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Remarks on Solvability of Pseudodifferential

Operators in the Space of Hyperfunctions

By Seiichiro Wakabayashi

Abstract. Let X be an open subset, and let p(x, ξ) be a pseudo-
analytic symbol defined in X × Rn. Let U and V be open subsets
of X satisfying U � V � X. In this paper we prove that p(x,D):
�′(V ) → �(U) is surjective under some conditions on propagation
of analyticity for the transposed operator (tp)(x,D) of p(x,D). This
result was proved for differential operators by Cordaro and Trépreau
[2].

1. Introduction

In the framework of C∞ and distributions it is well known that solvabil-

ity of operators is related to propagation of regularities for their transposed

operators ( see Treves [9], Yoshikawa [13] and Hörmander [3] and [4]). Let

X be an open subset of Rn, and let P be a linear partial differential operator

on X with analytic coefficients. Cordaro and Trépreau [2] proved that P :

�(U) → �(U) is surjective if U is an open subset of X satisfying U � X

and P and U satisfy the following condition:

(A) f is analytic in U if f ∈ L2(Rn), f is analytic in a neighborhood of

∂U and tPf is analytic in U .

Here �(U) denotes the space of hyperfunctions in U , and tP denotes the

transposed operator of P . Moreover, A � B means that the closure A

of A is compact and included in the interior
◦
B of B, and ∂U denotes the

boundary of U . We should note that Cordaro and Trépreau studied the

problems in a more general setting in [2], although they dealt with only

differential operators. In this paper we shall extend the above result for

pseudodifferential operators.
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First we shall explain briefly about analytic functionals, hyperfunctions

and pseudodifferential operators acting on them. For the details we refer

to [10] ( see, also, [11]). Let ε ∈ R, and denote 〈ξ〉 = (1 + |ξ|2)1/2, where

ξ = (ξ1, · · · , ξn) ∈ Rn and |ξ| = (
∑n
j=1 |ξj |2)1/2. We define

�̂ε := {v(ξ) ∈ C∞(Rn); eε〈ξ〉v(ξ) ∈ �},

where � ( ≡ �(Rn)) denotes the Schwartz space. We introduce the topology

to �̂ε in a natural way. Then the dual space �̂
′
ε of �̂ε can be identified with

{v(ξ) ∈ �′; e−ε〈ξ〉v(ξ) ∈ �′}. Let ε ≥ 0. Then �̂ε is a dense subset of � and

we can define �ε := �−1[�̂ε] ( = �[�̂ε]) ( ⊂ �), where � and �−1 denote

the Fourier transformation and the inverse Fourier transformation on � ( or

�′), respectively. For example, �[u](ξ) =
∫
e−ix·ξu(x) dx for u ∈ �, where

x · ξ =
∑n
j=1 xjξj for x = (x1, · · · , xn) ∈ Rn and ξ = (ξ1, · · · , ξn) ∈ Rn.

We introduce the topology in �ε so that � : �̂ε → �ε is homeomorphic.

Denote by �′
ε the dual space of �ε. Since �ε is dense in �, we can regard

�′ as a subspace of �′
ε. We can define the transposed operators t� and

t�−1 of � and �−1, which map �′
ε and �̂

′
ε onto �̂

′
ε and �′

ε, respectively.

Since �̂−ε ⊂ �̂
′
ε ( ⊂ �′), we can define �−ε = t�−1[�̂−ε], and introduce

the topology in �−ε so that t�−1 : �̂−ε → �−ε is homeomorphic. � ′
−ε

denotes the dual space of �−ε. We note that � = t� on �′. So we also

represent t� by �. Let �(Cn) be the space of entire analytic functions on

Cn, and let K be a compact subset of Cn. We denote by �′(K) the space

of analytic functionals carried by K, i.e., u ∈ �′(K) if and only if (i) u :

�(Cn) 
 ϕ �→ u(ϕ) ∈ C is a linear functional, and (ii) for any neighborhood

ω of K in Cn there is Cω ≥ 0 such that |u(ϕ)| ≤ Cω supz∈ω |ϕ(z)| for ϕ ∈
�(Cn). Define �′(Rn) :=

⋃
K�Rn �′(K), �∞ :=

⋂
ε∈R�ε, �0 :=

⋂
ε>0 �−ε

and �0 :=
⋂
ε>0 �′

ε. For u ∈ �′(Rn) we can define the Fourier transform

û(ξ) of u by

û(ξ) ( = �[u](ξ)) = uz(e
−iz·ξ),

where z ·ξ =
∑n
j=1 zjξj for z = (z1, · · · , zn) ∈ Cn and ξ = (ξ1, · · · , ξn) ∈ Rn.

By definition we have û(ξ) ∈
⋂
ε>0 �̂−ε ( = �[�0]). Therefore, we can regard

�′(Rn) as a subspace of �0, i.e., �′(Rn) ⊂ �0 ⊂ �0 ( see Lemma 1.1.2 of

[10]). Let Ω be an open subset of Cn, and let �(Ω) be the space of analytic

functions in Ω. �(Ω) is a Fréchet-Schwartz space ( (FS) space) whose
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topology is defined by the family of the semi-norms | · |L ( L � Ω), where

|ϕ|L := sup
z∈L

|ϕ(z)|.

Let K be a compact subset of Rn. Then K has a fundamental system

of complex neighborhoods consisting of Runge domain ( see, e.g., [5] and

Lemma 1.1.1 of [10]). So u(ϕ) can be defined for u ∈ �′(K) if Ω is an open

neighborhood of K in Cn and ϕ ∈ �(Ω). We denote

Kε := {z ∈ Cn; |z − x| < ε for some x ∈ K}

for ε ≥ 0, and define the (DFS) space �(K) by �(K) = inj limε→0 �(Kε)

( see, e.g., [6]). Then �′(K) can be identified with the strong dual space of

�(K) and �′(K) is a (FS) space. For δ > 0 we have ( �δ ⊂) � ′
−δ ⊂ �(Rnδ ),

where Rnδ = {z ∈ Cn; | Im z| < δ} ( see Lemma 1.1.3 of [10]). Moreover,

we have u(ϕ) = 〈u, ϕ〉�′(K),�(K) = 〈u, ϕ〉 for u ∈ �′(K) and ϕ ∈ �δ, where

δ > 0 and 〈·, ·〉�′(K),�(K) and 〈·, ·〉 denote the duality of �′(K) and �(K)

and that of �′
δ and �δ, respectively ( see Lemma 1.1.2 of [10]). For a

bounded open subset X of Rn we define the space �(X) of hyperfunctions

in X by

�(X) := �′(X)/�′(∂X).

