a divisor D 5 o; thus 0D = ea —n(e; — 1) > 0. Combining with (3-3)
and (3-4), we have

n <ep <min{2,4—n}, incasee; =1,FE 2 o;
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0 <es <min{2,4 —n}, incasee; =1,FE D o;
2n <eg <min{n + 1,4}, incasee; =2,F 2 o;

n <ep <min{n+ 1,4}, in case e; =2,F * 20;

0 <es <min{n + 1,4}, incasee; =2,E > 20.

Therefore, n < 4 in case E # 20, and the list of (e1,ez) is obtained for
n > 2. In case n = 1, the minimality of (X, E) requires another condition:
0<(2Kx+L)o = —FEo = e; — ea. Hence the case (e1,e2) = (1,2) is erased
and the list is obtained.

Finally, we bound the number kg of irreducible components of E. If
E > 20, then E = 20 + ) a;¢; for fibers ¢; with > a; = ey < 4; thus
kg < 5. Suppose that F # 20. If e; = 1, then F is a section of 7 or the
union of o and at most two fibers, since e < 2; thus kg < 3. The remaining
case satisfies £ 7 20, e; = 2, and 4 > ey € {n,n+ 1}. If e = n, then
E =0+ 0 for a section o4, at infinity; thus E is the disjoint union of two
copies of P! and kr = 2. If e3 = n + 1, then we have the following three
possibilities:

(A) Epo.
(B) E =0+ D for a section D ~ o + (n+ 1)¢ of .
(C) E =0+ 0 + ¥ for a section o at infinity and for a fiber ¢y of .

Then kp = 2 in case (B), and kgp = 3 in case (C). In case (A), we have
n=1and kg < 2. In fact, if £ ~ 20 + 2¢ is reducible, then £ = Dy + Dy
for two sections Dy, Ds at infinity, where D1 Dy = 1. [J

We can classify the minimal basic pairs (X, F) by the following types:
[e]: X ~P? and deg E = e € {1,2}.

[n;e1,es]: X ~TF, with E ~ ejo+eol. Here, o is a minimal section and ¢ is
a fiber for the P'-bundle structure 7: X — P! (cf. Convention 3.23).

The types of minimal basic pairs are listed in TABLE 1 with the invariants
g, LE, and (Kx + L)? by the results in Lemmas 3.21, 3.22, 3.24. We note
that K% = (Kx + L)?> + LE (cf. (3-1)).
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TABLE 1. The types of minimal basic pairs (X, E)

~
=
~
&

(Kx +1L1)° (Kx +1)°

4

H
3

I\/I\/I\/I\/I\/wwuwwwwwwwmm»—w—n’?D

H
o
go]

D

EN|

N W[ U O | ©O|

[t
e}

B WIINHOIO W IN OO

SUESHRSHRSIRS
po| | po| o o
NI R=

=]

+

—

DO QO | U x| O 0| DN | x| O [ N W x| O W| O

R RO RO R Ko ol Rt Mot Rovnd Rvnd Rl Rl R RS N N
ISR N

00| 00| 00| 00| Co| co| 00| 00| 00| 00| ©| co| co| co| 00| oo wo|

o|lo|o|ojojloloo|o|o|xw olo|olo|o|wx

uCz’-')l\D)AOl\D)AO[\D)AOPAC)PACDPACD

Q0| Co| Co| Co| | x| DND| Co| Co| Co| UT| W[ CO| Co| | x| Co| Tt
OO OO =[O OO O WU OO N | —
SN N RPN N P PSS 91155 199 K9S 8) (000

RIN| NN =] I NN ] NN =] =

COROLLARY 3.25. Let (X,E) be a minimal basic pair and set L =
—2Kx — E. If Kx + L is ample, then it is very ample. If Kx + L is not
ample but big, then (X, E) is of type [2;1,2]. If Kx + L is not big, then
(X, E) is of type [n;2, e2] with 0 < ey < min{n + 1,4}.

PROOF. An ample divisor on X is always very ample for X = P? or
X =TF,. If X = P2, then Kx + L is ample. Thus we have only to determine
when Kx + L is ample for X = F,,. If we write Kx + L ~ dio + d2/, then
di=2—e1,do =n—+2—ey. Here, Kx + L is ample if and only if do > nd;
and d; > 0. Thus Kx + L is not bigif e; = 2. If ey =1 and Kx + L is not
ample, then (X, E) is of type [2;1,2]. O

3.4. Anti log-canonical rings

For a graded k-algebra R = p,,,~( Rm, the m-th piece R,, denotes the
module of homogeneous elements of degree m. The n-th truncation R(™
for n > 0 is defined by R(™ = D,.>0 Rum., i-e., (R("))m = Rym.-

For a normal complete variety Z and a Q-divisor D, we define a graded
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k-algebra by

R(Z,D)=EP _ R(ZD)n=Ep _ H(Z,.mD.)

m>0 m>0

(cf. [11]), where L-J stands for the round-down. Here, R(Z, D)™ ~
R(Z,nD) for n > 0.

Let (S, B) be a del Pezzo pair of index at most two. We consider the
anti log-canonical ring R[S, B] := R(S, —Kg — B) and its second truncation
R[S, B]® = R(S, —2(Kg+ B)). The latter is isomorphic to R(M, Ly;). We
set By = (1/2)En . Then Ep — 2E5, is a reduced divisor or zero. Note
that £, = 0 if (S5, B) is log-terminal.

LEMMA 3.26. There is an isomorphism
R[S, Blog—1 = H" (S, —(2k — 1)(Ks + B) ) ~ H(M, Kar + Ey + kL)
for any positive integer k.

PrROOF. Let D be a Q-divisor on M which is relatively numerically
trivial with respect to the minimal desingularization a: M — S. Then
aOp (Do) is a reflexive sheaf. This is shown as follows: We may replace
S with an open subset freely since the property is local. If it is not reflexive,
then a,Op(LD2) € aOpn (LD L+ E') for an a-exceptional effective divisor
E'. A section of a,Op(LD1+ E') defines an effective Q-divisor D' on M
such that (D’) = (D) and D' — (D + E') = D', — (LD + FE’) is linearly
equivalent to 0. Then D’ > E’, since DE] = E'E] for any irreducible
component E! of E’. This argument says essentially that the negative part
of the relative Zariski-decomposition of D + E’ is E’. Therefore, the section
defining D’ comes from a section of a,Op(LDJ). Thus, a,Op( D) is
reflexive.

We can apply the reflexive property to the Q-divisor Ky; + (1/2)Ey +
kL, since Kpr+(1/2)Epn+EkLy = (k—(1/2)) L is a-numerically trivial.
Hence,

oOn (K + (1/2)Exr + kLy ) ~ Os (—(2k —1)(Ks + B) ),

since o, Ly ~ —2(Kg + B) and (1/2)a.Epy = B. O



Log del Pezzo Surfaces of Index Two 337

Therefore, R[S, B] is isomorphic to the graded ring
0 0 o
@m:%,kZOH (M, kLy) & ®m:2k—1,k21H (M, Kn + Eyy + kL),
where R[S, Blax—1 ® R[S, Blaj—1 — R[S, Bla(k41-1) is induced from
HO(M, 2Ky + 2E5; + (k +1)Lay)
=HO(M, —Ey +2E5 + (k+1—1)Ly) € HO(M, (k41— 1)Lyy).

Suppose that Kp; + Ljs is nef. For a positive integer k with
R[S, Blog—1 # 0, equivalently, |Kys + E; + kL| # 0, let us consider the
set S, of effective divisors N < Ej, such that Ky + E3; + kL — N is nef.
Then EYj, € S. We define

N = ZF min{multp(N) | N € S}

Then N*) € S;. In fact, for an irreducible curve ~von M, there is an effective
divisor N € Sy, with mult, (N) = mult,(N®) and (N — N*))y > 0; hence

(Ky+ ESp + kL — N®)y = (Kp + Ef + kL — N)y+ (N — N®)y > 0,

We define B = E3, — N® if R[S, Bloyy_1 # 0; and B = 0 if
R[S, Blok—1 = 0. Then E](\f[) < E](\;H) and Ky + EJ(\Z) + kL is nef for
any k > 0. We also define E](&o) to be Ej(\f[) for k> 0. Then Kjs + EJ(\ZO) is
a-nef with an isomorphism

On (K + ESY)) > 0. On (K + ESy) =~ Os (Ks + (1/2)B) .

LemMA 3.27. If Ky + Ly is nef, then there is an isomorphism
R[S, Blag—1 = H° (S, —(2k — 1)(Ks + B) ) ~ H'(M, Ky + E) + kLay)
for any positive integer k > 0.

PROOF. Assume the contrary. Then R[S, Blog—1 # 0 and Ej; # E](\f[)
by Lemma 3.26. Let D' < Ef, —E](\? be any non-zero effective divisor. Then
(Knp+ E](\? + D'+ kLp)y < 0 for an irreducible curve . Here, D' > ~ and

HO(M, Ky + B 4 (D' — ) + kLyy) ~ HO(M, Ky + BV + D' + kLyy).
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By induction on deg D', we have a contradiction. [

LEMMA 3.28 (cf. [12, Lemma 1.8]). Let Z be a scheme and D an ef-
fective Cartier divisor. For two invertible sheaves L and M on Z, the mul-
tiplication map H°(Z, £L)@H°(Z, M) — H°(Z, L& M) is surjective provided
that the following three conditions are satisfied:

(S1) HY(Z,L(—D)) = 0;

(S2) HY(D, L|p) @ H*(Z, M) — H°(D, L ® M|p) is surjective;

(S3) HY(Z,L(—D)) ® HY(Z, M) — HY(Z, L ® M(—D)) is surjective.
Proor. By the three conditions, we have a commutative diagram

H°(£(-D)) @ H* (M) — H°(L) ® HO(M) —— H°(L|p) @ H'(M) — 0

l ! !

H(L® M(-D)) —— HLoM) —— H((LDM)|D)

of exact sequences in which the left and right vertical arrows are surjective.
Thus the middle vertical arrow is also surjective. [J

LEMMA 3.29. Let Z be a one-dimensional projective scheme with
HY(Z,0z) = 0, L a nef invertible sheaf, and let F be a coherent sheaf
on Z generated by global sections. Then the multiplication map HO(Z, L)®
H(Z,F) — HY(Z, L ® F) is surjective.

PRrOOF. By the proof of Lemma 2.8, there is an effective Cartier divisor
D of Z such that £ ~ Oz(D) and F — F ® Oz(D) is injective outside a
closed subset of dimension < 0. Let F’ be the image of F — F @ Oz(D).
Then H(Z, F) — H°(Z, F') is surjective. As in the proof of Lemma 3.28,
we have a commutative diagram

HY(0z) 9 H(F) — HY(0z(D)) @ B(F) — H’(Oz(D)|p) @ H*(F) — 0
H°(F) —  HYOz(D)®F) — H(Oz(D)® F®Op)
of exact sequences, where the left vertical arrow is surjective, and the right

vertical arrow is surjective, since dim D = 0 and F is generated by global
sections. Thus the middle one is also surjective. [

LEMMA 3.30. For a basic pair (M, Eyr), the following properties hold:



Log del Pezzo Surfaces of Index Two 339

(1) HY (M, mLys + j(Ky + Lag)) = 0 for any m, j > 0.

(2) HY(M, Ky +mLy — jEpy) = 0 and HY (M, Ky + EUY 4 mLy) =0
for any m > j > 0.

(3) If Kpr + Ly is big, then HY (M, j(Kyr + Las) — Epr) =0 for §j > 0.
(4) HO (M, Kp+Lp)®™ — HY (M, m(Kpr+Lay)) is surjective form > 1.
(5) If Ky + Ly is not big, then
HO(M, (K + Lag) + En) @ HO(M, Kag + L)
— HY(M, (j + 1)(En + Lar) + Enr)
s surjective for j > 3.

(6) If Kpr + Ly is not big with (Kar + Las)Las > 2, then

(3-5) HY(M, j(Ky + L)) © H(Ear, O, )
— HY(Ewr, j(Kn + L) By )
(3-6) HO(M, j(Knr + L)) @ H(Epr, Lia| y,)

— HY(Ey, (KM + (G + D L) ey
are surjective for 7 > 0.

(7) If Ky + Ly is not big with (Kay + L) Lar = 2, then

(3-7) HO(M, j(Ku + Lar)) @ H(Enr, (Ko + L) |y,
— H(Ear, (5 + 1)Ky + L) 5y,
(3-8) HO(M, j (K + Lag)) @ HO(Ea, (Kar + 2L0) | By,
— H (B, (G + DEym + (5 +2) L) | 2yy)

are surjective for 7 > 0.

PROOF. Let ¢: M — X be a birational map such that (X, F) is a
minimal basic triplet for £ = ¢,(E)s) and that Ky + Ly ~ ¢*(Kx + L).
Since X ~ P! or F,,, we have a non-singular member C' € |Ky; + Lyy|. If
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K + Ly is big, then C ~ P, If K + Ly is not big, then C' is a union
of copies of P!, which are fibers of mo ¢p: M — X — PL.
(1): The vanishing follows from

0 — HY(M,mLy + (i —1)C) — HY(M, mLys + iC)
— HY(C, (mLy +iC)|c) =0

for 1 <4 < j and the vanishing H* (M, mLys) = 0 by Theorem 3.18.
(2): The first vanishing follows from (1), since

Ky +mLy — jEy = (m—j—l)LM+(2j+1)(KM+LM).

For the second, we may assume E](\T) # 0. Then Hl(E](\?), (’)E(m)) =0 by
M
E](\?) < Fy, and Ky + E](\T) + mLjy is nef. Therefore,

H'(E™, (Ky + BV + mLa)| ) =0

()
by Lemma 2.8. Combing with the first vanishing for j = 0, we have the

second vanishing.
(3): We have

HY(M, j(Ky + L) — En) ~ HY M, (j + 1)(Ky + L) + Kar)
~HYX,(j+1)(Kx + L)+ Kx).

Since Kx + L is nef and big, this cohomology group vanishes for j > 0
if chark = 0. Since X ~ P? or F,,, X is a toric variety and thus this
cohomology group is described by combinatorial data which do not depend
on chark. Thus we have the vanishing.

(4): The homomorphism is isomorphic to

H(X, Ky + L)®*™ — H(X,m(Kx + L))

If X ~ P2, then this is surjective. If X ~F,,, then Kx + L ~ dyo + dol for
dy € {0,1} and da > nd;. If dy = 0, then the surjectivity follows from that
of

HO(P!, 0(1))®™ — HY (P!, O(m)).
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If dy = 1, then it also follows from the surjectivity of
Sym™ H(P!, O(dy) ® O(dy — n)) — H(P!, Sym™(O(ds) @ O(dy — n))).

(5): We have Kx + L ~ do/ for an integer dy > 0. Since Hl(M, Ly —
Ex + Ey) =0, we have

HY (P!, 0(2d2) @ 7. Opr(Epr)) = 0.

Hence, m.¢+Opn(Enr) ~ O(ar) ® O(az) ® O(as) for integers a; > —2ds — 1.
If jdy + a; > 0 for any 4, (this is satisfied for j > 3), then the multiplication
map in question is surjective since so is

HO(PY, O(jdy + a;)) @ HY (P, O(da)) — HY(P, O((j + 1)dy + a;)).

(6): As in (5), we have Kp; + Lys ~ da¢*l. Then do > 1 by (Kp +
Lys)Las > 2. For the commutative diagram

HO(j(Ky + L)) © HY(Op,,) —— H°(j(Ky + Ly)) ©@ HY(—Ey)

H(j(Km + L) gy, ——  H'(j(Kym + Ly) — En),

the horizontal arrows are surjective with the isomorphic kernels. The sur-
jectivity of (3-5) follows from that of the right vertical arrow, which is just
the H! of the surjection

HO(M, j(K + Lar)) ©k On(—Enr) — On(§(Knr + L) — En).
Since we have an exact sequence
(3-9) 0— O(-1%" - H' P, O(m)) ® Op — O(m) — 0
for m > 1, the expected surjectivity follows from
H*(M, —¢*¢ — Ep) ~ HOY(M, Ky + Ep + ¢°0)Y
~ HY(M, (1 —dg)¢*0)" = 0.

For the homomorphism (3-6), it is enough to prove that the composite

HO(M, j (K + Lar)) ® H(M, L) ® HY(Eyy, Op,,)
— HY(M, j(Kun + Lar)) © H(Ey, Lat|g,,)
- HO(EMv (JKM + (] + 1)LM>’EM)
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is surjective. This is also written as the composite

HO(M, j (K + Lag)) @ HY(M, L) @ HY(Ey, Og,,)
— HY(En, j(Kn + L) gy, ) @ HO(M, Lyy)
— HY(En, j(Ky + L)y, ) @ B (Ear, L,y
- HO(EM7 (KM + (J+ 1)LM)|EM)‘

This is surjective by the surjectivity of (3-5), H'(Ly; — Eyf) = 0, and by
Lemma 3.29.

(7): We have Ky + Ly ~ ¢*¢ by assumption. For the commutative
diagram

HO(j(Kar + Lar)) HO(j(K + L))
@ HY(Ka + L) |y @ H' (Kar + Lar — Enr)

| |

HO((G + 1)(Km + Lag)|gy) ——  HY(G+ D(Kym + Lu) — Eu),

_

the horizontal arrows are surjective, and a surjection is induced between
the kernels by (4). Hence, the surjectivity of (3-7) follows from that of the
right vertical arrow, which is just the H! of the surjection

HO(M, j(Knr + L)) ®k One(Knr + Lar — Eny)
= Oum((j + 1)(Em + L) — Eur)-
The kernel of the sheaf homomorphism is isomorphic to the direct sum of

some copies of Oy (—¢*) @ Opn (K + Ly — En) =~ Opn(—Eyy) by the
exact sequence (3-9) for m = j. Since

H?(M, —E) ~ HO(M, Ky + En)Y ~H(M, —¢*0)" =0,

the expected surjectivity follows. For the homomorphism (3-8), it is enough
to show the composite

HO(M, j(Kp + L)) @ HO(M, L) @ HO(Epr, (Kag + L) g,,)
— HY(M, j(Ka + Lar)) @ H(Enr, (Kas + 2La1)| 5y, )
— HY(En, (5 + DKy + (54 2)Lar) | By)
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is surjective. This is written also as the composite

HO(M, j(Kp + Lar)) @ HY(M, Lyy) @ HY(Ear, (Kar + L) |y,
— HY(Ewr, (5 + 1)Ky + L) my,) © HY(M, L)
— HY(Ba, (G + DEm + (G +2) L) By, )-
This is surjective by the surjectivity of (3-7), H(La; — Eps) = 0, and by
Lemma 3.29. [

PROPOSITION 3.31. Let (M, Eyr) be a basic pair. Then the multiplica-
tion maps

i s HY (M, mLys) @ HY(M, Ly) — HO(M, (m + 1) Lay),
b HO(M, Ky +mLy) @ HO(M, Lyy) — HO(M, Ky + (m +1)Lyy)
s HO(M, Kag + B\ + mLyy) @ HO(M, L)
— HO(M, Ky + E\™ + (m + 1)Lay)
are surjective for m > 2. If (K + Lar) Ly > 2, then these are surjective

form > 1. If (Kpyr+ Lag) Ly = 2, then the following homomorphism is also
surjective:

p”: (HY(M, K+ L) @ HO(K oy + 2Ly))
@ HO(M, Ly)®? — HO(M, 2Ly).

PrOOF. We have the following three cases of (M, Eyy):
(i) Ka + Ly is big;

(i1) Kas + Ly is not big and (K + Lag)Lar > 2;

(i) (Kas + Las)Lag = 2.

Note that (Ky+ L)Ly > 2 if Kas+ Ly is big (cf. TABLE 1). In the proof
below, Step 1 gives a reduction for the proof related to p,, and u,. We
shall show the surjectivity of u,, and u!, in the cases (i) and (ii) in Step 2.
The same thing in the case (iii) is shown in Step 3. The surjectivity of u.,
is shown in Step 4, and that of u/” in Step 5.
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Step 1. Let us consider the following multiplication maps:
fimj: HO(M,mLy — jEn) @ HO(M, Lyg) — HY(M, (m + 1)Ly — §EM),
pir i+ HO(M, Kpp +mLys — jEr) @ HY(M, L)
— HY (M, Ky + (m 4 1)Las — jEun)

for 0 < j < m. We have H (M, mLy, — jEy) = 0 for m > j > 0 and
HY (M, Ky +mLys — jEp) = 0 for m > j > 0 by Lemma 3.30, (1), (2). We

infer that the natural homomorphisms

HY(Er, (mLys — jEw)| 2y ) © HY(M, Lyy)

— H(Ear, (m+ 1) Las — §Eu )| E4)s
HO(E, (Ky + mLy — jEuM)|gy,) ® HO(M, L)

— HY(Ey, (Ky + (m+ 1)Ly — En)| 2y)

are both surjective by Lemma 3.29 and by H' (M, Ly; — Ejr) = 0. Applying
Lemma 3.28 to the case Z = M, D = Ey, L = O(mLy — jEN), M =
On(Lar), for 0 < j < m, we infer that the surjectivity of u,, is reduced to
that of ju, ; for j < m. Similarly, applying Lemma 3.28 to the case Z = M,
D =Ey, L=0O(Ky+mLy —jEN), M = Op(Lyy), for 0 < j < m, we
infer that the surjectivity of i, is reduced to that of y,, ; for j < m.

Step 2. We consider the cases (i) and (ii). We shall check the surjec-
tivity of pynm for m > 1 by applying Lemma 3.28 to the case Z = M,
D = Ey, L = Opn(Las), M = Op(m(Lyr — Enr)). Here, the condition
(S1) is satisfied by H'(Las — Epr) = 0. The homomorphism of (S2) is

HO(M,m(Ly — Epy)) @ HO(Eyy, Ll g,,)
— HO(EM, ((m+ 1)Ly —mEM)|Ey,),

which is surjective by Lemma 3.30, (3), and Lemma 3.29 for the case (i),
and by the surjectivity of (3-6) for the case (ii). The homomorphism of
(S3) is

HY (M, m(Lys — Ean)) @ HY(M, Ly — Ey) — HY(M, (m + 1)(Las — En)),

which is also surjective by Lemma 3.30, (4). Thus fp, m and p,, are surjec-
tive.
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Still in the cases (i) and (ii), we shall check the surjectivity of uy, ,,, 1
for m > 1 by applying Lemma 3.28 to the case Z = M, D = Ey;, L =
Onm(Lar), M = On(Kpr +mLys — (m —1)Eyy)). Here, (S1) is satisfied by
HY(Ly — Ear) = 0. The homomorphism of (S2) is written as

HY(Kyr +mLy — (m —1)Ey)) @ H (B, Llg,,)
— H((Kp + (m+ 1)Ly — (m — 1)Enp)|5y,)

and it is surjective. In fact, in the case (i), it follows from the vanishing
HY (M, Ky +m(Lay — En)) ~ HY(X, (2m — 1)(Ka + L) — Ey) =0

shown in Lemma 3.30, (3), and from Lemma 3.29; in the case (ii), it is just
the homomorphism (3-6) for j = 2m — 1. The homomorphism (S3) is

HY(Ky +mLy — (m — 1)Epy)) @ HY(Ly — Eny)
— HY (K + (m + 1)Ly — mEyy),

which is surjective by Lemma 3.30, (4). Thus, M;’n,m—l and i, are surjective.
Hence, we are done for p,, and p, in the cases (i) and (ii).

Step 3. We consider the case (iii). We shall check the surjectivity of
tm,m—1 for m > 2 by applying Lemma 3.28 to the case Z = M, D = Ey,
L = Onp(La), M = Op(mLy — (m — 1)Ey). Here, (S1) is satisfied by
HY(Las — Ear) = 0. The homomorphism of (S2) is

H(mLy — (m — 1)Ey)) @ BBy, Lig,,)
— H(((m + 1)Ly — (m — 1) Ey)|e,,),

which is surjective by Theorem 3.18 and Lemma 3.29. The homomorphism
of (S3) is

HO(mLy — (m — 1)Ey)) @ HY(Ly — Epy) — HY((m + 1)Ly — mEyy),

which is surjective for 2m > 3 by Lemma 3.30, (5). Thus, fimm m—1 and pn,
are surjective for m > 2.

We shall check the surjectivity of u;mm_Q for m > 2 by applying Lemma
3.28 to the case Z = M, D = Eyp, L = Opn(Lag), M = Opn (K +
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mLy — (m — 2)Eyr). Here, (S1) is satisfied by H(Ly — Ep) = 0. The
homomorphism of (S2) is

HY(Ky +mLy — (m —2)Ey)) @ HY(Ey, Ll g,,)
— H(((m+ 1)Ly — (m — 2)Eu)|Ey,)

which is surjective by Lemma 3.30, (1) and Lemma 3.29. The homomor-
phism of (S3) is

HO(Kyr 4+ mLy — (m —2)Eyy)) @ H(Lyr — Eny)
— HO(KM —+ (m + 1)LM — (m — 1)EM),

which is surjective by (4), (5) of Lemma 3.30, since Ky +mLy — (m —
2)Ey = (2m — 1)(Ky + L) + Ey. Hence, puy, ., o and gy, are surjective
for m > 2. Therefore, we are done for p,, and p!,.

Step 4. We shall show the surjectivity of u! for m > 1 in the cases
(i), (ii), and for m > 2 in the case (iii). We apply Lemma 3.28 to the case
Z=M,D=E" £=0yKy+ET +mLy), M= 0y(Ly). Here,
(S1) is satisfied by Lemma 3.30, (1). The homomorphism of (S3) is nothing
but the surjection p,, ,, 1. By HY(Ly — Ep) = 0, (S2) is derived from the
surjectivity of

HO(E(™ (K + EUY + mLur)| o) © H(Bar, Lutls,,)

— HO(E'](\ZL)7 (KM —l—EJ(‘TJn) + (m + 1)LM)|E§\ZL))

Here, F = Op (K + E](\Zn) + mLM)]E(m) is generated by global sections,
M

(m)

since (K + Ejp” +mLay)| o) is nef and Hl((’)E(m)) =0 (cf. Lemma 2.8).
M M

Since Lys|g,, is nef, the homomorphism above is surjective by Lemma 3.29.
Therefore, u!" is surjective.

Step 5. Since the composite H°(M,Ly)®%? — HY(M,2Ly) —
HO(Ey, L|g,,) is surjective, it is enough to show the surjectivity of

HO(M, K + L) @ HO(M, Ky + 2L )
— H(M, 2K 4+ 3Lyr) ~ HY(M, 2Ly — Ep).
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By Lemma 3.28 applied to the case Z = M, D = Ey;, L = O (Kpr+2Lyy),
M = On(Kpr+ Lyy) and by HI(KM+2LM — Ejr) = 0, this is also reduced
to showing the surjectivity of

HO(Ky + L) @ YKy + 2Ly — Eyy) — HY (2K 4+ 3Ly — Epyy)  and
HY(M, Kar + Lar) @ HY(Ear, (Kas + 2Lar) |,
— H(Eyr, (2K + 3Lu) | By, )-

The first one is surjective by Lemma 3.30, (4), and the second one is just
the surjection (3-8) for j = 1. Thus we are done. [J

THEOREM 3.32. Let (S, B) be a del Pezzo pair of index at most two
obtained from a basic pair (M, Epr). Let m* be the minimum positive integer

(c0)

m such that Ky + Ey;" +mLyg is nef.
(1) If LBy =0, then m* = 1. If LB is reduced, then m* < 2.

(2) If g(S,B) > 2, then R[S, B|® is simply generated. In particular,
—2(Ks+B) is very ample and |Lys| contains a non-singular member.

(3) Suppose that g(S,B) > 2. Then R[S, Blok—1R[S, Bl2 = R[S, Blag+1
for k > m*. In particular, R[S,B] is generated by homogeneous
elements of degree at most max{2,2m* — 1}.

(4) If g(S, B) = 2, then R[S, B]® is generated by homogeneous elements
of degree at most 2. If B = 0 in addition, then —2(Kg + B) is not
very ample and R[S, B]® is not simply generated.

(5) Suppose that g(S,B) = 2. Then R[S,Bls = (R[S, B]2)? +
R[S,B]lR[S,B]g and R[S,B]Qk_lR[S,B]Q = R[S,B]2k+1 fOT k >
max{2,m*}. In particular, R[S, B] is generated by homogeneous el-
ements of degree at most max{2,2m* — 1}.

PrROOF. (1): Suppose that LB1 = 0. Then E](\f) is a-exceptional and

hence (K + E](VOIO) + Lps)y > 0 for any irreducible component ~y of Ef\f,o).
Thus Ky + EXZ,O) + Ly is nef, and m* = 1. Suppose next that LB, is
reduced. If v is an irreducible component of E](\Zo) with Lp;y > 0, then

multW(E](\ZO)) =1 and

(Kar+ BN 4+ 2L0)y > =2+ 2Ly > 0.
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Thus K + E + 2Ly is nef, and m* < 2.

(2) follows from the surjectivity of pu,, for m > 1 shown in Proposi-
tion 3.31. Here, the existence of non-singular member of |L,/| follows from
the Bertini Theorem applied to the very ample divisor —2(Kg + B) of a
variety S with only isolated singularities.

(3): By the surjectivity of p!/, for m > 1 shown in Proposition 3.31, we
infer that R[S, Blog_1R[S, Bla = R[S, Blogs1 if and only if B = g+,
Thus the assertion holds.

(4): The first assertion also follows from Proposition 3.31. If B = 0,
then L2, = 4 and dim H°(M, Lys) = x(M, Lys) = 4. If —2(Ks + B) is very
ample, then S is realized as a quartic surface in P2, contradicting that S
has a non-Gorenstein singular point.

(5) follows from the surjectivity of x”” and p!), shown in Proposition 3.31
and by the same argument as in the proof of (3) above. O

n

Ezample 3.33. There is an example (M, Ey) of basic pairs such that
LB is reduced and m* = 2. We use results in Section 4 in order to describe
the example: Let (X, E,A) be a fundamental triplet of type [n;2,3]sy for
n > 2 in which A = 0 and E = 20 + F for the union F' of three fibers of
7t X 5>PL Then M =X =S, Lo =1, and B3, = E\™® = . B, = 0. Thus
Ky + E](\Zo) + kLjs is nef if and only if £ > 2. Hence, m* = 2.

By using the classification of fundamental triplets in Section 4.2 below,
we have:

PROPOSITION 3.34. m* < 2 for any basic pair (M, Eyr).

PROOF. A basic pair (M, Ejy) is obtained from a fundamental triplet
(X, E, A) by the elimination of A. We may assume that . B is not reduced.
Let I' € M be the proper transform of an irreducible component of B_
with multiplicity > 1. We set mp = multp(Ejs). Then mp > 4 and

multp(LBy) = multp(E},) = multp(E](\f[o)) = (1/2)mp, > 1.

Let kr be the minimum positive integer k with (K + E](\Zo) + kLy)I > 0.
It is enough to show that kr < 2 for any such I'.

Case 1. T is not ¢-exceptional: Then ¢(I') an irreducible component
of F with multiplicity mpr > 4. By Theorem 4.6, the type of (X, E,A) is
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[n;2,4]s forn > 3, mp =4, E = 20+4¢(T'), #(T) is a fiber of X = F,, — P,
and 2 = Lp(T) > deg(A N @(T)). Thus —1 < T2 < 0. If I'? = 0, then
LMF =2 and

(Kn + B + Ly )T > (K + 20 + Ly )T = 0.

Hence, kr < 1. Suppose that I'> = —1. Then Ey = 20 + 3I'1 + 4
for the proper transform op; C M of ¢ and a ¢-exceptional curve I'; by
Lemma 2.17. Here, Lyjop = 0, I'? = —1, and Ly I = Ly 'y = 1. Thus
B3, = B\ = o) + T + 2T, In particular, (K + E” + Ly)T = 0, and
hence kp = 1.

Case 2. T is ¢-exceptional: Let Fy C E be the irreducible compo-

nent containing the point P = ¢(I"). Note that Ej is unique and myg :=
multg, (E) > 2 and that mg < 4 by Theorem 4.6. Let Epy C M be the
proper transform of Ey. Since (Kpr + L)' = 0, ' is a (—1)-curve and
LyT = 1. Since (K + E](\Zo) +kLy) T =(k—1)+ E](\;O)F, it is enough to
show ECIT > —1.

We set kp = multp(A) and Ip = multp(A N Ep). Over an open neigh-
borhood of ¢~1(P), ¢~1(Ep) is a the union of Ey s and a straight chain
I't +T'y+ - - - 4+ I'y, of non-singular rational curves where the dual graph of
¢~ 1(Ep) is the same as that of $~1(Ep) in Lemma 2.17. Here, Ly T'; = 0 ex-
cept for ¢ = kp. Thus I' = I'y,. Therefore, mp = multr(Ey) = Ipmo — kp
by Lemma 2.17.

Subcase 2A. my=2: Then lp > 4. In particular, deg(A N Ey) >
4. Thus, (X, E,A) is of type [2]s and Supp(A) = {P} with [p = 4, by
Theorem 4.6. Thus kp = 4 and

Ey = 2E07M + Iy 4+ 2Ty + 3I's + 4T

by Lemma 2.17. Here, LyEoy = Lyl = 0 for 1 <4 < 3. It implies
that B, = Eo + T2 + T3 + 2T and B = Ey s + T's + 2T Therefore,
ESr 0.

Subcase 2B. mg = 3: Then (X, E, A) is of type [n; 2, e]2 with e € {3,4}
andn > 2, Eyis afiberof m: X — P!, and E = 20 +3Ey+ F for an effective
divisor F' ~ (e — 3)Ey by Theorem 4.6. Since mr > 4 and deg(A N Ep) < 2,
we have kp = Ip = 2 and mp = 4. Thus Ej; = 20y +3Eoar +201 +40 + F/
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for the proper transform oy C M of o and for an effective divisor F’ with
¢ F' = F. Then E3; = oas + Eo . +T1 + 2T and ESOT = E3,T = 0.

Subcase 2C. mg =4: Then (X, E,A) is of type [n;2,4]s for n > 3,
and Ey is a fiber of m: X — P! with E > 20 4+ 4E; by Theorem 4.6. Since
mr > 4 and deg(A N Ey) < 2, we have [p = 2 and mr < 6. Note that the
proper transform oy C M of o, and Ey pr are a-exceptional.

Suppose that mr = 6. Then kp = 2 and Eyr = 20y +4Fg pr + 311 461
Thus ES, = oy + 2Eo v + Ty + 3T, Hence, E{ = ES, and E\™T = 0.

Suppose that mpr = 5. Then kp = 3 and Ey = 203 + 4Ep v + 311 +
6Ty + 5T, Thus ES, = oas + 2Eoa + It + 302 + 20 and B = oy +
Eoar + T + 205 + 2. Therefore, ESOT = 0.

Suppose that mr = 4. Then kp = 4 and Ey = 203 + 4Ep p + 311 +
6I'y + 5I's + 4I'. Thus E}; = onm + 2Egm + I't + 302 + 2I's + 2I" and
E\ = o) + Egas + Ty + 2T + 2T + 2T Therefore, ESOT = 0.

Thus, we are done. [J

Hence, we have the following by Theorem 3.32 and Proposition 3.34:

THEOREM 3.35. If (S, B) is a del Pezzo pair obtained from a basic pair
(M, Eyr), then R[S, B] is generated by homogeneous elements of degree at
most 3, and R][S, B](Q) is gemerated by homogeneous elements of degree at
most 2.

Next, we consider the rings R[S, B] and R[S, B]® for a del Pezzo pair
(S, B) of index at most two which is not obtained from any basic pair.

PROPOSITION 3.36. Let (S, B) be an irrational del Pezzo pair of index
< 2. If (S, B) is log-canonical, then R[S, B] is generated by homogeneous
elements of degree at most 6, and R][S, B](2) is generated by homogeneous el-
ements of degree at most 3. However, in the non-log-canonical case, R[S, B]
is not always finitely generated. Furthermore, there is no bound of degrees
of minimal generators of R[S, B] even if R[S, B] is finitely generated.

PROOF. (S, B) is in one of the cases in Lemma 3.10. For the mini-
mal desingularization a: M — S, M has a P'-bundle structure m: M =
Po(Oc & Oc(A)) — C over a non-singular projective curve C' of genus > 1
for an ample divisor A.
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Let o be the negative section and let oo, be a section at infinity on M.
We can calculate R[S, B] in each case of Lemma 3.10 as follows:

Case (1) of Lemma 3.10. Then, C is an elliptic curve, Ey = 20,
Ly ~ 204, and B =0. Thus,

R[S,B] ~ R(M,04) ~ R(C, A)[t]

for a variable t of degree one. Thus R[S, B] is generated by homogeneous
elements of degree at most 3 by the following well-known result for an elliptic
curve C' and an ample divisor A:

o If deg A > 3, then R(C, A) is simply generated.

o If deg A =2, then R(C, A) is generated by homogeneous elements of
degree < 2.

o If deg A =1, then R(C, A) is generated by homogeneous elements of
degree < 3.

Case (2) of Lemma 3.10. Then, C is an elliptic curve, Ej; = 20 + 0
for a section o at infinity, Ly ~ 0o, B = (1/2)00, and Ef, = 0. Since
Ky + E3; ~ —04, we have

R[S, B] ~ R(M, (1/2)0s) ~ R(C, A)[,t] /(6 — £)

for two variables 6, t, where £ € R[S, B]y = H°(M, 0,) is a defining equa-
tion of o4 and
— iy
(R(C, A)[0,t])m = @%Hﬂ:m R(C, A)0't/.
Thus R[S, B] (resp. R[S, B]®) is generated by homogeneous elements of
degree at most 6 (resp. 3).

Case (3) of Lemma 3.10. Then, Eyy = 30+7*A for an effective divisor
A on C with deg(A—2K¢c—A) >0and Ly ~ 0 +7%(2A—2Kc — A). We
can choose the effective divisor A so that Oc(A—2Kc—A) is a non-torsion
element of Pic’(C). In this case, « is the contraction morphism of o, but
—(Ks + B) is not Q-Cartier; hence R[S, B]® and R[S, B] are not finitely
generated. On the other hand, we can take A so that Oc(A —2K¢c — A) is
a torsion element of Pic’(C) with sufficiently large order. Thus we can not
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bound the degree of homogeneous generators of R[S, B], even if R[S, B] is
finitely generated. O

PROPOSITION 3.37. Let (S,B) be a del Pezzo pair of index at most
two with g(S,B) = 0. Then R|S, B](Q) is simply generated, and R[S, B] is
generated by homogeneous elements of degree at most 5.

PrROOF. (5, B) is described as one of the cases (1), (2), (3) of Propo-
sition 3.11. We first consider the case (1). Then M =~ S P2 and
(deg(Lyys),deg(En)) € {(1,5),(2,4)}. Thus R[S, B]®® ~ R(M, Ly;) is sim-

ply generated. Since deg(Ky + EY, + kL) > k — 3,
HO(Ky + Efy + kLy) @ HO(Lyy) — HY (K + Efy + (k+ 1) Lay)

is surjective for k > 3. Thus R[S, B] is generated by homogeneous elements
of degree at most 5.

Next, we consider the cases (2) and (3). Then M ~ F,,, Ey; ~ 30+ (2n+
4 —b)l, Ly ~ o + bl for a minimal section ¢ and a fiber £ of m: X — P!,
and for a positive integer b with n < b < 2n + 4. Thus

R[S, B]®® ~ R(M, Ly) ~ @m>0 HO (P!, Sym™(O(b) & O(b —n)))
is simply generated. If we write E},; ~ eJo + e3¢, then
Ky + Eyp +kLy ~ (K—2+4¢€7)o + (kb— (n+2) 4+ e3)l,
and hence
HY(M, Ky + Ey + kL)
~ HO (Pl, Sym* =2+ (O (kb — 2n — 2 4 €3) & O(kb —n — 2+ e;)))

for k > 2. Since b > n for the case 0 <n <1, we have kb —2n —2+e5 >0
for k > 3. Thus RIS, B] is generated by homogeneous elements of degree at
most 5. [J

PROPOSITION 3.38. Let (S, B) be a rational del Pezzo pair of index at
most two with g(S,B) = 1. Then R[S, B]?) is generated by homogeneous
elements of degree at most 3, and R[S, B] is generated by homogeneous
elements of degree at most 6.
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PrOOF. S is a log del Pezzo surface of index one and 2B € |—Kg|
(cf. Lemma 3.12). Hence, R[S, B]® ~ R(S,—Kg), which is known to be
generated by homogeneous elements of degree at most 3 (cf. [10, Chapter V,
Proposition 2]). Since Kjr + Las ~ 0 is nef, we can define E](\;[n) form >1
as above, i.e., E](&n) is the maximum divisor < EY, with E](\T) —(m—-1)Ky
being nef.

Suppose that a,E5, = cBy = 0. Then E](\Zn) = E](\;O) = 0 for any
m > 1, and R[S, Bla_1 ~ H*(M, —(k — 1)Ky) for k > 1. Since R[S, B]; ®
R[S,Blor, — R[S,Blars1 is just the isomorphism HO(M,0y) ®
HO(M, —kKy;) ~ HY(M,—kKy) for k > 1, R[S, B] is generated by ho-
mogeneous elements of degree at most 6.

Next, suppose a,E}; # 0. Then E](VOIO) # 0. The dualizing sheaf wg,,
is isomorphic to Og,,, since Epy ~ —Kj. Furthermore, Hl((’)EM) ~
H?(M, K)s) ~ k. From the exact sequence

0> W (o) 2 W ~ 0O — O ) — 0
ng) E]\/[ EM E]w*E() Y

M

we have the vanishing

H1 (OE§\;O)) ~ HO(wEI(Vo[o))V

=0.

An inequality K2, = (—Kuy)Ey > 2LME](\20) > 2 follows from E,; >
2E](\2°). Hence, R[S, B]® = R(S,—Kg) is generated by homogeneous ele-
ments of degree at most 2.

Let ~y be an irreducible curve with E](\Zo)fy < 0. Then 7 is a (—1)-curve,
since any (—2)-curve is a-exceptional. We set b = b, = mult, (E};). Since
—Ky ~ Epy > QEE\;O) and M has a (—1)-curve, we have 8 > KJQW > 2b.

