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On a KM2O-Langevin Equation

with Continuous Time (1)

By Yasunori Okabe

Abstract. We treat a continuous time stationary Gaussian pro-
cess X whose global time evolution is governed by [α, β, γ]-Langevin
equation and derive a KM2O-Langevin equation which governs a lo-
cal time evolution of the stochastic process X. Moreover, we prove a
fluctuation-dissipation theorem based upon the KM2O-Langevin equa-
tion and derive a system of equations characterizing both the fluctu-
ation and the drift coefficients in the KM2O-Langevin equation from
the covariance function of the stationary process X.

1. Introduction

About twenty-five years ago, we treated in [12] and [16] a continuous

time stationary Gaussian process with T-positivity and characterized T-

positivity by deriving a stochastic differential equation that describes a

global time evolution of the stochastic process, which is the first (resp. sec-

ond) KMO-Langevin equation with infinite delay term and white noise (resp.

Kubo noise) term. Furthermore, we showed the fluctuation-dissipation the-

orem, stating relations between the fluctuation and the drift terms in the

KMO-Langevin equation, as a precision and a generalization of fluctuation-

dissipation theorem in non-equilibrium statistical physics ([3], [10]). We

note that the terminology of “KMO” comes from the initials of Kubo, Mori

and Okabe.

Moreover, in [17], [18] and [24], we treated the Alder-Wainwright effect

for Stokes-Boussinesq-Langevin equation which states a long time tail be-

havior (∝ t−3/2) of the velocity autocorrelation function for hard spheres
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that had been studied in [1], [2], [4], [39] and [40]. Noting that the unique

solution of Stokes-Boussinesq-Langevin equation does not have Markovian

property, but has T-positivity, we showed how the Alder-Wainwright effect

for Stokes-Boussinesq-Langevin equation can be generalized in the frame-

work of the theory of KMO-Langevin equations with T-positivity. The case

for discrete time stationary Gaussian process with T-positivity was investi-

gated in [21]–[23].

On the other hand, we treated in [13] a continuous time stationary Gaus-

sian process with finite multiple Markovian property and derived a stochas-

tic differential equation with infinite delay and white noise terms which

describes a global time evolution of the stochastic process. Furthermore,

we showed the fluctuation-dissipation theorem based upon the stochastic

differential equation.

As a unification of the stochastic differential equations stated above,

we introduced in [12] an [α, β, γ]-Langevin equation whose solution is a

stationary Gaussian process with continuous time and studied the problem

predicting the future and the past from a bounded part of the stochastic

process. The case for stationary Gaussian processes with finite multiple

Markovian property had been discussed in [11].

On the other hand, Miyoshi treated in [8] and [9] a multi-dimensional

continuous time stationary Gaussian process associated with (k, l,m)-string

and derived a stochastic differential equation with finite delay and white

noise terms, to be called (α, β, γ, δ)-Langevin equation, which describes a

local time evolution of the stochastic process, and showed a fluctuation-

dissipation theorem, by using an inverse spectral theory.

As a discrete version of the stochastic differential equation derived in

[8] and [9], we treated in [25]–[35] a general multi-dimensional square in-

tegrable stochastic process with discrete time and derived a stochastic dif-

ference equation, to be called KM2O-Langevin equation, describing a local

time evolution of the stochastic process. Furthermore, we characterized the

stationarity of the stochastic process as a fluctuation-dissipation theorem,

which gives some relations between the fluctuation and the drift terms in

the KM2O-Langevin equation. In [6] and [33], we solved some problems

arising from Masani and Wiener’s work ([5]) on the non-linear prediction

problem for discrete time stochastic processes under Dobrushin-Minlos’ reg-

ularity condition. We note that the terminology of “KM2O” comes from the
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initials of Kubo, Mori, Miyoshi and Okabe.

Furthermore, we applied the theory of KM2O-Langevin equations to

non-linear time series analysis to develop an experimental mathematics

with the spirit of “ from data to model”, and proposed five tests: one

is Test(S) checking stationarity property of time series ([26]); the second is

Test(ABN) detecting certain signs of abnormality of time series ([35]); the

third is Test(D) searching determinacy property of time series ([29]); the

fourth is Test(CS) looking for causality property between two kinds of time

series ([28]); the fifth is Test(MOD) deriving a model describing a local time

evolution of time series ([33], [34], [37]).

The first aim of this paper is to treat a general stationary solution X of

[α, β, γ]-Langevin equation with infinite delay and white noise terms in [12],

and to derive the same type of stochastic differential equation with finite

delay and white noise terms as the one in Miyoshi’s work. We call such an

equation KM2O-Langevin equation with continuous time. The second aim

is to show the fluctuation-dissipation theorem based upon it. The third aim

is to derive a system of equations characterizing both the fluctuation and

the drift coefficients in the KM2O-Langevin equation with continuous time

from the covariance function of the stationary process X.

We shall state the contents of this paper. In Section 2, we shall recall

the results for the stationary solution of [α, β, γ]-Langevin equation in [12]

and [14]. By a stationary solution of [α, β, γ]-Langevin equation, we mean

a one-dimensional stationary Gaussian process X = (X(t); t ∈ R) with

continuous paths such that

(i) there exists a standard Brownian motion B = (B(t); t ∈ R) such

that for any t ∈ R

σ(X(s); s ≤ t) = σ(B(s1) −B(s2); s1, s2 ≤ t);(1.1)

(ii) with probability one, X and B satisfy

X(t) −X(s) = −
∫ t

s
(βX(u) +

∫
(−∞,0)

X(u + τ)γ(dτ))du(1.2)

+ α(B(t) −B(s))

for any t, s (s < t), where the triplet (α, β, γ) satisfies the following condi-

tions:

α > 0,(1.3)
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β ∈ R,(1.4)

γ(dτ) is a bounded signed Borel measure on (−∞, 0).(1.5)

In Section 3, we shall recall the results in [14] for the forward (resp.

backward) innovation processes ν+
a = (ν+

a (t); t ≥ 0) (resp. ν−a = (ν−a (t); t ≥
0)) (a ∈ R) and the local forward (resp. backward) prediction kernel P =

P (t, s) (0 ≤ s ≤ t) (resp. Q = Q(t, s) (t, s ≥ 0)) associated with the

stochastic process X.

Under additional conditions for the bounded signed measure γ(dτ) in

(1.5), in Section 4, we shall investigate the regularity properties of both the

local prediction kernels P and Q.

In Section 5, we shall derive the following stochastic differential equation

which governs a local time evolution of the stochastic process X: for any

t ≥ 0

X(t) −X(0) = −
∫ t

0
(β(s)X(s) +

∫ s

0
γ(s, u)X(u)du + δ(s)X(0))ds(1.6)

+ αν+
0 (t).

We call equation (1.6) KM2O-Langevin equation with continuous time asso-

ciated with the stochastic process X. We note that equation (1.6) describes

the local time evolution from the initil time t = 0 until time t of the stochas-

tic process X, while equation (1.2) describes the global time evolution from

the initial time t = −∞ until time t of the stochastic process X.

In Section 6, we shall prove a fluctuation-dissipation theorem which

gives a relation among the constant α, and three functions β = β(t) (t ≥
0), γ = γ(t, s) (0 ≤ s ≤ t) and δ = δ(t) (t ≥ 0) in the KM2O-Langevin

equation (1.6). We will find that the fucnction δ = δ(t) plays the same

role in fluctuation-dissipation theorem as the partial autocorrelation func-

tion for stationary process with discrete time ([25], [30]–[32]). We denote

such a quadruplet (α, β, γ, δ) by L(X) and call it a KM2O-Langevin system

associated with the stationary process X.

In Section 7, we shall derive a system of equations for characterizing

the KM2O-Langevin system L(X) from the covariance function R of the

stationary process X.

