Remarks on Solvability of Pseudodifferential Operators in the Space of Hyperfunctions

By Seiichiro Wakabayashi

Abstract

Let X be an open subset, and let $p(x, \xi)$ be a pseudoanalytic symbol defined in $X \times \mathbb{R}^{n}$. Let U and V be open subsets of X satisfying $U \Subset V \Subset X$. In this paper we prove that $p(x, D)$: $\mathscr{A}^{\prime}(\bar{V}) \rightarrow \mathscr{B}(U)$ is surjective under some conditions on propagation of analyticity for the transposed operator $\left({ }^{t} p\right)(x, D)$ of $p(x, D)$. This result was proved for differential operators by Cordaro and Trépreau [2].

1. Introduction

In the framework of C^{∞} and distributions it is well known that solvability of operators is related to propagation of regularities for their transposed operators (see Treves [9], Yoshikawa [13] and Hörmander [3] and [4]). Let X be an open subset of \mathbb{R}^{n}, and let P be a linear partial differential operator on X with analytic coefficients. Cordaro and Trépreau [2] proved that P : $\mathscr{B}(U) \rightarrow \mathscr{B}(U)$ is surjective if U is an open subset of X satisfying $U \Subset X$ and P and U satisfy the following condition:
(A) f is analytic in U if $f \in L^{2}\left(\mathbb{R}^{n}\right), f$ is analytic in a neighborhood of ∂U and ${ }^{t} P f$ is analytic in U.

Here $\mathscr{B}(U)$ denotes the space of hyperfunctions in U, and ${ }^{t} P$ denotes the transposed operator of P. Moreover, $A \Subset B$ means that the closure \bar{A} of A is compact and included in the interior $\stackrel{\circ}{B}$ of B, and ∂U denotes the boundary of U. We should note that Cordaro and Trépreau studied the problems in a more general setting in [2], although they dealt with only differential operators. In this paper we shall extend the above result for pseudodifferential operators.

[^0]First we shall explain briefly about analytic functionals, hyperfunctions and pseudodifferential operators acting on them. For the details we refer to $[10]$ (see, also, [11]). Let $\varepsilon \in \mathbb{R}$, and denote $\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{1 / 2}$, where $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right) \in \mathbb{R}^{n}$ and $|\xi|=\left(\sum_{j=1}^{n}\left|\xi_{j}\right|^{2}\right)^{1 / 2}$. We define

$$
\hat{\mathscr{S}}_{\varepsilon}:=\left\{v(\xi) \in C^{\infty}\left(\mathbb{R}^{n}\right) ; e^{\varepsilon\langle\xi\rangle} v(\xi) \in \mathscr{\mathscr { O }}\right\},
$$

where $\mathscr{\mathscr { C }}\left(\equiv \mathscr{S}\left(\mathbb{R}^{n}\right)\right)$ denotes the Schwartz space. We introduce the topology to $\hat{\mathscr{S}}_{\varepsilon}$ in a natural way. Then the dual space $\hat{\mathscr{S}}_{\varepsilon}^{\prime}$ of $\hat{\mathscr{S}}_{\varepsilon}$ can be identified with $\left\{v(\xi) \in \mathscr{D}^{\prime} ; e^{-\varepsilon\langle\xi\rangle} v(\xi) \in \mathscr{S}^{\prime}\right\}$. Let $\varepsilon \geq 0$. Then $\hat{\mathscr{S}}_{\varepsilon}$ is a dense subset of $\mathscr{\mathscr { S }}$ and we can define $\mathscr{S}_{\varepsilon}:=\mathscr{F}^{-1}\left[\hat{\mathcal{Y}}_{\varepsilon}\right]\left(=\mathscr{F}_{[}\left[\hat{\mathcal{S}}_{\varepsilon}\right]\right)(\subset \mathscr{Y})$, where \mathscr{F} and \mathscr{F}^{-1} denote the Fourier transformation and the inverse Fourier transformation on \mathscr{S} (or \mathscr{S}^{\prime}), respectively. For example, $\mathscr{F}[u](\xi)=\int e^{-i x \cdot \xi} u(x) d x$ for $u \in \mathscr{S}$, where $x \cdot \xi=\sum_{j=1}^{n} x_{j} \xi_{j}$ for $x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$ and $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right) \in \mathbb{R}^{n}$. We introduce the topology in $\mathscr{S}_{\varepsilon}$ so that $\mathscr{F}: \hat{\mathscr{S}}_{\varepsilon} \rightarrow \mathscr{S}_{\varepsilon}$ is homeomorphic. Denote by $\mathscr{S}_{\varepsilon}^{\prime}$ the dual space of $\mathscr{S}_{\varepsilon}$. Since $\mathscr{S}_{\varepsilon}$ is dense in $\mathscr{\mathscr { S }}$, we can regard \mathscr{S}^{\prime} as a subspace of $\mathscr{S}_{\varepsilon}^{\prime}$. We can define the transposed operators ${ }^{t} \mathscr{F}^{\prime}$ and ${ }^{t} \mathscr{F}^{-1}$ of \mathscr{F} and \mathscr{F}^{-1}, which map $\mathscr{S}_{\varepsilon}^{\prime}$ and $\hat{\mathscr{S}}_{\varepsilon}^{\prime}$ onto $\hat{\mathscr{S}}_{\varepsilon}^{\prime}$ and $\mathscr{S}_{\varepsilon}^{\prime}$, respectively. Since $\hat{\mathscr{S}}_{-\varepsilon} \subset \hat{\mathscr{S}}_{\varepsilon}^{\prime}\left(\subset \mathscr{D}^{\prime}\right)$, we can define $\mathscr{S}_{-\varepsilon}={ }^{t} \mathscr{F}^{-1}\left[\hat{\mathscr{S}}_{-\varepsilon}\right]$, and introduce the topology in $\mathscr{S}_{-\varepsilon}$ so that ${ }^{t \mathscr{F}^{-1}}: \hat{\mathscr{S}}_{-\varepsilon} \rightarrow \mathscr{S}_{-\varepsilon}$ is homeomorphic. $\mathscr{S}_{-\varepsilon}^{\prime}$ denotes the dual space of $\mathscr{S}_{-\varepsilon}$. We note that $\mathscr{F}={ }^{t} \mathscr{F}$ on \mathscr{S}^{\prime}. So we also represent ${ }^{t} \mathscr{F}$ by \mathscr{F}. Let $\mathscr{A}\left(\mathbb{C}^{n}\right)$ be the space of entire analytic functions on \mathbb{C}^{n}, and let K be a compact subset of \mathbb{C}^{n}. We denote by $\mathscr{A}^{\prime}(K)$ the space of analytic functionals carried by K, i.e., $u \in \mathscr{A}^{\prime}(K)$ if and only if (i) u : $\mathscr{A}\left(\mathbb{C}^{n}\right) \ni \varphi \mapsto u(\varphi) \in \mathbb{C}$ is a linear functional, and (ii) for any neighborhood ω of K in \mathbb{C}^{n} there is $C_{\omega} \geq 0$ such that $|u(\varphi)| \leq C_{\omega} \sup _{z \in \omega}|\varphi(z)|$ for $\varphi \in$ $\mathscr{A}\left(\mathbb{C}^{n}\right)$. Define $\mathscr{A}^{\prime}\left(\mathbb{R}^{n}\right):=\bigcup_{K \Subset \mathbb{R}^{n}} \mathscr{A}^{\prime}(K), \mathscr{S}_{\infty}:=\bigcap_{\varepsilon \in \mathbb{R}} \mathscr{S}_{\varepsilon}, \mathscr{E}_{0}:=\bigcap_{\varepsilon>0} \mathscr{S}_{-\varepsilon}$ and $\mathscr{F}_{0}:=\bigcap_{\varepsilon>0} \mathscr{S}_{\varepsilon}^{\prime}$. For $u \in \mathscr{A}^{\prime}\left(\mathbb{R}^{n}\right)$ we can define the Fourier transform $\hat{u}(\xi)$ of u by

$$
\hat{u}(\xi)(=\mathscr{F}[u](\xi))=u_{z}\left(e^{-i z \cdot \xi}\right),
$$

where $z \cdot \xi=\sum_{j=1}^{n} z_{j} \xi_{j}$ for $z=\left(z_{1}, \cdots, z_{n}\right) \in \mathbb{C}^{n}$ and $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right) \in \mathbb{R}^{n}$. By definition we have $\hat{u}(\xi) \in \bigcap_{\varepsilon>0} \hat{\mathscr{S}}_{-\varepsilon}\left(=\mathscr{F}\left[\mathscr{E}_{0}\right]\right)$. Therefore, we can regard $\mathscr{A}^{\prime}\left(\mathbb{R}^{n}\right)$ as a subspace of \mathscr{E}_{0}, i.e., $\mathscr{A}^{\prime}\left(\mathbb{R}^{n}\right) \subset \mathscr{E}_{0} \subset \mathscr{F}_{0}($ see Lemma 1.1.2 of [10]). Let Ω be an open subset of \mathbb{C}^{n}, and let $\mathscr{A}(\Omega)$ be the space of analytic functions in $\Omega . \mathscr{A}(\Omega)$ is a Fréchet-Schwartz space ((FS) space) whose
topology is defined by the family of the semi-norms $|\cdot|_{L}(L \Subset \Omega)$, where

$$
|\varphi|_{L}:=\sup _{z \in L}|\varphi(z)| .
$$

Let K be a compact subset of \mathbb{R}^{n}. Then K has a fundamental system of complex neighborhoods consisting of Runge domain (see, e.g., [5] and Lemma 1.1.1 of [10]). So $u(\varphi)$ can be defined for $u \in \mathscr{A}^{\prime}(K)$ if Ω is an open neighborhood of K in \mathbb{C}^{n} and $\varphi \in \mathscr{A}(\Omega)$. We denote

$$
K_{\varepsilon}:=\left\{z \in \mathbb{C}^{n} ;|z-x|<\varepsilon \text { for some } x \in K\right\}
$$

for $\varepsilon \geq 0$, and define the (DFS) space $\mathscr{A}(K)$ by $\mathscr{A}(K)=\operatorname{inj} \lim _{\varepsilon \rightarrow 0} \mathscr{A}\left(K_{\varepsilon}\right)$ (see, e.g., [6]). Then $\mathscr{A}^{\prime}(K)$ can be identified with the strong dual space of $\mathscr{A}(K)$ and $\mathscr{A}^{\prime}(K)$ is a (FS) space. For $\delta>0$ we have $\left(\mathscr{S}_{\delta} \subset\right) \mathscr{S}_{-\delta}^{\prime} \subset \mathscr{A}\left(\mathbb{R}_{\delta}^{n}\right)$, where $\mathbb{R}_{\delta}^{n}=\left\{z \in \mathbb{C}^{n} ;|\operatorname{Im} z|<\delta\right\}$ (see Lemma 1.1.3 of [10]). Moreover, we have $u(\varphi)=\langle u, \varphi\rangle_{\mathscr{A}}(K), \mathscr{A}(K)=\langle u, \varphi\rangle$ for $u \in \mathscr{A}^{\prime}(K)$ and $\varphi \in \mathscr{S}_{\delta}$, where $\delta>0$ and $\langle\cdot, \cdot\rangle_{\mathscr{A}^{\prime}(K), \mathscr{A}(K)}$ and $\langle\cdot, \cdot\rangle$ denote the duality of $\mathscr{A}^{\prime}(K)$ and $\mathscr{A}(K)$ and that of $\mathscr{S}_{\delta}^{\prime}$ and \mathscr{S}_{δ}, respectively (see Lemma 1.1.2 of [10]). For a bounded open subset X of \mathbb{R}^{n} we define the space $\mathscr{B}(X)$ of hyperfunctions in X by

$$
\mathscr{B}(X):=\mathscr{A}^{\prime}(\bar{X}) / \mathscr{A}^{\prime}(\partial X)
$$