We shall show b < 2. First, we consider the case where KJQVI = 8. Then
M ~ T and v = ¢. Since —Kj; — 2by is linearly equivalent to an effective
divisor, we have (—Kj; — 2bo )l = 2 —2b > 0 for a fiber £ of 7: M — P
Hence, b < 1. Next, we consider the case where K]2\4 < 7. Then there
is a birational morphism M — F, for 0 < n < 2. Here, we may assume
that ~ is contained in a fiber of the composite M — F,, — P!. Thus,
by replacing the birational morphism M — [, if necessary, we may also
assume that v is the proper transform of a fiber £ of X = F,, — P!. Since
—Kx —2bl ~ 20+ (n+2—2b){ is linearly equivalent to an effective divisor,
we have 2b < n + 2 < 4. Hence, b < 2.
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Therefore, Ky + E + kLy ~ B\ — (k — 1)Ky is nef and EY =
EY for k > 3. In order to show R[S, Blo_1R[S,Bly = R[S, Blogs
for £ > 3, we shall apply Lemma 3.28 to the case Z = M, D = E](\/O[O),
L=0y(—(k—1)Ky + ES), M = 0y(~Ky). Here, (S1) follows from
HY(M,—(k — 1)Kp;) = 0 for k > 1. The homomorphism of (S3) is noth-
ing but HO(M, —(k — 1)Ky;) @ HY(M, —Ky;) — HY(M, —kK)y), which is
surjective for k > 3, since K% > 2. The restriction map H°(M, —Kj/) —
HY(Ey, — K| gy, ) is surjective by HY (M, — Ky — Ey) = HY(—2K)) = 0.
Thus (S2) is derived from the surjectivity of

HO (B, (—(k — 1)Ky + E§\3°))|E§;o)) ® HO(Enr, — Kl g,,)

— HY(ESY) (kK + Eﬁ?ﬂm)),

which is shown by Lemma 3.29. Therefore, R[S, Blox—1R[S,Bla =
R[S, Blog41 for k > 3, and R[S, B] is generated by homogeneous elements
of degree at most 6. [J

Finally, we consider a rational del Pezzo pair (S, B) of index at most
two of genus ¢g(S, B) > 2 which is not obtained from any basic pair. Then
S is a log del Pezzo surface of index one and B = 0. Thus, R[S, B] =
R(S,—Kg). Hence, by [10, Chapter V, Proposition 2], R[S, B]?® (resp.
R[S, B]) is generated by homogeneous elements of degree at most 2 (resp.
3), respectively.

Therefore, we have proved the following:

THEOREM 3.39. Let (S, B) be a del Pezzo pair of index at most two.
Suppose either that S is rational or that (S,B) is log-canonical. Then
R[S, B] is generated by homogeneous elements of degree at most 6, and
R[S, B](Z) s generated by homogeneous elements of degree at most 3.

4. Fundamental Triplets

In this section, the notion of fundamental triplet is introduced. Any ba-
sic pair is shown to be obtained as the elimination of a fundamental triplet.
The fundamental triplets are classified by their types. The uniqueness of
fundamental triplet for a given basic pair does not hold in general but the
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type is uniquely determined. By the list of types, we can classify all the
non-Gorenstein singularities on S for rational del Pezzo pairs (5, B) of index
at most two.

4.1. Definition of fundamental triplet
DEFINITION 4.1. A triplet (X, E,A) is called a quasi-fundamental
triplet if the following conditions (F1)—(F3) are satisfied:

(F1) (X, E) is a minimal basic pair;

(F2) A is empty or a zero-dimensional subscheme of X with vp(A) =1
for any P € A;

(F3) Aisasubscheme of F such that LE; > deg(ANE;) for any irreducible
component F; of E, where L = —2Kx — E.

LEMMA 4.2.

(1) Let (X,E,A) be a quasi-fundamental triplet and let ¢: M — X be
the elimination of A. Then (M, E%}) is a basic pair.

(2) If (M,Ey) is a basic pair, then there exist a quasi-fundamental
triplet (X, E,A) and a birational morphism ¢: M — X such that
¢ is the elimination of A and Ey = E]\A/[.

PrROOF. (1): We set Ey = E%. By Lemma 2.7, (2), Ky + Ey ~
¢*(Kx + E). Hence, Kpy+ Ly ~ ¢*(Kx + L) for Lyy = —2K3 — Epy. Let
G be the ¢-exceptional effective divisor determined by ZaoOpr = Oy (—G).
Then Ly = ¢*L—G and ¢.Opn(—G) ~ Za. If E; s is the proper transform
of an irreducible component E; of E, then E; ) = (El)]\A/I and GE; p =
deg(A N E;) by Lemma 2.7; thus

LME@M =LE; — deg(A N El) > 0.

Since —K s is ¢-nef, Ly I' = —KpI' > 0 for any ¢-exceptional irreducible
component I' of Ej;. Therefore, the conditions (C1)—(C3) are all satisfied
for (M, Eyy).

(2): If (M, E)p) is minimal, then (M, Ejs, A) is the expected quasi-
fundamental triplet for A = (). If (M, Ejy) is not minimal, then by successive
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contractions of (—1)-curves, we have a minimal basic pair (X, E) and a
birational morphism ¢: M — X such that E = ¢, FEy and Ky + Eyp ~
" (Kx + E). Hence Ky + Ly ~ ¢*(Kx + L) for nef divisors Ly, =
—2Ky — Ey and L = —2Kx — E. Thus ¢ is the elimination of a zero-
dimensional subscheme A C E with vp(A) = 1 for any P and Fy = E5
by Proposition 2.9. For an irreducible component F; of E and for the proper
transform E; 57 in M, we have

0< LMEi,M = (¢*L - G)EZ,M =LE; — deg(A N Ez)
Hence, (X, E, A) is a quasi-fundamental triplet. O

For a quasi-fundamental triplet (X, E,A), the basic pair (M, Eyr)
obtained as above by the elimination of A is called the elimination of
(X, E,A).

Let (M, Eps) be a basic pair and set Ly = —2Kr — Eyy.

Suppose that Kjr + Ljs is big. Then the quasi-fundamental triplet
(X, E,A) whose elimination is (M, Fjs) is unique up to isomorphism. In
fact, if the type of (M, Ejy) is not [2; 1, 2], then elimination ¢: M — X of A
is associated to the complete linear system |K s + Lyy|, since Kpr + Las ~
¢* (K x+L) for the very ample divisor K x+L (cf. Corollary 3.25). If the type
is [2;1,2], then | K s + L] gives a birational morphism into Fy ~ P(1, 1, 2);
thus the morphism ¢ into the minimal desingularization X of Fy is uniquely
determined.

On the other hand, if Kj; 4+ Ljs is not big, then the quasi-fundamental
triplet (X, F, A) whose elimination is (M, E)js) is not necessarily unique as
in the proof of Proposition 4.4 below. In this case, X ~ F, and Kx + L
is linearly equivalent to a multiple of fiber of w. Thus the linear system
|Kar + L] defines only the composition M — X — P

The notion of fundamental triplet below is introduced for establishing
similar uniqueness also for the non-big case; However, the uniqueness does
not hold in general even for the artificial notion (cf. Theorem 4.9, Exam-
ple 4.12).

DEFINITION 4.3. A quasi-fundamental triplet (X, E, A) is called a fun-
damental triplet either if Kx 4+ L is big or if Kx + L is not big and the
following three conditions (F4)—(F6) are satisfied:
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(F4) ANo =0 for a minimal section o; In particular, A = () if X ~ .

(F5) If E > 0 4+ D for a minimal section ¢ and a section D # o, then
D? +n > deg(AN D), where X ~F,,.

(F6) If E does not contain a minimal section o and if F is either reducible
or non-reduced, then A = ().

PROPOSITION 4.4. Any basic pair is obtained as the elimination of a
fundamental triplet.

For the proof, we need the following:

LEMMA 4.5. Let f:' Y — T be a proper surjective morphism from a
non-singular surface Y into a mon-singular curve T such that a general
fiber is isomorphic to P1. Let E C Y be a section of f. Then Oy(E)
is f-generated and F = f.Oy(E) is a locally free sheaf of rank two. In
particular, there is a birational morphism p:Y — Pp(F) over T such that
E = u*D for a section D of Pp(F) — T.

PROOF. Y is a blowup of a P!-bundle over T. Hence, f.Oy ~ Or
and R! f,0y = 0. Thus, from the exact sequence 0 — Oy — Oy (E) —
Og(F) — 0, we have an exact sequence

0— Op —F = f.0y(E)— f.Op(E)— 0.

Since E is a section, F is locally free of rank two. The surjectivity of
f*F — Oy (F) follows from the commutative diagram

0 —— f*Op —— f*F —— f*f.05(E) —— 0

! l |

0— Oy —— Oy(E) —— Org(E) —— 0

of exact sequences. The surjection defines the birational morphism p and
the injection Or — F defines the section D with pu*D = E. [J

We shall prove Proposition 4.4.
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PROOF. Let (M, Ejr) be a basic pair and let (X, E,A) be a quasi-
fundamental triplet whose elimination is (M, Ejs). We may assume that
Kx+ Ly is not big, i.e., the type of (X, E) is [n, 2, e2]. Applying Lemma 4.5,
we want to replace (X,E,A) with another quasi-fundamental triplet
(X', E', A’) which satisfies some conditions on fundamental triplet.

Step 1. We can find a quasi-fundamental triplet (X, E,A) satisfying
(F4).

Let opr C M be the proper transform of a minimal section of o with
oNA # (). By Lemma 4.5, there is a birational morphism ¢': M — X' =T,
over P! with n’ = —(op1)? = n + deg(A N o) > n such that o)y is the total
transform of the negative section o’ of X’ — P!. Since K+ E) is linearly
equivalent to a multiple of a fiber of M — P, Ky + Eyr ~ ¢ (K x: + E') for
the effective divisor E' = ¢/ Fj;. By Proposition 2.9, we infer that ¢’ is the
elimination of a zero-dimensional subscheme A’ C E’. We infer also that
(X', E',A") is a quasi-fundamental triplet whose elimination is (M, Epy).
Here, 0/ N A’ = () since ¢’ is an isomorphism around o’. Thus (F4) is
satisfied.

Step 2. The case where E contains a minimal section.

We may assume n > 0, A # 0, 0 N A = () for the negative section o.
Suppose that £ > o+D for a section D # ¢ with D?4+n < deg(AND). Then
n' := —D3%, = —D? + deg(A N D) > n for the proper transform Dy C M
of D. By Lemma 4.5, there is a birational morphism ¢': M — X' = F,,
over P! such that Dy is the total transform of the negative section o’ of
X'. By the same argument as in Step 1, (M, Eys) is the elimination of a
quasi-fundamental triplet (X', E’, A’) satisfying (F4), where E' = ¢/ E)y.
For the proper transform oy C M of o, D' = ¢.op is a section with
E' > o' + D'. Since 0%, = 0> = —n, we have —n = D> — deg(A' N D').
Thus (X', E', A’) satisfies also (F5). Since E’ contains o/, (X', E',A') is a
fundamental triplet.

Final step. The case where EE does not contain a minimal section.

We may assume that n > 0, A # (), and that (X, E, A) satisfies the
condition (F4). Then E > D; + D for sections Dy # o, Dy # o. Then
2n < ey < min{n+ 1,4} by the proof of Lemma 3.24. Hence, n =1, e3 = 2,
and E = D; 4+ Dy for the sections D, Dy at infinity. We may assume
DiNA #0. Let Dy C M be the proper transform of D;. Then —n' :=
D%,M = D? —deg(AND;) <0. Let ¢ M — X' ~ F,, be the birational
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morphism such that D js is the total transform of a minimal section o’
of X’ — PL. Then (M, E)y) is the elimination of a quasi-fundamental
triplet (X', E’; A’). Let D) C X' be the proper transform of Dy. Then
E' > o'+ D). By Step 1, Step 2, we have a fundamental triplet (X", E” A")
whose elimination is (M, Ey). O

4.2. Classification of fundamental triplets

Let (X, E,A) be a fundamental triplet and let ¢: (M, Epy) — (X, E, A)
be the elimination. We set Ey; = EJ\A/[, L=-2Kx—F,and Lj; = —2K —
Ey. Let (S, B) be the del Pezzo pair associated to (M, Eys) (cf. Proposi-
tion 3.19). Here, the birational morphism a: M — S given by the linear
system |Ljys| is the minimal desingularization of S, and B = (1/2)a.Ejy.

THEOREM 4.6. The fundamental triplets (X, E, A) are classified by the
types defined as follows:
The case X = P2 :

[1]o: E is a line and deg A < LE = 5.
[2]o: E is a non-singular conic and deg A < LE = 8.

[2]4(b): E = {1 + o for two lines {1, b2, and deg(A N¥;) < Lé; = 4 for
1=1,2. For P=4{¢1N{o,

b = max{multp(AN/¢), multp(ANty)} €{0,1,2,3,4}.

[2]e: E = 2( for a line £ and deg(AN¥{) < L{ = 4.

For X =F,, let m: X — P! be the P'-bundle structure, o a minimal
section, 0 a section at infinity, and £ a fiber of m (cf. Convention 3.23).
The case X =Ty :

[0;1,0]p: E =0 and degA < LE = 4.
[0;1,1]p: E ~ o+ ¢ is non-singular and deg A < LE = 6.

[0;1,1]4(b): E =044, deg(ANo) < Lo =3, and deg(AN¥) < Ll = 3.
For P=o0nN¥y,

b= max{multp(ANo),multp(ANe)} € {0,1,2,3}.
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[0;2,0]p0: E = o1 + o2 for two distinct minimal sections o1 and o2, and
A =0, where Loy = Loy = 4.

[0;2,0]2: E =20 and A =0, where Lo = 4.
[0;2,1]0: E ~ 20 + £ is non-singular and A = (), where LE = 8.

[0;2,1]4: E =0+ D for a section D ~ o+ ¢, and A = (), where Lo = 3
and LD = 5.

[0;2,1]44: E = 01 + 02 + £ for two distinct minimal sections o1, 02, and
A = (), where Loy = Loy = 3 and L{ = 2.

[0;2,1]o: E =20+ ¢ and A =0, where Lo =3 and L{ = 2.

The case X = :
[1;1,0]p: E =0 and degA < LE = 3.
[1;1,1]o: E ~ o+ { is non-singular and deg A < LE =5.
[1;1,1]+(a,b): E=0+4, deg(ANo) < Lo =2, and deg(AN¥) < LL = 3.

For P=onN/,
(a,b) = (multp(ANo),multp(ANC))
€ {(0,0),(1,1),(2,1),(1,2), (1,3)}.

[1;2,e]2: 0<e <2, E=20+F for an effective divisor F ~ el, ANo =),
and deg(AN¥) < LE =2 for any fiber £ < F, where Lo =4 — e.

[1;2,1]p0: E = 0 4+ 00 and A C 0o, with degA < 2, where Lo = 3 and
Loy =5.

[1;2,2]p: E ~ 20 4 2¢ is non-singular and deg A < LE = 8.

/
oo

[1;2,2]x: E = 000 + 0L for two distinct sections 0o, 0b, at infinity, and

A = (), where Los, = Lol = 4.
[1;2,2]000t E =200 and A =0, where Los, = 4.

[1;2,2]+: E = o0+D forasection D ~ o+2¢ and A C D\o with deg A < 4,
where Lo =2 and LD = 6.
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[1;2,2]44(a,b): E = 0+ 000+ ¢, ANo = 0, deg(A Now) < 2, and
deg(ANY) < 2, where Lo = 2, Los, = 4, and Ll = 2. For P = o,N¢,

(a,b) = (multp(ANL),multp(ANos))
€ {(0,0),(1,1),(2,1),(1,2)}.
The case X =Fy :
[2;1,0]p: £ =0 and degA < LE = 2.

2;1,1]+(a,b): E=0+/{,deg(ANo) < Lo=1, and deg(AN¥) < L¢ =3.
For P=onN/,

(a,b) = (multp(A N o), multp(A N £)) € {(0,0), (1,1),(1,2), (1,3)}.

[2;1,2]p: E =00 and degA < LE = 6.

[2;1,2]44: E =0+ {1+ s for two distinct fibers £1 and b3, ANo =0 and
deg(AN¥¢;) < Lt; =3 fori=1, 2, where Lo = 0.

[2;1,2]04: E =0+20 for a fiber £, and ANo =0 and deg(ANY) < LL = 3,
where Lo = 0.

[2;2,€ela: 0 < e <3, E=20+F for an effective divisor F ~el, ANo = (),
and deg(ANY{) < Le =2 for any fiber £ < F, where Lo =4 — e.

[2;2,2]p0t E = 0 4+ 00 and A C 0o with deg A < 4, where Lo = 2 and
Loy =6.

[2;2,3]4: E = 0+D for a section D ~ 043¢ and A C D\ o with deg A < 6,
where Lo =1 and LD = 7.

[2;2,3]44(a,b): E = 0+ 00 + ¢, ANo = 0, deg(ANow) < 4, and
deg(ANY¢) < Ll =2, where Lo =1 and Loss = 5. For P = 00, N Y,

(a,b) = (multp(AN{),multp(ANos))
€ {(0,0),(1,1),(2,1),(1,2),(1,3),(1,4)}.

The case X = Fj3:
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[3;1,0]p: E =0 and degA < LE =1.
3;1,1]4: E=0+{, ANo =0 and deg(A) < L¢ = 3, where Lo = 0.

[3;2,€la: 0 < e <4, E=20+F for an effective divisor F ~el, ANo = (),
and deg(AN{) < LE =2 for any fiber £ < F, where Lo =4 — e.

[3;2,3]00: E =0 + 00 and A C 0o with deg(A) < 6, where Lo = 0 and
Loy =17.

[3;2,4]+: E =0+ D for a section D ~ oc+4¢, ANo = (), and deg(AND) <
LD =8, where Lo = 0.

[3;2,4] 4+ (a,b): E=0+4+00c+¥{, ANo =10, deg(ANow) < Low =6, and
deg(ANY) < L¢ =2, where Lo = 0. For P =0 NY,

(a,b) = (multp(AN{),multp(ANos))
€{(0,0),(1,1),(2,1),(1,2),(1,3),(1,4),(1,5),(1,6)}.
The case X =y :
[4;1,0]0: E =0 and A =0, where LE = 0.

[4;2,ela: 0 <e <4, E=20+F for an effective divisor F ~el, ANo = (),
and deg(ANY{) < Lt =2 for any fiber £ < F, where Lo =4 — e.

[4;2,4]00: E =04 000, A C 00, and deg A < Los, =8, where Lo = 0.
The case X =F,, forn>5:

[n;2;€la: 0 <e <4, E=20+F for an effective divisor F ~ el, ANo = (),
and deg(ANY{) < LE =2 for any fiber £ < F, where Lo =4 — e.

Here, [e] indicates that X ~ P? and deg E = e; [n;e1, es] indicates that
X ~F, and E ~ ejo + eal. The subscripts o, 00, +, ++, 2, x have the
following meaning:
o : F is non-singular and irreducible
00 : ¥ is non-singular with two components
+ : E has exactly one node ++ : E has ezxactly two nodes

o E is not reduced %+ E has exactly one node .
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The subscript « is used for distinguishing the type [1;2,2]x from [1;2,2],.

PROOF. We consider the structure of fundamental triplet (X, FE,A)
from properties of (X, E).

We first consider the case X = P2. If (X, F) is of type [1], then deg A <
LE = 5; thus (X, E,A) is of type [1]o. Suppose that (X, E) is of type
[2]. If E is irreducible and reduced, then E is a non-singular conic (even
if chark = 2), and deg A < LE = 8; this case is of type [2]p. If E is not
reduced, then F = 2/ for a line ¢ and deg(A N¥¢) < L¢ = 4; this case is of
type [2]o. Suppose E is reducible and reduced, then E = ¢ + ¢ for two
lines ¢; with deg(A N¥¢;) < L¢; = 4 for i = 1, 2. Since min{multp(A N
¢1),multp(A Néy)} <1 by Lemma 2.12, the type is [2]4(b) for 0 < b < 4.

Next, we consider the case X = F,,. Then one of the following subcases
occurs:

(1) E =0 + F for an effective divisor F' supported on fibers of ;

(2) E = 04+ D + F for a section D # o and an effective divisor F'
supported on fibers;

(3) E =20+ F for an effective divisor F' supported on fibers;
(4) FE is irreducible and reduced with E # o;

(5) E # 0 and E is either non-reduced or reducible.

Case (1). (X, E)isof type [n;1,¢] for e = Fo with 0 < e < min{2,4—
n}; if n = 0, then e < 1 by Convention 3.23. If e = 0, then £ = ¢ and
deg A < Lo = 4 — n; this case is of type [n;1,0]p for 0 < n < 4.

Suppose that e = 1. Then n < 3 and £ = o + £ for a fiber £ with
deg(ANo) < Lo = 3 —n, deg(AN¥) < L¢ = 3. This case is one of
types [0;1,1]4(b), [1;1,1]4+(a,b), [2;1,1]4+(a,b), and [3;1,1]4+. Note that
(a,b) = (0,0) or min{a,b} = 1 by Lemma 2.12.

Suppose that e = 2. Then n = 2, since [1;1,2] is not a type of (X, E)
(cf. Lemma 3.24). Note that c NA = () by Lo = 0. Thus this case is of type
21,244 or [2;1, 254

Case (2). (X, FE) is of type [n;2,¢] for n < e < min{n + 1,4}, where
D~oc+mlforn<m<e.
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Suppose that m = n+ 1. Thene =n+1,n < 3, and £ = 0 + D,
where Do = 1. Here, A C D by (F4), A = () for n = 0 by (F4), and
deg A < D? +n = 2n + 2 by (F5). This case is of type [n;2,n + 1], for
0<n<3.

Suppose that m = e = n. Then E = 0 4 04 for a section D = 0, at
infinity. Here A C 0 by (F4) and deg A < 2n by (F5). This case is of
type [n;2,n]go for 0 < n < 4.

Suppose that m =nand e =n+1. Thenn < 3 and ¥ = 0+ 04 + £ for
a section D = 04 at infinity and a fiber £. Here, ANo =0 by (F4), A =0
for n = 0 by (F4), deg(A Nox) < 2n by (F5), and deg(AN¥) < LL = 2.
Thus the case is one of types [0;2,1]+4, [1;2,2]14(a,b), [2;2,3]++(a,b),
[3:2,4]44(a, b).

Case (3). (X, FE) is of type [n;2,e] for e = Fo with e < min{n+1,4}.
Here ANo = by (F4) and deg(AN¢) < L¢ = 2 for any fiber ¢ < F. This
case is of type [n;2, €]y for 0 < e <min{n+ 1,4}, n > 0.

Case (4). Suppose that (X, F) is of type [n;1,e]. Then [n;1,¢] is one
of [0;1,1], [1;1,1], and [2;1,2] by Lemma 3.24. Here E is non-singular.
Thus the type is one of [0; 1, 1]o, [1;1, 1], and [2; 1, 2]o.

Suppose that (X, E) is of type [n,2,e]. Then 2n < e < min{n + 1,4}
by the proof of Lemma 3.24. Hence [n;2, €] is [0;2, 1] or [1;2,2], where E is
non-singular. Thus the type is [0;2, 1] or [1;2, 2].

Case (5). This case is treated essentially in Final step of the proof of
Proposition 4.4. By the proof of Lemma 3.24, the case is of type [1;2,2]«
or [1;2, 2]ox.

Thus we are done. [

COROLLARY 4.7.

(1) For a fundamental triplet, the associated del Pezzo pair is log-ter-
minal if and only if the type is one of the followings:

(1o, [2]o, [2]+ (),

[0; 1, 0]o, [0; 1, 1], [0; 1, 1] (B), [05 2, O]oo, [05 2, 1o, [0 2, 1]+, [052, 1] 1+,
[1;1,0]o, [151, 1]o, [15 1, 1] 4 (a, b), [15 2, 1]oo,

(1;2,2]0, [152, 2] x, [15 2, 2]+, [1; 2, 2]+ 1 (a, ),

(2;1,0]0, 2;1,1]4(a, b), (21, 2]o, [2; 1, 2] 44,
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TABLE 2. The fundamental triplets with LE = deg A

Type deg A || Type deg A || Type deg A
1o 5 1;1,0]o 3 2;1,2] 44 6

3;1,0]o
3;1,1]+
3;2,4|+

o
| N DN Cof Ut Ut

=N
| | | 00| 0| 0

w
N
)
+
+
—
o
| =
=
00| 00| ©f 00| 00| Lo| =

[27 27 2]007 [27 27 3]+7 [27 27 3]++(CL, b)7
[37 17 0]07 [37 17 1]+7 [37 27 3]007 [37 27 4]+7 [3’ 27 4}4_4,_(&, b)7
[47 ]-7 0]07 [4a 27 4]00~

(2) For a fundamental triplet, the associated del Pezzo pair is log-canon-
ical but not log-terminal if and only if it has one of the following
types with extra condition:

2]o with multp(ANZL) <2 for any P € ¢,
0;270]27 [072a 1]()’ [07 27 1]27 [17 276}2 fOT 0 <e< 27 [17 272]200a

[
[
[
[
[

2; 1,204 with multp(AN¥L) <2 for any P € ¢,
n;2,ela forn >2e <2,
n;2,els forn >2e >3 with multy F < 2 for any ¢ < F.

(3) For a fundamental triplet (X, E,A), the associated del Pezzo pair
(S,B) has B = 0 if and only if it belongs to one of the types with
extra condition on deg A listed in TABLE 2. Here, if the type is not
[2]2 mor [n;2,4]s, then the fundamental triplet is log-terminal, i.e.,
defining a log del Pezzo surface of index two.

PrROOF. For a fundamental triplet (X,E,A) and its elimination
(M, Eyr), the log-terminal condition is equivalent to that Ej is reduced.
This also equivalent to that F is reduced by Lemmas 2.10 and 2.14. Thus
the list of (1) is obtained from Theorem 4.6. The log-canonical condition
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is equivalent to that the multiplicity of Ej; along any irreducible compo-
nent is at most two. If (X, E, A) is not log-terminal but log-canonical, then
max{multg, (E)} = 2 for the irreducible components E; C E. In this case,
by Theorem 4.6, A does not contain any node of E..q. By Lemma 2.17, we
infer that (X, E, A) is log-canonical if and only if max{multg, (F)} = 2 and
multp(ANE;) < 2 for any irreducible component E; C E with multg, (F) =
2. Thus we have the list of (2). For (3), we note that the three conditions:
B =0, LyyEy =0, and LE = deg A are mutually equivalent. Thus we
have TABLE 2. [

THEOREM 4.8. A del Pezzo pair (S, B) of index one with B # 0 is one
of the following:

(1) S =P? and deg B € {1,2}.
(2) S =T, and B is a minimal section of F,, — P! forn > 0.

(3) S =TF, and B ~ o + £ for a minimal section o and a fiber £ of
F, — P! forn > 0.

(4) S =P(1,1,n) and B ~ 2¢ for a generating line £ for n > 2.

PrROOF. We infer that S is rational by Lemma 3.10, Proposition 3.11,
and Corollary 3.16. Moreover, if g(5, B) = 0, then S = P? with deg B = 2
by Proposition 3.11.

Suppose that g(S,B) = 1. Then S is a log del Pezzo surface of index
one and —Kg ~ 2B by Lemma 3.12. For the minimal desingularization
a: M — S, Ky ~ o*Kg is divisible by two; hence M has no (—1)-curve.
Thus M = F,, for m € {0,2}. If m = 0, then (S, B) belongs to the case (3)
with n = 0. If m = 2, then (S, B) belongs to the case (4) with n = 2.

Therefore, we may assume that (S, B) is obtained from a fundamental
triplet (X, E, A), where (1/2)E); is Cartier for the elimination (M, Eys) of
(X,E,A). Then A does not contain any nodes of E,,q by Theorem 4.6.
Furthermore, A = () by Lemma 2.17. By Theorem 4.6, we have only the
following types of possible (X, E, A = ()):

(a) [2]2-
(b) [n;2,0]z for n > 0.
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(c) [n;2,2]z for n > 1, where E = 20 + 2/,
(d) [17272]2007

(e) [n;2,4]y for n > 3, where E = 20 + 2F’ for an effective divisor
F' ~2¢.

According to the cases (a), (b), (c), (d), (e), the associated del Pezzo pair
(S, B) belongs to (1), (2), (3), (3), (4). Hence, we have the list of (S, B # 0)
of index one. J

THEOREM 4.9. Let (X, E,A) be a fundamental triplet and let (M, Eyy)
be the elimination. Then the type of the fundamental triplet (X, E,A)
and deg(A) depend only on (M, Eyr). Moreover, the isomorphism class
of (X, E,A) depends only on (M, Eyp) except for the following two cases:

o (X,E,A) is of type [1;2,2]o.
o (X,E,A) is of type [n;2,n + 1]14+(1,b) for 1 <n < 3, where
deg(ANow)=2n and multp(A)+deg(AN¥)=2+b

for the irreducible decomposition E = 0 + 0o, + ¢ and for the node
P=o0,Nn¢.

The proof needs the following:

PROPOSITION 4.10. Let f: Y — T be a proper surjective morphism
from a non-singular surface Y into a non-singular curve T such that a
general fiber is isomorphic to P. Let Ey and Eo be two sections of f such
that E1 N Ey = 0 and Ky + E1 + Es is f-numerically trivial. Let ¢: Y —
X = Pp(f.Oy(E1)) be the morphism defined in Lemma 4.5 for Ey. Then
E; x = ¢(E;) is a section of X — P! fori =1, 2 with Ey xNE> x =0 and ¢
is the elimination of a zero-dimensional subscheme A C Ey x. In particular,
there is an action of the algebraic group G, = Speck[t,t™!] onY such that it
fixes every point of E1UFEy and that it acts non-trivially on every irreducible
component of any fiber of f. Moreover, if f.Og,(E1) ~ f.Og,(E2), then
the following assertions hold:
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(1) Let £ be a non-singular fiber of f and let P1, Py be any points of
¢\ (E1 U Ey) including the case Pi = P,. Then there exists an
involution v of Y over T such that «(E1) = Es and 1(P) = P.

(2) Let I'y and T’y be irreducible components of a reducible fiber F' of f
with E1I'y = Eol'y = 1. Then, for any points Py € T'1 \ (E1 USing F)
and Py € Ty \ (E2 USing F'), there is an involution ¢ of Y over T
such that 1(E1) = Ey and o(Py) = Ps.

(3) Let T'y + T'g be a fiber of f, Y — Y the blowing up along the inter-
section point I'y N Ty, G the exceptional curve for the blowing up, f,
the proper transform of I'; in Y fori =1, 2, and let P;, Py be any
points of Gl (fl U fQ) Then there is an involution i of Y over T

such that i(T'y) = Ty and i(Py) = P.

Proor. FE; = ¢*E; x by Lemma 4.5. Thus ¢ is the elimination of a
subscheme A C Ep x by Proposition 2.9. We have a natural action of Gy
on the P'-bundle X which fixes every point of E1 x U B3 x. Since Gy fixes
the subscheme A, the action lifts to Y, by the following observation:

Let A?2 = Speck[u,v] be an affine plane with an action of G, =
Speck(t,t~!] given by (u,v) — (tu,v). Then every point of {u = 0} is
fixed by the action. Let U — A? be the blowing up at the origin. Then U =
Uy U U, for two affine open subsets U; = Speck[uy, v1], U2 = Speck[us, v2],
where the morphism to A2 is described as

(ur,v1) — (u,v) = (ug,uyvy) and (ug,ve) — (u,v) = (ugva,va).

Here, {u; = 0} U{vy = 0} is the exceptional divisor. Then the action of Gy
lifts to U as

(w1, v1) — (tul,t_lvl) and  (uz,v2) — (tug,va).

If we consider the blowing up of U at the point (ug, ve) = (0,0) € Uy, then
the action also lifts to the blowing up in the same way.

Therefore, G, acts on Y, and acts non-trivially on every irreducible
component of a fiber of f. Let ®;: Y — Y be the action of t € Gy(k) =
k\ {0}. Let (x:y) be a coordinate of a non-singular fiber Y, = f~1(0) ~ P!
of f such that F1NY, = div(x) and EF2NY, = div(y). Then we may assume
that ®; induces the automorphism (x:y) +— (tx:y) on Y.



Log del Pezzo Surfaces of Index Two 369

Let £ be an invertible sheaf on T" and suppose that f.Og,(E;) ~ L for
i1 =1, 2. Then we have an isomorphism

X: f+Op, 15, (Bl + Eo) ~ f.0p,(E1 + Ey) ® f.0p,(E + Ey) = L2,

For A € k\ {0}, let £LP2 — £ be the homomorphism given by (z,%) — Az —y
and let My C f.Og, 15, (E1 + E2) be the subsheaf isomorphic via x to the
kernel of £92 — £. Then we have a locally free subsheaf €y of f.Oy (E1+E3)
and a commutative diagram

00— Op —— Ex R — M — 0

H l |

0 —— Op —— f.Oy(E1+ Ey) —— f.Op4p,(E1+Ey) —— 0

of exact sequences. Note that, under the isomorphism
f*Oy(El + Ez) (9 k(o) ~ kx? + kxy + kyQ,

the fiber £, ® k(o) corresponds to the subspace k(Ax? 4+ y?) + kxy. Hence,
®7E\ = &2). The natural homomorphism f*Ey — Oy (E;+ E3) is surjective
since the projection My — f.Og,(E1+ Es) is surjective for i = 1, 2. Hence,
we have a morphism hy: Y — P =Pp(€)) over T and a section ¥ of P — T
such that h ¥ = E; + E2. We may assume that the restriction of hy to
Y, is described as (x:y) — (Ax? 4+ y2:xy). Let Y — Y’ — P be the Stein
factorization. Then Y’ — P is a separable double-covering and Y is the
minimal desingularization of Y’. Thus the Galois involution ¢y acts on Y
as an automorphism, where ¢)(F1) = E3. Moreover the restriction of ¢y to
Y, is described as (x:y) — (y:Ax). Hence,

Lty 0 D = Dp o2y = iy

For the assertions (1)—(3), it is enough to find an involution ¢y with ¢\(P;) =
P,. The existence of X is shown as follows:

(1): Since the action of Gy on the fiber ¢ is non-trivial, ®;(P;) = P, for
some t. Hence, 1\(P;) = P, for some \.

(2): Since the action of G, on T's is non-trivial, ®; o 1x\(P;) = P, for
some A and t. Thus (-1, (P1) = Ps.

(3): The involution ¢y lifts to an involution z) of Y, since ¢, fixes the
intersection point I'y N ['s. Similarly, G, acts on Y. We infer that Gp acts
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non-trivially also on the exceptional divisor G by the observation above.
Hence, i(P1) = P» for some A. O

We shall prove Theorem 4.9.

PROOF. We may assume that Kj; + Ly, is not big and A # (). Then
(X, E) is of type [n;2,e] for n > 0 and e < n+ 1. Let T be the type of
the fundamental triplet (X, F, A). Let (X', E', A’) be another fundamental
triplet of type T’ whose elimination is (M, E)s). Let [n’;2,€'] be the type
of (X', E"). We may assume that 7 o ¢ = 7’ o ¢’ for the elimination mor-
phisms ¢: M — X, ¢': M — X', and the P!-bundle structures 7: X — P!,
7' X' — P!, since 7 o ¢ is just the morphism M — P! associated with the
linear system |Kj; + Lps|. Let o and ¢’ be the negative sections of X and
X', respectively.

By Theorem 4.6, one of the following three cases occurs:

(1) E>20; (2) E>0o+ D for asection D #o;  (3) T=][1;2;2]p.

Case (1). T = [n,2,e]s by Theorem 4.6, and Ej; > 20, for the total
transform oy of o in M. Thus E' = ¢, Ey; > 2¢), 0 for the section ¢l o).
Then ¢’ = ¢Lop and T' = [n/; 2, €']s by Theorem 4.6. In particular, oy is
also the total transform of ¢/ and n = n’. By Lemma 4.5, ¢ ~ ¢’ over P!,
and hence (X, E,A) ~ (X', E', A").

Case (2). D?+n > deg(AN D) by (F5). Hence Eyy > oy + Dy for
the total transform oy C M of o and the proper transform Dy C M of D,
where DJQW > —n. Moreover, T is one of

[n;27n]00 (1§’I’L§4), [n;2>n+1]+ (1§TL§3),
[n;Z,n—i— 1]++(a,b) (1 sn< 3)7

by the proof of Theorem 4.6. Since E' = ¢ E); is also reducible and A’ # 0,
E’ > o'+ D' for asection D’ # o’ by (F6). In particular, Eas > o,+D), for
the total transform o, C M of ¢’ and the proper transform D), C M of D',
where D, > —n/. If opy = oy, then ¢ ~ ¢ and (X, E,A) ~ (X', E', A’)
by Lemma 4.5. Thus we may assume that oy # of,. Therefore, n =
n' = -D32 = —-D?%, oy = D), and oy = Dyy. In particular, one of the
following cases occurs:
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(2-1) T = [n;2,n]oo and deg A = 2n;
(2-i) T=[n;2,n+1]; and deg A = 2n + 2;

(2-iii) T =[n;2,n + 1]44(a,b) and deg(ooe N A) = 2n for D = 0.

Subcase (2-i). Applying Proposition 4.10 to 7o ¢: M — T = P! and
two sections ops, Dy, we infer that t(ops) = Djy for an involution of M
over P1. Hence, ¢/ ~ ¢por and (X, E,A) ~ (X', E',A).

Subcase (2-ii). Let Y — M be the blowing up at the point P =
oy N Dy and let Y — M be the contraction of the proper transform
¢y C Y of the fiber £ of M — P! passing through P. Let ¢ and D be the
proper transforms of op; and Dy in M respectively. Then 6 N D = () and
Ky +0o+ D is relatively numerically trivial over P!. Let 7 be the fiber of
M — P! over the point mo@(P) and let Q € 7 be the image of ¢y. Applying
Proposition 4.10 to M - P!, two sections &, D and to the point ), we
have an involution i of M over P! such that i(6) = D and i(Q) = Q. Thus
i induces an involution ¢ of M over P! with «(oys) = Dys. Hence, ¢’ ~ ¢pou
and (X, E,A) ~ (X', E',A).

Subcase (2-iii). Then E = 0 + 0 + £ for D = 04 and for a fiber ¢ of
m. Let P be the node oo, N¢. We write Dy = 000 01

If (a,b) = (0,0), then we have an involution ¢ of M over T with ¢(opr) =
0so,m by Proposition 4.10 as above. Thus we may assume that (a,b) #
(0,0).

Suppose that (a,b) = (2,1), i.e., multp(AN¥¢) = 2. Then AN is
supported on P. Let ¢f: M* — X be the elimination of the subscheme
(A\P)U(ANY). Then ¢#*¢ = £ﬁ+2F§ +Fﬂ2 for the proper transform ¢ C M*
of £, a (—1)-curve Fﬁ, and for a (—2)-curve Fg such that ¢f + Fﬁ + Fg is a
chain of rational curves and that Fg only intersects the proper transform
of 0o in M*. Suppose that A is not a Cartier divisor of E at P. Then
M = M* and by Proposition 4.10, (3), there is an involution ¢ of M over
P! satisfying t(onr) = oo ns- Thus ¢ ~ ¢ o and (X, E,A) ~ (X', E', A").
Suppose next that A is a Cartier divisor of E at P. Then M — M?* is given
as the blowing up along a point P; € F% \ (ﬁﬁufg). Thus by Proposition 4.10,
(3), there is an involution ¢ of M over P! satisfying t(opr) = 0ooar. Thus
¢ ~¢orand (X,E,A)~ (X', E' A).
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Suppose that a = 1, i.e., multp(A NF) = 1. Let ¢*: M¥ — X be the
elimination of A N os. Then ¢ = ¢4 + I‘% + -+ Fg is a chain of rational
curves for the proper transform ¢ C M? of ¢, (—2)-curves Ff for ¢ < b, and
for a (—1)-curve Fg, such that Fg only intersects the proper transform of
Ooo in ME.

If A is not a Cartier divisor of E at P and if deg(A N ¥¢) = 1, then
M ~ M* and 1(on) = 0co,m for an involution of M by Proposition 4.10,
(2). Thus, ¢ ~ ¢porand (X,E,A)~ (X', E',A").

If A is a Cartier divisor of E at P and if deg(AN¥) =2, then M — M*
is the blowing up at certain two points Pf e (* and Pg € Fg, and hence
t(om) = 0so,m for an involution of M by Proposition 4.10, (2). Thus,
¢ ~¢porand (X,E,A)~ (X' E' A).

Therefore, it remains only the case where multp(A)+deg(AN¢) = b+2.
This is divided into the following two cases:

(A) A is a Cartier divisor of F at P and deg(AN¥) = 1;

(B) A is not a Cartier divisor of E' at P and deg(AN¥) = 2.

We shall show that if (X, F, A) belongs to the case (A), then (X', E', A) is
also of type [n;2,n + 1]44(1,b) belonging to the case (B), and vice versa.

Suppose that (X, E, A) belongs to the case (A). Then M — M? is the
blowing-up at a certain point Pbjj € Fg. By Proposition 4.10, (2), there is an
involution ¢! of M* which interchanges the proper transforms of o and ou
in M*. Thus ¢/: M — X' is the composite of M — M?* and ¢ o .*. Hence,
(X" E',A'\ V') ~ (X, E,A\¥) for the fiber ¢ over ¢(¢), and (X', E', A’) is
of type [n;2,n + 1]4+4(1,b) belonging to (B).

Similarly, if (X, E/, A) belongs to (B), then (X', E’, A’) is of type [n; 2, n+
1]44+(1,b) belonging to (A).

Case (3). We have T' = [1;2,2]p by the results in the cases (1) and
(2). Thus, we are done. [J

There are some ideas of dividing the type [1; 2, 2]y into suitable subtypes
by properties related to the double-covering 7|g: E C X — P!. For exam-
ple, m|g is not necessarily separable if chark = 2. For the type [1;2,2]o,
(X, E) has the following explicit description:

LEMMA 4.11.  For the ruled surface m: X = F; — P!, let E C X be
a non-singular curve linearly equivalent to 20 + 2¢ for the negative section
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o and a fiber ¢ of w. Then there exist a homogeneous coordinate (X:Y:Z)
of P2 and an isomorphism from X to the blowing up of P? at the point
(0:0:1) such that 7 is induced from the projection (X:Y:Z) +— (X:Y) and E
corresponds to the total transform of the one of following curves:

(1) {z* =xv}
(2) {z® + X2+ Y% =0}.

If chark = 2, then w|g: E — P! is inseparable in case (1), and separable
in case (2). If chark # 2, then (1) and (2) define the same (X, E) up to
isomorphism.

PROOF. Let g be a defining equation of o and £ be a defining equation
of a section 0o at infinity. Let (s,t) denote a homogeneous coordinate of
P!. A defining equation n € H°(X, 20 4 2¢) of E is written by

n=f>+ a(s,t)fg+ b(s, t)g2

for homogeneous polynomials a(s,t) and b(s,t) of degree 1 and 2, respec-
tively. We can replace £ with f + ¢(s, t)g for a linear form ¢ = ¢(s,t). By
the replacement, (a,b) is changed to (a + 2¢,b + ac + ¢?). Thus we may
assume one of the following two cases occurs:

(i) a=0; (ii) b=102 for a linear form b;.

In fact, this is shown as follows: If chark # 2, then the case (i) can be occur
since a + 2¢c = 0 for some c¢; If chark = 2 and a # 0, then we can take
(a,b) = (s, At?) for a non-zero constant A € k. If (i) and (ii) occur at the
same time, then we have

£2 fafg + bg? = (f + V—1b1g)(f — V—1big),

which contradicts the irreducibility of E. In case (i), we may assume b = st
by a suitable coordinate change of (s, t), and thus we have the case (1). In
case (ii), we may assume similarly ¢ = s and b = t2, and thus we have the
case (2). If chark # 2, then (a,b) = (s, t?) is changed to

(a4 2¢,b+ac+c*) = (0, (t + (1/2)s)(t — (1/2)s))



374 Noboru NAKAYAMA

by ¢ = —(1/2)a; thus (1) and (2) define the same (X, E) up to isomor-
phism. OJ

Even if chark # 2, the uniqueness of fundamental triplet (cf. Theo-
rem 4.9) does not hold in general for the type [1;2, 2]y as follows:

Ezample 4.12. Let (X, E,A) be a fundamental triplet of type [1;2, 2]y
with a fiber ¢ of 7: X — P! such that ¢ N E consists of two points P;, Ps.
We set multp,(A) = m; for i = 1, 2, and assume that m; > 2, mg > 0.