The author would like to express his gratitude to the referee for his

valuable advice.
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2. General Theory for [α, β, γ]-Langevin Equation

Let X be any stationary solution of [α, β, γ]-Langevin equation (1.2) with

conditions (1.1) and (1.3)–(1.5). Let R = R(t) be the covariance function

of the stationary process X:

R(t− s) ≡ E(X(t)X(s)) (t, s ∈ R).(2.1)

It follows from (1.1) that X is purely non-deterministic and so X has a

spectral density function ∆ = ∆(λ) of Hardy class. We denote by h = h(ζ)

the outer function of ∆ = ∆(λ):

h(ζ) ≡ exp(
1

2πi

∫
R

1 + λζ

λ− ζ

log ∆(λ)

1 + λ2
dλ) (ζ ∈ C+).(2.2)

Since there exists a limit h(ξ) ≡ limη↓0 h(ξ + iη) in L2(R), we can define a

function E = E(t) by the Fourier transform ĥ of the L2 function h = h(ξ):

E(t) ≡ ĥ(t) =

∫
R
e−itξh(ξ)dξ (t ∈ R).(2.3)

We note that

R(t) =

∫
R
e−itξ∆(ξ)dξ (t ∈ R),(2.4)

∆(ξ) = |h(ξ)|2 (ξ ∈ R),(2.5)

E(t) = 0 (t < 0),(2.6)

R(t) =
1

2π

∫ ∞

0
E(|t| + s)E(s)ds (t ∈ R).(2.7)

It follows from Theorem 3.1 in [12] that the stochastic process X has

the global forward canonical representation

X(t) =
1√
2π

∫ t

−∞
E(t− s)dB(s) (t ∈ R)(2.8)

and the outer function h can be represented by

h(ζ) =
α√
2π

1

β − iζ + γ̂(ζ)
(ζ ∈ C+ ∪ R),(2.9)
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where γ̂ denotes the Fourier-Laplace transform of the bounded signed mea-

sure γ(dτ):

γ̂(ζ) ≡
∫
(−∞,0)

e−iζτγ(dτ) (ζ ∈ C+ ∪ R).(2.10)

On the other hand, it follows from Proposition 2.2 in [14] that there

exists a standard Brownian motion B− = (B−(t); t ∈ R) such that X has

the global backward canonical representation

X(t) =
1√
2π

∫ ∞

t
E(s− t)dB−(s) (t ∈ R),(2.11)

σ(X(s); s ≥ t) = σ(B−(s1) −B−(s2); s1, s2 ≥ t) (t ∈ R)(2.12)

and X satisfies the following stochastic differential equation: for any t, s (s <

t)

X(s) −X(t) = −
∫ t

s
(βX(u) +

∫
(−∞,0)

X(u− τ)γ(dτ))du(2.13)

+ α(B−(t) −B−(s)).

We note from the canonical representaion (2.8) (resp. (2.11)) with (1.1)

(resp. (2.12)) that the function E = E(t) is called the global canonical

representation kernel. It follows from Propositions 3.1 and 3.2 in [12] that

Re h is bounded and integrable in R,(2.14)

E(|t|) = 2

∫
R
e−itξ(Re h)(ξ)dξ (t ∈ R),(2.15)

E is bounded, continuous on [0,∞) and vanishes at infinity,(2.16)

E(t) =
√

2πα−
∫ t

0
(βE(s) +

∫
[−s,0)

E(s + τ)γ(dτ))ds (t ≥ 0),(2.17)

E(0) =
√

2πα,(2.18)

(D+E)(t) = −βE(t) −
∫
[−t,0)

E(t + τ)γ(dτ) (t > 0),(2.19)

(D+E)(0+) = −
√

2παβ,(2.20)

where (D+E)(t) stands for the right derivative at t (t > 0) of the function

E.
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Morerover, it follows from Proposition 3.4 in [12] that

R(t) = R(0) −
∫ t

0
(βR(s) +

∫ 0

−∞
R(s + τ)γ(dτ))ds (t ≥ 0),(2.21)

R′(t) = −βR(t) −
∫ 0

−∞
R(t + τ)γ(dτ) (t > 0),(2.22)

R′(0+) = −α2

2
.(2.23)

We shall give two examples of stationary Gaussian processes.

Example 2.1. Let X = (X(t); t ∈ R) be a stationary Gaussian pro-

cess with T-positivity whose covariance function R is given by the Laplace

transform of a bounded Borel measure σ(dλ) on [0,∞):

R(t) =

∫
[0,∞)

e−|t|λσ(dλ) (t ∈ R).(2.24)

We treat the case where the Borel measure σ(dλ) satisfies the following

conditions:

σ({0}) = 0 and

∫
[0,∞)

(λ−1 + λ2)σ(dλ) < ∞.(2.25)

By Theorem 6.1 in [12], we see that there exist two positive constants

α, β and a Borel measure µ(dλ) on [0,∞) such that

h(ζ) =
α√
2π

1

β − iζ − γ̂(ζ)
(ζ ∈ C+ ∪ R),(2.26)

γ(dτ) = (

∫
[0,∞)

eτλµ(dλ))dτ,(2.27)

where the Borel measure µ(dλ) satisfies the following conditions:

µ({0}) = 0 and

∫
(0,∞)

λ−1µ(dλ) < β.(2.28)

Moreover, we note from Theorems 7.1 and 7.3 in [12] that there exists

a bounded Borel measure ν(dλ) on [0,∞) such that

E(t) = χ[0,∞)(t)

∫ ∞

0
e−tλν(dλ),(2.29)

ν({0}) = 0 and

∫ ∞

0
(λ−1 + λ)ν(dλ) < ∞,(2.30)

σ(dλ) =
1

2π
(

∫ ∞

0

1

λ + λ′ ν(dλ′))ν(dλ).(2.31)
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For the future use in Section 4, we shall show two propositions.

Proposition 2.1. The following two conditions are equivalent each

other:

(i)

∫ ∞

0
λ3σ(dλ) < ∞;

(ii)

∫ ∞

0
λ2ν(dλ) < ∞.

Proof. It follows from (2.31) that

∫ ∞

0
λ3σ(dλ) =

1

4π

∫ ∞

0

∫ ∞

0

λ3 + λ′3

λ + λ′ ν(dλ′)ν(dλ)

=
1

4π

∫ ∞

0

∫ ∞

0
(λ2 − λλ′ + λ′2)ν(dλ′)ν(dλ).

Therefore, noting from (2.30) that ν([0,∞)) < ∞ and
∫∞
0 λν(dλ) < ∞, we

see that (i) and (ii) are equivalent each other. �

Next, we shall show

Proposition 2.2. The following three conditions are equivalent one

another:

(i)

∫ ∞

0

1

λ2
σ(dλ) < ∞;

(ii)

∫ ∞

0

1

λ2
ν(dλ) < ∞;

(iii)

∫ ∞

0

1

λ2
µ(dλ) < ∞.

Proof. It follows from (7.6) in [12] that for any η > 0

h(iη) =
1

2π

∫ ∞

0

1

η + λ
ν(dλ).(2.32)
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Differentiating the above equation with respect to η, we have

d

dη
h(iη) = − 1

2π

∫ ∞

0

1

(η + λ)2
ν(dλ) (η > 0).(2.33)

On the other hand, it follows from (2.26) that for any η > 0

h(iη) =
α√
2π

1

β + η −
∫∞
0

1
η+λµ(dλ)

.(2.34)

Differentiating the above equation with respect to η, we have

d

dη
h(iη) = − α√

2π

1 +
∫∞
0

1
(η+λ)2

µ(dλ)

(β + η −
∫∞
0

1
η+λµ(dλ))2

(η > 0).(2.35)

First, we shall show that (i) and (ii) are equivalent each other. Let us

assume that (i) holds. Since ν((0,∞)) < ∞, for the proof of (ii), we have

only to prove that

∫ 1

0

1

λ2
ν(dλ) < ∞.(2.36)

It follows from (2.31) that

∫ ∞

0

1

λ2
σ(dλ) ≥ 1

2π

∫ ∞

0
(

∫ 1

0

1

λ2

1

λ + λ′ ν(dλ))ν(dλ′)

≥ 1

2π

∫ ∞

0
(

∫ 1

0

1

λ2

1

1 + λ′ ν(dλ))ν(dλ′)

=
1

2π
(

∫ ∞

0

1

1 + λ′ ν(dλ′))(
∫ 1

0

1

λ2
ν(dλ)).

Since ν((0,∞)) > 0, we see from (2.30) that 0 <
∫∞
0

1
1+λ′ ν(dλ′) < ∞.

Therefore, the above inequality implies that (2.36) and so (ii) holds.

Let us assume that (ii) holds. Since
∫ 1
0 λ−2ν(dλ) < ∞, we see from

(2.31) that

∫ 1

0

1

λ2
σ(dλ) =

1

4π
(

∫ 1

0

∫ 1

0

λ2 + λ′2

λ + λ′
1

λ2λ′2 ν(dλ′)ν(dλ)

+

∫ 1

0

1

λ2
(

∫ ∞

1

1

λ + λ′ ν(dλ′))ν(dλ)).
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Since λ2+λ′2
λ+λ′ ≤ 1 (0 < λ, λ′ ≤ 1) and 1

λ+λ′ ≤ 1 (λ > 0, λ′ ≥ 1), we find that

∫ 1

0

1

λ2
σ(dλ) ≤ 1

4π
(

∫ 1

0

1

λ2
ν(dλ))(

∫ 1

0

1

λ2
ν(dλ) + ν([1,∞))) < ∞,

which with σ((0,∞)) < ∞ implies that (i) holds.

