
J. Math. Sci. Univ. Tokyo
14 (2007), 69–97.

Properties of Minimal Charts and

Their Applications I

By Teruo Nagase and Akiko Shima

Abstract. We study surface braids using the charts with minimal
complexity. We introduce several terminology to describe minimal
charts and investigate properties of minimal charts. We shall show
that in a minimal chart, there exist at least three white vertices in the
interior of any lens.

1. Introduction

Kamada introduced a method to describe surface braids as oriented

lableded graphs in a disk, called charts ([5],[6],[7]) (see Section 2 for precise

definition of charts). In a chart there are three kinds of vertices; white ver-

tices, crossings and black vertices. In this paper, we investigate properties

of minimal charts which we need to prove that there is no minimal chart

with exactly seven white vertices.

We proved that there is no minimal chart with exactly five vertices

([8]). Hasegawa proved that there exists a minimal chart with exactly six

white vertices ([2]). This chart represents the surface braid whose closure

is ambient isotopic to a 2-twist spun terfoil.

We investigated minimal charts with exactly four white vertices ([4]). In

minimal charts with exactly four white vertices, there are two classes: The

first class is obtained from the disjoint union of free edges, hoops and one

‘4-chart’ where the ‘4-chart’ represents the surface braid whose closure is

a tours link. The second class is obtained from the union of one ‘3-chart’,

rings, free edges and hoops. Here a ring is a simple closed curve consisting

of the same labeled edges which contains a crossing but does not contain

any white vertices.

2000 Mathematics Subject Classification. Primary 57Q45; Secondary 57Q35.
The second author is partially supported by Grant-in-Aid for Scientific Research

(No.16540082), Ministry of Education, Science and Culture, Japan.

69



70 Teruo Nagase and Akiko Shima

Any 3-chart (with edges of label 1 and 2) is obtained from a chart without

white vertices by C-moves ([5]). Hence any chart in the second class is not

a minimal chart if there are neither rings, free edges nor hoops. However,

Hasegawa showed that some charts in the second class are minimal charts

with four white vertices, but all charts in the second class represent surface

braids whose closures are ribbon surfaces ([3]).

Let Γ be a chart. For each label m, we denote by Γm the ’subgraph’ of

Γ consisting of edges of label m and their vertices. In this paper,

crossings are vertices of Γ but we do not consider crossings as vertices

of Γm. The vertices of Γm are white vertices and black vertices.

An edge of Γm is the closure of a connected component of the set obtained

by taking out all white vertices from Γm.

Among six short arcs in a small neighborhood of a white vertex, a center

arc of each three consecutive arcs oriented inward or outward is called a

middle arc at the white vertex (see Figure 2). The other arcs are called

non-middle arcs. There are two middle arcs in a small neighborhood of

each white vertex.

Let Γ be a chart. Let D be a disk such that ∂D consists of an edge e1

of Γm and an edge e2 of Γm+1 and that any edge containing a white vertex

in e1 does not intersect the open disk Int(D). Let w1 and w2 be the white

vertices in e1. If the disk D satisfies one of the following conditions, then

D is called a lens of type (m,m + 1) (see Figure 1):

(1) Neither e1 nor e2 contains a middle arc.

Figure 1. (a) is of type 1 and (b) is of type 2.
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(2) One of the two edges e1 and e2 contains middle arcs at both white

vertices w1 and w2.

If D satisfies the above condition (1) (resp. (2)), then the lens D is called a

lens of type 1 (resp. type of 2). We also say that D is a lens of Γ. The two

edges e1 and e2 are called the boundary arcs of the lens D. Note that a lens

is a bigon with crossings on the boundary satisfying the above conditions

(1) or (2).

The following is the main result in this paper:

Theorem 1.1. If there exists a lens of type (m,m + 1) in a minimal

chart, then in the interior of the lens there exists a white vertex contained

in an edge of label s ≤ m − 1 and a white vertex contained in an edge of

label t ≥ m + 2. Furthermore there exist at least three white vertices in the

interior of the lens.

This paper is organized as follows. In Section 2, we give notations and

definitions. In Section 3, we prove Disk Lemma (Lemma 3.2) which simpli-

fies the intersection of a disk and a chart. In Section 4, we prove Shifting

Lemma (Lemma 4.2) which gives conditions to move a white vertex to the

other place by C-moves (see Section 2 for precise definition of C-moves). In

Section 5, we examine labels of edges intersecting the boundary of a lens. In

Section 6, we give the proof of Theorem 1.1 by the help of Shifting Lemma

(Lemma 4.2) and Lemma 5.2.

A chart Γ is of type (m;n1, n2, . . . , nk) or of type (n1, n2, . . . , nk) briefly

if it satisfies the following three conditions:

(1) For each i = 1, 2, . . . , k, the chart Γ contains exactly ni white vertices

in Γm+i−1 ∩ Γm+i.

(2) If i < 0 or i > k, then Γm+i does not contain any white vertices.

(3) Both of the two subgraphs Γm and Γm+k contain at least one white

vertex.

Note that n1 ≥ 1 and nk ≥ 1 by the condition (3).

We shall show that there is no minimal chart Γ with exactly seven white

vertices as follows. In [9] we investigate types of minimal charts. We shall

show that any minimal chart with exactly seven white vertices is of type
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(7), (5, 2), (4, 3), (3, 2, 2) or (2, 3, 2) if necessary we change the label m + i

into m + k − i for all label i. We shall show that any minimal chart with

exactly seven white vertices possesses no lenses by the help of Theorem 1.1.