We shall show the existence of a section o, at infinity with multp, (060N
E) = 2. In fact, from the exact sequence

0—HY(X,—0—4) - HYX,04+ /) - HYE, (0 +0)|g)
~ H°(P', 0(2)) — 0,

there is an effective divisor D ~ o + ¢ with D|g = 2P on E. If D is
reducible, then D = o + £ but £ N E # 2P;; this is a contradiction. Thus D
is a section at infinity. '

Let o~ Y(P) = > Fg-l) be the chain of ¢-exceptional curves over P; for

i = 1, 2; however we do not consider ¢~*(P,) in case ma = 0. Here, I‘(Z)
is an end (—1)-curve and others are (—2)-curves. For the proper transform
far C M of £, the inverse image ¢~1(¢) is a straight chain of rational curves
written as

ST 4+ TP i my > 0;
Zml Fgl) + ZM, if mo = 07

where /), intersects only Fgl) and F§2) in the chain ¢~!(¢) when my > 0, and

1)

intersects only Fg when mo = 0. The proper transform ooy of 0o in M

intersects only Fgl) in the chain ¢~1(¢). Note that the section oo ps of M —
Pl is a (—1)-curve with ooo ;s N Ep = 0. Let ¢': M — X’ be the morphism
of Lemma 4.5 defined for the section oo s, and let o/ C X’ be the image
@' (0oo,m). Then ooy = ¢™(0’). Therefore, X’ ~ Fq, ¢’ contracts any
irreducible component of ¢p~!(¢) except for Fgl), and o' N¢/'(Ep) = (. Thus
¢’ is the elimination of a fundamental triplet (X', E’', A) of type [1;2,2]o
which is isomorphic to (X, E, A) over P!\ w(¢). Furthermore, for the fiber ¢
of X' — P! over n(¢), we have ¢’ N E' = {P], Py} with multp/ (A') =my —2
and multp; (A’) = ma +2. Thus (X', £, A") is not isomorphic to (X, E, A).
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4.3. Non-Gorenstein exceptional graphs

LEMMA 4.13. Let (X,E,A) be a fundamental triplet, (M, Ey) the
elimination of A, and let (S, B) be the associated del Pezzo pair of index
two. An irreducible curve I' C M 1is exceptional for a: M — S if and only
if one of the following conditions is satisfied:

(1) T is a (—2)-curve contracted by the elimination ¢: M — X of A,

(2) T is the proper transform in M of an irreducible component E; C E
with LE; = deg(A N E;);

(3) T is the total transform in M of o in the case of type [2;1,2]o;

(4) T is the proper transform in M of a fiber £ of m: X — P! with
deg({ N A) = 2 in the case of type [1;2,2].

Moreover, if an irreducible component I' of Ey; is a-exceptional, then m =
multr Ey < 4 and the following properties hold:

(i) If m = 1, then I'?> > —4, where the equality holds if and only if T is
a connected component of Epy.

(ii) In case m =1, I'? = =3 if and only if (Epy — T)T = 1.

(iii) In casem = 2,2 = —n > —4 if and only if T is the proper transform
of o in the case of type [n;2,4]s.

(iv) If m =2 and T'? = -3, then T is one of the following curves:

(a) The proper transform of £ in the case of type [2]2;
(b) The proper transform of o in the case of type [3;2,4]s;
(c) The proper transform of £ in the case of type [2;1,2]a4.

(v) If m >3, then T2 = —2.

PROOF. We fix an irreducible curve I' € M with I'? < 0. Note that I'
is a-exceptional if and only if Ly I’ = 0. Since —2K); = Ly + Ejy, it is
also equivalent to —2K/I" = EpI'. If ' is a-exceptional and ¢-exceptional,
then I' is not a (—1)-curve by the minimality of «, hence it is a (—2)-
curve. Conversely, if T' is a ¢-exceptional (—2)-curve, then Ly T = 0 by
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Ky + Ly ~ ¢*(Kx + L). Therefore, it is enough to consider only the case
where I' is the proper transform in M of an irreducible curve v of X. Then,
by Lemma 2.7, we have

I? =~% —deg(yNA), Lyl =Ly—deg(yNA), and
EyT = Evy —deg(y N A).

Suppose that v C E. Then m = multr Fyy = mult, £ < 4 by The-
orem 4.6. If m = 4, then v is a fiber of 7: X — P! in the case of type
[n;2,4]s for n > 3, and I'? > —2. If m = 3, then v is also a fiber in the case
of type [n;2,e]s for n > 2, e > 3, and I'2 > —2. In particular, the property
(v) holds. If m = 2 and T is a-exceptional, then one of the following cases
oCCurs:

e v = ( in the case of type [2]o and deg(A N¥{) = 4.

e 7 =0 in the case of type [2;1,2]o4

e v = /{ in the case of type [2;1, 2] with deg(AN¥¢) = 3.

e v = (in the case of type [n;2,¢]s forn > 1, e > 2 with deg(AN{) = 2
e 7 =0 in the case of type [n;2,4]s for n > 3.

Thus the properties (iii) and (iv) hold. If m = 1 and T is a-exceptional,
then LT = 0 induces

—2=(Ky+T)'=—(1/2)EyT + T2
= —(1/2)(BEy —D)T + (1/2)0” < (1/2)1%.

Thus the properties (i) and (ii) hold.

Then there remains only the case: v ¢ FE. Assume that T' is «-
exceptional. Then KpI' > 0 and EpI' > 0 imply that I' is a (—2)-curve
and Ly = Ey =% +2 = deg(y N A). In particular, Kx + L is not ample,
since 2(Kx + L) = L — E. If (X, E) is of type [2;1,2], then (X, E,A) is
of type [2;1,2]p and v = 0. If Kx + L is not big, then ~y is a fiber ¢ of
7: X — P! with deg(A N ¥) = 2; such a fiber £ exists only in the case of
type [1;2,2]p by Theorem 4.6.
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Conversely, assume that « is the curve o in (3) or the curve ¢ in (4).
Then

Lyl = Ly —deg(yNA) = (Kx + L)y — Kxv — deg(vyN A)
=242 —deg(yNA)=0.

Hence, I' is a-exceptional. Thus, we are done. [

THEOREM 4.14. For a rational del Pezzo pair (S, B) of index at most
two, the dual graph of the exceptional divisors for the minimal desingular-
ization of a non-Gorenstein singular point of S is one of the graphs listed
in TABLES 3 and 4.

The singularities having the graph K; are discussed in Section 4.4
below.

PrROOF. We may assume that (.S, B) is constructed from a fundamental
triplet (X, E, A) by Proposition 3.11 and Lemma 3.12. Let ¢: (M, Epf) —
(X, E,A) be the elimination and let a: M — S be the minimal desingular-
ization. Let = = = be the reduced divisor a=1(Q) for a non-Gorenstein
point @ € S. Then E < Ej by the equality Ky = o*(Kg+ B) — (1/2)Ejy.
Hence, = is a connected component of the reduced divisor ,Fj; consisting
of the irreducible components of Fj; exceptional for . Conversely, a con-
nected component of , Fys is the exceptional divisor Zg for a non-Gorenstein
point @ € S.

Since Z defines a non-Gorenstein point, there is an irreducible compo-
nent Fy C E such that the proper transform Fj j; in M is contained in
= and E% v < —3. By Theorem 4.6, we can divide the argument into the

following seven cases of (X, E,A):
1) E = F.
2) E = E1 4+ E5 for another irreducible component Es.

(1)
(2)
(3) The type [2;1,2];+ with deg(AN¥¢;) =3 for i =1 or 2.
(4) The type [3;2,4]++(a,b).

(5)

5) The type [2]o with deg(ANY{) = 4.
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Ki
Ks
Ki

As(n)

Ai(n) -

(The bounds of I:

Ai(n) :

Noboru NAKAYAMA

TABLE 3. Exceptional graphs of types K, A, D and D (n > 3)

©

=
( {®)
\../_@

®

oS
L ®

Ds(n)”

D5(n)" :

Ds(n)

Dh‘ [H }'j

Dg(n)"

Dg(n)" :

(_ Al("l}J

° I ®
. )

o

K; for [ <9;

©—@——@—® (I>3 vertices)

—@—@—@ (>3 vertices)

Dr(n)

Ds(n)

A;(n) for I <5 in case n > 4;

Dz(n)" :

As(n) © @@

Ain) : @(—@@

As(n)’ | O on o

As(n)" : @@ (@@

Ag(n)' 0 000
Az(n)' o0 0000

Ai(3) for 1 <7)

.I.@..

.TT
: oIoni‘;-o
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TABLE 4. Exceptional graphs of types E and E (n > 3)

Eg(n) : @—.—I—.—. Es(n) : @+I—0—H—.
Es(n)" : .—.—:—.—. Eﬁ(n) : H—’—.—.
H\ %

(6) The type [2;1,2]o4 with deg(AN¥¢) = 3.
(7) The type [n;2,4]s for n > 3.

Case (1). Ejsis a (—4)-curve by Lemma 4.13. Hence the dual graph
of 2 = E)s is Kj.

Case (2). Let Eyp C M be the proper transform of Es.

Subcase (2-1) EyNEy =0. Then = = E; 3 for i = 1 or 2 and the dual
graph of = is K; by Lemma 4.13.

In case F1 N FEy # 0, let P denote the intersection point Fy N Es.

Subcase (2-2) P ¢ A. Then oEy = Ey p + Eopr or Eq pr. Hence, the
dual graph of = = ,E)s is Ky or A1(3).

In case P € A, we may assume that b = multp(A N Ey) > multp(A N
E,) = 1. Here b < 4 and the maximum is attained when the type is [2];(4)
by Theorem 4.6.

Subcase (2-3) A is a Cartier divisor of E at P. If FEyp is also a-
exceptional, then the dual graph of , E); is of type K12, since o Fys consists
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of By ar, Eaar, and of the (—2)-curves contained in ¢~ 1(P). If Ey p is not
a-exceptional, then the dual graph of ,Fjs is Apt1(3).

Subcase (2-4) A is not a Cartier divisor of £ at P. Then multp(A) =
b. Hence E)js has two connected components; one is Ej j; and the other
component consists of Fy s and of the (—2)-curves contained in ¢~1(P).
Hence the dual graph of = is A1(3) or Ap(3).

Case (3). We may assume E; = ¢; and deg(AN¥;) = 3. If deg(A N
l3) = 3, then the dual graph of ,Ejs is Ks. If deg(A N ¥¢y) < 3, then the
dual graph of o Ejys is Ag(3).

Case (4). We may assume Fy = 0. We set Ey = ¢, E3 = 04, and
P = FE> N E3. Let E; y be the proper transform of F; in M for 1 <7 < 3.

Subcase (4-1) Eq pr and E3 pr are a-exceptional.

Subcase (4-1-1) A is a Cartier divisor of . Then Ej/ is a-exceptional
and connected. If (a,b) = (0,0), i.e., P ¢ A, then the dual graph of E); is
Ks. If (a,b) # (0,0), then the dual graph is K,44+2. Hence, we have K; for
1 <9.

Subcase (4-1-2) A is not a Cartier divisor of E. Then (a,b) # (0,0)
and multp(A) = a + b — 1. Hence, Ejs has two connected components;
one contains Fy pr + Eo pr and the other contains FEs ;. Thus the dual
graph of Z is A;(3) for [ < 7, where the maximum [ = 7 is attained in the
case (a,b) = (1,6).

Subcase (4-2) Ej pr is o-exceptional but Es3 pr is not. Then b <
deg(ANox) < 6.

Subcase (4-2-1) A is a Cartier divisor of E. Then ,E)s is connected
and the dual graph is A2(3) if (a,b) = (0,0), and A144+5(3) if (a,bd) # (0,0).
Thus we have A;(3) for [ < 7, where the maximum [ = 7 is attained in the
case (a,b) = (1,5).

Subcase (4-2-2) A is not a Cartier divisor of E. Then (a,b) # (0,0)
and multp(A) = a+b—1. Thus ,F) is connected and its dual graph is A;(3)
for I < 6, where the maximum [ = 6 is attained in the case (a,b) = (1,5).

Subcase (4-3) Es nr is a-exceptional but Eo jr is not. Then = = Ey
or = contains E3 . Thus the dual graph of = is A;(3) for 1 <1 < 7, where
the maximum [ = 7 is attained in the case (a,b) = (1,6).

Subcase (4-4) Ea pr and E3 s are not a-exceptional. Then Z = Fy
and the dual graph is A;(3).
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Case (5). Now E; = £. In fact, the proper transform of ¢ is an a-
exceptional (—3)-curve contained in =. The dual graph of = is obtained by
using Lemma 2.17 as follows.

Subcase (5-1) AN{ = 4P for a point P. Then 4 < k = multp(A) <8
and the dual graph of = is as follows:
k| 4 | 5 | 6 | 7 | 8
Graph || AL(3) | As(3) | De(3) | Ex(3)" | Ex(3)
Subcase (5-2) AN{¢ =3P+ P’ for points P# P'. Then 3 < k < 6

and 1 < k' <2 for k = multp(A) and ¥ = multp(A’). The dual graph of
= is as follows:

(b K) [ 3D [ 3,2) | (41) | 42) | (51) | (52) | (6,1) | (6,2)
Graph || A1(3) | As(3) | Au3) | As(3) | Ds(3)" | E6(3)” | Ea(3) | Ea(3)
Subcase (5-3) AN¢=2P + 2P’ for points P # P’. Then 2 < k, k' <
4 for k = multp(A) and &' = multp(A’). We may assume k > k’. Then the
dual graph of = is as follows:
(k) | (22) | 3.2) | (3,3) | (4.2) | (4.3) | (4,9)
Graph | Ai(3) | As(3) | As3)" | Du(3) | Du(3)" | Do(3)
Subcase (5-4) AN¢=2P + P+ P” for three points P, P', P”. Then

2<k<4and 1<Kk, k' <2for k =multp(A), ¥ = multp(A), ¥’ =
multpr(A). We set | = k' + k” — 2. Then the dual graph of Z is as follows:

kD) || 20 | 21 | 22 [ G0 | G | (32 | (40 | 41 | (42)
Graph || A1(3) | A2(3) | As(3) | As(3) | A3 | D33y | Da(3) | Ds(3)" | D5(3)

Subcase (5-5) AN ¥ consists of 4 points. Then 1 < multp(A) < 2 for
P € An{. Let | be the number of points P € A N ¢ with multp(A) = 2.
Then the dual graph of = is as follows:

I ] o | 1 | 2 | 3 | 4
Graph | A1(3) | As(3) | As(3) | Du(3)' | Da(3)

Case (6). Now E; = ¢. The proper transform of E is M is a-excep-
tional whose dual graph is Ay(3). It is contained in = and the dual graph
of = is obtained by using Lemma 2.17 as follows.

Subcase (6-1) ANL=3P. Then 3 <k = multp(A) <6 and the dual
graph is as follows:
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k| 3 | 4 | 5 | 6

Graph || As(3) | As(3) | Es(3)” | Es(3)

Subcase (6-2) AN{¢=2P+ P’ for two points P, P € {. Then 2 <
k= multp(A) < 4 and 1 < k¥ = multp/(A) < 2. The dual graph is as
follows:

(k)| )| @2 |6y | 62 | @y | @
Graph | Ax(3) [ As(3)' | Au(3)' | Ds(3)" | Ds(3)" | Ds(3)

Subcase (6-3) A N £ consists of three points. Then 1 < multp(A) < 2
for any P € AN/{. Let [ be the number of points P with multp(A) = 2.
Then the dual graph is as follows:
I ] o | 1 | 2 | 3
Graph | Ao(3) | A(3) | Da(3) | D

D4(3)

Case (7). We may assume E; = o. The proper transform Ej s C M
is a (—n)-curve.

Subcase (7-1) F = 44 for a fiber £ of m. Then deg(A N¢) =2, and the
proper transform in M of F is a-exceptional which is contained in Z.

Subcase (7-1-1) AN{¢=2P for apoint Pe (. Then 2 < k =
multp(A) < 8 and the dual graph of = is as follows:

k|2 | 3 | 4 | 5 | 6 | 7 | 8
Graph || Ax(n) | Au(n) | Ds(n) | Es(n) | Ex(n) | Es(n) | Ex(n)

Subcase (7-1-2) AN = P+ P’ for two points P, P’ € £. Then 1 <

k, k' < 4 for k = multp(A) and &' = multp/(A). We may assume k > k.
The dual graph of = is as follows:

E) | (LD [ D] (22| G1]3,2) |33 [ (41)] 42

| | (3,2) (4,2) | (4,3) | (4,4)
Graph || Aa(n) | As(n) | Da(n) | As(n) | Ds(n)' | Es (n)' | As(n) | Do ()’

Ez(n)” | Ez(n)’

Subcase (7-2) F = 3¢; + {5 for two fibers 1, ¢ of 7.

Subcase (7-2-1) A N¥; =2P for a point P € ¢; and deg(A N¥y) = 2.
Then 2 < k = multp(A) < 6 and the dual graph of E is as follows:
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ko2 |3 |4 | 5 | 6

Graph || As(n) | As(n)’ | Ds(n) | Ex(n) | Ex(n)

Subcase (7-2-2) A N{=2P for a point P € ¢; and deg(AN¥y) < 2.
Then 2 < k = multp(A) < 6 and the dual graph of = is as follows:

B2 | 38 | 4 | 5 | 6
Graph || As(n) | Au(n) | Ds(n) | Es(n) | Er(n)

Subcase (7-2-3) ANt¢y =P+ P for two points P, P’ €/, and
deg(AN¥y) =2. We may assume 3 > k > k' > 1 for k = multp(A)
and k' = multp/(A). Then the dual graph of = is as follows:

1) | L0 | @0 | @2 | 6D | 62 |63
Graph || Ag(n)’ | Aun) | Ds(n)" | As(n)' | Es(n)" | Eg(n)

Subcase (7-2-4) ANty =P+ P for two points P, P’ €{; and
deg(ANdy) <2. We may assume 3 > k > k' > 1 for k = multp(A)
and k' = multpr(A). Then the dual graph of = is as follows:

)| LY [ 2,0 | 2,2) | 3,1) | (3,2) | (3,3)
Graph H Az (n) ‘ As(n) ‘ D4(n) ‘ As(n) ‘ D5(n)’ ‘ Es(n)

Subcase (7-2-5) deg(ANty) < 2. If deg(A N ¥y) = 2, then the dual
graph of = is Ag(n). If deg(A N¥2) < 2, then it is Aj(n).

Subcase (7-3) F = 201 + 205 for two fibers ¢1, {3 of .

Subcase (7-3-1) AN¥ =2P and ANdy = 2P, for points P, € {1,
Py €ly. Then 2 < k; = multp (A) < 4 for i = 1, 2. We may assume
k1 > ko. Then the dual graph is as follows:

Subcase (7-3-2) ANty =2P; and AN{y = Py + Pj for a point Py € ¢4
and for two points Py, P) € {3. Then 2 < k; = multp,(A) < 4 and 1 <
ko, kg < 2 for ke = multp,(A) and k) = multp(A). Let | = ko + k5 — 2.
Then the dual graph is as follows:
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Subcase (7-3-3) A N ¢y consists of two points and A N ¢y consists of
two points. For ¢ = 1, 2, let I; be the number of points P € A N¥¢; with
multp(A) = 2. We may assume [; > l3. Then the dual graph is as follows:

0,00 | (1,0) | (L) | (2,0) |
A4(n)/ A5(n)” D ( )

Subcase (7-3-4) A N{; =2P for a point P € {1 and deg(AN¥y) <2
Then 2 < k = multp(A) < 4 and the dual graph is as follows:

(2,
Dg(n)

B2 | 3 | 4
Graph || Ag(n) | Ay(n) | Ds(n)

Subcase (7-3-5) AN/ consists of two points and deg(ANfy) < 2.
For the number [ of points P € A N¢; with multp(A) = 2, the dual graph
is as follows:

I | o | 1 | 2
Graph || Ag(n) | Az(n) | Da(n)

Subcase (7-3-6) deg(AN¥1) < 2 and deg(AN¥y) <2. Then== FEj u
and the dual graph is Aj(n).
Subcase (7-4) F = 201 + ly + {3 for three fibers 1, {o, {3 of 7.

Subcase (7-4-1) AN¥; =2P for a point P€¢. Then 2 < k =

multp(A) < 4. Let [ be the number of fibers ¢; for i = 2, 3 with deg(ANY;) =
2. Then the dual graph is as follows:

) || (2,0) | (3,0) | (4,0) | (2,1)
Graph H Az(n ‘ Ayl ‘ Ds(n) ‘ As(n)’

Subcase (7-4-2) AN ¥y consists of two points. Let | be the number of

points P € ¢; with multp(A) = 2 and I’ be the number of fibers ¢; for i = 2,
3 with deg(AN¥;) =2. Then 0 < [,I’ <2 and the dual graph is as follows:

) 00 [ 00| e

0| (0,1) | (1, | 2,1) | (0,2) | (1,2) | (2,2
Graph H Az(n ‘ As( ‘ ‘ As(n)’

Au(n)’ | Ds(n)" | Da(n)’ | Ds(n)” | Da(n)
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Subcase (7-4-3) deg(AN#y) < 2. Let [ be the number of fibers ¢; for
i =2, 3 with deg(A N¥;) = 2. Then the dual graph is as follows:

I o | 1 | 2
Graph || Ai(n) | Aa(n) | As(n)

Subcase (7-5) F =¥y + s+ 3+ £y for 4 fibers ¢; (1 <i<4) of 7.
Let | be the number of fibers ¢; with deg(A N ¥¢;) = 2. Then the dual
graph is as follows:

Lo | 1 | 2 | 3 | 4

Graph || Ai(n) | As(n) | As(n) | Da(n) | Da(n)

Thus we are done. J

4.4. Remarks on two-dimensional log-terminal singularity of in-
dex two
We note on two-dimensional log-terminal singularities in arbitrary char-
acteristics. Let S be a germ of normal surface at a point Q and let «: M — S
be the minimal desingularization. Suppose that 2Kg is numerically Cartier
and let Ej; be the effective divisor supported in a~!(Q) determined by
QKM ~ a*(QKS) — EM.

LEMMA 4.15. Under the situation, the following conditions are mutu-
ally equivalent:

(1) (S,0) is log-terminal of index two;
(2) Er is a non-zero reduced divisor;

(3) Ear is a straight chain of non-singular rational curves whose dual
graph is K,, defined below (cf. Notation (1.)):

Kl : @7 K2 : ©—@a
K;: (® @ @ ® (consisting of | > 3 wvertices).

If the conditions above are satisfied, then S has only rational singularities.

The same symbol K, is used in TABLE 3.



386 Noboru NAKAYAMA

PrOOF. (1) = (2) is trivial.
(2) = (3): Any irreducible component E; 5y of Ejy is isomorphic to P!
by

(K + Ein)Ei = —(1/2)ExEing + Ef yf
= —(1/2)(Ex — Eyn)Eig + (1/2)E7 ;< 0.

Moreover, we have
(4-1) Ely=—4+ (Ex— Ein)Eiy > —4.

If Ejy is irreducible, then Ej; is a (—4)-curve, thus the dual graph is Kj.
Hence we may assume that Ej; is reducible.

If there are two irreducible components Fy zr, Fo ar with Ey arEo > 2,
then E12,M = EQQ’M = =2, By pE2pm = 2 by (4-1); this induces (Eq ar +
Es, M)2 = 0 contradicting that the intersection matrix (E; pEj ) is nega-
tive definite. Thus E; s Ej y < 1 for any 4, j.

Suppose that there are three irreducible components F1 ar, Ea ar, E3 0
which contain the same point P. Then Eyy N Eoy = Foy N E3 v =
E3py N E; = {P} and E7;2,M = —2 for 1 <i <3 by (4-1). Thus we have
a contradiction by (E1 v + Ea p + E37M)2 = 0. Therefore, E); is a simple
normal crossing divisor consisting of non-singular rational curves E; ps such
that F; prFja < 1 for any 4, j.

Suppose that E?M = —2 for any 4. Then (Ey — Ejpm)Ei v = 2 and the
dual graph of Ejs is a circle. Thus we have a contradiction by E%/[ =0.

Hence, there is an irreducible component Ej s with E% v = —3. Let
Es ar be the unique irreducible component with Ey arEo ar — 1. If E% M=
—3, then Ey = Eyap + Eo v and the dual graph is K. If Eg,M — -2,
then there is a unique irreducible component E3 p; with Fq yrE3 = 0 and
Es v Es v = 1. In this way, we can show that the dual graph of Ejys is K,,.

(3) = (1): The fundamental cycle of S is Ej; since EyE;p = 0 if
E?,, = =2, and EyE;\ = —2 if E?,, = —3. Since (Ky + Em)En =
(1 / 2)E3, = —2, S has only rational éingularities. Furthermore, (2K +
En)E; v = 0 for any 4. Thus 2Ky + Ey ~ o*L for a Cartier divisor by
Theorem 3.1. Hence 2Kg ~ L is Cartier and (S,0) is log-terminal of index
two. [
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DEFINITION 4.16. If the conditions in Lemma 4.15 are satisfied and if
the number of irreducible components of Fj; is n, then the singularity of S
is called of type K,,.

Example 4.17. Let N be a free abelian group of rank two with a basis
(e1,e2) and let M be the dual Hom(N, Z). For a positive integer n, we set

1

N=N+27Z
+ 4n

(e1+(2n—1)es) CN®Q and M = Hom(N’,Z).

For the first quadrant o = R>pe; + R>geg, let X = X(N’, o) be the affine
toric variety Speck[o¥ NM'] associated with (N, o). Let x, y be the genera-
tors of the polynomial ring k[o¥ NM] in which (x, y) corresponds to the basis
of M dual to (e, e2). Then the toric variety X (N, o) is isomorphic to A? and
the natural morphism A% ~ X (N,o) — X is regarded as the quotient map
for the following action of the algebraic subgroup g, = Speck|[¢]/(¢*" —1)
of Gy = Speck[¢,(™!] on A?:

(x,y) = (¢x, " ty).

In fact, k[e¥ N M’] is isomorphic to the invariant ring k[x, y|H4n, which is
generated by five monomials

an an

2.2 2n+1
X ¥y, Xy, X

y, xy

over k. Note that ¢?" # —1 if chark = 2. We write X = X ((1,2n—1)/(4n))
and k[x,y|H» = R((1,2n — 1)/(4n)). Actually, X is a cyclic quotient sin-
gularity of type (1,2n — 1)/(4n) if 4n and chark are coprime. We define
Vg = €2, Vpt1 = €1, and

27 —1 1 27 —1
=0 61+<§“7Tn)@2€“'

for 1 < j < n. Furthermore, we set o; = R>ovj_1+R>qv; for 1 < j <n+1.
Since Zvj_1+Zv; = N’ for any 1 < j <n+1, X(N’, ;) is non-singular and
the toric variety X = X (N/, {7}) = UX(N',0;) is a desingularization of
X. Let I'; be the prime divisor of X corresponding to the ray R>ov;. Then
I ~ P! and >_T'; is a simple normal crossing divisor whose dual graph is
K. Thus X — X is the minimal desingularization and the singularity of
X at the origin is K,,.
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PROPOSITION 4.18. For a singularity S of type K,, and for the minimal
desingularization a: M — S, suppose that Pic(M) — Pic(Ey) ~ Z%" is
surjective. Then there is an étale morphism from S into X ((1,2n—1)/(4n))
in Example 4.17. In particular, the Henselization of a singularity of type
K, is unique.

PrROOF. We may assume that S = Spec R for a two-dimensional local
ring R essentially of finite type over k.

First, we treat the case: n = 1. Then Oy (—Ey) =~ L®? for an invertible
sheaf £, by assumption. Then |L£] is base point free by Theorem 3.1. Hence,
we can choose two sections s; and sg of £ such that div(sy)Ndiv(se)NEy =
(). Let y be a defining equation of E)y, i.e., y is a section of Op;(E)s) with
div(y) = Eps. Then we have the following five regular functions

_ A4 _ 4 _ 2.2 _ .3 _ 3
§1 =351y, &2 =38y, O=s1s5y, m =sis2y, M2 =515y

over S. Since these five functions satisfy the same relation as the five gen-
erators of R((1,1)/4), there is a ring homomorphism R((1,1)/4) — R, and
equivalently a morphism S — X((1,1)/4). Since E)s is the fundamental
cycle, the maximal ideal m of R is regarded as a,Oy(—Ey) and m/m?
is identified with H°(Ey, Op,,(—FEa)) (cf. [6, Theorem 4]). Therefore,
the five regular functions above form a basis of m/m?, which implies that
R((1,1)/4) — R is étale.

Next, we treat the case n > 1. By assumption, there exist invertible
sheaves Ly and £,,+1 on M with deg ﬁo’Ej,M = 01,; and deg £n+1’Ej,1M = 0n
for 1 < j <mn. For i =0, n+ 1, |£;| has no base points by Theorem 3.1.
Thus there exist a section sy of Ly and a section s,41 of £,,+1 such that
div(sg) intersects Eq ps transversely, div(s,41) intersects Ei, p transversely,
div(so) NEjn = 0 for j # 1, and div(sp41) N Ejn = 0 for j # n. Note that

n 1 27-1 n 2j—1
£O+Zj:1 (5_ 4n )E]’M and En+1+2j:1 4n Ei.

are numerically trivial. Let y; be a defining equation of E; ;. Then we

have five regular functions
_ AT, 2n—2j5+1 ) H” 2j—1 2.2 H" ,
61 =5 =1 yj ’ 52 = Spa1 =1 y] 3 0= 50Sn4+1 =1 Yjs

_ ontl H" n—j+1 — LT
M =35y Sn+l jzlyj » o T2 = 505,41 jzlyj
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over S. Hence, by the same argument as in the case of n = 1, there is
an étale morphism S — X((1,2n — 1)/(4n)). The remaining assertion on
Henselization follows from [21, Lemma 14.3]. (J

PROPOSITION 4.19. There exists a Q-Gorenstein smoothing (of index
two) of the singularity K,, at the origin of X ((1,2n —1)/(4n)).

Proor. In Example 4.17, we can consider another subgroup
N’ = N+Zi(1 2n —1) c N’
2n

and the associated toric variety Y = X(N” o). Then k[eV N M”] for the
dual M” = Hom(N”, Z) is the invariant subring of k[oV NM] = k|[x, y] by the
action (x,y) — (¢?x,(2y) of ¢2, which is generated by three monomials xy,
x?" y?". Thus the invariant subring may be written as R((1, (2n—1))/(2n))
and is isomorphic to

k[z,u,v]/(z** —uv),

by z — xy, u — x?", and v — y?". In particular, Y has a singularity

of type Ag, at the origin. The action of ¢ on k[x,y] induces an action on
R((1,(2n —1))/(2n)), which is expressed as

(z’ u? V) = (C2n27 Cznu’ C2nv)'

Thus the quotient group py = Speck[€]/ (€2 — 1) of py,, acts on the poly-
nomial ring k[z,u, v] by the same way, where (2" is replaced with £&. Note
that X = X ((1,2n—1)/(4n)) is the quotient of Y by the action of py. The
invariant ring A = k[z, u, v]#2 has a singularity only at the origin and it is
a toric terminal singularity of index two. We define a k-algebra homomor-
phism k[t] — A by t — z?" —uv. For a constant ¢ € k, let k[t] — k be the
k-algebra homomorphism given by t +— ¢ and let A. be the tensor product
A®ypg k. Then Ag ~ R((1,2n—1)/(4n)). It is enough to show that Spec A,
is nonsingular for any ¢ # 0. Note that Spec A. is covered by three open
subsets {z2 # 0}, {u? # 0}, and {v? # 0}, since ¢ # 0.

The localization A.[z~2] contains u/z and v/z. Thus it is isomorphic to

k[z, 271 u, 0]/ (2" — wwz — c)
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by z — z% u + u/z, v — v/z. If the ring is not regular, then, by the
Jacobian criterion, v = v = nz"~! = 2” — ¢ = 0 has a solution, but it is
impossible. Hence, A.[z"2] is regular.
The localization A.[u~?] contains z/u and v/u. Thus it is isomorphic to
k[u, u™t, z,v]/(z*"u" — uv — ¢)
by u + u?, z — z/u, v+ v/u. By the Jacobian criterion, the ring is regular
since
9 2n, n
z'"u" —uv —c) = —u # 0.
. ) #

Similarly, the localization A.[v~?] is also regular. Thus we are done. [J
5. Deformations

We shall study deformation of fundamental triplets, of basic pairs, and
of del Pezzo pairs of index at most two. The notion of equi-singular defor-
mation is introduced.

5.1. Deformation of several objects
DEFINITION 5.1.

(1) Let 7: X T be a proper surjective smooth morphism into a con-
nected curve T, E C X an effective divisor flat over T, and let AcX
be a subscheme finite and flat over 7. If (Xt7 E;, A;) is a fundamental
triplet for the fibers X; = 771(¢), E, = EN Xy, and Ay = AN X
over any closed point ¢t € T', then 7: (X E A) — T is called a family
of fundamental triplets. If two fundamental triplets appear as fibers
of a family of fundamental triplets over a connected curve, then the
fundamental triplets are called deformation equivalent to each other.

(2) Let h: M — T bea proper surjective smooth morphism into a con-
nected curve T and let E C M be an effective divisor flat over T If
(M, Ey) is a basic pair for the fibers M; = h=1(t) and E; = EN M,
over any closed point ¢ € T, then h: (M, E) — T is called a fam-
ily of basic pairs. If two basic pairs appear as fibers of a family of
basic pairs over a connected curve, then the basic pairs are called
deformation equivalent to each other.
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(3) Let f: S — T be a proper surjective flat morphism from a normal
variety S into a connected non- singular curve T' and let B be an
effective Q-divisor of S such that K. gt B is Q-Cartier and SuppB
is flat over T'. If, for any closed point t € T, (S, By) is a del Pezzo
pair for the fiber S; = f~1(¢) and for the Q-divisor B; defined by

(KS' +§)‘St = KSt + By,

then f: (§, E) — T is called a family of del Pezzo pairs.

e The index of the family (S,B) — T is defined to be the Q-
Cartier index of K¢ + B.

o If the index of Kg, + ~Bt for any closed point t € T' is equal to
the index k of Kg + B, then (S, B) — T is called to have the
constant index k.

Two del Pezzo pairs (S1,B1) and (So, B) are called deformation
equivalent to each other if there exist finitely many families
(§(j),§(j)) — T ) of del Pezzo pairs over connected non-singular
curves 1(; (1 < j <) and points ts t’(’j) € T\;) such that

(S1, B1) =~ (Sayue Bayeg), (52, B2) =~ (S . By ), and
(S(j),t;’.7B(j),t§’.) = (S(j+1),t‘].l+1aB(J+1) ]+1)
for1<j <i—1. If any (g(j), E(j)) — T{;) has the same index (resp.

constant index) equal to k, then (S, B1) and (S2, B2) are called to
be connected by deformations of index (resp. constant index) k.

REMARK. The genus g is a deformation invariant for fundamental
triplets (X, F, A), basic pairs (M, Ejs), and for del Pezzo pairs (S, B) of
index two, where

29— 2 = (KX +L)L = (KM +LM)LM = 2(KS + QB)<KS +B)

for L = —2Kx — E and Ly; = —2K3; — Ey. Moreover, LE and L? are
deformation invariants for fundamental triplets (X, E, A); and Ly;Fjy and
L3, are deformation invariants for basic pairs (M, Eyy).
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LEMMA 5.2.

(1) If two fundamental triplets are deformation equivalent to each other,
then their eliminations are also deformation equivalent to each other
as bastc pairs.

(2) For a family h: (M,E) — T of basic pairs over a smooth connected
curve T, there exist a family f: (§, E) — T of del Pezzo pairs of
index at most two and a birational morphism a: M — S over T
such that

2K =a*(-2(Kg+B))+ E

and that, for any closed pointt € T, the restriction oy = &|pr, : My —
S; of & to the fibers My = h='(t) and Sy = f~1(t) is the minimal

desingularization.

PrOOF. (1) follows from Lemma 2.20.
(2): We set L := —2Ky; — E and Ly := —2K)y, — E;. By Theorem 3.18
and by the upper semi-continuity theorem, we have an isomorphism

(5-1) hOpy(mL) @ k(t) ~ H(M;, mLy)

for any closed point ¢ € T" and for any m > 0. Hence the natural homomor-
phism

(5-2) h*heOp(mL) — O (mL)

is surjective for any m > 0 by Theorem 3.18. Since L, is big, there exist
a proper surjective morphism f: S — T from a ‘normal variety S and a
birational morphism a: M — S over T such that L is linearly equivalent to
the pullback of an f-ample divisor of S. Then —2Kg — a.E is the f-ample
divisor. The morphism « is induced from the surJectlon (5-2) for sufficiently
large m. Hence, by the base change property (5-1), any fiber S; = f~1(t)
is a normal variety, and oy = a&|pg, @ My — Sy is isomorphic to the birational
morphism into the del Pezzo pair constructed in Proposition 3.19. Thus
f (S B) — T is a family of del Pezzo pairs of index at most two for
= (1/2)a,E. O
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LEMMA 5.3.

(1) A fundamental triplet (X, E, A) is deformation equivalent to the fun-
damental triplet (X, E, A") for a zero-dimensional subscheme A" C E
such that A" contains no nodes of E and that A’ N E,eq 18 reduced.

(2) A fundamental triplet (X, E, A) is deformation equivalent to the fun-
damental triplet (X, E', A") for an effective divisor E’ linearly equiv-
alent to E and for a reduced zero-dimensional subscheme A’ C E’

such that A’ contains no nodes of E' and that E' is reduced along
A

(3) For a fundamental triplet (X, E, A), suppose that E = EV + E®) for
effective divisors EY and E@?) such that AN E® =0 and that E®)
is linearly equivalent to a mon-singular divisor. Then (X, E,A) is
deformation equivalent to the fundamental triplet (X, E' + E@), A')
for a non-singular divisor E' and a reduced subscheme A’ C E'.

PrROOF. (1): If A contains a node of E, then FE is reduced by Theo-
rem 4.6. Thus the assertion follows from Lemmas 2.22 and 2.23.

(2): By (1) and Theorem 4.6, we may assume that A N E,eq is reduced
and that the type of (X, E,A) is one of [2]2, [2;1,2]24, and [n;2,e]s for
n>1,2 <e <min{n + 1,4}. Let I" be an irreducible component I" with
ANT # ( such that multp(E) = m > 2 and that T' # o if the type is
[n;2,¢e]a. Thus T is a line of P? or a fiber of the Hirzebruch surface F,,.
There exists an effective divisor D € X x T for an open neighborhood T
of 0 of the affine line A! = Speck[t] such that Dy = DN (X x {t}) is a
non-singular divisor for ¢ # 0 and that Dy = mI'. We may assume that
A NT is reduced by (1). For a point P € ANT, A is locally defined by
the ideal (x™,y) for a local coordinate system (x,y) of X at P, where I is
defined by x = 0. Thus, for a suitable choice of 5, we infer that the divisor
div(y) intersects transversely with Dy for any ¢ # 0 on a neighborhood of P.
By replacing A with div(y) N Dy for ¢ # 0 around P, we have a deformation
to a fundamental triplet (X, E’, A’) satisfying the required condition.

(3): We may assume that A is reduced and is supported on the non-
singular part of E(). There exist a non-singular connected curve T" with a
point 0 and an effective divisor D of X x T such that D — T is flat, the fiber
D; = DN (X x {t}) over t € T is non-singular for ¢ # 0, and that Dy = E(1),
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TABLE 5. A list of types of fundamental triplets

genus g | Type genus g | Type
2 0;2, 1o, [1;2,2]0, [2;2, 3]+ 7 1;1,0]o
3 2]0, [0;270]00, [1,2,1}00, 8 2;1,00
2;2,2Jo0, [3; 2, 3]oo, [4; 2, 4Joo
4 0;1,1]p 9 3;1,0]o
5 1;1,1]g 10 4;1,0]g
6 1o, [0;1,0]o n+3—e | [n;2e)s for n > 1,
e <min{n — 1,4}

Since D — T is smooth along A x {0}, there exists a non-singular curve
A C D smooth over T such that the fiber of A — T over 0 is A. Thus
(X,E,A) is deformed to (X, Dy + E?) | Ay) for t # 0. O

We introduce a relation < for the types of fundamental triplets, as fol-
lows: Ty < T9 means that any fundamental triplet of type T is deformation
equivalent to a fundamental triplet of type Ts.

PROPOSITION 5.4. A fundamental triplet is deformation equivalent to
a fundamental triplet of one of the types listed in TABLE 5.

Proor. Let (X,E,A) be a fundamental triplet. By Lemma 5.3, we
may assume that A is reduced and that either E is non-singular or F =
EM 1+ E® for a non-singular divisor E(!) and an effective divisor E() with
ANE® = (. More explicitly, we have the following relations by Lemma 5.3:

151,112 () < [151, o
2, + 114 (a,b) < [n;2,n+1]4 for 1 <n < 3;

[n;2,n]2 < [n;2,n]00 for 0 < n < 4;

[n;2,n + 12 < [n;2,n+ 1]4 for 1 <n < 3;

[2]4(0) < [2lo;  [22 <[2o; [051,1]4(b) <[0;1,1]o;  [152, 2] < [1;2,2]o;
[152, 2]200 < [1;2, 2] < [1;2, 2]o;

[ Jo < [0;2,1] 14 < [0;2,1]4+ < [0; 2, 1]o;

20,104 (0,0) < (L1 (0,05 21,2y < (21,245 <[21,2).

1;2,2
0;2,1
2:1,1

)
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In order to obtain TABLE 5, it is enough to show the following relations in
addition:

2;1,2]0 < [0;1,1]o;  [3;2,4]+ < [152,2]o.

These are shown in Proposition 5.10, (1) below, in which Lemma 5.5 and
Corollary 5.6 are required. [

In order to construct some interesting deformations, we note the follow-
ing well-known:

LEMMA 5.5. For positive integers n, a, b with a + b = n, there exists
an exact sequence

0 — p{Op — € — piOpi(n) — 0

on the product P! x A, where p1 denotes the projection P* x Al — P!, such
that € is isomorphic to p;(O(a) ® O(b)) over P! x (A'\ {0}) and that the
restriction of € to P! x {0} is isomorphic to O © O(n).

