J. Math. Sci. Univ. Tokyo
13 (2006), 595-616.

Remarks on Solvability of Pseudodifferential
Operators in the Space of Hyperfunctions

By Seiichiro WAKABAYASHI

Abstract. Let X be an open subset, and let p(z, £) be a pseudo-
analytic symbol defined in X x R™. Let U and V be open subsets
of X satisfying U € V € X. In this paper we prove that p(z, D):
A (V) — B(U) is surjective under some conditions on propagation
of analyticity for the transposed operator (‘p)(z, D) of p(x, D). This
result was proved for differential operators by Cordaro and Trépreau
[2].

1. Introduction

In the framework of C*° and distributions it is well known that solvabil-
ity of operators is related to propagation of regularities for their transposed
operators ( see Treves [9], Yoshikawa [13] and Hormander [3] and [4]). Let
X be an open subset of R, and let P be a linear partial differential operator
on X with analytic coefficients. Cordaro and Trépreau [2] proved that P:
B(U) — B(U) is surjective if U is an open subset of X satisfying U € X
and P and U satisfy the following condition:

(A) fis analytic in U if f € L?(R"), f is analytic in a neighborhood of
OU and 'Pf is analytic in U.

Here %B(U) denotes the space of hyperfunctions in U, and P denotes the
transposed operator of P. Moreover, A € B means that the closure A

of A is compact and included in the interior é of B, and 0U denotes the
boundary of U. We should note that Cordaro and Trépreau studied the
problems in a more general setting in [2], although they dealt with only
differential operators. In this paper we shall extend the above result for
pseudodifferential operators.
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First we shall explain briefly about analytic functionals, hyperfunctions
and pseudodifferential operators acting on them. For the details we refer
to [10] ( see, also, [11]). Let ¢ € R, and denote (&) = (1 + [£]*)'/2, where
€= (&1, &) € R™ and [¢] = (1, [&[2)1/2. We define

F. = {v(€) € C°(RM); v(¢) € 9},

where ¥ (= ¥(R")) denotes the Schwartz space. We introduce the topology

to E}’a in a natural way. Then the dual space g’; of g’g can be identified with
{v(&) € @'; e=u(¢) € #'}. Let e > 0. Then ¥ is a dense subset of ¥ and
we can define ¥, := F 1%, (= F[¥.]) ( € ¥), where F and F ' denote
the Fourier transformation and the inverse Fourier transformation on & ( or
¥"), respectively. For example, F[u](¢) = [ e @ u(x)dz for u € ¥, where
x-&= Z?lejéj for x = (w1, ,x,) € R" and & = (&, ,&,) € R™
We introduce the topology in &, so that % : g’g — ¥, is homeomorphic.
Denote by ¥~ the dual space of ¥.. Since ¥. is dense in ¥, we can regard
¥ as a subspace of ¥.. We can define the transposed operators ‘% and
tF~1 of F and F !, which map ¥’ and 5}’; onto 93/8 and ., respectively.
Since ¥_. C Q’; (C %), we can define ¥_. = ‘F'[¥_], and introduce
the topology in $_. so that ‘F ' : ¥_. — ¥_. is homeomorphic. ¥’ _
denotes the dual space of ¥_.. We note that ¥ = 'F on ¥'. So we also
represent ‘F by F. Let od(C") be the space of entire analytic functions on
C", and let K be a compact subset of C". We denote by «'(K) the space
of analytic functionals carried by K, i.e., u € s'(K) if and only if (i) u :
A(C™) 3 ¢ — u(yp) € Cis a linear functional, and (ii) for any neighborhood
w of K in C" there is C,, > 0 such that |u(yp)| < Cy,sup,c, |¢(z)| for ¢ €
A(C™). Define st'(R") := Ugepn A (K), Foo := Neer Fe» €0 = Nong F—¢
and Fg := [\.og S~ For u € o'(R™) we can define the Fourier transform
(&) of u by

e>0

() (= Ful(€)) = us(e™**),

where z-§ = 2?21 zi&jfor z = (21, -+ ,2p) € CPand £ = (&1, -+, &) € R™
By definition we have 4(§) € (.5 F_. (= F[€g)). Therefore, we can regard
A'(R™) as a subspace of €, i.e., d'(R") C €y C Fo ( see Lemma 1.1.2 of
[10]). Let © be an open subset of C", and let s4(€2) be the space of analytic
functions in Q. () is a Fréchet-Schwartz space ( (FS) space) whose
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topology is defined by the family of the semi-norms |- |;, ( L € ), where

ol == sup |p(2)].
zeL

Let K be a compact subset of R™. Then K has a fundamental system
of complex neighborhoods consisting of Runge domain ( see, e.g., [5] and
Lemma 1.1.1 of [10]). So u(¢p) can be defined for u € s'(K) if ) is an open
neighborhood of K in C" and ¢ € (). We denote

K. :={z€C"; |z—x| < ¢ for some z € K}

for ¢ > 0, and define the (DFS) space sd(K) by 4(K) = injlim,_,, A(K,)
( see, e.g., [6]). Then #'(K) can be identified with the strong dual space of
A(K) and A'(K) is a (FS) space. For § > 0 we have ( ¥s C) ¥’ 5 C A(RY),
where Rf = {z € C"; [Im 2| < 6} ( see Lemma 1.1.3 of [10]). Moreover,
we have u(p) = (u, ) (r0),01(x) = (U, ) for u € A'(K) and ¢ € ¥, where
6 >0 and (-, )y (k) mr) and (-, -) denote the duality of A'(K) and A(K)
and that of ¥ and s, respectively ( see Lemma 1.1.2 of [10]). For a
bounded open subset X of R™ we define the space B(X) of hyperfunctions
in X by
RB(X) :=oA'(X) /A (0X).