In [9] we investigate minimal charts with loops. Here a loop is a closed

edge of Γm containing exactly one white vertex. We shall show that there

does not exist any loop in a minimal chart with exactly seven white vertices,

[9].

Finally we shall show that there is no minimal chart of type (7), (5, 2),

(4, 3), (3, 2, 2) nor (2, 3, 2) in [9].

In this paper, for a set X we denote the interior of X, the boundary of

X and the closure of X by Int(X), ∂X and Cl(X) respectively.

2. Preliminaries

In this section, we define charts and notations.

Let n be a positive integer. An n-chart is an oriented labeled graph in

a disk, which may be empty or have closed edges without vertices, called

hoops, satisfying the following four conditions:

(1) Every vertex has degree 1,4, or 6.

(2) The labels of edges are in {1, 2, . . . , n− 1}.

(3) In a small neighborhood of each vertex of degree 6, there are six short

arcs, three consecutive arcs are oriented inward and the other three

are outward, and these six are labeled i and i+1 alternately for some

i, where the orientation and the label of each arc are inherited from

the edge containing the arc.

(4) For each vertex of degree 4, diagonal edges have the same label and

are oriented coherently, and the labels i and j of the diagonals satisfy

|i− j| > 1.

A vertex of degree 1, 4, and 6 is called a black vertex, a crossing, and a

white vertex respectively (see Figure 2).

C-moves are local modification of charts in a disk as shown in Figure 3

(see [1], [7] for the precise definition). Kamada originally defined CI-moves

as follows (C-I-moves are special cases of CI-moves): A chart Γ is obtained

from a chart Γ′ by a CI-move, if there exists a disk D such that
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Figure 2.

Figure 3. For the C-III-1 move, the edge containing the black vertex does not contain a
middle arc in the left figure.
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(1) the two charts Γ and Γ′ intersect the boundary of D transversely or

do not intersect the boundary of D,

(2) Γ ∩Dc = Γ′ ∩Dc, and

(3) neither Γ ∩D nor Γ′ ∩D contains a black vertex,

where (· · ·)c is the complement of the disk (· · ·).
Two charts are C-move equivalent if there exists a finite sequence of

C-moves which modify one of the two charts to the other.

An edge of Γm is called a free edge if it has two black vertices. An edge

of Γm is called a terminal edge if it has a white vertex and a black vertex.

Note that free edges, terminal edges, and loops may contain crossings of Γ.

For each chart Γ, let w(Γ) and f(Γ) be the number of white vertices, and

the number of free edges respectively. The pair (w(Γ),−f(Γ)) is called the

complexity of the chart. A chart is called a minimal chart if its complexity

is minimal among the charts C-move equivalent to the chart with respect

to the lexicographic order of pairs of integers.

In the following lemma, we investigate the difference of a chart in a disk

and in a 2-sphere.

Lemma 2.1. Let Γ and Γ′ be charts in a disk D. Suppose that Γ is

ambient isotopic to Γ′ in the one point compactification of the open disk

Int(D), i.e. the 2-sphere. Then there exist hoops C1, C2, . . . , Ck in Int(D)

such that

(1) the chart Γ is obtained from Γ′ ∪ (
k⋃

i=1

Ci) by C-moves in the disk,

(2) the chart Γ′ and hoops C1, C2, . . . , Ck are mutually disjoint, and

(3) each hoop Ci bounds a disk containing the chart Γ′ in the disk D.

Proof. Consider the one point compactification S2 of the open disk

Int(D). We have the point of infinity in S2, denoted by ∞. Suppose that

the charts Γ and Γ′ are ambient isotopic in S2. We can assume that the

white vertices do not pass the point ∞ by the ambient isotopy. Suppose

that an edge e moves over the point ∞ by the modification of the ambient

isotopy. Let α be an arc connecting two points a and b in the edge e such

that
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(1) α �� ∞,

(2) α ∩ e = {a, b}, and

(3) let e′ be the subarc of e bounded by the two points a and b, then α∪e′
bounds a disk containing the point ∞ in its interior.

Applying a C-I-M2 move along α between the points a and b to get a new

chart with a hoop around the point ∞. As a result, the edge e passes the

point ∞ so that e deforms to (e − e′) ∪ α. A new hoop is born each time

when an edge moves over the point ∞ so that we get concentric hoops center

at the point ∞ at the end of the modification. We complete the proof of

Lemma 2.1. �

Lemma 2.1 says that we can move the point ∞ to the any complementary

domain of the chart.

To make the argument simple, we assume that the charts lie on the

2-sphere instead of the disk. In this paper,

all charts are contained in the 2-sphere S2.

We have the special point in the 2-spehre S2, called the point at infinity,

denoted by ∞. In this paper, all charts are contained in a disk such that

the disk does not contain the point at infinity ∞.

A ring is a closed edge of Γm containing crossings but not containing

a white vertex, and a hoop is a closed edge of Γ without vertices (hence

without crossings, neither). A hoop is simple if one of the complementary

domain of the hoop does not contain any white vertices. We can assume

that all minimal charts Γ satisfy the following six conditions:

Assumption 1. Any terminal edge of Γm does not contain a crossing.

Hence any terminal edge of Γm is a terminal edge of Γ and any terminal

edge of Γm contains a middle arc.

For, using C-II moves and contracting the edge, we can eliminate the

crossings of the edge. If a terminal edge does not contain a middle arc, then

the white vertex of the edge can be eliminated by a C-III-1 move. This

contradicts the fact that Γ is a minimal chart.
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Assumption 2. Any free edge of Γm does not contain a crossing.

