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The Littlewood-Paley-Stein Inequality for Diffusion

Processes on General Metric Spaces

By Hiroshi Kawabi and Tomohiro Miyokawa

Abstract. In this paper, we establish the Littlewood-Paley-Stein
inequality on general metric spaces under a weaker condition than
the lower boundedness of Bakry-Emery’s Γ2. We also discuss Riesz
transforms. As examples, we deal with diffusion processes on a path
space associated with stochastic partial differential equations (SPDEs
in short) and a class of superprocesses with immigration.

1. Framework and Results

After the Meyer’s celebrated work [16], many authors studied the Lit-

tlewood-Paley-Stein inequality by a probabilistic approach. Especially,

Shigekawa-Yoshida [20] studied it for symmetric diffusion processes on a

general state space. In [20], they assumed the existence of a suitable core A
which is not only a ring but also stable under the operation of the semigroup

and the infinitesimal generator to employ Bakry-Emery’s Γ2-method in the

proof, and established the Littlewood-Paley-Stein inequality under that Γ2

is bounded from below. However, it is very difficult to check the existence

of such a good core A when we consider problems of infinite dimensional

diffusion processes.

In this paper, we show that the Littlewood-Paley-Stein inequality holds

on general metric spaces under the gradient estimate condition (G) below

even if we do not assume the existence of such a core A. Our condition

seems somewhat weaker than the lower boundedness of Γ2. We mention

that Coulhon-Duong [5] and Li [14] also discussed the Littlewood-Paley-

Stein inequality under similar conditions on finite dimensional Riemannian

manifolds. In contrast to these papers, we work in a more general framework

to handle certain infinite dimensional diffusion processes in Section 4.
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We introduce the framework. Let X be a complete separable metric

space. Suppose we are given a Borel probability measure µ on X and a

µ-symmetric local quasi-regular Dirichlet form E in L2(µ) with the domain

D(E). See Ma-Röckner [15] for the terminologies of quasi-regular Dirichlet

forms. Then by Theorem 1.1 of Chapter V in [15], there exists a µ-symmetric

diffusion process M := (Xt, {Px}x∈X) associated with (E ,D(E)). We denote

the infinitesimal generator and the transition semigroup by L and {Pt}t≥0,

respectively. Since {Pt}t≥0 is µ-symmetric, it can be extended to the semi-

group on Lp(µ), p ≥ 1. We denote the semigroup and its generator by

{Pt}t≥0 and L again. If we need to specify the acting space, we denote the

generator L in Lp(µ) by Lp and the domain by Dom(Lp), respectively. We

assume that 1 ∈ Dom(Lp) and Lp1 = 0 for all p ≥ 1, where 1 denotes the

function that is identically equal to 1. In particular, the diffusion process

M is conservative.

Here we introduce the following conditions:

(A): There exists a subspace A of Dom(L2) consisting of bounded contin-

uous functions which is dense in D(E) and f2 ∈ Dom(L1) holds for any

f ∈ A.

Under this condition, the form E admits a carré du champ, namely, there

exists a unique positive symmetric and continuous bilinear form Γ from

D(E)×D(E) into L1(µ) such that

E(fh, g) + E(gh, f)− E(h, fg) = 2

∫
X
hΓ(f, g) dµ

holds for any f, g, h ∈ D(E) ∩ L∞(µ). In particular, for f, g ∈ Dom(L2),

fg ∈ Dom(L1) and

Γ(f, g) =
1

2

{
L1(fg)− (L2f)g − f(L2g)

}
hold. For further informations, see Theorem 4.2.2 of Chapter I in Bouleau-

Hirsch [4]. In the sequel, we use the notation Γ(f) := Γ(f, f) for simplicity.

The following gradient estimate condition is crucial in this paper.

(G): There exist constants K > 0 and R ∈ R such that the following

inequality holds for any f ∈ A and t ≥ 0:

Γ(Ptf) ≤ Ke2RtPt
{
Γ(f)

}
.(1.1)
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Throughout this paper, we always assume (A) and (G).

Remark 1.1. If A is stable under the operations of {Pt} and L,

Γ2(f) ≥ −RΓ(f), f ∈ A(1.2)

implies (1.1) with K = 1, where Γ2(f) := 1
2

(
L1Γ(f) − 2Γ(L2f, f)

)
. Hence

our condition (G) is weaker than (1.2). When X is a finite dimensional

complete Riemannian manifold, (1.2) is equivalent to that the Ricci curva-

ture is bounded by −R from below. See Proposition 2.3 in Bakry [2] for

details.

Let us introduce the Littlewood-Paley G-functions. To do this, we recall

the subordination of a semigroup. For t ≥ 0, we define a probability measure

λt on [0,+∞) by

λt(ds) :=
t

2
√
π
e−t

2/4ss−3/2ds.

In terms of the Laplace transform, this measure is characterized as∫ ∞

0
e−γsλt(ds) = e−

√
γt, γ > 0.

For α ≥ 0, we define the subordination {Q(α)
t }t≥0 of {Pt}t≥0 by

Q
(α)
t f :=

∫ ∞

0
e−αsPsf λt(ds), f ∈ Lp(µ).

Then we can easily see that

‖Q(α)
t f‖Lp(µ) ≤

∫ ∞

0
e−αs‖Psf‖Lp(µ)λt(ds)(1.3)

≤
(∫ ∞

0
e−αsλt(ds)

)
‖f‖Lp(µ) = e−

√
αt‖f‖Lp(µ),

and hence {Q(α)
t }t≥0 is a strongly continuous contraction semigroup on

Lp(µ). The infinitesimal generator of {Q(α)
t }t≥0 is denoted by −

√
α− Lp.

We may omit the subscript p for simplicity.

For f ∈ L2∩Lp(µ) and α > 0, we define Littlewood-Paley’s G-functions

by

g→f (x, t) :=

∣∣∣∣ ∂∂t(Q
(α)
t f)(x)

∣∣∣∣ , G→
f (x) :=

(∫ ∞

0
tg→f (x, t)2 dt

)1/2

,
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g↑f (x, t) :=
(
Γ(Q

(α)
t f)

)1/2
(x), G↑

f (x) :=

(∫ ∞

0
tg↑f (x, t)

2 dt

)1/2

,

gf (x, t) :=
√

(g→f (x, t))2 + (g↑f (x, t))
2, Gf (x) :=

(∫ ∞

0
tgf (x, t)

2 dt

)1/2

.

Now we present the Littlewood-Paley-Stein inequality. In what follows,

the notation ‖u‖Lp(µ) � ‖v‖Lp(µ) stands for ‖u‖Lp(µ) ≤ C‖v‖Lp(µ), where C

is a positive constant depending only on K in condition (G) and p.

Theorem 1.2. For any 1 < p < ∞ and α > R ∨ 0, the following

inequalities hold for f ∈ L2 ∩ Lp(µ):

‖Gf‖Lp(µ) � ‖f‖Lp(µ),(1.4)

‖f‖Lp(µ) � ‖G→
f ‖Lp(µ).(1.5)

Before closing this section, we give an application of Theorem 1.2. It

plays an important role in the regularity theory of parabolic PDEs on general

metric spaces.

Theorem 1.3. Let 1 < p <∞, q ≥ 1 and α > R ∨ 0. We define

R(q)
α (L)f := Γ

(
(
√
α− Lp)−qf

)1/2
, f ∈ Lp(µ).