For $u \in \mathscr{F}_{0}$ we define

$$
\begin{aligned}
& \mathscr{H}(u)\left(x, x_{n+1}\right):=\left(\operatorname{sgn} x_{n+1}\right) \exp \left[-\left|x_{n+1}\right|\langle D\rangle\right] u(x) / 2 \\
& \left(=\left(\operatorname{sgn} x_{n+1}\right) \mathscr{F}_{\xi}^{-1}\left[\exp \left[-\left|x_{n+1}\right|\langle\xi\rangle\right] \hat{u}(\xi)\right](x) / 2 \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)\right)
\end{aligned}
$$

when $x_{n+1} \in \mathbb{R} \backslash\{0\}$, and

$$
\begin{aligned}
\text { supp } u:=\bigcap\{ & F ; F \text { is a closed subset of } \mathbb{R}^{n} \text { and there is a real } \\
& \text { analytic function } U\left(x, x_{n+1}\right) \text { in } \mathbb{R}^{n+1} \backslash F \times\{0\} \\
& \text { such that } \left.U\left(x, x_{n+1}\right)=\mathscr{H}(u)\left(x, x_{n+1}\right) \text { for } x_{n+1} \neq 0\right\}
\end{aligned}
$$

(see [10]). For a compact subset K of $\mathbb{R}^{n}, u \in \mathscr{A}^{\prime}(K)$ if and only if u is an analytic functional and supp $u \subset K$ (see Proposition 1.2.6 of [10]). From Theorem 1.3.3 of [10] it follows that for any $u \in \mathscr{F}_{0}$ and any compact subset K of \mathbb{R}^{n} there is $v \in \mathscr{A}^{\prime}(K)$ satisfying $\operatorname{supp}(u-v) \cap K \subset \partial K$. Therefore, we can define the restriction map from \mathscr{F}_{0} to $\mathscr{A}^{\prime}(K) / \mathscr{A}^{\prime}(\partial K)(=\mathscr{B}(\stackrel{\circ}{K}))$. For
an open subset X of \mathbb{R}^{n} we define the space $\mathscr{B}(X)$ of hyperfunctions in X as a local space of $\mathscr{A}^{\prime}\left(\mathbb{R}^{n}\right)\left(\right.$ or $\left.\mathscr{F}_{0}\right)$ (see Definition 1.4.5 of [10]). Let X and U be open subsets of \mathbb{R}^{n} satisfying $U \subset X$. Then the restriction map ρ_{U}^{X} : $\left.\mathscr{B}(X) \ni u \mapsto u\right|_{U} \in \mathscr{B}(U)$ can be defined. By definition we can also define the restriction map from \mathscr{F}_{0} to $\mathscr{B}(X)$, and we denote by $\left.v\right|_{X}$ the restriction of $v \in \mathscr{F}_{0}$ to $\mathscr{B}(X)$ (or on X). For $x^{0} \in \mathbb{R}^{n}$ we say that u is analytic at x^{0} if $\mathscr{H}(u)\left(x, x_{n+1}\right)$ can be continued analytically from $\mathbb{R}^{n} \times(0, \infty)$ to a neighborhood of $\left(x^{0}, 0\right)$ in \mathbb{R}^{n+1}.

Assume that $a(\xi, y, \eta) \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ satisfies the estimates

$$
\begin{aligned}
& \left|\partial_{\xi}^{\alpha} D_{y}^{\beta+\tilde{\beta}} \partial_{\eta}^{\gamma} a(\xi, y, \eta)\right| \\
& \leq C_{|\alpha|+|\tilde{\beta}|+|\gamma|}(A / R)^{|\beta|}\langle\xi\rangle^{m_{1}+|\beta|}\langle\eta\rangle^{m_{2}} \exp \left[\delta_{1}\langle\xi\rangle+\delta_{2}\langle\eta\rangle\right]
\end{aligned}
$$

for any $\alpha, \beta, \tilde{\beta}, \gamma \in\left(\mathbb{Z}_{+}\right)^{n}, \xi, y, \eta \in \mathbb{R}^{n}$ with $\langle\xi\rangle \geq R|\beta|$, where $D_{y}=-i \partial_{y}$, $C_{k}(k \geq 0)$ are positive constants, $R \geq 1, A \geq 0, m_{1}, m_{2}, \delta_{1}, \delta_{2} \in \mathbb{R}$ and $\mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$. We define pseudodifferential operators $a\left(D_{x}, y, D_{y}\right)$ and ${ }^{r} a\left(D_{x}, y, D_{y}\right)$ by

$$
a\left(D_{x}, y, D_{y}\right) u(x)=(2 \pi)^{-n} \mathscr{F}_{\xi}^{-1}\left[\int\left(\int e^{-i y \cdot(\xi-\eta)} a(\xi, y, \eta) \hat{u}(\eta) d \eta\right) d y\right](x)
$$

and ${ }^{r} a\left(D_{x}, y, D_{y}\right) u=b\left(D_{x}, y, D_{y}\right) u$ for $u \in \mathscr{S}_{\infty}$, respectively, where $b(\xi, y, \eta)=a(\eta, y, \xi)$.

Proposition 1.1 (Theorem 2.3.3 of [10] or Proposition 1.2 of [11]). $a\left(D_{x}, y, D_{y}\right)$ can be extended to a continuous linear operator from $\mathscr{S}_{\varepsilon_{2}}$ to $\mathscr{S}_{\varepsilon_{1}}$ and from $\mathscr{S}_{-\varepsilon_{2}}^{\prime}$ to $\mathscr{S}_{-\varepsilon_{1}}^{\prime}$, respectively, if

$$
\left\{\begin{array}{l}
\kappa>1, \quad \varepsilon_{2}-\delta_{2}=\kappa\left(\varepsilon_{1}+\delta_{1}\right)_{+} \tag{1.1}\\
\varepsilon_{1}+\delta_{1} \leq 1 / R, \quad R \geq e \sqrt{n} \kappa A /(\kappa-1)
\end{array}\right.
$$

where $c_{+}=\max \{c, 0\}$. Similarly, ${ }^{r} a\left(D_{x}, y, D_{y}\right)$ can be extended to a continuous linear operator from $\mathscr{S}_{-\varepsilon_{1}}$ to $\mathscr{S}_{-\varepsilon_{2}}$ and from $\mathscr{S}_{\varepsilon_{1}}^{\prime}$ to $\mathscr{S}_{\varepsilon_{2}}^{\prime}$, respectively, if (1.1) is valid.

Definition 1.2. Let X be an open subset of \mathbb{R}^{n}, and let $R_{0} \geq 0$.
(i) Let $R_{0} \geq 1, m, \delta \in \mathbb{R}$ and $A, B \geq 0$, and let $a(x, \xi) \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. We say that $a(x, \xi) \in S^{m, \delta}\left(R_{0}, A, B\right)$ if $a(x, \xi)$ satisfies

$$
\left|a_{(\beta+\tilde{\beta})}^{(\alpha+\tilde{\alpha})}(x, \xi)\right| \leq C_{|\tilde{\alpha}|+|\tilde{\beta}|}\left(A / R_{0}\right)^{|\alpha|}\left(B / R_{0}\right)^{|\beta|}\langle\xi\rangle^{m+|\beta|-|\tilde{\alpha}|} e^{\delta\langle\xi\rangle}
$$

for any $\alpha, \tilde{\alpha}, \beta, \tilde{\beta} \in\left(\mathbb{Z}_{+}\right)^{n}$ and $(x, \xi) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ with $\langle\xi\rangle \geq R_{0}(|\alpha|+|\beta|)$, where $a_{(\beta)}^{(\alpha)}(x, \xi)=\partial_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi)$ and the C_{k} are independent of α and β. We also write $S^{m}\left(R_{0}, A, B\right)=S^{m, 0}\left(R_{0}, A, B\right)$ and $S^{m}\left(R_{0}, A\right)=S^{m}\left(R_{0}, A, A\right)$ and so on. We define $S^{+}\left(R_{0}, A, B\right)=\bigcap_{\delta>0} S^{0, \delta}\left(R_{0}, A, B\right)$.
(ii) Let $R_{0} \geq 1, m_{j}, \delta_{j} \in \mathbb{R}(j=1,2), A_{j} \geq 0(j=1,2)$ and $B \geq 0$, and let $a(\xi, y, \eta) \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. We say that $a(\xi, y, \eta) \in$ $S^{m_{1}, m_{2}, \delta_{1}, \delta_{2}}\left(R_{0}, A_{1}, B, A_{2}\right)$ if $a(\xi, y, \eta)$ satisfies

$$
\begin{gathered}
\left|\partial_{\xi}^{\alpha+\tilde{\alpha}} D_{y}^{\beta^{1}+\beta^{2}+\tilde{\beta}} \partial_{\eta}^{\gamma+\tilde{\gamma}} a(\xi, y, \eta)\right| \leq C_{|\tilde{\alpha}|+|\tilde{\beta}|+|\tilde{\gamma}|}\left(A_{1} / R_{0}\right)^{|\alpha|}\left(B / R_{0}\right)^{\left|\beta^{1}\right|+\left|\beta^{2}\right|} \\
\times\left(A_{2} / R_{0}\right)^{|\gamma|}\langle\xi\rangle^{m_{1}+\left|\beta^{1}\right|-|\tilde{\alpha}|}\langle\eta\rangle^{m_{2}+\left|\beta^{2}\right|-|\tilde{\gamma}|} \exp \left[\delta_{1}\langle\xi\rangle+\delta_{2}\langle\eta\rangle\right]
\end{gathered}
$$

for any $\alpha, \tilde{\alpha}, \beta^{1}, \beta^{2}, \tilde{\beta}, \gamma, \tilde{\gamma} \in\left(\mathbb{Z}_{+}\right)^{n},(\xi, y, \eta) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}$ with $\langle\xi\rangle \geq$ $R_{0}\left(|\alpha|+\left|\beta^{1}\right|\right)$ and $\langle\eta\rangle \geq R_{0}\left(|\gamma|+\left|\beta^{2}\right|\right)$. We also write $S^{m_{1}, m_{2}, \delta_{1}, \delta_{2}}\left(R_{0}, A\right)=$ $S^{m_{1}, m_{2}, \delta_{1}, \delta_{2}}\left(R_{0}, A, A, A\right)$. Similarly, we define $S^{+}\left(R_{0}, A_{1}, B, A_{2}\right)=$ $\bigcap_{\delta>0} S^{0,0, \delta, \delta}\left(R_{0}, A_{1}, B, A_{2}\right)$.
(iii) Let $m, \delta \in \mathbb{R}$ and $A, B \geq 0$, and let $a(x, \xi) \in C^{\infty}\left(X \times \mathbb{R}^{n}\right)$. We say that $a(x, \xi) \in P S^{m, \delta}\left(X ; R_{0}, A, B\right)$ if $a(x, \xi)$ satisfies

$$
\left|a_{(\beta)}^{(\alpha+\tilde{\alpha})}(x, \xi)\right| \leq C_{|\tilde{\alpha}|} A^{|\alpha|} B^{|\beta|}|\alpha|!|\beta|!\langle\xi\rangle^{m-|\alpha|-|\tilde{\alpha}|} e^{\delta\langle\xi\rangle}
$$

for any $\alpha, \tilde{\alpha}, \beta \in\left(\mathbb{Z}_{+}\right)^{n},(x, \xi) \in X \times \mathbb{R}^{n}$ with $|\xi| \geq 1$ and $\langle\xi\rangle \geq R_{0}|\alpha|$. We also write $P S^{+}\left(X ; R_{0}, A, B\right)=\bigcap_{\delta>0} P S^{0, \delta}\left(X ; R_{0}, A, B\right)$ and $P S^{+}(X$; $\left.R_{0}, A\right)=P S^{+}\left(X ; R_{0}, A, A\right)$.
(iv) Let $m, \delta \in \mathbb{R}$ and $A, C_{0} \geq 0$, and let $\left\{a_{j}(x, \xi)\right\}_{j \in \mathbb{Z}_{+}} \in$ $\prod_{j \in \mathbb{Z}_{+}} C^{\infty}\left(X \times \mathbb{R}^{n}\right)$. We say that $a(x, \xi) \equiv\left\{a_{j}(x, \xi)\right\}_{j \in \mathbb{Z}_{+}} \in F P S^{m, \delta}(X ;$ $\left.R_{0}, C_{0}, A\right)$ if $a(x, \xi)$ satisfies

$$
\left|a_{j(\beta)}^{(\alpha+\tilde{\alpha})}(x, \xi)\right| \leq C_{|\tilde{\alpha}|} C_{0}^{j} A^{|\alpha|+|\beta|} j!|\alpha|!|\beta|!\langle\xi\rangle^{m-j-|\alpha|-|\tilde{\alpha}|} e^{\delta\langle\xi\rangle}
$$

for any $j \in \mathbb{Z}_{+}, \alpha, \tilde{\alpha}, \beta \in\left(\mathbb{Z}_{+}\right)^{n},(x, \xi) \in X \times \mathbb{R}^{n}$ with $|\xi| \geq 1$ and $\langle\xi\rangle \geq$ $R_{0}(j+|\alpha|)$. We also write $a(x, \xi)=\sum_{j=0}^{\infty} a_{j}(x, \xi)$ formally. Moreover, we write $F P S^{+}\left(X ; R_{0}, C_{0}, A\right)=\bigcap_{\delta>0} F P S^{0, \delta}\left(X ; R_{0}, C_{0}, A\right)$.
(v) For $a(x, \xi) \equiv \sum_{j=0}^{\infty} a_{j}(x, \xi) \in F P S^{+}\left(X ; R_{0}, C_{0}, A\right)$ we define the symbol $\left({ }^{t} a\right)(x, \xi)$ by

$$
\left({ }^{t} a\right)(x, \xi)=\sum_{j=0}^{\infty} b_{j}(x, \xi), \quad b_{j}(x, \xi)=\sum_{k+|\alpha|=j}(-1)^{|\alpha|} a_{k(\alpha)}^{(\alpha)}(x,-\xi) / \alpha!
$$

