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Triviality of Stickelberger Ideals of Conductor p

By Humio Ichimura

Abstract. Let p be an odd prime number, G = F×
p , and SG the

classical Stickelberger ideal of the group ring Z[G]. For each subgroup
H of G, we defined in [4] a Stickelberger ideal SH of Z[H] as a H-part
of SG. We prove that if SH is “nontrivial”, then the relative class
number h−

p of the p-cyclotomic field is divisible “too often” by some
prime number. This implies that SH is nontrivial quite rarely. We
also give an application of the triviality of SH for a normal integral
basis problem.

1. Introduction

Let p be a fixed odd prime number, and let G = F×
p be the multi-

plicative group of the finite field F p of p elements. Let SG be the classical

Stickelberger ideal of the group ring Z[G] (for the definition, see Section 3).

Let H be a subgroup of G. For an element α ∈ Q[G], let

αH =
∑
σ∈H

aσσ with α =
∑
σ∈G

aσσ.(1)

In other words, αH is a H-part of α. In [4], we defined a Stickelberger ideal

SH of the group ring Z[H] by

SH = {αH | α ∈ SG}

in connection with a normal integral basis problem (see Section 2). In [4,

6, 8], we studied some properties of the ideal SH . Letting ρ be a generator

of H, put

nH =

{
1 + ρ + ρ2 + · · · + ρ|H|/2−1, if |H| is even

1, if |H| is odd.
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Let NH be the norm element of Z[H]. For an element f ∈ Z[H], let

〈f〉 = fZ[H]. It is known that

〈NH〉 ⊆ SH ⊆ 〈nH〉(2)

(see Section 3). We say that the ideal SH is “trivial” when SH = 〈nH〉. Let

h−
p be the relative class number of the p-cyclotomic field Q(ζp) where ζp is

a primitive p-th root of unity. Let h(F ) be the class number of a number

field F . In [6, 8], we proved the following:

Theorem 1. (i) For any subgroup H of G, the quotient 〈nH〉/SH is a

finite abelian group whose order divides h−
p .

(ii) When H = G, we have [〈nG〉 : SG] = h−
p .

(iii) When p ≡ 3 mod 4 and [G : H] = 2, we have [〈nH〉 : SH ] =

h−
p /h(Q(

√−p)).

(iv) When |H| ≤ 4 or |H| = 6, we have SH = 〈nH〉.

It is well known that h−
p = 1 if and only if p ≤ 19 (cf. Washington [14,

Corollary 11.18]). Hence, it follows from the first assertion of Theorem 1

that when p ≤ 19, SH = 〈nH〉 for any H. For a prime number p ≥ 23 and

a subgroup H not dealt with in Theorem 1 (ii)-(iv), what can one say on

the index [〈nH〉 : SH ]? In a numerical data [8, Proposition 3], we have seen

that the quotient 〈nH〉/SH is nontrivial quite rarely for a pair (p, H) of a

prime number p with 23 ≤ p ≤ 499 and a proper subgroup H of G such

that p ≡ 1 mod 4 or [G : H] > 2. The purpose of this paper is to give a

necessary condition for 〈nH〉/SH to be nontrivial. For a prime number q,

let q̃ = q or 4 according to whether q is odd or 2.

Theorem 2. Let H be a subgroup of G. Assume that a prime number

q divides the index [〈nH〉 : SH ]. Then, the relative class number h−
p is

divisible by q̃[G:H] when |H| is even, and by q̃[G:H]/2 when |H| is odd.

This theorem says that if the finite abelian group 〈nH〉/SH is nontrivial,

then h−
p is divisible “too often” by some prime number. This is a reason

that 〈nH〉/SH is nontrivial quite rarely.

Corollary 1. Let H be a proper subgroup of G. Assume that p ≡
1 mod 4 or [G : H] > 2. Then, SH = 〈nH〉 when 16 � h−

p and the odd part

of h−
p is square free.
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For a prime number q, let Zq be the ring of q-adic integers. For brevity,

we write SH,q = SH ⊗ Zq and 〈nH〉q = nHZq[H]. In [8], we conjectured

that SH,q = 〈nH〉q for some odd prime factor q of h−
p when p ≡ 1 mod 4

or [G : H] > 2 except for the case where (p ≤ 19 or) p = 29, based upon

Theorem 1 (iv) and the numerical data [8, Proposition 3] for 23 ≤ p ≤ 499

mentioned above. The case p = 29 is excluded since it is shown by Horie

[3] that h−
p is a nontrivial power of 2 if and only if p = 29. The following is

an answer to the conjecture.