Then we have the following statements:

(1) For any p ≥ 2 and q > 1, R
(q)
α (L) is bounded on Lp(µ). The operator

norm ‖R(q)
α (L)‖p,p depends only on K, p, q and αR := (α − R) ∧ α. This

implies the inclusion

Dom
(
(
√

1− Lp)q
)
⊂W 1,p(µ) :=

{
f ∈ Lp(µ) ∩ D(E) | Γ(f)1/2 ∈ Lp(µ)

}
.

(2) For any p ≥ 2 and 1 < q < 2, there exists a positive constant Cp,q such

that

(1.6)
∥∥Γ(Ptf)

1/2
∥∥
Lp(µ)

≤ Cp,q‖R(q)
α (L)‖p,p

(
αq/2 + t−q/2

)
‖f‖Lp(µ),

t > 0, f ∈ Lp(µ).
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Remark 1.4. We do not know whether our gradient estimate condi-

tion (G) is sufficient or not to establish the item (1) of Theorem 1.3 for q =

1, i.e., so-called the boundedness of the Riesz transform Rα(L) := R
(1)
α (L)

on Lp(µ). Recently, Shigekawa [18] discussed the boundedness of Rα(L)

under the intertwining condition for the diffusion semigroup in a general

framework. We remark that the intertwining condition implies (G). Hence

one way to establish the boundedness of Rα(L) is to show the intertwining

condition for each concrete problem.

2. Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by a probabilistic method. The

original idea is due to Meyer [16]. The reader is referred to Bakry [1],

Shigekawa-Yoshida [20] and Yoshida [24]. In these papers, they expanded

L(Q
(α)
t f)

p, f ∈ A, by employing the usual functional analytic argument

in the proof of the Littlewood-Paley-Stein inequality. In that calculations,

they needed to assume the existence of a good core A described in Section 1.

However, we cannot follow their proof directly since we do not impose such

good properties on A. To overcome this difficulty, we replace the functional

analytic argument by probabilistic one based on Itô’s formula. We give

details and prove Theorem 1.2 for 1 < p < 2 in the second subsection.

In the third subsection, we introduce the notion of H-functions to prove

Theorem 1.2 for p > 2. Our gradient estimate condition (G) plays a crucial

role when we compare G-functions with H-functions. For the case p = 2,

(1.4) is proved as equality by using spectral resolution of L. See Proposition

3.1 in [20] for the proof. We note that (1.5) is derived from (1.4) by using

the standard duality argument. See Theorem 4.4 in [20] for the detail.

2.1. Preparations

In this subsection, we make some preparations. We have already used

the notation {Px}x∈X to denote the diffusion measure of M associated with

the Dirichlet form (E ,D(E)). In this subsection, we use the notation P ↑
x in

place of Px. Let (Bt, P
→
a ) be one-dimensional Brownian motion starting at

a ∈ R with the generator ∂2

∂a2 . We set Yt := (Xt, Bt), t ≥ 0, and P(x,a) :=

P ↑
x ⊗ P→

a . Then M̃ := (Yt, {P(x,a)}) is a µ⊗m-symmetric diffusion process

on X ×R with the (formal) generator L+ ∂2

∂a2 , where m is one-dimensional
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Lebesgue measure. We put P ↑
µ :=

∫
XP

↑
xµ(dx), Pµ⊗δa :=

∫
XP(x,a)µ(dx)

and denote the integration with respect to P ↑
x , P→

a ,P(x,a) and Pµ⊗δa by

E
↑
x,E→

a ,E(x,a) and Eµ⊗δa , respectively.

We denote the semigroup on Lp(X × R;µ ⊗ m) associated with the

diffusion process {Yt}t≥0 by {P̂t}t≥0 and its generator by L̂p. We also denote

the Dirichlet form on L2(X × R;µ ⊗ m) associated with L̂2 by (Ê ,D(Ê)).

That is,

D(Ê) =
{
u ∈ L2(X × R;µ⊗m)

∣∣ lim
t↘0

1

t

(
u− P̂tu, u

)
L2(X×R;µ⊗m)

< +∞
}
,

Ê(u, v) = lim
t↘0

1

t

(
u− P̂tu, v

)
L2(X×R;µ⊗m)

for u, v ∈ D(Ê).

We denote by Ĉ := A ⊗ C∞
0 (R) the totality of all linear combinations of

f ⊗ ϕ, f ∈ A, ϕ ∈ C∞
0 (R), where (f ⊗ ϕ)(x, a) := f(x)ϕ(a). Meanwhile,

the spaces L2(µ) ⊗ L2(m) and D(E) ⊗ H1,2(R) are usual tensor products

of Hilbert spaces, where H1,2(R) is the Sobolev space which consists of all

functions ϕ ∈ L2(m) such that the weak derivative ϕ′ exists and belongs to

L2(m). Then we have

Lemma 2.1. Ĉ is dense in D(Ê). Moreover for u, v ∈ D(E)⊗H1,2(R),

we have

Ê(u, v) =

∫
R

E
(
u(·, a), v(·, a)

)
m(da)(2.1)

+

∫
X
µ(dx)

∫
R

∂u

∂a
(x, a)

∂v

∂a
(x, a)m(da).

Proof. We denote by {Tt}t≥0 the transition semigroup associated

with (Bt, {P→
a }a∈R). We can regard it as the semigroup on L2(m). First,

we note that the following identity holds:

P̂t(f ⊗ ϕ) = (Ptf)⊗ (Ttϕ), f ∈ L2(µ), ϕ ∈ L2(m).(2.2)

By (2.2), we can see Ĉ ⊂ D(E)⊗H1,2(R) ⊂ D(Ê) and the identity (2.1). We

also have

Ê1(f ⊗ ϕ, f ⊗ ϕ) ≤ E1(f, f)‖ϕ‖2L2(m)(2.3)

+ ‖f‖2L2(µ)

(
‖ϕ′‖2L2(m) + ‖ϕ‖2L2(m)

)
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holds for f ∈ D(E), ϕ ∈ H1,2(R). By (2.3), we see that Ĉ is dense in

D(E) ⊗ H1,2(R) with respect to Ê1-topology, because A and C∞
0 (R) are

dense in D(E) and H1,2(R), respectively.

Hence it is sufficient to show D(E) ⊗ H1,2(R) is dense in D(Ê). Since

L2(µ) ⊗ L2(m) is dense in L2(X × R;µ ⊗ m),
⋃
t>0 P̂t

(
L2(µ) ⊗ L2(m)

)
is

dense in D(Ê). On the other hand, (2.2) also leads us to

⋃
t>0

P̂t
(
L2(µ)⊗ L2(m)

)
=

⋃
t>0

(
Pt(L

2(µ))
)
⊗

(
Pt(L

2(m))
)

⊂ D(E)⊗H1,2(R) ⊂ D(Ê).

Therefore the proof is completed. �

Here we note that, due to Fitzsimmons [6], the Dirichlet form (Ê ,D(Ê))

is quasi-regular. Thus we can apply the general theory of quasi-regular

Dirichlet forms in [15].

Now we fix a function f ∈ A. We set u(x, a) := Q
(α)
a f(x), a ≥ 0. Then

it holds that
(
∂2

∂a2
+ L− α

)
u(·, a) = 0 in L2(µ).