Remark. (i) If $R_{0} \leq R_{1}$, then $P S^{m, \delta}\left(X ; R_{0}, A, B\right) \subset P S^{m, \delta}(X$; $\left.R_{1}, A, B\right)$.
(ii) $a(x, \xi) \in P S^{+}\left(X ; R_{0}, A\right)$ can be identified with the element $\left\{a_{j}(x, \xi)\right\}_{j \in \mathbb{Z}_{+}}$in $F P S S^{+}\left(X ; R_{0}, C_{0}, A\right)$, where $a_{0}(x, \xi)=a(x, \xi)$ and $a_{j}(x, \xi)=0(j \geq 1)$ and $C_{0}>0$.
(iii) It is easy to see that $\left({ }^{t} a\right)(x, \xi) \in F P S^{+}\left(X ; R_{0}, C_{0}^{\prime}, 2 A\right)$ if $a(x, \xi) \in$ $F P S^{+}\left(X ; R_{0}, C_{0}, A\right)$, where $C_{0}^{\prime}=\max \left\{C_{0}, 4 n A^{2}\right\}$.

Let X be an open subset of \mathbb{R}^{n}, and assume that $a(x, \xi) \in P S^{+}(X$; R_{0}, A), where $A \geq 0$ and $R_{0} \geq 1$. Let U and V be open subsets of X satisfying $U \Subset V \Subset X$. It follows from Proposition 2.2.3 of [10] that there are symbols $\Phi^{R}(x, \xi) \in S^{0}\left(R, C_{*}, C(U, V)\right)(R \geq 4)$ satisfying $0 \leq \Phi^{R}(x, \xi) \leq$ 1, $\operatorname{supp} \Phi^{R} \subset V \times \mathbb{R}^{n}$ and $\Phi^{R}(x, \xi)=1$ in $U \times \mathbb{R}^{n}$. Put $a^{R}(x, \xi)=$ $\Phi^{R}(x, \xi) a(x, \xi)$. Then we have $a^{R}(x, \xi) \in S^{+}\left(R, A+C_{*}, 2 A+C(U, V)\right)$ if $R \geq$ $\max \left\{4, R_{0}\right\}$. Applying Proposition 1.1 with $a(\xi, y, \eta)=a^{R}(y, \xi)$ and noting that $a^{R}(x, D)={ }^{r} a\left(D_{x}, y, D_{y}\right)$, we can see that $a^{R}(x, D) u$ is well-defined and belongs to \mathscr{F}_{0} if $u \in \mathscr{F}_{0}$ and $R \geq \max \left\{4, R_{0}, 2 e \sqrt{n} \times(2 A+C(U, V))\right\}$. Moreover, $a^{R}(x, D) u$ determines an element $\left.\left(a^{R}(x, D) u\right)\right|_{U} \in \mathscr{B}(U)$. It follows from Theorem 2.6 .1 (or Collorary 2.6.2) of [10] that $\left.\left(a^{R}(x, D) u\right)\right|_{U}$ does not depend on the choice of $\Phi^{R}(x, \xi)$ if $u \in \mathscr{F}_{0}, \Phi^{R}(x, \xi) \in S^{0}(R, B)$ and $R \geq \max \left\{4, R_{0}, 8 e \sqrt{n}(2 A+B)\right\}$. Therefore, we can define the operator $a(x, D): \mathscr{F}_{0} \rightarrow \mathscr{B}(U)$ by $a(x, D) u=\left.\left(a^{R}(x, D) u\right)\right|_{U}$ for $R \gg 1$, and the operator $a(x, D): \mathscr{F}_{0} \rightarrow \mathscr{B}(X)$. Let $u \in \mathscr{B}(U)$. Then there is $v \in \mathscr{A}^{\prime}(\bar{U})$ such that $\left.v\right|_{U}=u$ in $\mathscr{B}(U)$. By Theorem 2.6.5 of [10] we have $a^{R}(x, D) w \in \mathscr{A}(U)$ if $w \in \mathscr{F}_{0}, R \geq \max \left\{4, R_{0}, 16 e \sqrt{n}(2 A+C(U, V))\right\}$ and supp $w \cap U=\emptyset$, where $\mathscr{A}(U)$ denotes the space of (real) analytic functions in U. This implies that $\left.\left(a^{R}(x, D) v\right)\right|_{U}(\in \mathscr{B}(U) / \mathscr{A}(U))$ is uniquely determined, as an element of $\mathscr{B}(U) / \mathscr{A}(U)$, by u and does not depend on the choice of v. Therefore, we can also define the operator $a(x, D): \mathscr{B}(U) \rightarrow \mathscr{B}(U) / \mathscr{A}(U)$ and the operator $a(x, D): \mathscr{B}(X) \rightarrow \mathscr{B}(X) / \mathscr{A}(X)$ (see $\S 2.7$ of [10]). We note that the above definitions of the operator $a(x, D)$ coincides with usual ones if $a(x, D)$ is a differential operator with analytic coefficients in X (see Theorem 2.7.1 of [10]).

Next we assume that $a(x, \xi) \equiv \sum_{j=0}^{\infty} a_{j}(x, \xi) \in F P S^{+}\left(X ; R_{0}, C_{0}, A\right)$. Choose $\left\{\phi_{j}^{R}(\xi)\right\}_{j \in \mathbb{Z}_{+}} \subset C^{\infty}\left(\mathbb{R}^{n}\right)$ so that $0 \leq \phi_{j}^{R}(\xi) \leq 1$,

$$
\begin{aligned}
& \phi_{j}^{R}(\xi)= \begin{cases}0 & \text { if }\langle\xi\rangle \leq 2 R j, \\
1 & \text { if }\langle\xi\rangle \geq 3 R j,\end{cases} \\
& \left|\partial_{\xi}^{\alpha+\beta} \phi_{j}^{R}(\xi)\right| \leq \widehat{C}_{|\beta|}(\widehat{C} / R)^{|\alpha|}\langle\xi\rangle^{-|\beta|} \quad \text { if }|\alpha| \leq 2 j,
\end{aligned}
$$

where the \widehat{C}_{k} and \widehat{C} do not depend on j and R (see $\S 2.2$ of [10]). Then we have

$$
\tilde{a}(x, \xi):=\sum_{j=0}^{\infty} \phi_{j}^{R / 2}(\xi) a_{j}(x, \xi) \in P S^{+}(X ; R, A+6 \widehat{C}, A)
$$

if $R \geq 2 R_{0}$ and $R \geq C_{0}$ (see Lemma 2.2.4 of [10]). So we can define $a(x, D)$: $\mathscr{F}_{0} \rightarrow \mathscr{B}(X) / \mathscr{A}(X)$ and $\mathscr{B}(X) \rightarrow \mathscr{B}(X) / \mathscr{A}(X)$ by $a(x, D)=\tilde{a}(x, D)$. Indeed, applying the same argument as in $\S 3.7$ of [10] we can see that $a(x, D) u \in \mathscr{B}(X) / \mathscr{A}(X)$ does not depend on the choice of $\left\{\phi_{j}^{R}(\xi)\right\}$, where $u \in \mathscr{F}_{0}$ or $u \in \mathscr{B}(X)$.

Let $p(x, \xi) \in P S^{+}\left(X ; R_{0}, A\right)$, where $A \geq 0$ and $R_{0} \geq 1$. Moreover, let U, V and W be open subsets of X satisfying $U \Subset V \Subset W \Subset X$, and assume that
(A) $)^{\prime} f$ is analytic in U if $f \in L^{2}\left(\mathbb{R}^{n}\right), f$ is analytic in a neighborhood of $\bar{W} \backslash U$ and $\left.\left(\left({ }^{t} p\right)(x, D) f\right)\right|_{V}=0$ in $\mathscr{B}(V) / \mathscr{A}(V)$,
instead of the condition (A). We note that (A)' is satisfied if (A) is satisfied. Now we can state our main result.

THEOREM 1.3. If $(\mathrm{A})^{\prime}$ is satisfied, then the operator $p(x, D): \mathscr{A}^{\prime}(\bar{V}) \rightarrow$ $\mathscr{B}(U)$ is surjective, i.e., for any $f \in \mathscr{B}(U)$ there is $u \in \mathscr{A}^{\prime}(\bar{V})$ satisfying $p(x, D) u=f$ in $\mathscr{B}(U)$.

In [12] we proved similar results in the space of microfunctions (see, also, [11]). In the framework of the Gevrey classes and the spaces of ultradistributions Albanese, Corli and Rodino [1] obtained similar results.

We shall give the proof of Theorem 1.3 in $\S 2$. In $\S 3$ we shall apply Theorem 1.3 to microhyperbolic operators.

2. Proof of Theorem 1.3

Assume that $p(x, \xi) \in P S^{+}\left(X ; R_{0}, A\right)$ satisfies the condition (A). Choose $\varepsilon_{0}>0, \Phi^{R}(x, \xi) \in S^{0}\left(R, C_{*}, C\left(V^{\prime}, W\right)\right)(R \geq 4)$ and $\Psi^{R}(\xi, y, \eta) \in$ $S^{0,0,0,0}\left(R, C_{*}, C\left(V^{\prime}, W\right), C_{*}\right)(R \geq 4)$ so that $V^{\prime} \equiv\left\{x \in \mathbb{R}^{n} ;|x-y|<\varepsilon_{0}\right.$ for some $y \in V\} \Subset W(\Subset X), 0 \leq \Phi^{R} \leq 1,0 \leq \Psi^{R} \leq 1$, supp $\Phi^{R} \subset W \times \mathbb{R}^{n}$, $\operatorname{supp} \Psi^{R} \subset \mathbb{R}^{n} \times W \times \mathbb{R}^{n}, \Phi^{R}(x, \xi)=1$ in $V^{\prime} \times \mathbb{R}^{n}$ and $\Psi^{R}(\xi, y, \eta)=1$ in $\mathbb{R}^{n} \times V^{\prime} \times \mathbb{R}^{n}$. We put

$$
\begin{aligned}
& p^{R}(x, \xi):=\Phi^{R}(x, \xi) p(x, \xi) \in S^{+}\left(R, A+C_{*}, 2 A+C\left(V^{\prime}, W\right)\right) \\
& \tilde{p}^{R}(\xi, y, \eta):=\Psi^{R}(\xi, y, \eta) p(y, \eta) \in S^{+}\left(R, C_{*}, 2 A+C\left(V^{\prime}, W\right), A+C_{*}\right)
\end{aligned}
$$

for $R \geq \max \left\{4, R_{0}\right\}$. Then, for $\delta>0 p^{R}(x, D)$ and $\tilde{p}^{R}\left(D_{x}, y, D_{y}\right)$ map continuously \mathscr{S}_{δ} to \mathscr{S} and, therefore, the transposed operators ${ }^{t} p^{R}(x, D)$ and ${ }^{t} \tilde{p}^{R}\left(D_{x}, y, D_{y}\right)$ map continuously \mathscr{S}^{\prime} to $\mathscr{S}_{\delta}^{\prime}$. It is obvious that ${ }^{t} p^{R}(x, D)=$ $q\left(D_{x}, y, D_{y}\right)$ and ${ }^{t} \tilde{p}^{R}\left(D_{x}, y, D_{y}\right)=\tilde{q}\left(D_{x}, y, D_{y}\right)$, where $q(\xi, y, \eta)=p^{R}(y,-\xi)$ and $\tilde{q}(\xi, y, \eta)=\tilde{p}^{R}(-\eta, y,-\xi)$ (see the proof of Lemma 2.1 below).