Second, we shall show that (ii) and (iii) are equivalent each other. Let

us assume that (ii) holds. We see from (2.33) that there exists a finite limit

limη↓0
d
dth(iη) and it is given by

lim
η↓0

d

dt
h(iη) = − 1

2π

∫ ∞

0

1

λ2
ν(dλ) ∈ R.(2.37)

Therefore, noting (2.25), we see from (2.35) that

lim
η↓0

d

dη
h(iη) = − α√

2π

1 +
∫∞
0

1
λ2µ(dλ)

(β −
∫∞
0

1
λµ(dλ))2

,

which with (2.28) and (2.37) implies that (iii) holds. Third, taking the

procedure used above conversely, we can see that (iii) implies (ii). �

Remark 2.1. Let us consider the case where the measure σ(dλ) in

(2.24) is given by

σ(dλ) =
N∑

n=1

σnδpn ,(2.38)

where all σn (1 ≤ n ≤ N) are positive and 0 < p1 < p2 < · · · < pN < ∞.

We see from Lemma 2.2 in [12] that the measure µ(dλ) in (2.27) has the

following representation

µ(dλ) =
N−1∑
n=1

µnδqn(dλ),(2.39)

where all µn (1 ≤ n ≤ N − 1) are positive and 0 < pn < qn < pn+1 (1 ≤
n ≤ N − 1). Therefore, all conditions in Propositions 2.1 and 2.2 hold.

Example 2.2. Let X = (X(t); t ∈ R) be a stationary Gaussian process

with finite multiple Markovian property whose outer function h is given as
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follows:

h(ζ) =
α√
2π

Q(−ζ)

P (−ζ)
(ζ ∈ C+ ∪ R),(2.40)

P (z) =
N∑

n=0

anz
n, an ∈ R (0 ≤ n ≤ N − 1), aN = 1 (z ∈ C),(2.41)

Q(z) =
N−1∑
n=0

bnz
n, bn ∈ R (0 ≤ n ≤ N − 2), bN−1 = 1 (z ∈ C),(2.42)

VP ⊂ C+, VQ ⊂ C+, VP ∩ VQ = ∅,(2.43)

where VP (resp. VQ) denotes the set of zero points of the polynomial P

(resp. Q).

By Lemma 2.1 and Proposition 2.1 in [13], we see that there exist a real

constant β and a function γ = γ(τ) ∈ L1((−∞, 0))∩L2((−∞, 0)) such that

h(ζ) =
α√
2π

1

β − iζ − γ̂(ζ)
(ζ ∈ C+ ∪ R),(2.44)

where γ̂ stands for the Fourier-Laplace transform of the L1 function γ =

γ(τ):

γ̂(ζ) =

∫
(−∞,0)

e−iζτγ(τ)dτ (ζ ∈ C+ ∪ R).(2.45)

Defining a bounded signed Borel measure γ(dτ) by

γ(dτ) ≡ γ(τ)dτ,(2.46)

we find that the stochastic process X becomes a stationary solution of

[α, β, γ]-Langevin equation. We note from (2.13) and (2.15) in [13] that

γ = γ(τ) ∈ C1((−∞, 0)) ∩ C((−∞, 0]),(2.47)

|τ |nγ(τ) is bounded in (−∞, 0) for any n ∈ N∗.(2.48)

3. Innovation Process and Local Prediction Kernel

In this section, we shall treat the same stochastic process X as in Section

2 and recall the results of Sections 3, 4 and 5 in [14]. For each a ∈ R, we
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define two reference families (F+
a (t); t ≥ 0) and (F−

a (t); t ≥ 0) by

F+
a (t) ≡ σ(X(s); a ≤ s ≤ a + t) and

F−
a (t) ≡ σ(X(s); a− t ≤ s ≤ a).

(3.1)

From Propositions 3.1 and 3.2 in [14], we can construct two standard

Brownian motions ν+
a = (ν+

a (t); t ≥ 0) and ν−a = (ν−a (t); t ≥ 0) such that

for any a ∈ R

ν±a (0) = 0,(3.2)

ν±a is independent of X(a),(3.3)

F±
a (t) = σ(X(a), ν±a (s); 0 ≤ s ≤ t) (t ≥ 0),(3.4)

X(a± t) −X(a) = −
∫ t

0
(βX(a± s)(3.5)

+

∫ 0

−∞
E(X(a± s± τ)|F±

a (s))γ(dτ))ds

+ αν±a (t) (t ≥ 0).

Defining a stochastic process Y− = (Y−(t); t ∈ R) and a function P =

P (t, s) (0 ≤ s ≤ t < ∞) by

Y−(t) ≡
∫
(−∞,0)

X(t + τ)γ(dτ),(3.6)

P (t, s) ≡ −α−1E(X(t)(Y−(s) − E(Y−(s)|F+
0 (s))))(3.7)

+
√

2π
−1

E(t− s),

we see from Lemmas 4.1, 4.2 and 4.4 in [14] that for any a ∈ R

ν+
a (t) = −α−1

∫ t

0
(Y−(a + s) − E(Y−(a + s)|F+

a (s)))ds(3.8)

+ B+(a + t) −B+(a),

P (t, s) =
∂

∂s
E(X(a + t)ν+

a (s)),(3.9)

P (t, s) =
∂

∂s
E(X(a− t)ν−a (s)).(3.10)

From Theorems 4.1 and 4.2 in [14], we have the local canonical repre-

sentation for the process X: for each a ∈ R

X(a + t) = Ξ(t)X(a) +

∫ t

0
P (t, s)dν+

a (s) (t ≥ 0),(3.11)
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X(a− t) = Ξ(t)X(a) +

∫ t

0
P (t, s)dν−a (s) (t ≥ 0),(3.12)

where Ξ = Ξ(t) (t ∈ R) is the normalized covariance function of the sta-

tionary process X defined by

Ξ(t) ≡ R(t)R(0)−1.(3.13)

We call the function P = P (t, s) the local canonical representation kernel

associated with the stochastic process X. It follows from Lemma 5.1 in [14]

that

the local canonical representation kernel P is bounded(3.14)

and continuous,

sup
0≤t<∞

∫ t

0
P (t, s)2ds < ∞.(3.15)

Concerning the prediction formula for the problem predicting the future

and the past from a bounded part of the stochastic process X, we find from

Theorem 4.3 in [14] that for each a ∈ R

E(X(a + t)|F+
a (s)) = Ξ(t)X(a)(3.16)

+

∫ s

0
P (t, u)dν+

a (u) (0 ≤ s < t),

E(X(a− t)|F−
a (s)) = Ξ(t)X(a)(3.17)

+

∫ s

0
P (t, u)dν−a (u) (0 ≤ s < t).

Taking account of the above formulae, therefore, we can call the function

P = P (t, s) the local forward prediction kernel associated with the stochas-

tic process X.

On the other hand, defining a stochastic process Y+ = (Y+(t); t ∈ R)

and a function Q = Q(t, s) (0 ≤ s, t < ∞) by

Y+(t) ≡
∫
(−∞,0)

X(t− τ)γ(dτ),(3.18)

Q(t, s) ≡ −α−1E(X(−t)(Y−(s) − E(Y−(s)|F+
0 (s)))),(3.19)
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we see from Lemmas 4.3, 4.5 and 4.6 in [14] that for any a ∈ R

ν−a (t) = −α−1
∫ t

0
(Y+(a− s) − E(Y+(a− s)|F−

a (s)))ds(3.20)

+ B−(a) −B−(a− t),

Q(t, s) =
∂

∂s
E(X(a + t)ν−a (s)),(3.21)

Q(t, s) =
∂

∂s
E(X(a− t)ν+

a (s)).(3.22)

From Theorem 4.4 in [14], we have another prediction formula for the

problem predicting the future and the past from a bounded part of the

stochastic process X: for each a ∈ R

E(X(a + t)|F−
a (s)) = Ξ(t)X(a)(3.23)

+

∫ s

0
Q(t, u)dν−a (u) (t, s > 0),

E(X(a− t)|F+
a (s)) = Ξ(t)X(a)(3.24)

+

∫ s

0
Q(t, u)dν+

a (u) (t, s > 0).

We call the function Q = Q(t, s) the local backward prediction kernel

associated with the stochastic process X. It follows from Lemma 5.1 in [14]

that

the local backward prediction kernel Q is bounded(3.25)

and continuous,

sup
0≤t<∞

∫ ∞

0
Q(t, s)2ds < ∞.(3.26)

4. Properties of Local Prediction Kernels P and Q

In this section, we shall treat any stationary solution X of [α, β, γ]-

Langevin equation (1.2) with conditions (1.1) and (1.3)–(1.5), and inves-

tigate the regularity properties of the local prediction kernels P and Q

introduced in Section 3.