Furthermore for a ∈ R, we consider v(x, a) := u(x, |a|) = Q
(α)
|a| f(x). Then

by (1.3), we have

‖v‖L2(X×R;µ⊗m) ≤
(∫

R

e−2
√
α|a|‖f‖2L2(µ)da

)1/2
= α−1/4‖f‖L2(µ).(2.4)

The main purpose of this subsection is to discuss the semi-martingale

decomposition of v(Xt∧τ , Bt∧τ ), t ≥ 0, where τ := inf{t > 0 | Bt = 0}. As

the first step, we give the following fundamental lemma:

Lemma 2.2. v ∈ D(Ê) holds.

Proof. At the beginning, we note L2(X×R;µ⊗m) ∼= L2(R, L2(X;µ);

m). According to Fubini’s theorem, we have

P̂tv(x, a) = E(x,a)

[
u(Xt, |Bt|)

]
= E

↑
x

[
E
→
a

[
u(·, |Bt|)

]
(Xt)

]
.(2.5)
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We recall Tanaka’s formula

|Bt| = |B0|+
∫ t

0
sgn(Bs)dBs + Lt(0), t ≥ 0, P

→
a -a.s.,

where {Lt(0)}t≥0 is the local time of one-dimensional Brownian motion

{Bt}t≥0 at the origin. Then by using Itô’s formula, we have

u(·, |Bt|) = u(·, |B0|) +

∫ t

0

∂u

∂a
(·, |Bs|)sgn(Bs)dBs(2.6)

+

∫ t

0

∂u

∂a
(·, |Bs|)dLs(0) +

∫ t

0

∂2u

∂a2
(·, |Bs|)ds

= u(·, |B0|)−
∫ t

0

√
α− Lu(·, |Bs|)sgn(Bs)dBs

−
∫ t

0

√
α− Lu(·, |Bs|)dLs(0)

+

∫ t

0
(α− L)u(·, |Bs|)ds.

Hence (2.6) leads us to

E
→
a [u(·, |Bt|)] = u(·, |a|)− E

→
a

[ ∫ t

0

√
α− Lu(·, |Bs|)dLs(0)

]
(2.7)

+E
→
a

[ ∫ t

0
(α− L)u(·, |Bs|)ds

]
.

On the other hand, since f ∈ A, it holds that u(·, |a|) = Q
(α)
|a| f(·) ∈

Dom(L2). Hence

M
[u(·,|a|)]
t := (Q

(α)
|a| f)(Xt)− (Q

(α)
|a| f)(X0)−

∫ t

0
L(Q

(α)
|a| f)(Xs)ds, t ≥ 0,

is an L2(P ↑
µ)-martingale. Then we have

E
↑
x

[
u(Xt, |a|)

]
= (Q

(α)
|a| f)(x)(2.8)

+

∫ t

0
Ps(LQ

(α)
|a| f)(x)ds, µ-a.e. x ∈ X.
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By summarizing (2.5), (2.7) and (2.8), we can proceed as

1

t

(
v − P̂tv, v

)
L2(X×R;µ⊗m)

(2.9)

= −1

t

∫
R

da

∫
X

{∫ t

0
Ps(LQ

(α)
|a| f)(x)ds

}
·Q(α)

|a| f(x)µ(dx)

+
1

t

∫
R

da

∫
X

E
↑
x

[
E
→
a

[ ∫ t

0

√
α− Lu(·, |Bs|)dLs(0)

]
(Xt)

]

×Q(α)
|a| f(x)µ(dx)

−1

t

∫
R

da

∫
X

E
↑
x

[
E
→
a

[ ∫ t

0
(α− L)u(·, |Bs|)ds

]
(Xt)

]

×Q(α)
|a| f(x)µ(dx)

= −1

t

∫
R

da

∫ t

0

(
PsLQ

(α)
|a| f,Q

(α)
|a| f

)
L2(µ)

ds

+
1

t

∫
R

da

∫
X

E
→
a

[ ∫ t

0

√
α− Lu(x, |Bs|)dLs(0)

]

×Pt(Q(α)
|a| f)(x)µ(dx)

−1

t

∫
R

da

∫
X

E
→
a

[ ∫ t

0
(α− L)u(x, |Bs|)ds

]

×Pt(Q(α)
|a| f)(x)µ(dx)

=: −I1(t) + I2(t)− I3(t),

where we used symmetry of {Pt}t≥0 on L2(µ). For the terms I1(t) and I2(t),

we see the following estimates by using contractivity of {Pt}t≥0 on L2(µ)

and (1.3):

|I1(t)| ≤
1

t

∫
R

da

∫ t

0
‖LQ(α)

|a| f‖L2(µ) · ‖Q
(α)
|a| f‖L2(µ)ds(2.10)

≤
∫
R

e−2
√
α|a|‖Lf‖L2(µ) · ‖f‖L2(µ)da

=
1√
α
‖Lf‖L2(µ) · ‖f‖L2(µ),

|I2(t)| =
∣∣∣1
t

∫
R

da

∫
X

(√
α− Lu(x, 0)E→

a

[
Lt(0)

])
· Pt(Q(α)

|a| f)(x)µ(dx)
∣∣∣
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=
1

t

∣∣∣
∫
R

(√
α− Lf, PtQ(α)

|a| f
)
L2(µ)

E
→
a

[
Lt(0)

]
da

∣∣∣
≤ 2

t
‖
√
α− Lf‖L2(µ) · ‖f‖L2(µ)

∫ ∞

0
e−

√
αa

E
→
a

[
Lt(0)

]
da.

Here we recall

P→
a (L(t, r) ∈ dy) =

1√
πt

exp
{
− (y + |r − a|)2

4t

}
dy, y > 0.

See page 155 of Borodin-Salminen [3]. Then we can continue as

|I2(t)| ≤ 2

t
‖
√
α− Lf‖L2(µ) · ‖f‖L2(µ)(2.11)

×
∫ ∞

0
e−

√
αa
{∫ ∞

0
y

1√
πt

exp
(
− (a+ y)2

4t

)
dy

}
da

≤ 8‖
√
α− Lf‖L2(µ) · ‖f‖L2(µ)

×
∫ ∞

0

1√
2π
e−

a2

2 da

∫ ∞

0
ye−

y2

2 dy

= 4‖
√
α− Lf‖L2(µ) · ‖f‖L2(µ).

For the term I3(t), we have

|I3(t)| ≤ 1

t

∫
R

∥∥∥E
→
a

[ ∫ t

0
(α− L)u(·, |Bs|)ds

]∥∥∥
L2(µ)

(2.12)

×‖Q(α)
|a| f‖L2(µ)da

≤ 1

t

∫
R

E
→
a

[ ∫ t

0
‖(α− L)Q

(α)
|Bs|f(·)‖L2(µ)ds

]

×
(
e−

√
α|a|‖f‖L2(µ)

)
da

≤ 1

t

∫
R

E
→
a

[ ∫ t

0
(α‖f‖L2(µ) + ‖Lf‖L2(µ))ds

]

×
(
e−

√
α|a|‖f‖L2(µ)

)
da

= 2
√
α‖f‖2L2(µ) +

2√
α
‖Lf‖L2(µ) · ‖f‖L2(µ).