For u € %y we define

H() (2, 0n 1) = (581 Tns1) exP[— [T (D)]u(x) /2
(= (sgn 2ns1)Fg Hexpl—|zar1 [(€)](O)] (2)/2 € F'(R™))

when z,4; € R\ {0}, and

supp u = ﬂ{F, F is a closed subset of R™ and there is a real
analytic function U(x, z,41) in R"™\ F x {0}
such that U(x, xp41) = #(u)(x, xpy1) for 2,41 # 0}

( see [10]). For a compact subset K of R", u € #'(K) if and only if u is an
analytic functional and supp u C K ( see Proposition 1.2.6 of [10]). From
Theorem 1.3.3 of [10] it follows that for any u € F( and any compact subset
K of R™ there is v € o/ (K) satisfying supp (u—v)NK C OK. Therefore, we

can define the restriction map from Fy to o' (K)/A'(0K) ( = B(K)). For
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an open subset X of R™ we define the space B(X) of hyperfunctions in X
as a local space of sf'(R™) (or %) ( see Definition 1.4.5 of [10]). Let X and
U be open subsets of R™ satisfying U C X. Then the restriction map p()J( :
B(X) 3 u— uly € B(U) can be defined. By definition we can also define
the restriction map from Fy to B(X), and we denote by v|x the restriction
of v € Fy to B(X) (or on X). For 20 € R™ we say that u is analytic
at 2% if %(u)(z, 2,2 1) can be continued analytically from R™ x (0, 00) to a
neighborhood of (z°,0) in R™*1.
Assume that a(§,y,n) € C°(R™ x R™ x R™) satisfies the estimates

02 Do a(E, y,m)|
< Clay 314 py (A R)IPHE) ™0 1) ™2 expl61.(€) + 62 ()]

for any o, 8, 8,7 € (Z4)™, &,y,n1 € R™ with (€) > R|3|, where D, = —id,,
Ck (k > 0) are positive constants, R > 1, A > 0, m1,ma, 61,02 € R and
Z+ = NU{0}. We define pseudodifferential operators a(D,,y, Dy) and
Ta(DaC?yaDy) by

(D, D, uta) = (2r) 5 | [ ([ € Date,myitn) dn)dy (o)

and "a(Dg,y,Dy)u = b(Dg,y,Dy)u for u € P, respectively, where
b(& y,n) = a(n,y,§).

PRrOPOSITION 1.1 (Theorem 2.3.3 of [10] or Proposition 1.2 of [11]).
a(Dz,y, Dy) can be extended to a continuous linear operator from Fe, to
Fe, and from 9),—52 to ¥’ _, respectively, if

—e17

1 — 8y = )
(1.1) { K>1, &9 2 = k(g1 +61)4,

e1+6 <1/R, R>eynkA/(k—1),

where c; = max{c,0}. Similarly, "a(Dy,y, Dy) can be extended to a contin-

wous linear operator from $_., to $_., and from F. to FL,, respectively,
if (1.1) is valid.

DEFINITION 1.2. Let X be an open subset of R", and let Ry > 0.
(i) Let Ry > 1, m,6 € R and A, B > 0, and let a(z,§) € C°(R™ x R™).
We say that a(z, &) € S™°(Ry, A, B) if a(x, £) satisfies

a5 15 @O < Clap, 3 (A/Ro) (B Ro) Pl g) P 1a1 2@

(B+8) |G|+13]
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for any a,@, 3,6 € (Z,)" and (x,€) € R* x R™ with (€) > Ro(|e| + |8]),
where a( ( €)= O?Dfa(x, ¢) and the Cj are independent of o and 5. We
also erte S™(Ry, A, B) = S™9(Ry, A, B) and S™(Ry, A) = S™ (R, A, A)
and so on. We define S*(Ry, 4, B) = o0 S (Ro, A, B).

(i) Let Ro > 1, mj,6; € R (j = 1,2), 4; > 0 (j = 1,2) and
B > 0, and let a(§,y,nm) € C°(R™ x R™ x R™). We say that a(¢,y,n) €
Smum2,81.%2(Ro Ay, B, Ag) if a(€,y,n) satisfies

‘aa+aD51+52+ﬂ8’Y+’Ya(£ y,n)| < C|a|+\@|+\7|(A1/R0)‘a‘(B/RO)WHW'
x (Az/Ro) () 18 () ma Il exep[8y (€) + 82(n)]

for any a, @, 8%, 8%, 3,7,7 € (Z4)", (€,y,1) € R" x R" x R" with (£) >
Ro(|la] + |61|) and (n) > Ro(|y] +13%|). We also write S™1™m201:02( Ry A) =
Smim2.6102(Ro A A, A). Similarly, we define S*(Rg,A1,B,As) =
ﬂ§>0 50’076’6(R0, Al, B, AQ)

(iii) Let m,6 € R and A, B > 0, and let a(x,§) € C°(X x R™). We say
that a(z, &) € PS™°(X; Ry, A, B) if a(x, £) satisfies

a5y ™ (@, )] < Cla AIBI alt 3|1 )™ 1I719l e
for any o,a,8 € (Z4)", (x,§) € X x R™ with |[{§| > 1 and () > Rolal.
We also write PST(X; Ro, A, B) = (s> PSY3(X; Ry, A, B) and PST(X
Ry, A) = PST(X; Ro, A, A).