For u ∈ �0 we define

�(u)(x, xn+1) := (sgn xn+1) exp[−|xn+1|〈D〉]u(x)/2

( = (sgn xn+1)�
−1
ξ [exp[−|xn+1|〈ξ〉]û(ξ)](x)/2 ∈ �′(Rn))

when xn+1 ∈ R \ {0}, and

supp u :=
⋂

{F ; F is a closed subset of Rn and there is a real

analytic function U(x, xn+1) in Rn+1 \ F × {0}
such that U(x, xn+1) = �(u)(x, xn+1) for xn+1 �= 0}

( see [10]). For a compact subset K of Rn, u ∈ �′(K) if and only if u is an

analytic functional and supp u ⊂ K ( see Proposition 1.2.6 of [10]). From

Theorem 1.3.3 of [10] it follows that for any u ∈ �0 and any compact subset

K of Rn there is v ∈ �′(K) satisfying supp (u−v)∩K ⊂ ∂K. Therefore, we

can define the restriction map from �0 to �′(K)/�′(∂K) ( = �(
◦
K)). For
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an open subset X of Rn we define the space �(X) of hyperfunctions in X

as a local space of �′(Rn) ( or �0) ( see Definition 1.4.5 of [10]). Let X and

U be open subsets of Rn satisfying U ⊂ X. Then the restriction map ρXU :

�(X) 
 u �→ u|U ∈ �(U) can be defined. By definition we can also define

the restriction map from �0 to �(X), and we denote by v|X the restriction

of v ∈ �0 to �(X) ( or on X). For x0 ∈ Rn we say that u is analytic

at x0 if �(u)(x, xn+1) can be continued analytically from Rn × (0,∞) to a

neighborhood of (x0, 0) in Rn+1.

Assume that a(ξ, y, η) ∈ C∞(Rn × Rn × Rn) satisfies the estimates

|∂αξ Dβ+β̃y ∂γηa(ξ, y, η)|
≤ C|α|+|β̃|+|γ|(A/R)|β|〈ξ〉m1+|β|〈η〉m2 exp[δ1〈ξ〉 + δ2〈η〉]

for any α, β, β̃, γ ∈ (Z+)n, ξ, y, η ∈ Rn with 〈ξ〉 ≥ R|β|, where Dy = −i∂y,
Ck (k ≥ 0) are positive constants, R ≥ 1, A ≥ 0, m1,m2, δ1, δ2 ∈ R and

Z+ = N ∪ {0}. We define pseudodifferential operators a(Dx, y,Dy) and
ra(Dx, y,Dy) by

a(Dx, y,Dy)u(x) = (2π)−n�−1
ξ

[∫ (∫
e−iy·(ξ−η)a(ξ, y, η)û(η) dη

)
dy

]
(x)

and ra(Dx, y,Dy)u = b(Dx, y,Dy)u for u ∈ �∞, respectively, where

b(ξ, y, η) = a(η, y, ξ).

Proposition 1.1 (Theorem 2.3.3 of [10] or Proposition 1.2 of [11]).

a(Dx, y,Dy) can be extended to a continuous linear operator from �ε2 to

�ε1 and from � ′
−ε2 to � ′

−ε1, respectively, if{
κ > 1, ε2 − δ2 = κ(ε1 + δ1)+,

ε1 + δ1 ≤ 1/R, R ≥ e
√
nκA/(κ− 1),

(1.1)

where c+ = max{c, 0}. Similarly, ra(Dx, y,Dy) can be extended to a contin-

uous linear operator from �−ε1 to �−ε2 and from � ′
ε1 to � ′

ε2, respectively,

if (1.1) is valid.

Definition 1.2. Let X be an open subset of Rn, and let R0 ≥ 0.

(i) Let R0 ≥ 1, m, δ ∈ R and A,B ≥ 0, and let a(x, ξ) ∈ C∞(Rn × Rn).

We say that a(x, ξ) ∈ Sm,δ(R0, A,B) if a(x, ξ) satisfies

|a(α+α̃)

(β+β̃)
(x, ξ)| ≤ C|α̃|+|β̃|(A/R0)

|α|(B/R0)
|β|〈ξ〉m+|β|−|α̃|eδ〈ξ〉
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for any α, α̃, β, β̃ ∈ (Z+)n and (x, ξ) ∈ Rn × Rn with 〈ξ〉 ≥ R0(|α| + |β|),
where a

(α)
(β)(x, ξ) = ∂αξ D

β
xa(x, ξ) and the Ck are independent of α and β. We

also write Sm(R0, A,B) = Sm,0(R0, A,B) and Sm(R0, A) = Sm(R0, A,A)

and so on. We define S+(R0, A,B) =
⋂
δ>0 S

0,δ(R0, A,B).

(ii) Let R0 ≥ 1, mj , δj ∈ R ( j = 1, 2), Aj ≥ 0 ( j = 1, 2) and

B ≥ 0, and let a(ξ, y, η) ∈ C∞(Rn × Rn × Rn). We say that a(ξ, y, η) ∈
Sm1,m2,δ1,δ2(R0, A1, B,A2) if a(ξ, y, η) satisfies

|∂α+α̃ξ Dβ
1+β2+β̃
y ∂γ+γ̃η a(ξ, y, η)| ≤ C|α̃|+|β̃|+|γ̃|(A1/R0)

|α|(B/R0)
|β1|+|β2|

× (A2/R0)
|γ|〈ξ〉m1+|β1|−|α̃|〈η〉m2+|β2|−|γ̃| exp[δ1〈ξ〉 + δ2〈η〉]

for any α, α̃, β1, β2, β̃, γ, γ̃ ∈ (Z+)n, (ξ, y, η) ∈ Rn × Rn × Rn with 〈ξ〉 ≥
R0(|α|+ |β1|) and 〈η〉 ≥ R0(|γ|+ |β2|). We also write Sm1,m2,δ1,δ2(R0, A) =

Sm1,m2,δ1,δ2(R0, A,A,A). Similarly, we define S+(R0, A1, B,A2) =⋂
δ>0 S

0,0,δ,δ(R0, A1, B,A2).

(iii) Let m, δ ∈ R and A,B ≥ 0, and let a(x, ξ) ∈ C∞(X × Rn). We say

that a(x, ξ) ∈ PSm,δ(X;R0, A,B) if a(x, ξ) satisfies

|a(α+α̃)
(β) (x, ξ)| ≤ C|α̃|A

|α|B|β||α|!|β|!〈ξ〉m−|α|−|α̃|eδ〈ξ〉

for any α, α̃, β ∈ (Z+)n, (x, ξ) ∈ X × Rn with |ξ| ≥ 1 and 〈ξ〉 ≥ R0|α|.
We also write PS+(X;R0, A,B) =

⋂
δ>0 PS

0,δ(X;R0, A,B) and PS+(X;

R0, A) = PS+(X;R0, A,A).

(iv) Let m, δ ∈ R and A,C0 ≥ 0, and let {aj(x, ξ)}j∈Z+ ∈∏
j∈Z+

C∞(X × Rn). We say that a(x, ξ) ≡ {aj(x, ξ)}j∈Z+ ∈ FPSm,δ(X;

R0, C0, A) if a(x, ξ) satisfies

|a(α+α̃)
j(β) (x, ξ)| ≤ C|α̃|C

j
0A

|α|+|β|j!|α|!|β|!〈ξ〉m−j−|α|−|α̃|eδ〈ξ〉

for any j ∈ Z+, α, α̃, β ∈ (Z+)n, (x, ξ) ∈ X × Rn with |ξ| ≥ 1 and 〈ξ〉 ≥
R0(j + |α|). We also write a(x, ξ) =

∑∞
j=0 aj(x, ξ) formally. Moreover, we

write FPS+(X;R0, C0, A) =
⋂
δ>0 FPS

0,δ(X;R0, C0, A).