Finally, we substitute estimates (2.10), (2.11) and (2.12) into (2.9). Then

we can easily see

lim
t↘0

1

t

(
v − P̂tv, v

)
L2(X×R;µ⊗m)

= sup
t>0

1

t

(
v − P̂tv, v

)
L2(X×R;µ⊗m)

< +∞.
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This and (2.4) complete the proof. �

By Lemma 2.2, we can apply Fukushima’s decomposition theorem. That

is, there exist a martingale additive functional of finite energy M [v] and a

continuous additive functional of zero energy N [v] such that

(2.13) ṽ(Xt, Bt)− ṽ(X0, B0) =M
[v]
t +N

[v]
t ,

t ≥ 0, P(x,a)-a.s. for q.e.-(x, a),

where ṽ is an Ê-quasi-continuous modification of v ∈ D(Ê). See Theo-

rem 5.2.2 of Fukushima-Oshima-Takeda [7]. We note that, since Ê has the

strong local property, M [v] is continuous. Due to Theorem 5.2.3 of [7], we

know that

〈M [v]〉t =

∫ t

0

{
Γ(v, v)(Xs, Bs) +

(∂v
∂a

(Xs, Bs)
)2}

ds.(2.14)

See also Theorem 5.1.3 and Example 5.1.1 of [7] for details.

From now, we discuss the explicit expression of N [v]. Let us define a

signed measure ν on X × R by

ν(dxda) := 2
√
α− Lv(x, a)µ(dx)δ0(da),

where δ0 is Dirac measure on R with mass at the origin. The total variation

of ν is given by

|ν|(dxda) := 2
∣∣√α− Lv(x, a)∣∣µ(dx)δ0(da).

Then we have

Lemma 2.3. There exists a constant C > 0 such that

∫∫
X×R

∣∣(g ⊗ ϕ)(x, a)
∣∣ · |ν|(dxda) ≤ C

√
Ê1(g ⊗ ϕ, g ⊗ ϕ),

g ∈ A, ϕ ∈ C∞
0 (R).

That is, ν is of finite 1-order energy integral. (For definition of measures

of finite 1-order energy integral, see Sections 2.2 and 5.4 of [7].)
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Proof. We take a positive constant a0 such that supp(ϕ) ⊂ [−a0, a0].
We first consider the case of ϕ(0) ≤ 0. Let ε > 0. Then for µ-a.e. x ∈ X,

we have∫
R

|ϕ(a)|
√(√

α− Lv(x, a)
)2

+ ε δ0(da)

= −ϕ(0)

√(√
α− Lv(x, 0)

)2
+ ε

= ϕ(a0)

√(√
α− Lv(x, a0)

)2
+ ε− ϕ(0)

√(√
α− Lv(x, 0)

)2
+ ε

=

∫ a0

0

∂

∂a

{
ϕ(a)

√(√
α− Lv(x, a)

)2
+ ε

}
da

=

∫ a0

0
ϕ′(a)

√(√
α− Lv(x, a)

)2
+ εda

−
∫ a0

0
ϕ(a)

√
α− Lv(x, a) · (α− L)v(x, a)√(√

α− Lv(x, a)
)2

+ ε
da

≤
∫
R

|ϕ′(a)|
√(√

α− Lv(x, a)
)2

+ εda+

∫
R

|ϕ(a)| · |(α− L)v(x, a)|da.

Therefore∫∫
X×R

∣∣(g ⊗ ϕ)(x, a)
∣∣ · |ν|(dxda)

= 2 lim
ε↘0

∫
X
|g(x)|

(∫
R

|ϕ(a)|
√(√

α− Lv(x, a)
)2

+ ε δ0(da)
)
µ(dx)

≤ 2 lim sup
ε↘0

∫
X
|g(x)|

(∫
R

|ϕ′(a)|
√(√

α− Lv(x, a)
)2

+ εda
)
µ(dx)

+2

∫
X
|g(x)|

(∫
R

|ϕ(a)| · |(α− L)v(x, a)|da
)
µ(dx)

≤ 2
(∥∥√α− Lv∥∥

L2(X×R;µ⊗m)
‖ϕ′‖L2(m)

+
∥∥(α− L)v

∥∥
L2(X×R;µ⊗m)

‖ϕ‖L2(m)

)
‖g‖L2(µ)

≤ 2
√

2α−1/4
(∥∥√α− Lf∥∥

L2(µ)
+ ‖(α− L)f‖L2(µ)

)√
Ê1(g ⊗ ϕ, g ⊗ ϕ)

=: C

√
Ê1(g ⊗ ϕ, g ⊗ ϕ),

where we used (2.4) and

Ê(g ⊗ ϕ, g ⊗ ϕ) = E(g, g)‖ϕ‖2L2(m) + ‖g‖2L2(µ)‖ϕ′‖2L2(m)
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for the last line. This is the desired result.

In the case of ϕ(0) ≥ 0, we easily see∫
R

|ϕ(a)|
√(√

α− Lv(x, a)
)2

+ ε δ0(da)(2.15)

=

∫ 0

−a0

∂

∂a

{
ϕ(a)

√(√
α− Lv(x, a)

)2
+ ε

}
da.

By using (2.15), we can follow the same argument as the case where ϕ(0) ≤
0. Therefore the proof is completed. �

Due to Lemma 2.3, ν is of finite 1-order energy integral. Then for each

β > 0, there exists a unique Uβν ∈ D(Ê) such that the following relation

holds:

Êβ(Uβν, g ⊗ ϕ)(2.16)

=

∫∫
X×R

(g ⊗ ϕ)(x, a)ν(dxda), g ∈ A, ϕ ∈ C∞
0 (R).

Lemma 2.4. (1) Uαν = v.

(2) Uβν = v−(β−α)R̂βv holds, where {R̂β}β>0 is the resolvent of {P̂t}t≥0.

Proof. (1) We need to show (2.16). By using the integration by parts

formula, for µ-a.e. x ∈ X, we have∫
R

∂v

∂a
(x, a)ϕ′(a)da(2.17)

= −
∫ ∞

0

√
α− Lu(x, a)ϕ′(a)da+

∫ ∞

0

√
α− Lu(x, a)ϕ′(−a) da

= −
∫ ∞

0

√
α− Lu(x, a) d

da

(
ϕ(a) + ϕ(−a)

)
da

= 2
√
α− Lu(x, 0)ϕ(0)

+

∫ ∞

0

∂

∂a

√
α− Lu(x, a)

(
ϕ(a) + ϕ(−a)

)
da

= 2
√
α− Lu(x, 0)ϕ(0)−

∫ ∞

0
(α− L)u(x, a)

(
ϕ(a) + ϕ(−a)

)
da

= 2
√
α− Lv(x, 0)ϕ(0)−

∫
R

(α− L)v(x, a)ϕ(a)da.
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Then (2.17) leads us to our desired equality as follows:

Êα(v, g ⊗ ϕ) =

∫
R

daϕ(a)

∫
X

√
α− Lv(x, a)

√
α− Lg(x)µ(dx)

+

∫
X
µ(dx)g(x)

(
2
√
α− Lv(x, 0)ϕ(0)

−
∫
R

(α− L)v(x, a)ϕ(a)da
)

= 2

∫
X

√
α− Lv(x, 0)g(x)ϕ(0)µ(dx)

=

∫∫
X×R

(g ⊗ ϕ)(x, a)ν(dxda).