(iv) Let m,6 € R and A,Co > 0, and let {a;(z,{)}jez, €
[Tjez, C(X x R™). We say that a(z,§) = {a;(z,§)}jez, € FPS™(X
Ry, Cy, A) if a(x, ) satisfies

a5 2, )] < CiggCALH a1 g) 11185
for any j € Z4, a, &, 0 € (Z4)", (z,€) € X x R™ with [{] > 1 and (§) >
Ro(j + |a). We also write a(z, &) = 372 a;(,§) formally. Moreover, we
write FPST(X; Ry, Co, A) = Ns=o FPS%°(X; Ry, Co, A).

(v) For a(x,§) = >272qa;(x,§) € FPST(X; Ry, Co, A) we define the
symbol (ta)(z, &) by

a)(w, &) =Y bj(z, 2.8 = > (-1l (@, -¢)/al

J=0 kt|ol=j
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REMARK. (i) If Ry < Ry, then PS™%(X;Ry, A, B) C PS™(X;
R, A, B).

(i) a(x,&) € PSY(X;Rp,A) can be identified with the element
{aj(x,&)}jez, in FPST(X;Ry,Coy,A), where ag(z,§) = a(z,§) and
aj(z,§) =0 (j>1)and Cy > 0.

(iii) It is easy to see that (‘a)(z,&) € FPST(X; Ry, C), 24) if a(z,€) €
FPS™(X; Ry, Cy, A), where C}, = max{Cy, 4nA?}.

Let X be an open subset of R", and assume that a(z,§) € PST(X;
Ry, A), where A > 0 and Ry > 1. Let U and V be open subsets of X sat-
isfying U € V € X. It follows from Proposition 2.2.3 of [10] that there are
symbols ®f(z,¢) € SO(R,C,,C(U,V)) ( R > 4) satisfying 0 < ®f(z,¢) <
1, supp ®® C V x R® and ®%(z,£) = 1 in U x R™. Put af*(x,£) =
&f(x,&)a(x,€). Then we have a?(z,¢) € ST(R, A+C,, 2A+C(U,V))if R >
max{4, Ro}. Applying Proposition 1.1 with a(¢,y,n) = a’*(y, £) and noting
that a®(z, D) = "a(D,,y, Dy), we can see that a®(x, D)u is well-defined
and belongs to % if u € Fy and R > max{4, Ry, 2e\/n x (2A+ C(U,V))}.
Moreover, a®®(x, D)u determines an element (af(x, D)u)|y € B(U). It fol-
lows from Theorem 2.6.1 ( or Collorary 2.6.2) of [10] that (a(z, D)u)|y
does not depend on the choice of ®%(z,¢) if u € Fy, ®f(z,¢) € S(R, B)
and R > max{4, Ry, 8ey/n(2A+ B)}. Therefore, we can define the operator
a(x, D): Fo — B(U) by a(z, D)u = (a¥(z, D)u)|y for R > 1, and the op-
erator a(z, D): Fo — B(X). Let u € B(U). Then there is v € o' (U) such
that v|y = u in B(U). By Theorem 2.6.5 of [10] we have a’*(z, D)w € (U
if w e %y, R > max{4, Ry, 16e\/n(2A + C(U,V))} and supp wNU = 0,
where s4(U) denotes the space of ( real) analytic functions in U. This implies
that (a®(x, D)v)|y ( € B(U)/A(U)) is uniquely determined, as an element
of B(U)/A(U), by u and does not depend on the choice of v. Therefore, we
can also define the operator a(z, D): B(U) — B(U)/A(U) and the operator
a(x,D): B(X) — B(X)/A(X) ( see §2.7 of [10]). We note that the above
definitions of the operator a(z, D) coincides with usual ones if a(z, D) is a
differential operator with analytic coefficients in X ( see Theorem 2.7.1 of

[10]).
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Next we assume that a(z,§) = > 72ga;(2,§) € FPS*(X; Ry, Co, A).
Choose {¢f(§)}jez+ C C*°(R") so that 0 < qﬁf(g) <1,

Roee O if(€) < 2Rj,
% (5)_{1 if (¢€) > 3Ry,

97071 ()] < Cia (C/R)°E) it fa] <24,

where the Cy, and C' do not depend on j and R ( see §2.2 of [10]). Then we
have

8

a(x,€) == > o1 (€)aj(x,€) € PST(X;R, A+ 60, A)
j
if R> 2Ry and R > Cj ( see Lemma 2.2.4 of [10]). So we can define a(x, D):
Fo — B(X)/A(X) and B(X) — B(X)/A(X) by a(x,D) = a(x,D).
Indeed, applying the same argument as in §3.7 of [10] we can see that
a(x,D)u € B(X)/A(X) does not depend on the choice of {qﬁf(é)}, where
u € Fgor u € B(X).
Let p(x,&) € PST(X; Ry, A), where A > 0 and Ry > 1. Moreover, let
U,V and W be open subsets of X satisfying U € V € W € X, and assume
that

I
o

(AY [ is analyticin U if f € L?(R™), f is analytic in a neighborhood of
WA\ U and ((*p)(z, D)f)lv = 0 in B(V)/A(V),

instead of the condition (A). We note that (A)’ is satisfied if (A) is satisfied.
Now we can state our main result.

THEOREM 1.3. If (A) is satisfied, then the operator p(x, D) : ' (V) —
B(U) is surjective, i.e., for any f € B(U) there is u € A’ (V) satisfying
p(z, D)u= f in B(U).

In [12] we proved similar results in the space of microfunctions ( see,
also, [11]). In the framework of the Gevrey classes and the spaces of ultra-
distributions Albanese, Corli and Rodino [1] obtained similar results.