Lemma 2.1. Let $a(\xi, y, \eta)$ be a symbol satisfying

$$
\left|\partial_{\xi}^{\alpha+\tilde{\alpha}} D_{y}^{\beta} \partial_{\eta}^{\gamma} a(\xi, y, \eta)\right| \leq C_{|\tilde{\alpha}|+|\beta|+|\gamma|, \delta}(B / R)^{|\alpha|}\langle\eta\rangle^{m-|\gamma|} e^{\delta\langle\xi\rangle}
$$

if $\langle\xi\rangle \geq R|\alpha|$ and $\delta>0$, and $a(\xi, y, \eta)=0$ if $y \in V^{\prime}$, where $R>0, B \geq 0$ and $m \in \mathbb{R}$. Then $a\left(D_{x}, y, D_{y}\right) u\left(\in \mathscr{F}_{0}\right)$ is analytic in V for $u \in \mathscr{S}^{\prime}$ if $R \geq 16 \mathrm{en} B / \varepsilon_{0}$.

Proof. Since for $\delta>0$

$$
\left|\partial_{\xi}^{\alpha} D_{y}^{\beta} \partial_{\eta}^{\gamma}\left\{a(\xi, y, \eta) e^{-\delta\langle\xi\rangle}\right\}\right| \leq C_{|\alpha|+|\beta|+|\gamma|, \delta}\langle\eta\rangle^{m-|\gamma|} e^{-\delta\langle\xi\rangle / 2}
$$

and $e^{-\delta\langle D\rangle} a\left(D_{x}, y, D_{y}\right): \mathscr{S}^{\prime} \rightarrow \mathscr{S}^{\prime}, a\left(D_{x}, y, D_{y}\right)$ maps continuously \mathscr{S}^{\prime} to \mathscr{F}_{0}. Here we introduce the topology of \mathscr{F}_{0} by $\mathscr{F}_{0}=\operatorname{inj} \lim _{\varepsilon \downarrow 0} \mathscr{S}_{\varepsilon}^{\prime}$. We shall prove the lemma, applying the same argument as in the proof of Lemma 2.3 of [11]. Let $u \in \mathscr{S}^{\prime}, \mu=0,1$ and $0<\rho \leq 1$. We put $\psi_{j}^{R}(\xi):=\phi_{j-1}^{R}(\xi)-\phi_{j}^{R}(\xi)$ $(j \in \mathbb{N})$, where the $\phi_{j}^{R}(\xi)$ are symbols as in $\S 1$. Then we have

$$
\begin{align*}
& \langle D\rangle^{\mu} e^{-\rho\langle D\rangle} a\left(D_{x}, y, D_{y}\right) u \tag{2.1}\\
& =\sum_{j=1}^{\infty}\langle D\rangle^{\mu} e^{-\rho\langle D\rangle} \psi_{j}^{R^{\prime}}(D) a\left(D_{x}, y, D_{y}\right) u \quad \text { in } \mathscr{S}^{\prime}
\end{align*}
$$

where $R^{\prime}>0$. A standard argument yields

$$
\begin{equation*}
\langle D\rangle^{\mu} e^{-\rho\langle D\rangle} \psi_{j}^{R^{\prime}}(D) a\left(D_{x}, y, D_{y}\right) u(x)=\left\langle\hat{u}(\eta), f_{\mu, j}^{R^{\prime}}(x, \eta ; \rho)\right\rangle_{\eta}, \tag{2.2}
\end{equation*}
$$

where $M, N \in \mathbb{Z}_{+}, 2 M>n$ and

$$
\begin{aligned}
& f_{\mu, j}^{R^{\prime}}(x, \eta ; \rho)=(2 \pi)^{-2 n} \int e^{i(x-y) \cdot \xi+i y \cdot \eta}\langle\xi-\eta\rangle^{-2 N} \\
& \quad \times\left\langle D_{y}\right\rangle^{2 N}\left\{\langle x-y\rangle^{-2 M}\left\langle D_{\xi}\right\rangle^{2 M}\left(\langle\xi\rangle^{\mu} e^{-\rho\langle\xi\rangle} \psi_{j}^{R^{\prime}}(\xi) a(\xi, y, \eta)\right)\right\} d \xi d y
\end{aligned}
$$

Indeed, for $\varphi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$ we have

$$
\begin{align*}
& \left\langle\langle D\rangle^{\mu} e^{-\rho\langle D\rangle} \psi_{j}^{R^{\prime}}(D) a\left(D_{x}, y, D_{y}\right) u, \varphi\right\rangle \\
& =\left\langle\hat{u}(\eta), \int f_{\mu, j}^{R^{\prime}}(x, \eta ; \rho) \varphi(x) d x\right\rangle_{\eta} \\
& \sup _{|\alpha|+k \leq \ell}\left|\langle\eta\rangle^{k} \partial_{\eta}^{\alpha} D_{x}^{\beta} f_{\mu, j}^{R^{\prime}}(x, \eta ; \rho)\right| \leq C_{\ell,|\beta|, \rho, j, R^{\prime}}\langle x\rangle^{\ell} . \tag{2.3}
\end{align*}
$$

This proves (2.2). Define L by

$$
{ }^{t} L=|x-y|^{-2} \sum_{k=1}^{n}\left(\bar{x}_{k}-y_{k}\right) D_{\xi_{k}}
$$

for $x \in \mathbb{C}^{n}$ with Re $x \in V$ and $y \in \mathbb{R}^{n} \backslash V^{\prime}$. A simple calculation gives

$$
\begin{align*}
& \left|\partial_{\eta}^{\alpha}\left\langle D_{y}\right\rangle^{2 N} L^{j+M}\left\{\langle\xi\rangle^{\mu} e^{-\rho\langle\xi\rangle} \psi_{j}^{R^{\prime}}(\xi) a(\xi, y, \eta)\right\}\right| \tag{2.4}\\
& \leq C_{|\alpha|, N, M, \varepsilon_{0}, \delta, R^{\prime}}|x-y|^{-M}\langle\eta\rangle^{m-|\alpha|}\langle\xi\rangle^{\mu-M} e^{\delta\langle\xi\rangle} \\
& \quad \times\left\{8 n\left(B / R+(\widehat{C}+6(1+\sqrt{2})) / R^{\prime}\right) / \varepsilon_{0}\right\}^{j} \chi_{j}^{R^{\prime}}(\xi)
\end{align*}
$$

if $\alpha \in\left(\mathbb{Z}_{+}\right)^{n}, M, N, j \in \mathbb{Z}_{+}, R^{\prime} \geq R, x \in \mathbb{C}^{n}$, Re $x \in V$ and $\delta>0$, where $\chi_{j}^{R^{\prime}}(\xi)$ is the defining function of the set $\left\{\xi \in \mathbb{R}^{n} ; 2 R^{\prime}(j-1) \leq\langle\xi\rangle \leq 3 R^{\prime} j\right\}$.
Here we have used Lemmas 2.1.1 and 2.1.7 of [10]. Therefore, we have

$$
\begin{equation*}
\sup _{k+|\alpha| \leq \ell}\left|\langle\eta\rangle^{k} \partial_{\eta}^{\alpha} f_{\mu, j}^{R^{\prime}}(x, \eta ; \rho)\right| \leq C_{\ell, \varepsilon_{0}, \rho_{1}, R^{\prime}} j^{-2} \tag{2.5}
\end{equation*}
$$

if $\ell \in \mathbb{Z}_{+}, x \in \mathbb{C}^{n}$, $\operatorname{Re} x \in V,|\operatorname{Im} x| \leq \rho_{1}(\leq 1 / 2)$ and

$$
\left\{\begin{array}{l}
R^{\prime} \geq R, \quad R^{\prime} \geq 16 e n(\widehat{C}+6(1+\sqrt{2})) / \varepsilon_{0} \tag{2.6}\\
R \geq 16 e n B / \varepsilon_{0}, \quad \rho_{1}<1 /\left(3 R^{\prime}\right)
\end{array}\right.
$$

taking $M>\ell+n$ and $N \geq \ell+m$ in (2.4). Since $\operatorname{Re}(1+(x-y) \cdot(x-y))=$ $1+|\operatorname{Re} x-y|^{2}-|\operatorname{Im} x|^{2}$ for $x \in \mathbb{C}^{n}$ and $y \in \mathbb{R}^{n}, f_{\mu, j}^{R^{\prime}}(x, \eta ; \rho)$ is analytic in x if $|\operatorname{Im} x|<1$. We note that (2.3) is valid for $x \in \mathbb{C}^{n}$ with $|\operatorname{Im} x| \leq 1 / 2$, where D_{x} means complex differentiation. So it follows from (2.2) and (2.5) that $\langle D\rangle^{\mu} e^{-\rho\langle D\rangle} \psi_{j}^{R^{\prime}}(D) a\left(D_{x}, y, D_{y}\right) u(x)$ is analytic in x and

$$
\begin{equation*}
\left|\langle D\rangle^{\mu} e^{-\rho\langle D\rangle} \psi_{j}^{R^{\prime}}(D) a\left(D_{x}, y, D_{y}\right) u(x)\right| \leq C_{\varepsilon_{0}, \rho_{1}, R^{\prime}}(V, u) j^{-2} \tag{2.7}
\end{equation*}
$$

if $u \in \mathscr{S}^{\prime}, x \in \mathbb{C}^{n}$, $\operatorname{Re} x \in V,|\operatorname{Im} x| \leq \rho_{1}(\leq 1 / 2)$ and (2.6) is valid. Put

$$
\mathscr{V}\left(x, x_{n+1}\right)=\mathscr{H}\left(a\left(D_{x}, y, D_{y}\right) u\right)\left(x, x_{n+1}\right)
$$

and assume that

$$
R \geq 16 e n B / \varepsilon_{0}, 0<\rho_{1}<\min \left\{1 / 2,1 /(3 R), \varepsilon_{0} /(48 e n(\widehat{C}+6(1+\sqrt{2})))\right\}
$$

Then it follows from (2.1) and (2.7) that $\left\langle D_{x}\right\rangle^{\mu \mathscr{V}}(x, \rho)(\mu=0,1)$ can be continued analytically to $\left\{x \in \mathbb{C}^{n} ; \operatorname{Re} x \in V\right.$ and $\left.|\operatorname{Im} x|<\rho_{1}\right\}$. Applying Lemma 1.2.4 of [10] to the Cauchy problem

$$
\left\{\begin{array}{l}
\left(1-\Delta_{x, x_{n+1}}\right) v\left(x, x_{n+1}\right)=0 \\
v(x, \rho)=\mathscr{V}(x, \rho),\left(\partial v / \partial x_{n+1}\right)(x, \rho)=-\left\langle D_{x}\right\rangle \mathscr{V}(x, \rho)
\end{array}\right.
$$

we can show that $\mathscr{V}\left(x, x_{n+1}\right)$ can be continued analytically from $\mathbb{R}^{n} \times(0, \infty)$ to $V \times\left(\rho-\rho_{1}, \infty\right)$. This implies that $a\left(D_{x}, y, D_{y}\right) u$ is analytic in V.