Corollary 2. Let p be an odd prime number and H a proper subgroup

of G. Assume that p ≡ 1 mod 4 or [G : H] > 2. Assume further that an

odd prime number q satisfies q ‖ h−
p . Then, we have SH,q = 〈nH〉q.

We see that the assumption of Corollary 2 is satisfied for any prime

number p with 23 ≤ p < 210 except for the case where p = 29, 31 or 41 from

the tables on h−
p in [14], Lehmer and Masley [11] and Yamamura [15]. We

have h−
29 = 8, h−

31 = 9 and h−
41 = 112. It is plausible that the assumption is

satisfied for all primes p ≥ 23 except for the above three cases.

Remark 1. Let Z[G]− be the odd part of the group ring Z[G], and

S−
G = SG ∩Z[G]−. Iwasawa [10] proved that the index [Z[G]− : S−

G ] equals

h−
p . Theorem 1 (ii) is a reformulation of this formula.

2. Application of the Triviality

McCulloh [12, 13] established an important theorem on the realisable

classes of integer rings of cyclic extensions of prime degree. The ideal SH

plays a role in connection with his theorem. For a number field F , let OF

be the ring of integers and O′
F = OF [1/p] the ring of p-integers of F . Let

ClF and Cl′F be the ideal class groups of the Dedekind domains OF and

O′
F , respectively. We say that F satisfies the condition (H ′

p) when for any

cyclic extension N/F of degree p, O′
N has a normal basis over O′

F . It is

known that the rationals Q satisfy (H ′
p) for any p, which is essentially due

to Hilbert and Speiser. Let K = F (ζp), and H = Gal(K/F ). We naturally

regard H as a subgroup of G through the Galois action on ζp. The following

assertion is a consequence of a p-integer version of the main theorem of [13]

and is shown in [8, Appendix]. A direct and simpler proof is given in [4].
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Theorem 3. Let F be a number field. Let K = F (ζp) and H =

Gal(K/F ) ⊆ G. Then, F satisfies the condition (H ′
p) if and only if the

Stickelbeger ideal SH annihilates the ideal class group Cl′K .

The following is an immediate consequence of Theorem 3 and contains

[4, Corollaries 2, 3].

Proposition 1. Under the setting of Theorem 3, assume that SH =

Z[H]. Then, the following conditions are equivalent.

(i) F satisfies (H ′
p).

(ii) K satisfies (H ′
p).

(iii) Cl′K is trivial.

Let K = Q(ζp). As the unique prime ideal of OK over p is principal, we

have ClK = Cl′K . Let hp be the class number of K. It is well known that

hp = 1 if and only if p ≤ 19 (cf. [14, Theorem 11.1]). Hence, it follows from

Theorem 3 that when p ≤ 19, any subfield F of K = Q(ζp) satisfies (H ′
p).

In [8, Corollary 4], we showed the following assertion using Theorem 3.

Lemma 1. Let p ≥ 23 be a prime number. Let F be a subfield of

K = Q(ζp), and let H = Gal(K/F ) ⊆ G. When [K : F ] is odd, F does

not satisfy (H ′
p) if there exists a prime factor q of h−

p with SH,q = Zq[H].

When [K : F ] is even, F does not satisfy (H ′
p) if there exists an odd prime

factor q of h−
p with SH,q = 〈nH〉q.

Combining this lemma with Corollary 2, we obtain the following:

Proposition 2. Let p ≥ 23 be a prime number. Assume that q ‖ h−
p

for some odd prime number q. Then, any real subfield F �= Q of Q(ζp) does

not satisfy (H ′
p).

Proof. Letting H = Gal(K/F ), we have p ≡ 1 mod 4 or [G : H] > 2

since F is real. Therefore, the assertion follows immediately from Corollary

2 and Lemma 1. �

A similar assertion is already obtained in [7, Theorem 2] under the

additional assumption q � p− 1 by a different method. As for an imaginary

subfield, we can obtain similar assertion also from Corollary 2 and Lemma
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1. However, the following unconditional result is obtained in [7, Theorem

1] whose proof does not rely on the triviality of Stickelberger ideals.

Proposition 3. Let p ≥ 23 be a prime number, and let K = Q(ζp).

(I) An imaginary subfield F of K does not satisfy (H ′
p) except for the

case where F = Q(
√−p) and p = 43, 67 or 163.