PROOF. Let us take global sections ¢; € H°(P!,O(a)) and (o €
HO(PY, O(b)) so that div(¢r) Ndiv(¢(2) = @. Then we have a short exact
sequence 0 — O — O(a) ® O(b) — O(n) — 0 over P!, where the surjec-
tion O(a) ® O(b) — O(n) is given by (x,y) — (2 — y(1 and the injection
O — O(a) ® O(b) is given by z — (2(1, 2(2). Let n € Ext}(P'; O(n), O) be

the extension class associated with the exact sequence above and let £ be
the locally free sheaf of rank two given by the extension class

n®t € Ext!(PO(n),0) @ HY(A!, 0) ~ Ext! (P! x Al;p;O(n), p;0),

where A! = Speck[t]. Then & restricted to P! x {0} is O & O(n). The
extensions defined by 7 ® t and by n ® 1 are mutually isomorphic over
P! x (A!\ {0}). Thus & restricted to P! x (Al \ {0}) is isomorphic to
pi(O(a) 2 O(b)). O

COROLLARY 5.6. Let n and a be positive integers with n > 2a. Then
there is a P-bundle X — P! x Al such that the fiber X; of)? — Al over
t € Al is isomorphic to Fp_oq ift # 0 and to F,, if t = 0. Moreover, there
exist a section X(1,n) and rational sections ¥(1,a), 3(1,n — a)s of the
Pl bundle X — P! x Al satisfying the following conditions:
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(1) (1,a) ~ X(1,n) + piO(a —n), B(1,n — a)os ~ X(1,n) + piO(—a),
and 3(1,n) is a tautological divisor with respect to E.

(2) Suppose that t # 0. Then X(1,a)|x, is a minimal section o=2%) of
Xt =Fpo0a, 2(1,n)|x, ~ 02 4 (n—a)l for a fiber £ of X; — P,
and X(1,n — a)so|x, s a section at infinity.

(3) ©(1,n)|x, is a section at infinity of Xo = Fy,, 2(1,0)|x, = c™ + Fy,

and X(1,n — a)s|x, = 0™ + Fy for a negative section o™ and
effective divisors Fy ~ al, Fy ~ (n — a)l with Fy N Fy = () for a fiber
12 Of XO — Pl.

PROOF. The P'-bundle defined by X = P(€) for the locally free sheaf £
of Lemma 5.5 for b = n — a satisfies the first required condition. The section
defined by the surjection & — p;O(n) satisfies the condition of ¥(1,n). In
order to find other rational sections, we look at the isomorphism between g
and p}(O(a)®O(n—a)) over P! x (A\{0}) shown in Lemma 5.5. Let X(1,a)*
and %(1,n — a)%, be the sections over P! x (A \ {0}) corresponding to the
surjections to p;O(a) and to p;O(n—a), respectively. Here ¥(1,a)*NX(1,n)
is isomorphic to div(¢;) x (A \ {0}) for the section ¢; € H°(P',O(a)) in
Lemma 5.5. Similarly, ¥(1,n — a)%, N 3(1,n) is isomorphic to div({2) x
(A1\ {0}) for the section (3 € H'(P',O(n — a)). Let ¥(1,a) and X(1,n —
@)so be the closures of ¥(1,a)* and X(1,n — a)%, in X, respectively. Then
Y(1,a)|x, = 0™ + 7*div(¢1) and B(1,n — a)eo|x, = 0™ + 7" div((a) for
the projection 7: Xog = F,, — P!. Thus we are done. O

Ezxample 5.7. Applying Corollary 5.6 to the case n = 4, a = 2, we
have a Pl-bundle M — P! x A! and a tautological divisor ¥ = %(1,4) such
that M; ~ Fo and Xy, is ample for the fiber M; of M — A! over t # 0
and that My ~ F4 and X|p, is a section at infinity. There is a birational
morphism M — V into a normal variety V over A! such that ¥ is linearly
equivalent to the pullback of a relatively ample divisor of V over Al. Thus
we have a flat surjective morphism V' — A! whose fiber V; over t € Al is
isomorphic to Xy ~ Fg if t # 0 and to F4 ~ P(1,1,4) if ¢ = 0. Note that
P(1,1,4) is a log del Pezzo surface of index two defined by the fundamental
triplet (Fy, o, 0) of type [4;1,0]op. However, V' is not Q-Gorenstein since the
exceptional locus of M — V is just the negative curve ¢ of My ~ F, and
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Ko™ > 0. Therefore, (V,0) — A' is not a deformation of del Pezzo pairs
in the sense of Definition 5.1. Indeed, K‘Z/t =8:# K‘Q/O =9 for t # 0.

The following generalizes the construction called sweeping out the cone
with hyperplane sections due to Pinkham [26, Remarks (7.6), iii)]:

LEMMA 5.8. Let S be a non-singular projective variety and let A C
S be an effective ample divisor. Then there exist a proper flat morphism
7: 8 — P! and a point 0 € P! such that 71(t) ~ S for t # 0 and that
771(0) ~ Proj R for the image R of the restriction homomorphism

D,., B (5 8ym*(0s @ 0s(4)))

-, (Lm0 0,

In particular, if A is a non-singular variety and if HY(S,Og(mA)) = 0 for
m >0, then 7=1(0) is normal and is a cone over A.

PROOF. Let p: Z — S be the P'-bundle associated with V = Og &
Os(A) and let H be a tautological divisor with respect to V. Let ¥ and
W C Z be the sections of p corresponding to the first projection ¥V — Og
and the second projection ¥V — Og(A), respectively. Let A be the linear
system consisting of the members of |H| containing B := p~1(A)NW. Then
A ~P! and BsA = B. Let 0 € A correspond to p*A+ X. Then any another
member of A corresponds to a section of p. The complete linear system
|mH]| for suitable m > 0 defines a birational morphism p: Z — Z' into the
normal variety Z' = Proj @, H°(S, Sym*(V)) such that u(X) is a point,
Y = p~'(u(X)), and that u is an isomorphism outside ¥. Thus A can be
regarded as a linear system on Z'. Let S — Z’ be the blowing up along
(B). Then the induced morphism 7: § — A is flat, and the fiber over a
point ¢ € A is isomorphic to the corresponding member of A as a divisor
of Z'. In particular, 7=1(t) ~ S for t # 0 and 7 1(0) is isomorphic to the
image of p~1(A) = P4(V|) under the morphism p. Thus 7~1(0) ~ Proj R.
If A is a non-singular variety and H!(S,Og(mA)) = 0 for m > 0, then
R~ @, H°(A, Sym*(V)|4). Thus we are done. OJ

Ezxample 5.9. Applying Lemma 58t0 5 = P? and a non-singular conic
A, we have a proper flat morphism 7: S — P! such that 7=1(0) ~ P(1, 1, 4)
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and 7~1(t) ~ P? for t # 0. Here, S has a unique singular point, which is
obtained by contracting a divisor isomorphic to P? with the normal bundle
O(—2). Hence, the singularity of S is terminal of index two and (S,0) — P
is a family of del Pezzo pairs of index two. The morphism 7 gives a Q-
Gorenstein smoothing of the rational singularity of type Kj.

REMARK. The formal moduli space of the cone P(1,1,4) has been
shown to be reduced with two components, of dimension 3 and 1 meeting
transversely, by Pinkham [25], [26, (8. 6)]. Here, the 3-dimensional compo-
nent corresponds to the deformation in Example 5.7 and the 1-dimensional
component to the deformation in Example 5.9.

ProprosITION 5.10.

(1) The following relations hold:

[3ﬂ171]+ < [1a170]07 [27171]+(070) < [07170]07
[27172]0< [07171]07 [37274]+< [17272]0

(2) If (X, E,A) is a fundamental triplet of type [2;2, 3]+ with A = 0, then
it is deformation equivalent to a fundamental triplet of type [0;2,1].

(3) If (X, E,A) is a fundamental triplet of type [2;2,3]+ with A # 0,
then its elimination is deformation equivalent to the elimination of a
fundamental triplet of type [1;2,2]o.

(4) The del Pezzo pair associated with a fundamental triplet of type
[4;2,4]00 is deformation equivalent to the del Pezzo pair associated
with a fundamental triplet of type [2]o.

ProOOF. (1): For [3;1,1], applying Corollary 5.6 to n = 3 and a = 1,
we have a family X — T of ruled surfaces and a rational section & = X(1,1)
such that B|x, = ¢® + ¢ and X|x, = oM for t # 0 for the fiber X;
over t € T'; moreover the zero-dimensional subscheme A of a fundamental
triplet of type [3;1,1];+ on the central fiber X extends to a subscheme A
of X which is finite and flat over T. Therefore [3;1,1]+ < [1;1,0]p. For
[2;1,1]4+(0,0) < [0;1,0]o, it is similarly proved by applying Corollary 5.6 to
n =2 and a = 1, and by considering ¥ = X(1,1). For [2;1,2]y < [0;1, 1],
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it is similarly proved by applying Corollary 5.6 to n =2 and a = 1, and by
considering ¥ = ¥(1, 2).

For [3;2,4]+ < [1;2,2]o, we need more complicated argument. Let
(X, E,A) be a fundamental triplet of type [3;2,4];. Then X ~ F3, F =
o) + D for the negative section o3 and a section D ~ () 4-4¢ for a fiber ¢
of 7: X — P! and A € D\o®). Let ¢; be the fiber passing through Dno®
and let ¢o be another fiber with /o N A = (). We set P; = w(¢;) for ¢ = 1,
2. Then there exists a member © € |0 + 3¢| such that ©|p = 4¢, N D as
divisors on D by the exact sequence

0=H"X,—¢) —» H(X,0® +3¢) - H(D,0(4)) - H'(X,—¢) = 0.

Note that ¢®) £ © since o) N D ¢ © N D. Thus O is a section at infinity.
The exact sequence above shows that D is a member of the pencil spanned
by 0®) 4+ 405 and © + 1. Let X — P! x A! be the P!-bundle obtained by
applying Corollary 5.6 to n = 3 and @ = 1. Let h, g, and £ be defining
equations of the rational sections ¥(1,3), ¥(1,1), and 3(1,2)s of the Pl
bundle, respectively. We may assume that X(1,3)|x, = 0, X(1,1)|x, =
o® 4+ ¢4, and £(1,2)00]x, = 0® 4 20,. Thus E = div(£2 + cgh)|x, for
a non-zero constant ¢ € k. For t # 0, ¥(1,3)|x, ~ o™ + 2 is a section,
¥(1,1)|x, = oM, and %(1,2)s|x, is a section at infinity, where the point
»(1,3) N ¥(1,1) N X; lies on the fiber of X; — P! over P;, and X(1,3) N
3(1,2)00 N Xy is a zero-dimensional subscheme of multiplicity two supported
on the fiber of X; — P! over P;. If we consider X; as the blowing up at
a point P of P2, then div(f)|y, is the pullback of a line v not containing
the center P, and div(gh)|x, is the total transform of a non-singular conic
C containing P, where v is a tangent line of C. Hence, div(£2 + cgh)|x, is
isomorphic to div(z? + ¢(x? + yz)) for a suitable homogeneous coordinate
(x,y,z) of P2. Therefore, the divisor E := div(£2 + cgh) of X is smooth
over A1\ {0}. Moreover, A is a fiber of a subscheme A C E which is finite
and flat over A! by Lemma 2.23. Thus we have a family (X, E, A) — Al of
fundamental triplets, and hence [3;2, 4] < [1;2,2].

(2) and (3): Let (X, E,A) be a fundamental triplet of type [2;2,3].
Then X ~ Fy, E = 0@ 4+ D for a section D ~ ¢ + 3¢ for a fiber ¢ of
7: X -PLand AC D\ 0@ Let £, be the fiber passing through D No(?)
and let /3 be another fiber with fo N A = (. We set P; = w(¢;) for i = 1,
2. Then there exists a member © € |0 + 2/| such that ©|p = 3¢, N D as
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divisors on D by the exact sequence
0=H"X,—¢) - H(X,0® +2¢) - H(D,0(3)) — H'(X,—¢) = 0.

Note that 0@ £ © since 0@ N D ¢ © N D. Thus O is a section at infinity.
The exact sequence above shows that D is a member of the pencil spanned
by 0® + 30 and © + f1. Let X — P! x Al be the P'-bundle obtained
by applying Corollary 5.6 to n = 2 and @ = 1. Then X; ~ Fy for ¢t €
A"\ {0}. Let h, g, and f be defining equations of the rational sections ¥ (1, 2),
¥(1,1), and (1,1)s of the Pl-bundle, respectively. We may assume that
¥(1,2)|x, = ©, 2(1,1)|x, = 0@ + 41, and (1, 1) |x, = 0@ + £o. Let s
be a defining equation of £, in other words, P, € P! is defined by s = 0.
Then E = div(sf? + cgh)|x, for a non-zero constant ¢ € k. For ¢t # 0,
¥(1,2)|x, ~ 0@ 4 £ is a section, ¥(1,1)|x, = 0@, and B(1,1)s|x, is a
section at infinity, where the point ¥(1,2) N 3(1,1) N X; lies on the fiber
of X; — P! over P, and the point 3(1,2) N X(1, 1) N X; lies on the fiber
over P5. Let A be the pencil on X; generated by 2%(1,1)x|x, + 2+ and
¥(1,2)|x, + 2(1,1)|x,, where £5; is the fiber of X; — P! over P». Then A is
a sublinear system of |20(0) + /| having no fixed components. We infer that
a member of A is a section for the other projection 7’: X; ~ Fy — P! except
for 2(1, 1) | x, +02,s and 3(1,2)| x, +X(1,1)|x,. Thus div(sf?+cgh)|x, is a
section of /. Therefore, the divisor F = d1v(sf2 +cgh) of X is smooth over
AN\ {0}. Moreover, A is a fiber of a subscheme A C E which is finite and flat
over Al, by Lemma 2.23. Thus we have a family (X, E, A) — Al of quasi-
fundamental triplets, and is a family of fundamental triplets of type [0; 2, 1]o
when A = (). When A # (), for the family of quasi-fundamental triplets, we
also have a family of basic pairs by taking the simultaneous eliminations as
in Lemma 5.2, (1) (cf. Lemma 2.20). If (X', ', A’) is a quasi-fundamental
triplet such that X’ ~ Fy, E' ~ o(© + 2/ is a non-singular divisor, and
A’ # (), then its elimination is the basic pair obtained from a fundamental
triplet of type [1;2,2]o by Proposition 4.4. Thus the assertion is proved.
(4): For a fundamental triplet (X, E, A) of type [4;2,4]o0, £ = 0 + 000
and A C 04 for the negative section o and a section o, at infinity of
X ~ T4. Hence, the del Pezzo pair associated with (X, E, A) is constructed
from the elimination of g(A) for the contraction morphism ¢: X — P(1,1,4)
of 0. Here, (o) is a cross section of the cone P(1,1,4). We consider the
deformation V = S — Pl in Example 5.9. Here, we may assume that there is
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an effective divisor Q C V such that Q — P! is smooth and that the fiber Q;
over t € P! is a non-singular conic of V; ~ P? for t # 0 and that Qg ~ q(0wo)
for an isomorphism Vp ~ P(1,1,4). Since A can be assumed to be reduced,
it extends to an effective divisor A of an open neighborhood of Vj in Q) which
is smooth over P! (cf. Lemma 2.23). Hence, (Vp, ¢(0s0),q(A)) is deformed
to a fundamental triplet of type [2]gp. Thus the associated del Pezzo pair
with (X, E,A) is deformation equivalent to the del Pezzo pair associated
with a fundamental triplet of type [2]o. OJ

5.2. Equi-singular deformations
We shall consider the equi-singular deformation types of del Pezzo pairs
of index two.

DEFINITION 5.11.

(1) A family h: (]Tj E) — T of basic : pairs over a connected non-singular
curve T'is called equi-singular if E is a relative simple normal crossing
divisor over T', i.e., any irreducible component E of E is smooth over
T, any non-empty intersection E;N E of two 1rredu01ble components
is smooth over T', and any intersection E ﬂE ﬁEk of three irreducible
components is an empty set.

(2) A family f: (S,B) — T of del Pezzo pairs over a connected non-
singular curve T is called equi-singular if there exist a proper smooth
morphism h: M — T and a birational morphism «: M — S with
h = f o a such that

(a) My = h=(t) — Sy = f~1(t) is the minimal desingularization
for any closed point t € T',

(b) the union of the exceptional locus of & and a~*(Supp B) is a
relative simple normal crossing divisor over 7T

If f: (S, S N) — T is an equi-singular family of del Pezzo pairs whose
fibers (S, Bt) are constructed from basic pairs, then f is constructed from
an equi-singular family h: (M E) — T of basic pairs by Lemma 5.2, (2).
However, the family of del Pezzo pairs constructed from an equi-singular
family of basic pairs by Lemma 5.2, (2) is not necessarily equi-singular.
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Two basic pairs are called equi-singular deformation equivalent to each
other if they are connected by equi-singular families of basic pairs. Similarly,
two del Pezzo pairs are called equi-singular deformation equivalent to each
other if they are connected by equi-singular families of del Pezzo pairs.

REMARK. Let (S, B) be a del Pezzo pair of index at most two asso-
ciated with a basic pair (M, Ejs). Then the number k of irreducible com-

ponents of Ejs is an equi-singular deformation invariant both for (M, Ejy)
and for (S, B).

DEFINITION 5.12. Let 7: (X, E,A) — T be a family of fundamental
triplets over a non-singular connected curve T'. The family is called equi-
singular if the following conditions are satisfied:

(1) E is a relative simple normal crossing divisor over T';
(2) AN Ej is flat over T for any irreducible component E’j of E;

(3) AN l:?z N Ej are flat over T' for any two irreducible components E;
and Ej.

If the following conditions are also satisfied, then the family 7 is called
strongly equi-singular:

(4) Any two fibers of AN E’j — T are isomorphic to each other for any
J;

(5) If a fiber (Xy, Ey, Ay) of 7 is of type [2;1, 2]o, then any fiber is of type
(251, 2]o;

(6) Suppose that a fiber (Xy, E;, A¢) of 7 is of type [1;2,2]g. Then there
is an effective divisor L C X smooth over T such that L N E is flat
over T and that L N X, is the union of fibers ¢ of X; — P! with
deg(AsNY) = 2.

Two fundamental triplets are called equi-singular (resp. strongly equi-
singular) deformation equivalent to each other if they are connected by
equi-singular (resp. strongly equi-singular) families of fundamental triplets.
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LEMMA 5.13. Let (X, E,A) be a fundamental triplet of type [1;2,2]o
and let ¢: (M, Epy) — (X, E, A) be the elimination. For a reducible fiber F
of M — X — P, the dual graph of Ex; + F is one of the following, where
the number of black vertices is at most 7 in (3), and is at most 8 in (4):

g D ole b o b
W @—O—O—l—.

PROOF. The image ¢ = ¢(F) is a fiber of 7: X — P! with £ N A # 0,
and F = ¢~ 1(¢). If /N E consists of two points Q1, Q2, then the dual graph
of F'+ E) is either (1) or (3) above, and the number of black vertices is
multg, (A) + multg,(A) — 1. If £ intersects E tangentially at a point P,
then P € A and the dual graph of F'+ E) is one of (1), (2), and (4) above.
Here the number of black vertices equals multp(A) if multp(A) > 2, and
equals 0 if multp(A) = 1. Thus, we are done. [J

LEMMA 5.14. Let (X, E) be a minimal basic pair and Ay, A be two
zero-dimensional subschemes of X such that

(1) (X, E,Aq) and (X, E, Ay) are fundamental triplets of the same type,

(2) deg(A1 N E;) = deg(Aa2 N Ej) for any irreducible component E; of
E,

(3) multp(A1) = multp(Ag) and multp(Ay N E;) = multp(Ax N E;) for
any node P of E and for any irreducible component E; > P.

Then (X, E, A1) and (X, E, As) are equi-singular deformation equivalent to
each other. They are strongly equi-singular deformation equivalent if the
following conditions are satisfied in addition:

(4) A1 N (E; \ {node of E}) ~ Ay N (E; \ {node of E}) as schemes for
any Ej;
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(5) Suppose that (X, E) is of type [1;2,2], E is non-singular, and
mlg: E — P! is separable. Let L; C X be the union of fibers {
of m with deg(¢ NA;) =2 for i =1, 2. Then there is an isomorphism
Ay~ Ag inducing AyNL1=ENL ~AsNLy=FENLs.

Proor. By Proposition 2.21, we have an equi-singular family (X X
T E xT, &) — T of fundamental triplets over a connected non-singular
curve T'. Thus the first assertion follows. Suppose that the latter two
conditions are satisfied. Then, by (4), the subschemes A’i and Ag in the
proof of Proposition 2.21 are isomorphic to each other on any irreducible
components of Ef. Thus A; = AN (X x {t}) is isomorphic to A, for any t,
and the condition (4) of Definition 5.12 is satisfied. Since the condition (5)
of Definition 5.12 is automatically satisfied, we may assume that (X, F) is
of type [1;2,2] and E is non-singular.

Suppose that 7|g is inseparable. For i = 1, 2, and m > 1, let Agm] be
the set of points P with multp(A;) = m. Then we can write

A= mAl™ A, = P mA"

[m

Here A[lm] is linearly equivalent to A, ! for any m > 1, since A1 ~ Ao,
Hence, we have a smooth family AlM © X x T of reduced effective divisors
for m > 1 over a non-singular connected curve T' such that A[ m_ Alml
(X x {t;}) for suitable point t; € T for i = 1, 2. We set A = Z >1 mAlm],
For the union L; of fibers £ of m with deg(/ N A;) =2 for i = 1, 2, we have
LiNE =LinA =2Y, _, A"l Thus, for the family (X xT, ExT,A) — T
of fundamental triplets, we have an effective divisor LCXxT satisfying
the condition (6) of Definition 5.12.

Suppose that 7| is separable. Then the set R of the ramification points
of w|g consists of one point if chark = 2, and two points if chark # 2, by
Lemma 4.11. If multg(A;) = m > 2 for a point @) € R, then { N E = 2Q
for the fiber ¢ of 7 containing @), and hence, by (5), multg(Az) = m or
multy/(Ag) = m for the other point ' € R. If chark # 2, then, by
Lemma 4.11, we have an involution of X preserving E and m, and inter-
changing @ and @’. Thus we may assume that if multg(A;) = m > 2 for
a point @ € R, then multg(Az) = m. Let L be the union of fibers £ of
7 passing through a point Q € R with multg(A) > 2 for ¢ = 1, 2. Then
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LE=LE and LENE=LENA, = LENE = L¥ N Ay by the assumption.
We set Ag to be the divisor

ZPGL{% multp(Ap)P = ZP6L§ multp(Ag)P.

In order to construct a divisor L C X x T satisfying the condition (6) of
Definition 5.12, it is enough to consider the restrictions of A; and As to
E \ Supp Ag. Note that the Galois involution ¢ associated with the double-
covering 7|g: B — P! acts on E\ R freely. We have a finite number of
morphisms Pj: T — E\ (L¥ N E) from a connected non-singular curve
T with fixed points t1, t2, and natural numbers m; > 1 such that A; =
> m;Pj(t;) + Ap for i = 1, 2. By the condition (5) and by replacing 7" with
an open subset, we may assume that, for a natural number k£ and for any
teT,

Py(t) # Py(t) for any j # j,
Pj(t) € R for 1 < j < 2k,

Lo Pj(t) = Pjyp(t) for 1 <j <k,

Lo Pj(t) # Py (t) for j, j' > 2k, except for the case where j = j" and
P;(t) € R.

Let A € X x T be the effective divisor 3 m;l'j+ (Ao x T'), where I'; is the
graph of P;. Then, for the family (X x T, E x T, A) — T', we can find an
expected divisor L C X x E. [J

THEOREM 5.15. Let 7: ()~( E A) — T be an equi-singular family of
fundamental triplets over a connected non-singular curve T'. Then there is
a simultaneous elimination M — X of A over T if T is replaced with a
finite covering over T. Moreover the induced family h: (M E_ ) — T of
basic pairs is equi-singular. If T is strongly equi-singular, then h mduces an
equi-singular family f: (g, E) — T of del Pezzo pairs.

PROOF. The existence of the simultaneous elimination is shown by
Lemma 2.20 and by a similar argument to the proof of Proposition 2.21.
By (1)-(3) of Definition 5.12, we infer that EZT/I is a relative simple normal
crossing divisor over T. In order to show the equi-singularity of f, we apply
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Lemma 4.13. The exceptional curves for the eliminations and E 5 form a
relative simple normal crossing divisor over T' by (4) of Definition 5.12. In
case (Xy, Ey, Ay) is of type [2;1, 2], then the negative section o on Xy forms
a divisor of M smooth over T which does not intersect E i (X, By, Ay) s
of type [1;2,2]p, then the proper transform of the divisor L in M is smooth
over T" and is away from EM Thus the induced family (g, é) — T is
equi-singular. [

5.3. Deformation of log del Pezzo surfaces of index two

Recall that S is called a log del Pezzo surface if (5,0) is a log-terminal
del Pezzo pair. By a deformation of a log del Pezzo surface S, we mean a
deformation of the del Pezzo pair (5,0) in the sense of Definition 5.1, (3). If
the index of S is at most two, then the genus g is a deformation invariant,
since 29 —2 = (Kpr+ Lasr) Ly = 2K2. The author has learned the following
result in the case of characteristic zero from Yongnam Lee.

THEOREM 5.16. A log del Pezzo surface of index two is deformation
equivalent to a (non-singular) del Pezzo surface by a deformation of index
two of log del Pezzo surfaces in the sense of Definition 5.1. In particular, a
log del Pezzo surface of index at most two admits a Q-Gorenstein smoothing.

PRrROOF. A non-Gorenstein singular point of a log del Pezzo surface S
of index two is of type K, for n < 9 by Theorem 4.14. Moreover, the
local ring of the singularity is isomorphic to the local ring at the ori-
gin of X((1,2n — 1)/(4n)) of Example 4.17. In fact, the morphism to
X((1,2n —1)/(4n)) in Proposition 4.18 is birational by construction of the
minimal desingularization M. Thus, the singularity admits a Q-Gorenstein
smoothing (of index two) by Proposition 4.19.

In order to show that the smoothing extends to a global deformation of
S, it is enough to prove that H?(S,Ts) = 0 for Ts = Hom (25, Os) (cf. [30,
Proposition 6.4], [22, Lemma 1]). In fact, we have a formal global deforma-
tion by the vanishing, which is algebraizable by H?(S, Og) = 0. Note that
H2(S, Ts) is dual to Homg(Ts, wg) for the dualizing sheaf wg ~ Og(Kg) and
that a member of |~ K| induces an injection wg < Og. Thus H?(S,Ts) = 0
follows from another vanishing Homg(7Ts, Os) ~ H°(S, (2%)VY) = 0. Since

S has only toric singularities, the double-dual (£2})"" is isomorphic to a2},
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(cf. [9]). Thus the vanishing is established by H°(M,Q},) = 0. Hence, S
admits a Q-Gorenstein smoothing.

Let S; be a smooth surface obtained as a smooth fiber of the Q-
Gorenstein smoothing. Since —2Kg is an ample Cartier divisor, —Kg, is
also ample. Thus S; is a del Pezzo surface. [J

Since the genus g can be taken between 2 and 10, any del Pezzo surface
degenerates into a log del Pezzo surface of index two by a Q-Gorenstein
deformation.

For deformations of constant index two (cf. Definition 5.1, (3)), we have
the following result by Proposition 5.4 and Proposition 5.10.

LEMMA 5.17.  If two log del Pezzo surfaces of index two have the same
genus g # 6, then they are connected by deformations of constant index two.
A log del Pezzo surface of index two and of genus g = 6 is connected to a log
del Pezzo surface of type [1]g or [0;1,0]p by deformations of constant index
two.

In the case of g = 6, we have exactly two deformation equivalence classes
for deformations of constant index two by:

LEMMA 5.18. Let f: S—Tbea flat family of normal surfaces over a
non-singular connected curve T' such that 2K is Cartier and that any fiber
Sy = f7Y(t) is a log del Pezzo surface of index two. If a fiber S, is of type
[1]o, then so is any fiber St.

PrOOF. The type of a fiber S; is one of [1]p, [0;1,0]o, [2;1,1]+(a,b),
since these are the types with genus 6. We have isomorphisms

wg, ~ é'xt%gs((’)gt,wg) ~ws®0s, and Og,(2Ks,) ~ 05(2K5) ® Og,
for any t € T'. Since —Kg, = Kg, + (—2K3g,), we have
Os,(=Ks,) ~ Og(—Kg) ® Os,.
We also have the base change isomorphism

f:O04(=Kg) ®oy k(t) ~ HO(S, —Ks,)
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by H!(S;, —Kg,) = 0. Let Pp(E) — T be the projective bundle associated
with the locally free sheaf £ = f.Og(—Ky) and let ®: S« Pp(€) be the ra-
tional map over 1" associated with the homomorphism f*f.& — Og(—Kg).
Then the restriction of ® to S; coincides with the rational map associated
with the linear system |—Kg,|. Thus ®(S,) ~ P?, and

B(5) ~ {IE‘O, if St is of type [0; 1, 0]o;
Fy, if Sy is of type [2;1,1]4(a,b).

Let V' C Pp(€) be the image of the rational map ®. Then a general fiber
Vi of V. — T is just the image ®(S;). For a tautological divisor H of
P7(€) with respect to £, we have ®(S;)H? = 6, since ®|g, is birational to
the morphism associated with |Kjs, + L¢| for the minimal desingularization
ap: My — S and for Ly = of(—2Kg,). Therefore, V; = ®(S;) for any ¢.
Moreover, V; ~ P2, since V, ~ P2. Hence, S; is of type [1]o for any ¢. O

Therefore, the number of the deformation types of log del Pezzo surfaces
of index two with respect to the deformations of constant index two is 10.

6. The Structure of Log del Pezzo Surfaces of Index Two

In the remaining part of this paper, we consider only log del Pezzo
surfaces S of index two. In this section, the negative curves on the minimal
desingularization M are studied. We shall show that the dual graph of
negative curves on M and the type of S almost determine the equi-singular
deformation equivalence class of S. We shall also compare the classification
of log del Pezzo surfaces of index two by the types of fundamental triplet
with the classification by Alexeev—Nikulin [4].

6.1. Types of log del Pezzo surfaces of index two

For a log del Pezzo surface S of index two, let a: M — S be the minimal
resolution of singularities. Then —2K; ~ o*(—2Kg)+ E)s for a non-zero a-
exceptional simple normal crossing divisor Ey, and (M, E)s) is a basic pair
with Ly Epy = 0 for Lyy = —2K 3 — Eyy. Conversely, S is determined by M
since |-2K | = |Las| + Ear and since « is given as the Stein factorization
of the morphism associated with the base point free linear system |Ly|.
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Let (X, E,A) be a fundamental triplet whose elimination ¢: M — X of
A defines the basic pair (M, Eys) by Ey = E4. Here, E is also a non-zero
simple normal crossing divisor and LE = deg(A) for L = —2Kx — E.

There is an isomorphism o, Oy (K + Lyy) ~ Os(—Kg) by Kpyr+Las ~
Ky + a*(—2Kg). Thus the morphism M — P|Kj; + Lj;| associated with
the base point free linear system |Kjs + Ljys| is birational to the rational
map ®|_g S P|— K| associated with the anti-canonical linear system
|—-Kg|, even though —Kg is not Cartier.

If Kx + L is ample, then X is the image of ®|_f, and E is the image
of the non-Gorenstein locus of S. If Kx + L is not ample but big, then the
rational map ®|_g| induces the contraction morphism X ~ Fy — Fy ~
P(1,1,2) of the negative section o C X. If Kj; + Ly is not big, then the
morphism 7o ¢: M — X — P! is obtained as the Stein factorization of the
composite ®|_g o a.

A log del Pezzo surface S of index two determines the isomorphism
class of the basic pair (M, E)js), and moreover, the isomorphism class of
the fundamental triplet (X, E, A) except for the case where (X, E, A) is of
type [1;2,2]o, by Theorem 4.9 (cf. Example 4.12). In particular, the type of
(X, E,A) depends only on S. Thus we define the type of S to be the type
of (X, E,A). Let T be the type of S. Then the genus gt is defined as the
genus of the minimal basic pair (X, E), but it equals the genus of the basic
pair (M, Ejr) and also the genus of the del Pezzo pair (5,0). In particular,
gr=K2+1.

The number of irreducible components of Ej; also depends on the type
T, which is denoted by kt. In Section 6.3 below, we shall introduce another
invariant &1, which is calculated in Proposition 6.14. We have TABLE 6 of
the list of types T of log del Pezzo surfaces of index two together with the
invariants g1, k1, and 67.

By TABLE 6, we shall show in Lemma 6.15 below that é1 depends on
the equi-singular deformation equivalence class of basic pairs (M, Ejy) with
Ly Ey = 0. In particular, we have:

THEOREM 6.1. The list of types of fundamental triplets coincides with
the list of equi-singular deformation equivalence classes of basic pairs defin-
ing log del Pezzo surfaces of index two with one exception; The two types
[0;1,1]p and [2;1,2]o define the same equi-singular deformation equivalence
class.
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TABLE 6. The types of log del Pezzo surfaces of index two

Type T | g1 | k1 | o7 Type T gt | k1 | 61 Type T gt | k1 | 6T

1o 6 |10 [1;1, 1o 51 |1 [3;1,0]o 9 [ 1 |1

200 301 | 1 |[[5,1040,00] 5] 2|1 [3;1,1]+ 7120
RI;0) |32 |1 || LGLU(L,)]| 5|31 [3;2,4] 2 [ 2 [ 1
27(1) | 3| 3 | 1 || GLU+@1D) | 5 | 4]0 | 324400 | 2 | 3|1
2172 | 3] 4| 1 |LLU(L,2) ] 5 | 4] 1] 3241 2|41
2:3) | 3] 5 | 1 || GL1U+(5L,3)]| 5 |5 |1 %24 4+21)]2]|5]0
2.4 | 3|60 [1;2,2]o 2 | 1| 1 |[[32,444(,2)] 2] 5 |1

[0;1,00 | 6 | 1 | 1 [2;1,0]0 8 | 1 | 1 |[[32,444(1,3) ] 2] 6 |1

0;1,10 | 4 | 1 | 1 ||[25,104(0,00] 6 | 2 | 1T | 32454(L,4) | 2 | 7 | 1

0;1,170 | 4 | 2 | T || [%L10:(L1) | 6 | 3| 1 | 324:4+(1,5)] 2 | 8 | 1

GLU() | 4 |3 |1 [[ZLU(1L,2)] 6] 4| 1 |[[3524:4(1,6) 2] 9]0

L1 (2) | 4] 4|1 | 2L (5,3)] 6] 5]0 [4;1,0]o 1010

0;1,1:3) | 4 | 5 | 1 ;1,2 411 [4; 2, 400 320

1,00 | 7 | 1|1 21,2+ | 4] 3]0

6.2. The negative curves on M
PROPOSITION 6.2. A negative curve v on M is a (—d)-curve for 1 <
d < 4. Moreover, the (—d)-curves are classified as follows:

(1) A (—4)-curve is a connected component of Eny and is the proper
transform of an irreducible connected component of E. A (—4)-curve
exists if and only if E is non-singular.

(2) A (—3)-curve 7 is the proper transform of an irreducible component
E\ of E with (E — E1)Ey = 1. Here, (Epf — )y = 1.

(3) A ¢-exceptional (—2)-curve is a ¢-exceptional irreducible curve v sat-
isfying yN Eyp = 0 or v C Ey. If yN Ey = 0, then ¢(vy) is a
non-singular point of E. If v C Eyy, then ¢(7) is a node of E.

(4) A (—=2)-curve which is not ¢-exceptional is the proper transform of
one of the following curves on X ~F,:

(a) The section o when the type is [2;1,2]g or [2;1,2]14;
(b) A fiber ¢ of m with £ N E C A when the type is [1;2,2].
(c) The fiber £ of m contained in E when the type is [3;2,4]++(a, b).

(5) A ¢-exceptional (—1)-curve is either the curve 'y in the situation of

Lemma 2.10 or the curve I'y1q in the situation of Lemma 2.14.
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(6) A (—1)-curve v with Lyy = 1 which is not ¢-exceptional is the
proper transform of a fiber £ of 7: X ~ F, — P! such that B¢ = 2,
(¢ E, and deg(AN¥) = 1. Here, yN Ey is a non-singular point of

By

(7) A (=1) curve v with Lyy # 1 satisfies Lyyy = 2 and Eyp Ny = 0,
and is the proper transform of one of the following curves:

(a)
(b)
()

()

A line £ of P? with deg(A NY) =2 when deg E = 2;

A fiber £ of m with deg(AN¥) =1 when X ~TF,, and El = 1;
A minimal section o with o N E C A when the type is [0,1, 1]o
or [0;1, 1] (b);

The negative section o when the type is [1; 1, 1]o;

A section © at infinity with © N E C A in the case where
the type is one of [3;2,4]+, [3;2,4]4+4(0,0), [3;2,4]+4+(1,1),
13;2,4]+4+(1,2), [3;2,4]++(1,3). Here, for a given Cartier di-
visor A" C A of E with A" ~ (o + 30)|g, there exists uniquely
the section © at infinity with © N E = A/;

The negative section o when the type is [1;2,2]o;

A section © ~ o+ml of T with ©ONE C A for1 < m < 4 when
the type is [1;2,2]g. Here, for a given Cartier divisor A" C A
of E with deg A’ = 2m such that EN{ ¢ A’ for any fiber £ of
m, there exists uniquely the section © with © N E = A’.

Note that the a-exceptional curves are classified in Lemma 4.13 for

PROOF.

any basic pairs (M, Ejr). However, here, we consider only the basic pairs
with Ly/Epy = 0. A part of the proof below overlaps with the proof of
Lemma 4.13.

If v is ¢-exceptional, then 7 is a (—1)-curve or a (—2)-curve,

and the assertions (3) and (5) have been shown in Lemmas 2.10 and 2.14.

We have the following properties (i)—(iv) of a negative curve v on M:

(i) If v is not ¢-exceptional, then the equality

7 = ¢(7)? — deg(A N ¢(7))

holds, by Lemma 2.7.



412 Noboru NAKAYAMA

(ii) If v ¢ Epr, then 7 is a (—1)-curve or a (—2)-curve, by —2Ky;y =
Ly~ + Epmy > 0.

(iii) Suppose that ¢(y) is an irreducible component F; of E in M. Then
—4<~y?=—-44(E—-E)E; < -3,
which is derived from

v =FE} —deg(ANE,) = FE} - LE, = E} - (—2Kx — E)E;
= Q(KX + El)El + (E — El)El = —4+ (E — El)El.

In particular, v is a (—3)-curve or a (—4)-curve.

(iv) If v C Epy, then Lyy = 0 and
~4=2(Ky +7)y = ~Exuy — Ly +29° =9° = (Ey — 1)y <%

The properties above show that v ~ P! with 42 > —4. The assertions (1)
and (2) follow from (iii), (iv). Note that if E has an irreducible connected
component, then E is non-singular by Theorem 4.6.

In the proof of (4), (6), (7) below, let ej, ea be the integers with E ~
e10 + exl when X ~ F,,.

(4): Let v be the (—2)-curve. Then Lyy = Epyy = 0 by —2K =
Ly+Ey and Ly Eyp = 0. In particular, (Kpy+ L)y = (Kx+L)p(vy) = 0.
Hence, Kx + L is not ample. If Kx + L is big, then the type of (X, E, A)
is [2;1,2]p or [2;1,2]4+4, and ¢(y) = 0. Conversely, the proper transform of
o in the case [2;1,2]p or [2;1,2]14 is a (—2)-curve since AN o = (). This is
the case of (4a).

Suppose that Kx + L is not big. Then e; = 2. Since Kx + L ~
(n+2—e2)l, ¢(7) is a fiber £ of w. Conversely, if «y is the proper transform
of ¢ in the case e; = 2, then 7 is a (—2)-curve if and only if deg(AN¥) =2,
by (i). Here, if £ ¢ E, then the type is [1;2,2]p by 2 = deg(AN¥) < EY,
and we have /N E C A by E¢ < 2. This is the case of (4b). If £ C E, then
the type is [3;2,4]|4++(a,b) and the fiber ¢ is unique, where deg(A N¢) = 2.
This is the case of (4c).

(6): Now ¢(v) ¢ E by (iii) and Ky = Lyy = Eyy = 1. Hence,
(Kx + L)p(y) = 0. Thus Kx + L is not ample. If Kx + L is big, then
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X ~ F9 and ¢(y) = o, which contradicts (i). Hence, Kx+L is not big. Thus
e1 = 2 and ¢(v) is a fiber £ of m. Conversely, if 7 is the proper transform
of a fiber £ ¢ E in the case e; = 2, then v2 = —deg(A N ¥) by (i). Thus
v is a (—1)-curve if and only if deg(A N¢) = 1. If E has a node, then the
type is [3;2,4]+ or [3;2,4]++(a,b), but a fiber £ ¢ E with AN £ # () does
not contain the nodes of F.

(7): The curve 7 is not ¢-exceptional by (5), and ¢(y) ¢ E by (iii). The
equality 2 = —2K ;v = Ly + Eyy implies that Lyy = 2 and Ep Ny = 0.
In particular, (Kx + L)¢(y) = 1. We consider the proof in the following
cases:

(A) X~P* (B) X~F,ande;=1; (C) X ~TF,ande; =2.

Case (A). degE =2 and ¢(v) is a line ¢ by deg(Kx + L) =3 —deg E.
Conversely, if v is the proper transform of a line ¢ and if deg £ = 2, then
v is a (—1)-curve if and only if deg(A N¥¢) = 2, by (i). This is the case of
(7a).

Case (B). Kx+ L ~ o+ (n+2— ez)l with ez < 2. Note that ex = 2
only in the case [2;1,2]4.

If ¢(v) is a fiber £ of 7, then deg(A N¥¢) = ¢?> — 42 = 1. Conversely, the
proper transform of a fiber £ with deg(AN¢) =1 is a (—1)-curve. This is
the case of (7b).

If ¢(v) is a minimal section o/, then e; =1, ¢/ ¢ E, and deg(c' N A) =
—n + 1; hence, the type is [0;1,1]p, [0;1,1]4(b), or [1;1,1]o. For the types
[0;1,1]p and [0;1,1]4(b), we have ¢/’ N E C A. This is the case of (7c). For
the type [1;1,1]o, o’ is the negative section ¢ and c N E = o N A = (). This
is the case of (7d).

Assume that ¢(7) is neither a fiber nor a minimal section. Then ¢(7)? >
0. By the Hodge index theorem, we have

1= ((Kx +L)$(7)* > (Kx + L)*¢(7)* = (n + 4 — 2e2)p(7)* > 0.

Thus 2e; = n+ 3 and ¢(7)2 = 1. Then n = 1 and ey = 2, which is a
contradiction since es < 1 for n # 2.

Case (C). Then Kx + L ~ (n+2 — e2)l, where 0 < e3 < n+ 1. Since
(Kx+L)p(vy) =1, ¢(v) is a section © ~ o +ml for some m and ez = n+ 1.
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Then the type is [1;2,2]o, [3;2,4]+, or [3;2,4]+1(a,b). We treat the case
of types [3;2,4]+ and [3;2,4]4+4(a,b) in Subcase (C1), and the case of type
[1;2,2]p in Subcase (C2) below.

Subcase (C1). This will corresponds to the case (7e). Here n = 3.
Then m > 3, since 0 C F and © ¢ E. Here,

2m —2=0% -~ =deg(ANO)<O(E —0)=m+1.

Hence, m = 3 and © N E C A. Conversely, let A’ C A be a Cartier divisor
such that A’ ~ (o + 3¢)|g. Since H?(X,0 + 3¢ — E) = HP(X,—0 —¥¢) =0
for any p, we have an isomorphism

HY(X,0 4 3¢) = HY(E, Og(o + 30)).