Assume that $R \geq \max \left\{4, R_{0}, 16 e n\left(A+C_{*}\right) / \varepsilon_{0}\right\}$. From Lemma 2.1 we see that ${ }^{t} p^{R}(x, D) u-{ }^{t} \tilde{p}^{R}\left(D_{x}, y, D_{y}\right) u$ is analytic in V for $u \in \mathscr{S}^{\prime}$. Let us apply Corollary 2.4 .7 of [10] to ${ }^{t} \tilde{p}^{R}\left(D_{x}, y, D_{y}\right)$. We note that $\left({ }^{t} p\right)(x, \xi) \equiv \sum_{j=0}^{\infty} q_{j}(x, \xi) \in F P S^{+}\left(X ; R_{0}, 4 n A^{2}, 2 A\right)$, where $q_{j}(x, \xi)=$ $\sum_{|\alpha|=j}(-1)^{|\alpha|} p_{(\alpha)}^{(\alpha)}(x,-\xi) / \alpha!$. Let $R_{0} \geq n A^{2} / 2$, and put $q(x, \xi):=$ $\sum_{j=0}^{\infty} \phi_{j}^{4 R_{0}}(\xi) q_{j}(x, \xi)$. By definition $\left({ }^{t} p\right)(x, D)$ coincides with $q(x, D)$ as the operator from \mathscr{F}_{0} to $\mathscr{B}(X) / \mathscr{A}(X)$. Since ${ }^{t} \tilde{p}^{R}\left(D_{x}, y, D_{y}\right)=a\left(D_{x}, y, D_{y}\right)$ if $a(\xi, y, \eta)=\tilde{p}^{R}(-\eta, y,-\xi)$, it follows from Corollary 2.4.7 of [10] that there are symbols $h(x, \xi)$ and $r(x, \xi)$ and $R\left(A, V^{\prime}, W\right) \geq \max \left\{4, R_{0}\right\}$ such that

$$
{ }^{t} \tilde{p}^{R}\left(D_{x}, y, D_{y}\right)=h(x, D)+r(x, D) \quad \text { on } \mathscr{S}_{\infty}
$$

$h(x, \xi) \in S^{+}\left(4 R, \widehat{C}_{*}+10 A_{1}\right)$ and

$$
\left|r_{(\beta)}^{(\alpha)}(x, \xi)\right| \leq C_{|\alpha|, R}(4 R+1)^{|\beta|}|\beta|!e^{-\langle\xi\rangle / R}
$$

if $R \geq R\left(A, V^{\prime}, W\right)$, where $A_{1}=\max \left\{A+C_{*}, 2 A+C\left(V^{\prime}, W\right)\right\}$. Moreover, we have

$$
\left|\partial_{\xi}^{\alpha} D_{x}^{\beta}\{h(x, \xi)-q(x, \xi)\}\right| \leq C_{|\alpha|, R}(R+1)^{|\beta|}|\beta|!\langle\xi\rangle^{-|\alpha|} e^{-\langle\xi\rangle / R}
$$

if $x \in V^{\prime}$ and $R \geq R\left(A, V^{\prime}, W\right)$. Now assume that $R \geq R\left(A, V^{\prime}, W\right)$. Proposition 1.1 implies that $r(x, D) u$ is analytic if $u \in \mathscr{F}_{0}$. It follows from Lemma 2.4 of [11] that $\left.(h(x, D) u)\right|_{X}-q(x, D) u(\in \mathscr{B}(X))$ is analytic in V for $u \in \mathscr{F}_{0}$, with a modification of $R\left(A, V^{\prime}, W\right)$ if necessary. This yields

$$
\begin{equation*}
\left.\left({ }^{t} p^{R}(x, D) u\right)\right|_{V}=\left.\left({ }^{t} \tilde{p}^{R}\left(D_{x}, y, D_{y}\right) u\right)\right|_{V}=\left.\left(\left({ }^{t} p\right)(x, D) u\right)\right|_{V} \quad \text { in } \mathscr{B}(V) / \mathscr{A}(V) \tag{2.8}
\end{equation*}
$$

for $u \in \mathscr{F}_{0}$.
Lemma 2.2. Let $a(x, \xi)$ be a symbol in $S^{+}\left(R_{0}, A\right)$ satisfying $\operatorname{supp} a(x, \xi) \subset W \times \mathbb{R}^{n}$. Then $a(x, D) u \in \mathscr{A}^{\prime}(\bar{W})$ for $u \in \mathscr{F}_{0}$.

Proof. We shall apply the same argument as in the proof of Theorem 3.3.6 of [10]. Put

$$
a^{R}(x, \xi ; y):=\sum_{k=1}^{\infty} \psi_{k}^{R}(\xi) \sum_{|\beta| \leq k-1}(i y)^{\beta} \partial_{x}^{\beta} a(x, \xi) / \beta!
$$

for $x, y \in \mathbb{R}^{n}, \xi \in \mathbb{R}^{n}$ and $R \geq R_{0}$. Then we have

$$
a^{R}(x, \xi ; y) \in \bigcap_{\delta>\delta(y) / R_{0}} S^{0, \delta}\left(3 R, 3 \widehat{C}+3 A R / R_{0}, 3 A R / R_{0}\right)
$$

for any $y \in \mathbb{R}^{n}$, where $\delta(y)=\sqrt{n} A|y|$. Moreover, we have

$$
\begin{aligned}
\mid\left(\partial_{x_{j}}\right. & \left.+i \partial_{y_{j}}\right) \partial_{\xi}^{\alpha+\tilde{\alpha}} D_{x}^{\beta+\tilde{\beta}} a^{R}(x, \xi ; y) \mid \leq C_{|\tilde{\alpha}|+|\tilde{\beta}|, \delta}\left(\widehat{C} / R+A / R_{0}\right)^{|\alpha|} \\
& \times\left(A / R_{0}\right)^{|\beta|}\langle\xi\rangle^{|\beta|-|\tilde{\alpha}|} \exp \left[\left(e \delta(y) / R_{0}-1 /(3 R)+\delta\right)\langle\xi\rangle\right]
\end{aligned}
$$

if $\langle\xi\rangle \geq 3 R(|\alpha|+|\beta|)$. We choose open convex proper cones $\Gamma_{j}(1 \leq j \leq J)$ in $\mathbb{R}^{n} \backslash\{0\}$ and $\left\{g_{j}^{R}(\xi)\right\} \subset C^{\infty}\left(\mathbb{R}^{n}\right)(R \geq 2,1 \leq j \leq J)$ so that $g_{j}^{R}(\xi)$
is positively homogeneous of degree 0 in $|\xi| \geq 1, \mathbb{R}^{n} \backslash\{0\}=\bigcup_{j=1}^{J} \Gamma_{j}$, $\operatorname{supp} g_{j}^{R} \cap\{|\xi| \geq 1\} \subset \Gamma_{j}, \sum_{j=1}^{J} g_{j}^{R}(\xi)=1$ for $\xi \in \mathbb{R}^{n}$ and $\left|\partial_{\xi}^{\alpha+\gamma} g_{j}^{R}(\xi)\right| \leq$ $C_{|\gamma|}\left(C_{*} / R\right)^{|\alpha|}\langle\xi\rangle^{-|\gamma|}$ if $\langle\xi\rangle \geq R|\alpha|$. Let $u \in \mathscr{F}_{0}$, and put

$$
\begin{aligned}
& U_{j}^{R}\left(x, x_{n+1}\right):=\left(\operatorname{sgn} x_{n+1}\right) e^{-\left|x_{n+1}\right|\langle D\rangle} g_{j}^{R}(D) u(x) / 2 \\
& \left(=g_{j}^{R}\left(D_{x}\right) \mathscr{H}(u)\left(x, x_{n+1}\right)\right)
\end{aligned}
$$

It is obvious that

$$
U_{j}^{R}\left(x, x_{n+1}\right)=(2 \pi)^{-n}\left\langle\hat{u}(\xi), e^{i x \cdot \xi-x_{n+1}\langle\xi\rangle} g_{j}^{R}(\xi)\right\rangle
$$

for $x_{n+1}>0$. We can choose $c>0$ so that

$$
\begin{aligned}
& \operatorname{Im} z \cdot \xi \geq c|\operatorname{Im} z||\xi| \\
& \quad \text { for } 1 \leq j \leq J, z \in \mathbb{R}^{n}+i \Gamma_{j}^{*} \text { and } \xi \in \operatorname{supp} g_{j}^{R} \text { with }|\xi| \geq 1
\end{aligned}
$$

where $\Gamma_{j}^{*}=\left\{y \in \mathbb{R}^{n} ; y \cdot \xi \geq 0\right.$ for any $\left.\xi \in \Gamma_{j}\right\}$. Now assume that $R_{0} \geq$ $2 e \sqrt{n} A / c$. Then Stokes' formula gives

$$
\begin{aligned}
& \left\langle a(x, D) u_{\varepsilon}(x), \varphi(x)\right\rangle=2 \sum_{j=1}^{J}\left\langle a(x, D) U_{j}^{R_{0}}(x, \varepsilon), \varphi(x)\right\rangle \\
& =2 \sum_{j=1}^{J}\left\{\int_{W} U_{j, 1, \varepsilon}\left(x ; y^{j}\right) \varphi\left(x+i y^{j}\right) d x\right. \\
& \left.\quad+\int_{0}^{1}\left(\int_{W} U_{j, 2, \varepsilon}\left(x ; r y^{j}\right) \varphi\left(x+i r y^{j}\right) d x\right) d r\right\}
\end{aligned}
$$

for $\varphi \in \mathscr{S}_{\infty}, \varepsilon>0$ and $y^{k} \in \Gamma_{k}^{*} \backslash\{0\}(1 \leq k \leq J)$, where $u_{\varepsilon}(x)=e^{-\varepsilon\langle D\rangle} u(x)$ and

$$
\begin{aligned}
& U_{j, 1, \varepsilon}(x ; y)=(2 \pi)^{-n}\left\langle\hat{u}(\xi), e^{i(x+i y) \cdot \xi-\varepsilon\langle\xi\rangle} g_{j}^{R_{0}}(\xi) a^{R}(x, \xi ; y)\right\rangle_{\xi} / 2 \\
& U_{j, 2, \varepsilon}(x ; y) \\
& \quad=(2 \pi)^{-n}\left\langle\hat{u}(\xi), e^{i(x+i y) \cdot \xi-\varepsilon\langle\xi\rangle} g_{j}^{R_{0}}(\xi) \sum_{k=1}^{n} i y_{k}\left(\partial_{x_{k}}+i \partial_{y_{k}}\right) a^{R}(x, \xi ; y)\right\rangle_{\xi} / 2
\end{aligned}
$$

for $1 \leq j \leq J$ and $y \in \Gamma_{j}^{*} \backslash\{0\}$. It is easy to see that for each $y \in \Gamma_{j}^{*} \backslash\{0\}$

$$
U_{j, 1, \varepsilon}(x ; y) \rightrightarrows U_{j, 1,0}(x ; y) \quad \text { on } \mathbb{R}^{n} \text { as } \varepsilon \downarrow 0
$$

$$
U_{j, 2, \varepsilon}(x ; r y) \rightrightarrows U_{j, 2,0}(x ; r y) \quad \text { in }(x, r) \in \mathbb{R}^{n} \times[0,1] \text { as } \varepsilon \downarrow 0 .
$$

Therefore, we have

$$
\begin{aligned}
\langle a(x, D) u(x), \varphi(x)\rangle=2 \sum_{j=1}^{J} & \left\{\int_{W} U_{j, 1,0}\left(x ; y^{j}\right) \varphi\left(x+i y^{j}\right) d x\right. \\
& \left.+\int_{0}^{1}\left(\int_{W} U_{j, 2,0}\left(x ; r y^{j}\right) \varphi\left(x+i r y^{j}\right) d x\right) d r\right\}
\end{aligned}
$$

for $\varphi \in \mathscr{S}_{\infty}$ and $y^{k} \in \Gamma_{k}^{*} \backslash\{0\}(1 \leq k \leq J)$. This implies that $a(x, D) u(x) \in$ $\mathscr{A}^{\prime}(\bar{W})$. Indeed, \mathscr{S}_{∞} includes $\mathscr{P}:=\left\{p(x) e^{-x^{2}} ; p(x)\right.$ is a polynomial $\}$ and, therefore, $\mathscr{A}\left(\mathbb{C}^{n}\right)$ can be approximated locally uniformly by elements of \mathscr{S}_{∞}. On the other hand, we have

$$
|\langle a(x, D) u(x), \varphi(x)\rangle| \leq C_{\delta} \sup _{x \in \bar{W},|y| \leq \delta}|\varphi(x+i y)| \quad \text { for } \varphi \in \mathscr{S}_{\infty}
$$

if $\delta>0$, which gives $a(x, D) u(x) \in \mathscr{A}^{\prime}(\bar{W})$.
By Lemma 2.2 we can define an operator $P: \mathscr{A}^{\prime}(\bar{V}) \rightarrow \mathscr{A}^{\prime}(\bar{W})$ by $P u=$ $p^{R}(x, D) u$ for $u \in \mathscr{A}^{\prime}(\bar{V})\left(\subset \mathscr{F}_{0}\right)$. Since the strong dual space of $\mathscr{A}^{\prime}(K)$ is $\mathscr{A}(K)$, we can define the transposed operator ${ }^{t} P: \mathscr{A}(\bar{W}) \rightarrow \mathscr{A}(\bar{V})$, i.e.,

$$
\left.\left\langle u,{ }^{t} P \varphi\right\rangle_{\mathscr{A} \prime}(\bar{V}), \mathscr{A}(\bar{V})=u\left({ }^{t} P \varphi\right)\right)=\langle P u, \varphi\rangle_{\mathscr{A}^{\prime}(\bar{W}), \mathscr{A}(\bar{W})}(=(P u)(\varphi))
$$

for $u \in \mathscr{A}^{\prime}(\bar{V})$ and $\varphi \in \mathscr{A}(\bar{W})$. On the other hand, we can define ${ }^{t} p^{R}(x, D) \varphi(x)$ for $\varphi \in \mathscr{A}(\bar{W})$ by

$$
{ }^{t} p^{R}(x, D) \varphi(x)=\mathscr{F}_{\xi}^{-1}\left[\int e^{-i y \cdot \xi} p^{R}(y,-\xi) \varphi(y) d y\right](x)\left(\in \mathscr{F}_{0}\right)
$$

since supp $p^{R} \subset W \times \mathbb{R}^{n}$. Moreover, we can define ${ }^{t} p^{R}(x, D) u \in \mathscr{F}_{0}$ for $u \in$ $\mathscr{D}^{\prime}(W)$. Assume that $R \geq 2 e \sqrt{n}\left(2 A+C\left(V^{\prime}, W\right)\right)$. Then, from Proposition 1.1 we have ${ }^{t} p^{R}(x, D): \mathscr{S}_{\infty} \rightarrow \mathscr{S}_{\delta}(\subset \mathscr{A}(\bar{V}))$ if $\delta<1 / R$. By definition it is easy to see that

$$
{ }^{t} P \varphi={ }^{t} p^{R}(x, D) \varphi \quad \text { in } \mathscr{A}(\bar{V}) \text { for } \varphi \in \mathscr{S}_{\infty}
$$