(v) For a(x, ξ) ≡
∑∞
j=0 aj(x, ξ) ∈ FPS+(X;R0, C0, A) we define the

symbol (ta)(x, ξ) by

(ta)(x, ξ) =
∞∑
j=0

bj(x, ξ), bj(x, ξ) =
∑
k+|α|=j

(−1)|α|a(α)
k(α)(x,−ξ)/α!.
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Remark. (i) If R0 ≤ R1, then PSm,δ(X;R0, A,B) ⊂ PSm,δ(X;

R1, A,B).

(ii) a(x, ξ) ∈ PS+(X;R0, A) can be identified with the element

{aj(x, ξ)}j∈Z+ in FPS+(X;R0, C0, A), where a0(x, ξ) = a(x, ξ) and

aj(x, ξ) = 0 ( j ≥ 1) and C0 > 0.

(iii) It is easy to see that (ta)(x, ξ) ∈ FPS+(X;R0, C
′
0, 2A) if a(x, ξ) ∈

FPS+(X;R0, C0, A), where C ′
0 = max{C0, 4nA

2}.

Let X be an open subset of Rn, and assume that a(x, ξ) ∈ PS+(X;

R0, A), where A ≥ 0 and R0 ≥ 1. Let U and V be open subsets of X sat-

isfying U � V � X. It follows from Proposition 2.2.3 of [10] that there are

symbols ΦR(x, ξ) ∈ S0(R,C∗, C(U, V )) ( R ≥ 4) satisfying 0 ≤ ΦR(x, ξ) ≤
1, supp ΦR ⊂ V × Rn and ΦR(x, ξ) = 1 in U × Rn. Put aR(x, ξ) =

ΦR(x, ξ)a(x, ξ). Then we have aR(x, ξ) ∈ S+(R,A+C∗, 2A+C(U, V )) if R ≥
max{4, R0}. Applying Proposition 1.1 with a(ξ, y, η) = aR(y, ξ) and noting

that aR(x,D) = ra(Dx, y,Dy), we can see that aR(x,D)u is well-defined

and belongs to �0 if u ∈ �0 and R ≥ max{4, R0, 2e
√
n× (2A + C(U, V ))}.

Moreover, aR(x,D)u determines an element (aR(x,D)u)|U ∈ �(U). It fol-

lows from Theorem 2.6.1 ( or Collorary 2.6.2) of [10] that (aR(x,D)u)|U
does not depend on the choice of ΦR(x, ξ) if u ∈ �0, ΦR(x, ξ) ∈ S0(R,B)

and R ≥ max{4, R0, 8e
√
n(2A+B)}. Therefore, we can define the operator

a(x,D): �0 → �(U) by a(x,D)u = (aR(x,D)u)|U for R � 1, and the op-

erator a(x,D): �0 → �(X). Let u ∈ �(U). Then there is v ∈ �′(U) such

that v|U = u in �(U). By Theorem 2.6.5 of [10] we have aR(x,D)w ∈ �(U)

if w ∈ �0, R ≥ max{4, R0, 16e
√
n(2A + C(U, V ))} and supp w ∩ U = ∅,

where �(U) denotes the space of ( real) analytic functions in U . This implies

that (aR(x,D)v)|U ( ∈ �(U)/�(U)) is uniquely determined, as an element

of �(U)/�(U), by u and does not depend on the choice of v. Therefore, we

can also define the operator a(x,D): �(U) → �(U)/�(U) and the operator

a(x,D): �(X) → �(X)/�(X) ( see §2.7 of [10]). We note that the above

definitions of the operator a(x,D) coincides with usual ones if a(x,D) is a

differential operator with analytic coefficients in X ( see Theorem 2.7.1 of

[10]).
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Next we assume that a(x, ξ) ≡
∑∞
j=0 aj(x, ξ) ∈ FPS+(X;R0, C0, A).

Choose {φRj (ξ)}j∈Z+ ⊂ C∞(Rn) so that 0 ≤ φRj (ξ) ≤ 1,

φRj (ξ) =

{
0 if 〈ξ〉 ≤ 2Rj,

1 if 〈ξ〉 ≥ 3Rj,

|∂α+βξ φRj (ξ)| ≤ Ĉ|β|(Ĉ/R)|α|〈ξ〉−|β| if |α| ≤ 2j,

where the Ĉk and Ĉ do not depend on j and R ( see §2.2 of [10]). Then we

have

ã(x, ξ) :=
∞∑
j=0

φ
R/2
j (ξ)aj(x, ξ) ∈ PS+(X;R,A + 6Ĉ, A)

if R ≥ 2R0 and R ≥ C0 ( see Lemma 2.2.4 of [10]). So we can define a(x,D):

�0 → �(X)/�(X) and �(X) → �(X)/�(X) by a(x,D) = ã(x,D).

Indeed, applying the same argument as in §3.7 of [10] we can see that

a(x,D)u ∈ �(X)/�(X) does not depend on the choice of {φRj (ξ)}, where

u ∈ �0 or u ∈ �(X).

Let p(x, ξ) ∈ PS+(X;R0, A), where A ≥ 0 and R0 ≥ 1. Moreover, let

U , V and W be open subsets of X satisfying U � V � W � X, and assume

that

(A)′ f is analytic in U if f ∈ L2(Rn), f is analytic in a neighborhood of

W \ U and ((tp)(x,D)f)|V = 0 in �(V )/�(V ),

instead of the condition (A). We note that (A)′ is satisfied if (A) is satisfied.

Now we can state our main result.

Theorem 1.3. If (A)′ is satisfied, then the operator p(x,D) : �′(V ) →
�(U) is surjective, i.e., for any f ∈ �(U) there is u ∈ �′(V ) satisfying

p(x,D)u = f in �(U).

In [12] we proved similar results in the space of microfunctions ( see,

also, [11]). In the framework of the Gevrey classes and the spaces of ultra-

distributions Albanese, Corli and Rodino [1] obtained similar results.

We shall give the proof of Theorem 1.3 in §2. In §3 we shall apply

Theorem 1.3 to microhyperbolic operators.
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2. Proof of Theorem 1.3

Assume that p(x, ξ) ∈ PS+(X;R0, A) satisfies the condition (A)′.
Choose ε0 > 0, ΦR(x, ξ) ∈ S0(R,C∗, C(V ′,W )) ( R ≥ 4) and ΨR(ξ, y, η) ∈
S0,0,0,0(R,C∗, C(V ′,W ), C∗) ( R ≥ 4) so that V ′ ≡ {x ∈ Rn; |x−y| < ε0 for

some y ∈ V } � W ( � X), 0 ≤ ΦR ≤ 1, 0 ≤ ΨR ≤ 1, supp ΦR ⊂ W × Rn,

supp ΨR ⊂ Rn ×W × Rn, ΦR(x, ξ) = 1 in V ′ × Rn and ΨR(ξ, y, η) = 1 in

Rn × V ′ × Rn. We put

pR(x, ξ) := ΦR(x, ξ)p(x, ξ) ∈ S+(R,A + C∗, 2A + C(V ′,W )),

p̃R(ξ, y, η) := ΨR(ξ, y, η)p(y, η) ∈ S+(R,C∗, 2A + C(V ′,W ), A + C∗)

for R ≥ max{4, R0}. Then, for δ > 0 pR(x,D) and p̃R(Dx, y,Dy) map

continuously �δ to � and, therefore, the transposed operators tpR(x,D) and
tp̃R(Dx, y,Dy) map continuously �′ to �′

δ. It is obvious that tpR(x,D) =

q(Dx, y,Dy) and tp̃R(Dx, y,Dy) = q̃(Dx, y,Dy), where q(ξ, y, η) = pR(y,−ξ)
and q̃(ξ, y, η) = p̃R(−η, y,−ξ) ( see the proof of Lemma 2.1 below).