We shall give the proof of Theorem 1.3 in §2. In §3 we shall apply
Theorem 1.3 to microhyperbolic operators.
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2. Proof of Theorem 1.3

Assume that p(z,§) € PST(X;Ry,A) satisfies the condition (A)’.
Choose g9 > 0, ®%(z,¢) € SR, C.,C(V',W)) ( R > 4) and VE(¢,y,n) €
SU000(R C,,C(V!,W),Cy) (R > 4) so that V' = {x € R"; |z —y| < & for
someycVieW (€ X),0< e <1,0< Ul <1, supp & ¢ W x R™,
supp U C R" x W x R, ®F(2,£) = 1in V' x R™ and UE(¢,y,n7) = 1 in
R™ x V' x R™. We put

pH(x,8) = 0% (z,&)p(x, &) € ST(R, A+ C\, 24+ C(V, W),
P y.m) = TRy ply,n) € ST(R,Cy,2A+ C(V!, W), A+ Cy)

for R > max{4, Ry}. Then, for § > 0 pf*(z,D) and p"(D,,y, D,) map

continuously ¥s to & and, therefore, the transposed operators p%(x, D) and
tﬁR(DI,y,D ) map continuously ¥’ to ¥. It is obvious that !pf(z, D) =

(Dxu y: ) and p ( Jnya Dy) = qN(D$7y7 Dy)7 Where Q(fm% 77) = pR(y7 _g)
and G(€,y,m) = p(—n,y, =€) ( see the proof of Lemma 2.1 below).

LEMMA 2.1. Let a(§,y,n) be a symbol satisfying
10874 DYy a(&,y,m)| < Clayr )4 py.o(B/R) ()11

if (§) > R|a| and 6 > 0, and a(&,y,m) =0 if y € V', where R >0, B> 0
and m € R. Then a(Dg,y, Dy)u ( € Fo) is analytic in V for u € & if
R > 16enB/ey.

Proor. Since for 6 > 0

and e~ %P a(D,, vy, Dy): ¥ — ¥ a(Dy,y, Dy) maps continuously ¥ to F.
Here we introduce the topology of Fq by F¢ = injlim, |, .. We shall prove
the lemma, applying the same argument as in the proof of Lemma 2.3 of
[11]. Let u € ¥, u=0,1and 0 < p < 1. We put ij(§) = ¢f_1(§) - (bf(f)
( j € N), where the qﬁf(f) are symbols as in §1. Then we have

(2.1) (D>“€_p<D> (De,y, Dy)u

:Z D)te * )R (D)a(Dy,y, Dy)u in &,
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where R’ > 0. A standard argument yields

(2.2) (D)t P PIy (D)a(Day y, Dy)ulx) = (@n), 17 (e, m: p))n,

where M, N € Z, 2M > n and

(2,17 p) = (2m) 2" / He—uyEin (e 2N
X (Dy)* N {{z — ) PM(De) M (€)1 e POl (€)a(€, y,m)) } dedy.
Indeed, for ¢ € S(R™) we have

(DYe PR (D)a(Dy. . Dy )i, )
= (a(n), / £ (& p)pla) de),,

(2.3) sup ()" 0S DI (2, m; p)| < Coygypusrr ()"
|| +hk<0

This proves (2.2). Define L by

n

=z —yI7 ) (@ — ) Dey

k=1

for x € C" with Re z € V and y € R™ \ V'. A simple calculation gives

(2.4) |05(Dy)*N LM {(&)e P E T ()a (€, y, )}
< Cla|,N, M e0,8,R/ 1T — y| =M (mymlel(gyp=M 58
x {8n(B/R+ (C +6(1+ v2))/R) /=01 xF (€)
ifoe (Zy)", M|N,j€Z:, R >R, 2 €C" Re x € V and ¢ > 0, where

Xﬁl (€) is the defining function of the set {€ € R™; 2R/(j — 1) < (§) < 3R'j}.
Here we have used Lemmas 2.1.1 and 2.1.7 of [10]. Therefore, we have

(2.5) sup |(m)*ap £ (2. m5 p)| < Creg p i~
k4o <t

fleZi,zeC" ReaxeV,|Im z| <p; (<1/2) and

26) { R'>R, R >16en(C +6(1++/2))/e0,

R > 16enB/ey, p1 < 1/(3R)),
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taking M > ¢+n and N > {+m in (2.4). Since Re (1+(a:—y)-(a:—y)) =
1+|Re z—y/?>—|Im z|? for z € C" and y € R", /”(;v n; p) is analytic in
x if |[Im x| < 1. We note that (2.3) is valid for z € C" with |Im z| < 1/2,

where D, means complex differentiation. So it follows from (2.2) and (2.5)
that (D)tePP LDR,( Ja(Dz,y, Dy)u(x) is analytic in 2 and

(2.7) (D) P PI (D)a(Day y, Dy)u()| < Cog py (Vo)

ifued 2eC? RezeV,|Im x| <p; (<1/2) and (2.6) is valid. Put
OV(x7$n+1) = %(G(Dmuyv Dy)u)(x,xn+1),

and assume that
R > 16enB /ey, 0 < p1 < min{1/2,1/(3R), =0/ (48en(C + 6(1 + v/2)))}.