Hence any free edge of Γm is a free edge of Γ.

For, using C-II moves and contracting the edge, we can eliminate the

crossings of the edge. Hence any free edge of Γm does not contain any

crossings.

Assumption 3. All free edges and simple hoops in Γ are moved into

a small neighborhood U∞ of the point at infinity ∞.

For, by Assumption 2 any free edge of Γm does not contain crossings.

By using C-I-M2 moves, we can move free edges and simple hoops into the

neighborhood U∞ of the point at infinity ∞ (see Figure 4).

Assumption 4. Each complementary domain of any ring must con-

tain at least one white vertex.

For, if a complementary domain D of a ring does not contain white

vertices, then move all the free edges to the other complementary domain

by applying C-I-M2 moves so that D does not contain white vertices nor

black vertices. Hence we can change the ring to a simple hoop by a CI-move

without increasing the complexity. The number of rings is reduced. Hence

we assume that each complementary domain of any ring must contain at

least one white vertex.

Figure 4.
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Assumption 5. Hence we assume that the subgraph obtained from Γ

by omitting free edges and simple hoops does not meet the set U∞. Also

we assume that Γ does not contain free edges nor simple hoops, otherwise

mentioned. Therefore we can assume that if an edge of Γm contains a

black vertex, then it is not a free edge but a terminal edge and that each

complementary domain of any hoops and rings of Γ contains a white vertex,

otherwise mentioned.

Assumption 6. The point at infinity ∞ is moved in any complemen-

tary domain of Γ.

For, by Lemma 2.1, we can move the point at infinity ∞ in any com-

plementary domain of Γ increasing some simple hoops C1, C2, . . . , Ck in the

neighborhood U∞ of the point at infinity ∞.

In our argument, we often need a name for an unnamed edge by using

a given edge and a given white vertex. For the convenience, we use the

following naming: Let e′, ei, e′′ be three consecutive edges containing a white

vertex wj . Here, the two edges e′ and e′′ are unnamed edges. There are six

arcs in a neighborhood U of the white vertex wj . If the three arcs e′ ∩ U ,

ei ∩ U , e′′ ∩ U lie anticlockwisely around the white vertex wj in this order,

then e′ and e′′ are denoted by aij and bij respectively (see Figure 5). Note

that, when we consider the edge ei as the hour hand and each of aij and

bij as the minute hand, the edge aij is the edge after ei, and the edge bij is

the edge before ei. There is a possibility aij = bij if they are contained in a

loop.

Figure 5.
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3. Disk Lemma

In this section, we investigate the intersection of a disk and a chart which

often appears in the future arguments.

Let Γ be a chart. If an object consists of some edges of Γ, arcs in edges

of Γ and arcs around white vertices, then the object is called a pseudo chart.

Let Γ and Γ′ be C-move equivalent charts. Suppose that a pseudo chart

X of Γ is also a pseudo chart of Γ′. Then we say that Γ is modified to Γ′ by

C-moves keeping X fixed. In Figure 6, we give examples of C-moves keeping

pseudo charts fixed.

Let D be a disk, α and β two arcs with ∂D = α∪β, and α∩β = ∂α = ∂β.

The pair (α, β) is called a boundary arc pair of the disk D.

The following lemma is a direct result of CI-moves.

Lemma 3.1. Let Γ be a minimal chart and α an arc in an edge e of Γm.

Let D be a disk with a boundary arc pair (α, β). Let U be a neighbourhood

of the disk D. If U does not contain any black vertices of Γ and if Int(β)∩
(Γm−1 ∪ Γm ∪ Γm+1) = ∅, then without increasing the complexity of Γ we

can replace the edge e by the arc (e− α) ∪ β by C-moves in U .

Figure 6. C-moves keeping thicken figures fixed.
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Let Γ be a chart, and D the closure of an open disk U . Let α be a

simple arc on ∂U = D − U . We call a simple arc γ in Γk a (D,α)-arc of

label k provided that ∂γ ⊂ α and Int(γ) ⊂ U . If D is a disk then the arc

γ separates D into two disks. One of the two disks does not meet β, where

(α, β) is the boundary arc pair of D. The disk is called the α-disk divided

by γ. If there is no (D,α)-arc in Γ, then the chart Γ is said to be (D,α)-arc

free.

Let Γ be a chart and D the closure of an open disk U . Let α be a simple

arc on ∂U . For each k = 1, 2, · · · let Σk be the pseudo chart which consists

of all arcs in D ∩ Γk intersecting the set Cl(∂U − α). Let Σα =
⋃

k

Σk.

The following lemma is easy to prove. However we use often the lemma.

Hence we give a proof of the lemma.

Lemma 3.2. (Disk Lemma) Let Γ be a minimal chart, and D a disk

with a boundary arc pair (α, β). Suppose that the interior of α contains

neither white vertices, isolated points of D ∩ Γ, nor arcs of D ∩ Γ. If the

interior of D does not contain white vertices of Γ, then for any neighborhood

V of α, there exists a (D,α)-arc free minimal chart Γ′ obtained from the

chart Γ by C-moves in V ∪D keeping Σα fixed.

Proof. Let Γ′ be a chart such that the number of (D,α)-arcs is mini-

mal among minimal charts obtained from Γ by C-moves in V ∪D keeping Σα

fixed. Suppose that Γ′ is not (D,α)-arc free. Then Γ′ contains a (D,α)-arc

(see Figure 7a).