We define a function δ = δ(t) (t ≥ 0) by

δ(t) ≡ α−1
∫
(−∞,−t)

P (−τ, t)γ(dτ).(4.1)
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It follows from Lemma 6.3 in [14] that

δ = δ(t) is bounded on [0,∞),(4.2)

lim
t→∞

δ(t) = 0,(4.3)
∫ ∞

0
δ(t)2dt < ∞.(4.4)

From Lemmas 6.1 and 6.2 in [14], we have

Q(t, s) = −
∫ s+t

s
P (s + t, u)δ(u)du (t, s ≥ 0),(4.5)

P (t, s) = −
∫ ∞

s
δ(u)Q(t− s, u)du +

√
2π

−1
E(t− s) (0 ≤ s < t).(4.6)

We shall give a complete proof of (4.6), because only a sketch of the proof

of (4.6) was given in Lemma 6.1 in [14]. We fix any t, s (0 < s < t). It

follows from (3.6) that

Y−(s) − E(Y−(s)|F+
0 (s)) =

∫
(−∞,−s)

(X(s + τ) − E(X(s + τ)|F+
0 (s)))γ(dτ).

Therefore, it follows from (3.7) that

P (t, s) = − 1

α

∫
(−∞,−s)

E(X(t)(X(s + τ) − E(X(s + τ)|F+
0 (s))))γ(dτ)

+
1√
2π

E(t− s).

Furthermore, for any τ (τ < −s), we see from (3.12) and (3.17) that

X(s + τ) − E(X(s + τ)|F+
0 (s)) =

∫−τ
s P (−τ, u)dν−s (u). Since F+

s+τ (−τ) =

F−
s (−τ), we see from (3.23) that

E(X(t)|F+
s+τ (−τ)) = Ξ(t− s)X(s) +

∫ −τ

0
Q(t− s, u)dν−s (du).

Hence, noting that F+
s+τ (−τ) ⊃ F+

0 (s), we see that

E(X(t)(X(s + τ) − E(X(s + τ)|F+
0 (s))))

= E(E(X(t)|F+
s+τ (−τ))(X(s + τ) − E(X(s + τ)|F+

0 (s))))

=

∫ −τ

s
Q(t− s, u)P (−τ, u)du.
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Thus, we see that P (t, s) = −α−1
∫−s
−∞(

∫−τ
s P (−τ, u)Q(t − s, u)du)γ(dτ) +√

2π
−1

E(t− s). Noting (3.15) and (3.26), we can change the order of inte-

gration in the above equation to see from (4.1) that (4.6) holds.

By Theorem 5.5 and Lemma 6.5 in [14], we find that the partial deriva-

tive P (1,0)(t, s) ≡ ∂
∂tP (t, s) (0 < s < t) exists and it satisfies the following

differential-integral equation:

P (1,0)(t, s) = −βP (t, s) −
∫
[s−t,0)

P (t + τ, s)γ(dτ)(4.7)

+

∫ ∞

s
(

∫
(−∞,s−t−v]

P (s− t− τ, v)γ(dτ))δ(v)dv

(0 ≤ s < t),

P (s, s) = α (s ≥ 0),(4.8)

P (1,0)(t, s) is bounded on the set {(t, s); 0 ≤ s < t < ∞}.(4.9)

In the sequel, we shall treat the case where the bounded signed Borel

measure γ(dτ) in (1.5) has a density function γ = γ(τ) on (−∞, 0) with the

following conditions:

γ(dτ) = γ(τ)dτ, γ(τ) ∈ L1((−∞, 0)),(4.10)

γ = γ(τ) is continuous and has a finite limit limτ↑0 γ(τ),(4.11) ∫ 0

−∞
|τ ||γ(τ)|dτ < ∞.(4.12)

Example 4.1. We shall show that if the measure σ(dλ) in (2.24) satisfies

the following conditions:
∫ ∞

0
λ3σ(dλ) < ∞,(4.13)

∫ ∞

0

1

λ2
σ(dλ) < ∞,(4.14)

then the bounded signed Borel measure γ(dτ) in Example 2.1 satisfies con-

ditions (4.10)–(4.12). First, we note from (2.27) that the bounded Borel

measure γ(dτ) has a density funstion γ = γ(τ) (τ < 0) such that

γ(τ) =

∫
[0,∞)

eτλµ(dλ) (τ < 0)
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and so the function γ = γ(τ) is continuous in (0,∞). Next, we shall show

(4.11), that is, that the function γ(τ) has a finite limit limτ↑0 γ(τ). Since it

follows from (2.19) that E′(t) = −βE(t)−
∫ 0
−tE(t+ τ)γ(τ)dτ for any t > 0,

we can differentiate this with respect to t to see that for any t > 0

E′′(t) = −βE′(t) −
√

2παγ(−t) −
∫ 0

−t
E′(t + τ)γ(τ)dτ.(4.15)

On the other hand, it follows from (2.29) and (4.13) that E′(t), E′′(t) (t >

0) exist and they can be extended continuously on [0,∞). Therefore, we see

from (4.15) that the function γ = γ(τ) (τ < 0) has a finite limit limτ↑0 γ(τ).

Finally, we shall show (4.12). Since it follows that
∫ 0
−∞ |τ ||γ(τ)|dτ =∫∞

0 λ−2µ(dλ), we see from Proposition 2.2 that condition (4.12) holds.

Example 4.2. Let us consider Example 2.2. We find that conditions

(4.10), (4.11) and (4.12) for the bounded signed Borel measure γ(dτ) in

Example 2.2 come from (2.46)–(2.48), respectively.

Remark 4.1. In [14], we assumed the following condition (4.16) in

place of condition (4.12):
∫ 0

−∞

√
|τ ||γ(τ)|dτ < ∞.(4.16)

The point in [14] was that the integrability of the function δ = δ(t) in (4.1)

comes from condition (4.16).

We shall show that the statement noted in Remark 4.1 comes also from

condition (4.12).

Lemma 4.1.(i) δ = δ(t) is continuous on [0,∞).

(ii) δ = δ(t) ∈ L1((0,∞)).

Proof. (i) comes from (3.14), (4.1) and (4.10). It follows from (3.14)

and (4.1) that
∫ ∞

0
|δ(t)|dt ≤ α−1

∫ ∞

0
(

∫ −t

−∞
|P (−τ, t)||γ(τ)|dτ)dt

= α−1
∫ 0

−∞
(

∫ −τ

0
|P (−τ, t)|dt)|γ(τ)|dτ

≤ α−1( sup
τ<0,0<t<−τ

|P (−τ, t)|)
∫ 0

−∞
|τ ||γ(τ)|dτ,
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which with (4.12) implies (ii) holds. �

Concerning the smoothness property of the global canonical representa-

tion kernel E in (2.3), we shall show

Lemma 4.2. The function E = E(t) (t > 0) is C2 class. The first

derivative E′(t) (t > 0) can be extended continuously and boundedly on

[0,∞) and the second derivative E′′(t) (t > 0) can be extended continuously

on [0,∞).

Proof. Noting (2.16) and (4.10), we can differentiate equation (2.17)

with respect to t to see that for any t > 0

E′(t) = −βE(t) −
∫ 0

−t
E(t + τ)γ(τ)dτ(4.17)

and so the derivative E′(t) (t > 0) can be extended continuously and bound-

edly on [0,∞). Moreover, using condition (4.11), we can differentiate equa-

tion (4.17) with respect to t to see from (2.18) that E′′(t) = −βE′(t) −√
2παγ(−t) −

∫ 0
−tE

′(t + τ)γ(τ)dτ and so the derivative E′′(t) (t > 0) can

be extended continuously on [0,∞). �

Concerning the smoothness property of the local prediction kernels P

and Q, we shall show

Lemma 4.3. (i) The partial derivatives P (1,0)(t, s), P (0,1)(t, s) ≡
∂
∂sP (t, s) (0 < s < t) exist and the function Q(t, s) (t, s > 0) is C1 class.

(ii) The functions P (1,0)(t, s), P (0,1)(t, s) (0 < s < t) and the functions

Q(1,0)(t, s), Q(0,1)(t, s) (t, s > 0) can be extended continuously and boundedly

on the set {(t, s); 0 ≤ s ≤ t < ∞} and the set {(t, s); 0 ≤ t, s < ∞},
respectively.

(iii) P (1,0)(t, s) + P (0,1)(t, s) = −δ(s)

∫ t

s
P (t, u)δ(u)du (0 ≤ s < t).