(2) We recall Êβ(R̂βv, g ⊗ ϕ) =
(
v, g ⊗ ϕ)L2(X×R;µ⊗m). Then we have

Êβ
(
v − (β − α)R̂βv, g ⊗ ϕ

)
= Êβ(v, g ⊗ ϕ)− (β − α) ·

(
v, g ⊗ ϕ)L2(X×R;µ⊗m)

= Êα(v, g ⊗ ϕ)

=

∫∫
X×R

(g ⊗ ϕ)(x, a)ν(dxda),

where we used (1) for the last line. Hence the proof of (2) is also com-

pleted. �

Due to Lemma 5.4.1 of [7] and the lemma above, we have

N
[v]
t = α

∫ t

0
ṽ(Xs, Bs) ds−At, t ≥ 0,

where ṽ is an Ê-quasi-continuous modification of v and A is the continuous

additive functional corresponding to ν. Since ν does not charge out of

X × {0}, due to Theorem 5.1.5 of [7], At∧τ = 0 holds. Thus we get

N
[v]
t∧τ = α

∫ t∧τ

0
ṽ(Xs, Bs) ds.(2.18)

By summarizing (2.13), (2.14), and (2.18), we have the following propo-

sition which plays a crucial role later.
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Proposition 2.5. We have the semi-martingale decomposition

ṽ(Xt∧τ , Bt∧τ )− ṽ(X0, B0) =M
[v]
t∧τ + α

∫ t∧τ

0
ṽ(Xs, Bs) ds, t ≥ 0,(2.19)

under P(x,a) for q.e.-(x, a). Moreover it holds

〈M [v]〉t∧τ =

∫ t∧τ

0

{
Γ(v, v)(Xs, Bs) +

(∂v
∂a

(Xs, Bs)
)2}

ds.(2.20)

Since v(x, a) = u(x, a) holds for a ≥ 0, this proposition also gives the

semi-martingale decomposition of u(Xt∧τ , Bt∧τ ).
Before closing this subsection, we need the following lemma to allow

µ⊗ δa as an initial distribution.

Lemma 2.6. µ ⊗ δa does not charge any set of zero capacity for m-

almost all a ∈ R.

Proof. Let N ⊂ X × R be a set of zero capacity with respect to Ê1.

Then by the item (4) in Theorem 4.1 of Okura [17], Na is a set of zero

capacity with respect to E1 for m-a.e. a ∈ R, where the set Na ⊂ X is

defined by Na := {x ∈ X|(x, a) ∈ N}, a ∈ R. Thus we have

(µ⊗ δa)(N) = µ(Na) ≤ CapE1(Na) = 0.

This completes the proof. �

2.2. Proof of Theorem 1.2 (1 < p < 2)

In this subsection, we return to the proof of Theorem 1.2 in the case of

1 < p < 2. Here we recall the following identities for our later use. See [16]

for the proof.

Lemma 2.7. Let η : X × [0,+∞) → [0,+∞) be a measurable function.

Then

Eµ⊗δa

[ ∫ τ

0
η(Xt, Bt)dt

]
=

∫
X
µ(dx)

∫ ∞

0
(a ∧ t)η(x, t) dt(2.21)
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and

Eµ⊗δa

[ ∫ τ

0
η(Xt, Bt)dt

∣∣∣Xτ = x
]

=

∫ ∞

0
(a ∧ t)Q(0)

t η(·, t)(x) dt.(2.22)

Since {Xt}t≥0 and {Bt}t≥0 are mutually independent under Pµ⊗δa and

µ is the invariant measure of {Xt}t≥0, we can see the following identity for

any bounded Borel measurable function h on X:

Eµ⊗δa
[
h(Xτ )

]
=

∫
X
h(x)µ(dx).(2.23)

Hereafter, we abbreviate M
[v]
t∧τ as Mt for simplicity. By Proposition 2.5

and Lemma 2.6, there exists a non-negative sequence {an}n∈N such that

limn→∞ an = ∞, (2.19) and (2.20) hold under Pµ⊗δan for any n ∈ N.

We set Vt := ṽ(Xt∧τ , Bt∧τ ). We apply Itô’s formula to V 2
t . Proposition

2.5 implies

d(V 2
t ) = 2VtdMt + 2αV 2

t dt+ d〈M〉t(2.24)

= 2VtdMt + 2
(
gf (Xt, Bt)

2 + αV 2
t

)
dt.

Let ε > 0. By applying Itô’s formula to (V 2
t + ε)p/2 again, we also have

d
(
V 2
t + ε

)p/2
= p

(
V 2
t + ε

)p/2−1
VtdMt

+ p
(
V 2
t + ε

)p/2−1(
gf (Xt, Bt)

2 + αV 2
t

)
dt

+
p(p− 2)

2

(
V 2
t + ε

)p/2−2
V 2
t d〈M〉t

≥ p
(
V 2
t + ε

)p/2−1
VtdMt

+ p(p− 1)
(
V 2
t + ε

)p/2−1
gf (Xt, Bt)

2dt,

where we used p < 2 for the last line.

Hence by taking the expectation of the inequality above and using
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u(x, a) = v(x, a) for a ≥ 0, we have

Eµ⊗δan

[
p(p− 1)

∫ τ

0

(
V 2
t + ε

)p/2−1
gf (Xt, Bt)

2 dt
]

(2.25)

≤ Eµ⊗δan

[
(V 2

τ + ε)p/2 − (V 2
0 + ε)p/2

]

≤ Eµ⊗δan

[(
V 2
τ + ε

)p/2]

= Eµ⊗δan

[(
u(Xτ , Bτ )

2 + ε
)p/2]

= Eµ⊗δan

[(
f(Xτ )

2 + ε
)p/2]

=

∫
X
(|f(x)|2 + ε)p/2 µ(dx),

where we used (2.23) for the last line. Here, by recalling (2.21), the left

hand side of (2.25) is equal to

p(p− 1)

∫
X
µ(dx)

∫ ∞

0
(t ∧ an)(u(x, t)2 + ε)p/2−1gf (x, t)

2 dt.

Therefore, by letting ε→ 0 and n→∞, we have

p(p− 1)

∫
X
µ(dx)

∫ ∞

0
t|u(x, t)|p−2gf (x, t)

2 dt ≤
∫
X
|f(x)|p µ(dx).(2.26)

Now we recall the maximal ergodic inequality∥∥∥ sup
t≥0

|Ptf |
∥∥∥
Lp(µ)

≤ p

p− 1
‖f‖Lp(µ), p > 1.

See Theorem 3.3 in Shigekawa [19] for details. It leads us to

∥∥Gf∥∥pLp(µ)
=

∫
X
µ(dx)

{∫ ∞

0
t|u(x, t)|2−p|u(x, t)|p−2gf (x, t)

2 dt

}p/2

≤
∫
X
µ(dx)

{∫ ∞

0
t
(
sup
t≥0

|Ptf(x)|
)2−p|u(x, t)|p−2gf (x, t)

2 dt

}p/2

≤
{∫

X

(
sup
t≥0

|Ptf(x)|
)p
µ(dx)

} 2−p
2

×
{∫

X

∫ ∞

0
t|u(x, t)|p−2gf (x, t)

2 dt µ(dx)

}p/2

�
{∫

X
|f(x)|p µ(dx)

} 2−p
2

{∫
X
|f(x)|p µ(dx)

}p/2

=
∥∥f∥∥p

Lp(µ)
,

where we used (2.26) for the last line. This completes the proof.
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2.3. Proof of Theorem 1.2 (p > 2)

In the case of p > 2, we need additional functions, namely H-functions

defined by

H→
f (x) :=

{∫ ∞

0
tQ

(0)
t (g→f (·, t)2)(x) dt

}1/2

,

H↑
f (x) :=

{∫ ∞

0
tQ

(0)
t (g↑f (·, t)2)(x) dt

}1/2

,

Hf (x) :=

{∫ ∞

0
tQ

(0)
t (gf (·, t)2)(x) dt

}1/2

.