Let β′ be an innermost (D,α)-arc. Let D′ be the α-disk divided by β′.
Set α′ = α∩D′. Then Γ′ does not contain (D′, α′)-arcs, and the pair (α′, β′)
is a boundary pair of the disk D′ (see Figure 7b). Since the disk D does not

contain free edges by Assumption 5, neither does D′. Since Int(D)∪Int(α)

does not contain white vertices, neither does D′.
By Assumption 5, any black vertex is contained in a terminal edge of Γ′.

Hence any black vertex in D′ is contained in an edge intersecting α′. Thus

we can contract the edge by an ambient isotopy of D ∪ V so that the black

vertex is contained in the exterior of the disk D′. Hence we can assume that

D′ does not contain any black vertex.

Let e be the edge of a subgraph Γm containing β′. Let α′′ be an arc in

V −D and β′′ an arc in e with β′′ ⊃ β′ and ∂α′′ = ∂β′′ such that
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(1) the arc α′′ is almost parallel to the arc α′ and very close to α, and

(2) α′′ ∪ β′′ bounds a disk D′′ in V ∪D (see Figure 7c).

Since Γ′ does not contain (D′, α′)-arcs, we can assume that Γ′ does not

contain (D′′, α′′)-arcs. Hence if a proper arc γ in D′′ with γ ⊂ Γ′ meets the

arc α′′, then the arc γ must meet the arc β′′.

Thus by Lemma 3.1 we can replace the edge e by the arc (e− β′′) ∪ α′′

by C-moves in V ∪D without increasing the complexity but decreasing the

number of (D,α)-arcs (see Figure 7d). This contradicts the fact that the

number of (D,α)-arcs of Γ′ is minimal. Therefore Γ′ does not contain any

(D,α)-arcs. �

Figure 7.
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We shall enrich Disk Lemma. Let Γ be a chart, and D the closure of

an open disk U . A simple arc α in ∂U = D − U is called an admissible

boundary arc of D provided that α ∩ Cl(∂U − α) = ∂α.

The following lemma is also called Disk Lemma.

Lemma 3.3. (Disk Lemma) Let Γ be a minimal chart and D the clo-

sure of an open disk U . Let α be an admissible boundary arc of D. Sup-

pose that the interior of α contains neither white vertices, isolated points of

Cl(U) ∩ Γ, nor arcs of Cl(U) ∩ Γ. If U does not contain white vertices of

Γ, then for any neighborhood V of α, there exists a (D,α)-arc free minimal

chart Γ′ obtained from the chart Γ by C-moves in V ∪D keeping Σα fixed.

Proof. Choose a simple arc β in U ∪α almost parallel to Cl(∂U −α)

such that α∪β bounds a disk D′ in Cl(U). Apply Disk Lemma (Lemma 3.2)

for the boundary arc pair (α, β) of the disk D′. �

4. Shifting Lemma

In this section, we investigate conditions to move a white vertex to the

other place. All lemmata in this section are special cases of CI-moves. We

use the lemmata to specify situations and modifications of charts in the

future arguments.

Let α be an arc, and p, q points in α. We denote by α[p, q] the subarc

of α whose end points are p and q.

Let Γ be a chart and a, b, c mutually different three points of an arc α

with b ∈ α[a, c]. The arc α[a, c] is said to be a bipartition arc of Γ with the

partition point b with respect to the label k provided that

(1) α[a, c] ∩ Cl(Γk − α[a, c]) ⊂ {a, c},

(2) α[a, b] ∩ Γj = ∅ for all j (j > k), and

(3) α[b, c] ∩ Γi = ∅ for all i (i < k).

Lemma 4.1. (Bipartition Lemma) Let Γ be a chart, and D a disk with-

out any white vertices of Γ. Let α be a proper arc of the disk D. Let a, c be

the end points of α, and b an interior point of α. Suppose that there exists

an integer m with Cl(Γm − α) ∩ Int(D) = ∅ such that Γi ∩ α is at most
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finitely many interior points of α for each i (i �= m). Then there exists a

chart Γ∗ obtained from Γ by C-I-R2 moves and C-I-R3 moves in D keeping

Γm fixed such that

(1) the number of points in Γi∩α is equal to the number of points in Γ∗
i ∩α

for each i, and

(2) the arc α[a, c] is a bipartition arc of Γ∗ with the partition point b with

respect to the label m.

Proof. Let S be the set of charts obtained from Γ by C-I-R2 moves

and C-I-R3 moves in D keeping Γm fixed which satisfies Condition (1).

For each element Γ′ of S, let n1(Γ
′) be the number of the points in⋃

j≥m+1

(α[a, b]∩Γ′
j), and n2(Γ

′) the number of the points in
⋃

i≤m−1

(α[b, c]∩Γ′
i).

Let n(Γ′) = n1(Γ
′) + n2(Γ

′).
Let Γ′′ be an element of S such that n(Γ′′) is minimal in S. We claim

that n(Γ′′) = 0.

Suppose that n(Γ′′) > 0. Then n1(Γ
′′) > 0 or n2(Γ

′′) > 0. Suppose

that n1(Γ
′′) > 0. Assuming that the arc α is a line-segment, let d be the

nearest point to b among the points in
⋃

j≥m+1

(α[a, b] ∩ Γ′′
j ). Then for an

integer k ≥ m + 1 the point d is in a connected component β of Γk ∩ D.