Proof. We have already seen in (4.7) that the partial derivative

P (1,0)(t, s) (0 < s < t) exists. Furthermore, noting (3.14), (4.10) and Lemma

4.1(ii), we see from (4.7) that the function P (1,0)(t, s) (0 < s < t) can be

extended continuously and boundedly on the set {(t, s); 0 ≤ s ≤ t < ∞}.
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Next, noting (3.14) and Lemma 4.1(i), we can differentiate equation

(4.5) with respect to t or s to find from (4.8) that for any t, s (t, s > 0),

both the partial derivatives Q(1,0)(t, s) and Q(0,1)(t, s) exist and they satisfy

Q(1,0)(t, s) = −αδ(s + t) −
∫ s+t

s
P (1,0)(s + t, u)δ(u)du,

Q(0,1)(t, s) = −αδ(s + t) −
∫ s+t

s
P (1,0)(s + t, u)δ(u)du + P (s + t, s)δ(s).

Hence, it follows from (4.9) and Lemma 4.1(ii) that the function Q(t, s)

(t, s > 0) is C1 class and the partial derivatives Q(1,0)(t, s), Q(0,1)(t, s) (t, s >

0) can be extended continuously and boundedly on the set {(t, s); 0 ≤ t, s <

∞}.
Finally, from (4.2), Lemmas 4.1, 4.2 and the facts proved above, we

can differentiate equation (4.6) with respect to s to see that the partial

derivative P (0,1)(t, s) (0 < s < t) exists and it satisfies

P (0,1)(t, s) = δ(s)Q(t− s, s) +

∫ ∞

s
δ(u)Q(1,0)(t− s, u)du(4.18)

−
√

2π
−1

E′(t− s).

On the other hand, differentiating equation (4.6) with respect to t, we

have

P (1,0)(t, s) = −
∫ ∞

s
δ(u)Q(1,0)(t− s)du +

√
2π

−1
E′(t− s).(4.19)

Hence, summing up (4.18) and (4.19), we see from (4.5) that (iii) holds.

Using (iii) proved above, we see from (3.14) and Lemma 4.1 that the function

P (0,1)(t, s) (0 < s < t) can be extended continuously and boundedly on the

set {(t, s); 0 ≤ s ≤ t < ∞}. Thus we have proved Lemma 4.3. �

Concerning the smoothness property of the function δ = δ(t), we shall

show

Lemma 4.4. The function δ = δ(t) (t > 0) is C1 class and δ′ =

δ′(t) (t > 0) can be extended continuously on [0,∞).

Proof. Noting (3.14), (4.11) and Lemma 4.3(iii), we can differentiate

equation (4.1) with respect to t to see from (4.8) that

δ′(t) = −γ(−t) + α−1
∫ −t

−∞
P (0,1)(−τ, t)γ(τ)dτ.



564 Yasunori Okabe

Therefore, it follows from (4.8), (4.10) and (4.11) and that δ′ = δ′(t) is

continuous in (0,∞) and it can be extended continuously on [0,∞). �

Finally, we shall show

Lemma 4.5. (i) The partial derivatives P (2,0)(t, s) ≡ ∂
∂tP

(1,0)(t, s) and

P (0,2)(t, s) ≡ ∂
∂sP

(0,1)(t, s) exist. Furthermore, the partial derivatives
∂
∂sP

(1,0)(t, s), ∂
∂tP

(0,1)(t, s) (0 < s < t) exist and they are equal each other,

which is denoted by P (1,1)(t, s).

(ii) The functions P (2,0)(t, s), P (0,2)(t, s) and P (1,1)(t, s) can be also ex-

tended continuously on the set {(t, s); 0 ≤ s ≤ t < ∞}.

Proof. By (4.10), we can rewrite equation in (4.7) into the following

equation: for any t, s (0 < s < t)

P (1,0)(t, s) = −βP (t, s) − ϕ(t, s) +

∫ −t

−∞
ψ(s, s− t− τ)γ(τ)dτ,(4.20)

where

ϕ(t, s) ≡
∫ 0

s−t
P (t + τ, s)γ(τ)dτ,(4.21)

ψ(s, t) ≡
∫ t

s
P (t, τ)δ(τ)dτ.(4.22)

First, we shall show the existence of the partial derivative P (2,0)(t, s) in

(i). It follows from (4.8), (4.11) and Lemma 4.3(ii) that the partial derivative

ϕ(1,0)(t, s) (0 < s < t) exists and it is given by

ϕ(1,0)(t, s) =

∫ 0

s−t
P (1,0)(t + τ, s)γ(τ)dτ + αγ(s− t).(4.23)

On the other hand, it follows form (4.9), Lemmas 4.1(i) and 4.3(ii) that

the partial derivative ψ(0,1)(s, u) (0 < s < u) exists and it is given by

ψ(0,1)(s, u) = αδ(u) +

∫ u

s
P (1,0)(u, v)δ(v)dv.(4.24)

Therefore, using (4.10) and (4.11), we can differentiate the third term of

the right-hand side of (4.20) with respect to t to see from (4.22) and (4.24)
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that

∂

∂t

∫ −t

−∞
ψ(s, s− t− τ)γ(τ)dτ(4.25)

= −ψ(s, s)γ(−t) −
∫ −t

−∞
ψ(0,1)(s, s− t− τ)γ(τ)dτ

= −α

∫ −t

−∞
δ(s− t− τ)γ(τ)dτ

−
∫ −t

−∞
(

∫ s−t−τ

s
P (1,0)(s− t− τ, v)δ(v)dv)γ(τ)dτ.

Hence, by Lemma 4.3(ii) and (4.23)–(4.25), we can differentiate equation

(4.20) with respect to t to see that for any t, s (0 < s < t)

P (2,0)(t, s) = −βP (1,0)(t, s) −
∫ 0

s−t
P (1,0)(t + τ, s)γ(τ)dτ(4.26)

−αγ(s− t) − α

∫ −t

−∞
δ(s− t− τ)γ(τ)dτ

−
∫ −t

−∞
(

∫ s−t−τ

s
P (1,0)(s− t− τ, v)δ(v)dv)γ(τ)dτ.

In particular, we see from (4.2), (4.10), (4.11), Lemmas 4.1 and 4.3(ii)

that the statement concerning P (2,0)(t, s) in (ii) holds.

Second, using (4.20) again, we shall show that the partial derivative
∂
∂sP

(1,0)(t, s) (0 < s < t) exists and it is given by

∂

∂s
P (1,0)(t, s)(4.27)

= βP (0,1)(t, s) +

∫ 0

s−t
P (0,1)(t + τ, s)γ(τ)dτ + αγ(s− t)

+α

∫ −t

−∞
δ(s− t− τ)γ(τ)dτ

+

∫ −t

−∞
(

∫ s−t−τ

s
P (1,0)(s− t− τ, v)δ(v)dv)γ(τ)dτ

−δ(s)(

∫ −t

−∞
P (s− t− τ, s)γ(τ)dτ − β

∫ t

s
P (t, u)δ(u)du

−
∫ 0

s−t
(

∫ t+τ

s
P (t + τ, u)δ(u)du)γ(τ)dτ).
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It follows from (4.8), (4.11) and Lemma 4.3(ii) that the partial derivative

ϕ(0,1)(t, s) (0 < s < t) exists and it is given by

ϕ(0,1)(t, s) =

∫ 0

s−t
P (0,1)(t + τ, s)γ(τ)dτ − αγ(s− t).(4.28)

Moreover, it follows from (3.14) and Lemma 4.1(i) that the partial

derivative ψ(1,0)(s, u) (0 < s < u) exists and it is given by

ψ(1,0)(s, u) = −P (u, s)δ(s).(4.29)

Therefore, using (4.10) and (4.11), we can differentiate the third term of

the right-hand side of (4.20) with respect to s to find from (4.22) and (4.24)

that

∂

∂s

∫ −t

−∞
ψ(s, s− t− τ)γ(τ)dτ(4.30)

=

∫ −t

−∞
ψ(1,0)(s, s− t− τ)γ(τ)dτ +

∫ −t

−∞
ψ(0,1)(s, s− t− τ)γ(τ)dτ

= −δ(s)

∫ −t

−∞
P (s− t− τ, s)γ(τ)dτ + α

∫ −t

−∞
δ(s− t− τ)γ(τ)dτ

+

∫ −t

−∞
(

∫ s−t−τ

s
P (1,0)(s− t− τ, v)δ(v)dv)γ(τ)dτ.

Hence, by Lemma 4.3(ii) and (4.28)–(4.30), we can differentiate equation

(4.20) with respect to s to find that for any t, s (0 < s < t)

∂

∂s
P (1,0)(t, s) = −βP (0,1)(t, s) −

∫ 0

s−t
P (0,1)(t + τ, s)γ(τ)dτ + αγ(s− t)

−δ(s)

∫ −t

−∞
P (s− t− τ, s)γ(τ)dτ

+α

∫ −t

−∞
δ(s− t− τ)γ(τ)dτ

+

∫ −t

−∞
(

∫ s−t−τ

s
P (1,0)(s− t− τ, v)δ(v)dv)γ(τ)dτ.