Lemma 2.3. Let $a(x, \xi)$ be a symbol satisfying supp $a \subset W \times \mathbb{R}^{n}$ and

$$
\left|a_{(\beta)}(x, \xi)\right| \leq C_{\delta}(A / R)^{|\beta|}\langle\xi\rangle^{|\beta|} e^{\delta\langle\xi\rangle}
$$

if $\langle\xi\rangle \geq R|\beta|$ and $\delta>0$. Let $\varepsilon>0$, and assume that $u \in C^{\infty}(W)$ satisfies

$$
\left|D^{\alpha} u(x)\right| \leq C(u) \varepsilon^{-|\alpha|}|\alpha|!\quad \text { for } x \in W \text { and } \alpha \in\left(\mathbb{Z}_{+}\right)^{n}
$$

where $C(u)$ is a positive constant. Then we have ${ }^{r} a(x, D) u \in \mathscr{S}_{-\delta}^{\prime}$ and

$$
\sup _{z \in \mathbb{C}^{n}, \mid \operatorname{Im}}|v| \leq \delta(z) \mid \leq C_{\delta}^{\prime} C(u)
$$

if $R \geq 2 e \sqrt{n} A$ and $\delta<1 /(2 e \sqrt{n} \max \{A, 1 / \varepsilon\})$, where $v(z)$ denotes the analytic continuation of ${ }^{r} a(x, D) u(x)$ to $\left\{z \in \mathbb{C}^{n} ;|\operatorname{Im} z| \leq \delta\right\}$ and C_{δ}^{\prime} is a positive constant independent of u.

Proof. Put $K=|\xi|^{-2} \sum_{k=1}^{n} \xi_{k} D_{y_{k}}$. Then we have

$$
\begin{aligned}
& \left|K^{j}(a(y, \xi) u(y))\right| \leq C_{\delta} C(u)|\xi|^{-j}\langle\xi\rangle^{j}\left\{\sqrt{n}\left(A / R+1 /\left(R_{1} \varepsilon\right)\right)\right\}^{j} e^{\delta\langle\xi\rangle} \\
& \leq C_{\delta} C(u) e^{1 / R}\left\{\sqrt{n}\left(A / R+1 /\left(R_{1} \varepsilon\right)\right)\right\}^{j} e^{\delta\langle\xi\rangle}
\end{aligned}
$$

if $R_{1} \geq R,\langle\xi\rangle \geq R_{1} j$ and $\delta>0$. Therefore, we have

$$
\begin{aligned}
& \left|\int e^{-i y \cdot \xi} a(y, \xi) u(y) d y\right| \leq \int\left|K^{j}(a(y, \xi) u(y))\right| d y \\
& \leq C_{\delta}^{\prime} C(u)\left\{e \sqrt{n}\left(A / R+1 /\left(R_{1} \varepsilon\right)\right)\right\}^{j} \exp \left[\left(\delta-1 / R_{1}\right)\langle\xi\rangle\right]
\end{aligned}
$$

if $R_{1} \geq R, R_{1} j \leq\langle\xi\rangle \leq R_{1}(j+1)$ and $\delta>0$. This yields

$$
\begin{equation*}
\left|\mathscr{F}\left[^{r} a(x, D) u(x)\right](\xi)\right| \leq C_{\delta}^{\prime \prime} C(u) e^{-\delta\langle\xi\rangle} \tag{2.9}
\end{equation*}
$$

if $R \geq 2 e \sqrt{n} A, R_{1} \geq R, R_{1} \geq 2 e \sqrt{n} / \varepsilon$ and $\delta<1 / R_{1}$. From (2.9) we can easily prove the lemma.

We note that for $\varepsilon>0$ and a compact subset K of \mathbb{R}^{n}

$$
\widehat{K}_{\varepsilon}:=\left\{z \in \mathbb{C}^{n} ;|\operatorname{Re} z-x|+|\operatorname{Im} z| \leq \varepsilon \text { for some } x \in K\right\}
$$

is polynomially convex and, therefore, $\widehat{K}_{\varepsilon}^{\circ}$ is a Runge domain, where $\widehat{K}_{\varepsilon}^{\circ}$ denotes the interior of $\widehat{K}_{\varepsilon}$ in \mathbb{C}^{n} (see, e.g., Lemma 1.1.1 of [10]). Let
$\varphi \in \mathscr{A}(\bar{W})$. Then there are $\varepsilon>0$ and $\left\{\varphi_{j}\right\} \subset \mathscr{S}_{\infty}\left(\subset \mathscr{A}\left(\mathbb{C}^{n}\right)\right)$ such that $\varphi \in \mathscr{A}\left(\widehat{K}_{3 \sqrt{n} \varepsilon}^{\circ}\right)$ and

$$
\sup _{z \in \widehat{K}_{2 \sqrt{n} \varepsilon}}\left|\varphi(z)-\varphi_{j}(z)\right| \rightarrow 0 \quad \text { as } j \rightarrow \infty
$$

where $K=\bar{W}$. Since $\left\{z \in \mathbb{C}^{n} ;\left|z_{k}-x_{k}\right| \leq \varepsilon(1 \leq k \leq n)\right.$ for some $x \in K\} \subset \widehat{K}_{\sqrt{2 n \varepsilon}}$, Cauchy's estimates give

$$
\sup _{\alpha \in\left(\mathbb{Z}_{+}\right)^{n}} \sup _{x \in W} \varepsilon^{|\alpha|}\left|D^{\alpha}\left(\varphi(x)-\varphi_{j}(x)\right)\right| /|\alpha|!\rightarrow 0 \quad \text { as } j \rightarrow \infty .
$$

Therefore, it follows from Lemma 2.3 that

$$
\begin{equation*}
{ }^{t} P \varphi={ }^{t} p^{R}(x, D) \varphi \quad \text { for } \varphi \in \mathscr{A}(\bar{W}) \tag{2.10}
\end{equation*}
$$

In order to prove Theorem 1.3 it suffices to apply the same argument as in [2] with slight modifications. For completeness we shall repeat their argument. Define $\widetilde{P}: \mathscr{A}^{\prime}(\bar{V}) \rightarrow \mathscr{B}(U)$ by $\widetilde{P} u=p(x, D) u$ for $u \in \mathscr{A}^{\prime}(\bar{V})$.

Lemma 2.4. \widetilde{P} is surjective if and only if $Q: \mathscr{A}^{\prime}(\bar{V}) \times \mathscr{A}^{\prime}(\bar{W} \backslash U) \ni$ $(\varphi, \mu) \mapsto P \varphi+\mu \in \mathscr{A}^{\prime}(\bar{W})$ is surjective.

Remark. The above result was given in Schapira [8].
Proof. Assume that \widetilde{P} is surjective. Let $g \underset{\sim}{\mathscr{P}} \mathscr{A}^{\prime}(\bar{W})$, and put $f=$ $\left.g\right|_{U} \in \mathscr{B}(U)$. Then there is $\varphi \in \mathscr{A}^{\prime}(\bar{V})$ such that $\widetilde{P} \varphi=f$. Therefore, we have $P \varphi-g \in \mathscr{A}^{\prime}(\bar{W} \backslash U)$ since $\left.(P \varphi)\right|_{U}=\left.(p(x, D) \varphi)\right|_{U}(=\widetilde{P} \varphi)$. This proves that Q is surjective. Next assume that Q is surjective. Let $f \in \mathscr{B}(U)$. By definition there is $g \in \mathscr{A}^{\prime}(\bar{U})$ satisfying $f=\left.g\right|_{U}$. Then there are $\varphi \in \mathscr{A}^{\prime}(\bar{V})$ and $\mu \in \mathscr{A}^{\prime}(\bar{W} \backslash U)$ such that $g=P \varphi+\mu$. Therefore, we have $\left.(P \varphi)\right|_{U}=$ $\left.g\right|_{U}=f$.

Lemma 2.5. Let Ω be a complex neighborhood of \bar{W}. Then \widetilde{P} is surjective if and only if for any ε with $0<\varepsilon<\operatorname{dis}\left(\bar{W}, \mathbb{C}^{n} \backslash \Omega\right)$ there are positive constants η and C such that

$$
\begin{equation*}
|h|_{U_{\eta}} \leq C\left(\left.\left.\right|^{t} P h\right|_{V_{\varepsilon}}+|h|_{(\bar{W} \backslash U)_{\varepsilon}}\right) \quad \text { for any } h \in \mathscr{A}(\Omega), \tag{2.11}
\end{equation*}
$$

where $\operatorname{dis}(A, B):=\inf \{|x-y| ; x \in A$ and $y \in B\}$.

Proof. Since the boundary of each connected component of U is included in $\partial U, \mathscr{A}(\bar{W}) \rightarrow \mathscr{A}(\bar{W} \backslash U)$ is injective and, therefore, $\mathscr{A}^{\prime}(\bar{W} \backslash U)$ is dense in $\mathscr{A}^{\prime}(\bar{W})$. So it suffices to prove that Q has closed range if and only if (2.11) holds, where Q is the operator defined in Lemma 2.4. On the other hand, it follows from Köthe [7, p18] that Q has closed range if and only if ${ }^{t} Q: \mathscr{A}(\bar{W}) \ni h \mapsto\left({ }^{t} P h,\left.h\right|_{\bar{W} \backslash U}\right) \in \mathscr{A}(\bar{V}) \times \mathscr{A}(\bar{W} \backslash U)$ has (sequentially) closed range. It is easy to see that ${ }^{t} Q$ has closed range if (2.11) holds. Therefore, Q has closed range if (2.11) holds. Now assume that ${ }^{t} Q($ and $Q)$ has closed range. Since ${ }^{t} Q$ is injective, ${ }^{t} Q: \mathscr{A}(\bar{W}) \rightarrow R\left({ }^{t} Q\right)$ is an isomorphism, where $R\left({ }^{t} Q\right)$ denotes the range of ${ }^{t} Q$. This implies that $h_{k} \rightarrow 0$ in $\mathscr{A}(\bar{W})$ if ${ }^{t} Q h_{k} \rightarrow 0$ in $\mathscr{A}(\bar{V}) \times \mathscr{A}(\bar{W} \backslash U)$. Suppose that (2.11) does not hold. Then there are $\varepsilon>0$ and a sequence $\left\{h_{k}\right\} \subset \mathscr{A}(\Omega)$ such that $\left|h_{k}\right|_{U_{1 / k}}=1$ and ${ }^{t} Q h_{k} \rightarrow 0$ in $\mathscr{A}^{\infty}\left(V_{\varepsilon}\right) \times \mathscr{A}^{\infty}\left((\bar{W} \backslash U)_{\varepsilon}\right)$, where $\mathscr{A}^{\infty}(\Omega):=\left\{\varphi \in \mathscr{A}(\Omega) ;|\varphi|_{\Omega}<\infty\right\}$ is a Banach space with the norm $|\varphi|_{\Omega}$. This leads us a contradiction.