Since all the crossings between d and b are points in
⋃

i≤m−1

(α[a, b] ∩ Γ′′
i ),

we can push the arc β toward α[b, c] by C-I-R2 moves and C-I-R3 moves in

D (see Figure 8). Let Γ′′′ be the resulting chart. Then we have Γ′′′ ∈ S,

n1(Γ
′′′) = n1(Γ

′′) − 1, and n2(Γ
′′′) = n2(Γ

′′). Hence n(Γ′′′) < n(Γ′′). This

contradicts the fact that n(Γ′′) is minimal among the elements in S. Hence

we have n1(Γ
′′) = 0. Similarly we have n2(Γ

′′) = 0. Thus n(Γ′′) = 0.

Therefore Γ′′ is a desired one. �

Note. In Lemma 4.1, if α[b, c] ∩ Γi = ∅ for all i (i < m), then we can

use C-moves keeping
⋃

i≤m

Γi fixed. If α[a, b] ∩ Γj = ∅ for all j (j > m), then

we can use C-moves keeping
⋃

j≥m

Γj fixed.
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Figure 8.

Let Γ be a chart. Let α be an arc in an edge of Γm, and w a white

vertex with w �∈ α. Suppose that there exists an arc β such that

(1) its end points are the white vertex w and an interior point p of the

arc α, and

(2) the arc β is contained in Γ, or Γ∩ β consists of at most finitely many

points.

Then we say that the white vertex w connects with the point p of α by the

arc β.

Lemma 4.2. (Shifting Lemma) Let Γ be a chart and α an arc in an

edge of Γm. Let w be a white vertex of Γk∩Γh where h = k+ε, ε ∈ {+1,−1}.
Suppose that the white vertex w connects with a point r of the arc α by an

arc in an edge e of Γk. Suppose that one of the following two conditions is

satisfied:

(1) h > k > m.

(2) h < k < m.

Then for any neighborhood V of the arc e[w, r] we can shift the white vertex

w to e−e[w, r] along the edge e by C-I-R2 moves, C-I-R3 moves and C-I-R4

moves in V keeping
⋃

i<0

Γk+iε fixed.
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Figure 9. Lemma 4.2, Case (1): k > m and ε = +1.

Proof. Suppose the condition (1) h > k > m. Then we have h = k+1

and ε = +1. Since the edge e of Γk intersects the arc α of Γm, we have

k ≥ m + 2. Let p′ be a point of the edge e near the point w such that

e[w, p′] does not contain any crossings. Let D be a regular neighborhood of

e[p′, r] in V . Let ∂D ∩ e = {p, q} where p ∈ e[w, p′]. We can assume that

e[r, q] does not contain any crossing except the point r. Let c be a point in

Int(e[r, q]) (see Figure 9a).

Applying Bipartition Lemma (Lemma 4.1) for the disk D, the arc e[p, q]

and the point c, we have a chart Γ′ such that

(i) the chart Γ′ is obtained from Γ by C-I-R2 moves and C-I-R3 moves in

V keeping
⋃

i≤k

Γi fixed, and

(ii) the arc e[p, q] is a bipartition arc of Γ′ with the partition point c with

respect to the label k (see Figure 9b).

Since Int(e[w, q]) ∩ (Γk−1 ∪ Cl(Γk − e[w, q]) ∪ Γk+1) = ∅, we have⋃

j≥k−1

(Int(e[w, q]) ∩ Cl(Γ′
j − e[w, q])) =

⋃

j≥k+2

(Int(e[c, q]) ∩ Γ′
j) ⊂ e[c, q].

Since h− i > k− i ≥ 2 for each i ≤ k− 2 and since h−m > k−m ≥ 2, we

can shift the white vertex w to e− e[w, r] by C-I-R2 moves, C-I-R3 moves,

and C-I-R4 moves keeping
⋃

i<k

Γ′
i fixed (see Figure 9c).

If the condition (2) h < k < m is satisfied, then we can show the lemma by

using a method similar to that in the case where h > k > m. �
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Note. In Lemma 4.2, for any neighborhood V of the arc e[w, r] we can

shift the white vertex w to e − e[w, r] along the edge e by C-I-R2 moves,

C-I-R3 moves and C-I-R4 moves in V keeping
⋃

i�=h,k

Γi fixed if one of the

following two conditions is satisfied:

(1) h = k + 1, k < m, and e[w, r] ∩ Γk+2 = ∅.

(2) h = k − 1, k > m, and e[w, r] ∩ Γk−2 = ∅.

In Lemma 4.2, we can move the arc α instead of the white vertex.

Corollary 4.3. Let Γ be a chart and α an arc in an edge of Γm. Let

w be a white vertex of Γk ∩ Γh where h = k + ε, ε ∈ {+1,−1}. Suppose that

the white vertex w connects with a point r of the arc α by an arc in an edge

e of Γk. Suppose that one of the following two conditions is satisfied:

(1) h > k > m.

(2) h < k < m.

Then for any neighborhood V of the arc e[w, r] we can push α to the other

side of the white vertex w along e by C-I-R2 moves, C-I-R3 moves and

C-I-R4 moves in V keeping
⋃

−1≤i

Γk+iε fixed (see Figure 10).

Corollary 4.4. Let Γ be a chart and α an arc in an edge of Γm. Let

w be a white vertex of Γk ∩ Γh where h = k + ε, ε ∈ {+1,−1}. Suppose that

Figure 10. Corollary 4.3, Case (1): h > k > m.
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the white vertex w connects with a point r of the arc α by an arc in an edge

e of Γk. Suppose that one of the following two conditions is satisfied:

(1) h = k + 1, k < m, and e[w, r] ∩ Γk+2 = ∅.

(2) h = k − 1, k > m, and e[w, r] ∩ Γk−2 = ∅.