Then it follows from (2.1) and (2.7) that (D, )*¥V(x,p) ( # = 0,1) can be
continued analytically to {z € C"; Re x € V and |Im z| < p;}. Applying
Lemma 1.2.4 of [10] to the Cauchy problem

{ (1 - Al’,xn-u)v(xvxn-l-l) = 07
v(z, p) =V (2, p), (0v/0xni1)(z,p) = —(D2)V (2, p),

we can show that V'(z, x,+1) can be continued analytically from R™ x (0, 0o)
to V' x (p — p1,00). This implies that a(D,,y, Dy)u is analytic in V. O

Assume that R > max{4, Ry, 16en(A + C.)/eo}. From Lemma 2.1
we see that 'pf'(z, D)u — 'p%(D,,y, Dy)u is analytic in V for u € ¥
Let us apply Corollary 2.4.7 of [10] to 'pf(D,,y,D,). We note that
(‘p)(z.§) = Z}X’oqy(w §) € FPST(X; Ry, 4nA?24), where g;(z,§) =
S ol (DD (2, —€)/al. Let Ry > nA%/2, and put q(2,§) =
Z]O'io QS?RO (§)qj(:r, €). By definition (*p)(x, D) coincides with ¢(x, D) as the
operator from Fy to B(X)/dA(X). Since p7(Dy,y, Dy) = a(Dy,y, Dy) if
a(&,y,n) = p(—n,y, —£), it follows from Corollary 2.4.7 of [10] that there
are symbols h(z, ) and r(z, &) and R(A, V', W) > max{4, Ry} such that

tpR(Da:ayv Dy) = h(va) + T($7D) on Spoov
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h(z,€) € ST(4R,C, 4+ 10A;) and
r(6) (2, )] < Clay r(4R + 1)17|glte= (/R

if R> R(A,V',W), where Ay = max{A + C\,2A + C(V',W)}. Moreover,

we have
|08 D (x,€) — q(z, )} < Clopr(R+ DI BJ1(g) Il O/F

if £ € V' and R > R(A,V',WW). Now assume that R > R(A,V' W).
Proposition 1.1 implies that r(z, D)u is analytic if u € %Fq. It follows from
Lemma 2.4 of [11] that (h(z, D)u)|x —q(z, D)u ( € B(X)) is analytic in V'
for u € Fy, with a modification of R(A, V', W) if necessary. This yields

(2.8)
(‘p"(z, Dyu)ly = ("p"(Da,y, Dy)u)ly = (("p)(z, D)u)|y in B(V)/A(V)

for u € %Fy.

LEMMA 2.2. Let a(x,£) be a symbol in ST(Ry,A) satisfying
supp a(z,£&) C W x R™. Then a(z, D)u € d'(W) for u € Fy.

PrROOF. We shall apply the same argument as in the proof of Theorem
3.3.6 of [10]. Put

af(z,&y) =Y i) D (iy)°dla(x,)/B!
k=1 18|<k—1

for z,y € R", £ € R” and R > Ry. Then we have

a(z,&y)e () S“*(3R,3C + 3AR/Ry,3AR/Ry)
5>6(y)/Ro

for any y € R™, where 6(y) = /nAly|. Moreover, we have
(02, +10,,)0 T DEPal (2, & )| < Clapy156(C/R+ A/ R)®!
x (A/Ro)l(&)PI =1 expl(es(y)/Ro — 1/(3R) + 8)(€)]

if (¢) > 3R(Ja| +|8]). We choose open convex proper cones I'; (1 < j < J)
in R"\ {0} and {gf'(§)} € C(R") (R > 2,1 < j < J) so that g/'(€)
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is positively homogeneous of degree 0 in || > 1, R™ \ {0} = U}-Izl r;,
supp gff N{|¢] > 1} C Ty, 357, gF(€) =1 for & € R™ and |9 7R (¢)] <
C|7|(C*/R)‘a|(§>*|7| if (¢) > R|a|. Let u € Fp, and put

UR(a,2p41) = (sgn zp1)e” o0l P)gR(DYu(z) /2
(= gR(D2) % (u)(x, 2011))-
It is obvious that

Uf (@, wns1) = (2m) (@), e 0 g (€))

for 41 > 0. We can choose ¢ > 0 so that

Im z-€ > c/Im 2|[¢

for 1 <j<J,2€R"+ilj and § € supp gJR with [£] > 1,
where I'; = {y € R"; y-{ > 0 for any € I';}. Now assume that Ry >
2ey/nA/c. Then Stokes’ formula gives

J
(a(z, D)ue(), o(x)) =2 (alz, DU (z.), o))
7=1
J
Z{/ el y (e +iy’) da

" /o1 </W Ujac(a;ry’)p(x +iry’) dw) dr}

for p € Poo, € > 0 and y* € TE\{0} (1 < k < J), where uc(z) = e *Plu(x)
and
Ujie(m;y) = (2m) 7™ (a(€), e/ @T9 =gl ()af (2, & ) e /2,
Uj.e(w;y)
= (2m)"™(@(€), WO GT(E) N " iyp (D, + 0y, )a (@, E5y))e /2
k=1

for 1 <j<JandyeTI7]\{0}. It is easy to see that for each y € I'; \ {0}

Ujre(x;y) = Ujao(r;y) onR™ase |0,
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Ujo.e(x;ry) 2 Ujao(x;ry) in (x,7) € R" x [0,1] as € | 0.