Moreover, by Lemma 4.3(iii), we can see that that (4.27) holds.
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Third, we shall show that the partial derivative ∂
∂tP

(0,1)(t, s) (0 < s < t)

exists and it is given by

∂

∂t
P (0,1)(t, s) = βP (1,0)(t, s) +

∫ 0

s−t
P (1,0)(t + τ, s)γ(τ)dτ(4.31)

+αγ(s− t) + α

∫ −t

−∞
δ(s− t− τ)γ(τ)dτ

+

∫ −t

−∞
(

∫ s−t−τ

s
P (1,0)(s− t− τ, v)δ(v)dv)γ(τ)dτ

−δ(s)(αδ(t) +

∫ t

s
P (1,0)(t, u)δ(u)du).

Since we have proved that the function P (2,0)(t, s) (0 < s < t) can be

extended continuously on the set {(t, s); 0 ≤ s ≤ t < ∞}, we can differen-

tiate the equation in Lemma 4.3(iii) with respect to t to see from (3.14),

(4.8) and Lemma 4.1(i) that the partial derivative ∂
∂tP

(0,1)(t, s) (0 < s < t)

exists and it is given by

∂

∂t
P (0,1)(t, s)

= −P (2,0)(t, s) − αδ(s)δ(t) − δ(s)

∫ t

s
P (1,0)(t, u)δ(u)du (0 < s < t).

Substituting (4.26) into the above equation, we find that (4.31) holds.

Fourth, we shall show that both the partial derivatives ∂
∂sP

(1,0)(t, s)

and ∂
∂tP

(0,1)(t, s) (0 < s < t) are equal each other. For that purpose, noting

(4.27) and (4.31), we have only to prove for any t, s (0 < s < t)

αδ(t) +

∫ t

s
P (1,0)(t, u)δ(u)du(4.32)

=

∫ −t

−∞
P (s− t− τ, s)γ(τ)dτ − β

∫ t

s
P (t, u)δ(u)du

−
∫ 0

s−t
(

∫ t+τ

s
P (t + τ, u)δ(u)du)γ(τ)dτ.

It follows from (4.20) that for any t, s (0 < s < t)

∫ t

s
P (1,0)(t, u)δ(u)du = −β

∫ t

s
P (t, u)δ(u)du− I − II,(4.33)
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where

I ≡
∫ t

s
(

∫ 0

u−t
P (t + τ, u)γ(τ)dτ)δ(u)du,

II ≡
∫ t

s
(

∫ −t

−∞
(

∫ u−t−τ

u
P (u− t− τ, v)δ(v)dv)γ(τ)dτ)δ(u)du.

Changing the order of integration, we can see that

I =

∫ 0

s−t
(

∫ τ+t

s
P (t + τ, u)δ(u)du)γ(τ)dτ,(4.34)

II =

∫ −t

−∞
(

∫ t

s
(

∫ u−t−τ

u
P (u− t− τ, v)δ(v)dv)δ(u)du)γ(τ)dτ.

Using (4.5), (4.6) and noting (4.1), we have

II = −
∫ −t

−∞
(

∫ t

s
Q(−t− τ, u)δ(u)du)γ(τ)dτ(4.35)

= −
∫ −t

−∞
(

∫ ∞

s
Q(−t− τ, u)δ(u)du

−
∫ ∞

t
Q(−t− τ, u)δ(u)du)γ(τ)dτ

= −
∫ −t

−∞
(−P (−t− τ + s, s) +

√
2π

−1
E(−t− τ)

−(−P (−τ, t) +
√

2π
−1

E(−t− τ))γ(τ)dτ

= −αδ(t) +

∫ −t

−∞
P (−t− τ + s, s)γ(τ)dτ.

Hence, we see from (4.33)–(4.35) that ∂
∂sP

(1,0)(t, s) = ∂
∂tP

(0,1)(t, s) (0 <

s < t). We denote it by P (1,1)(t, s) (0 < s < t). Noting (4.27), we

see from (4.2), (4.10), (4.11), Lemmas 4.1 and 4.3(iii) that the function

P (1,1)(t, s) (0 < s < t) can be extended continuously on the set {(t, s); 0 ≤
s ≤ t < ∞}.

Furthermore, by Lemma 4.4, we can differentiate the equation in Lemma

4.3(iii) with respect to s to find that the derivative P (0,2)(t, s) (0 < s < t)

exists and it is given by P (0,2)(t, s) = −P (1,1)(t, s)− δ′(s)
∫ t
s P (t, u)δ(u)du+

δ(s)2P (t, s). Hence, we see from (3.14), Lemmas 4.1 and 4.4 that the func-

tion P (0,2)(t, s) (0 < s < t) can be extended continuously on the set

{(t, s); 0 ≤ s ≤ t < ∞}. Thus, we have proved (ii). �
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5. KM2O-Langevin Equation with Continuous Time

In this section, we shall treat any stationary solution X of [α, β, γ]-

Langevin equation (1.2) with conditions (1.1), (1.3), (1.4) and (4.10)–(4.12),

and derive a KM2O-Langevin equation with continuous time which governs

a local time evolution of the stochastic process X.

By virtue of (4.4), we can define a function β = β(t) (t ≥ 0) by

β(t) ≡ β −
∫ ∞

t
δ(s)2ds (t ≥ 0).(5.1)

We shall show

Lemma 5.1. There exists a unique continuous function γ = γ(t, s) de-

fined on the set {(t, s); 0 ≤ s ≤ t < ∞} such that

P (1,0)(t, s) = −β(t)P (t, s) −
∫ t

s
γ(t, u)P (u, s)du (0 < s < t).(5.2)

Proof. First, we shall rewrite equation (5.2) into an integral equation

of Volterra type. For that purpose, we shall assume that there exists a

continuous function γ = γ(t, s) defined on the set {(t, s); 0 ≤ s ≤ t < ∞}
satisfying equation (5.2). By Lemmas 4.3(ii) and 4.5(ii), we can differentiate

equation (5.2) with respect to s to find that

γ(t, s) −
∫ t

s
γ(t, u)(α−1P (0,1)(u, s))du(5.3)

= α−1(P (1,1)(t, s) + β(t)P (0,1)(t, s)).

We define a continuous kernel K = K(u, s) (0 ≤ s ≤ u < ∞) and for

each t > 0, a continuous function ft = ft(s) (0 ≤ s ≤ t) by

K(u, s) ≡ α−1P (0,1)(u, s) (0 ≤ s ≤ u < ∞),(5.4)

ft(s) ≡ α−1(P (1,1)(t, s) + β(t)P (0,1)(t, s)) (0 ≤ s ≤ t).(5.5)

It folllows that (5.3) can be rewritten into

γ(t, s) −
∫ t

s
K(u, s)γ(t, u)du = ft(s) (0 ≤ s ≤ t).(5.6)
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Therefore, applying a general theory of integral equations of Volterra

type to equation (5.6) for each t > 0, we can obtain a resolvent kernel

C = C(u, s) defined on the set {(u, s); 0 ≤ s ≤ u < ∞} to solve equation

(5.6) as follows: for any t > 0

γ(t, s) = ft(s) +

∫ t

s
C(u, s)ft(u)du,(5.7)

where the resolvent kernel C = C(u, s) is defined by

C(u, s) ≡
∞∑
n=1

K(n)(u, s),(5.8)

K(1)(u, s) ≡ K(u, s),(5.9)

K(n)(u, s) ≡
∫ u

s
K(n−1)(v, s)K(v, s)dv (n ≥ 2).(5.10)

Since the series in (5.8) converges uniformly on the set {(u, s); 0 ≤ s ≤
u ≤ t} for any t > 0, we see that the resolvent kernel C = C(u, s) is

continuous on the set {(u, s); 0 ≤ s ≤ u < ∞}. It follows from (5.7)

that a continuous function γ = γ(t, s) satisfying equation (5.3) is uniquely

determined.

Conversely, we shall show that the continuous function γ = γ(t, s) de-

fined by the right-hand side of (5.7) satisfies equation (5.2). Let us fix any

t > 0. It follows from the relation between the kernel K = K(u, s) and its

resolvent kernel C = C(u, s) that the function γ = γ(t, s) satisfies equation

(5.6) and so

∂

∂s
(P (1,0)(t, s) + β(t)P (t, s) +

∫ t

s
γ(t, u)P (u, s)du) = 0 (0 < s < t).

On the other hand, it follows from (4.1), (4.7) and (5.1) that P (1,0)(t, t) +

β(t)P (t, t) = 0. Hence, the continuous function γ = γ(t, s) satisfies equation

(5.2). �

Moreover, we shall show

Lemma 5.2. The stochastic process X satisfies the following stochastic

differential equation:

X(t) −X(0) = −
∫ t

0
(β(s)X(s) +

∫ s

0
γ(s, u)X(u)du + δ(s)X(0))ds

+αν+
0 (t) (t ≥ 0).