Lemma 2.1. Let a(ξ, y, η) be a symbol satisfying

|∂α+α̃ξ Dβy ∂
γ
ηa(ξ, y, η)| ≤ C|α̃|+|β|+|γ|,δ(B/R)|α|〈η〉m−|γ|eδ〈ξ〉

if 〈ξ〉 ≥ R|α| and δ > 0, and a(ξ, y, η) = 0 if y ∈ V ′, where R > 0, B ≥ 0

and m ∈ R. Then a(Dx, y,Dy)u ( ∈ �0) is analytic in V for u ∈ �′ if

R ≥ 16enB/ε0.

Proof. Since for δ > 0

|∂αξ Dβy ∂γη {a(ξ, y, η)e−δ〈ξ〉}| ≤ C|α|+|β|+|γ|,δ〈η〉m−|γ|e−δ〈ξ〉/2

and e−δ〈D〉a(Dx, y,Dy): �′ → �′, a(Dx, y,Dy) maps continuously �′ to �0.

Here we introduce the topology of �0 by �0 = inj limε↓0 �′
ε. We shall prove

the lemma, applying the same argument as in the proof of Lemma 2.3 of

[11]. Let u ∈ �′, µ = 0, 1 and 0 < ρ ≤ 1. We put ψRj (ξ) := φRj−1(ξ) − φRj (ξ)

( j ∈ N), where the φRj (ξ) are symbols as in §1. Then we have

〈D〉µe−ρ〈D〉a(Dx, y,Dy)u(2.1)

=
∞∑
j=1

〈D〉µe−ρ〈D〉ψR
′
j (D)a(Dx, y,Dy)u in �′,
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where R′ > 0. A standard argument yields

〈D〉µe−ρ〈D〉ψR
′
j (D)a(Dx, y,Dy)u(x) = 〈û(η), fR

′
µ,j(x, η; ρ)〉η,(2.2)

where M,N ∈ Z+, 2M > n and

fR
′
µ,j(x, η; ρ) = (2π)−2n

∫
ei(x−y)·ξ+iy·η〈ξ − η〉−2N

× 〈Dy〉2N{〈x− y〉−2M 〈Dξ〉2M (〈ξ〉µe−ρ〈ξ〉ψR′
j (ξ)a(ξ, y, η))} dξdy.

Indeed, for ϕ ∈ �(Rn) we have

〈〈D〉µe−ρ〈D〉ψR
′
j (D)a(Dx, y,Dy)u, ϕ〉

= 〈û(η),

∫
fR

′
µ,j(x, η; ρ)ϕ(x) dx〉η,

sup
|α|+k≤!

|〈η〉k∂αηDβxfR
′
µ,j(x, η; ρ)| ≤ C!,|β|,ρ,j,R′〈x〉!.(2.3)

This proves (2.2). Define L by

tL = |x− y|−2
n∑
k=1

(x̄k − yk)Dξk

for x ∈ Cn with Re x ∈ V and y ∈ Rn \ V ′. A simple calculation gives

|∂αη 〈Dy〉2NLj+M{〈ξ〉µe−ρ〈ξ〉ψR′
j (ξ)a(ξ, y, η)}|(2.4)

≤ C|α|,N,M,ε0,δ,R′ |x− y|−M 〈η〉m−|α|〈ξ〉µ−Meδ〈ξ〉

× {8n(B/R + (Ĉ + 6(1 +
√

2))/R′)/ε0}jχR
′
j (ξ)

if α ∈ (Z+)n, M,N, j ∈ Z+, R′ ≥ R, x ∈ Cn, Re x ∈ V and δ > 0, where

χR
′
j (ξ) is the defining function of the set {ξ ∈ Rn; 2R′(j− 1) ≤ 〈ξ〉 ≤ 3R′j}.

Here we have used Lemmas 2.1.1 and 2.1.7 of [10]. Therefore, we have

sup
k+|α|≤!

|〈η〉k∂αη fR
′
µ,j(x, η; ρ)| ≤ C!,ε0,ρ1,R′j−2(2.5)

if : ∈ Z+, x ∈ Cn, Re x ∈ V , | Im x| ≤ ρ1 ( ≤ 1/2) and{
R′ ≥ R, R′ ≥ 16en(Ĉ + 6(1 +

√
2))/ε0,

R ≥ 16enB/ε0, ρ1 < 1/(3R′),
(2.6)
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taking M > :+n and N ≥ :+m in (2.4). Since Re (1+ (x− y) · (x− y)) =

1 + |Re x− y|2 − | Im x|2 for x ∈ Cn and y ∈ Rn, fR
′
µ,j(x, η; ρ) is analytic in

x if | Im x| < 1. We note that (2.3) is valid for x ∈ Cn with | Im x| ≤ 1/2,

where Dx means complex differentiation. So it follows from (2.2) and (2.5)

that 〈D〉µe−ρ〈D〉ψR
′
j (D)a(Dx, y,Dy)u(x) is analytic in x and

|〈D〉µe−ρ〈D〉ψR
′
j (D)a(Dx, y,Dy)u(x)| ≤ Cε0,ρ1,R′(V, u)j−2(2.7)

if u ∈ �′, x ∈ Cn, Re x ∈ V , | Im x| ≤ ρ1 ( ≤ 1/2) and (2.6) is valid. Put

	(x, xn+1) = �(a(Dx, y,Dy)u)(x, xn+1),

and assume that

R ≥ 16enB/ε0, 0 < ρ1 < min{1/2, 1/(3R), ε0/(48en(Ĉ + 6(1 +
√

2)))}.