Then for any neighborhood V of the arc e[w, r] we can push α to the other

side of the white vertex w along e by C-I-R2 moves, C-I-R3 moves and

C-I-R4 moves in V keeping
⋃

i≤2

Γk+iε fixed (see Figure 11).

Proof. Case (1): Let c be a point of the edge e near the white vertex

w so that Int(α[w, c]) does not contain any crossings. Let D be a regular

neighborhood of e[c, r] in V . Let ∂D ∩ e = {p, q} where p ∈ e[w, c].

Since r is a crossing in Γm∩Γk, we have m ≥ k+2. And e[w, r]∩Γk+2 = ∅
implies that r �∈ Γk+2. Hence we have m ≥ k + 3.

By Bipartition Lemma (Lemma 4.1) we can assume that e[q, p] is a

bipartition arc of Γ with the partition point c with respect to the label k+2

where we can keep
⋃

i≤k+2

Γi fixed. Let Γ′ be the resulting chart. Now the arc

α is deformed so that the arc intersects e[w, c]. Since
⋃

i<k+3

(Int(e[w, q]) ∩

Cl(Γ′
i−e[w, q])) =

⋃

i≤k−2

(Int(e[c, q])∩Γ′
i) ⊂ e[c, q], and since j−k > j−h ≥

(k+3)− (k+1) = 2 for each k+3 ≤ j, we can push all the arcs intersecting

Int(e[w, c]) to the other side of the white vertex w.

Figure 11. Corollary 4.4, Case k + 2 < m.
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Case (2): In this case, the lemma is shown by an argument similar to

the case (1). �

Further we can arrange Lemma 4.2 by using an arc instead of the edge

e and adding conditions as follows.

Corollary 4.5. Let Γ be a chart and α an arc in an edge of Γm. Let

w be a white vertex of Γk ∩ Γh where h = k + ε, ε ∈ {+1,−1}. Suppose that

the white vertex w connects with a point r of the arc α by an arc β such that

Int(β) intersects Γ transversely. Further suppose that one of the following

two conditions is satisfied:

(1) h > k > m and Γs ∩ β[w, r] = ∅ for some integer s with k > s > m.

(2) h < k < m and Γs ∩ β[w, r] = ∅ for some integer s with k < s < m.

Then for any neighborhood V of the arc β[w, r] we can shift the white vertex

w to the other side of the arc α along the arc β by C-I-R2 moves, C-I-R3

moves and C-I-R4 moves in V keeping
⋃

i≤0

Γs+iε fixed (see Figure 12). Also

we can push the arc α to the other side of white vertex w along the arc β

by C-I-R2 moves, C-I-R3 moves and C-I-R4 moves in V keeping
⋃

0≤i

Γs+iε

fixed (see Figure 13).

Figure 12. Corollary 4.5, Case (1) k > s > m. Shifting the white vertex w.
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Figure 13. Corollary 4.5, Case (1) k > s > m. Pushing the arc α.

5. Lenses

In this section we investigate arcs intersecting the boundary of a lens.

Let Γ be a chart, and v a vertex. Let α be a short arc of Γ in a small

neighborhood of v with v ∈ ∂α. If the arc α is oriented to v, then α is called

an inward arc, and otherwise α is called an outward arc.

The following lemma is shown in [5, Lemma 18.24 (E)]. Thus we omit

the proof.

Lemma 5.1. (Cut Edge Lemma) Let Γ and Γ′ be charts, and D a disk

with Γ ∩Dc = Γ′ ∩Dc. If Γ ∩D and Γ′ ∩D are pseudo charts as shown in

Figure 14, and if both Γm+1 ∩D and Γ′
m ∩D consist of an inward arc and

an outward arc, then Γ is C-move equivalent to Γ′.

Figure 14.
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Figure 15.

Lemma 5.2. Let Γ be a minimal chart. Let e1 be an edge of Γm with

∂e1 ⊂ Γm+ε (ε ∈ {+1,−1}). Let w1 and w2 be the white vertices of the edge

e1. Suppose that

(1) one of the two edges a11 and b12 contains an inward arc and the other

contains an outward arc, and

(2) one of the two edges a12 and b11 contains an inward arc and the other

contains an outward arc (see Figure 15).

Then the edge e1 contains at least one crossing in Γm∩Γm+2ε. In particular

if both edges a11 and b12 are terminal edges, or if both edges a12 and b11 are

terminal edges, then e1 contains at least two crossings in Γm ∩ Γm+2ε.

Proof. Suppose that e1 ∩ Γm+2ε = ∅. Since w1, w2 ∈ Γm ∩ Γm+ε and

since Int(e1) does not intersect other edges of label m,m±ε nor m+2ε, all

the edges intersecting e1 are pushed out from e1 through the white vertex w1

by Corollary 4.3 or 4.4. Hence we can assume that Int(e1) does not intersect

other edges of Γ. (see Figure 16). Applying a C-I-M2 move between a11

and b12 and a C-I-M2 move between a12 and b11 in a small neighborhood of

e1, we obtain three edges connecting the two white vertices w1 and w2. We

can eliminate the two white vertices by a C-I-M3 move. This contradicts

that Γ is minimal. Hence e1 ∩ Γm+2ε �= ∅.
Suppose that the two edges a11 and b12 are terminal edges. If e1∩Γm+2ε

contains only one point, then there exists an arc α connects the black vertices

of a11 and b12 such that Int(α) ∩ Γm+2ε contains only one point. By using

C-II moves between one of the terminal edges and the edges intersecting
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Figure 16.