We begin by the following proposition:

Proposition 2.8. For p > 2, the following inequality holds for any

f ∈ A:

‖Hf‖Lp(µ) � ‖f‖Lp(µ).

Proof. By a slight modification, we can prove in the same way as the

proof of Proposition 4.2 in Shigekawa-Yoshida [20]. However we give the

proof for the reader’s convenience.

Let us recall that, due to (2.24), we have

V 2
t∧τ − V 2

0 = 2

∫ t∧τ

0
Vs dMs + 2

∫ t∧τ

0

(
αV 2

s + gf (Xs, Bs)
2
)
ds.(2.27)

Since At := 2
∫ t∧τ
0

(
αV 2

s + gf (Xs, Bs)
2
)
ds, t ≥ 0, is a continuous increasing

process, (2.27) implies that Zt := V 2
t∧τ − V 2

0 , t ≥ 0 is a submartingale.

Now we need an inequality for submartingales. Let {Zt}t≥0 be a con-

tinuous submartingale with the Doob-Meyer decomposition Zt = Mt + At,

where {Mt}t≥0 is a continuous martingale and {At}t≥0 is a continuous in-

creasing process with A0 = 0. Due to Lenglart-Lépingle-Pratelli [13], it

holds that

E[Ap∞] ≤ (2p)pE
[
sup
t≥0

|Zt|p
]
, p > 1.(2.28)



The Littlewood-Paley-Stein Inequality on General Metric Spaces 19

Then by using (2.28) and Doob’s inequality, we have

Eµ⊗δan

[{
2

∫ τ

0

(
αV 2

s + gf (Xs, Bs)
2
)
ds
}p/2]

(2.29)

� Eµ⊗δan

[
sup
t≥0

|V 2
t∧τ − V 2

0 |p/2
]

� Eµ⊗δan

[
|V 2
τ − V 2

0 |p/2
]

= Eµ⊗δan

[
|u(Xτ , Bτ )

2 − u(X0, B0)
2|p/2

]

= Eµ⊗δan

[
|(Q(α)

0 f(Xτ ))
2 − (Q(α)

an f(X0))
2|p/2

]

� Eµ⊗δan

[
|(Q(α)

0 f(Xτ )|p
]

+ Eµ⊗δan

[
|Q(α)

an f(X0)|p
]

= ‖f‖pLp(µ) + ‖Q(α)
an f‖

p
Lp(µ) � ‖f‖pLp(µ).

On the other hand, by using (2.22), (2.29) and Jensen’s inequality, we

have

‖Hf‖pLp(µ) =
∥∥∥{

∫ ∞

0
tQ

(0)
t

(
gf (·, t)2

)
dt
}p/2∥∥∥

L1(µ)

= lim
n→∞

∥∥∥{
∫ ∞

0
(an ∧ t)Q(0)

t

(
gf (·, t)2

)
dt
}p/2∥∥∥

L1(µ)

= lim
n→∞

Eµ⊗δan

[{∫ ∞

0
(an ∧ t)Q(0)

t

(
gf (·, t)2

)
(Xτ )dt

}p/2]

= lim
n→∞

Eµ⊗δan

[
Eµ⊗δan

[ ∫ τ

0
gf (Xs, Bs)

2ds
∣∣Xτ

]p/2]

≤ lim inf
n→∞

Eµ⊗δan

[
Eµ⊗δan

[( ∫ τ

0
gf (Xs, Bs)

2ds
)p/2∣∣Xτ

]]

= lim inf
n→∞

Eµ⊗δan

[( ∫ τ

0
gf (Xs, Bs)

2ds
)p/2]

≤ lim inf
n→∞

Eµ⊗δan

[{ ∫ τ

0

(
αV 2

s + gf (Xs, Bs)
2
)
ds
}p/2] � ‖f‖pLp(µ).

This completes the proof. �

Next we study the relationship between G-functions and H-functions.

In the proof of this proposition, condition (G) plays a key role.
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Proposition 2.9. (1) For any f ∈ A and α > R ∨ 0, the following

inequality holds:

G↑
f ≤ 2

√
KH↑

f .

(2) For any f ∈ A, the following inequality holds:

G→
f ≤ 2H→

f .

Proof. We give a proof of the item (1) only. The item (2) can be

proved in the same way. By condition (G) and Schwarz’s inequality, we

have the following estimate for any α > R ∨ 0 and f ∈ A:

Γ(Q
(α)
t f) ≤

(∫ ∞

0
e−αsΓ(Psf)

1/2 λt(ds)
)2

(2.30)

≤
(∫ ∞

0
e−(α−R)sλt(ds)

)

×
(∫ ∞

0
e−(α+R)sΓ

(
Psf

)
λt(ds)

)

≤ Ke−
√
α−Rt

(∫ ∞

0
e−(α−R)sPs

(
Γ(f)

)
λt(ds)

)

≤ KQ
(α−R)
t

(
Γ(f)

)
.

Then (2.30) yields

g↑f (x, 2t)
2 = Γ(Q

(α)
2t f)(x)(2.31)

= Γ
(
Q

(α)
t (Q

(α)
t f)

)
(x)

≤ KQ
(α−R)
t

(
Γ(Q

(α)
t f)

)
(x) ≤ KQ(0)

t

(
g↑f (·, t)2

)
(x),

Therefore we have

(G↑
f (x))

2 = 4

∫ ∞

0
tg↑f (x, 2t)

2 dt

≤ 4K

∫ ∞

0
tQ

(0)
t

(
g↑f (·, t)2

)
(x) dt = 4K(H↑

f (x))
2,
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where we changed the variable t to 2t in the first line and used (2.31) for

the second line. This completes the proof. �

It is clear that Propositions 2.8 and 2.9 conclude the desired inequality

(1.4). Therefore the proof of Theorem 1.2 is completed.

3. Proof of Theorem 1.3

Before giving the proof of Theorem 1.3, we make a preparation following

Yoshida [24]. Let ν be a finite signed measure on [0,∞). We denote by ν̂

and ‖ν‖ :=
∫∞
0 |ν|(ds) the Laplace transform and the total variation of ν,

respectively. For α > 0, we define a bounded operator ν̂(α − L) on Lp(µ),

1 ≤ p <∞, by

ν̂(α− L)f :=

∫
[0,∞)

e−αsPsf ν(ds).

Thus we easily have

‖ν̂(α− L)f‖Lp(µ) ≤ ‖ν‖ · ‖f‖Lp(µ), f ∈ Lp(µ).(3.1)

Here we give a remark in the case of p = 2. In this case, this operator is

represented by

ν̂(α− L) :=

∫
[0,∞)

ν̂(α+ λ)dEλ,

where {Eλ}λ≥0 is the spectral decomposition of −L in L2(µ).