Then it follows from (2.1) and (2.7) that 〈Dx〉µ	(x, ρ) ( µ = 0, 1) can be

continued analytically to {x ∈ Cn; Re x ∈ V and | Im x| < ρ1}. Applying

Lemma 1.2.4 of [10] to the Cauchy problem{
(1 − ∆x,xn+1)v(x, xn+1) = 0,

v(x, ρ) = 	(x, ρ), (∂v/∂xn+1)(x, ρ) = −〈Dx〉	(x, ρ),

we can show that 	(x, xn+1) can be continued analytically from Rn×(0,∞)

to V × (ρ− ρ1,∞). This implies that a(Dx, y,Dy)u is analytic in V . �

Assume that R ≥ max{4, R0, 16en(A + C∗)/ε0}. From Lemma 2.1

we see that tpR(x,D)u − tp̃R(Dx, y,Dy)u is analytic in V for u ∈ �′.
Let us apply Corollary 2.4.7 of [10] to tp̃R(Dx, y,Dy). We note that

(tp)(x, ξ) ≡
∑∞
j=0 qj(x, ξ) ∈ FPS+(X;R0, 4nA

2, 2A), where qj(x, ξ) =∑
|α|=j(−1)|α|p(α)

(α)(x,−ξ)/α!. Let R0 ≥ nA2/2, and put q(x, ξ) :=∑∞
j=0 φ

4R0
j (ξ)qj(x, ξ). By definition (tp)(x,D) coincides with q(x,D) as the

operator from �0 to �(X)/�(X). Since tp̃R(Dx, y,Dy) = a(Dx, y,Dy) if

a(ξ, y, η) = p̃R(−η, y,−ξ), it follows from Corollary 2.4.7 of [10] that there

are symbols h(x, ξ) and r(x, ξ) and R(A, V ′,W ) ≥ max{4, R0} such that

tp̃R(Dx, y,Dy) = h(x,D) + r(x,D) on �∞,
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h(x, ξ) ∈ S+(4R, Ĉ∗ + 10A1) and

|r(α)
(β)(x, ξ)| ≤ C|α|,R(4R + 1)|β||β|!e−〈ξ〉/R

if R ≥ R(A, V ′,W ), where A1 = max{A + C∗, 2A + C(V ′,W )}. Moreover,

we have

|∂αξ Dβx{h(x, ξ) − q(x, ξ)}| ≤ C|α|,R(R + 1)|β||β|!〈ξ〉−|α|e−〈ξ〉/R

if x ∈ V ′ and R ≥ R(A, V ′,W ). Now assume that R ≥ R(A, V ′,W ).

Proposition 1.1 implies that r(x,D)u is analytic if u ∈ �0. It follows from

Lemma 2.4 of [11] that (h(x,D)u)|X − q(x,D)u ( ∈ �(X)) is analytic in V

for u ∈ �0, with a modification of R(A, V ′,W ) if necessary. This yields

(tpR(x,D)u)|V = (tp̃R(Dx, y,Dy)u)|V = ((tp)(x,D)u)|V in �(V )/�(V )

(2.8)

for u ∈ �0.

Lemma 2.2. Let a(x, ξ) be a symbol in S+(R0, A) satisfying

supp a(x, ξ) ⊂ W × Rn. Then a(x,D)u ∈ �′(W ) for u ∈ �0.

Proof. We shall apply the same argument as in the proof of Theorem

3.3.6 of [10]. Put

aR(x, ξ; y) :=
∞∑
k=1

ψRk (ξ)
∑

|β|≤k−1

(iy)β∂βxa(x, ξ)/β!

for x, y ∈ Rn, ξ ∈ Rn and R ≥ R0. Then we have

aR(x, ξ; y) ∈
⋂

δ>δ(y)/R0

S 0,δ(3R, 3Ĉ + 3AR/R0, 3AR/R0)

for any y ∈ Rn, where δ(y) =
√
nA|y|. Moreover, we have

|(∂xj + i∂yj )∂
α+α̃
ξ Dβ+β̃x aR(x, ξ; y)| ≤ C|α̃|+|β̃|,δ(Ĉ/R + A/R0)

|α|

× (A/R0)
|β|〈ξ〉|β|−|α̃| exp[(eδ(y)/R0 − 1/(3R) + δ)〈ξ〉]

if 〈ξ〉 ≥ 3R(|α|+ |β|). We choose open convex proper cones Γj ( 1 ≤ j ≤ J)

in Rn \ {0} and {gRj (ξ)} ⊂ C∞(Rn) ( R ≥ 2, 1 ≤ j ≤ J) so that gRj (ξ)
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is positively homogeneous of degree 0 in |ξ| ≥ 1, Rn \ {0} =
⋃J
j=1 Γj ,

supp gRj ∩ {|ξ| ≥ 1} ⊂ Γj ,
∑J
j=1 g

R
j (ξ) = 1 for ξ ∈ Rn and |∂α+γξ gRj (ξ)| ≤

C|γ|(C∗/R)|α|〈ξ〉−|γ| if 〈ξ〉 ≥ R|α|. Let u ∈ �0, and put

URj (x, xn+1) := (sgn xn+1)e
−|xn+1|〈D〉gRj (D)u(x)/2

( = gRj (Dx)�(u)(x, xn+1)).

It is obvious that

URj (x, xn+1) = (2π)−n〈û(ξ), eix·ξ−xn+1〈ξ〉gRj (ξ)〉

for xn+1 > 0. We can choose c > 0 so that

Im z · ξ ≥ c| Im z| |ξ|
for 1 ≤ j ≤ J , z ∈ Rn + iΓ∗

j and ξ ∈ supp gRj with |ξ| ≥ 1,

where Γ∗
j = {y ∈ Rn; y · ξ ≥ 0 for any ξ ∈ Γj}. Now assume that R0 ≥

2e
√
nA/c. Then Stokes’ formula gives

〈a(x,D)uε(x), ϕ(x)〉 = 2
J∑
j=1

〈a(x,D)UR0
j (x, ε), ϕ(x)〉

= 2
J∑
j=1

{∫
W
Uj,1,ε(x; yj)ϕ(x + iyj) dx

+

∫ 1

0

(∫
W
Uj,2,ε(x; ryj)ϕ(x + iryj) dx

)
dr
}

for ϕ ∈ �∞, ε > 0 and yk ∈ Γ∗
k \{0} ( 1 ≤ k ≤ J), where uε(x) = e−ε〈D〉u(x)

and

Uj,1,ε(x; y) = (2π)−n〈û(ξ), ei(x+iy)·ξ−ε〈ξ〉gR0
j (ξ)aR(x, ξ; y)〉ξ/2,

Uj,2,ε(x; y)

= (2π)−n〈û(ξ), ei(x+iy)·ξ−ε〈ξ〉gR0
j (ξ)

n∑
k=1

iyk(∂xk + i∂yk)a
R(x, ξ; y)〉ξ/2

for 1 ≤ j ≤ J and y ∈ Γ∗
j \ {0}. It is easy to see that for each y ∈ Γ∗

j \ {0}

Uj,1,ε(x; y) ⇒ Uj,1,0(x; y) on Rn as ε ↓ 0,
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Uj,2,ε(x; ry) ⇒ Uj,2,0(x; ry) in (x, r) ∈ Rn × [0, 1] as ε ↓ 0.

Therefore, we have

〈a(x,D)u(x), ϕ(x)〉 = 2
J∑
j=1

{∫
W
Uj,1,0(x; yj)ϕ(x + iyj) dx

+

∫ 1

0

(∫
W
Uj,2,0(x; ryj)ϕ(x + iryj) dx

)
dr
}

for ϕ ∈ �∞ and yk ∈ Γ∗
k \{0} ( 1 ≤ k ≤ J). This implies that a(x,D)u(x) ∈

�′(W ). Indeed, �∞ includes 
 := {p(x)e−x
2
; p(x) is a polynomial} and,

therefore, �(Cn) can be approximated locally uniformly by elements of �∞.