KM2O-Langevin Equation 571

Proof. It follows from (3.11) and (4.8) that for any t ≥ 0

X(t) = Ξ(t)X(0) +

∫ t

0
(P (t, s) − P (s, s))dν+

0 (s) + αν+
0 (t)(5.11)

= Ξ(t)X(0) +

∫ t

0
(

∫ u

0
P (1,0)(u, s)dν+

0 (s))du + αν+
0 (t).

Using Lemma 5.1, we find that for any u ≥ 0∫ u

0
P (1,0)(u, s)dν+

0 (s) = −β(u)

∫ u

0
P (u, s)dν+

0 (s)

−
∫ u

0
γ(u, v)(

∫ v

0
P (v, s)dν+

0 (s))dv.

Therefore, using (3.11) again, we see that for any t, u (0 ≤ u ≤ t)
∫ u

0
P (1,0)(u, s)dν+

0 (s) = −(β(u)X(u) +

∫ u

0
γ(u, v)X(v)dv)

+(β(u)Ξ(u) +

∫ u

0
γ(u, v)Ξ(v)dv)X(0).

Substituting this into the second term of the right-hand side of (5.11), we

find that for any t ≥ 0

X(t) = −
∫ t

0
(β(u)X(u) +

∫ u

0
γ(u, v)X(v)dv)du

+(Ξ(t) +

∫ t

0
(β(u)Ξ(u) +

∫ u

0
γ(u, v)Ξ(v)dv)du)X(0) + αν+

0 (t).

Hence, defining a function δ̃ = δ̃(t) (t ≥ 0) by

δ̃(t) ≡ −(Ξ′(t) + β(t)Ξ(t) +

∫ t

0
γ(t, v)Ξ(v)dv),(5.12)

we see that for any t ≥ 0

X(t) −X(0) = −
∫ t

0
(β(s)X(s) +

∫ s

0
γ(s, u)X(u)du)ds(5.13)

−
∫ t

0
δ̃(s)X(0)ds + αν+

0 (t).

Therefore, in order to complete the proof of Lemma 5.2, we have only

to show

δ(t) = δ̃(t) (t ≥ 0).(5.14)
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For that purpose, we use the backward innovations ν−a (a ∈ R) stated in

Section 3. It follows from (3.5) that for any t ≥ 0

X(t) −X(0)(5.15)

= −
∫ t

0
(βX(s) +

∫ 0

−∞
E(X(s + τ)|F+

0 (s))γ(dτ))ds + αν+
0 (t).

Since for any s ≥ 0

∫ 0

−∞
E(X(s + τ)|F+

0 (s))γ(dτ) =

∫ 0

−s
X(s + τ)γ(dτ)

+

∫ −s

−∞
E(X(s + τ)|F+

0 (s))γ(dτ),

we can apply (3.17) to the second term of the right-hand side of the above

equation to get

∫ 0

−∞
E(X(s + τ)|F+

0 (s))γ(dτ)(5.16)

=

∫ 0

−s
X(s + τ)γ(dτ) + (

∫ −s

−∞
Ξ(−τ)γ(dτ))X(s)

+

∫ s

0
(

∫ −s

−∞
P (−τ, u)γ(dτ))dν−s (u).

Taking account of the causality relation in (3.4), we shall construct three

continuous functions c(s), d(s), e(s, u) (0 ≤ u ≤ s) such that for any s ≥ 0

∫ s

0
(

∫ −s

−∞
P (−τ, u)γ(dτ))dν−s (u) = c(s)X(0) + d(s)X(s)(5.17)

+

∫ s

0
e(s, u)X(u)du.

Since it follows from Theorem 3.1(ii) that

the right-hand side of (5.17)

= (c(s)Ξ(s) + d(s) +

∫ s

0
e(s, u)Ξ(s− u)du)X(s)

+

∫ s

0
(c(s)P (s, v) +

∫ s−v

0
P (s− u, v)e(s, u)du)dν−s (v),
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we can reduce the problem of the existence of such functions c(s), d(s),

e(s, u) (0 ≤ u ≤ s) satisfying (5.17) to that of the existence of three continu-

ous functions c(s), d(s), e(s, u) (0 ≤ u ≤ s) such that for any s, v (0 < v < s)

c(s)Ξ(s) + d(s) +

∫ s

0
e(s, u)Ξ(s− u)du = 0,(5.18)

∫ −s

−∞
P (−τ, v)γ(dτ) = c(s)P (s, v) +

∫ s−v

0
P (s− u, v)e(s, u)du.(5.19)

First, let us assume the existence of three continuous functions c(s), d(s),

e(s, u) (0 ≤ u ≤ s) satisfying (5.18) and (5.19). We note from (5.18) that

the existence of the function d(s) comes from that of functions c(s) and

e(s, u). Letting v tend to s in (5.19), we see from (4.1) and (4.8) that

c(s) = δ(s) (s ≥ 0).(5.20)

Differentiating equation (5.19) with respect to v, we have

∫ −s

−∞
P (0,1)(−τ, v)γ(dτ) = c(s)P (0,1)(s, v) − αe(s, s− v)

+

∫ s

v
P (0,1)(z, v)e(s, s− z)dz.

Hence

e(s, s− v) −
∫ s

v
α−1P (0,1)(z, v)e(s, s− z)dz(5.21)

= α−1(c(s)P (0,1)(s, v) −
∫ −s

−∞
P (0,1)(−τ, v)γ(dτ)).

Therefore, using the same method which was used to solve equation

(5.3), we find that a continuous function e(s, z) (0 ≤ z ≤ s) satisfying

(5.21) exists uniquely.

Next, we show that the functions c(s) and e(s, u) determined by (5.20)

and (5.21) satisfy equation (5.19). It follows from (5.20) and (5.21) that for

any s, v (0 < v < s)

∂

∂v
(

∫ −s

−∞
P (−τ, v)γ(dτ) − c(s)P (s, v) −

∫ s−v

0
P (s− u, v)e(s, u)du) = 0,

∫ −s

−∞
P (−τ, v)γ(dτ) − c(s)P (s, s) = 0.
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Hence, we find that two functions c(s) and e(s, u) satisfy equation (5.19).

Therefore, it follows from (5.15)–(5.17) and (5.20) that

X(t) −X(0) = −
∫ t

0
{βX(s) +

∫ 0

−s
X(s + τ)γ(τ)dτ

+(

∫ −s

−∞
Ξ(−τ)γ(dτ))X(s) + d(s)X(s) + δ(s)X(0)

+

∫ s

0
e(s, u)X(u)du}ds + αν+

0 (t)

= −
∫ t

0
{(β +

∫ −s

−∞
Ξ(−τ)γ(dτ) + d(s))X(s)

+

∫ s

0
(γ(u− s) + e(s, u))X(u)du + δ(s)X(0)}ds

+αν+
0 (t).

Consequently, comparing the above equation with equation (5.13), we

find that

β(s) = β +

∫ −s

−∞
Ξ(−τ)γ(dτ) + d(s) (s ≥ 0),(5.22)

γ(s, u) = γ(u− s) + e(s, u) (0 ≤ u ≤ s).(5.23)

In particular, it follows from (5.23) that Lemma 5.2 holds. �

Using (4.8) and Lemma 5.1, we have

Lemma 5.3. P (1,0)(t, t) = −αβ(t) (t ≥ 0).

We define a set L by

L ≡ {(α, β, γ, δ) | α, β, γ and δ satisfy the following conditions;(5.24)

(i) α > 0,

(ii) β = β(t) is continuous on [0,∞) and C1-class in (0,∞),

(iii) γ = γ(t, s) is continuous on {(t, s); 0 ≤ s ≤ t < ∞},
(iv) δ = δ(t) is bounded and continuous on [0,∞),

C1-class in (0,∞) and δ′ = δ′(t)

can be extended continuously on [0,∞)}.
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We shall show one of main theorems in this paper.

Theorem 5.1. There exists a unique element (α, β, γ, δ) of L such that

the stochastic process X satisfies the following stochastic differential equa-

tion: for any t ≥ 0

X(t) −X(0)(5.25)

= −
∫ t

0
(β(s)X(s) +

∫ s

0
γ(s, u)X(u)du + δ(s)X(0))ds + αν+

0 (t).

Proof. From (4.2), (4.4), (5.1), Lemmas 4.1, 4.4, 5.1 and 5.2, we can

prove the existence of an element (α, β, γ, δ) of the set L satisfying (5.25).