Figure 17.

Int(α) one by one, we can assume that Int(α) ∩ Γ contains only one point

in α ∩ Γm+2ε (see Figure 17). Let e′ be the edge in Γm+2ε which intersects

the edge e1. Apply Cut Edge Lemma (Lemma 5.1) for the two edges a11

and b12 and the edge e′. Then the edge e′ splits into two edges. One of the

edges intersects the edge e1, say e′′. Shrink the edge e′′ so that e1 does not

intersect any edges of label m + 2ε. This contradicts the first half of our

lemma. �

Lemma 5.3. Let Γ be a minimal chart and D a lens of type (m,m+1)

with the boundary arc pair (em, em+1) where em ⊂ Γm and em+1 ⊂ Γm+1.

Then em ∩ Γm+2 �= ∅ and em+1 ∩ Γm−1 �= ∅.

Proof. Looking at the edge em, we have em ∩ Γm+2 �= ∅ by Lemma
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5.2. Similarly by looking at the edge em+1 we can get em+1 ∩Γm−1 �= ∅. �

The following lemma shows how to use Lemma 5.2 and Disk lemma

(Lemma 3.2).

Lemma 5.4. If a minimal chart Γ contains the pseudo chart as shown

in Figure 18a, then the interior of the disk D contains at least one white

vertex, where D is the disk with the boundary e3 ∪ e4 ∪ e.

Proof. We give a proof for the case that the edge e1 is oriented out-

ward at the white vertex w1. Hence edges are oriented as shown in Fig-

ure 18b. We use notations as shown in Figure 18b. Suppose that the

interior of D does not contain any white vertices.

Let e′ be the edge of Γm+ε which contains the white vertex w3 and is

different from the two edges e3 and e4. Since e′ ∩ ∂D = {w3}, we have that

e′ ⊂ D or e′ ∩D = {w3}. Since e3 is oriented from w3 to w1, and since e4

is oriented from w2 to w3, the edge e′ does not contain a middle arc at the

white vertex w3. Thus e′ is not a terminal edge by Assumption 1.

Since there exists no white vertex in the interior of D, we have e′ �⊂ D.

Thus e′ ∩ D = {w3}. Hence there exists exactly one edge e′′ of Γm or

Γm+2ε with w3 ∈ e′′ and e′′ ∩ Int(D) �= ∅ (see Figure 18c). Hence for

a neighborhood V of w3 there exists at most one arc of label m + 2ε in

V ∩ Int(D).

Figure 18.
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On the other hand, by Lemma 5.2 the edge e contains at least two

crossings in Γm ∩ Γm+2ε. Since there is no white vertex in Int(D), there is

no (D, e)-arc by Disk Lemma (Lemma 3.2). Now any arc containing one of

the crossings does not intersect Int(e3) ∪ Int(e4). Thus any arc containing

one of the crossings must contain the white vertex w3. Hence there must

exist at least two arcs of label m+2ε in V ∩Int(D). This is a contradiction. �

6. Proof of Theorem 1.1

Let Γ be a chart and D a disk. A disk D′ in D with a boundary arc pair

(α, β) is called a contact lens of label m in D provided that

(1) D′ ∩ ∂D = α, and

(2) the arc β is contained in an edge of label m.

The arc α (resp. β) is called an outer (resp. inner) arc of the contact lens

D′.
Let D1 and D2 be contact lenses in a disk D. The contact lens D1 is

smaller than the contact lens D2 if D1 is also a contact lens in D2.

A contact lens of label m in a disk D is locally inner-most if it does not

contain any smaller contact lens of label m− 1,m, nor m + 1 in D.

Lemma 6.1. Let D be a lens of a chart Γ. Let ε ∈ {+1,−1}. If there

is a contact lens D′ of label m in D such that no contact lens of label m− ε

in D is smaller than D′, then for some non-negative integer s, there exists

a locally inner-most contact lens D′′ of label m + εs in D with D′′ ⊂ D′.

Figure 19.
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Proof. Suppose that ε = +1. If D′ does not contain any smaller

contact lens whose label is greater than or equal to m, then the contact lens

D′ is locally inner-most.

If D′ contains a smaller contact lens whose label is greater than or equal

to m, then an inner-most contact lens among these smaller contact lenses

is locally inner-most. If the condition ε = −1 is satisfied, then the lemma

is shown by an argument similar to the case ε = +1. �

Let Γ be a chart, and e1 and e2 edges in Γm (possibly e1 = e2). Let α

be an arc such that

(1) ∂α consists of a point in e1 and a point in e2, and

(2) Int(α) transversely intersects Γ (see Figure 20a).

Let D be a regular neighborhood of the arc α. let γ1 = e1 ∩ D and γ2 =

e2 ∩D. Then γ1 and γ2 are proper arcs of D and they split the disk D into

three disks. Let E be the one of the three disks with E ⊃ α. A chart Γ′ is

obtained from Γ by a surgery along α provided that

(1) Γ′
m = (Γm − (γ1 ∪ γ2)) ∪ Cl(∂E − (γ1 ∪ γ2)), and

(2) Γ′
i = Γi (i �= m) (see Figure 20b).

Let D be a lens of a minimal chart Γ. Let w(D) be the number of white

vertices contained in Int(D) and c(D) the number of crossings on ∂D. The

pair of integers (w(D), c(D)) is called the local complexity with respect to D,

Figure 20.
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denoted by &c(D; Γ). A chart is said to be locally minimal with respect to

D if its local complexity with respect to D is minimal among the minimal

charts C-move equivalent to the chart keeping ∂D fixed with respect to the

lexicographic order.