Here the subspace H°(X, 3¢) of the left hand side is isomorphic to the kernel
of

HY(E,0p(0 + 3¢)) — H%(0, O0,).

Since A N o = (), there exists a unique section © ~ ¢ + 3¢ at infinity with
©NE = A’. Furthermore, the proper transform of © in M is a (—1)-curve.

We have to consider the existence of A’ ~ (o + 30)|g with A’ C A. If
the type is [3;2, 4]+, then A does not contain the node of E and hence any
subscheme A’ C A with deg A’ = 4 is linearly equivalent to (o + 3¢)|g.

Suppose that the type is [3;2,4]+4(a,b). Then E = 0 + ¢ + 0o for a
section o at infinity and for a fiber £ of m, where ANo = 0. If (a,b) #
(0,0), then A contains the node P = ¢ N 0y and hence multp(A’' N¥) = a,
multp(A’ N o) = b for any Cartier divisor A’ C A of E containing P by
Corollary 2.13. If A’ ~ (+3/)| g, then deg(A'No) = 3 < deg(ANoo) = 6
and deg(A'N¢) = 1 < deg(AN¥) = 2. Therefore, the Cartier divisor A’ C A
with A’ ~ (o + 3()| g exists if and only if the type is one of [3;2,4]+4(0,0),
[3; 2, 4]++(17 1)7 [3, 2, 4]++(17 2)7 [37 2, 4]++<17 3)

Subcase (C2). This will corresponds to the cases (7f), (7g). Here, E ~
20 + 2/ is non-singular and o N E = (). We have

2m = 0?2 — 42 = deg(ONA) < OF = 2m.

Hence, ONE CAand 0 <m <4by2m=0F <degA =38. If m =0,
then ® = ¢. In the case m > 0, © is determined by © N E. In fact, the
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vanishings HP (X, —o + j¢) = 0 for p, j € Z induce an isomorphism
HY(X, 0 +mf) = HY(E,O(2m)).

Hence, for a given subscheme A’ C A of deg A’ = 2m such that N E ¢ A/
for any fiber £, the section © ~ o + mf with © N E = A’ exists uniquely.
Thus we are done. [J

Let v: Y — M be the blowing-up at all the nodes of Ej;. Then the
proper transform Ey of Ejys in Y is a disjoint union of (—4)-curves. Let G,
be the -exceptional curve over a node g of Eys. Then Ey = ¢*(Ey) —

2% G, and

(6-1)  —2Ky =" (—2Ky) —2)  Gg~1*(Ly+ Ey) —2) Gy
= ¢*(Ly) + Ey.

DEFINITION 6.3 (cf. [4]). The birational morphism 8 =ao: Y — §
is called the right resolution of S. If a non-singular projective surface ) is

the right resolution of a log del Pezzo surface of index two, then ) is called
a DPN surface, for short.

In chark = 0, the notion of DPN surface above coincides with that of
right DPN surface of elliptic type in [4].

LEMMA 6.4. For a DPN surface Y, suppose that there exists a negative
curve y C Y such that 7 is not 1-exceptional and 1 (7)? > 0. Then the type
of (X, E,A) is [3;2,4]+, v is a (—1)-curve, and ¢ o () is the unique fiber
of m: X — P! passing through the node of E.

PrOOF. We have —2Kyvy > 0 by (6-1), since ¢(y) ¢ Ep. Since
Lyip(y) > 0 by the Hodge index theorem, 7 is a (—1)-curve and Lps1p(7y) +
Eyy =2. Then

Laup(7) 2 Eyy+2)  Goy > By,

since Ly — Ep is nef. Hence, Lyy = 2, Eyy = 0, and ) Ggy = 1.
It follows that v(y)? = 0 and ¢*(Kx + L) (y) = 0 by 2(Kp + Las) ~
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Ly — Epr. Therefore, X ~ F,,, Kx + L is not big, and ¢ o ¢(vy) is a fiber
ly of m. Here, o N A = () and ¢y contains a node of E. Hence, the type of
(X, E,A) is [3;2,4]+ and £y is the unique fiber passing through the node of
E. Conversely, the proper transform of the fiber £y in ) is a (—1)-curve. O

COROLLARY 6.5. A negative curve on a DPN surface ) is a (—d)-curve
ford=1, 2, 4.

(1) The set of (—4)-curves on Y coincides with the set of the proper
transforms of irreducible components of Eyy.

(2) The set of (—2)-curves on' Y coincides with the set of the total trans-
forms of (—2)-curves on M not contained in Ey;.

(3) The set of (—1)-curves on Y consists of the following curves:

(a) The v-exceptional curves;
(b) The total transforms of (—1)-curves on M;

(c) The proper transform of the fiber containing the node of E
when the type is [3;2,4]+.

Proor. By Lemma 6.4, it is enough to consider the proper transforms
of negative curves on M. Then the proper transform of any irreducible
component of Ejys is a (—4)-curve by (1), (2), and (4) of Proposition 6.2.
The proper transform in ) of a (—2)-curve not contained in Ej; is a (—2)-
curve by (3) and (4) of Proposition 6.2. The proper transform in ) of a
(=1)-curve is a (—1)-curve by (5), (6), and (7) of Proposition 6.2. Thus we
are done. [J

COROLLARY 6.6. The Picard number r = p(Y) of Y equals 11 — gt +kt
for the type T of S.

PROOF. Ejy is non-singular with kT components where any component
is a (—4)-curve. Hence, 4K}, = L3, — 4k by (6-1). Since (Kas+ Las) Loy =
2¢gT — 2 induces L?M =497 — 4, we have r = 10 — KJZ, =11—-gr+ k.0

Let n(Ey) be the number of nodes of Ej;. Then n(E)y) = k1 — 1 when
the type is not [4;2,4]gg, and n(Fy;) = 0 when the type is [4;2, 4]go.
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COROLLARY 6.7. The Picard number p(M) equals 10 — (Kx + E)?. It
is also calculated as follows:

p(M) =11 — gt + kt — n(Eum)

_J12 =g, if the type is not [4;2,4]0o;
13 — gt =10, if the type is [4;2,4]oo.

ProOOF. The first equality follows from KJ2\4 = (Ky +Ly)? = (Kx +
L)? = (Kx + E)? by (3-1). The second follows from Corollary 6.6. [J

We have the following characterization for a rational projective surface
to be a DPN surface:

LEMMA 6.8. A non-singular projective rational surface ) is a DPN
surface if and only if there is a non-zero non-singular divisor Ey such that
Ly = —2Ky — Ey 1is nef and big, and LyFEy = 0.

ProOoOF. It is enough to show the ‘if’ part. Let 8: )Y — S be the
birational morphism into a normal complete algebraic space .S of dimension
two such that $-exceptional curves are the curves v with Lyy = 0. Then S is
a log del Pezzo surface of index two (cf. Definition 3.2, Proposition 3.5). Let
a: M — S be the minimal desingularization. Then 8 = a0 for a birational
morphism v¢: Y — M and ¢Y*Ej; = Ey + 2G for the i-exceptional divisor
G~Ky—y*Ky. Lt Y=Y, - Y,,1 — - =Y — Yy =M be the
succession of blowups at points representing . For 0 < ¢ < m — 1, let
it Yiy1 — Y; be the blowing up, Gij+1 C Y41 the ¥;-exceptional divisor,
and let F; C Y; be the pushforward of Ey. Then o] F; = E;1 + 2G4 for
any ¢. In particular, the center of v;: Y;11 — Y; is a node of E;. Hence,
1: Y — M is the blowing up at all the nodes of Ej;. Therefore, : Y — S
is the right resolution. [

6.3. Another invariant ¢

Let 3: Y — S be the right resolution and let 1: J — M be the blow-
ing up at all the nodes of M, as before. For an irreducible component
E; v of Ey, let E;y be the proper transform in ), which is a (—4)-curve.
The proper transform Ey = > E;y of Ej in ) is a disjoint union of
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the (—4)-curves. Moreover, Fy is the union of all the (—4)-curves on Y
by Corollary 6.5. We infer that Ey coincides with the fixed part of the
linear system |—-2Ky| by the relation (6-1). Since Ly = —2Ky — Ey ~
Y*Ly ~ 0*(—2Kg), : Y — S is induced from the morphism associated
with |-2Ky|. We have

(6-2)  dimH°(Y, —2Ky) = dimH°(S, —2Kg) = 3K% + 1 = 391 — 2,
dim H (Y, —2Ky) = dim H* (Y, —2Ky) — x(, —2K7y)
= 3(K% — K3) = 3kr,

by Theorem 3.18, H*(Y, —2Ky) = 0, E3, = —4kr, and by (6-1).

DEFINITION 6.9. We introduce an invariant 6 € {0,1} for a DPN sur-
face ) as follows: For the number k of irreducible components of Ey and
for a vector € = (e1,... ,e) with g; € {1, —1}, we set

k
BS =Ly + Zi:l ciEiy.

Then we define § = 0 if there exists a vector ¢ € {1, —1}* such that the
numerical class cl(Bj,) € NS(Y) is divisible by 4, i.e., cl(B5,) € 4NS(Y). If
6 # 0, then we define 6 = 1. Note that ¢ can be considered as an invariant
of S which depends only on the type of S.

REMARK. The invariant § above is nothing but the geometric inter-
pretation of ¢ of the main invariants (r,a, ) for the invariant lattice S (cf.
Section 6.6, [4, Section 2.3]).

PROPOSITION 6.10. Letw:Y — T be a proper smooth morphism over
a non-singular connected curve T whose fibers Yy = w~1(t) are DPN sur-
faces. Then the invariant 6();) is constant on T.

Proor. We may replace T" with another curve étale over T', since T
is connected. The rationality of ); implies that the relative Picard scheme
Picjj T is étale over T. Hence, we may assume that the restriction map

Pic(Y) — Pic(),) is surjective for a given point o € T. The kernel of

the restriction map is just the image of @w*: Pic(T) — Pic(Y). In fact,
it is shown as follows: Suppose that M|y, ~ Oy, for an invertible sheaf
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M € Pic(Y). Then (My,)? = (Mly,) - (Aly,) = 0 for a w-ample invertible
sheaf A on Y and for any point ¢ € T. It implies that Mly, =~ Oy, by
the Hodge index theorem and by the rationality of ). Hence, w, M is an
invertible sheaf and w*w,M ~ M.

By (6-2), we have the base change isomorphism

@.05(—2K3,) @ k(t) ~ H*(V;, —2Ky,).

Hence there exist a family f: S — T of log del Pezzo surfaces of index two,
a birational morphism §: Y — S over T, and an effective divisor Ej, cy
such that

(1) Bly,: Vs — S¢ = f~(t) is the right resolution of S,
(2) Ej)|yt = Ey,,

Here, Ej; — T is smooth. Replacing T with a curve étale over T, we may
assume that any irreducible component F, ¥y of Ejj is a P'-bundle over 7.
Thus FE; y, = Ei,j/| y, is an irreducible component of Ey, for t € T'

For a vector € = (g;), we consider a divisor

B = BS, = 3" (—2K5) + ZsEy

Then Bab;t = Bj, for any ¢ € T'. Suppose that Bj, ~ 4L, for a divisor

Lo of Yo. Then Oy, (Lo) =~ Lly, for an invertible sheaf £ of Y. Thus the
invertible sheaf M = L% ® Oy (=B%) of Y comes from T'. Therefore, B,
is divisible by 4 in Pic()%) for any ¢t € T'. Thus ¢ is constant. O

The following result is useful for calculating ¢:

LEMMA 6.11. Let f: S1 — S be a birational morphism between non-

singular projective varieties and let D be a divisor of S1. Then cl(D) €
4NS(S1) if and only if

(1) D~y € AZ for any f-exceptional curve v and,
(2) cl(f«D) € 4NS(Ss).
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PROOF. Since f is a succession of blowups at points, we may assume
that f is the blowing-up at a point. Let I' be the exceptional divisor. It
is enough to prove the ‘if’ part. If the two conditions are satisfied, then
f«D — 4L is numerically trivial for a divisor L, and f*(f.D)— D = 4nI for
some n € Z; hence, D — 4(f*L — nI') is numerically trivial. O

Applying Lemma 6.11 to ¢ o¢p: Y — X, we have:

LEMMA 6.12. 6 = 0 if and only if there exists a vector ¢ = (g;) €
{1, —1}* such that,

(1) ei+e;=0 fori#jif Ezp N Ejam #0,

(2) 1+¢; =0 if there is a (—1)-curve vy with v N E; pr # 0,
@)d(¢*@44+§j;¢J%M))e4Naxy

PROOF. An exceptional curve I' for ¢ o ¢ is either a w-exceptional
curve or the proper transform of a ¢-exceptional curve. In the former case,
Byl = ¢; +¢; if 9(T') = Ejp N Ejp. In the second case, if ¢(I') is a
(=2)-curve, then Ly(I') = Eyp(I) = 0 and BT € 4Z. If (T) is a
(=1)-curve, then Lyp(I') = Eyp(T) = 1 and B3I = 1 +¢; for the unique
irreducible component E; 5; of E)s intersecting ¢(I"). Thus, we are done. [

COROLLARY 6.13.  Suppose that cl(B5,) € 4NS(Y) for a vector € €
{1, -1}F,

(1) If Eyy is the proper transform of an irreducible component Ey of E
with AN (Fy \ Sing E) # 0, then e = —1.

(2) Let Ey and Ey be irreducible components of E intersecting with each
other at a point P such that multp(ANE;) =1 and multp(ANE,) =
b. Let E;y be the proper transform of E; in Y for i =1, 2. Then
g1 = (=1 and g5 = 1.

Proor. (1): By Lemma 2.10, there is a (—1)-curve I'y ¢ Ejs such
that I'yEy = I'y By = 1 and I'y, N Ey  is a non-singular point of Ejy.
Thus B3¢ (Tx) = Lyl + 61 =1+ €1 € 4Z.

(2): By Lemma 2.14, there is a straight chain Z?i% I'; of non-singular
rational curves on M such that



Log del Pezzo Surfaces of Index Two 421

o Ey M+Z?=1 I'j+ Ej5 p is a straight chain of rational curves contained
in EM,

e the end I'yy; is a (—1)-curve with I'y 11 N Epp =T N Tpgq.

Let Ty be the proper transform of I'; in ) and let [j] be the coefficient of
gat [';y for 1 < j <b. Then BTy 1y = €[b]+1 € 4Z. Thus e[b] = —1. By
(1) of Lemma 6.12, we have ¢[j] = (—=1)""177 for 1 < j < b, 1 = (—1)"+,
and e = 1. 0

PROPOSITION 6.14.

(1) Suppose that E is irreducible. Then 6 = 1 except for the types [1]o
and [4;1,0]p.

(2) Suppose that E is non-singular and reducible. Then the type is
[4;2,4]00 and 6 = 0.

(3) Suppose that E is reducible and singular, and has no nodes P with
P e A. Then 6 =1 except for the types [2;1,2]14+ and [3;1,1];.

(4) Suppose that E has exactly one node P and that multp(ANE;) =1,
multp(ANEs) = b for the irreducible components Ey, Es of E. Then
6 =1 except for the types [2]+(4), [1;1,1]4(2,1), and [2;1,1]+(1,3).

(5) Suppose that E has two nodes P and P’ and that multp(ANE;) =1,
multp(ANEs) = b for the irreducible components Ey, Es of E. Then
6 =1 except for the types [3;2,4]4+4(2,1) and [3;2,4]++(1,6).

PrOOF. (1): If A =), then (X, E,A) is of type [4;1,0]p. In this case,
X =M and L + E ~ 4(0o + 3¢). Hence, 6 = 0. Suppose that A # (). Then
there is a (—1)-curve v C M contracted by ¢: M — X. By Lemma 6.12,
Corollary 6.13, and by Ly — Ey ~ —2¢*(Kx + E), we infer that § = 0 if
and only if cl(Kx + E) € 2NS(X). Here, cl(Kx + F) ¢ 2NS(X) except for
the type [1]p.

(2) follows from Ly — Epp ~ —2¢*(Kx + E) ~ 4¢*().

(3): Let Ej, Es be irreducible components of E with E; N Ey # 0.
Let E;y be the proper transform of E; in Y for ¢ = 1, 2. Suppose that
cl(B5,) € 4NS(Y) for some e. If deg(ANE1) > 0 and deg(ANEz) > 0, then
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€1 = €9 = —1 by Corollary 6.13. But it contradicts Lemma 6.12. Hence, it
is enough to consider the types [2;1,2]4, [3;2,4]4, and [3;1,1]4.

Case [2;1,2]44+. E =1/l + ly + o for two fibers {1, ¢ of m and for the
negative section 0. Then L — ¢} — ly + o ~ 4(0 + ). Here,

gb*lﬂ*(L — 61 — 52 +U) = ¢*LM — 6173; —627)} +oy = Bi;

for a suitable € € {1, —l}k, where /1y, {2y, and oy are the proper trans-
forms in Y. Thus 6 = 0.

Case [3;2,4]+. E = o+ D for the negative section o and for a section
D ~ o +4L. Let oy and Dy be the proper transforms in ). Then cl(B5,) €
4NS(Y) implies that B, = ¢*(Lys) — Dy + oy and hence cl(L — D + o) €
4NS(X) by Lemma 6.12. However, cl(L — D +0) = cl(20 + 2¢) ¢ 4 NS(X).
Hence, 6 = 1.

Case [3;1,1];. E = o+/ for a fiber £ of  and for the negative section
o. Then L — { + o ~ 4(c + 2(). Here,

¢V (L —L+o0) =Ly — by + 0oy = B5,

for a suitable e € {1, —1}*, where ¢y and oy are the proper transforms in
Y. Thus 6 = 0.

(4): Suppose that Bj, € 4NS(Y) and let ¢; be the coefficient of ¢ at the
proper transform F;y of F; for i = 1, 2. Then e = 1 by Corollary 6.13.
Thus deg(A N Ey) = b also by Corollary 6.13. If deg(AN E7) > 1, then b is
even since e; = —1 = (—1)"*! by Corollary 6.13.

Suppose that deg(A N E;) = 1 and deg(A N E2) = b. Then the type
is [2;1,1]4(1,3). Here, E; is the negative section o, Es is a fiber of m,
and L ~ —2Kx — E ~ 30 + 70. Then cl(L + E; + E») € 4NS(X) by
L+ Ei+ Ey ~ 40 + 8¢. Thus

cl(v*¢* (L + Ey + Eg)) — cl(Ly + Eiy+Eyy—-Ti1y+Tsy— Fg,y)
€ 4NS(Y)
for the curves I'; y in the proof of Corollary 6.13, (2). Hence, 6 = 0.
Suppose that deg(A N E;) > 1 and deg(A N Ey) = b. Then b is

even and the following types remain: [2]4(4), [0;1,1]4+(3), [1;1,1]+(2,1),
[1;1,1]4(1,3). We can write

* b —J
BS, = ¢* (L) — Ery + Bay + Zj:l(—l)b“ Ty



Log del Pezzo Surfaces of Index Two 423

for the curves I';y is the proof of Corollary 6.13, (2). Thus 6 = 0 if and
only if cl(L — Ey + E») € 4NS(X).

Case [2]+(4). E; and Ej are lines of P2. Here deg L = deg(L — E; +
E3) = 4. Hence 6 = 0.

Case [0;1,1]4(3). We may assume that E; is a minimal section o and
FEs5 is a fiber. Here L ~ 30+ 3¢ and L — E1 + E5 ~ 20 + 4¢. Hence 6 = 1.

Case [151,1]4(2,1). Ej is a fiber £ of m and Es is the negative section
o. Here, L ~ 30 +5¢ and L — E1 + E5 ~ 40 + 4£. Hence 6 = 0.

Case [1;1,1]4(1,3). Ej is the negative section o and Ejs is a fiber £ of
w. Here L ~ 30 +5¢ and L — F1 + E9 ~ 20 + 6¢. Hence 6 = 1.

(5): The types in this case are [3;2,4]44(a,b). Here, E = o + { +
0 for the negative section o, a fiber ¢, and a section o, at infinity, and
furthermore P = ¢ Nos. If 6 =0, then (a,b) = (2,1) or (1,6) by the same
argument as in the proof of (4) above.

Case (a,b) = (2,1). Then E; = 0 and Fy = £. We set E3 = 0. As
in the proof of (4), we infer that 6 = 0 if and only if cI(L — E} + E2 — E3) €
4NS(X). Now L ~ 20+ 6f and L — Fy + Ey — E3 ~ 4. Hence 6 = 0.

Case (a,b) = (1,6). Then F; = ¢ and Fy = 0o.. We set B3 = 0. As
in the proof of (4), we infer that 6 = 0 if and only if cI(L — Ey + Ey + E3) €
4NS(X). Now L — Ey + Ey + E3 ~ 40 + 8(. Hence 6 = 0. O

As a result, the invariant 6 depends only on the type T of (X, F, A) and
is calculated as in TABLE 6.

LEMMA 6.15. For a log del Pezzo surface S of index two, the defor-
mation type of the right resolution Y depends only on the equi-singular de-
formation type of the basic pair (M, Eyr), and vice versa. The invariant 6
depends only on the equi-singular deformation type of the basic pair.

PrROOF. Let h: (]\7 , EM) — T be an equi-singular family of basic pairs
over a connected non-singular curve T" whose fibers define log del Pezzo
surfaces of index two. Then there exist a family f: S — T of log del Pezzo
surfaces of index two and a birational morphism a: M — S over T by
Lemma 5.2. Let w y — M be the blowing up along the double locus
U(E; N E; ;) of E = Y. E;. Then the induced smooth family w: Y — T
is a simultaneous right resolution of f. Thus, if two such basic pairs are



424 Noboru NAKAYAMA

equi-singular deformation equivalent, then the associated right resolutions
are deformation equivalent, and they have the same § by Proposition 6.10.
Conversely, if two basic pairs have the same invariants g, k, 6, then by TA-
BLE 6, we infer that either they have the same type or they are of types
[0;1,1]p and [2;1,2]p. In both cases, the basic pairs are equi-singular defor-
mation equivalent by results in Section 5.2 and by Proposition 5.10, (1). O

6.4. The singular points of S

We consider the singular points on S. A connected component of the
exceptional locus for a: M — S is written as a~(Q) for a singular point
Q of S. If a=%(Q) C Ey, then Q € S is a singular point of type K. If
a Q) ¢ Ey, then Q € S is a rational double point, and an irreducible
component of a~1(Q) is one of following (—2)-curves by Proposition 6.2:

e A ¢-exceptional (—2)-curve such that ¢(7) is a non-singular point of
E;

e The proper transform of the negative section ¢ when the type is
2;1, 2o;

e The proper transform of a fiber £ of 7 with /N E C A when the type
is [1; 2, 2]p.

LEMMA 6.16.

(1) If the type is not [4;2, 4]0, then S has a unique non-Gorenstein sin-
gular point, which is of type Ky for the number k of irreducible com-
ponents of Enr. If the type is [4;2,4]o0, then S has two singular
points, which are of type Ki.

(2) Suppose that the type is neither [1;2,2]o nor[2;1,2]p. Then a rational
double point Q € S is of type A;_1 where o~ 1(Q) is the mazimal
straight chain of (—2)-curves in ¢~1(P) for a non-singular point P
of E with multp(A) =1> 2. In particular, | < deg A.

(3) Suppose that the type is [2;1,2]g. Then the total transform of the
negative section o in M is a (—2)-curve defining an A;-singularity
on S. The other rational double points QQ € S are of type Aj_1, where
a~Y(Q) is the mazimal straight chain of (—2)-curves in ¢~1(P) for
a point P € E with multp(A) =1> 2.
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(4) Suppose that the type is [1;2,2]o and that w|g: E — P! is separable.
Then a rational double point Q € S is of type A; for 1 <1 <7 or of
type Dy for 4 <1 < 8.

(5) Suppose that the type is [1;2,2]o and that ©|g: E — P! is inseparable.
Then a rational double point Q € S is of type A; for 1 € {1,3} or of
type Dy for 4 <1 < 8.

PROOF. (1): Ejy is connected if and only if the type is not [4;2, 4]g. If
the type is [4;2, 4]oo, then E)s is a disjoint union of two (—4)-curves. Thus
(1) follows.

(2) and (3): If the type is neither [1;2, 2]y nor [2;1,2]o, then any (—2)-
curve is contained in ¢~!(P) for a non-singular point P of E with
multp(A) > 2. If the type is [2;1,2]p, then there is one more (—2)-curve
which is the total transform of o.

(4) and (5): Any (—2)-curve is contained in a fiber of M — P!. Thus
the assertion follows from Lemmas 5.13 and 4.11. [J

Let I' =T'[M] =I'(S) =I'(X, E, A) be the dual graph of the negative
curves on M. The part Ik is defined to be the subgraph consisting of
the irreducible components of Ej;. Another part Igrpp is defined to be
the subgraph consisting of the (—2)-curves not contained in Ej;. Then
a connected component of 'k corresponds to a non-Gorenstein point on
S, and a connected component of IgRpp corresponds to a rational double
point on S. Thus I'k U Igpp is the dual graph of the minimal resolution of
singularities of S. By Lemma 6.16, (1), if S is not of type [4;2,4]go, then
I'c = Ky, for k = kt; If S is of type [4;2,4]po, then Ik is the disjoint union
of two Ky. Thus Ik depends on the type T of S.

Let a(i) be the number of singular points on S of type A; for ¢ > 1.
Similarly, let d(7) be the number of singular points of type D; for i > 4. The
formal linear combination

D(S) =D(X,E,A) = a(i)A; + > _d(j)D;

of Dynkin diagrams is called the distribution (of rational double points) of
S. Then I'(S)rpp is identified with D(S). We define o(S) = o(X, E,A) =
> ia(i) + > jd(j). Note that o(S) is not determined by the type T, in
general.
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The birational morphism a: M — S contracts kt+0(S) rational curves.
Hence, the Picard number p(S) equals p(M) — kt — o(S), since S is Q-
factorial. Therefore,

p(S) =10 — (Kx + E)* — kt — o(S)
12 —gr =kt —0(S), if the type is not [4;2, 4]oo;
8- a(9), if the type is [4;2,4]gp.

DEFINITION 6.17. For a type T of fundamental triplet, we define o3'%*

(resp. o™iM) to be the maximum (resp. the minimum) of o(S) for the log

del Pezzo surfaces S of index two of type T. For a log del Pezzo surface S
of type T, if 0(S) = o2 then S is called extremal. If 0(S) = o™ then S
is called generic. A fundamental triplet (X, E, A) is called extremal (resp.

generic) if the associated log del Pezzo surface S is so. We also define p?in

(resp. p*

del Pezzo surfaces S of index two of type T.

) to be the minimum (resp. the maximum) of p(S) for the log

REMARK. The notion of extremal in Definition 6.17 is slightly differ-
ent from that used in [4]; this is related to the equi-singular deformation
equivalence between types [0;1,1]p and [2;1, 2] in Theorem 6.1.

By Lemma 6.16, (X, E, A) is generic if and only if
e A isreduced on E'\ Sing E when T # [1;2, 2]y, and
e Aisreduced and deg(An¥¢) < 1 for any fiber £ of w when T = [1; 2, 2]o.

In particular, o = 0 for any T. Thus gl8X = pmax_ piin TfT £ [4:2 4],

then p?in =12—gr —kr—oF*® and pP** =12 — g1t — k7. If T = [4;2, 4]0,
then p?in = 8 — o7* and p7** = 8. The numbers p7%* and p?in are

calculated as in TABLE 7, by:

PROPOSITION 6.18.

(1) Suppose that (X, E,A) is not of type [1;2,2]g. Then (X, E,A) is
extremal if and only if any irreducible component of E \ Sing E has
at most one point contained in A.
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TABLE 7. The maximum and minimum Picard numbers

Type T |p7**|pr™ || Type T |7 | o7 Type T |p7t™ o™
1o 5 | 1 [1;1, 1, 6 | 2 [3;1,00 2 | 2
2o 8 | 1 [, 1].(0,0] 5 | 2 [3;1,1] 3 [ 1

2,0 [ 7 | 1T |, (01| 4 | 3 [3;2,4], 8 | 1

2,1) | 6 | 2 KL 1D] 3 | 2 |J[32,4,4(0,0)] 7 | 1

2.2 [ 5 | 2 L0, @2 3 | 3 |[[3;2,4 (L) 6 | 2

2.3 | 4 | 2 |[L,10,13)] 2 | 2 |[[352,4,21D] 5 | 1

24) | 3 |1 [1:2,2]o 9 | 1 |IB352,444(1,2)| 5 | 2

0;1,0p | 5 | 2 2,1, 0], 3| 2 |[[3;2,4,(1,3)] 4 | 2

0;1,1 | 7 | 2 [ZL1:0,00] 4 | 2 [[32,4,.(1,4)] 3 | 2

0;1,1,00)] 6 | 2 [ZL1 (1,0 3 | 2 [324..(1,5] 2 | 2

0; 1,1, ()] 5 | 3 |[ZL1.(1,2)] 2 | 2 |24, (L6)| 1 | 1

0; 1,1, 2) | 4 | 3 |[21L,1,(1,3)] 1 | 1 [4;1,0], 1| 1

0;1,1],(3)| 3 | 2 [2;1,2]o T 1 [4;2, 4]00 8 [ 1
1,00 | 4 | 2 || L2y | 5 | 1

(2) Suppose that chark # 2 and that (X, E,A) is of type [1;2,2]g. Then
(X, E,A) is extremal if and only if A = n1 Py +no Py for the ramifica-
tion points Pi, P of wlg: B — P! where (max{ni,ns},
min{n, na}) = (8,0), (6,2), (5,3), or (4,4).

(3) Suppose that chark = 2, (X, E,A) is of type [1;2,2]p, and that
7|p: E — P! is separable. Then (X, E,A) is extremal if and only if
A = 8P for the unique ramification points P of 7|g.

(4) Suppose that chark = 2, (X,E,A) is of type [1;2,2]p, and that
7|p: E — P! is inseparable. Then (X, E,A) is extremal if and only
if multp(A) > 2 for any point P € A.

PROOF. (1): Suppose that Supp A N (E; \ Sing E) contains two points
Py, P, for an irreducible component E; C E. We set m; = multp, (A) for
i=1, 2 and set A" = A+ mgo(P; — P») which is an effective Cartier divisor
of E. Then multp, (A") = my +mgy and P ¢ A’. Since the Dynkin diagram
Ay +my—1 contains the disjoint union of A,,,—1 and A,,—1, I'(X, E, A)rpp
is regarded as a subgraph of I'(X, E, A")gpp. In particular, (X, F, A) is not
extremal.

Next suppose that Supp A N (E; \ Sing F) consists of at most one point
for any irreducible component E; C FE, then I'(X, E, A)gpp is uniquely
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determined by Lemma 6.16. Thus (X, E, A) is extremal.
(2): We define

! __ —
A=A+ ZPE&P#PLPQ multp(A) (P, — P).

Since A1 C Dy, I'(X, E,A)grpp is a subgraph of I'(X, E, A")grpp by
Lemma 6.16. In particular, if Supp(A) ¢ {Pi, P2}, then (X, E,A) is not
extremal.

Suppose that A = nq1P; + noP» for n; > ny. Then nq + ny = 8. Then
D(X,E,A) is calculated as follows:

np o 1] 2 | 3 |4
D(X,E,A) | Dg | D7 | Dg +2A; | D5+ A3 | 2Dy
Since D7 C Dg, the case n; = 1 is not extremal. The other cases are
extremal.

(3) and (4) follow from a similar argument to (2) above and
Lemma 6.16. [J

We define an eztremal distribution of type T to be D(S) for an extremal
log del Pezzo surface S of type T.

If T # [1;2,2]p, then an extremal distribution Dt of type T is uniquely
determined. In fact, for an extremal fundamental triplet (X, E, A) of type
T, AN(E;\Sing F) consists at most one point for any irreducible component
E; C E, and hence Dt is the direct sum Zdi>2 Ag,—1 for the degree d; =
deg(A N (E; \ Sing E)), where the numbers d; depend only on T.

The extremal distributions of type [1;2,2]p has been classified in
Lemma 6.18, (2), (3), when 7|g: E C X — P! is separable. Let (X, E,A)
be an extremal fundamental triplet of type [1;2,2]o such that 7|g: E — P!
is inseparable. Then A can be written as a divisor 22:1 m;P; of E for
m; > 2 with > m; = 8. We may assume that m; > mg > --- > my. Then
(m1,...,my) is one of

(8), (6,2), (5,3), (4,4), (4,2,2), (3,3,2), (2,2,2,2).

Therefore, the extremal distributions are classified as in TABLE 8, where
the case [1;2,2]p is treated in *).
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TABLE 8. Extremal distributions

Type T Dt Type T Dt Type T Dt
[1]o Ay [1;1,1]o Ay [3;1,0]o 0
2] Az [151,1]4(0,0) | Ax+ A [3;1,1]+ Az
2.0 | 28 [[LLILMLD) Ay 3:2,4], As
2]+ (1) 2A; || [1;1,1]4.(2,1) A [3;2,4]4++(0,0) | As + Ay
2]+(2)  [Ax+ A | [1;1,1]4(1,2) 0 3:2,4]4+(1,1) Aq
2]+ (3) Az [1;1,1]4(1,3) 0 [3:2,4]++(2,1) Aq
[2]4(4) Az [1;2,2]o see *) below || [3;2,4]++(1,2) As
[0;1,0]o Az 2;1,0]o Az [3:2,4]++(1,3) Az
[0;1,1]o As (2;1,1]4(0,0) As [3:2,4]++(1,4) Ay
0;1,1]4(0) | 2A; || [%1,1]4(1,1) Ay [3;:2,4]44(1,5) 0
051,14 (1) | 2A¢ || [%1,1]4(1,2) 0 [3;2,4]44(1,6) 0
[0§171]+(2) A1 [2§171]+<173) 0 [4;170]0 0
[0;1,1]1(3) A1 2;1,2]o As + A1 [4;2, 4Joo Az
[1;1,0]o Az 2,1, 2]+ 2A2

*) Extremal distributions of type [1;2,2]o:

chark#? Dg7 D6+2A1, D5+A3, 2D4
chark = 2 Dg7 D6 + 2A1, D5 + Ag, 2D47 D4 +4A1, 2A3 + 2A17 8A1

COROLLARY 6.19.  The distribution D(S) of rational double points of a
log del Pezzo surface S of type T is realized as a subdiagram of an extremal
distribution of type T. Conversely, any subdiagram of an extremal distri-
bution of type T is realized as D(S) for a log del Pezzo surface S of type
T, provided that T # [2;1,2]g. An extremal distribution of type [2;1,2]o is
K14+ As + A1 and any subdiagram containing the part Ky + Ay is realized as
D(S) for a log del Pezzo surface S of type [2;1,2]o.

PROOF. The first assertion follows from Proposition 6.18. A subdia-
gram of A,,_1 is also a direct sum of A,,,_; with m > " m;. Similarly,
a subdiagram of Dy, is the sum of D;,, and A;,;—1 with m > n + >.m;.
If (X,E,A) is of type [2;1,2]g, then D(X, E,A) always contains A; which
corresponds to the total transform of the negative section o C X. Thus, we
have the converse assertion. []

THEOREM 6.20. For a given type T, an extremal fundamental triplet
of type T is unique up to isomorphism if T # [1;2,2]g. In case T = [1;2, 2],
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the isomorphism class of extremal fundamental triplet is determined by the
extremal distribution D either if chark # 2 or if D & {Dg, 8A1}.

PROOF. Suppose that the type T is not [2]o, [0;1,1]o, [1;2,2]o,
[3;2,4]+, nor [3;2,4]+4(a,b) with (a,b) # (0,0). Then for two extremal
fundamental triplets (X, E, Ay), (X, E,Ag) of type T, there exists an effec-
tive divisor E’ such that AN E" = AyNE’ =) and that X \(E+E') C X
is a torus embedding. Since every irreducible component is an orbit of the
torus, we have an automorphism f of X such that f(E;) = E; for any
irreducible component E; C E and f(A;) = Ag outside the nodes of E.
Suppose that E has a node P contained in A;. Then P = Eq N Ey and
E = Ei + E» for two irreducible components F1 and E,. We may assume
the following properties to be satisfied:

e There is an effective divisor E’ such that Supp(A;) \ P C FE/,
Supp(Az)\ P C E',; and X \ (F + E’) C X is a torus embedding.

e multp(A; N Ey) = multp(As N Ey) = 1 and multp(A; N Ey) =
multP(A2 N Eg) =b.

Let ¢f: M* — X be the elimination of A;N(Ey\ E') = AyN(Ey\ E’). Then
#* is a toric blowing-up defined by a subdivision of the fan corresponding to
X\ (E+FE') C X. The weak transform of A; is supported on a non-singular
point P; of an exceptional curve T' C (¢#) ™' (P) and on nodes of (¢*) ™1 (E +
E') for i = 1, 2. The open torus acts transitively on '\ Sing(¢*) =1 (E + E).
Therefore, we have an automorphism f of X with f(A;) = As.

Next, we consider the exceptional types.

Case [2]p. E ~P! C X ~ P? is considered as the Veronese embedding
by |O(2)|. Thus an automorphism of E lifts to an automorphism of X. An
extremal fundamental triplet (X, E, A) is determined by a point P € E by
A = 8P. Thus the isomorphism class of the extremal fundamental triplet
is unique.

Case [0;1,1]p. We may assume that E is the diagonal locus of X =
P! x P'. Thus an automorphism of E lifts to an automorphism of X. Thus
the isomorphism class of extremal fundamental triplet is unique by the same
reason above.

Case [1;2,2]p. The extremal distributions are classified as in *) of TA-
BLE 8 by Proposition 6.18, (2)—(4). For an extremal fundamental triplet
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(X,E,A), if chark # 2, then A is supported on the two ramification
points of 7|gp: E — P If chark = 2 and D(X, E,A) ¢ {Ds,8A;}, then
n|g: B — P! is inseparable and A is supported on at most three points.
Thus the isomorphism class of the extremal fundamental triplet (X, E, A)
is determined by the distribution.

Case [3;2,4]4+. E = o+ D for a section D ~ o + 4¢ and an extremal
fundamental triplet (X, E/, A) is given by A = 8P for a point P € D\ o. For
given two points Py, P, € D\ o, we take another point Q € D\ (cU{P;, P»})
and consider the elementary transformation at @: X -+— X5 ~ Fo. Let
Q2 € X5 be the intersection point of the proper transform Do C Xy of
D and the fiber over 7(Q) and let X9 -— X; ~ [F; be the elementary
transformation at Q2. Let Q1 € X1 be the intersection point of the proper
transform D; C X of D and the fiber over 7(P) and let X; -— Xy ~ Fy be
the elementary transformation at Q1. Let o9 C X be the proper transform
of o and let Qg € Xy be the intersection point of the proper transform
Dy C Xp of D and the fiber over 7(P). Note that Dy is regarded as
the diagonal of P! x P!. There is an automorphism ¢ of Dy such that
¢(Do Nag) = Do N oo, p(Qo) = Qo, and ¢(f(F1)) = ¢(f(F2)) for the
rational map f: X -+— Xg. Then ¢ lists to an automorphism ¢ of Xy which
preserves the section og, the fiber over 7w(P), and Dy. Hence ¢ induces an
automorphism @ of X such that (D) = D, (o) = o, and @(P)) = P.
Hence, the isomorphism class of extremal fundamental triplet is unique.

Case [3;2,4]+4(a,b) with (a,b) # (0,0). E = 0+ {+ 0 for a fiber
¢ and a section 04 at infinity. Let P be the point oo N £. Let A; and
As be effective Cartier divisors of E giving extremal fundamental triplet
of this type. By the argument above, we may assume that Supp(A; N
Oc0) = Supp(Az Nos) = {P} U (0 N ¥') for another fiber ¢ and that
Supp(A; N ¢) = Supp(Ay N ¢). Let ¢f: M* — X be the elimination of
A1 N0y in case multp(A; N¥¢) = 1, and the the elimination of A; N/
in case multp(A; Nos) = 1. Then the weak transform Ag fori =1, 2
is supported on a non-singular point P; of a ¢f-exceptional curve I, on a
point @ € ¢\ {P}, and on the inverse image of the intersection point oo, N¢'.
Since I and the proper transform of ¢ are two irreducible component of the
boundary of the torus imbedding into M?, an element of the open torus
acts trivially on the proper transform of ¢ and moves Pf to Pg. Thus
f(A1) = Ay for an automorphism f of X. Hence, the isomorphism class of
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extremal fundamental triplet is unique. [

REMARK 6.21. In case chark = 2, the isomorphism class of an ex-
tremal fundamental triplet of type [1;2,2]p with the extremal distribution
D is not unique if D = Dg or 8A;. In fact, if D = Dg, then there are two
fundamental triplets (X, E,8P) and (X, E’,8P") for X = [F; such that

e 7|g: E — P! is separable and P is the unique ramification point of
TI"E,

e 7|g: E — P! is inseparable and P is any point of E.

If (X,E,A) is an extremal fundamental triplet with the distribution D =
8A1, then 7|g: E — P! is inseparable and Supp A consists of four points.
Thus A is not unique up to isomorphism of E. Moreover, there are infinitely
many isomorphism classes of (X, E,A) with D(X, E, A) = 8A;; This fact
was pointed out by Ohashi.

COROLLARY 6.22 (cf. [4], [20]). There is a one-to-one correspondence
between the set of isomorphism classes of log del Pezzo surfaces of index
two with Picard number one and the set of isomorphism classes of extremal
fundamental triplets of the following types:

(1o, 2o, [2]+(0), [21+(4), [1;2,2]o, [21,1]4(1,3), [21,2]0, [251,2]4+,
[3;171]+’ [3;274]-1-7 [3;2a4]+(070)a [3;2a4]++(2’ 1)7 [3;274]++(1’6)7
[4;170]07 [4;274]00-

In particular, if chark # 2, then there are exactly 18 isomorphism classes of
log del Pezzo surfaces of index two with Picard number one, in which 4 iso-
morphism classes are of type [1;2,2]g. If chark = 2, then there are exactly
14 isomorphism classes of log del Pezzo surfaces of index two with Picard
number one not of type [1;2, 2]y, and there are infinitely many isomorphism

classes of log del Pezzo surfaces of index two with Picard number one of type
[1) 25 2]0

6.5. Dual graph of the negative curves
We consider the dual graph I' = I'(S) = I'[M] of negative curves on
M. The proper transform of an irreducible component F; of E in M is
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represented by a vertex in I'x. Thus we have a natural injection v: J(E) —
Ver(I'k) from the set J(E) of irreducible components of E to the set Ver(I'k)
of vertices of Ik.

Let C(I'mpp) be the set of connected components of Igrpp. Let C(A,)
and C(D,,) be the sets of connected components of I'gpp which are Dynkin
diagrams of types A, and D,, respectively.

Let V be the subset of white vertices joined to I'k. A vertex v € V
represents a (—1)-curve v on M with Ej; Ny # (), equivalently a (—1)-curve
belonging to the case (5) or (6) of Proposition 6.2.

Let I be the subgraph of I' consisting of vertices of V U I'k U IRpp.
Let W be the set of white vertices of I" which is not joined to I'k. Then a
vertex in W represents a (—1)-curve v with Epy Ny = (. Thus

Ver(I') = Ver(I”) UW = Ver(I'x) U Ver(Igpp) UV U W.