(II) Let F = Q(
√−p). When p = 43 or 67, F satisfies (H ′

p). When

p = 163, F satisfies (H ′
p) under GRH.

Remark 2. The triviality of SH plays an important role also in [5,

Theorem 2].

3. Lemmas

Let p be a fixed odd prime number, and let G = F×
p . First, we recall the

definition of the classical Stickelberger ideal SG. For an integer i ∈ Z, let

ī be the class in F p = Z/pZ represented by i. When p � i, we often write

σi = ī. Let σ = σg be a generator of G, where g is a primitive root modulo

p. For an integer x, let (x)p be the unique integer with (x)p ≡ x mod p

and 0 ≤ (x)p < p. For a real number y, let [y] be the largest integer ≤ y.

Stickelberger elements of G are defined by

θG =
1

p

p−1∑
i=1

iσ−1
i =

1

p

p−2∑
j=0

(gj)pσ
−j ∈ Q[G]

and

θG,r =

p−1∑
i=1

[
ri

p

]
σ−1
i =

p−2∑
j=0

[
r(gj)p

p

]
σ−j ∈ Z[G]

for an integer r ∈ Z. The ideal SG of Z[G] is defined by

SG = Z[G] ∩ θGZ[G].

For a prime number q �= p, it follows that

SG,q = Zq[G]θG.(3)
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Let H be a subgroup of G with |H| = d, and let ρ = σh be a generator

of H with h ∈ Z. Let θH and θH,r be the H-parts of θG and θG,r in the

sense of (1), respectively:

θH =
1

p

d−1∑
j=0

(hj)pρ
−j ∈ Q[H]

and

θH,r =

d−1∑
j=0

[
r(hj)p

p

]
ρ−j ∈ Z[H].(4)

Since SG is generated by the elements θG,r over Z (cf. [14, Lemma 6.9]), it

follows that the H-part SH is generated by the elements θH,r. We see that

NH = −θH,−1 ∈ SH

and that when |H| is even

nH(1 − ρ) = 1 − J(5)

where J = σ−1 is the complex conjugation in G. The following lemma is

shown in [8, Lemma 3].

Lemma 2. For subgroups A and B of G with A ⊆ B, we have SB ⊆
SAZ[B] ∩ 〈nB〉.

When |H| = 2 is even, let

XH,r = (ρ− 1)
�−1∑
j=0

[
r(h�−1−j)p

p

]
ρj ,

where ρ = σh is a generator of H. For an integer r, let δr = r − 1 or r

according to whether p � r or p|r.

Lemma 3 ([8, Lemma 2]). When |H| is even, we have

θH,r = ρnH(XH,r + δr).
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Lemma 4. Let H be a subgroup of G whose order  is odd, and let

H1 = H · 〈J〉 be the subgroup of order 2 generated by H and the complex

conjugation J = σ−1 in G. Then, we have

θH1 = (1 − J)θH + JNH ,

and

θH1,r = (1 − J)θH,r + δrJNH

for an integer r.

Proof. We prove the second assertion. The first one is shown sim-

ilarly. Let ρ = σg be a generator of H1 with g ∈ Z. Then, J = ρ� and

H = 〈ρ2〉. By (4), we have

θH1,r =

�−1∑
j=0

[
r(g2j)p

p

]
ρ−2j +

�−1∑
j=0

[
r(g2j+1)p

p

]
ρ−(2j+1).

By (4), the first term of the right hand side equals θH,r. As  is odd and

g� ≡ −1 mod p, we see that the second term equals

�−1∑
j=0

[
r(g2j+�)p

p

]
ρ−(2j+�) = J

�−1∑
j=0

[
r(−g2j)p

p

]
ρ−2j

= J
�−1∑
j=0

[
r − r(g2j)p

p

]
ρ−2j .

Here, the second equality holds as (−x)p = p − (x)p for x ∈ Z with p � x.

We easily see that the last term equals JδrNH−JθH,r. Therefore, we obtain

the assertion. �

Finally, we give some simple lemmas on a (finite) cyclic group H.

Though we believe that they are known, we give proofs as we could not

find an appropriate reference. For a prime number q, let Qq be the field of

q-adic rationals, and Q̄q an algebraic closure of Qq. Let k/Qq be an un-

ramified extension, and O = Ok the ring of integers of k. For a Q̄q-valued

character χ of H, let k(χ)/k be the abelian extension generated by the val-

ues of χ, and O[χ] the ring of integers of k(χ). We extend a character χ of

H to a homomorphism from O[H] to O[χ] by linearity.
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Lemma 5. Let q be a prime number, and H a cyclic group of q-power

order. Let k and O be as above. For an ideal A of O[H] and a Q̄q-valued

character χ of H, we have χ(A) = O[χ] if and only if A = O[H].