By Lemma 2.3 in [1], there exist finite signed measures ν1 and ν2 such

that the Laplace transform are given by ν̂1(λ) =
√

1+λ

1+
√
λ

and ν̂2(λ) = 1+
√
λ√

1+λ
,

respectively. For ε > 0, we denote by ν
(ε)
i , i = 1, 2, the image measure of νi

under the mapping λ �→ λ/ε. Then we have

ν̂
(ε)
1 (λ) =

√
ε+ λ

√
ε+

√
λ
, ‖ν(ε)

1 ‖ ≤ ‖ν1‖,(3.2)

ν̂
(ε)
2 (λ) =

√
ε+

√
λ√

ε+ λ
, ‖ν(ε)

2 ‖ ≤ ‖ν2‖.(3.3)

(3.1), (3.2) and (3.3) imply the operators

√
ε+(α−L)√
ε+

√
α−L and

√
ε+

√
α−L√

ε+(α−L)
on Lp(µ)
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have the operator norms less than ‖ν1‖ and ‖ν2‖, respectively. We also have

(√ε+ (α− L)
√
ε+

√
α− L

)(√ε+
√
α− L√

ε+ (α− L)

)

=
(√ε+

√
α− L√

ε+ (α− L)

)(√ε+ (α− L)
√
ε+

√
α− L

)
= I.

Then we obtain the following relation for q > 1:

(√
ε+ (α− L)

)−q
= (

√
ε+

√
α− L)−q

(√ε+ (α− L)
√
ε+

√
α− L

)−q
(3.4)

= (
√
ε+

√
α− L)−q

(√ε+
√
α− L√

ε+ (α− L)

)q
.

Now we are in a position to give the proof of Theorem 1.3.

Proof of Theorem 1.3. First, we set β ∈ R and ε > 0 such that

α = β+ε and β > R. Note 0 < ε < αR. Let f ∈ L2∩Lp(µ) and we consider

g :=
(√ε+

√
β − L√

ε+ (β − L)

)q
f.

By (3.4), we have

Γ
(
(
√
α− L)−qf

)
= Γ

(
(
√
ε+

√
β − L)−qg

)

≤
(

1

Γ(q)

∫ ∞

0
tq−1e−

√
εtΓ(Q

(β)
t g)

1/2 dt

)2

.

Here we use Theorem 1.2. By recalling q > 1, we have the following

estimate:∥∥Γ
(
(
√
α− L)−qf

)1/2∥∥
Lp(µ)

(3.5)

≤ 1

Γ(q)

∥∥∥
∫ ∞

0
tq−1e−

√
εtΓ(Q

(β)
t g)

1/2dt
∥∥∥
Lp(µ)

≤ 1

Γ(q)

∥∥∥(
∫ ∞

0
t2q−3e−2

√
εtdt

)1/2
(∫ ∞

0
tΓ(Q

(β)
t g)dt

)1/2∥∥∥
Lp(µ)

=
1

Γ(q)
·
(Γ(2q − 2)

(4ε)q−1

)1/2
‖G↑

g‖Lp(µ)

� (4ε)−(q−1)/2 Γ(2q − 2)1/2

Γ(q)
· ‖g‖Lp(µ).
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However the left hand side of (3.5) does not depend on ε. Hence we can let

ε↗ αR on the right hand side, and it leads us to

∥∥Γ
(
(
√
α− L)−qf

)1/2∥∥
Lp(µ)

≤ CK,p,q α−(q−1)/2
R · ‖g‖Lp(µ).(3.6)

On the other hand, we have

‖g‖Lp(µ) ≤ ‖ν1‖q · ‖f‖Lp(µ).(3.7)

Then by combining (3.6) with (3.7), we complete the proof of the item (1).

For the proof of the item (2), we use the same argument as used in

Kawabi [11]. Since {Pt}t≥0 is an analytic semigroup on Lp(µ) (see Chapter

III of Stein [23] for details), there exists a positive constant Cp such that

∥∥LPtf∥∥Lp(µ)
≤ Cpt−1

∥∥f∥∥
Lp(µ)

, f ∈ Lp(µ),(3.8)

and hence P
(α)
t := e−αtPt also satisfies

∥∥(α− L)P
(α)
t f

∥∥
Lp(µ)

≤ e−αt
(
Cpt

−1 + α)
∥∥f∥∥

Lp(µ)
, f ∈ Lp(µ).(3.9)

Then by noting 1 < q < 2 and (3.9), the left hand side of (1.6) is

dominated as

∥∥Γ(Ptf)
1/2

∥∥
Lp(µ)

(3.10)

= eαt
∥∥Γ

(
P

(α)
t f

)1/2∥∥
Lp(µ)

≤ eαt‖R(q)
α (L)‖p,p

∥∥(
√
α− L)qP

(α)
t f

∥∥
Lp(µ)

= eαt‖R(q)
α (L)‖p,p

∥∥(
√
α− L)q−2(α− L)P

(α)
t f

∥∥
Lp(µ)

≤ e
αt‖R(q)

α (L)‖p,p
Γ(1− q/2)

∫ ∞

0
s−q/2

∥∥(α− L)P
(α)
s+tf

∥∥
Lp(µ)

ds

≤ e
αt‖R(q)

α (L)‖p,p
Γ(1− q/2)

×
∫ ∞

0
s−q/2

{
e−α(s+t)

( Cp
s+ t

+ α
)∥∥f∥∥

Lp(µ)

}
ds,

where we used the item (1) for the second line.
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Moreover, we have

eαt

Γ(1− q/2)

∫ ∞

0
s−q/2e−α(s+t)

( Cp
s+ t

+ α
)
ds(3.11)

≤ Cp
Γ(1− q/2)

∫ ∞

0
s−q/2(s+ t)−1ds

+
α

Γ(1− q/2)

∫ ∞

0
s−q/2e−αsds

=
Cp

Γ(1− q/2)
t−q/2

∫ ∞

0
τ−q/2(1 + τ)−1dτ + αq/2

≤ Cp,q
(
t−q/2 + αq/2

)
,

where we changed the variable s to tτ in the third line.

Hence by combining (3.10) with (3.11), we obtain our desired estimate

(1.6). This completes the proof. �

4. Examples

4.1. Diffusion processes on a path space with Gibbs measures

In this subsection, we present an example in an infinite dimensional

setting. This is studied in Kawabi [10], [12]. We consider diffusion processes

on an infinite volume path space C(R,Rd) with Gibbs measures associated

with the (formal) Hamiltonian

H(w) :=
1

2

∫
R

|w′(x)|2
Rddx+

∫
R

U(w(x))dx,

where U : R
d → R is an interaction potential. Our diffusion processes are

defined through the time dependent Ginzburg-Landau type SPDE

dXt(x) =
{
∆xXt(x)−∇U(Xt(x))

}
dt+

√
2dWt(x), x ∈ R, t > 0,(4.1)

where ∆x = d2/dx2, ∇ = (∂/∂zi)
d
i=1 and (Wt)t≥0 is a white noise process.

This dynamics is called the P (φ)1-time evolution.

In what follows, we describe the framework. We introduce some spaces

of functions to control the growth of Xt(x) as |x| → ∞. For fixed λ > 0,

we consider a Hilbert space E := L2(R,Rd; e−2λχ(x)dx), λ > 0, where χ ∈
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C∞(R,R) is a positive symmetric convex function satisfying χ(x) = |x| for

|x| ≥ 1. We also consider

C :=
{
X(·) ∈ C(R,Rd)

∣∣ sup
x∈R

|X(x)|Rde−λχ(x) <∞ for every λ > 0
}
.