Note that Ik and Igrpp are uniquely determined as the subgraphs of I7.
In fact, I'k U Igpp is the subgraph consisting of non-white vertices, and a
connected component of Ik contains a non-black vertex.

LEMMA 6.23. Suppose that S is not of type [1;2,2]g. Then, for any
irreducible component E; € J(E), the scheme

AN (E; \ Sing E)

is uniquely determined up to isomorphism by the type T, the graph I'°, and
by v(Ej) € I'k. Moreover, the number §V of the finite set V is calculated as
follows:

o If Kyr+ Ly is big, then $V = deg(A) — o (S) — bt for the number bt
of black vertices in I'k.

o If T =1[3;2,4]+ or[4;2,4]00, then §V = 16 — 20(95).
o If T=[3:2,4]4+(Lb), then tV = 15 — 20(S) — 2b.
° IfT = [372,4]++(2, 1), then ttV =12 — 20’(3)

e Suppose that T = [3;2,4]44+(0,0). If a vertex in Ixpp joined to a
vertex v € V and v is joined to a black vertex of Ik, then §V =
15 — 20(S). If there is no such a vertex in I'jpp above, then §V =
14 — 25(S).
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Proor. We have C(I'rpp) = UC(An). In case T = [2;1,2]p, we set
C' € C(I'rpp) to be the complement of a unique element of C(Irpp) rep-
resenting the total transform of the negative section of X ~ . In case
T # [2;1,2]p, we set ' = C(Irpp)- In the both cases, we set C'(A,,) =
C'NC(An).

Let V4 C V be the subset of vertices representing a ¢-exceptional (—1)-
curve. Let P, € X denote the point to which the (—1)-curve is contracted.
Note that V,; =V if Ky + Ly is big. Let V. be the set of vertices v € V,
such that P, is a node of E. Let V), be the set of vertices v € Vy such that
P, ¢ Sing E and multp,(A) = m > 1. The number #V, is 0 or 1, which
depends on the type T. There is a one to one correspondence between C'(A;)
and V1 for [ > 1 as follows (cf. Lemma 6.16): A connected component
I'y € C'(A)) represents the set of (—2)-curves in the fiber ¢~1(P) over a
point P € A\ Sing F with multp(A) = [ + 1, where the end (—1)-curve of
¢~1(P) is represented by a vertex vy € Vj41. Here, v(E;) € Ver(I'k) is the
unique vertex of [k joined to vy for the irreducible component E; = Ejy) of
E containing P. Conversely, for a vertex v € V41, the set of (—2)-curves in
#~1(P,) is represented by a connected component I’ Aw) € C'(A7). Therefore,
we have

{Pc E;\SingE | multp(A) =141} ={Py\ | I\ €C'(A), j = j(\)}

for any [ > 1 and for any irreducible component E; of E. Since deg(A N
(Ej\Sing E)) is determined by T, the scheme AN(£};\Sing F) is determined
up to isomorphism by T, I’ and v(E;). We have

deg(A \ Sing E) = Zm 14V, and o(S) = Zm(z — 1)tV
If ANSing E # 0, then deg(A) — deg(A \ Sing E) = 1 + by. Therefore,
deg A — o (S) = bt +HVs.

Hence, we may assume that K + Ly is not big, i.e., T is one of [3;2,4]4,
(3;2,4]4+(a,b), or [4;2,4]gg. Here, deg A = 8. A vertex v € V\V, represents
the proper transform in M of a fiber of 7 passing through a point of A\
Sing E. Let E1 C E be the horizontal component which is not the negative
section. Then

VA Vp) =t{veVy [ 1=(v)}.
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Thus §V = 28V — e for ¢ = #{v € V, | j(v) # 1}. Here, ¢ = 0 for
T = [3;2,4]+, [3;2,4]++(2,1), [4;2,4]p0; and € = 1 for [3;2,4]4+(1,b). If

T= [3a 27 4]++(0’ O)a then

_J 1, if j(A) # 1 for some I'y € C(Aq),
B 2, otherwise.

Thus we are done. OJ

COROLLARY 6.24. If T # [1;2,2]o, then the graph I'(S) depends only
on the subgraph I'(S)’.

PrOOF. It is enough to show the set W and the lines joining W and
I’UW are all determined. A vertex of W represents a (—1)-curve belonging
to one of the cases (7a)—(7e) of Proposition 6.2.

Case. X ~TP2 Then W = () if T = [1]y. Hence, we may assume that
T = [2]p or [2]+(b). Then a vertex of W represents the proper transform in
M of a line ¢ C X with deg(¢ N A) = 2, by Proposition 6.2. The line ¢ is
not a component of £/ and is one of the following:

e A line joining two distinct points of A.
e The tangent line of F at a point P € A\ Sing F with multp(A) > 2.

e The line ¢ passing through the node P of E with multp(AN¥¢) =2
in the case T = [2]+(1).

Therefore, the set W is determined by the graph I (S)b. Let ¢1 and ¢4 be
two such lines above. Then the proper transforms in M intersects if and
only if the intersection point ¢1 N ¢ is not contained in A. Therefore, the
graph I'(S) is also determined by I'(S)’.

Case. X ~F,, Kx+L is big, and T is not of type [0;1,1]o,
[0;1,1]4(b), nor [1;1,1]o.

Then a vertex in VW represents the proper transform of a fiber ¢ of
m: X — P! with deg(A N¥) = 1 by Proposition 6.2. Since A N/ is not
a node of E, the set W is determined by A \ Sing E. For P € AN,
the proper transform ¢y; C M of £ intersects the (—1)-curve ¢~ 1(P) if
multp(A) = 1, and intersects the end (—2)-curve of the straight chain




436 Noboru NAKAYAMA

¢~ 1(P) if multp(A) > 2. There are no other negative curves intersecting
¢nr. Therefore, I'(S) is also determined by I'(S)’.

Case. T =10;1,1]p or [0;1,1]+(b). A vertex in W represents the
proper transform of a fiber £ of m: X — P! with deg(AN¥¢) = 1 or the
proper transform of a minimal section o with deg(A No) = 1 by Propo-
sition 6.2. Since A N/ is not a node of F, the set W is determined by
A\ Sing E. Let £ be such a fiber. Then a negative curve intersecting the
proper transform £, is either an end curve of the chain ¢~!(P) for P = {NA
or the proper transform o) of a minimal section o with deg(ANo) =1,

ocNfNA = 0. We have a similar assertion for a minimal section o above.
Therefore, I'(S) is also determined by I'(S)°.

Case. T =11;1,1]p. A vertex in W represents the proper transform of
a fiber £ of m: X — P! with deg(A N¥¢) = 1 or the total transform of the
negative section o by Proposition 6.2. By a similar argument to the cases
above, we infer that I'(S) is determined by I"(S)°.

In the remaining case, Ky + Ljs is not big. The set W is empty for
T = 42,400, T = [3;2,4]+4(2,1), T = [3;2,4]14+(1,b) with 4 < b < 6
by Proposition 6.2. Thus the remaining types we must consider are T =
[3;2,4]+, [3;2,4]++(0,0), and [3;2,4]4+4(1,b) with 1 < b < 3.

Case. T=13;2,44+. E =0+ D and D ~ o + 4/ for a fiber £. A
vertex in W represents the proper transform ©); of a section © at infinity
with © N D C A by Proposition 6.2. Moreover, the section O at infinity is
uniquely determined by a subscheme A’ C A of degree 4 by A’ = © N D.
The (—2)-curves on M intersecting ©j are determined from the divisor A'.
For i =1, 2, let ©; be a section at infinity with A; = ©; N D C A, and let
©;, 1 be the proper transform in M. Then

@LM@Q’M = 0109 — deg(A1 N AQ) =3 deg(Al N Ag)

Therefore, W and I'(S) are determined by I'(S)°.

Case. T =[3:2,4] 14 (a,b) for (a,b) € {(0,0),(1,1),(1,2), (1,3)}. E
0+ € + 0 for a fiber £ and for a section o4 at infinity. A vertex in W

represents the proper transform ©); of a section © at infinity with © N
E C A by Proposition 6.2. Moreover, the section © at infinity is uniquely
determined by subschemes A’ C A N oy of degree 3 —b and A” € AN/ of
degree 1 —a by A'UA” =© N (F \ Sing E). Thus, by the same argument
as above, we infer that W and I'(S) are determined by I'(S)’. O
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The same assertion as Lemma 6.23 does not hold for type T = [1; 2, 2]o.

Example 6.25. Suppose that chark # 2. Let X = F; and let £ ~
20 4 2¢ be a non-singular divisor. Let P € E be a non-ramification point
with respect to 7|g: E — P!, £p the fiber of 7 passing through P, and let
P’ be the other point of /p N E. We consider two divisors Aj := 8P and
Ay := TP+ P on E. Then (X,E,A;) and (X, E,Ay) are fundamental
triplets of type [1;2, 2], and I'(X, E, A1)’ ~ I'(X, E, Ay)°, which is written
as the graph (3) of Lemma 5.13 with 7 black vertices. However, the number
of white vertices of I'(X, E, A1) is 7 and the number for I'(X, E, Ag) is
6, by Proposition 6.2, (7f), (7g). In TABLE 12 below, we have the graphs
I'X,E,A;) and I'(X, E, Ag).

LEMMA 6.26. Suppose that S is of type [1;2,2]g. Let w € W be the
vertex representing the total transform of the negative section o of X ~ [Fy.
Let L be the union of the fibers £ of m with deg(¢ N A) = 2. Then, (A,AN
L=FENL) (cf. Lemma 5.14) is uniquely determined up to isomorphism by
the graph I and w. Moreover, the dual graph I'(S) is determined by the
subgraph consisting of I and w.

PRrROOF. A reducible fiber F' of M — P! corresponds to a connected
component of the graph consisting of V U Irpp, by Proposition 6.2 and
Lemma 5.13. The image ¢ = ¢(F) a fiber of 7: X — P! and F = ¢*/.
Let /5; be the proper transform of ¢ in M. Then ¢;; be the irreducible
component of F' which intersects the total transform oj; of o.

Suppose that the dual graph of F'+FE)y is either (1) or (3) of Lemma 5.13.
Then F' is written as the straight chain Fy+ Fy +- - -+ F;, of rational curves
for m > 1 such that the end curves Fj and F;, are represented by vertices
in V and that 22_11 F; corresponds to a connected component of Igpp. If
by = F; for 0 < i <m, then f{NE = /N A and it consists of two points @1,
Q2 with multg, (A) =4, multg,(A) =m —i. If £yy = Fy or Fy,, then £NA
consists of one point ) with multg(A) = m. If m = 1, then either that ¢
intersects F transversely, or that £ N E consists of two points.

Next, suppose that the dual graph of F' + Ejs is either (2) or (4) of
Lemma 5.13. Then £ intersects E tangentially at a point P, and the number
of (—2)-curves in F' is multp(A) > 2. The vertex representing ¢, is a black
vertex joined to the unique white vertex.
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Hence, w and I"” determine the scheme structures of A and ANL = ENL.

By Proposition 6.2, a vertex w; € W\ {w} represents the proper trans-
form ©; 3 in M of a section ©; ~ o + n;¢ of 7 with ©;, N E C A for
1 < n; < 4. Furthermore, ©; corresponds to a subscheme A; C A with
degA; = 2n;, EN{ ¢ A; N L. The unique component of a reducible fiber
F' intersecting ©; »s is determined by the information on £ N A;. We have
©; mom = n; — 1. The intersection number ©; 370 s for w;, wj € W\ {w}
is calculated as

(0 +nil)(o +nil) —deg(AiNAj) =n; +n; — 1 —deg(A; NA;).
Thus the full graph I" = I'(S) is also determined by w and I". [J

LEMMA 6.27. Suppose that S is of type [1;2,2]g. Let V; for 0 <i <4
be the following subsets of V:

e v €V if and only if v is not joined to any black vertex.

e v €V if and only if v is joined to exactly one black vertexr and the
black vertex is an end of a connected component of I'rpp of type A,
forl>1.

e v €V if and only if v is joined to two black vertices.

e v € V3 if and only if v is joined to exactly one black vertices and the
black vertex is the middle vertex of a connected component of IRpp
of type As.

e v € V4 if and only if v is joined to exactly one black vertices and the
black vertex is an end of a connected component of Irpp of type D;
forl > 4.

Then V = |_|;l:0 Vi. Let V1; C V1 be the subset of vertices v such that the
connected component joined to v is of type A;. Let Vi, C V4 be the subset

of vertices v such that the connected component joined to v is of type D;.
Then

o(5) =2§V2 +31Vs + (1/2) 2121 LaVi, + 2124 L8V,
deg A =8= (1/2)ﬁV0 + 28V + 38Vs

+(1/2) D U D+ Vg

>4



Log del Pezzo Surfaces of Index Two 439

PROOF. The subsets V; are related to the graphs of Lemma 5.13 as
follows: If v € Vpy, then v is one of the two white vertices of the graph
(1). If v € V1, then v is one of the two white vertices of the graph (3)
with [ black vertices. If v € Vs, then v is the white vertex of the graph
(2). If v € V3, then v is the white vertex of the graph (4) with three black
vertices. If v € V4, then v is the white vertex of the graph (4) with [
black vertices. Thus V = | |V;. Since any (—2)-curve of M is contained in
a fiber of M — P!, 0(9) is calculated as above. For a point P € E, let {p
be the fiber of 7 passing through P, and mp := multp(A). If P is not a
ramification point of 7|g: E — P!, then N E = {P, P'} for another point
P’ € E. In this case, if mp+mp = 1, then the dual graph of ¢! (¢p) + Ey
is the graph (1); If mp +mpr = m > 1, then the dual graph is the graph (3)
with m — 1 black vertices. If mp =2 and /pN E = 2P, then the dual graph
of ¢ 1(¢p) + E) is the graph (2). If mp = 3 and ¢p N E = 2P, then the
dual graph of ¢~1(¢p) + E); is the graph (4) with three black vertices. If
mp >4 and /pNE = 2P, then the dual graph of ¢~!(¢p)+ E)s is the graph
(4) with mp black vertices. Thus degA =8 = > p. A mp is calculated as
above. [J

THEOREM 6.28. Let S1 and Sy be log del Pezzo surfaces of index two.
Fori =1, 2, let (M;, En,) be the basic pair associated with S; and let I'(.S;)
be the dual graph of negative curves on M;. If chark # 2, then the following
conditions are mutually equivalent:

(1) (My, Eny) and (Ma, Epy,) are equi-singular deformation equivalent,
and I'(S1) and I'(S2) are isomorphic;

(2) S1 and Sz have the same type, and I'(S1) and I'(S2) are isomorphic;

(3) There exist fundamental triplets (X1, E1, A1) and (Xa, B2, Ag) defin-
ing S1 and Sa, respectively, such that (X1, E1,A1) and (X2, E2, Ag)
are strongly equi-singular deformation equivalent;

(4) Sy and Sy are equi-singular deformation equivalent.

PrOOF. (1) = (2): Let T; be the type of S; for i = 1, 2. Then
T1 = TQ, (Tl,TQ) = ([0;1,1]0,[2;1,2]0), or (Tl,Tg) = ([2;1,2]0,[0;1,1]0)
by Theorem 6.1. Under the isomorphism I'(S7) ~ I'(S2), we have isomor-
phisms F(Sl)K ~ F(SQ)K and F(Sl)RDp ~ F(SQ)RDP. If T1 = [2;1,2]0,
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then there is an isolated black vertex in I'(S1)rpp. If T2 = [0;1,1]o, then
there is no isolated black vertex in I'(S2)rpp. Hence, T; = Ta.

(2) = (1) follows from Theorem 6.1.

(2) = (3) Since T; = T and chark # 2, there exist a minimal ba-
sic pair (X, E) and zero-dimensional subschemes A; and Ay of E such
that (M;, En,) is obtained as the elimination of the fundamental triplet
(X,E,A;) for i = 1, 2. Thus the assertion (3) follows from Lemmas 5.14,
6.23, and 6.26.

(3) = (4) is shown in Theorem 5.15.

(4) = (2): Let f: S — T be an equi-singular deformation of log del Pezzo
surfaces of index two over a non-singular connected curve 1. Let M —
S be the simultaneous minimal resolution and h: (M, E3;) — T be the
induced equi-singular deformation of basic pairs. Then, I'(S;)k L I'(S¢)rpp
is independent for any fiber S; = f~!(¢). In particular, all the fibers S; have
the same type T by the argument in (1) = (2) above. If v is a (—1)-curve
on the fiber My = h=!(0) over a point o € T, then + is the fiber over o of a
divisor T of h~Y(U) for a Zariski open neighborhood U of o such that any
fiber of I — U is a (—1)-curve. In particular, the number of (—1)-curves
on M, for t € T defines a lower semi-continuous function. Let V(t) be
the set of white vertices in I'(S(¢)) which are joined to I'(S(¢))rpp. Then
t +— #V(t) is also lower semi-continuous. If fV(t) is constant, then I'(S(t))
is uniquely determined, and hence I'(S(t)) is also constant by Corollary 6.24
and Lemma 6.26. Thus, it is enough to show the function §V(¢) is constant.
If T #[3;2,4]4+4(0,0) and T # [1;2,2]p, then §V(¢) is constant, since it is
determined by T and I'(S(t)) by Lemma 6.23.

Suppose that T = [3;2,4]4+4+(0,0). Let V'(¢t) C V(t) be the subset of
vertices v which is joined to a black vertex in I'(S(t))k. Then §V'(t) = 1
or 2, and ¢ — §V'(t) is lower semi-continuous. On the other hand, $V(t) =
16 — 20(S(t)) — §V'(t) by Lemma 6.23. Hence, V(t) and V'(t) are constant.

Suppose that T = [1;2,2]op. Let V;(t) be the set V; for S(t) in
Lemma 6.27. Similarly, we define Vy,(t) and Vy,(t). Then §V;(t), §V1,(1),
and §V,(t) are all lower semi-continuous functions. Let a(l) be the number
of connected components of I'(S(t))rpp of type A; for I > 1 and let d(l) be
the number of connected components of I'(S(t))rpp of type D; for [ > 4.
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Then
a(l) = (1/2)fV11(t) +20%(t),  a(2) = §(1/2)V12(2),

a(3) = (3/2)1Vi3(t) +38Vs(t),  a(l) = (1/2)fV1,(t) for [ >4,

d(l) = ﬁV47l(t) for Z 4.

By the formula for deg(A) in Lemma 6.27, we infer that all the §V;(¢t) are
constant. In particular, §)(¢) is constant. OJ

6.6. Comparison with the classification by Alexeev—Nikulin

The right resolution plays an important role in the classification theory
of log del Pezzo surfaces of index two by Alexeev—Nikulin [4]. We assume
chark = 0 in Section 6.6.

A general member Cg € |-2Kg| is non-singular, by Bertini’s theorem.
Let Cy be the total transform in ). Then the divisor C'y + Ey is non-
singular and linearly equivalent to —2Ky. The pair (), Cy + Ey) is called a
right DPN pair of elliptic type in [4]. Let 7: X — Y be the double-covering
branched along Cy + Ey. Then & is non-singular and is a K3 surface. Note
that X does depend on the choice of Cg. Let 8 be the covering involution
of X with respect to 7. Then 6 does not preserve a nowhere vanishing
holomorphic 2-form on X, i.e., # is non-symplectic. The 6-fixed locus X?
is non-singular and is isomorphic to 7(X?) = Cy + Ey. We call X the K3
surface associated with (S, Cyg).

REMARK. Let X — X’ — S be the Stein factorization of the composite
Bor: X — S. Then X' — S is a double-covering étale outside Sing C's U
Sing S and Oy ~ Og & Os(Kg). Moreover, X’ has only rational double
points as singularities and has a trivial dualizing sheaf. Thus the notion of
right resolution of S is just the notion of canonical resolution in the sense
of Horikawa with respect to the double-covering X’ — S.

REMARK. Giving a non-singular member Cs € |—2Kg| is equivalent
to giving a non-singular member C)y; € |Ly| for the associated basic pair
(M, Ep). Let (X, E,A) be a fundamental triplet defining the log del Pezzo
surface S. Then a non-singular member Cg € |-2Kg| is the proper trans-
form of a non-singular member C' € |L| with C N E = A.
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Conversely, let us consider a K3 surface X with a non-symplectic in-
volution #. Then the #-fixed locus X? is a non-singular divisor. Let ) be
the quotient surface of X by the action of # and let 7: X — )Y be the quo-
tient map. Since Ky ~ 7*Ky 4+ X? 7(X?) is a non-singular divisor linearly
equivalent to —2Ky.

LEMMA 6.29. Suppose that X is reducible and contains an irreducible
curve of genus g > 2. Then (X,0) is constructed from a log del Pezzo
surface S of index two and a non-singular member Cs € |—2Kg| as above.

PRrOOF. Let Cy C Y be the image of the curve of genus g and let Ey,
be the rest of 7(X?). Then KyCy + C3, = (1/2)032, =29—-2>0. By
the Hodge index theorem, Ezy < 0 for any irreducible component E;y of
Ey. Thus, E;y is a (—4)-curve by —2KyFE; y = EZZ,J/‘ Hence, Y is the right
resolution of a log del Pezzo surface of index two by Lemma 6.8. Moreover,
Cy is the total transform of a non-singular member Cg of |—2Kg|. Thus,
we are done. [

Therefore, the classification problem of log del Pezzo surfaces of index
two is reduced in some sense to the classification of K3 surfaces with non-
symplectic involutions, if chark = 0.

Let S1 and S be two log del Pezzo surfaces of index two whose right res-
olutions ); and )» are deformation equivalent. For i = 1, 2, let X; be the K3
surface associated with (5;, C;) for a non-singular member C; € |-2Kg,],
and let 0; € Aut(S;) be the associated non-symplectic involution. Then
(X1,61) and (X3, 02) are deformation equivalent by an argument in Proposi-
tion 6.10. In fact, X} and A5 appear as fibers of a smooth family X =T of
K3 surfaces over a connected curve T' where X admits an involution 6 over
T and the restriction of 8 to S; is 6; for i = 1, 2. Therefore, the deformation
type of (X,60) depends on the deformation type of the DPN surface ), and
vice versa.

Assume further that k is the complex number field C. In order to
study (X, 0), Alexeev and Nikulin have considered the invariant part S =
H2(xan,7)%" of the K3 lattice H(X*",Z) by the induced involution #*.
Then S is an even hyperbolic 2-elementary lattice contained in NS(X) in
the following sense:

Let A be a non-degenerate lattice and let Q(z,y) € Z denote the in-
tersection pairing for z, y € A. Then A is called even if Q(z,z) € 2Z for
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any x € A. It is called hyperbolic if the signature of Q(-,-) is (1,7 — 1)
for r = rank A. Tt is called 2-elementary if A*/A ~ (Z/27)%* for the dual
lattice A* = Hom(A,Z) C A ® Q.

For an even hyperbolic 2-elementary lattice A, the main invariants are
defined to be (7, a, §), where the remaining invariant § € {0, 1} is determined
as follows: 6 = 0 if and only if Q(z*,2*) € Z for any x* € A*. It is shown
that the isomorphism classes of even hyperbolic 2-elementary lattices are
determined by the main invariants (cf. [4, Appendix A.2]). Furthermore,
the main invariants for even hyperbolic 2-elementary lattices A admitting
primitive embeddings into a K3 lattice are classified in [4, Appendix A.2]
by an algebraic argument of the lattice theory.

The main invariants of S have the following geometric interpretation
(cf. [4, Section 2.3, Appendix A.2]): Let g be the genus of Cs and let k
be the number of irreducible components of Ej;. Note that L2, = 4g — 4,
K% =g—1>1,and k equals the number of (—4)-curves on Y. Then (g, k)
and (r,a) are related by

k=(r—-a)/2, g=22-r—a)/2; r=11—-g+k, a=11-g—k.

The invariant ¢ coincides with the 6 of Definition 6.9 (cf. [4, Section 2.3]).

By the geometric interpretation and by TABLE 6, we have the list of the
main invariants for all the types of log del Pezzo surfaces of index two in
TABLE 9. Here, the number N in TABLE 9 is the entry number N used in [4,
TABLE 1], which is given by the lexicographic order with respect to (k,r,6).
Note that Alexeev and Nikulin [4] has treated also log del Pezzo surfaces of
index one and that the list with N < 10 in [4, TABLE 1] corresponds to the
case of index one.

By the Torelli type theorem for K3 surfaces, Alexeev—Nikulin proved
that the set of the pairs (X, 0) of K3 surfaces X and non-symplectic invo-
lutions € having fixed main invariants (7, a, ) forms a connected family.

In [4], the log del Pezzo surfaces of index at most two are classified not
only by the main invariants but also by another invariant called the root
invariant. We omit the explanation of the root invariant here, but it almost
corresponds to an information on the set of negative curves on the DPN
surface ). They classified the root invariants for any (X, #) by an algebraic
argument of lattices and by the Torelli type theorem for K3 surfaces. The
method of calculating the dual graph I'[Y] of the negative curves on ) from
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TABLE 9. The main invariants of fundamental triplets

Type T rlal|ld|N Type T r |lal|déd| N
1]o 6 |4]0]15 [2;1,0]p 4 [2]1]13
2]o 9 | 711119 2;1,1]4+(0,0) 71311122
2].(0) 10161126 2;1,1]4+(1,1) 8 |2]1]28
2]+(1) 11151132 2;1,1]4+(1,2) 9 111134
[2]-(2) 12 4 11(38] [2:1,1]4(1,3) [ 10| 0|0 |40
[2]-(3) 1313 ]1]43 (2;1,2]o 8 |6]1]18
2] (4) 1412|046 (2;1,2]44 101410130
[0;1,0]9 6 |4]1]16 [3;1,0]0 3 | 1]1]12
[0;1,1]g 8 1611118 [3;1,1]+ 6 |2]0]21
[0;1,1]4(0) 9 |5|1]24 (3;2,4]+ 117127
[0;1,1]4(1) | 10| 4| 1]31] [3;24]+4+(0,0)]12]6|1]|33
[0;1,1]4(2) |11 |3 |1 ]37 ] [3;2,4]+4+(1,1) [ 13| 5| 1|39
[0;1,1]2(3) |12 | 2| 1|42 [3;2,4]+4(2,1) |14 |4 |0 | 44
[1;1,0]o 5 1311141 [3;2,4]+4(1,2) | 14| 4 | 1|45
[1;1,1]g T 51|17 [3;2,4+4(1,3) | 15| 3 | 1| 47
[1;1,1)4(0,0) | 8 | 4 | 1|23 [3;2,4]4+4(1,4) [ 16 | 2| 1| 48
[1;1,1)4(1, ) | 9 | 3129 [3;2,4]44(1,5) [ 17| 1] 1] 49
[1;1,1)4(2,1) | 10| 2 | 0 | 35 || [3;2,4]4+4(1,6) [ 18 | 0| 0 | 50
[1;1,1)4(1,2) |10 | 2 | 1| 36 [4;1,0]0 2 10011
[1;1,1)4(1,3) | 11 | 1 | 1 | 41 [4;2,4]00 106|025
[1;2,2]g 1018|1120

the main invariants and a root invariant is explained in detail in [4]. The
nef cone of Y is determined by I'[)] up to the action of certain Weyl group
defined by the root invariant. The nef cone is used for the Torelli type
theorem.

Let I'(S) be the dual graph I'[Y]. Then we have a natural map
Ver(I'(S)) — Ver(f(S)) by taking proper transforms in ). Let f(S)K
be the subgraph of r (S) consisting of the vertices representing irreducible
components of ¥* Eys. This is called the logarithmic part of I'[)] in [4]. If a
connected component of r (S)k corresponds to a singular point of S of type
K, for n > 2, then the component is written as
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where the total number of the vertices is 2n 4 1. The subgraph r (S)rpP C
f(S) consisting of the (—2)-curves on Y is called the Du Val part of I'[)] in
[4], and is canonically isomorphic to I'(S)gpp. The union I'(S)k UT'(S)rpp
is just the dual graph of the (-exceptional curves. Note that r (S) is deter-
mined by I'(S) by Corollary 6.5.

Therefore, the classification of the main invariants and the root invari-
ants seems to correspond to the classification of equi-singular deformation

types by Theorems 6.1, 6.28.

6.7. Dual graph of the negative curves for extremal cases

We shall write the graph I’ (S) for an extremal log del Pezzo surface S
of index two. The notion of extremal in [4] is the same as our notion in
Definition 6.17 if we erase the case of type [2;1,2]p. Then we have the list
of dual graphs for chark = 0 in [4, TABLE 3|. We can calculate the graph by
a geometric way by using results in Section 6.2. This method is completely
different from that in [4].

Let us fix an extremal fundamental triplet (X, E,A) defining S. A
negative curve on ) is one of the following curves:

(1) An exceptional curve for the composite Y — M — X.

(2) The proper transform of an irreducible component of E; in other
words, an irreducible component of Ey.

(3) The proper transform of an irreducible curve of X not contained in
E.

By Proposition 6.2 and Corollary 6.5, we can classify the negative curves in
the case (3) as follows.

PROPOSITION 6.30. Let G be the set of irreducible curves v of X with
v ¢ E whose proper transform in Y is negative. Then & is described as
follows according to the type T of the extremal fundamental triplet (X, E, A):

(1) =0 if T is one of

[1]0a [2]+(4)7 [1;171]+(271)7 [2;1a1]+(131)a [2§171]+(1a2)7
2;1,1)4(1,3), (21,244, [31,14,  [3;2,4]44(1,6), [4;1,0]0.
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If T =[2]o, then A = 8P for a point P of the non-singular conic E,
and & consists of the tangent line at P.

Suppose that T = [2]4(b). Then E = Ey + Ey for two lines Ey,
E5. Let P be the node F1 N Eo. If b = 0, then A = 4Q1 + 4Q)-
for points Q1 € Ey \ {P}, Q2 € Ex \ {P}. Ifb > 0, then A =

3Q1 + (4 = b)Q2 + Ap for points Q1 € Ey \ {P}, Q2 € Ex\ {P}
and for an effective Cartier divisor Ap of E supported on P with

multp(Ap N Ey) =1, multp(Ap N Ey) = b.

(a) Ifb# 1, 4, then & consists of the line passing through Q1, Q2.

(b) If b = 1, then & consists of the line passing through Q1, Q2
and the unique line £ with f N E = Ap.

S consists of one fiber of the Pl-bundle 7: X — P! if T is one of

3; 1, 0], [3;2)4]++(271)7 [3;274]++(174>7 [3;274]++(175)5

[0;1,0]0, [051,1]4+(3),

[1;1,0]0, [151,1]4(0,0), [1;1,1]+(1,1), [1;1,1]4+(1,2),
[1;1,1]4(1,3)

2;1,00, [2;1,1]4(0,0),

[3;1,0]

[4;2,4]

S consists of a fiber and a minimal section of m: X — P if T is one

0;1,1]o, [0;1,1]4(0), [0;1,1]4(1), [051,1](2),
151,10, [251,2]p.

Suppose that T = [3;2,4]4+. Then E = o+ D for a section D ~ o+4¢.
Let P be the node cND. Then A = 8Q) for a point Q € D\ {P}. Let
lp and Ly be the fibers of m passing through P and Q, respectively.
Then & consists of £p, g, and the section © at infinity with ©NE =

4Q.

Suppose that T = [3;274]++(a>b) fO’F (avb) < {(070)7(171)7(1a2)7
(1,3)}. Then E = 040+ for a section o at infinity and a fiber ¢
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of w. Let P be the node oooNl. Then A = (6—b)Q+(2—a)Q'+Ap for
points Q € 000 \{P}, Q" € L\{P} and for an effective Cartier divisor
Ap of E supported on P with multp(ApNos) = b, multp(ApNl) =
a. Let g be the fiber of ™ passing through Q.

(a) If (a,b) = (0,0), then & consists of gy and the section © with
ONE=3Q+Q.

(b) If (a,b) = (1,1), then & consists of lg and two sections O1, O
at infinity such that ©1NE = 3Q+ Q" and O:NE = 2Q + Ap.

(c) If (a,b) = (1,2), then & consists of Lg and two sections O1, O
at infinity such that ©1NE =3Q + Q' and ©:NE = Q + Ap.

(d) If (a,b) = (1,3), then & consists of Lg and two sections O1,
O9 at infinity such that ©1NE =3Q + Q' and ©: N E = Ap.

Suppose that T = [1;2,2]p and chark # 2. Then A = nyPi+naPs for
the ramification points Py, Py € E of the double-covering w|g: E —
P and for (n1,n2) € {(8,0),(6,2),(5,3),(4,4)}. Let £; be the fiber
of ™ passing through P; fori=1, 2.

(a) If (n1,n2) = (8,0), then & = {o,(1}.

(b) If (n1,m2) # (8,0), then & consists of o, the fibers {1, 3, and
the section © at infinity passing through P; and Ps.

Suppose that T = [1;2;2]g and chark = 2. If t|g: E — P! is sepa-
rable, then A = 8P for the unique ramification point P € E, and &
consists of the fiber £p passing through P and o. Suppose that 7|g
is inseparable. Then A = Zé:l m; P; forl distinct points Py, ..., B
forl <4, andmi >mg>--->m; > 2 wichizlmi:& Let ¢; be
the fiber of ™ passing through P;.

(a) Ifl=1, then & = {0,(1}.

(b) If2 <1 <3, then & consists of o, the fibers ¢; for 1 < i <1,
and the sections ©; ; at infinity with ©; j|p = P+ P; for 1 <
1< j <l

(c) If l = 4, then & consists of o, the fibers ¢; for 1 < i < 4, the
sections ©; ; at infinity with ©; j|p = Pi+Pj for 1 <i < j <l,
and the section T ~ o + 20 with Y| = Z?:l P;.
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Proor. (1), (2), (4), (5) are shown directly from Proposition 6.2 and
Corollary 6.5.

(3): If b > 1, then there is no line ¢ with /N E C Ap by Corollary 2.13.
If b = 1, then there exists uniquely the line ¢ with /N E = Ap. Thus & is
described as above by Proposition 6.2, (7a).

(6): The proper transform of fg in M is a (—1)-curve in Proposi-
tion 6.2, (6). The proper transform of £p in ) is the (—1)-curve appearing
at Lemma 6.4. Since A = 8P and (o + 3¢)D = 4, the section O at infinity
with © N F C A is unique. Thus & consists of these three curves.

(7): It is enough to determine the sections © at infinity satisfying © N
E C A. Since Qo = 3, OF = 1, we have the unique section © in case
(a,b) = (0,0) and the two sections ©1, O3 in other cases by Corollary 2.13.

(8) and (9): It is enough to determine the sections © ~ ¢ + m/{ for
1 <m < 4 with ©NFE C A. For the fiber £p passing through a point
P € A, we have ¢p|p = 2P. Hence, the sections © are determined by
Proposition 6.2, (7g). Thus we are done. [J

Using Proposition 6.30, we can calculate the graph r (S) for any ex-
tremal log del Pezzo surface S of index two. If the type T is not [1;2,2]o,
then the extremal fundamental triplet (X, E,A) of type T is unique up
to isomorphism by Theorem 6.20, so the graph I (S) for the extremal log
del Pezzo surface S is denoted by I T for T # [1;2,2]p. We shall explain how
to calculate I’ (S) for some types in each case of Proposition 6.30, and have
the list of graphs for some types in cases (1)—(7) in TABLE 10. In the cases
(8)—(9), we list the graph I'(S) for two extremal cases in TABLE 11. We can
obtain the same graphs as in [4, TABLE 3] for all the types if chark # 2,
but we omit the calculation in the remaining types.

In the graphs in TABLE 10, a vertex labeled with an irreducible curve
of X represents the proper transform of v in ).

Case (1). & =0. If T =[4;1,0]p, then © is the graph I'r since A =0
and Y ~ M ~ X. If T = [1]o, then A = 5P for a point P of a line F
of P2, Y ~ M, and hence fT is written as in TABLE 10. For other types
with & = (0, F is reducible and )V — M — X is a succession of blowups
whose centers lie on the proper transform of £ or on the inverse image of
the nodes of E. Thus I T is naturally obtained. For example, we consider
the case T = [2;1,1]4(1,2). Then E =0 + ¢ and A = @ + Ap for a point
Q € ¢\ o and for an effective Cartier divisor Ap supported on the node
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P = o N ¢ such that multp(ApNo) =1 and multp(Ap N¥¢) = 2. Thus we
have the graph It as in TABLE 10.

Case (2). T =][2]o. E is a non-singular conic of P? and A = 8P. For
the tangent line £p of F at P, we have the graph It in TABLE 10.

Case (3). T = [2]4(b). E = Ei + Ey for two lines Ey, Ey of PL.
Suppose that b = 0. Then A = 4Q + 4Q5. For the line £y passing through
@1 and @2, we have the graph f—r in TABLE 10. For the case b # 1, f—r
is similarly obtained. Suppose that b = 1. Let £y € © be the line passing
through Q1, Q2 and let /1 € & be the other line. Then the point £y N ¢y is
not lying on E. Thus fT is as in TABLE 10.

Case (4). Here, we pick up three types [2;1,0]p, [1;1,1]+(1,1), and
[3;2,4]++(2,1). Suppose that T = [2;1,0]gp. Then F = o and A = 2P.
Thus we have the graph ﬁr in TABLE 10 for the fiber ¢p of m passing
through P.

Suppose that T = [1;1,1]4(1,1). Then £ = o+fand A = Q1+2Q2+Ap
for Q1 € o\ ¢, Q2 € £\ 0, and for an effective Cartier divisor Ap supported
on P =0 N¢ with multp(ApNo) =multp(ApN¥) =1. Thus we have the
graph fT in TABLE 10 for the fiber ¢; passing through Q.

Suppose that T = [3;2,4]44(2,1). Then F = 0 + 0 + ¢ and A =
5Q + Ap for Q € 0 \ ¢ and for an effective Cartier divisor Ap supported
on P = 05 N{ with multp(Ap Now) = 1, multp(Ap N¥¢) = 2. Thus we
have the graph fT in TABLE 10 for the fiber /g passing through Q.

Case (5). Here, we pick up three types [0;1,1]o, [0;1,1]4(1), and
[2;1,2]p. Suppose that T = [0;1,1]p. Then E is regarded as the diago-
nal locus of X = P! x P! and A = 6P for a point P € E. Let ¢; be the fiber
passing through P of the i-th projection X — P! for ¢ = 1, 2. Then f—r is
as in TABLE 10. Note that this graph is not included in [4] since this is not
extremal in the sense of [4]. In fact, the extremal distribution Dy, j), is a
subdiagram of Dy, g),-

Suppose that T = [0;1,1]4(1). Then F = o+¢ and A = 2Q1+2Q2+Ap
for Q1 € 0\ ¢, Q2 € £\ 0, and for an effective Cartier divisor Ap supported
on the node P = ¢ N ¢ with multp(Ap No) = multp(Ap N¥) = 1. Let {4
be the fiber passing through Q1 and let o9 be the minimal section passing
through Q2. Then f'T is as in TABLE 10.

Suppose that T = [2;1,2]p. Then E is a section at infinity and A = 6P
for P € E. Let £p be the fiber passing through P. Then FNo = () and
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TABLE 10. Some graphs It

T (1o (2:1,1].(1,2)
~ . - _
I 00009 CNgN Nl Wl We
T [2]o 2]+ (0)
It
T
Iy
T 11,10, (1.1) [3:2.4],4(2.1)
- pl O ¢ Toa a
O fQ
T [0:1,1]o [0;1,1]4 (1)
4 o 7 (
al: e NN,
f-’l
T 2:1,2), 3:2,4],
I
=
It
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Elp =oflp = 1. Hence f'T is as in TABLE 10.

Case (6). T =13;2,4]+. Then E = 0 + D for a section D ~ o + 4/.
For the node P = o0 N D, we have A = 8Q for Q € D\ {P}. Let {p, {q,
and © be the same divisors as in Proposition 6.30, (6). Then I'r is as in
TABLE 10.

Case (7). We pick up two types [3;2,4]44+(0,0) and [3;2,4]4+4(1,2).
Let E=0+4+00+{, P=0xNP,Q,Q, Ap, lg, O, ©1, O3 be the same
as in Proposition 6.30, (7). Then It is as in TABLE 10 by the description
of &.

Case (8). T = [1;2,2]p and chark # 2. We pick up the case where
D(S) = Dg. Then A = 8P; for a ramification P, point of 7|g: E — Pl
Then I'(S) = I'(S) is as in TABLE 11 for the fiber £; of 7: X — P! passing
through P;.

Case (9). T =1[1;2,2]p and chark = 2. We pick up the case where A
consists of four points P, ..., P;. This is just the case where D(S) = 8A;.
Then A = 2(Py + --- + Py). Let ©;; be the proper transform in M of
the section ©;; at infinity with ©; | = P+ Pj for 1 <i < j < 4. Let
oy be the proper transform in M of the negative section o and let Y j; be
the proper transform in M of the section T ~ o + 2¢ with Y|g ~ Zle P
Then T N @i,j,M =opy N @iijM = () for any ¢ < j, Tprop = 1, and

1, if {i1, 41} N {ia, jo} = 0,
0, otherwise.

@i17j1,M6i27j2,M = {

Therefore, I'(S) = I'(S) is as in TABLE 11.

REMARK 6.31. Suppose that chark # 2. We have two isomorphism
classes of log del Pezzo surfaces S of index two of type [1;2, 2]y with D(S) =
A7. These are constructed from the fundamental triplets (X, F,A;) and
(X, E,As) for the two zero dimensional subschemes A; = 8P and Ay =
7P + P’ defined in Example 6.25. Let £p be the fiber of 7: X — P! passing
through P. Then {p N E = {P, P'}. Let v; ~ 0 + j¢ be the unique section
of m with ~;|g = 2jP for j > 1 (cf. Proposition 6.2, (7g)). Then the dual
graph I'(X, E, A;) for ¢ = 1, 2 is written as in TABLE 12.

For a ramification point P; € E of 7|g, the fundamental triplet
(X, E,8P)) is extremal and the dual graph I' := I'(X, E,8P;) is given in
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TABLE 11. Graphs I'(S) for two extremal cases of type [1;2,2]o

D(5)

Ds
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TABLE 12. Graphs I'(S) for two non-extremal cases of type [1;2,2]o with D(S) = A~

Ay =8P

Ay =TP+ P

TABLE 11. According to Alexeev—Nikulin [4], we have a non-extremal root
invariant from a subgraph D! of the Dynkin diagram I'ypp = Dg and we
can calculate the dual graph I'(S%) = I'(D?) for a log del Pezzo surface S*
of type [1;2,2]p having the same non-extremal root invariant determined
by D!. Ohashi has calculated the graph r (DY) for the subgraph Df = D)
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TABLE 13. Two subgraphs A7 C Dg = [rpp defining non-extremal root invariants
" @—O—Q—Q—.—Q—Q—I—Q—Q
D) :

D?2)

o0 00000

or D@ in TABLE 13. As a result, we infer that I'(D®) coincides with
IN'X,E,A;) fori=1, 2.