Proof. Let ρ be a generator of the cyclic group H, and qe the order of

H. Let Λ = O[[T ]] be the power series ring over O. As k/Qq is unramified,

(q, T ) is the maximal ideal of Λ. Let ωi = (1 + T )q
i − 1 for i ≥ 0, and

ω−1 = 1. As we usually do in Iwasawa theory, we identify the group ring

O[H] with the quotient Λ/ωe by sending ρ to the class [1 + T ]. Let α be

a non-zero element of O[H]. It suffices to show that if χ(α) = 1, then

α is a unit of O[H]. Let f = f(T ) ∈ Λ be a polynomial such that the

class [f ] ∈ Λ/ωe corresponds to α. Let qi be the order of χ. Then, we

see that νi = ωi/ωi−1 is the minimal polynomial of χ(ρ) − 1 over k since

k/Qq is unramified. Therefore, it follows that if χ(α) = f(χ(ρ) − 1) = 1,

then f ≡ 1 mod νi. Since νi is contained in the maximal ideal (q, T ) of Λ,

this implies that f is a unit of Λ. Therefore, α is a unit of the group ring

O[H]. �

Lemma 6. Let q be a prime number, and H a cyclic group. Let f

be a non-zero element of Zq[H], and A an ideal of Zq[H] contained in

〈f〉q = fZq[H]. If A � 〈f〉q, then there exists a Q̄q-valued character χ of

H such that χ(A) � χ(f)Zq[χ].

Proof. Let A and B be the q-part and the non-q-part of H, respec-

tively, so that we have the decomposition H = A × B. Regarding Zq[H]

and its ideal I as modules over Zq[B], we can canonically decompose them

into the products of the eigenspaces with respect to the B-action because

q � |B|. We can regard a Q̄q-valued character χB of B as a homomorphism

Zq[H] → Zq[χB][A] by linearity and setting χB(a) = a for a ∈ A. Then,

the χB-eigenspace of an ideal I of Zq[H] is naturally identified with the

image χB(I). Assume that A � 〈f〉q. Then, from the above, there exists a

Q̄q-valued character χB of B such that

χB(A) � χB(f)χB(Zq[H]) = χB(f)Zq[χB][A].

Let B be an ideal of Zq[H] with A = fB. We see that χB(B) � Zq[χB][A]

and χB(f) �= 0. Now, choose any Q̄q-valued character χA of A with

χA(χB(f)) �= 0 where we are regarding χA as a homomorphism
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Zq[χB][A] → Q̄q by linearity. Then, by Lemma 5, the character χ on H

defined by χ(ab) = χA(a)χB(b) for a ∈ A and b ∈ B satisfies the condition

χ(A) � χ(f)Zq[χ]. �

4. Proof of Theorem 2

The proof of Theorem 2 depends on the classical analytic class number

formula:

h−
p = 2p

∏
χ

(
−1

2
B1,χ−1

)
(6)

where χ runs over the odd characters of G (cf. [14, Theorem 4.17]). Here,

B1,χ−1 = χ(θG) =
1

p

p−1∑
i=1

iχ(i)−1

is the first Bernoulli number.

By (3), it follows that

χ(SG,q) = B1,χ−1Zq[χ] when q �= p.(7)

Let q = p and let ωp : G → Z×
p be the Teichmüller character. It is well

known that pB1,ω−1
p

is a p-adic unit and B1,χ−1 is a p-adic integer for χ �= ωp,

and that

ωp(SG,p) = Zp, and χ(SG,p) = B1,χ−1Zp for χ �= ωp.(8)

For these, see [14, page 101].

When |H| is even, H contains the complex conjugation J = σ−1. We say

that a character χ of H is even (resp. odd) when χ(J) = 1 (resp. −1). Let

C−
H(2) be the set consisting of odd characters of H of 2-power order. Let E

be the subfield of Q(ζp) such that [E : Q] is a 2-power and [Q(ζp) : E] is

odd. It is known that the unit index of E equals 1 by Hasse [1, Satz 29] or

Hirabayashi and Yoshino [2, Lemma 1], and that the class number of E is

odd by Iwasawa [9] or [14, Theorem 10.4]. Hence, from (6) and the formula

for the relative class number h−(E) of E, it follows that

2-part of h−
p = 2-part of

∏
χ

′
(

1

2
B1,χ−1

)
(9)
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where χ runs over the odd characters of G with χ �∈ C−
G(2). Here, we note

that each factor B1,χ−1/2 in (9) is a 2-adic integer by (7) and the following

lemma for the case H = G.