Now we can prove Theorem 1.3. It follows from the assumption (A)' and (2.8) that f is analytic in U if $f \in L^{2}\left(\mathbb{R}^{n}\right), f$ is analytic in a neighborhood of $\bar{W} \backslash U$ and ${ }^{t} p^{R}(x, D) f$ is analytic in V. Let Ω be a complex neighborhood of \bar{W}. Choose $\varepsilon>0$ so that $\varepsilon<\operatorname{dis}\left(\bar{W}, \mathbb{C}^{n} \backslash \Omega\right)$, and put

$$
\begin{aligned}
& E:=\left\{(f, g, h) \in L^{2}(W) \times \mathscr{A}^{\infty}\left(V_{\varepsilon}\right) \times \mathscr{A}^{\infty}\left((W \backslash U)_{\varepsilon}\right) ;\right. \\
& \left.\left.\quad g\right|_{V}=\left.\left({ }^{t} p^{R}(x, D) f\right)\right|_{V},\left.h\right|_{W \cap(W \backslash U)_{\varepsilon}}=\left.f\right|_{W \cap(W \backslash U)_{\varepsilon}}\right\} .
\end{aligned}
$$

Then for any $(f, g, h) \in E$ there is $\hat{\varepsilon}>0$ such that f can be continued analytically to $W_{\hat{\varepsilon}}$. Indeed, ${ }^{t} p^{R}(x, D) f={ }^{t} p^{R}(x, D) \tilde{f}$ if $\tilde{f} \in L^{2}\left(\mathbb{R}^{n}\right), \tilde{f}=h$ in $(W \backslash U)_{\varepsilon} \cap \mathbb{R}^{n}$ and $\tilde{f}=f$ in U. So f is analytic in U and $f \in \mathscr{A}(\bar{W})$. Let us prove that E is closed and, therefore, E is a Banach space. Assume that $\left\{\left(f_{j}, g_{j}, h_{j}\right)\right\} \subset E$ and $\left(f_{j}, g_{j}, h_{j}\right) \rightarrow(f, g, h)$ in $L^{2}(W) \times \mathscr{A}^{\infty}\left(V_{\varepsilon}\right) \times \mathscr{A}^{\infty}((W \backslash$ $\left.U)_{\varepsilon}\right)$. Let V_{1} and V_{2} be open subsets of V satisfying $U \Subset V_{1} \Subset V_{2} \Subset V$, and choose $\Phi_{1}^{R}(x, \xi) \in S^{0}\left(R, C_{*}, C\left(V_{1}, V_{2}\right)\right)(R \geq 4)$ so that $0 \leq \Phi_{1}^{R} \leq 1$, $\operatorname{supp} \Phi_{1}^{R} \subset V_{2} \times \mathbb{R}^{n}$ and $\Phi_{1}^{R}(x, \xi)=1$ in $V_{1} \times \mathbb{R}^{n}$. We put

$$
p_{1}^{R}(x, \xi):=\Phi_{1}^{R}(x, \xi) p(x, \xi), \quad p_{2}^{R}(x, \xi):=p^{R}(x, \xi)-p_{1}^{R}(x, \xi) .
$$

Then we have $p_{j}^{R}(x, \xi) \in S^{+}\left(R, C_{*}+A, A_{1}\right)(j=1,2)$, where A_{1} is a positive constant depending on $A, V_{1}, V_{2}, V^{\prime}$ and W. From Lemma 2.3
we have ${ }^{t} p_{\ell}^{R}(x, D) f_{j} \in \mathscr{A}\left(\mathbb{R}^{n}\right)(\ell=1,2)$ if $R \geq 2 e \sqrt{n} A_{1}$. Assume that $R \geq 2 e \sqrt{n} A_{1}$. It is obvious that ${ }^{t} p^{R}(x, D) f_{j} \rightarrow{ }^{t} p^{R}(x, D) f$ in \mathscr{F}_{0} and ${ }^{t} p_{\ell}^{R}(x, D) f_{j} \rightarrow{ }^{t} p_{\ell}^{R}(x, D) f$ in $\mathscr{F}_{0}(\ell=1,2)$. Note that supp $p_{2}^{R} \subset\left(W \backslash V_{1}\right) \times$ \mathbb{R}^{n} and that $\left.f_{j}\right|_{W \backslash V_{1}}$ can be continued analytically to $h_{j} \in \mathscr{A}^{\infty}\left((W \backslash U)_{\varepsilon}\right)$ which satisfies $C_{j}:=\sup _{z \in(W \backslash U)_{\varepsilon}}\left|h_{j}(z)-h(z)\right| \rightarrow 0$ as $j \rightarrow \infty$. Cauchy's estimates give

$$
\sup _{x \in W \backslash V_{1}}\left|D^{\alpha}\left(f_{j}(x)-h(x)\right)\right| \leq C_{j}(\sqrt{n} / \varepsilon)^{|\alpha|}|\alpha|!.
$$

It follows from Lemma 2.3 and (2.9) that

$$
\begin{aligned}
& { }^{t} p_{2}^{R}(x, D) f_{j} \rightarrow{ }^{t} p_{2}^{R}(x, D)\left(\left.h\right|_{W \backslash V_{1}}\right) \quad \text { in } \mathscr{S}_{-\delta}^{\prime} \\
& \sup _{z \in \mathbb{C}^{n}, \mid \operatorname{Im}}\left|v_{j \mid \leq \delta}(z)-v(z)\right| \leq C_{\delta} C_{j}
\end{aligned}
$$

if $\delta<1 /\left(2 e \sqrt{n} \max \left\{A_{1}, \sqrt{n} / \varepsilon\right\}\right)$, where $v_{j}(z)(j \in \mathbb{N})$ and $v(z)$ denote the analytic continuations of ${ }^{t} p_{2}^{R}(x, D) f_{j}(j \in \mathbb{N})$ and ${ }^{t} p_{2}^{R}(x, D)\left(\left.h\right|_{W \backslash V_{1}}\right)$, respectively. Moreover, we have $v(x)={ }^{t} p_{2}^{R}(x, D) f$ in \mathscr{F}_{0}. Since $\left.g_{j}\right|_{V}=$ $\left.\left.\left({ }^{t} p^{R}(x, D) f_{j}\right)\right|_{V} \rightrightarrows g\right|_{V}$ on V, we have

$$
\begin{equation*}
\left.\left.\left({ }^{t} p_{1}^{R}(x, D) f_{j}\right)\right|_{V} \rightrightarrows g\right|_{V}-\left.v\right|_{V} \quad \text { on } V . \tag{2.12}
\end{equation*}
$$

We can write

$$
{ }^{t} p_{1}^{R}(x, D) f_{j}(x)=\sum_{k=1}^{\infty} \psi_{k}^{R}(D){ }^{t} p_{1}^{R}(x, D) f_{j} \quad \text { in } \mathscr{F}_{0}
$$

For $x \in \mathbb{R}^{n} \backslash V$ we have

$$
\begin{aligned}
& \psi_{k}^{R}(D)^{t} p_{1}^{R}(x, D) f_{j}=(2 \pi)^{-n} \int e^{i(x-y) \cdot \xi} \psi_{k}^{R}(\xi) p_{1}^{R}(y,-\xi) f_{j}(y) d y d \xi \\
& =(2 \pi)^{-n} \int e^{i(x-y) \cdot \xi} L^{k}\left(\psi_{k}^{R}(\xi) p_{1}^{R}(y,-\xi)\right) f_{j}(y) d y d \xi
\end{aligned}
$$

where $L=|x-y|^{-2} \sum_{\ell=1}^{n}\left(y_{\ell}-x_{\ell}\right) D_{\xi_{\ell}}$. Note that

$$
\left|L^{k}\left(\psi_{k}^{R}(\xi) p_{1}^{R}(y,-\xi)\right)\right| \leq C_{\delta, R}\left(\sqrt{n}\left(\widehat{C}+C_{*}+A\right) /\left(\varepsilon_{1} R\right)\right)^{k} e^{\delta\langle\xi\rangle}
$$

if $x \in \mathbb{R}^{n} \backslash V$ and $\delta>0$, where $\varepsilon_{1}=\operatorname{dis}\left(V_{2}, \mathbb{R}^{n} \backslash V\right)(>0)$. Therefore, we have

$$
\left|\psi_{k}^{R}(D)^{t} p_{1}^{R}(x, D) f_{j}\right| \leq C_{R} k^{-2}\left\|f_{j}\right\|_{L^{2}\left(V_{2}\right)}
$$

if $x \in \mathbb{R}^{n} \backslash V$ and $R \geq 2 e \sqrt{n}\left(\widehat{C}+C_{*}+A\right) / \varepsilon_{1}$. Now assume that $R \geq$ $2 e \sqrt{n}\left(\widehat{C}+C_{*}+A\right) / \varepsilon_{1}$. Then $\sum_{k=1}^{\infty} \psi_{k}^{R}(D)^{t} p_{1}^{R}(x, D) f_{j}$ converges uniformly to ${ }^{t} p_{1}^{R}(x, D) f_{j}(x)$ on $\mathbb{R}^{n} \backslash V$ and

$$
\sup _{x \in \mathbb{R}^{n} \backslash V}\left|{ }^{t} p_{1}^{R}(x, D) f_{j}(x)\right| \leq C\left\|f_{j}\right\|_{L^{2}\left(V_{2}\right)} \quad(j=1,2, \cdots),
$$

where $C>0$. Therefore, we have

$$
{ }^{t} p_{1}^{R}(x, D) f_{j}(x) \rightrightarrows{ }^{t} p_{1}^{R}(x, D) f(x) \quad \text { on } \mathbb{R}^{n} \backslash V
$$

This, together with (2.12), gives

$$
{ }^{t} p_{1}^{R}(x, D) f_{j}(x) \rightrightarrows w(x) \quad \text { on } \mathbb{R}^{n}
$$

where $w(x)=g(x)-v(x)$ for $x \in V$ and $w(x)={ }^{t} p_{1}^{R}(x, D) f(x)$ for $x \in$ $\mathbb{R}^{n} \backslash V$. So we have ${ }^{t} p_{1}^{R}(x, D) f(x)=w(x)$ in \mathscr{F}_{0} and

$$
\left.\left({ }^{t} p^{R}(x, D) f\right)\right|_{V}=\left.g\right|_{V}-\left.v\right|_{V}+\left.v\right|_{V}=\left.g\right|_{V}
$$

Since $f \in L^{2}(W)$ and $\left.f\right|_{W \cap(W \backslash U) \varepsilon}=\left.h\right|_{W \cap(W \backslash U) \varepsilon}$, this proves that E is closed. Put

$$
\begin{aligned}
E(k):=\{(f, g, h) \in E ; & f \text { is the restriction } \\
& \text { of a function } \left.\tilde{f} \in \mathscr{A}^{\infty}\left(W_{1 / k}\right) \text { with }|\tilde{f}|_{W_{1 / k}} \leq k\right\} .
\end{aligned}
$$

Then $E=\bigcup_{k=1}^{\infty} E(k)$ and $E(k)$ is a closed balanced convex subset of E since $\left\{\tilde{f}_{j}\right\}_{j=1,2, \ldots}$ is relatively compact in $\mathscr{A}\left(W_{1 / k}\right)$ if $\tilde{f}_{j} \in \mathscr{A}^{\infty}\left(W_{1 / k}\right)$ and $\left|\tilde{f}_{j}\right|_{W_{1 / k}} \leq k$. By Baire's theorem there are $k \in \mathbb{N}$ and $c>0$ such that f is the restriction of a function $\tilde{f} \in \mathscr{A}^{\infty}\left(W_{1 / k}\right)$ with $|\tilde{f}|_{W_{1 / k}} \leq k$ if $(f, g, h) \in E$ and $\|f\|_{L^{2}(W)}+|g|_{V_{\varepsilon}}+|h|_{(W \backslash U)_{\varepsilon}}<c$. This, together with (2.10), yields

$$
\begin{equation*}
|h|_{U_{1 / k}} \leq|h|_{W_{1 / k}} \leq(k / c)\left(\left\|\left.h\right|_{W}\right\|_{L^{2}(W)}+\left.\left.\right|^{t} P h\right|_{V_{\varepsilon}}+|h|_{(W \backslash U)_{\varepsilon}}\right) \tag{2.13}
\end{equation*}
$$

for $h \in \mathscr{A}(\Omega)\left(\subset \mathscr{A}^{\infty}\left(W_{\varepsilon}\right)\right)$. Let $\eta<1 / k$. Then (2.11) is valid. Indeed, suppose that (2.11) does not hold for some $\eta>0$ with $\eta<1 / k$. Then there is a sequence $\left\{h_{j}\right\} \subset \mathscr{A}(\Omega)$ such that

$$
\left|h_{j}\right|_{U_{\eta}}=1, \quad\left|{ }^{t} P h_{j}\right|_{V_{\varepsilon}}+\left|h_{j}\right|_{(W \backslash U)_{\varepsilon}} \rightarrow 0
$$