7. Description of Log del Pezzo Surfaces of Index Two

A log del Pezzo surface S of index two is determined by a fundamental
triplet (X, E,A) with E reduced and with LE = deg(A). The classifica-
tion of fundamental triplets gives the geometric description of S. From the
information of the fundamental triplet, we shall describe the surface S ex-
plicitly as a subvariety of a weighted projective space or of the product of
two weighted projective spaces (cf. TABLE 14).

7.1. Description by blowing up

Let (X, E,A) be a fundamental triplet such that X ~ F, and E is a
section of the P!-bundle structure m: X — P!. For the elimination ¢: M —
X of A, the proper transform Ej; C M of E is a section of 7o ¢: M — P!
with E%/[ = —4. By Lemma 4.5, there is a birational morphism p: M — Fy
over P! such that Ej; is the total transform of the negative section (¥ of
Fy. For an irreducible curve v C M, it is p-exceptional if and only if v is an
irreducible component of a fiber of M — P! with Ejy; N~y = 0. In particular,
Kpyy < 0 for any p-exceptional curve . Thus p is isomorphic to the
elimination of a zero-dimensional subscheme I/ C Fy4 such that vp(D') =1
for any P € D' and D' N o = (), by Proposition 2.9.

The birational morphism «: M — S contracts Ejs to a singular point
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of type K; and ¢-exceptional (—2)-curves to rational double points. In the
case [2;1,2]p, a contracts also the proper transform of o to a singular point
of type A;. The ¢-exceptional (—2)-curves are contracted by the morphism
w: M — Ty, since these curves do not intersect Ej,.

Let agé) C F4 be a section at infinity and let £ be a fiber of Fy — Pl
The contraction morphism F, — F4 of the negative section ¢ gives an
isomorphism Fy ~ P(1,1,4). The image of £ in P(1,1,4) is a generating
line and the image of ac(é) is a cross section of the cone P(1,1,4) over P
The vertex v of the cone is a singular point of type K;. For a homogeneous
coordinate (X,Y,Z) of P(1,1,4), v is the point (0:0:1), div(Z) is a cross
section, and div(X) and div(Y) are generating lines. Thus there is a birational
morphism ¢: Fy — P(1,1,4) such that ¢(o4) = {v}, q(ac(é)) = div(Z), and
q(0) = div(X).

PROPOSITION 7.1. Suppose that a log del Pezzo surface S of index two
is of type [n;1,0]p for 0 < n < 4. Then S is isomorphic to P(1,1,4) blown
up along a zero-dimensional subscheme D satisfying

(*) v ¢ D, degD =4 —n, and deg(DN¥) < 1 for any generating line £.

Conversely, if D C P(1,1,4) is a zero-dimensional subscheme satisfying (*)
for 0 <n <4, then D is a Cartier divisor of a cross section, and P(1,1,4)
blown up along D is a log del Pezzo surface of index two of type [n;1,0].

PrROOF. Let (X, E,A) be a fundamental triplet defining S. Then E =
o and deg A = 4 — n. The total transform O, = ¢*(0) C M of a section
0o at infinity of X is a section of M — P'. Since Kx + 0 + 0o + 20 ~ 0,
we have Ky + Ear + On + 200 ~ 0. Since Ey; = p*o™, we infer that
w(®nr) C Fy is a section O'((;é) at infinity and that p is the elimination of
the Cartier divisor ' C Jf;é), by Proposition 2.9. Here, ' is isomorphic to
A under the isomorphism aog ~ E over P'. Let D be the image ¢,/ for
the birational morphism ¢: Fqs — P(1,1,4). Then D is a Cartier divisor of
the cross section © = ¢(0) satisfying (*). The induced morphism S —
P(1,1,4) is just the blowing-up along D.

Conversely, if D C P(1,1,4) is a zero-dimensional subscheme satisfying
(*), then D is a Cartier divisor of a cross section © by Lemma 7.2 below.
Let D’ be the preimage ¢~ (D) for ¢: F4y — P(1,1,4). The preimage ¢ !0
is a section at infinity. Let u: M — T4 be the elimination of ID'. The
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proper transform O;; C M of © and the total transform FEp; € M of
o®) are sections of M — P!, where Kj; + O + En + 2u*¢ ~ 0 and
O, =4—(4-n)=n>0. Weset Lyy = —2Ky; — Epy. Then Ly ~
20y + En + 4p 0 and Ky + Ly = ©p + 2p*¢ imply that (M, Ey) is a
basic pair with Lj;Ej = 0. The log del Pezzo surface S associated with
(M, Eyy) is just the blowing up of P(1,1,4) along D. On the other hand, M
is the elimination of (X, E, A) for X = F,, F = o, and an effective divisor
A of E with deg A = 4 — n. Hence, S is a log del Pezzo surface of index
two of type [n;1,0]o. O

LEMMA 7.2. Let A be a zero-dimensional subscheme of F,, such that
ANo =0 for a minimal section o and that deg(A N¥¢) <1 for any fiber £
of F,, — PL.

(1) If degA < n+ 1, then A is a Cartier divisor of a section o at
mnfinity.

(2) If deg A = n+ 2, then A is a Cartier divisor of 0o 0T 0f 0o UL for
a section oo at infinity and for a fiber £.

In particular, vp(A) =1 for any P € Supp A if deg A < n + 2.

PrOOF. (1) We may assume that deg A = n + 1. From the exact
sequence

0= ZAOx(c+nl) - Ox(c +nl) — Ox — 0

on X =T, for the defining ideal Zp of A, we infer that HY(X,ZaOx (o +
nf)) # 0 since dimH%(X,o + nf) = n + 2. Thus Ox(—D) C Za for an
effective divisor D ~ g+4nf. If D isirreducible, then D is a section at infinity.
We shall derive a contradiction by assuming that D is reducible. Thenn > 0
and D = o + F for an effective divisor F' ~ nf. Thus Ox(—F) C Za since
ANo = (. The non-empty intersection AN¢ for a fiber £ C F' is supported
on a point P. For a defining equation t € Ox p of £ at P, let Oa p — Oap
be the multiplication map by t. Then this is a nilpotent endomorphism
with one-dimensional cokernel since deg(A N ¥¢) = 1. Hence, t* € Za p
and tF~1 & Ia,p for k= multp A = dimg Oa p. Thus multp A < mult, F'.
Considering any fiber ¢ contained in F', we have deg A < n which contradicts
deg A =n+1.
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(2) Let us fix a point P € Supp A and let ¢ be the fiber containing P.
Suppose that multp(A) = 1. Then A = A" U {P} for a subscheme A’ with
A'Ne=10. By (1), A’ is a Cartier divisor of a section o, at infinity. Thus
A is a Cartier divisor of o4, U £ in this case.

Suppose that k := multp(A) —1 > 0. Let t € Ox p be a defining
equation of £ at P. Then the multiplication map Oa p — Oa p by t is a
nilpotent endomorphism with one-dimensional cokernel. Thus t* ¢ Ia.pP
and tFt1 Za,p- The image tOa p is isomorphic to OAJ:/(tk). Thus the
image of the homomorphism Oa — Oa obtained by tensoring O with the
inclusion Ox (—¢) — Oy is isomorphic to Oas for a subscheme A’ C A with
deg A’ = n+1 and multp(A’) = k. By (1), A’ is a Cartier divisor of a section
0 at infinity. Thus Za/ p is generated by (£ ,t¥) for a defining equation
f € Ox,p of 0 at P. Since tk & Za.p, there is a constant ¢ € k with
f+cth € Ta p. Thus Ia p = (f+cth, t51). If ¢ = 0, then Ox(—0w) C Za
and A is a Cartier divisor of 0oo. If ¢ # 0, then Zp p = (f + cth, ft) and A
is a Cartier divisor of o4, U £. [

PROPOSITION 7.3. Let S be a log del Pezzo surface of index two de-
termined by a fundamental triplet (X, E,A) such that X ~ F,, and E is
a non-minimal section of X — PL. Then the type of S is one of [0;1,1]o,
[1:1,1]o, and [2;1,2].

(1) If the type is [0;1,1]p, then S is isomorphic to P(1,1,4) blown up
along a zero-dimensional subscheme D satisfying the following con-
ditions:

(a) v €D, degD = 6, and deg(D N £) < 1 for any generating line
4

(b) D is not a Cartier divisor of any cross section of P(1,1,4).

Conversely, if a zero-dimensional subscheme D satisfies the condi-
tions above, then P(1,1,4) blown up along D is a log del Pezzo surface
of index two of type [0;1,1]o.

(2) If the type is [1;1,1]o, then S is isomorphic to P(1,1,4) blown up
along a zero-dimensional subscheme D such that v € D, degD = 5,
and deg(D N ¢) < 1 for any generating line £. Conversely, if D is a
zero-dimensional subscheme satisfying the same condition as above,
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then D is a Cartier divisor of a cross section, and P(1,1,4) blown up
along D is a log del Pezzo surface of index two of type [1;1,1].

(3) Suppose that the type is [2;1,2]o. Then there exist a cross section
© of P(1,1,4), an effective Cartier divisor D of © of degD = 6,
and a birational morphzsm S-S for the blowing-up S — P(1,1,4)
along D such that S — S is the contraction morphism of the proper
transform of © in S. Conversely, the surface S obtained from an
effective Cartier divisor D of a cross section © as above is a log

del Pezzo surface of index two of type [2;1,2]o.

PrROOF. The case [1;1,1]p is proved by the same argument as in Propo-
sition 7.1.

Case [2;1,2]p. The negative section o does not intersect E. The total
transform ©j; of o in M is also a section satisfying K+ Ep+0Op+2¢* ~
0. Since Eyy is the total transform of the negative section o(®, u(0y/) is a
section afjé) at infinity, and p is the elimination of the divisor D' C aéﬁ?. Here
D’ is isomorphic to A under the isomorphism o*c(fé) ~ FE over P'. The image
D = ¢D' C P(1,1,4) is a Cartier divisor of the cross section © = ¢(oso ¢ )
with deglD = 6. Let S — P(1,1,4) be the blowing-up along D. Then
the induced birational morphism M — S contracts all the ¢-exceptional
(—2)-curves on M. Since a: M — S contracts also the proper transform of
o in M, S is obtained by contracting the the proper transform O of o in
S. Conversely, if D is a Cartier divisor of a cross section © of degD = 6,
then for the elimination p: M — F4 of D/ = ¢~ 'ID, M is obtained as the
elimination for a fundamental triplet (X, E, A) of type [2;1, 2]y, where E is
the proper transform of ©.

Case [0;1,1]p. Since deg A = 6, we can take a minimal section ¢ such
that ENo C A. Let X’ — X be the blowing up at the point £ No. Then
the proper transform ¢ of the fiber through the point ENo is a (—1)-curve.
Let X’ — X; be the blowdown of #. Then the proper transform o; of
o in X7 is the negative section and the proper transform F; of E in X3
is a section at infinity. Here, the image Q € X; of ¢ is not contained in
01 UFE;. The elimination M — X of A induces a morphism M — X3 which
is regarded as the elimination of the zero-dimensional subscheme A} U {Q}
for a Cartier divisor A} of F; with deg A} = 5. The proper transform of E;
in Fy by the rational map po¢~': X --— M — Fy4 is the negative section
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(4)

o and the proper transform of o1 in Fy is a section o5 at infinity. Let
D) be the Cartier divisor of o) isomorphic to A} under the isomorphism
afjé) ~ F; over PL.

Suppose that A} does not intersect the fiber ¢ of X; — P! passing
through @. Then the rational map X -+— [F4 is an isomorphism at ) and
let Q" € F4 be the image of Q. The morphism pu: M — Ty is considered
as the elimination of D} U {Q'}. The image Dy = ¢(D}) C P(1,1,4) is
a Cartier divisor of the cross section © = ¢(0) and ¢(Q’) ¢ ©. Then
the induced morphism S — PP(1,1,4) is the blowing-up along the zero-
dimensional subscheme D = D U {¢(Q’)}, which satisfies the condition (a).

Next, suppose that A/ intersects the fiber £g. Then X -— M — Fy is
not isomorphic to ). Let M — F4 be the elimination of D}. Then M — M
is obtained as the blowing-up at a point @ of the proper transform of /g in
M lyin% over Q. Thus pu: M — Fy is the elimination of a Cartier divisor
D' of ao‘é) U E’Q for the proper transform K’Q of {g in Fy, where D' N O'((;é) is

(4)

isomorphic to A} under the isomorphism o5’ ~ FE; over P. The image
D = ¢(D') C P(1,1,4) is a Cartier divisor of © U £ for the cross section
O = q(0) and the generating line £ = g({g/). Then the induced morphism
S — P(1,1,4) is the blowing-up along DD, which satisfies the condition (a).

Let D C IP(1,1,4) be a zero-dimensional subscheme satisfying the condi-
tion (a). If it does not satisfy the other condition (b), D is a Cartier divisor
of a cross section ©, and the blowing-up S — P(1,1,4) along D gives a
birational morphism from S into a log del Pezzo surface S of index two of
type [2;1,2]p by (3). If D satisfies the condition (b), then, by Lemma 7.2
and by considering the inverse construction of X; -— M — Ty, we infer
that P(1,1,4) blown up along D is a log del Pezzo surface of index two of
type [0;1,1]p. O

PROPOSITION 7.4. Let S be a log del Pezzo surface of index two of
type [1]g. Then there exist a zero-dimensional subscheme D C P(1,1,4) of
degD =5 and a cross section © containing D such that the proper transform
5) of © in the variety S obtained as the blowing up of P(1,1,4) along D is a
(—1)-curve and that S is obtained as the blowdown S — S of the (—1)-curve
0.

PROOF. Let (X = P2, E,A) be a fundamental triplet determining
S. Let 7: X1 ~ F; — X be the blowing-up at a point P ¢ E. Then
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(X1, E1,Ay) is a fundamental triplet of type [1;1, 1] for the inverse images
E; =77'E and A; = 77'A. By Proposition 7.3, the log del Pezzo surface
S determined by (X1, E1,A1) is isomorphic to P(1,1,4) blown up along a
Cartier divisor D of a cross section © with degld = 5. Here, the proper
transform © C § is a (—1)-curve since it is the proper transform of the
negative section o1 C X;. Thus the log del Pezzo surface S is obtained by
contracting the (—1)-curve ©. O

7.2. Remarks on weighted projective spaces

We insert here some notes on weighted projective spaces which are useful
in the subsequent subsections. The results mentioned here are well known
but we shall give proofs based on Demazure’s construction [11] of normal
graded rings.

LEMMA 7.5. Let X be the weighted projective space P(ag,aq,... ,aq)
with ap = 1 and let 7: P = P(O ® O(e)) — X be the P -bundle defined
for a positive integer e > 0 divisible by lem{ay,... ,aq}. Then there is a
birational morphism P — P(ag,... ,aq,€e) such that the exceptional locus is
the section X C P(O @ O(e)) of m corresponding to O & O(e) — O and that
Y is contracted to the point (0:0: ---:0:1).

ProOOF. We fix a homogeneous coordinate (Xo, ... ,Xq) of X of weight
(ag,...,aq). Let X C P be the section corresponding to a surjection
O @ O(e) — O(e). Then XNy =0 and Xy ~ X + en*Ey for the Weil
divisor Fy = div(Xp). Let us fix defining equations g and f of ¥ and X,
respectively. We consider the Q-divisor

1
H=-%+71"E
e

on P and the graded ring R = R(P,H) (cf. Section 3.4). Here, R, =
HO(P,umH ) for m > 0. For a given positive integer m, we set k = mje,.
Then

7. Op(LmH 1) = Sym*(Og @ O(—e)f) @ O(m) = @jzo O(m — je)figh.

Hence, we have

k . .
(7*1) Rm = @j:() k[XOa e 7Xd]mfj€f]gkija
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where k[Xo, ... ,X4]; denotes the homogeneous part of degree [ of the graded
polynomial ring k[Xp,... ,X4]. Let ¥; € R for 0 < ¢ < d be the homoge-
neous element of degree a; corresponding to X; as the element of the right
hand side of (7-1). Let Y411 € R be the homogeneous element of degree e
corresponding to f as the element of the right hand side of (7-1). Since

k )
R,, = @j:(} k[Yo, .. ,Yd]m_jeYJd+1,

we infer that R = k[Yp,...,Yq,Yq+1] and R is isomorphic to the graded
polynomial ring of weight (ag,...,aq,€). Since H is a semi-ample big Q-
divisor on P, we have a natural birational morphism ¢: P — Proj R ~
P(ag, ... ,aq,€) such that *O(e) ~ Op(eH),

©Yge1 =1, and @"P.(Y1,...,Ys) = P.(X1,...,%Xq)8

for any weighted homogeneous polynomial P, of degree e. Here, ¥ is the
exceptional locus of ¢ and ¢(X) = {(0:0: ---:0:1)}. O

LEMMA 7.6. The Hirzebruch surface X = T, is isomorphic to the di-
visor

{Xw=YZ} CP(1,1,n+1,n+1)

for a homogeneous coordinate (X,Y,Z,W) of weight (1,1,n + 1,n + 1), in
which the restriction of O(n + 1) is isomorphic to Ox (o + (n + 1)¢).

PROOF. We consider the graded ring R = R(X, H) for the ample Q-
divisor
1

H = o+ /.
n+1

Then X ~ ProjR. Let g be a defining equation of a minimal section o
and let £ be a defining equation of a section at infinity. For a non-negative
integer m and k = m/(n + 1) , we have an equality

& k N
,.O0x(LmH_) = Sym*(Og & O(—n)f) @ O(m) = @j:OO(m —nj)figh=d

for 7: X =F,, — PL. In particular,

(7-2) R = @po kls. thnn;t'g"
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for a homogeneous coordinate (s,t) of P. Let X € Ry and Y € Ry cor-
respond to sg® and tg® as the elements of the right hand side of (7-2),
respectively, where ¢ = 1/(n+1) . Let Z € R;41 and W € Ry, correspond
to sf and tf as the elements of the right hand side of (7-2). Then XW = YZ.
Let i1 and i3 be non-negative integers with m > (n + 1)(i1 + i2). Then
the element P(X,Y)Z"'W € R,, for a homogeneous polynomial P of degree
m — (n+ 1)(i1 + i2) corresponds to

P(S, t)sil 112 fi1+i2gk—(i1+i2)

as the element of the right hand side of (7-2). Hence, R is generated by X,
Y, Z, W with the relation XW = YZ. Therefore, there is a closed immersion
7: X ~Proj R — P(1,1,n+1,n+1) such that 7*O(n+1) ~ Ox (c+(n+1)¢)
and 7(X) = {XW = YZ}, since {XW = YZ} is irreducible. O

LEMMA 7.7. For positive integers ni, ne, let P be the fiber product of
F,, and F,, over Pl. Let o1 and o9 be the negative sections of Fy,, — P!
and F,, — P!, respectively. Let H be the Q-divisor on P defined by

1 1
H = —pjo1 + —pyoe + F
ni na2

for the projections p1: P — Fy,, p2: P — F,,, and for a fiber F' of m: P —
P!,

(1) The graded ring R = R(P, H) is isomorphic to the graded polynomial
ring of four variables with weight (1,1,n1,n2).

(2) For the naturally defined birational map P -— ProjR =
P(1,1,n1,n2), the composite P -— P(1,1,n;) with the projection
P(1,1,n1,n9) ~— P(1,1,n;) is just the composite P — F,,, — F,,, ~
P(1,1,n;) fori=1, 2.

PrROOF. (1): Let (s,t) be the homogeneous coordinate of P!. Let g;
be a defining equation of o; C Fy,, for ¢ = 1, 2. Let 0;° ~ 0; + n;{ be a
section at infinity of F,, — P! and let £; be a defining equation of 0% for
i = 1, 2. For a fixed positive integer m, we set k; = ‘_m/niJ fori =1, 2.
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Then

m.Op(LmH 1) = Symkl(Ogl ® O(—ny)fy)

® Sym*?(Ogy & O(—ng)f2) @ O(m)

k1—7J1 fj2 k2—j2

— Jim —32n2)f1 g1 2 82

D om
0<51<k1,0<j2<ks

In particular, we have

3 B k1—Jj1 g2 k2—jo
(T3) Bn =D, ey, M T ioma 8 158"

We set §; = 1/ni fort=1,2. Then §; =0 unlessn; = 1. Let Xand Y € R,

correspond to sgl1 %2 and tg1 g2 as the elements of the right hand side of
(7-3), respectively. We set ey = (n2/n1) and ex = (ni1/n2) . If ny = ny,
then e; = ex = 1; if n; < ng, then e > 1 and e = 0. Let Z; € R, and
Zy € Ry, correspond to f1g5? and fag]' as the elements of the right hand
side of (7-3), respectively. Then, for a pair of non-negative integers (j1, jo)
with jiny + jone < m, the equality

fj1'1g7f1*j1fj2'2g’2€2*j2 _ (f1g )jl(f2g )jggkl —j1— eljzng —ja—e2]1

holds, and P(X,Y)Z{'1 Z%Q € R,, for a homogeneous polynomial P of degree
m — jin1 — Jong corresponds to

P(s,t)(£1g52)7 (£285) 2 gyt /112 gh2 T2z

as the element of the right hand side of (7-3). Therefore, R = k[X, Y, Z1, Z2]
and R is isomorphic to the graded polynomial ring of weight (1, 1,n1, ng).
(2): For i =1, 2, we consider the semi-ample Q-divisor

H;, = iO'i +/
ng
on F,,, and the graded ring R* := R(F,,, H;). Then Proj R* ~ P(1,1,n;)
and the natural birational morphism F,, — Proj R¥ is isomorphic to the
contraction morphism F,,, — Fni of 0;, by Lemma 7.5. Since p; H; < H, RY
is regarded as a graded subring of R. We infer that the inclusion R¥ C R
induces the projection P(1,1,n1,n2) -— P(1,1,n;) from the calculation in
(1). Thus we are done. [J
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7.3. Embedding into weighted projective spaces, I

Let (X, E,A) be a fundamental triplet defining a log del Pezzo surface
S of index two. For the blowing-up V' — X along A and for the mini-
mal desingularization A\: M — V, the composite ¢: M — X is just the
elimination (M, Ey;) — (X, E,A). By Lemma 2.18 and by the vanishing
HYX,L — E) = 0 (cf. Lemma 3.17), we infer that V is a Cartier divi-
sor of P = P(€) for the locally free sheaf £ = Ox(L — E) & Ox, where
AN*Og(1)|ly =~ Op(Lar). An irreducible curve v C M is A-exceptional if and
only if ~ is ¢-exceptional and Ly = 0. Thus the minimal desingulariza-
tion a: M — S of S induces a morphism ¢: V — S with a = po A. In
particular, Og(1)|y =~ ¢*Os(—2Kg).

Let u € Og(1) and v € Og(1) @ p*O(E — L) be the global sections over
P defined by the natural homomorphisms

u: Ox 98'—>(0,S) EOX(L—E)@O)(,
v: Ox(L—FE)>s~—(s,0)€ Ox(L — E) ® Ox.

Let n € HY(X, E) be a defining equation of E. There exists a section ¢ €
H°(X, L) such that div(£|g) = A and V ~ V (£, ) = div(p*(£)v — p*(n)u)
by Proposition 2.19.

The linear system |Og(1)| is base point free since Bs |L—FE| = Bs |2(Kx+
L)| = 0 by Lemma 3.17. Let ®: P — P|Og(1)| be the morphism associated
with |Og(1)| and let ®: P — W be induced morphism as the Stein factor-
ization of ®’. The Stein factorization of V' C P — W is expresses as the
composite of p: V — S and a finite morphism S — W.

PROPOSITION 7.8. Suppose that Kx + L is big. Then W is a three-
dimensional toric variety and ®: P — W is a birational toric morphism.
Moreover, the image ®(V) is a divisor of W and ®(V) ~ S.

PROOF. The morphism ®: P — W is birational since Og(1)? = (L —
E)? > 0. If Kx + L is ample, then the ®-exceptional locus is the divisor
div(v), which is contracted to a point. Since P has a structure of toric
variety and div(v) is a T-invariant divisor for the open torus T C P, the
variety W and the morphism ® are toric. If Kx 4+ L is not ample but big,
then X ~ Fy and & is isomorphic to the pullback of the locally free sheaf
O(4) @ O of P(1,1,2) by the contraction morphism X — Fy ~ P(1,1,2)
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of the negative section. Thus W is isomorphic to the weighted projective
space P(1,1,2,4) by Lemma 7.5; hence W and ® are also toric.

From the linear equivalences V ~ Og (1) +p*E, div(v) ~ Og(1) —p*(L —
E),L—E~2(Kx+L),and Kp ~ p*(Kx +L— E)—20g(1), we infer that

=V = (1/2)div(v) — Kp ~q (1/2)O¢(1)

is relatively numerically trivial for ®: P — W. Hence, if chark = 0, then
R!®,0p(—~V) = 0 by the relative KawamataViehweg vanishing theorem.
By Leray’s spectral sequence, the vanishing R ®,0p(—V) = 0 is equivalent
to the vanishing H'(P,m®*A — V) = 0 for m > 0 for a T-invariant ample
divisor A of W. Recall that the cohomology group of an invertible sheaf
on a toric variety is described by combinatorial data. Hence the vanishing
is independent of chark. Therefore, R' ®,0p(—V) = 0 holds, and conse-
quently, Oy ~ ®,0p — ®,0y is surjective. It follows that ®(V') is normal
and ¢*(—2Kg) comes from an ample divisor on ®(V'). Therefore S ~ ®(V)
and ¢ ~ ®|y,. O

LEMMA 7.9. Suppose that Kx + L is not big, i.e., the type of (X, E,A)
is one of [1;2,2]o, [3;2,4]+, [3;2,4]++(a,b), and [4;2,4]00. If X ~ Fy or
X ~ T3, then W ~P(1,1,2). If X =TFy, then W ~P(1,1,4). In the both
cases, the induced finite morphism S — W is a double-covering.

PROOF. Suppose that (X, E) is of type [n;2,¢e]. Then L—E ~ 2(Kx +
L) ~ 2(n+ 2 — e)l for a fiber £ of m: X — PL. Hence, P ~ Foy xp1 X for
d=n+2—e>1and @ is the composite of the first projection P — Fo4 and
the contraction morphism Foy — Fog ~ P(1,1,2d) of the negative section.
In particular, W ~ P(1, 1, 2d). The isomorphisms ®*Oy (2d) ~ Og(1) and
A (Og(1)|v) ~ On(Lyps) induce

L3, = deg(V/W)Ow (2d)* = 2d deg(V/W).
On the other hand, we have
L3, =L —deg(A) = L(L—E) =4(n+2—e) = 4d.

Hence, deg(V/W') = deg(S/W) = 2. Note that d = 2 for the type [4;2,4]o0,
and d = 1 for the rest. [
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In the rest of Section 7.3, we shall embed S into a weighted projective
space and give an explicit defining equation of S in the case where Kx + L
is big and S is not of type [n;1,0]p. The case of types [n;1,0] is studied
in Section 7.4 below by another method. In Section 7.5 below, we treat the
case where Kx + L is not big by using Lemma 7.9. The list of defining
equations is given in TABLE 14 at the end of this paper.

Here, we use the following:

Notation 7.10.

(1) Let (s,t) denote a homogeneous coordinate of P'. For a morphism
p: Z — P!, the pullbacks p*s and p*t are global sections of p*O(1).
Here, we write p*s = s and p*t = t for simplicity.

(2) For the Hirzebruch surface X = IF,, with a fixed projection X — P!,
let o be a minimal section and let o be a section at infinity. A defin-
ing equation of ¢ is denoted by the symbol g and a defining equation
of 0 is denoted by the symbol f£. Here, f and g are regarded as the
natural injections

f: 0355 (s5,00€ 0OdO(n)
g: O(n)>s—(0,5) € O®O(n).

Similarly to s and t above, the pullbacks p*f and p*g by a morphism
p: Z — X are expressed by the same symbols £ and g, respectively.

PROPOSITION 7.11. Suppose that X = P2. Then W is isomorphic
to the weighted projective space P(1,1,1,2w) for w = (1/2)deg(L — E) =
3—degFE € {1,2}. Let (X,Y,Z,U) be a homogeneous coordinate system of
P(1,1,1,2w).

(1) Suppose that the type is [1]o. Then S is isomorphic to
{F5(Y,Z) = XU} C P(1,1,1,4)
for a quintic homogeneous polynomial F5 # 0.
(2) Suppose that the type is [2]o. Then S is isomorphic to

{Fy(X,Y) + F3(X,Y)z = (2 — XY)U} C P(1,1,1,2)
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for a cubic homogeneous polynomial F3 and a quartic homogeneous
polynomial Fy with (F3, Fy) # (0,0).

3) Suppose that the type is [2]4(0). Then S is isomorphic to
(3) Supp yp + P
{F3(X,2)X + G3(Y,Z)Y + 2* = xYu} C P(1,1,1,2)
for cubic homogeneous polynomials F3 and Gs5.

(4) Suppose that the type is [2]4(b) for 1 <b < 4. Then S is isomorphic
to

{Fy_4(X,2)X° + G3(Y,2)Y = XYU} C P(1,1,1,2)

for a homogeneous polynomial Fy_p of degree 4 — b and a cubic ho-
mogeneous polynomial Gs with Fy_(0,1) # 0, G3(0,1) # 0.

In the descriptions above, (0:0:0:1) € W is the unique non-Gorenstein
point of S.

Proor. W ~P(1,1,1,2w) since E = O(L—E)® 0O = OQ2w) s O. Let
(x,y,z) be a homogeneous coordinate of P2. We denote the pullbacks of
x, v, and z to P by the same symbols, respectively, for simplicity. Then
® is regarded as a morphism determined by the properties: ®*U = u
and ®*Py,(X,Y,Z) = Poy(x,y,2)v for any homogeneous polynomial Py,
of weight 2w and for the homogeneous coordinate (X,Y,Z,U) of W. Since
A*div(v) = Ej, S has the unique non-Gorenstein point (0:0:0:1).

(1): We may assume that 7 = x and & = F5(y, z) for a quintic homoge-
neous polynomial F5 # 0. Then {&v—nu = F5(y,z)v—xu and S is isomorphic
to the non-Cartier divisor {F5(Y,Z) = XU} of degree 5 of P(1,1,1,4).

(2): We may assume that 7 = z2> — xy. Then E ~ P! has a coordinate
(s,t) such that x|p = s?, y|p = t?, and z|g = st. Let Fx(s,t) # 0 be an
octic homogeneous polynomial such that A = div(F3(s,t)) C E. We can
write

Fy(s,t) = Fy(s?,t%) + F3(s?,t%)st

for a cubic homogeneous polynomial F3 and a quartic homogeneous poly-
nomial Fy. Then div(§) N E = A and V = V(&,n) for the global section

§= F4(X7y) + F3(X7Y)Z
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of Ox (L) ~ O(4). Since
&v — 1 = (Fi(x,y) + F3(x,y)z)v — (2 — xy)u,
S' is isomorphic to the Cartier divisor
{Fy(X,Y) + F3(X,Y)Z = (2* — XY)U} C P(1,1,1,2).
(3) and (4): We may assume that n = xy. Then A = div(§) N E for
¢ = F3(x,2)x + Gs(y,2z)y + cz*

for cubic homogeneous polynomials F3 and (3, and for a constant ¢ € k.
Here, ¢ # 0 if and only if the type of (X, E,A) is [2]+(0). If ¢ # 0, then
we may assume ¢ = 1 by replacing ¢ by a non-zero multiple of £. If the
type is [2]4(b) for b > 0, then ¢ = 0 and we may assume that multp(A N
div(y)) = b and multp(A Ndiv(x)) = 1. Thus F3(x,y) = x> "1 Fy_4(x,y) for
a homogeneous polynomial Fy_; of degree 4 — b with F;_4(0,1) # 0, and
G3(0,1) # 0. Since

&v —nu = (F3(x,2)x + G3(y,2)y + cz*)v — xyu,
S is isomorphic to the Cartier divisor of P(1,1,1,2) defined by

F3(X,2)X + G3(Y,Z)Y + cz* = xyu. O

PROPOSITION 7.12. Let (X,Y,Z,U) be a homogeneous coordinate of the
weighted projective space P(1,1,2,4).

(1) A log del Pezzo surface of index two of type [2;1,2]g is isomorphic to
{Fs(X,Y) =20} C P(1,1,2,4)
for a sextic homogeneous polynomial Fg # 0.

(2) A log del Pezzo surface of index two of type [2;1,2]14 is isomorphic
to

{Z% + X?ZF((Z,X%) + Y*2G1(Z,Y?) = XYU} C P(1,1,2,4)

for linear polynomials Fy and G.
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PrROOF. For the fundamental triplet (X, F, A), we have X ~ Fy, E ~
o+2¢, and L ~ 3(c+2{). For a suitable homogeneous coordinate (X, Y, Z) of
P(1,1,2), the contraction morphism ¢: X — P(1,1,2) of the negative sec-
tion satisfies the following properties: ¢*Z = £ and ¢*P»(X,Y) = Py(s, t)g for
any quadric homogeneous polynomial P». Note that ¢*O(2) ~ Ox (o + 2¢)
and Px (€) — X is isomorphic to the pullback of P(O(4)®0) — P(1,1,2) by
q. Hence W ~ P(1,1,2,4) by Lemma 7.5. Thus the morphism ®: Px (&) —
W ~P(1,1,2,4) satisfies the following properties:

o &*U = u;
o O*(X'YIZ) = s't/fv for (i,j) = (1,0), (0,1);
o O*Py(X,Y) = Py(s,t)gv for any quartic homogeneous polynomial Py.

Case [2;1,2]p. We may assume n = £. There is a sextic homogeneous
polynomial Fg # 0 such that div(¢) N E = A for ¢ = Fs(s,t)g3. Since

&v —nu = Fy(s,t)g’v — fu,

S is isomorphic to the divisor {Fs(X,Y) = ZU} C P(1,1,2,4).

Case [2;1,2]44+. We may assume 1 = stg. Moreover, we may assume
that A contains the points {f = s =0} and {f =t = 0}. Then div({)NE =
A for

¢ =13 + s’ gF (£, s%g) + t2fgG (£, t2g)
for certain linear polynomials F} and G;. Since
Ev—nu= (f3 + s?fgF) (f,s%g) + t2£gG 1 (¢, th)) v — stgu,
S' is isomorphic to

{Z® 4+ X*ZF(Z,X%) + Y*2G1(Z,Y?) = XYU} C P(1,1,2,4). O

ProOPOSITION 7.13. Let (X, E,A) be a fundamental triplet for X ~F,
and E ~ o+ £. Then W is isomorphic to the divisor

{Xw =Yz} CcP(1,1,n+ 1,n+1,2(n+ 1))
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for a homogeneous coordinate (X,Y,Z,W,U) of weight (1,1,n+1,n+1,2(n+
1)). Moreover, the log del Pezzo surface S of index two associated with
(X, E,A) is isomorphic to a subvariety of W defined by the following equa-
tions:

Type [0;1,1]o:
Fa(Z, W)W + Go(W, Y)Y = (X — W)U,
for quadric polynomials Fy and Gy with (Fa, G2) # (0,0).
Type [0;1,1]4(0):
WP 4 F1(Z,W)ZW = XU — G (W, Y)YW,
for linear polynomials F1 and G1.
Type [0;1,1]4+(1):
(W+ cZ)ZW = XU — (W + c'Y)YW,
for constants ¢, ¢’ € k.
Type [0;1,1]4(b) for b > 1:
(W + ¢Z)ZW = XU — W3~ 0y?,
for a constant c € k.
Type [1;1,1]o:
F5(X,Y)X =ZU, Fy(X,Y)Y = WU,
for a quintic homogeneous polynomial F5 # 0.
Type [1;1,1]4+(0,0):

(W+ ¢Z)ZW = (XU — G (W, Y?)YW)X,
(W4 cZ)W? = (XU — G1 (W, Y?)YW)Y,

for a constant c and a linear polynomial G1.
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Type [1;1,1]+(1,1):
720 = (XU — (W4 cY)YW)X, ZW? = (XU — (W + cY2)YW)Y,
for a constant c € k.
Type [1;1,1]1(2,1):
Z3 = (XU — (W+ cY?)YWX, Z°W = (XU — (W + cY?)YW)Y,
for a constant c € k.
Type [1;1,1]1(1,b) for b > 1:

720 = (XU — Y2~ lw3 0%, zw? = (xu — y*- w30y,

Type [2;1,1]4+(0,0):
Z27 W = (XU - G (W, Y3 Yw) x>y
for 0 <1i <2 for a linear polynomial G.
Type [2;1,1]+(1,1):
Z37W = (XU — (W4 cY®)Yw)x2y?,
for 0 <4 <2 for a constant c € k.
Type [2;1,1]+(1,b) for b > 1:
73t = (XU — Y323 —b)x2iyi,
for 0 <i<2.
Type [3;1,1];:
Z37W = (XU — Gy (W, YH)Yw)x3 'Y,

for 0 < i <3 for a linear polynomial G.

471
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PrROOF. Let X — P(1,1,n+1,n+1) be the embedding of Lemma 7.6.
Then £ is isomorphic to the restriction of O(2(n+1))®O since L—FE ~ 2(o+
(n+1)¢). Hence, W is isomorphic to {XW = YZ} in P(1,1,n+1,n+1,2(n+1))
by Lemma 7.5.

For a defining equation € H(X,o 4 ¢) of E and for a section & €
HY(X, 30 + (2n + 3)¢) with div(§)N E = A, S is isomorphic to the image of
V = V(&,n) under the morphism ®: P(§) - W C P(1,1,n+1,n+1,2(n+
1)). Here, we have

P*U = u, D*Q2(Z,W) = Qa(s, t)f2v,
(I)*(Qn-I—l (Xv Y)Z) = Qn—l—l(sv t)ngV, q)*(Qn-i-l(X? Y>w) - Qn+1(57 t>tng7
(I)*QQ(n—f—l) (X> Y) = QQ(n+1)(Sa t)g2vv
for any homogeneous polynomial Q;(s,t) of degree j € {2,n+1,2(n+1)}.
The global section £ is written as

(7-4) &= Pég)n(s,t)f?’ + P?El)(s,t)ng + Péi)3(s,t)fg2 + PQ(S’L)Jrs(S,t)g3

for some homogeneous polynomials Pj(i)(s, t) of degree j =3 +n(i — 1) for
0<7<3.

We first treat the case where FE is non-singular, i.e., the type is [0; 1, 1]o
or [1;1, 1]p.

Case [0;1,1]p. We may assume n = sg —tf. We may assume that the
point ENdiv(t) = {g =t = 0} is contained in A. By (7-4), £ is written as

¢ =t (Fa(s, t)E® + Ga(£, g)t%g)
for certain quadric polynomials F» and G2 with (Fz, G2) # (0,0). Thus
&v—nmu =t (Fs, £)£2 4+ Gof, g)t2g) v — (sg — tf)u.

We define a weighted homogeneous polynomial = = =Z(X,Y, Z, W, U) of degree
3 by

= F(Z,WW+ G2(W, Y)Y — (X — W)U.

Then we have

" (X2)

sgv(€v — ), *(YZ) =
3" (22) =

t
stv({v — nu), O*(WE) = tfv(év — nu).
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Thus ®(V (£, 7)) is the prime divisor of W defined by {Z = 0}.

Case [1;1,1]p. We may assume = f and ¢ = F;(s, t)g® for a quintic
homogeneous polynomial F5 # 0 by (7-4). Then év—nu = Fx(s, t)gv — fu.
We define weighted homogeneous polynomials Z; = Z;(X,Y,Z,W,U) for i = 1,
2 of degree 6 by

(1]

1 = F5(X,Y)X — ZU, Z5 = F5(X,Y)Y — WU.
Then we have

(7-5)  @*(X*E) =s’gv(ev—nu),  (Y°E) = t7gv(¢v — ),
®*(22,) = s®fv(&v — nu), O*(WEy) = t2£v(Ev — nu).

Thus the prime divisor ®(V(£,n)) of W is just the reduced part of the
subscheme of P(1,1,2,2,4) defined by the ideal J C k[X,Y, Z, W, U] generated
by XW — YZ, =1, and Z. We shall show that the subscheme is reduced and
equals ®(V(&,7n)). Let A be the affine ring of the open subset {U # 0} in
P(1,1,2,2,4). Then A is regarded as a subring of the usual polynomial ring
R =Kk[x,y,z,w] of four variables by X — x, Y — y, Z +— z, W+ w, U 1. Let
I C R be the ideal generated by xw — yz, F5(x,y)x — 2, F5(x,y) —w. Then
R/I ~ k[x,y] and hence J is reduced on the open subset U. Combining
with (7-5), we infer that ®(V (&, 7)) is defined by the ideal J.

Next, we treat the case where E is singular. Then E = o + /¢ for a
minimal section o and a fiber £. We may assume that ¢ = div(s), n = sg,
and

§= P3fn(sa t)f3 + GQ(fa tng)tsg

for a homogeneous polynomial P;_, of degree 3 — n and for a quadric ho-
mogeneous polynomial G by (7-4). Thus

&v —nu = (Ps_n(s,t)£* + Go(£,t"g)t’g) v — sgu.

—_

We define weighted homogeneous polynomials =; for 0 < ¢ < n of degree
3(n + 1) with respect to (X,Y,Z,W,U) by

Zi = P3_o(Z,W)Z" W' + (Go(W, Y'Y — xU)X" Y.
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Then we have

(7-6) P*(x"TE)) = s iigy(Ev — nu),

)

(I)*(Yn—l—lEi) — g 7 n+1+1gv(§v )7
)
)

iyl ey (Ev — nu),

for0<i<n.O

CLAIM. The subscheme ®(V(§,n)) of P(1,1,n+ 1,n+ 1,2(n + 1)) is
defined by XW —YZ =Eg=--- =2, = 0.

PROOF. Let A be the affine ring of {U # 0} in the weighted projective
space P(1,1,n+1,n+1,2(n+1)) = Projk[X,Y,Z,W,U]. Then A is a subring
of the usual polynomial ring R = k[x,y,z,w] by X — x, Y — y, Z — 2z,
W—w, U 1. Let I C R be the ideal generated by xw — yz and

Zi(%,7,2,W) = Py_p(z,w)2" W + Go(w, y"THx" Tyt — xn Ty

for 0 < i < n. By (7-6), it is enough to check that R/I has no non-zero
ideal supported at the origin. We set

U, =2+ Go(w,y" ™) + - + Go(w,y"TH"IE,

for 0 < i < n. We have an isomorphism R/(¥¢) ~ @I k[y,z,w|x’ as a
kly, z, w]-module. Hence, R/(Z0,Z1,... ,E,) = R/(Vo, ¥1,...,¥,) is iso-
morphic to

kly,z,w @GB _1 kly,z,w]/ (y”“_i)) x".
Therefore, we have an isomorphism
R/I~kly,zw oD _ (kly.zw/™ " W)

as a k[y,z,w]-module. In particular, R/I is a torsion-free k[z]-module.
Hence, R/I has no non-zero ideal supported at the origin. O

PROOF OF PROPOSITION 7.13 CONTINUED. In the next step, we shall
normalize P3_, and G2. Let P be the node e N¢ = {s = g = 0}.
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AnNo\{P} #0, then we may assume that A N o contains {t =0} No by
replacing (s,t) with (s,t + ¢1s) for a constant ¢; € k. If AN\ {P} # 0,
then we may assume that AN¢ contains {£f = 0} N4 by replacing (£, g) with
(f 4+ cot™g, g) for a constant co € k. We may also replace (Ps_,, G2) with
(M Ps_p, AaG2) for any non-zero constants A1, A2 € k. The normalization
is done as follows:

Case 1. P ¢ A = div(§{) N E: Then the type is one of [0;1,1]4+(0),
[1;1,1]+(0,0), [2;1,1]+(0,0), and [3;1,1];+. Here, we have P5_,(0,1) #
If n < 3, then P;_,(1,0) = 0, by the assumption. Similarly, G2(0,1) =
by the assumption. Thus we can write

0
0,
Py n(s,t) =t3 " +stF _,(s,t) and Ga(z,y) = 2Gy(z,y)

for a homogeneous polynomial F;_, of degree 1 —n and a linear polynomial
G.