Therefore, we have

J
(to Dyt o) =23 || Usnolassheta i)

+ /01 (/W Ujz0(z; 1y’ )p(x +iry’) dw) dr}

for p € oo and y* € T3\ {0} (1 < k < J). This implies that a(x, D)u(z) €
A'(W). Indeed, $oo includes P := {p(z)e~""; p(z) is a polynomial} and,
therefore, {(C™) can be approximated locally uniformly by elements of ¥
On the other hand, we have

[{a(z, D)u(z), p(2))| < Cs  sup  |p(z +iy)| for p € P
zeW, |y|<6

if & > 0, which gives a(z, D)u(z) € ' (W). O

By Lemma 2.2 we can define an operator P: s'(V) — (W) by Pu =
pE(x, D)u for u € A’ (V) ( € Fy). Since the strong dual space of o' (K) is
A(K), we can define the transposed operator !P: A(W) — A(V), i.e.,

<UatP<P>34/(V),gg(V)(: u(*Py)) = (Pu, ¢>w'(W),a¢(W)(: (Pu)(¢))

for u € A (V) and ¢ € (W). On the other hand, we can define
'pf(x, D)p(x) for ¢ € A(W) by

8%

e, Do) = Fe | [ My ~€)oly) dy] (2) (€ Fo)

since supp p® € W x R™. Moreover, we can define ‘p?(z, D)u € % for u €
%' (W). Assume that R > 2ey/n(24 + C(V',W)). Then, from Proposition
1.1 we have 'pf(z, D): Foo — Fs(C A(V)) if 6 < 1/R. By definition it is
easy to see that

tPo =tpl(x, D)y in AV) for ¢ € Lo
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LEMMA 2.3. Let a(x,€) be a symbol satisfying supp a C W x R™ and
Jags)(w,€)] < Co(A/R)PI () Ae5©
if (§) > R|B| and 6 > 0. Let ¢ > 0, and assume that uw € C*(W) satisfies
|D%u(z)| < C(uw)e1lall  forz e W and o € (Zy)",
where C(u) is a positive constant. Then we have "a(z,D)u € ¥’ s and

sup lv(2)] < C5C(u)

2€Cn |Im 2|<6

if R > 2ey/nA and 6 < 1/(2ev/nmax{A,1/c}), where v(z) denotes the
analytic continuation of Ta(x, D)u(z) to {z € C"; |Im z| < 6} and Cf is
a positive constant independent of u.

PROOF. Put K = [£]72Y°1_, &.Dy,. Then we have

|1 (aly, )u(y))| < CsC )€ (€Y {Vn(A/R + 1/ (Rie) Y@
< CsC(u)e ™ {V/n(A/R +1/(Rie)) Y e

if Ry > R, (§) > R1j and 6 > 0. Therefore, we have

[ty utn) ] < [ 1Kty utu)]dy

< CsC(u){ev/n(A/R+1/(Rie))} expl(8 — 1/R1)(€)]
if Ry > R, R1j < () < Ri(j+1)and 6 > 0. This yields
(2.9) %[ a(x, D)u(@)](§)] < C§C(u)e @

if R > 2ey/nA, R > R, Ry > 2ey/n/e and § < 1/R;. From (2.9) we can
easily prove the lemma. [

We note that for € > 0 and a compact subset K of R"
K.:={2€C% |Re z—z|+ |Im 2| < ¢ for some z € K}

is polynomially convex and, therefore, I/i&? is a Runge domain, where [/i:f’
denotes the interior of K. in C" ( see, e.g., Lemma 1.1.1 of [10]). Let
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¢ € A(W). Then there are ¢ > 0 and {p;} C S ( C A(C™)) such that

~

@€ &d(Kgﬁe) and

sup  [p(2) = pj(2)| = 0 as j — oo,
ZGRQ\/EE

where K = W. Since {z € C" |z —ax| < e (1 < k < n) for some
xe K} C K /., Cauchy’s estimates give

sup sup e[ D(p(2) — pj(x))|/[a]! = 0 as j — oo,
a€(Ly)" zeW

Therefore, it follows from Lemma 2.3 that
(2.10) tPo = pi(x,D)p for p € A(W).

In order to prove Theorem 1.3 it suffices to apply the same argument as in [2]
with slight modifications. For completeness we shall repeat their argument.
Define P: A’ (V) — B(U) by Pu = p(x, D)u for u € A'(V).

LEMMA 2.4. P is surjective if and only if Q : A'(V) x st'(W\ U) 3
(o, 1) — P+ p € ' (W) is surjective.

REMARK. The above result was given in Schapira [8].

PROOF. Assume that P is surjective. Let g € oi'(W), and put f =
glv € B(U). Then there is ¢ € o4'(V) such that Py = f. Therefore, we
have Po—g € ' (W\U) since (Pg)|y = (p(x, D)¢)|y ( = Py). This proves
that @ is surjective. Next assume that @ is surjective. Let f € B(U). By
definition there is g € o'(U) satisfying f = g|y. Then there are ¢ € d'(V)
and pu € o'(W \ U) such that g = Py + p. Therefore, we have (Py)|y =
glo=f.0O

LEMMA 2.5. Let Q be a complex neighborhood of W. Then P is sur-
jective if and only if for any e with 0 < e < dis(W,C"\ Q) there are positive
constants n and C' such that

(2.11) |hlv, < C(|"Phly, + (M wne.)  for any h € A(K),

where dis(A, B) := inf{|z —y|; x € A and y € B}.
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PROOF. Since the boundary of each connected component of U is in-
cluded in OU, (W) — (W \ U) is injective and, therefore, «'(W \ U)
is dense in o4’ (W). So it suffices to prove that @ has closed range if and
only if (2.11) holds, where @ is the operator defined in Lemma 2.4. On
the other hand, it follows from Koéthe [7, pl8] that @ has closed range if
and only if {Q: A(W) > h +— (tPh,h|W\U) € A(V) x A(W \ U) has ( se-
quentially) closed range. It is easy to see that ‘@ has closed range if (2.11)
holds. Therefore, @ has closed range if (2.11) holds. Now assume that
t{@Q (and Q) has closed range. Since ‘@ is injective, 'Q: A(W) — R(*Q)
is an isomorphism, where R('Q) denotes the range of ‘QQ. This implies
that hy — 0 in (W) if '\Qhy, — 0 in A(V) x (W \ U). Suppose that
(2.11) does not hold. Then there are € > 0 and a sequence {hy} C A(Q2)
such that |hg|y,, = 1 and *Qhy — 0 in > (Vz) x AX((W \ U)e), where
AXC(Q) = {p € A(Q); |¢p|lo < oo} is a Banach space with the norm |p|q.
This leads us a contradiction. [