On the other hand, we have

|〈a(x,D)u(x), ϕ(x)〉| ≤ Cδ sup
x∈W, |y|≤δ

|ϕ(x + iy)| for ϕ ∈ �∞

if δ > 0, which gives a(x,D)u(x) ∈ �′(W ). �

By Lemma 2.2 we can define an operator P : �′(V ) → �′(W ) by Pu =

pR(x,D)u for u ∈ �′(V ) ( ⊂ �0). Since the strong dual space of �′(K) is

�(K), we can define the transposed operator tP : �(W ) → �(V ), i.e.,

〈u, tPϕ〉�′(V ),�(V )(= u(tPϕ)) = 〈Pu, ϕ〉�′(W ),�(W )(= (Pu)(ϕ))

for u ∈ �′(V ) and ϕ ∈ �(W ). On the other hand, we can define
tpR(x,D)ϕ(x) for ϕ ∈ �(W ) by

tpR(x,D)ϕ(x) = �−1
ξ

[∫
e−iy·ξpR(y,−ξ)ϕ(y) dy

]
(x)(∈ �0)

since supp pR ⊂ W ×Rn. Moreover, we can define tpR(x,D)u ∈ �0 for u ∈
�′(W ). Assume that R ≥ 2e

√
n(2A + C(V ′,W )). Then, from Proposition

1.1 we have tpR(x,D): �∞ → �δ (⊂ �(V )) if δ < 1/R. By definition it is

easy to see that

tPϕ = tpR(x,D)ϕ in �(V ) for ϕ ∈ �∞.
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Lemma 2.3. Let a(x, ξ) be a symbol satisfying supp a ⊂ W × Rn and

|a(β)(x, ξ)| ≤ Cδ(A/R)|β|〈ξ〉|β|eδ〈ξ〉

if 〈ξ〉 ≥ R|β| and δ > 0. Let ε > 0, and assume that u ∈ C∞(W ) satisfies

|Dαu(x)| ≤ C(u)ε−|α||α|! for x ∈ W and α ∈ (Z+)n,

where C(u) is a positive constant. Then we have ra(x,D)u ∈ � ′
−δ and

sup
z∈Cn, | Im z|≤δ

|v(z)| ≤ C ′
δC(u)

if R ≥ 2e
√
nA and δ < 1/(2e

√
nmax{A, 1/ε}), where v(z) denotes the

analytic continuation of ra(x,D)u(x) to {z ∈ Cn; | Im z| ≤ δ} and C ′
δ is

a positive constant independent of u.

Proof. Put K = |ξ|−2
∑n
k=1 ξkDyk . Then we have

|Kj(a(y, ξ)u(y))| ≤ CδC(u)|ξ|−j〈ξ〉j{
√
n(A/R + 1/(R1ε))}jeδ〈ξ〉

≤ CδC(u)e1/R{
√
n(A/R + 1/(R1ε))}jeδ〈ξ〉

if R1 ≥ R, 〈ξ〉 ≥ R1j and δ > 0. Therefore, we have∣∣∣∫ e−iy·ξa(y, ξ)u(y) dy
∣∣∣ ≤ ∫

|Kj(a(y, ξ)u(y))| dy

≤ C ′
δC(u){e

√
n(A/R + 1/(R1ε))}j exp[(δ − 1/R1)〈ξ〉]

if R1 ≥ R, R1j ≤ 〈ξ〉 ≤ R1(j + 1) and δ > 0. This yields

|�[ra(x,D)u(x)](ξ)| ≤ C ′′
δC(u)e−δ〈ξ〉(2.9)

if R ≥ 2e
√
nA, R1 ≥ R, R1 ≥ 2e

√
n/ε and δ < 1/R1. From (2.9) we can

easily prove the lemma. �

We note that for ε > 0 and a compact subset K of Rn

K̂ε := {z ∈ Cn; |Re z − x| + | Im z| ≤ ε for some x ∈ K}

is polynomially convex and, therefore, K̂◦
ε is a Runge domain, where K̂◦

ε

denotes the interior of K̂ε in Cn ( see, e.g., Lemma 1.1.1 of [10]). Let
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ϕ ∈ �(W ). Then there are ε > 0 and {ϕj} ⊂ �∞ ( ⊂ �(Cn)) such that

ϕ ∈ �(K̂◦
3
√
nε

) and

sup
z∈K̂2

√
nε

|ϕ(z) − ϕj(z)| → 0 as j → ∞,

where K = W . Since {z ∈ Cn; |zk − xk| ≤ ε ( 1 ≤ k ≤ n) for some

x ∈ K} ⊂ K̂√
2nε, Cauchy’s estimates give

sup
α∈(Z+)n

sup
x∈W

ε|α||Dα(ϕ(x) − ϕj(x))|/|α|! → 0 as j → ∞.

Therefore, it follows from Lemma 2.3 that

tPϕ = tpR(x,D)ϕ for ϕ ∈ �(W ).(2.10)

In order to prove Theorem 1.3 it suffices to apply the same argument as in [2]

with slight modifications. For completeness we shall repeat their argument.

Define P̃ : �′(V ) → �(U) by P̃ u = p(x,D)u for u ∈ �′(V ).

Lemma 2.4. P̃ is surjective if and only if Q : �′(V ) × �′(W \ U) 

(ϕ, µ) �→ Pϕ + µ ∈ �′(W ) is surjective.

Remark. The above result was given in Schapira [8].

Proof. Assume that P̃ is surjective. Let g ∈ �′(W ), and put f =

g|U ∈ �(U). Then there is ϕ ∈ �′(V ) such that P̃ϕ = f . Therefore, we

have Pϕ−g ∈ �′(W \U) since (Pϕ)|U = (p(x,D)ϕ)|U ( = P̃ϕ). This proves

that Q is surjective. Next assume that Q is surjective. Let f ∈ �(U). By

definition there is g ∈ �′(U) satisfying f = g|U . Then there are ϕ ∈ �′(V )

and µ ∈ �′(W \ U) such that g = Pϕ + µ. Therefore, we have (Pϕ)|U =

g|U = f . �

Lemma 2.5. Let Ω be a complex neighborhood of W . Then P̃ is sur-

jective if and only if for any ε with 0 < ε < dis(W,Cn \Ω) there are positive

constants η and C such that

|h|Uη ≤ C(|tPh|Vε + |h|(W\U)ε
) for any h ∈ �(Ω),(2.11)

where dis(A,B) := inf{|x− y|; x ∈ A and y ∈ B}.
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Proof. Since the boundary of each connected component of U is in-

cluded in ∂U , �(W ) → �(W \ U) is injective and, therefore, �′(W \ U)

is dense in �′(W ). So it suffices to prove that Q has closed range if and

only if (2.11) holds, where Q is the operator defined in Lemma 2.4. On

the other hand, it follows from Köthe [7, p18] that Q has closed range if

and only if tQ: �(W ) 
 h �→ (tPh, h|W\U ) ∈ �(V ) × �(W \ U) has ( se-

quentially) closed range. It is easy to see that tQ has closed range if (2.11)

holds. Therefore, Q has closed range if (2.11) holds. Now assume that
tQ ( and Q) has closed range. Since tQ is injective, tQ: �(W ) → R(tQ)

is an isomorphism, where R(tQ) denotes the range of tQ. This implies

that hk → 0 in �(W ) if tQhk → 0 in �(V ) × �(W \ U). Suppose that

(2.11) does not hold. Then there are ε > 0 and a sequence {hk} ⊂ �(Ω)

such that |hk|U1/k
= 1 and tQhk → 0 in �∞(Vε) × �∞((W \ U)ε), where

�∞(Ω) := {ϕ ∈ �(Ω); |ϕ|Ω < ∞} is a Banach space with the norm |ϕ|Ω.