Lemma 6.2. Let D be a lens of type (m,m + 1) with a boundary pair

(em, em+1) in a minimal chart Γ where em ⊂ Γm and em+1 ⊂ Γm+1. Suppose

that Γ is locally minimal with respect to D. Then the following hold:

(1) The lens D contains a white vertex which connects with a point in

em+1 by an arc of label less than or equal to m− 1.

(2) The lens D contains a white vertex which connects with a point in em
by an arc of label greater than or equal to m + 2.

Proof. We show the statement (2). By Lemma 5.3 there exists an

edge e of label m+ 2 with e∩ em �= ∅. If the lens D contains a white vertex

of e, then we have done for (2).

Suppose that the lens D does not contain any white vertex of e. Then

any connected component of e ∩ D is a proper arc γ of D of label m + 2.

Since any edge of label m + 2 does not have a crossing with em+1, we have

∂γ ⊂ em. Hence the lens D contains a contact lens D′ of label m+ 2 whose

outer arc is contained in em. Since any edge of label m + 1 does not have

a crossing with em, the lens D does not contain any contact lens of label

m + 1 smaller than D′. Hence for some integer t ≥ m + 2 there exists a

locally inner-most contact lens D′′ of label t ≥ m + 2 in D with D′′ ⊂ D′

by Lemma 6.1.

If there is no edge of label t−1, t, or t+1 which intersects the interior of

the outer arc of D′′, we can apply a surgery along the outer arc of D′′. This

reduces the number of crossings on ∂D. This contradicts that Γ is locally

minimal with respect to D.

Hence there exists an edge e′ of label t−1, t, or t+1 which intersects the

interior of the outer arc of D′′ ⊂ D′. If Int(D′′) does not contain any white

vertex of the edge e′, then the lens D′′ contains a proper arc of label t−1, t,

or t + 1. This contradicts that D′′ is locally inner-most. Hence Int(D′′)
contains a white vertex of e′, and so does Int(D). Since t ≥ m + 2 and

since any edge of label m+ 1 does not contain a crossing with em, the label



Properties of Minimal Charts and Their Applications I 95

of the edge e′ is greater than or equal to m + 2. Hence the result follows.

The statement (1) is shown in an argument similar to that we did for the

statement (2). �

The following Corollary is a direct result of Lemma 6.2.

Corollary 6.3. Let Γ be a minimal chart. Then the following hold:

(1) If D is a lens of type (m,m + 1), then there exist two integers s and

t with s ≤ m− 1,m + 2 ≤ t such that there exist a white vertex of Γs

and a white vertex of Γt in the interior of D.

(2) If Γ is a minimal chart of type (m;n1, n2, . . . , nk), then there does not

exist any lens of type (m,m + 1) nor (m + k − 1,m + k).

(3) There does not exist any lens of a minimal chart of type (m;n1) nor

(m;n1, n2).

Proof. Now (1) is shown in Lemma 6.2.

We show the statement (2). If there exists a lens of type (m,m+1), then

the lens contains one white vertex of Γh in its interior for some h ≤ m−1 by

(1). However this contradicts the fact that the label m is the lowest number

among the labels of edges containing white vertices.

Similarly there does not exist any lens of type (m + k − 1,m + k). The

statement (3) is a direct result of (2). �

Proof of Theorem 1.1. Let D be a lens of type (m,m + 1) in a

minimal chart Γ. Let (em, em+1) be the boundary arc pair of the lens D

with em ⊂ Γm and em+1 ⊂ Γm+1. We can assume that Γ is locally minimal

with respect to the lens D. By Lemma 6.2 the lens D contains two white

vertices w1 and w2 such that the vertex w1 connects with a point in em by

an arc γ1 of label t ≥ m + 2 and the vertex w2 connects with a point in

em+1 by an arc γ2 of label s ≤ m − 1. Hence Int(D) contains at least two

white vertices.

We show the theorem by contradiction. Suppose that the lens D contains

only two white vertices w1 and w2. Let eh be an edge of label h containing

w1, where h = t± 1. Since h− (s+ 1) ≥ ((m+ 2)− 1)− ((m− 1) + 1) = 1,

no edge contains the two vertices w1 and w2 simultaneously. Hence eh can
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not contain the vertex w2. Thus the vertex w1 connects with a point in em
or em+1 by an arc γ of eh. There are three cases:

(1) h = t + 1.

(2) h = t− 1 and γ ∩ em �= ∅.

(3) h = t− 1 and γ ∩ em+1 �= ∅.

Case (1): Since m < t < h , we can shift the vertex w1 to the outside of

D along the arc γ1 by Shifting Lemma (Lemma 4.2). This contradicts that

Γ is locally minimal with respect to D.

Case (2): Since m < h < t, we can shift the vertex w1 to the outside of

D along the arc γ by Shifting Lemma (Lemma 4.2). This contradicts that

Γ is locally minimal with respect to D.

Case (3): Since m + 2 ≤ t, we have h = t − 1 ≥ m + 1. Further

em+1 ∩ eh �= ∅, implies that h ≥ m+ 3. Hence m+ 1 < h < t. Thus we can

Figure 21.
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shift the vertex w1 to the outside of D along the arc γ by Shifting Lemma

(Lemma 4.2). This contradicts that Γ is locally minimal with respect to D.

We get a contradiction for all cases. �

Finally we give an example of a lens of type (3, 4) which contains exactly

three white vertices (see Figure 21).
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