Now we can prove Theorem 1.3. It follows from the assumption (A)" and
(2.8) that f is analytic in U if f € L?(R"), f is analytic in a neighborhood
of W\ U and 'pf(z, D) f is analytic in V. Let Q be a complex neighborhood
of W. Choose ¢ > 0 so that ¢ < dis(W,C" \ 2), and put

E:={(f,g.h) € L*(W) x A®(V2) x A®((W \ U).);
glv = (", D) lv, blwomne. = flwamno). -

Then for any (f,g,h) € E there is £ > 0 such that f can be continued
analytically to Wz. Indeed, p®(x, D) f = tpfi(x, D)f if f € L2(R"), f =h
in (W\U).NR" and f = fin U. So f is analytic in U and f € s4(W). Let
us prove that F is closed and, therefore, ' is a Banach space. Assume that
{(£5:95-15)} C E and (f;, 95, hy) — (f,9, k) in L2(W) x > (Vo) x A (W'
U)c). Let V4 and V, be open subsets of V satisfying U € V} € Vo € V,
and choose ®¥(z,¢) € SO(R,C,,C(V1,V3)) ( R > 4) so that 0 < ®F < 1,
supp ®F C V5 x R™ and ®f(x,&) =1 in V4 x R". We put

p?(l’,f) = @fb(:c,f)p(x,f), pg(xvé) = pR(xvg) _p{%(xvf)

Then we have pf(a:,g) € ST(R,Cy + A A1) (j = 1,2), where A; is a
positive constant depending on A, Vi, Vo, V/ and W. From Lemma 2.3
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we have ‘pfi(z,D)f; € AR") (£ = 1,2) if R > 2ey/nA;. Assume that
R > 2ey/nA;. It is obvious that 'pf'(z,D)f; — pf(z,D)f in Fo and
tplt(z, D) f; — 'pl(z, D) f in Fo (£ =1,2). Note that supp p& C (W\V;)x
R™ and that fj|y\y, can be continued analytically to h; € A ((W \ U)c)
which satisfies C; := sup.cw\p). [hj(2) — h(2)| — 0 as j — oo. Cauchy’s
estimates give

sup [D(f;(z) — h(z))| < Cj(v/n/e)*al!.

zeW\Vy
It follows from Lemma 2.3 and (2.9) that

"5 (x, D) f; — 'p§(x, D)(hlunyy) in P,
sup [vj(2) —v(2)| < CsC;j

2€Cn | Im 2|<6

if 6 < 1/(2ev/nmax{A;i,\/n/ec}), where vj(z) ( j € N) and v(z) denote
the analytic continuations of 'p5(z, D) f; ( j € N) and 'p¥(x, D)(hlyv, ),
respectively. Moreover, we have v(z) = ‘pf(z, D)f in Fy. Since gilv =
(*pfi(z, D) f;)lv = g|lv on V, we have

(2.12) (B, D))l = glv — vl on V.
We can write
Bz, D) f;(x iw B(z,D)f; in Fo.
&=

For 2 € R"\ V we have

Uf(D) (e, D)y = (2m) ™ [ DSl - o)

= (2" [ DL O 0. ~€) (0 dyde,
where L = |z — y|72 Y}, (ye — x¢) Dg,. Note that

ILE (R (©pti(y, —€))| < Csr(vn(C + Ci + A)/(e1R) )k

if € R"\ V and § > 0, where 1 = dis(Va,R™ \ V') ( > 0). Therefore, we
have

WD) *pi'(, D) fi| < CrE™| fjll L2(va)
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if z € R"\'V and R > 2ey/n(C + C, + A)/e;. Now assume that R >
2ey/n(C + Cy + A)/e1. Then Y 32, (D) 'pfi(z, D) f; converges uniformly
o 'pf(x, D) fj(x) on R™\ V and

sup |l («, D) fi(@)] < Clfjllepay (5 =1,2---),
zeR"\V

where C > 0. Therefore, we have
'pi'(x, D) fj(x) = 'pi'(z, D) f(z) onR™\V.
This, together with (2.12), gives
‘pi'(z, D) fj(z) = w(x) onR",

where w(z) = g(x) — v(z) for x € V and w(z) = pf(x, D)f(z) for x €
R™\ V. So we have pf(x, D) f(z) = w(z) in Fo and

(‘P (2, D) )lv = glv —vlv +vlv = glv.

Since f € L*(W) and flwnwnwye = hlwamnu)e, this proves that E is
closed. Put

E(k):={(f,g,h) € E; f is the restriction
of a function f € A (W) with |f|W1/k < k}.
Then E = |J,2, E(k) and E(k) is a closed balanced convex subset of E

since {f;}j=12,.. is relatively compact in (W) if f] € A® (W) and
|fjlw,,, < k. By Baire’s theorem there are k € N and ¢ > 0 such that f is
the restriction of a function f € ™ (W, ;) with |f|w, , <k if (f,9,h) € E
and || fllz2ewy + |glv. + |hlwnv). < e. This, together with (2.10), yields

(213)  |hlv,, < [Plwy, < R/ IRl ll2ory + [ Phv. + [Blmnw).)

for h € A(Q2) ( € A (W,)). Let n < 1/k. Then (2.11) is valid. Indeed,
suppose that (2.11) does not hold for some n > 0 with n < 1/k. Then there
is a sequence {h;} C s4(€2) such that

hjlu, =1, |"Phjlv. + |hilww). — 0.
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Putting ¢/ = min{n, e}, we have
\hilw., < |hjlu, + [hilgne). <2 ifj> 1.
Therefore, we have
s lw | 2wy < 20W 2 if 5> 1,

where |W| denotes the volume of W. This, together with (2.13), implies that
{hjlu, .} is bounded in A>(U; ;) and that there are a subsequence {h;, }
of {h;} and h € A°(U,) such that hj,|y, — h in A (U,). Since hj, = 0
on W\ U and h(z) =0in U, N (W \U), h(z) =0 in U,, which contradicts
|h|v,, = 1. It follows from Lemma 2.5 that P = p(z,D): A'(V) — B(U) is
surjective.