Lemma 7. Let H be a subgroup of G with |H| even. Let q = 2, and χ

an odd Q̄2-valued character of H. Then, we have

χ(SH,2) ⊆ χ(nH)Z2[χ] = 2Z2[χ], if χ �∈ C−
H(2)

and

χ(SH,2) = χ(nH)Z2[χ] =
2

1 − χ(ρ)
Z2[χ], if χ ∈ C−

H(2).

Proof. As χ is odd, it follows from (5) that

χ(nH) =
2

1 − χ(ρ)
.

When χ �∈ C−
H(2), 1 − χ(ρ) is a 2-adic unit and hence the assertion follows

from (2). Let χ ∈ C−
H(2). By Lemma 3 and the definition of the element

XH,r, we see that χ(θH,2) equals χ(ρ)χ(nH) times a 2-adic unit. Thus, it

follows from (2) that χ(SH,2) = χ(nH)Z2[χ]. �

To prove Theorem 2, we divide our argument into two cases according

to whether |H| is odd or even. For a Q̄q-valued character χ of H, let ℘χ be

the prime ideal of Zq[χ].

The case where |H| is odd. Assume that q divides the index [Z[H] :

SH ]. By Lemma 6, there exists a Q̄q-valued character χ of H such that

χ(SH,q) ⊆ ℘χ. If q � |H|, then we see that χ is not the trivial character χ0 of

H because NH ∈ SH and χ0(NH) = |H| is a q-adic unit. In particular, we

have χ �= χ0 when q = 2. We see that there are (at least) [Qq(χ) : Qq] such

characters considering the conjugates of χ over Qq. Let H1 = H · 〈J〉 be as

in Lemma 4, and let χ1 be the unique odd character of H1 with χ1|H = χ.

By Lemma 4, we see that (Qq(χ1) = Qq(χ) and)

χ1(SH1,q) ⊆ (2℘χ, χ(NH)).
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This implies that χ1(SH1,q) ⊆ 2℘χ because χ �= χ0 when q = 2. There exist

[G : H1] = [G : H]/2 characters χ̃ of G with χ̃|H1
= χ1. For such a character

χ̃, we see from Lemma 2 that

χ̃(SG,q) ⊆ χ1(SH1,q)Zq[χ̃] ⊆ 2℘χZq[χ̃].(10)

Hence, it follows that χ̃ �∈ C−
G(2) when q = 2 by Lemma 7, and that χ̃ �= ωp

when q = p by (8). By (7), (8) and (10), we see that the q-adic integer

B1,χ̃−1/2 is divisible by ℘χ. Now, from (6) and (9), we see that h−
p is

divisible by ℘m
χ with

m = [Qq(χ) : Qq] × [G : H]/2.

When q = 2, the extension Qq(χ)/Qq is unramified and [Qq(χ) : Qq] ≥ 2

since |H| is odd and χ �= χ0. Therefore, we obtain the assertion. �

The case where |H| is even. We see from Lemma 3 that χ0(θH,2) =

χ0(nH), and hence χ0(SH,q) = χ0(〈nH〉q) by (2). Let χ be a nontrivial

even character of H. Then, it follows from (5) that χ(nH) = 0. Hence,

χ(SH,q) = χ(〈nH〉q) by (2) also in this case.

Assume that q divides the index [〈nH〉 : SH ]. Then, by Lemma 6 and the

above, there exists an odd Q̄q-valued character χ of H such that χ(SH,q) ⊆
χ(nH)℘χ. In particular, it follows from Lemma 7 that if q = 2, then χ �∈
C−
H(2) and χ(nH) = 2 times a 2-adic unit. Hence, for an odd character χ̃ of

G with χ̃|H = χ, it follows from Lemma 2 that χ̃(SG,q) ⊆ 2℘χZq[χ̃]. Now,

we can show the assertion similarly to the case where |H| is odd. �

Remark 3. For showing the formula (9), we have used the fact that

the relative class number h−(E) is odd. This fact also follows from the class

number formula for h−(E) and the second assertion of Lemma 7 for the

group G.
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