Putting $\varepsilon^{\prime}=\min \{\eta, \varepsilon\}$, we have

$$
\left|h_{j}\right|_{W_{\varepsilon^{\prime}}} \leq\left|h_{j}\right|_{U_{\eta}}+\left|h_{j}\right|_{(W \backslash U)_{\varepsilon}} \leq 2 \quad \text { if } j \gg 1
$$

Therefore, we have

$$
\left\|\left.h_{j}\right|_{W}\right\|_{L^{2}(W)} \leq 2|W|^{1 / 2} \quad \text { if } j \gg 1
$$

where $|W|$ denotes the volume of W. This, together with (2.13), implies that $\left\{\left.h_{j}\right|_{U_{1 / k}}\right\}$ is bounded in $\mathscr{A}^{\infty}\left(U_{1 / k}\right)$ and that there are a subsequence $\left\{h_{j_{\ell}}\right\}$ of $\left\{h_{j}\right\}$ and $h \in \mathscr{A}^{\infty}\left(U_{\eta}\right)$ such that $\left.h_{j_{\ell}}\right|_{U_{\eta}} \rightarrow h$ in $\mathscr{A}^{\infty}\left(U_{\eta}\right)$. Since $h_{j_{\ell}} \rightrightarrows 0$ on $\bar{W} \backslash U$ and $h(x)=0$ in $U_{\eta} \cap(\bar{W} \backslash U), h(z)=0$ in U_{η}, which contradicts $|h|_{U_{\eta}}=1$. It follows from Lemma 2.5 that $\widetilde{P} \equiv p(x, D): \mathscr{A}^{\prime}(\bar{V}) \rightarrow \mathscr{B}(U)$ is surjective.

3. Microhyperbolic Operators

First we shall give an immediate consequence of Theorem 1.3.

Theorem 3.1. Let X be an open subset of \mathbb{R}^{n}, and let $p(x, \xi) \in$ $P S^{+}\left(X ; R_{0}, A\right)$, where $A \geq 0$ and $R_{0} \geq 1$. Let U be an open subset of X satisfying $U \Subset X$, and assume that f is analytic in U if $f \in L^{2}\left(\mathbb{R}^{n}\right)$ and $\left.\left(\left({ }^{t} p\right)(x, D) f\right)\right|_{U}=0$ in $\mathscr{B}(U) / \mathscr{A}(U)$. Then $p(x, D): \mathscr{A}^{\prime}(\bar{V}) \rightarrow \mathscr{B}(U)$ is surjective for any open subset V of X with $U \Subset V \Subset X$. In particular, $p(x, D): \mathscr{A}^{\prime}(\bar{V}) \rightarrow \mathscr{B}(U)$ is surjective if $\left({ }^{t} p\right)(x, D)$ is analytic hypoelliptic in U and V is an open subset of X satisfying $U \Subset V \Subset X$ (see, e.g., Definition 4.5.1 of [10]).

Let X be an open subset of \mathbb{R}^{n}, and let $p(x, \xi) \in P S^{m, 0}(X ; 0, A)$, where $m \in \mathbb{R}$ and $A \geq 0$. We assume that there are $p_{0}(x, \xi) \in P S^{m, 0}(X ; 0, A)$ and $p_{1}(x, \xi) \in P S^{m-1,0}(X ; 0, A)$ such that $p_{0}(x, \xi)$ is positively homogeneous of degree m in ξ for $|\xi| \geq 1$ and $p(x, \xi)=p_{0}(x, \xi)+p_{1}(x, \xi)$. We define $q(x, \xi) \in C^{\infty}\left(\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)\right)$ by $q(x, \xi)=|\xi|^{m} p_{0}(x, \xi /|\xi|)$. Note that $q(x, \xi)=p_{0}(x, \xi)$ if $|\xi| \geq 1$.

Definition 3.2. Let $z^{0}=\left(x^{0}, \xi^{0}\right) \in T^{*} X \backslash 0\left(\simeq X \times\left(\mathbb{R}^{n} \backslash\{0\}\right)\right)$ and $\vartheta \in T_{z^{0}}\left(T^{*} X\right) \simeq \mathbb{R}^{2 n}$.
(i) We say that $p(x, \xi)$ is microhyperbolic at z^{0} with respect to ϑ if there are a neighborhood U of z^{0} in $T^{*} X \backslash 0$ and $t_{0}>0$ such that

$$
q(z-i t \vartheta) \neq 0 \quad \text { for } z=(x, \xi) \in \vartheta \text { and } t \in\left(0, t_{0}\right]
$$

(ii) Assume that $p(x, \xi)$ is microhyperbolic at z^{0} with respect to ϑ. We define the localization polynomial $q_{z^{0}}(\zeta)$ of $q(z)$ at z^{0} by

$$
\begin{aligned}
& q\left(z^{0}+t \zeta\right)=t^{\mu}\left(q_{z^{0}}(\zeta)+o(1)\right) \quad \text { as } t \rightarrow 0 \\
& q_{z^{0}}(\zeta) \not \equiv 0 \quad \text { in } \zeta \in T_{z^{0}}\left(T^{*} X\right)
\end{aligned}
$$

We call the number μ the multiplicity of z^{0} relative to q.
If $p(x, \xi)$ is microhyperbolic at $z^{0} \in T^{*} X \backslash 0$ with respect to $\vartheta \in \mathbb{R}^{2 n}$, then $q_{z^{0}}(\zeta)$ is hyperbolic, i.e.,

$$
q_{z^{0}}(\zeta-i \vartheta) \neq 0 \quad \text { for any } \zeta \in \mathbb{R}^{2 n}
$$

and we can define $\Gamma\left(q_{z^{0}}, \vartheta\right)$ as the connected component of the set $\{\zeta \in$ $\left.T_{z^{0}}\left(T^{*} X\right) ; q_{z^{0}}(\zeta) \neq 0\right\}$ which contains ϑ (see, e.g., $\S 4.3$ of [10]).

Let U be an open subset of X satisfying $U \Subset X$, and assume that there is a continuous vector field ϑ : $\bar{U} \times\left(\mathbb{R}^{n} \backslash\{0\}\right) \ni z \mapsto \vartheta(z) \in \mathbb{R}^{2 n}$ such that $p(x, \xi)$ is microhyperbolic at each $z \in \bar{U} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$ with respect to $\vartheta(z)$. A Lipschitz continuous curve $\{z(s)\}_{s \in(-a, 0]}$ in $U \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$ is called a generalized semi-bicharacteristics of p_{0} in the negative direction (with respect to ϑ) if

$$
(d / d s) z(s) \in \Gamma\left(q_{z(s)}, \vartheta(z(s))\right)^{\sigma} \cap\{\delta z ;|\delta z|=1\} \quad \text { for } \quad \text { a.e. } s \in(-a, 0]
$$

where $a>0, \sigma$ denotes the cannonical symplectic form on $T^{*} \mathbb{R}^{n}\left(\simeq \mathbb{R}^{n} \times\right.$ $\left.\mathbb{R}^{n}\right)$, i.e., $\sigma((\delta x, \delta \xi),(\delta y, \delta \eta))=\delta y \cdot \delta \xi-\delta x \cdot \delta \eta$ for $(\delta x, \delta \xi),(\delta y, \delta \eta) \in \mathbb{R}^{2 n} \equiv$ $\mathbb{R}^{n} \times \mathbb{R}^{n}$, and

$$
\Gamma^{\sigma}:=\left\{\delta z \in T_{z}\left(T^{*} X\right) ; \sigma(\delta w, \delta z) \geq 0 \quad \text { for any } \delta w \in \Gamma\right\}
$$

for $z \in T^{*} X$ and $\Gamma \subset T_{z}\left(T^{*} X\right)$. Moreover, we say that a generalized semi-bicharac- teristics $\{z(s)\}_{s \in(-a, 0]}$ of p in the negative direction is maximally extended if there is no generalized semi-bicharacteristics $\{w(t)\}_{t \in(-b, 0]}$ of p in the negative direction satisfying $z(0)=w(0)$ and $\{z(s)\}_{s \in(-a, 0]} \subsetneq$ $\{w(t)\}_{t \in(-b, 0]}$. We assume the following condition:
(B) If $\{z(s)\}_{s \in(-a, 0]}$ is a maximally extended generalized semi-bicharacteristics of p in the negative direction, where the parameter s of the curve is chosen so that $-s$ coincides with the arc length from $z(0)$ to $z(s)$, then $\lim _{s \rightarrow-a+0} z(s) \in\left(\partial U \times \mathbb{R}^{n}\right) \cup U \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$ when $a<\infty$, and $\lim _{s \rightarrow-\infty} z(s) \in\left(\partial U \times \mathbb{R}^{n}\right)$ when $a=\infty$.

Under the condition (B) it follows from Theorem 4.3.8 of [10] that there is a maximally extended generalized semi-bicharacteristics $\{z(s)\}_{s \in(-a, 0]}$ of p in the negative direction with $z(0)=z^{0}$ satisfying $z(s) \in W F_{A}(f)$ for $s \in(-a, 0]$ and $\lim _{s \downarrow-a} z(s) \in \partial U \times \mathbb{R}^{n}$ if $f \in \mathscr{B}(U),\left({ }^{t} p\right)(x, D) f=0$ in $\mathscr{B}(U) / \mathscr{A}(U)$ and $z^{0} \in W F_{A}(f)$. Here the parameter s of the curve is chosen so that $-s$ coincides with the arc length from z^{0} to $z(s)$. For $W F_{A}(f)$ we refer to $\S 3.1$ of [10]. So the condition (A) ${ }^{\prime}$ is satisfied for any open subsets V and W of X satisfying $U \Subset V \Subset W \Subset X$.

THEOREM 3.3. Under the condition (B) $p(x, D): \mathscr{A}^{\prime}(\bar{V}) \rightarrow \mathscr{B}(U)$ is surjective for any open subset V of X with $U \Subset V \Subset X$.

References

[1] Albanese, A. A., Corli, A. and L. Rodino, Hypoellipticity and local solvability in Gevrey classes, Math. Nachr. 242 (2002), 5-16.
[2] Cordaro, P. D. and J.-M. Trépreau, On the solvability of linear partial differential equations in spaces of hyperfunctions, Ark. Mat. 36 (1998), 41-71.
[3] Hörmander, L., On the existence and regularity of solutions of linear pseudodifferential equations, Enseign. Math. 17 (1971), 99-163.
[4] Hörmander, L., Propagation of singularities and semi-global existence theorems for (pseudo-)differential operators of principal type, Ann. of Math. 108 (1978), 569-609.
[5] Hörmander, L., An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam, 1990.
[6] Komatsu, H., Projective and injective limits of weakly compact sequences of locally convex spaces, J. Math. Soc. Japan 19 (1967), 366-383.
[7] Köthe, G., Topological Vector Spaces II, Springer-Verlag, Berlin-Heidelberg, 1979.
[8] Schapira, P., Solution hyperfonctions des équations aux dérivées partielles du premier ordre, Bull. Soc. Math. France 97 (1969), 243-255.
[9] Treves, F., Topological Vector Spaces, Distributions and Kernels, Academic Press, New York-London, 1967.
[10] Wakabayashi, S., Classical Microlocal Analysis in the Space of Hyperfunctions, Lecture Notes in Math. vol. 1737, Springer, 2000.
[11] Wakabayashi, S., Remarks on analytic hypoellipticity and local solvability in the space of hyperfunctions, J. Math. Sci. Univ. Tokyo 10 (2003), 89-117.
[12] Wakabayashi, S., Remarks on propagation of analytic singularities and solvability in the space of hyperfunctions, to appear in Sūrikaisekikenkyūsho Kōkyūroku.
[13] Yoshikawa, A., On the hypoellipticity of differential operators, J. Fac. Sci. Univ. Tokyo, Sect. IA 14 (1967), 81-88.
(Received December 2, 2003)

> Institute of Mathematics
> University of Tsukuba
> Tsukuba, Ibaraki 305-8571
> Japan

[^0]: 2000 Mathematics Subject Classification. Primary 35S05; Secondary 35A05, 35A20, 35A21.