Case 2. P € A and multp(ANo) > 1: If n =0, then we may change
the first and second projections Fg — P! and may assume that multp(A N
o) = 1; thus the case n = 0 is treated in Case 3 below. Then we may assume
n > 0, and hence the type [1;1, 1]+ (2, 1) remains only. Since multp(ANc) =
2 and multp(A N¥) =1, we can write

2

P;_,(s,t) =s° and Ga(z,y) =x(z+ cy)

for a constant ¢ € k.

Case 3. P € Aand multp(ANo)=1: Then0<n<2and 1<b<3
for b = multp(AN¥). If n <1, then P3_,(1,0) = 0, and if b < 3, then
G2(1,0) = 0, by assumption. Thus we can write

st(t +c¢s), ifn=0;

) ) and
ste ", if n >0,

Pg_n(s, t) = {

vz +cy), ifb=1;
Ga(z,y) = {x3—byb—1 ifb>1

for constants ¢, ¢’ € k.
Applying the normalization to each type, we have the list of defining
equations of ®(V (&, n)). O
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REMARK 7.14. In Proposition 7.13, if n = 1, then S is defined by
three equations in P(1,1,2,2,4) as a subvariety of codimension two. These
equations are written as the 2 X 2-minors of a matrix of size 2 x 3. In
particular, the description of S is the same style as in [28, Theorem 1] (cf.
[7, Theorem 5.1]).

7.4. Embedding into weighted projective spaces, 11

In Section 7.3, we do not consider the types [n;1,0]p for 0 < n < 4
among the case where Kx + L is big. The log del Pezzo surfaces of these
types are described by:

THEOREM 7.15. Let S be a log del Pezzo surface of the type [n;1,0]o
for 0 <n <A4.

(1) If n =4, then S ~P(1,1,4).

(2) If 1 < n <3, then S is isomorphic to the subvariety of P(1,1,n) X
P(1,1,4) defined by the following equations:

XoY1 =X1Yo, Z1Xy Y = ZoX! Y Fy_p(X1,Y1)  for 0<i<mn,

where (Xo,Yo,Z0) and (X1,Y1,Z1) are homogeneous coordinates of
P(1,1,n) and P(1,1,4), respectively, and F; is a non-zero homoge-
neous polynomial of degree j.

(3) If n = 0, then S is isomorphic to the subvariety of P' x P(1,1,4)
defined by

Z1Xo = Yo Fu(X1, Y1)

for a quartic homogeneous polynomial Fy # 0, where (Xo,Yo) is a
coordinate of P.

For the proof, we apply the result of Section 7.1. For a given S, the
fundamental triplet (X, E, A) defining S is uniquely determined up to iso-
morphism. Here, X ~ F,, F = o, and degA = 4 — n. For the elim-
ination ¢: (M, Ey) — (X, E,A), M is obtained also as the elimination
w: M — Fy of a zero-dimensional subscheme I’ of a section crc(é) at infinity,
by Section 7.1. Moreover, by Proposition 7.1, S is realized as the blowing
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up of P(1,1,4) along the zero-dimensional subscheme D = ¢(D’) for the
contraction morphism ¢: Fy — P(1,1,4) of the negative section o@ of Fy.
In order to prove Theorem 7.15, it suffices to consider the case: n # 4,
since degD = 4 — n. There is an effective divisor B ~ (4 — n)¢ such that
D = ac(fé) N B. Let u and v be the defining equation of ac(é) and ¢@, re-
spectively. For the homogeneous coordinate (s,t) of P!, let Fy(s,t) be a
homogeneous polynomial of degree d = 4 — n with B = div(Fy(s,t)) (cf.
Notation 7.10). Then D = div(u) N div(vFy(s,t)). The proper transform
of o™ in X ~ F, by the birational map go ¢~': X «— M -.— Fy is just
FE = ¢. Similarly, the proper transform of o*gé) in X is a section 04 at infin-
ity. We have fixed the defining equations £ and g of o, and o, respectively,
of X ~ F, as in Notation 7.10. Then, the image of (¢, u): M — X xpm Fy
is a divisor V defined by

(7-7) ug = viFy(s,t).

We set W =P(1,1,n) x P(1,1,4) in case n # 0, and W = P! x P(1,1,4) in
case n = 0. Let h: X xp Fy — W be the natural morphism. We shall find
explicit defining equations of the image h(V'), and show that hA(V) ~ S.

Suppose that 1 < n < 3. Then the image of h: X xp Fy — W is de-
fined by XgY; = X1Yp. In fact, we can choose the homogeneous coordinates
to satisfy h*Pn(Xo,Yo) = Pn(S,t)g, h*Zg = £, h*P4(X1,Y1) = P4(S,t)V,
and h*Z; = u, for homogeneous polynomials P; of degree j. By the equa-
tion (7-7), h(V) is contained in the subscheme S’ C W defined by

(7-8)  XoY1=X1Yo, Z1X§ Y; = ZoX] Y, Fy(X1,Y1) for 0<i<n.

LEMMA 7.16. The subscheme S’ is normal. In particular, h(V) = S'.

PRrOOF. We consider the following standard open covering {W;} of W:

W1 = {Xo # 0,%; % 0}, Wy = {Xo # 0,Y; # 0},
W3 = {Yo # 0,%; % 0}, Wy = {Yo # 0,Y; # 0},
Ws = {Zo # 0,X; # 0}, We = {Zo # 0,1 # 0},
Wy = {Xo # 0,21 % 0}, Ws = {Yo # 0,2 # 0},

Wy = {20 # 0,21 # 0}.
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On the open subset W7, the regular functions yo = Yo/Xo, z0 = Zo/X{,
y1=Y1/X1, and z; = Zl/X‘l1 form a coordinate system, i.e.,

W1 = Speck[yo, Zo, yl,zl] ~ A4.
Here, S’ N W7 ~ A? is defined by

y1=7Y0, 2z1=zoFy(1,y1).

Thus S’ N W; ~ A2. Applying a similar argument to the open set Wy, we
have Wy ~ A* and S’ N W, ~ A2

On Wy, the regular functions yo = Yo/Xo, 2o = Zo/X{, x1 = X1/Y1, and
z1 =21/ Y‘l1 form a coordinate system of Wy ~ A*. Here, S’ N W, is defined
by

1 =x1y0, 21 = 2zox)Fy(x1,1).

Thus S’ N Wy ~ (Al\ {0}) x Al. Similarly, W3 ~ A% and ' N W3 ~
(AT\ {0}) x AL

The open subset W5 is isomorphic to

Spec (k[XO,YO}(n) ® k(y1, Zﬂ) ;
where
® Yy = Yl/X17 z) = Zl/Xélla

e k[xg,yo]™ is the subring of the polynomial ring k[xo, yo] of two vari-
ables which is generated by the monomials of degree divisible by n,

e P,(x0,50) = Pn(X0,Y0)/Zp for any homogeneous polynomial P, of
degree n.

Then S’ N Wj is defined by

yo = x0y1, z1xy = Fy(1,y1).

Therefore,

S" N Wy ~ Spec (k[xg,yl,zl] / (z1xg — Fa(1, yl)))
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and hence S’ NW5 has at most rational double points of type A as singular-
ities. The singularity of S’ N Wy is similar.
The open subset W7 is isomorphic to

Spec <k[y0,20] ® k[x17y1](4)> ,

where Yo = Y()/Xo7 Z) — ZO/X", and P4(X1,y1) = P4(X1,Y1)/Z4 for any
quartic homogeneous polynomial Py. Thus S’ N W7 is defined by

y1=x1y0, 1= 2z0x1Fs(1,70).

Therefore,
S" N Wy =~ Spec (k[yo, zo, x1] / (zox{ Fa(1,y0) — 1)) .

Thus S’ N W7 is non-singular. Similarly, S’ N Wy is non-singular.
The open subset Wy is written as

Spec (k[xm yo] ™ @ k[x1, Y1](4)> ,

where Pn(X(),yo) = Pn(XO,Y())/ZQ and P4(X1,y1) = P4(X1,Y1)/Zl for homo-
geneous polynomials P; of degree j. Then S’ N Wy is defined by “xoy1 =
x1y0” and ngg—i = x’iy?_iFd(xl,yl) for 0 < i < n. Therefore, S’ N Wy ~
Speck][x1, yl](4), which is isomorphic to an open neighborhood of the vertex
of the cone P(1,1,4). Therefore, S’ is normal. [J

PROOF OF THEOREM 7.15. Suppose that 1 < n < 3. By construction
of h, we have a birational morphism S’ — S so that the composite S’ —
S — P(1,1,4) is induced from the second projection W — P(1,1,4). By
Lemma 7.16, S — P(1,1,4) is isomorphic outside D = {Fy(X1,Y1) = Z1 =
0}, where (X1,Y1,Z1) is regarded as a homogeneous coordinate of P(1,1,4).
The description of S’ N W5 and S’ N Wg in Lemma 7.16 shows that S —
P(1,1,4) is just the blowing up along . Hence, S’ ~ S. Therefore, S is
isomorphic to the subvariety S’ of P(1,1,n) x P(1,1,4) defined by (7-8).
This finish the proof in the case 1 < n < 3.

Finally suppose that n = 0. For the surjective morphism h: X xp1 Fy —
W =P! x P(1,1,4), we can choose the homogeneous coordinates to satisfy
h*Xo =g, h*Yo = £, h*Z; = u, and h*Py(X1,Y1) = Pu(s, t)v, for any quartic
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homogeneous polynomial P;. By the equation (7-7), h(V') is contained in
the subscheme S’ C W defined by

(7-9) Z1Xo = YoFy(X1,Y1).

Let Wi C W be the open subset {Xg # 0} and let Wao C W be {Yo # 0}.
Then

S' N W1 = Proj ((klyo)[X1,Y1,21] / (Z1 — XiyoFu(1,y0))) = A" x P!,
where yo = Yo /Xo. Moreover,
SN Ws =~ Proj ((k[XO])[Xl,Yl, Zl] / (21X0 — F4(X1,Y1)))

for xg = Xo/Yo. Thus S’ is normal, h(V) = S/, and S" — P(1,1,4) is
the blowing-up along D = {Z; = F4(X1,Y;) = 0}. In particular, S’ ~ S.
Therefore S is defined by (7-9), and we are done. [J

REMARK. If Supp A consists of at most two points, then S is a toric
variety. In fact, S — P(1,1,4) is described as a toric blowup. In particular,
S is toric if n < 2.

7.5. Embedding into weighted projective spaces, I11
In the non-big case, L — E ~ wf for w =2 or 4 on X = [F,, and hence

P = PX(O)((L— E) D O)() ~ [y xpt XX =Fy xp1 Fy.

Let p1: P —- Fy, and ps: P — X =~ F,, be the projections. The global
sections u and v in Section 7.3 descend to global sections of O(o(*) +-wf) and
O(c®) over F,,, respectively, where o(*) is the negative section and ¢ is a
fiber on F,,. The divisor V = V(&,n) C P is described by a quadric equation
with respect to (£,g) over F,,, since the mapping degree of V. C P — FF,, is
two.

The morphism ®: P — W is the composite of ps and the contraction
morphism ¢: F,, — F,, ~ P(1,1,w) ~ W of the negative section ¢(*). Let
(X,Y,U) be a homogeneous coordinate of P(1,1,w). We may assume that the
morphism ¢: F,, — P(1,1,w) satisfies ¢*U = u and ¢*P,(X,Y) = Py(s,t)v
for any homogeneous polynomial P, of degree w.

Finding suitable sections £ and 7, we shall describe the surface S explic-
itly.
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PROPOSITION 7.17. A log del Pezzo surface of index two of type
[4;2,4]00 is isomorphic to the divisor

{Uz = F(X,Y)} C P(1,1,4,4)

for a homogeneous coordinate (X,Y,Z,U) of weight (1,1,4,4) and for an octic
homogeneous polynomial Fg # 0.

PROOF. Since F = 0+ 0 for a section o, at infinity, we may assume
n = fg. There is an octic homogeneous polynomial Fg(s,t) # 0 such that
m«(A) = div(Fg(s,t)). Thus

£ =12+ Fg(s,t)g> € HY(X,L)=H"X,20 + 8¢
satisfies div(§) N £ = A. Since
&v —nu = vE? — ufg + Fy(s, t)vg?,

the first projection p1|y: V C P — Fy is a finite morphism. For the isomor-
phism

]P’:Fw X1 X:F4 Xp1 F4,

we have a birational map P -— P(1,1,4,4) by Lemma 7.7. We set U := Z;
and Z := Zy for the homogeneous coordinate Z; defined in Lemma 7.7. Then
the proper transform V' of V in P(1,1,4,4) is a Cartier divisor of degree 8
defined by

U =72 - Uz + F3(X,Y) = 0.

Note that V' is Cohen-Macaulay since so is P(1,1,4,4). The projection
(X:Y:U:Z) — (X:Y:U) induces a finite morphism V' — P(1,1,4) which is
birational to ®|y: V C P — W ~P(1,1,4). Since

0 0
&\I’—2Z—U and %‘I’— —Z7

and since SingP(1,1,4,4) C {X =Y = 0}, we have

Sing V' C {Z=U=FK(X,Y) =0} U{X=Y=2(Z - U) = 0}.
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Thus V' has only isolated singularities by Fgz # 0. Hence V' is normal,
V! — W is the Stein factorization of ®|y: V' — W, and thus S ~ V.
Replacing (U, Z) with (U+ Z,Z), we have the expected equation. [J

PROPOSITION 7.18. A log del Pezzo surface of index two of type
[3;2,4]+ is isomorphic to the divisor

{2% + (c¥? + XU)Z + F5(X,Y) = YU} C P(1,1,2,3)
for a constant ¢ € k and a sextic homogeneous polynomial Fg, where

(X,Y,U,Z) is a homogeneous coordinate of weight (1,1,2,3).

ProOOF. In this type, E = o + D for a section D ~ ¢ + 4¢. We may
assume that the fiber ¢ passing through the intersection point cND is defined
by {s = 0}. The divisor m(A) C P! of degree 8 does not contain (0:1).
Let Fg(s,t) be an octic homogeneous polynomial such that div(Fg(s,t)) =
m+(A). We may assume that

Fy(s,t) = t% + ct’s + Fy(s, t)s?

for a constant ¢ € k and for a sextic homogeneous polynomial Fg. For the
sections f and g, we have m,Ox (0 + 4¢) = O(4)g ® O(1)f over PL. Hence,
D = div(Py(s,t)g — sf) for a quartic homogeneous polynomial P, with
P4(0,1) # 0. We may replace £ with f + Ps(s, t)g for any cubic polynomial
P3. Hence, we may assume that Py = t*. Therefore D = div(t*g — sf) and
E = div(n) for n = (t*g — sf)g. We consider a global section

€= Fy(s,t)g® +ct’gf +£2 € HY(X, L) = H(X, 20 + 6¢).
Then div(€) N o = 0 and div(¢) N D = A by
526 = g*(Fy(s,t)s? + cst” +t%) mod (t'g — sf).
Thus V =V (§,n) C P. Since
&v —nu = vE? + (ct3v + su)fg + (Fs(s, t)v — t'u)g?,

we infer that p1|y: V C P — Fy is a finite morphism. Applying Lemma 7.7,
we have a birational map P --— P(1,1,2,3) such that the proper transform
V' of V in IP(1,1,2,3) is a Cartier divisor of degree 6 given by

U =72 + (e¥3 + XU)Z + F5(X,Y) = Y'U=0



Log del Pezzo Surfaces of Index Two 483

for a homogeneous coordinate (X,Y,U, Z) of weight (1,1, 2,3). Note that the
projection (X:Y:U:Z) +— (X:Y:U) induces a finite morphism V' — W ~
P(1,1,2), which is birational to ®|y: V — W. Since

%\I/ =27+ (¢Y? +XU) and %\I/ =Xz -Y*,
the singular locus of V' is contained in
{224+ (Y 4+X0) =XZ - Y =22 + YPZ+ Fs(X,Y) =0} U{X=Y=2=0}.
In particular, Sing V' N {X # 0} is contained in the finite set
{(Liy:ziu) [z=y" u= -y’ = 2y", y* + ¢y + Fo(1,y) = 0}
and SingV'N{X =0} € {(0:0:0:1)}. Hence, V' has only isolated singular

points and thus V' is normal. Thus S ~ V', since V' — W gives the Stein
factorization of V. — W. [J

PROPOSITION 7.19. Let S be a log del Pezzo surface of index two of
type [3;2,4]++(a,b).

(1) If (a,b) = (0,0), then S is isomorphic to the divisor
{2 + (¢¥® + XU)Z + Y® 4+ XF5(X,Y) = 0} C P(1,1,2,3)

for a quintic homogeneous polynomial F5 and for a constant c.

(2) If (a,b) = (2,1), then S is isomorphic to the divisor
{22 + XUZ + XY° + X>Fy(X,Y) = 0} C P(1,1,2,3)

for a quartic homogeneous polynomial Fy.

(3) Ifa=1, then 1 <b<6 and S is isomorphic to the divisor
{22 + (Y3 +XU0)Z + X°Y5 0 + XM By (X, Y) = 0} € P(1,1,2,3)

for a homogeneous polynomial F5_y of degree 5 — b.
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PrOOF. In this type, £ = 0404+ for a section o at infinity and for
a fiber /. We may assume that oo, = {f =0}, { = {s =0}, and n = —fgs.
A global section £ of Ox (L) ~ Ox(20 + 6¢) with div(§) N E = A can be
written as

¢ =12+ ct3tg + Fy(s, t)g’
for a constant ¢ € k and for a sextic homogeneous polynomial Fg. Since
&v —nu = vE? + (ctPv + su)fg + Fy(s, t)vg?,

we infer that V' — 3 is not finite along {v =s = 0}. We can normalize Fg
as follows:

Case (a,b) = (0,0). Then Fz(0,1) # 0. Multiplying t by a non-
zero constant, we may assume Fg(s,t) = t% 4+ sF5(s, t) for a quintic homo-
geneous polynomial F5. Here, ¢ # 2 if and only if Supp(A N ¥¢) consists of
two points.

Case (a,b) = (2,1). Then ¢ =0 and Fs(s,t) = sF5(s, t) for a quintic
homogeneous polynomial F5 with F5(0,1) # 0. Multiplying t by a non-
zero constant, we may assume Fg(s,t) = s(t® + sFy(s,t)) for a quartic
homogeneous polynomial Fy.

Case (a,b) = (1,b). Then 1 < b < 6, ¢ # 0, and Fg(s,t) =
sPFs_y(s,t) for a homogeneous polynomial Fs_; with Fy_;(0,1) # 0. Mul-
tiplying s and t by non-zero constants, we may assume ¢ = 1 and Fg(s,t) =
s®(t%76 4 sF5_y(s,t)) for a homogeneous polynomial F5_; of degree 5 — b,
where F5_; = 0 in case b > 5.

Applying Lemma 7.7, we have a birational map P -— P(1,1,2,3) such
that the proper transform V' of V in P(1,1,2,3) is a Cartier divisor of
degree 6 defined by

U =72 4+ (Y3 + XU)Z 4 Fs(X,Y) =0

for the homogeneous coordinate (X,Y,U,Z) of weight (1,1,2,3). Here, the
projection (X:Y:U:Z) +— (X:Y:U) induces a finite morphism V' — W ~
P(1,1,2), which is birational to ®|y: V — W. By the calculation

0 0 0 0

— ¥ =27 Y3+ XU), — U =XZ —VU=UZ+ —FsX,Y
82 +(C + )7 6U 3 8X +8X 6( ) )7
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we infer that Sing V'’ is contained in
{Fs(X,Y) =Z = cY> + XU = 0}

OF
U {x:2z+cy3 = Fs(0,Y) — 22 = Uz + 8—)(6(0’Y) :0}.
Here, Sing V' N {X = Z = 0} is contained in {(0:0:0:1)}. For, we have
F5(0,Y) = Y% in case (a,b) # (0,0), (0Fs/0X)(0,Y) = Y° in case (a,b) =
(2,1), and ¢ = 1 in case (a,b) = (1,b). Furthermore, Sing V' N {X # 0} is
contained in the finite set

{(1y:0:—ey®) | Fo(1,y) = 0}
and Sing V' N {Z # 0} is contained in the finite set

OF,
{(O:y:l:u)|2+cy3:F6(O,y)1:u+a—x6(0,y):0}.

Hence, V' has only isolated singularities and thus V' is normal. Therefore
S ~ V', since V! — W coincides with the Stein factorization of V' — W.
Therefore, we have the expected defining equations. [J

ProprosiTION 7.20. Let S be a log del Pezzo surface of index two of
type [1;2,2]p and let (X, E,A) be a fundamental triplet defining S. Let
(X,Y,U,Z) be a homogeneous coordinate of P(1,1,2,3).

(1) Either if chark # 2 or if the double-covering |lg: E C X — P! is
inseparable, then S is isomorphic to the divisor of P(1,1,2,3) defined
by

72 = F3(X,Y)Z + F4(X,Y)U + XYU?

for a cubic polynomial F3 and a quartic polynomial Fy with (F3, Fy) #
(0,0).

(2) If chark = 2 and if 7|g: E C X — P! is separable, then S is
isomorphic to the divisor of P(1,1,2,3) defined by

72 = (F3(X,Y) + XU)Z + Fy(X, Y)U + Y?U?

for a cubic polynomial F3 and a quartic polynomial Fy with (F3, Fy) #
(0,0).



486 Noboru NAKAYAMA

PRrROOF. In this type, E ~ 20 4 2/ is non-singular. By Lemma 4.11, we
may assume

£ —stg?, in the case (1);
= 2 + sfg +t%g?,  in the case (2).

Case (1). The fibers {s = 0} and {t = 0} intersect tangentially with
E. Hence, s|p = x* and t|p = y? for a homogeneous coordinate (x,y)
of E ~ P!. Moreover we can identify g|p with 1 and f|g with xy by
an isomorphism Og(c) ~ Op. Note that any homogeneous polynomial
Py (x,y) of degree 2m is written as

PQm(Xu Y) - Pm(x27 y2) + Pm—l(X27 YQ)XY

for some homogeneous polynomials P; of degree j for j = m, m — 1. Thus
we may assume

5 = F4(Sv t)g2 + F3(Sv t)fg

for a cubic polynomial F3 and a quartic polynomial Fy, where A C FE is
defined by Fy(x2,y?%) + F3(x2,y%)xy = 0. Since

&v —nu = (Fy(s, t)v + stu)g® + F3(s, t)vig — uf?,

we infer that V' — [y is not finite along {u = F3(s,t) = Fy(s,t) = 0}.
Applying Lemma 7.7, we have a birational map P --— P(1,1, 1, 2) such that

the proper transform V' of V in IP(1,1,1,2) is a Cartier divisor of degree 4
defined by

—U0Z8 + F3(X,Y)Zo + Fi(X,Y) + XYUp = 0

for the homogeneous coordinate (X, Y, Zg, Up) of weight (1,1,1,2). Note that
the projection (X:Y:Zy:Up) — (X:Y:Up) induces a rational map V' -—
W = P(1,1,2) with non-empty locus of indeterminacy. We consider the
birational map

P(17171a2) T P(1’17273)a
(X:Y:Z0:Up) — (X:Y:U:Z) = (X:Y:Up:ZoUp).
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Then the proper transform V" of V in P(1,1,2,3) is a Cartier divisor of
degree 6 defined by

U= —72 + F3(X,Y)Z + Fy(X,Y)U 4+ XYU? = 0

and the projection (X:Y:U:Z) — (X:Y:U) induces a finite morphism V" —
W. By the calculation

ov 8
8\:[/ 8F3 8 2
K ox —2(X,Y)Z+ — 8 L (X, Y)U + YU?,
o = By (X,Y)Z+ — o (x Y)U + XU,

we infer that the singular locus of V" is contained in the locus

] ]
{F3(x Y) — 2Z = Fy(X,Y) + 2XYU = 22 — XyU? = 0 9 —0}.

X oy
We shall show Sing V" is a finite set. Note that SingV" N {X =Y =0} C
{(0:0:0:1)}. Thus it suffices to consider two subsets Sing V" N{X # 0} and

Sing V" N {Y # 0}. Suppose first that chark # 2. Then Sing V" N {X # 0}
is contained in the finite set

{(1:y:z:u) | 2z — F3(1,y) = 2yu+ Fy(1,y)

_ OF3 0Fy

Or4 2 _
5y —(1,y)z + oy (l,y)u—i-u 0}

and Sing V" N {Y # 0} is contained in the finite set

{(x:l:z:u) ‘ 2z — F3(x,1) = 2xu + Fy(x,1)

= %(x 1)z + %—(x, Du+4u? = 0}.

Next, suppose that chark = 2. Then there are finitely many (x:y) € P!
satisfying F3(x,y) = Fy(x,y) = 0. Hence, Sing V" N {X # 0} is contained in
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the finite set

{(1:y:z:u) ‘ F3(1,y) = F4(1;y) = 2z — yu?

_ 05 oF, 2 _
- 8Y (1,y)2+ 8Y (1’y)u+u _0}7

and Sing V" N {Y # 0} is contained in the finite set

{(x:l:z:u) | Fs(x,1) = Fy(x,1) =z? — xu?

_or,
- OX

(x, 1)z + %(X, Du+u? = 0}.

Therefore, Sing V" is a finite set. Thus V" is normal and S ~ V.

Case (2). We can choose a homogeneous coordinate (x,y) of E ~ P!
so that s|g = x2, t|g = (x + y)y and that g|g = 1 and f|g = y? under
an isomorphism Og(o) ~ Opg. Note that any homogeneous polynomial
Py (x,y) of degree 2m is written as

Pom(%,5) = Pr(2, (x + ¥)y) + Pr1(x%, (x + ¥)y)y°

for homogeneous polynomials P; of degree j for j = m, m — 1. In fact, this
is shown by using

xy=(x+y)y—y’ and y'=—((x+y)y)?+2Ex+y)y+x)y’
Thus we may assume that
€ = Fy(s,t)g? + F3(s, t)fg

for a cubic polynomial F3 and a quartic polynomial Fy, where A is defined
by Fi(x2, (x +y)y) + F3(x%, (x + y)y)y? = 0. Since

év—nu = (Fy(s,t)v — t%u)g® + (F3(s, t)v — su)gf — uf?,

we infer that V' — Fa is not finite over {u = F3(s,t) = Fy(s,t) = 0}.
Applying Lemma 7.7, we have a birational map P --— P(1,1, 1, 2) such that
the proper transform V' of V in IP(1,1,1,2) is a Cartier divisor of degree 4
defined by

—UpZ2 + (F3(X,Y) — XUg)Zo + Fi(X,Y) — Y?Up = 0
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for the homogeneous coordinate (X, Y, Zg, Ug) of weight (1,1, 1,2). However,
the projection (X:Y:Zg:Up) — (X:Y:Up) induces a rational map V' -—
W = P(1,1,2) with non-empty locus of indeterminacy. We consider the
birational map

P(1,1,1,2) -— P(1,1,2,3);
(X:Y:Z0:Up) — (X:Y:U:Z) = (X:Y:Up:ZoUp).

Then the proper transform V" of V in P(1,1,2,3) is a Cartier divisor of
degree 6 defined by

U= 2% + (F3(X,Y) — XU)Z + Fy(X,Y)U - Y?U? =0

and the projection (X:Y:U:Z) — (X:Y:U) induces a finite morphism V" —
W. Since chark = 2, we have

ov ov
E —F3(X,Y) —XU, % = —XZ+F4(X,Y),
0¥  OF3 OFy 0¥  OF3 OFy
X W(X,Y)z —UZ + W(X,Y)U, 5= oy (X,Y)Z + oy (X, Y)U.

Thus the singular locus of V” is contained in the locus ¥ defined by the
following equations:

(i) ¥ =0; (ii) XU = F3(X,Y), (i) Xz = Fy(X,Y),
. (9F3 0F,
UZ=—XY)Z+ —(X,Y)U.
(v) vz= Dz L)
In order to show, S ~ V", we have only to check that X is a finite set. The
four equations above induce the following (v) and (vi), where (v) follows
from (i)-(iii), and (vi) follows from (ii), (iii), and (v) multiplied by X?:

(v) 2? —XUZ + Y?U? = 0;
(vi) Fy(X,Y)? — XF3(X,Y)Fy(X,Y) + Y2 F3(X,Y)? = 0.

Note that (vi) does not hold identically on P!. This is shown as follows:
Assume the contrary. We may also assume that F3(X,Y) is not identically
zero. Then the rational function w = Fy(X, Y)X 1 F3(X, Y)~! is related to the
rational function y = Y/X by the Artin-Schreier equation: w? — w + y? =
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0. Here k(y)/k(y?) is inseparable but k(w)/k(y?) is separable. However
k(w) C k(y) by the assumption. Thus a contradiction is derived.

Therefore, ¥ N {X # 0} is a finite set. If (0:1:u:2) € X, then u = z by
(v) and

OF; OF, B

by (iv). Thus ¥ N {X = 0} is also finite. Therefore we finished the proof. [J

REMARK. The equations in Propositions 7.11-7.15 and 7.17-7.20 de-
fine log del Pezzo surfaces of index two. In fact, the subvariety defined by
the equations is really constructed from a fundamental triplet (X, E, A) of
the same type, where F and A are defined by the data of the equations.

Ezample 7.21. Let (X, E,A) be an extremal fundamental triplet of
type [1;2,2]p with D(X,E,A) = Dg. Then the associated log del Pezzo
surface S is defined by

72 = (X® 4 YU)XU, if chark # 2 or E — P! is inseparable,
72 = (XZ+X* +Y2U)U,  otherwise,

in P(1,1,2,3) for the homogeneous coordinate (X,Y,U,Z) of weight
(1,1,2,3). In fact, we can take F3 = 0 and Fy = X* in Proposition 7.20.

The following example shows that the Smooth Divisor Theorem in [4]
does not hold in general in characteristic two. This was pointed out by
Ohashi in a special case.

Ezample 7.22. Suppose that chark = 2. Let S be a log del Pezzo
surface defined by the equation of Proposition 7.20, (1), with F5 = 0. Then
7|g: E — P! is inseparable. We can show that any member C of |-2Kg| has
a singular point, as follows: A general member C'is defined by U—Q(X,Y) =0
for a quadric polynomial Q). Thus C' C P(1, 1, 3) is defined by

72 = Fy(X,Y)Q(X,Y) + XYQ(X, Y)?

for the homogeneous coordinate (X, Y, Z) of weight (1,1, 3). Let (x,z) be the
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coordinate system of the open subset {Y # 0} ~ A? defined by x = X/Y and
z=2/Y3. Then C N{Y # 0} is defined by z? = ®(x) for the polynomial

®(x) = Q(x,1)Fy(x,1) + xQ(x,1)2.

Thus a point (x9,2¢) € A? is contained in Sing C' N {Y # 0} if and only if
(d®/ dx)(x9) = 0 and z% = ®(x). Thus Sing C' # 0.

REMARK 7.23. We consider a fundamental triplet (X, E, A) is of type
[1;2,2]p with A = 8P for a non-ramification point P € E for n|g. Let
¢: M — X be the elimination of A. The dual graph I'[M] = I'(X, E, A)
of negative curves on M is written in TABLE 12. We shall give further
information on the set of negative curves by using the description of £ and
A in Proposition 7.20, in case chark > 5. Let (x:y) be the coordinate of
E ~ P! used in Case (1) of the proof of Proposition 7.20. Then we may
assume that P € E is defined by x + y = 0. Let us define homogeneous
polynomials P,(s,t) and Q,(s,t) € Z[1/2, s, t] of degree n > 0 by

(x+7)%" = Po(x%,7%) + 2xyQn—_1(x*, y7).

Here, Q_1(s,t) =0, Py(s,t) = Qo(s,t) = 1, and we have
2P (% y) = (e by (- )2 = T (b y) = ()
AxyQua (7)) = (49 — x—9)* = [[ " (x+y) — ¥z~ )
for ¢ = exp(2mv/—1/(4n)) for n > 1. Therefore,
Py(s,t) =2"! HZ;; ((s+1t) —cos (2Hr) (s — 1)),
anl(S,t) _ 9n—1 H:;i ((s + t) — CcoS (%ﬂ') (S — t)) .

In particular, P,(s,t) and Q,(s,t) have only simple roots on P! if
ged(chark, 2n) = 1. We also have the equality

(7-10)  Pi(s,t)Qj-1(s,t) — Pi(s,£)Qi-1(s,t) = (s — £)*Qj_i_1(s, t)

for 0 < i < j by calculation. Let 7, be the unique section of 7 with
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vile = 2jP (cf. Proposition 6.2, (7g)) for 1 < j < 4. Then

v; = div(Pj(s, t)g + 2Qj-1(s, t)f).

We set vg to be 0. Then

YNy =7 Ndiv((s — t)*Qj—i—1(s, t))

for 0 <1i < j <4 by (7-10). Let v C M be the proper transform of 7; in
M for 0 < j <4, which is a (—1)-curve. If ~; ps Ny ar # 0 for i < j, then
1+ 1 < 7, and the following assertions hold:

e i N is a reduced point lying over the point (1:—1) € P! for
j=i+2,

e i Ny is reduced consisting of two points lying over {(3:—1),
(1: =3)} C P! for j =i + 3,

® 70,0 M40 is reduced consisting of three points lying over
{(1+\/§:1—\/§) ,(1:-1),(1—\/5:1+\/§)} C Pl

In particular, yo, 7 Ny2,m = Y2,m N Ya,m is a point Py lying over the point
{g = s+t = 0}, and the union of negative curves on M is not normal
crossing at the point Pys. From the dual graph I'[M] in TABLE 12, we can
not obtain directly the property that vo ar, 72,1, and 4,37 meet at a point.

REMARK 7.24. For a log del Pezzo surface S of index two, we have
proved in Theorem 3.32 that —4Kg is very ample, and that —2Kg is very
ample if and only if Kg > 1. We can check it by our explicit description of
S as follows:

If S is one of surfaces treated in Section 7.3, i.e., Ky + Ly is big and
S is not of type [n;1,0]p, then S is expressed as a subvariety of a weighted
projective space. Here, Og(—2Kg) is just the restriction of a very ample
invertible sheaf of the weighted projective space, by construction.

The surfaces S of type [n;1,0]q are treated in Section 7.4, where K2 =
54+n>1 Ifn =4, then S ~ P(1,1,4) and Og(—2Kg) = O(4) is very
ample. If 0 < n < 4, then S is a subvariety of P(1,1,n) x P(1,1,4) where
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Os(—2Kg) is just the restriction of O(2n) X O(4) by Proposition 7.1; thus
—2Kg is very ample. If n = 0, then S is a subvariety of P! x P(1,1,4)
and Og(—2Kg) is just the restriction of the very ample invertible sheaf
O(2) K O(4) also by Proposition 7.1.

If S is of type [4;2,4]gpp, then Kg = 2, and Og(—2Kg) is the restriction
of the very ample invertible sheaf O(4) of P(1,1,4,4) by Proposition 7.17.

Thus, the remaining types are [3;2,4]+, [3;2,4]+4(a,b), and [1;2,2]o.
These are just the cases of S with K% = 1. In this case, S is a prime divisor
of P(1, 1, 2, 3) not containing the point (0:0:0:1) and Og(—2Kg) ~ O(2)|s,
by Propositions 7.18, 7.19, 7.20. We note that —2Kg is not very ample, since
O(2)|s is the pullback of O(2) by the projection S — P(1,1,2). It is enough
to check that O(4)|s ~ Ogs(—4Kg) is very ample, since O(6) is very ample
onP(1,1,2,3). Let (X,Y,U, Z) be the homogeneous coordinate of P(1, 1,2, 3)
as before. Then the vector space H’(PP(1,1,2,3),0(4)) is generated by

X7y x2iviy, Xz, YZ

for 0 <i<4and 0 <j <2 Now S is covered by three affine open subsets
{X # 0}, {Y # 0}, {U # 0}. The affine ring of {X # 0} is isomorphic to the
polynomial ring of three variables generated by

Y/x =x3v/xY, u/x? =x%u/xt, z/x3 =xz/x

Thus the linear system |O(4)| gives an embedding of the open subset {X # 0}
into the projective space |O(4)|Y = P(H°(P(1,1,2,3),0(4))). Similarly, it
gives an embedding of {Y # 0}. The affine ring of {U # 0} is isomorphic
to the subring k[x,y,z]® generated by monomials of degree two of the
polynomial ring k[x,y, z] of three variables. This ring is generated by

x>yl = X279V U, xz =XZ/U%, yz =YZ/U%, 2% =122/U°

for 0 < j < 2. Since 22 ¢ H°(P(1,1,2,3),0(4)), the linear system |O(4)]
does not give an embedding of {U # 0}. However, the defining equations
of S obtained in Propositions 7.18, 7.19, 7.20 express z2 = Z2/U3 by other
generators of the affine ring. Hence, O(4)|g is very ample.
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TABLE 14. The list of defining equations of log del Pezzo surfaces of index two

. e di
Type Equations (conditions) arcr?&renltnslzzsce
_ (X7 Y7 Z7U)
(1o XU = F5(Y,2) (Fs # 0) PO 114)
2o (Z2—XY)U = Fi(X,Y)+ F5(X,Y)Z (}1“1{?;’)
((F, F1) # (0,0)) P, LL,2)
_ 54 (Xa Y7 ZvU)
[2]+(0) XYU = Z* 4+ F3(X,2)X + G3(Y,2)Y P(1.1,1,2)
[2]+(b) XYU = Fy (X 2)X° 4+ G3(Y,2)Y (X,Y,2,U)
1 <b<a (F4_4(0,1) #0,G3(0,1) # 0) P(1,1,1,2)
o _ | (X.Y,2,0)
[2,1,2]0 ZU = Fs(X,Y) (Fs #0) P(1,1,2,4)
. _ 3 2\42 2\v2 (X,Y,2,0)
(2;1,2] 1+ XYU = Z° + F1(Z,X*)X*°Z + G1(Z,Y?)Y?Z (11,2 4)
W = YZ
X,Y,Z,W,U
[0;1,1]0 X-WU = F(Z,WW+ G2(W, Y)Y ]P’E171717172))
((F2, G2) # (0,0)) 7
' W = YZ (X,Y,Z,W,0)
1051, 1]+-(0) XU = W+ Fi(2,W)2ZW+ G1(W,Y)YW P(1,1,1,1,2)
' W = YZ (X,Y,Z,W,0)
(051, 1]+ (1) XU = (W4 cZ)ZW+ (W+Y)YW P(1,1,1,1,2)
[0;1,1]4+(b) W = YZ (X,Y,2,W,0)
XU = (W4 cZ)ZW +wty® P(1,1,1,1,2)
(2<0<3)
W = YZ
[1: 1, 1o 70 = F5(XY)X Pg’ f;‘; U))
WU = F5(X Y)Y (F5 #0) T
W = YZ
[1:1,1]4(0,0) W+ cZ)ZW = (XU — G1(W,Y?)YW)X P(l’l’g";’z))
W4 cZ)Ww? = (XU—Gi(W,Y)Yw)Y e
W = YZ
[1:1,1)4(1,1) 220 = (XU — (W+ cY?)YW)X Pgi;;’zg
wW? = (XU — (W4 cY?)YW)Y e e
W = YZ
[1:1,1]4(2,1) 73 = (XU— (W4 c¥?)YW)X Pg’ I ; ‘;’Z))
W = (XU— (W4 cY?)YW)Y T Ee
. W = YZ
[1;1,1]4+(1,0) 20 = (XU_ YY) (X,Y,Z,W,U)
(2<b<3) 70’ = (XU — Yl t)y P(1,1,2,2,4)
o= 1z (X,Y,Z,W,U)
. 2—iri+1 _ 3 2—iv1 g Ly by Wy
[2;1,1].(0,0) | z*'w (XU — G1 (W, Y?)Yw)x2 'y P(11336)

(for 0 <i<2)
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TABLE 14. (continued).

. .. dinat
Type Equations (conditions) arcr?l?ignltn:pzie
W = Yz
1,1]4(1, 23 = (XU — (W + cY3)Yw) x>y’ BN
211 | 2 Ry p(1.5,5.0)
(for 0 <4 < 2)
. W = YZ
[2,171]+(17b) 3—ivgi _ y3b—2y3—b\y2—iyi (X7Y7Z7W7U)
27w = (U= Y P(1,1,3,3,6)
(2<b<3) (for 0 < i < 2)
W = YZ
1,10, 237 = (XU — Gi(W, YH)Yw)x3 iy T
511 - G Y i) P14t S
(for 0 < i < 3)
X0, Yo) X (X1, Y1, Z
[0; 1, 0]o Z1Xo = YoFu(X1, Y1) ( ?P’l O)X(Pl(L 11743)
[n;1,0]o n’ngj B XlYg,i ; (X0, Yo, Zo) X (X1, Y1,21)
X5 = ZoXP Y Fan (X1, Y1) P(1,1,n) x P(1,1,4)
(1<n<3) (for 0 <i<mn) T o
.1, 000 no equation P(1,1,
4;1,0 i 1,1,4
‘ _ (X,Y,2,0)
[4; 2, 400 Uz = F3(X,Y) (Fs #0) P(1,1,4,4)
. R o (X,Y,U,2)
[3;2, 4]+ 2+ (F’ +X0)Z+ Fs(X,Y) = YU P(1,1,2,3)
. S . B (X,Y,U,2)
[3:2,4]44(0,0) | 2%+ (c¥’ + XU)Z +Y° + XF5(X,Y) =0 P(1,1,2,3)
; S - (X,Y,U,2)
3,2, 4]14(2,1) 7% 4+ XUZ + XY° + X F4(X,Y) = 0 P(1,1,2,3)
[37 274]++(17 b) 72 + (YS + XU)Z (X7 Y, U, Z)
(1<b<5) F XY L XU (X, Y) = 0 P(1,1,2,3)
s s 5 (X,Y,U,2)
[3;2,4]+4(1,6) 224+ (Y +X0)2+X° =0 P(1,1,2,3)
[17272}0
chark # 2 or 2% = F3(X,Y)Z + Fu(X,Y)U + XYU? (%,Y,0,2)
FeX oplis ((F3, Fx) # (0,0)) P(1,1,2,3)
inseparable
(152, 2]o 7% = (F5(X,Y) + XU)Z (X,Y,0,2)
chark # 2 zin.d + Fu(X,Y)U + Y?U? IF’(1’1’2’3)
EcCcX —>Prlis ((F5, Fy) #(0,0)) Y
separable

F;, G; are homogeneous polynomials of two variables of degree i.
¢, ¢ are constants in k.
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