This leads us a contradiction. �

Now we can prove Theorem 1.3. It follows from the assumption (A)′ and

(2.8) that f is analytic in U if f ∈ L2(Rn), f is analytic in a neighborhood

of W \U and tpR(x,D)f is analytic in V . Let Ω be a complex neighborhood

of W . Choose ε > 0 so that ε < dis(W,Cn \ Ω), and put

E := {(f, g, h) ∈ L2(W ) × �∞(Vε) × �∞((W \ U)ε);

g|V = (tpR(x,D)f)|V , h|W∩(W\U)ε = f |W∩(W\U)ε}.

Then for any (f, g, h) ∈ E there is ε̂ > 0 such that f can be continued

analytically to Wε̂. Indeed, tpR(x,D)f = tpR(x,D)f̃ if f̃ ∈ L2(Rn), f̃ = h

in (W \U)ε ∩Rn and f̃ = f in U . So f is analytic in U and f ∈ �(W ). Let

us prove that E is closed and, therefore, E is a Banach space. Assume that

{(fj , gj , hj)} ⊂ E and (fj , gj , hj) → (f, g, h) in L2(W )×�∞(Vε)×�∞((W \
U)ε). Let V1 and V2 be open subsets of V satisfying U � V1 � V2 � V ,

and choose ΦR1 (x, ξ) ∈ S 0(R,C∗, C(V1, V2)) ( R ≥ 4) so that 0 ≤ ΦR1 ≤ 1,

supp ΦR1 ⊂ V2 × Rn and ΦR1 (x, ξ) = 1 in V1 × Rn. We put

pR1 (x, ξ) := ΦR1 (x, ξ)p(x, ξ), pR2 (x, ξ) := pR(x, ξ) − pR1 (x, ξ).

Then we have pRj (x, ξ) ∈ S+(R,C∗ + A,A1) ( j = 1, 2), where A1 is a

positive constant depending on A, V1, V2, V ′ and W . From Lemma 2.3
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we have tpR! (x,D)fj ∈ �(Rn) ( : = 1, 2) if R ≥ 2e
√
nA1. Assume that

R ≥ 2e
√
nA1. It is obvious that tpR(x,D)fj → tpR(x,D)f in �0 and

tpR! (x,D)fj → tpR! (x,D)f in �0 ( : = 1, 2). Note that supp pR2 ⊂ (W \V1)×
Rn and that fj |W\V1 can be continued analytically to hj ∈ �∞((W \ U)ε)

which satisfies Cj := supz∈(W\U)ε |hj(z) − h(z)| → 0 as j → ∞. Cauchy’s

estimates give

sup
x∈W\V1

|Dα(fj(x) − h(x))| ≤ Cj(
√
n/ε)|α||α|!.

It follows from Lemma 2.3 and (2.9) that

tpR2 (x,D)fj → tpR2 (x,D)(h|W\V1) in � ′
−δ,

sup
z∈Cn, | Im z|≤δ

|vj(z) − v(z)| ≤ CδCj

if δ < 1/(2e
√
nmax{A1,

√
n/ε}), where vj(z) ( j ∈ N) and v(z) denote

the analytic continuations of tpR2 (x,D)fj ( j ∈ N) and tpR2 (x,D)(h|W\V1),
respectively. Moreover, we have v(x) = tpR2 (x,D)f in �0. Since gj |V =

(tpR(x,D)fj)|V ⇒ g|V on V , we have

(tpR1 (x,D)fj)|V ⇒ g|V − v|V on V .(2.12)

We can write

tpR1 (x,D)fj(x) =

∞∑
k=1

ψRk (D) tpR1 (x,D)fj in �0.

For x ∈ Rn \ V we have

ψRk (D) tpR1 (x,D)fj = (2π)−n
∫

ei(x−y)·ξψRk (ξ)pR1 (y,−ξ)fj(y) dydξ

= (2π)−n
∫

ei(x−y)·ξLk(ψRk (ξ)pR1 (y,−ξ))fj(y) dydξ,

where L = |x− y|−2
∑n
!=1(y! − x!)Dξ� . Note that

|Lk(ψRk (ξ)pR1 (y,−ξ))| ≤ Cδ,R(
√
n(Ĉ + C∗ + A)/(ε1R))keδ〈ξ〉

if x ∈ Rn \ V and δ > 0, where ε1 = dis(V2,R
n \ V ) ( > 0). Therefore, we

have

|ψRk (D) tpR1 (x,D)fj | ≤ CRk
−2‖fj‖L2(V2)
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if x ∈ Rn \ V and R ≥ 2e
√
n(Ĉ + C∗ + A)/ε1. Now assume that R ≥

2e
√
n(Ĉ +C∗ +A)/ε1. Then

∑∞
k=1 ψ

R
k (D) tpR1 (x,D)fj converges uniformly

to tpR1 (x,D)fj(x) on Rn \ V and

sup
x∈Rn\V

|tpR1 (x,D)fj(x)| ≤ C‖fj‖L2(V2) ( j = 1, 2, · · · ),

where C > 0. Therefore, we have

tpR1 (x,D)fj(x) ⇒ tpR1 (x,D)f(x) on Rn \ V .

This, together with (2.12), gives

tpR1 (x,D)fj(x) ⇒ w(x) on Rn,

where w(x) = g(x) − v(x) for x ∈ V and w(x) = tpR1 (x,D)f(x) for x ∈
Rn \ V . So we have tpR1 (x,D)f(x) = w(x) in �0 and

(tpR(x,D)f)|V = g|V − v|V + v|V = g|V .

Since f ∈ L2(W ) and f |W∩(W\U)ε = h|W∩(W\U)ε, this proves that E is

closed. Put

E(k) := {(f, g, h) ∈ E; f is the restriction

of a function f̃ ∈ �∞(W1/k) with |f̃ |W1/k
≤ k}.