3. Microhyperbolic Operators

First we shall give an immediate consequence of Theorem 1.3.

THEOREM 3.1. Let X be an open subset of R™, and let p(z,£) €
PST(X; Ry, A), where A > 0 and Ry > 1. Let U be an open subset of
X satisfying U € X, and assume that f is analytic in U if f € L*(R")
and ((*p)(z, D)f)ly = 0 in BU)/AU). Then p(x,D) : A'(V) — B(U)
is surjective for any open subset V of X with U € V € X. In particular,
p(z, D) : A'(V) — B(U) is surjective if ('p)(x, D) is analytic hypoelliptic in
U andV is an open subset of X satisfyingU € V € X ( see, e.g., Definition
4.5.1 of [10]).

Let X be an open subset of R”, and let p(z, &) € PS™%(X;0, A), where
m € R and A > 0. We assume that there are po(z, &) € PS™(X;0, A) and
p1(z,€) € PS™19(X:0,A) such that po(z,&) is positively homogeneous
of degree m in ¢ for || > 1 and p(x,&) = po(z, &) + pi(x,&). We define
q(z,§) € C(R" x (R"\ {0})) by q(z,&) = [§"po(z,&/|]). Note that

DEFINITION 3.2. Let 20 = (29,£%) e T*X \ 0 ( ~ X x (R"\ {0})) and
¥ € Too(T*X) ~ R,
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(i) We say that p(z, £) is microhyperbolic at 20 with respect to ¥ if there
are a neighborhood AU of 2" in 7*X \ 0 and ¢y > 0 such that

q(z—it?9) #0 for z = (z,€) € W and t € (0, to).

(ii) Assume that p(x, &) is microhyperbolic at z" with respect to 9. We
define the localization polynomial g,0(¢) of ¢(z) at 2° by

q(2° +1¢) = t"(g.0(¢) + o(1)) ast—0,
qzo(C) 20 in(e€ Tzo(T*X).

We call the number j the multiplicity of 2° relative to gq.

If p(z,&) is microhyperbolic at z° € T*X \ 0 with respect to ¥ € R??,
then ¢,0(¢) is hyperbolic, i.e.,

¢,0(¢C —i9) #0 for any ¢ € R*™,

and we can define I'(¢,0,7) as the connected component of the set {¢ €
To(T*X); q,0(¢) # 0} which contains ¥ ( see, e.g., §4.3 of [10]).

Let U be an open subset of X satisfying U € X, and assume that there
is a continuous vector field ¥: U x (R™\ {0}) > z +— 9(z) € R*" such
that p(z, &) is microhyperbolic at each z € U x (R™ \ {0}) with respect to
¥(z). A Lipschitz continuous curve {z(s) }sc(—q,0) in U x (R™\ {0}) is called
a generalized semi-bicharacteristics of py in the negative direction ( with
respect to ¥) if

(d/ds)z(s) € T'(q.(s),9(2(5)))7 N{dz; |6z =1} for a.e. s € (—a,0],

where a > 0, o denotes the cannonical symplectic form on T*R™ ( ~ R" x
Rn)v ’i.@., O'((§Z', 65)7 (63/, 677)) = 6y : 65 —ox- 677 for (61’, 66)7 (6y7 677) € R2n =
R™ x R™, and

' :={6z €T, (T"X); o(bw,bz) >0 for any éw € I'}

for z € T*X and I' C T,(T*X). Moreover, we say that a generalized semi-
bicharac- teristics {2(s)}se(—q,0) Of p in the negative direction is maximally
extended if there is no generalized semi-bicharacteristics {w(t)};c(—p0 of
p in the negative direction satisfying 2(0) = w(0) and {2(s)}sc(—a0 &
{w(t) }re(—p,0- We assume the following condition:
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(B) If {2(5)}se(—q,0 is @ maximally extended generalized semi-bicharac-
teristics of p in the negative direction, where the parameter s of the
curve is chosen so that —s coincides with the arc length from z(0) to
2(s), then lims_,_4102(s) € (AU x R")UU x (R™\ {0}) when a < oo,
and lim,_._ 2(s) € (OU x R™) when a = oo.

Under the condition (B) it follows from Theorem 4.3.8 of [10] that there
is a maximally extended generalized semi-bicharacteristics {2(s)}se(—q,0] Of
p in the negative direction with z(0) = 2° satisfying z(s) € WFa(f) for
s € (—a,0] and limgs|_, 2(s) € OU x R" if f € B(U), (*‘p)(z,D)f = 0 in
RB(U)/A(U) and 2° € WEF4(f). Here the parameter s of the curve is chosen
so that —s coincides with the arc length from 20 to z(s). For WF4(f) we
refer to §3.1 of [10]. So the condition (A)’ is satisfied for any open subsets
V and W of X satisfyingU € V e W € X.

THEOREM 3.3.  Under the condition (B) p(z,D) : d'(V) — B(U) is
surjective for any open subset V of X withU € V € X.
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