We regard these spaces as state spaces of our dynamics.

Let µ be a (U -)Gibbs measure. This means that the regular condi-

tional probability satisfies the following DLR-equation for every r ∈ N and

µ-a.e. ξ ∈ C:

µ(dw|B∗
r)(ξ) = Z−1

r,ξ exp
(
−
∫ r

−r
U(w(x))dx

)
Wr,ξ(dw),

where B∗
r is the σ-field generated by C|[−r,r]c , Wr,ξ is the path space measure

of the Brownian bridge on [−r, r] with a boundary condition Wr,ξ

(
w(r) =

ξ(r), w(−r) = ξ(−r)
)

= 1 and Zr,ξ is the normalization constant.

We impose the following conditions on the potential function U :

(U1) U ∈ C1(Rd,R) and there exists a constant K1 ∈ R such that

(
∇U(z1)−∇U(z2), z1 − z2

)
Rd ≥ −K1|z1 − z2|2Rd , z1, z2 ∈ R

d.

(U2) There exist K2 > 0 and p > 0 such that

|∇U(z)|Rd ≤ K2(1 + |z|p
Rd), z ∈ R

d.

(U3) lim|z|
Rd

→∞ U(z) = ∞.

As examples of U satisfying above conditions, we are interested in a square

potential and a double-well potential. Those are, U(z) = a|z|2
Rd and U(z) =

a(|z|4
Rd − |z|2

Rd), a > 0, respectively. We remark that conditions (U1)

and (U2) imply that SPDE (4.1) has a unique (mild) solution living in

C([0,∞), C) for initial datum w ∈ C. See Theorems 5.1 and 5.2 in Iwata [9]

for the proof. We note that condition (U3) is sufficient for the existence of

a Gibbs measure. Moreover it is known that Gibbs measures are reversible

under the solution X := {Xt(x)}t≥0 of SPDE (4.1). See Proposition 2.7

and Lemma 2.9 in Iwata [8] for details. We denote by {Pt}t≥0 the transition

semigroup associated with the diffusion process X.
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Now we introduce the relationship between our dynamics and a certain

Dirichlet form. We define H := L2(R,Rd; dx) and

FC∞b :=
{
f(w) = f̃(〈w, φ1〉, · · · , 〈w, φn〉)

∣∣∣ n ∈ N, {φk}nk=1 ⊂ C∞
0 (R,Rd),

f̃ = f̃(α1, · · · , αn) ∈ C∞
b (Rn),

〈w, φk〉 :=

∫
R

(w(x), φk(x))Rddx
}
.

For f ∈ FC∞b , we define the Fréchet derivative Df : E −→ H by

Df(w) :=
n∑
k=1

∂f̃

∂αk
(〈w, φ1〉, · · · , 〈w, φn〉)φk.(4.2)

We consider a symmetric bilinear form E which is given by

E(f) =

∫
E
|Df(w)|2Hµ(dw), f ∈ FC∞b .

We set E1(f) := E(f) + ‖f‖2L2(µ) and denote by D(E) the completion of

FC∞b with respect to E1/2
1 -norm. For f ∈ D(E), we denote by Df the closed

extension of (4.2).

By virtue of the C∞
0 (R,Rd)-quasi-invariance and the strictly positive

property of the Gibbs measure µ, (E ,D(E)) is a Dirichlet form on L2(µ).

Hence by putting A = FC∞b , we see that condition (A) holds. Moreover

our diffusion process X is associated with the Dirichlet form (E ,D(E)). See

Proposition 2.3 in [10] for the detail. We note that Γ(f) = |Df |2H in this

case.

Then the following gradient estimate of the transition semigroup {Pt}t≥0

holds for any f ∈ D(E):

|D(Ptf)(w)|H ≤ eK1tPt
(
|Df |H

)
(w) for µ-a.e. w ∈ E.

See Proposition 2.4 in [10] and Proposition 2.1 in [12] for details. Therefore

Theorems 1.2 and 1.3 hold for α > K1 ∨ 0. These results play important

roles when we study analytic properties for SPDEs containing rotation. See

Theorem 4.4 in Kawabi [11] for details.
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4.2. Superprocesses with immigration

In this subsection, we give a simple example which comes from superpro-

cesses (or Dawson-Watanabe processes) with immigration. Recently, Stan-

nat [21], [22] studied these measure-valued processes from analytic view

points. Following [21] and [22], we consider the one of the most elementary

superprocesses. In what follows, we introduce the framework precisely. We

assume that the type space S is a finite set {1, · · · , d} and the mutation

A = 0. Let E := M+(S) be the set of finite positive Borel measures on

S. Note that we can identify E ∼= R
d
+ := {x ∈ R

d : xi ≥ 0, 1 ≤ i ≤ d}
with the usual topology. For immigration ν ∈ E, we use the notation

νi := ν({i}), 1 ≤ i ≤ d. The branching mechanism is given by

Ψ(i, λ) := −aiλ2 − biλ, λ ≥ 0,

where ai, bi > 0 for every i ∈ S.

We consider a (0,Ψ)-superprocess M on E with immigration ν ∈ E. It

is a diffusion process on E whose generator is given by

Lf(x) =
d∑
i=1

aixi
∂2f

∂x2
i

(x) +

d∑
i=1

(νi − bixi)
∂f

∂xi
(x),

f ∈ C2
0 (E), x = (xi)

d
i=1 ∈ E.

We may think of the diffusion process M as a continuous time limit of

rescaled Galton-Watson processes modelling the random evolution of a given

population where each individual i ∈ S, independently of the others, pro-

duces a random number of children distributed according to a given off-

spring distribution and an additional immigration rate ν. The immigration

ν induces an additional state-independent drift.

We define a Gamma measure mΨ
ν on E by

mΨ
ν (dx) :=

d∏
i=1

( bi
ai

)νi/ai
Γ(νi/ai)

−1x
νi/ai−1
i e−bixi/aidxi,

and consider a symmetric bilinear form

EΨ
ν (f) =

∫
E

d∑
i=1

aixi
( ∂f
∂xi

(x)
)2
mΨ
ν (dx), f ∈ C2

0 (E).
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Then by Theorem 3.1 in [22], the closure of (EΨ
ν , C

2
0 (E)) in L2(mΨ

ν ) is a

Dirichlet form and it corresponds to the mΨ
ν -symmetric diffusion process M.

We denote by (P ν,Ψt )t≥0 its transition semigroup. We note that condition

(A) holds by putting A = C2
0 (E) and

Γ(f)(x) =
d∑
i=1

aixi
( ∂f
∂xi

(x)
)2
, x = (xi)

d
i=1 ∈ E.

Here we assume

min
1≤i≤d

νi
ai
≥ 1

2
,(4.3)

and set a0 := min1≤i≤d ai, ad+1 := max1≤i≤d ai and b0 := min1≤i≤d bi. Then

by Theorem 2.9 in [21], we can see condition (G)

Γ(P ν,Ψt f) ≤
(ad+1

a0

)
· e−b0tP ν,Ψt

{
Γ(f)

}
, f ∈ C1

b (E),

holds under (4.3). Therefore Theorems 1.2 and 1.3 hold for all α > 0.
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