Then E =
⋃∞
k=1 E(k) and E(k) is a closed balanced convex subset of E

since {f̃j}j=1,2,··· is relatively compact in �(W1/k) if f̃j ∈ �∞(W1/k) and

|f̃j |W1/k
≤ k. By Baire’s theorem there are k ∈ N and c > 0 such that f is

the restriction of a function f̃ ∈ �∞(W1/k) with |f̃ |W1/k
≤ k if (f, g, h) ∈ E

and ‖f‖L2(W ) + |g|Vε + |h|(W\U)ε < c. This, together with (2.10), yields

|h|U1/k
≤ |h|W1/k

≤ (k/c)(‖h|W ‖L2(W ) + |tPh|Vε + |h|(W\U)ε)(2.13)

for h ∈ �(Ω) ( ⊂ �∞(Wε)). Let η < 1/k. Then (2.11) is valid. Indeed,

suppose that (2.11) does not hold for some η > 0 with η < 1/k. Then there

is a sequence {hj} ⊂ �(Ω) such that

|hj |Uη = 1, |tPhj |Vε + |hj |(W\U)ε → 0.
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Putting ε′ = min{η, ε}, we have

|hj |Wε′ ≤ |hj |Uη + |hj |(W\U)ε ≤ 2 if j � 1.

Therefore, we have

‖hj |W ‖L2(W ) ≤ 2|W |1/2 if j � 1,

where |W | denotes the volume of W . This, together with (2.13), implies that

{hj |U1/k
} is bounded in �∞(U1/k) and that there are a subsequence {hj�}

of {hj} and h ∈ �∞(Uη) such that hj� |Uη → h in �∞(Uη). Since hj� ⇒ 0

on W \ U and h(x) = 0 in Uη ∩ (W \ U), h(z) = 0 in Uη, which contradicts

|h|Uη = 1. It follows from Lemma 2.5 that P̃ ≡ p(x,D): �′(V ) → �(U) is

surjective.

3. Microhyperbolic Operators

First we shall give an immediate consequence of Theorem 1.3.

Theorem 3.1. Let X be an open subset of Rn, and let p(x, ξ) ∈
PS+(X;R0, A), where A ≥ 0 and R0 ≥ 1. Let U be an open subset of

X satisfying U � X, and assume that f is analytic in U if f ∈ L2(Rn)

and ((tp)(x,D)f)|U = 0 in �(U)/�(U). Then p(x,D) : �′(V ) → �(U)

is surjective for any open subset V of X with U � V � X. In particular,

p(x,D) : �′(V ) → �(U) is surjective if (tp)(x,D) is analytic hypoelliptic in

U and V is an open subset of X satisfying U � V � X ( see, e.g., Definition

4.5.1 of [10]).

Let X be an open subset of Rn, and let p(x, ξ) ∈ PSm,0(X; 0, A), where

m ∈ R and A ≥ 0. We assume that there are p0(x, ξ) ∈ PSm,0(X; 0, A) and

p1(x, ξ) ∈ PSm−1,0(X; 0, A) such that p0(x, ξ) is positively homogeneous

of degree m in ξ for |ξ| ≥ 1 and p(x, ξ) = p0(x, ξ) + p1(x, ξ). We define

q(x, ξ) ∈ C∞(Rn × (Rn \ {0})) by q(x, ξ) = |ξ|mp0(x, ξ/|ξ|). Note that

q(x, ξ) = p0(x, ξ) if |ξ| ≥ 1.

Definition 3.2. Let z0 = (x0, ξ0) ∈ T ∗X \ 0 ( � X × (Rn \ {0})) and

ϑ ∈ Tz0(T
∗X) � R2n.
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(i) We say that p(x, ξ) is microhyperbolic at z0 with respect to ϑ if there

are a neighborhood � of z0 in T ∗X \ 0 and t0 > 0 such that

q(z − itϑ) �= 0 for z = (x, ξ) ∈ � and t ∈ (0, t0].

(ii) Assume that p(x, ξ) is microhyperbolic at z0 with respect to ϑ. We

define the localization polynomial qz0(ζ) of q(z) at z0 by

q(z0 + tζ) = tµ(qz0(ζ) + o(1)) as t → 0,

qz0(ζ) �≡ 0 in ζ ∈ Tz0(T
∗X).

We call the number µ the multiplicity of z0 relative to q.

If p(x, ξ) is microhyperbolic at z0 ∈ T ∗X \ 0 with respect to ϑ ∈ R2n,

then qz0(ζ) is hyperbolic, i.e.,

qz0(ζ − iϑ) �= 0 for any ζ ∈ R2n,

and we can define Γ(qz0 , ϑ) as the connected component of the set {ζ ∈
Tz0(T

∗X); qz0(ζ) �= 0} which contains ϑ ( see, e.g., §4.3 of [10]).

Let U be an open subset of X satisfying U � X, and assume that there

is a continuous vector field ϑ: U × (Rn \ {0}) 
 z �→ ϑ(z) ∈ R2n such

that p(x, ξ) is microhyperbolic at each z ∈ U × (Rn \ {0}) with respect to

ϑ(z). A Lipschitz continuous curve {z(s)}s∈(−a,0] in U × (Rn \ {0}) is called

a generalized semi-bicharacteristics of p0 in the negative direction ( with

respect to ϑ) if

(d/ds)z(s) ∈ Γ(qz(s), ϑ(z(s)))σ ∩ {δz; |δz| = 1} for a.e. s ∈ (−a, 0],

where a > 0, σ denotes the cannonical symplectic form on T ∗Rn ( � Rn ×
Rn), i.e., σ((δx, δξ), (δy, δη)) = δy · δξ− δx · δη for (δx, δξ), (δy, δη) ∈ R2n ≡
Rn × Rn, and

Γσ := {δz ∈ Tz(T
∗X); σ(δw, δz) ≥ 0 for any δw ∈ Γ}

for z ∈ T ∗X and Γ ⊂ Tz(T
∗X). Moreover, we say that a generalized semi-

bicharac- teristics {z(s)}s∈(−a,0] of p in the negative direction is maximally

extended if there is no generalized semi-bicharacteristics {w(t)}t∈(−b,0] of

p in the negative direction satisfying z(0) = w(0) and {z(s)}s∈(−a,0] �

{w(t)}t∈(−b,0]. We assume the following condition:
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(B) If {z(s)}s∈(−a,0] is a maximally extended generalized semi-bicharac-

teristics of p in the negative direction, where the parameter s of the

curve is chosen so that −s coincides with the arc length from z(0) to

z(s), then lims→−a+0 z(s) ∈ (∂U ×Rn)∪U × (Rn \ {0}) when a < ∞,

and lims→−∞ z(s) ∈ (∂U × Rn) when a = ∞.

Under the condition (B) it follows from Theorem 4.3.8 of [10] that there

is a maximally extended generalized semi-bicharacteristics {z(s)}s∈(−a,0] of

p in the negative direction with z(0) = z0 satisfying z(s) ∈ WFA(f) for

s ∈ (−a, 0] and lims↓−a z(s) ∈ ∂U × Rn if f ∈ �(U), (tp)(x,D)f = 0 in

�(U)/�(U) and z0 ∈ WFA(f). Here the parameter s of the curve is chosen

so that −s coincides with the arc length from z0 to z(s). For WFA(f) we

refer to §3.1 of [10]. So the condition (A)′ is satisfied for any open subsets

V and W of X satisfying U � V � W � X.

Theorem 3.3. Under the condition (B) p(x,D) : �′(V ) → �(U) is

surjective for any open subset V of X with U � V � X.
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[4] Hörmander, L., Propagation of singularities and semi-global existence the-
orems for ( pseudo-)differential operators of principal type, Ann. of Math.
108 (1978), 569–609.
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