For the proof of the uniqueness, let us assume that there exists another

element (α̃, β̃, γ̃, δ̃) of the set L. First, we shall show the following statement

obtained by replacing β (resp. γ) in (5.2) by β̃ (resp. γ̃):

P (1,0)(t, s) = −β̃(t)P (t, s) −
∫ t

s
γ̃(t, u)P (u, s)du (0 ≤ s ≤ t).(5.26)

Let v be any fixed positive number less than t. By multiplying the both-

hand sides of (5.25) by ν+
0 (v) and taking expectation, we see from (3.3)

that

E(X(t)ν+
0 (v))(5.27)

= −
∫ t

0
(β̃(s)E(X(s)ν+

0 (v)) +

∫ s

0
γ̃(s, u)E(X(u)ν+

0 (v))du)ds

+αE(ν+
0 (t)ν+

0 (v)).

Since (ν+
0 (t); t ≥ 0) is the standard Brownian motion, we see from (3.11)

that for any w ≥ 0

E(X(w)ν+
0 (v)) =

∫ w∧v

0
P (w, τ)dτ and

E(ν+
0 (w)ν+

0 (v)) = w ∧ v.

(5.28)

Therefore, we find from (5.27) and (5.28) that
∫ v

0
P (t, τ)dτ = −

∫ t

0
(β̃(s)

∫ s∧v

0
P (s, τ)dτ

+

∫ s

0
γ̃(s, u)(

∫ u∧v

0
P (u, τ)dτ)du)ds + αv.
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Differentiating the above equation with respect to t, we have
∫ v

0
P (1,0)(t, τ)dτ = −(β̃(t)

∫ v

0
P (t, τ)dτ +

∫ t

0
γ̃(t, u)(

∫ u∧v

0
P (u, τ)dτ)du)

= −(β̃(t)

∫ v

0
P (t, τ)dτ +

∫ v

0
(

∫ t

τ
γ̃(t, u)P (u, τ)du)dτ).

Furthermore, differentiating the above equation with respect to v, we see

that (5.26) holds.

Next, we shall show that

α = α̃.(5.29)

It follows from (5.25) that for any t ≥ 0
∫ t

0
((β(s) − β̃(s))X(s)

+

∫ s

0
(γ(s, u) − γ̃(s, u))X(u)du + (δ(s) − δ̃(s))X(0))ds

= (α− α̃)ν+
0 (t),

which implies that the stochastic process ((α−α̃)ν+
0 (t); t ≥ 0) is a continuous

martingale with bounded variation. Hence, we see that α = α̃.

Using (4.8) and (5.26), we have the same result as in Lemma 5.3 such

that P (1,0)(t, t) = −αβ̃(t) (t ≥ 0). Therefore, we find that

β(t) = β̃(t) (t ≥ 0).(5.30)

Finally, noting (5.26), (5.27) and (5.29), we see from the proof of Lemma

5.1 that the function γ̃(t, s) (0 ≤ s ≤ t) satisfies the integral equation (5.6)

with the same kernel K = K(u, s) as in (5.4) and the same inhomogeneous

term ft = ft(s) (0 ≤ s ≤ t) as in (5.5). Therefore, we find from (5.7) that

γ̃(t, s) = γ̃(t, s) (0 ≤ s ≤ t).(5.31)

Thus, we see from (5.29)–(5.31) that Theorem 5.1 holds. �

As stated in Section 1, Miyoshi([8]) derived the stochastic differential

equation (5.25) in Theorem 5.1 for the stationary Gaussian process associ-

ated with (l,m)-string and called it an (α, β, γ, δ)-Langevin equation. By

taking account of the background stated in Section 1, we call the stochastic

differential equation (5.25) in Theorem 5.1 a KM2O-Langevin equation with

continuous time associated with the stochastic process X.
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6. Fluctuation-Dissipation Theorem

Under the same situation as in Section 5, in this section, we shall obtain

some relations which hold among the quadruplet (α, β, γ, δ) in equation

(5.25) associated with the stochastic process X.

First, we shall derive a relation between the coefficient α in the fluc-

tuation term of equation (5.25) and the coefficients β = β(t), δ = δ(t) in

the drift term of equation (5.25) which is called a fluctuation-dissipation

theorem.

Immediately from (2.22) and (2.23), we have

Lemma 6.1. β =
α2

2R(0)
−

∫ 0

−∞
Ξ(τ)γ(τ)dτ.

Moreover, it follows from (5.12) and (5.14) that

Lemma 6.2. δ(t) = −(Ξ′(t) + β(t)Ξ(t) +

∫ t

0
γ(t, u)Ξ(u)du) (t ≥ 0).

From (2.23) and Lemma 6.2, we have

Theorem 6.1. (Fluctuation-Dissipation Theorem)

α2

2
= R(0)(β(0) + δ(0)).

Second, we shall obtain a relation between the coefficients β = β(t) and

δ = δ(t) in the drift term of equation (5.25) which is called a dissipation-

dissipation theorem. By Lemma 4.1(i), we can differentiate equation (5.1)

with respect to t to see that

Theorem 6.2. (Dissipation-Dissipation Theorem) The function β =

β(t) (t > 0) is C1 class and

d

dt
β(t) = δ(t)2 (t > 0).
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Third, we shall show another dissipation-dissipation theorem which

states that there exists a relation between the function γ = γ(t, s) and

the functin δ = δ(t) in the drift term of equation (5.25). For that purpose,

we shall show

Lemma 6.3. δ(s)P (s, v)−αδ(v) = −
∫ s
v P (τ, v)γ(s, s−τ)dτ (0 < v <

s).

Proof. By (4.1), the left-hand side of (5.19) =
∫−v
−∞ P (−τ, v)γ(dτ) −∫−v

−s P (−τ, v)γ(dτ) = αδ(v) −
∫ s
v P (τ, v)γ(−τ)dτ . On the other hand, by

(5.20), the right-hand side of (5.19) = δ(s)P (s, v) +
∫ s
v P (τ, v)e(s, s− τ)dτ .

Therefore, we see from (5.23) that Lemma 6.3 holds. �

Lemma 6.4. γ(t, 0) = β(t)δ(t) − δ′(t) (t ≥ 0).

Proof. Differentiating the equation in Lemma 6.3 with respect to v,

we see that for any s, v (0 < v < s)

δ(s)P (0,1)(s, v) − αδ′(v) = αγ(s, s− v) −
∫ s

v
P (0,1)(τ, v)γ(s, s− τ)dτ.

Letting v tend to s in the above equation, we have

δ(s)P (0,1)(s, s) − αδ′(s) = αγ(s, 0),

which with Lemmas 4.3(iii) and 5.3 implies that Lemma 6.4 holds. �

We define a function Γ = Γ(t, s) (t, s ≥ 0) by

Γ(t, s) ≡ γ(t + s, t) (t, s ≥ 0).(6.1)

Theorem 6.3. (Dissipation-Dissipation Theorem) (i) The function

Γ = Γ(t, s) is C1-class with respect to t > 0 for any fixed s > 0.

(ii) For any fixed s > 0, the function Γ(∗, s) = Γ(t, s) of t satisfies the

following equation:

(a)
∂Γ(t, s)

∂t
= δ(t + s)Γ(s, t) (t > 0),

(b) Γ(0, s) = β(s)δ(s) − δ′(s) (t = 0).
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Proof. It follows from (5.23) that

Γ(t, s) = γ(−s) + e(t + s, t).(6.2)

For the proof of (i), we have only to show that the function e(t+ s, t) is

C1 class with respect to t > 0 for any fixed s > 0. Using the same Voltera

kernel K = K(z, v) (0 ≤ v ≤ z < ∞) as in (5.4), we can rewrite equation

(5.21) into

e(s, s− v) −
∫ s

v
K(z, v)e(s, s− z)dz = gs(v) (0 ≤ v < s),(6.3)

where the function gs = gs(v) is defined by

gs(v) ≡ α−1(δ(s)P (0,1)(s, v) −
∫ −s

−∞
P (0,1)(−τ, v)γ(τ)dτ)(6.4)

(0 ≤ v < s).

Hence, we can use the same resolvent kernel C = C(z, v) (z ≥ v ≥ 0) as in

(5.8) to get

e(s, s− v) = gs(v) +

∫ s

v
C(z, v)gs(z)dz.

For any t, s (t, s > 0), by replacing s and v in the above equation by t + s

and s, respectively, we have

e(t + s, t) = gt+s(s) +

∫ t+s

s
C(z, s)gt+s(z)dz.(6.5)

We note that the resolvent kernel C = C(z, s) is continuous with respect

to z, s (0 ≤ s ≤ z). Moreover, since it follows from (4.10), (5.20), Lemmas

4.5 and (6.4) that the function gt+s(s) (t, s > 0) is C1 class with respect to

t for any fixed s > 0, we can see from (6.5) that the function e(t+s, t) is C1

class with respect to t for any fixed s > 0. Hence, we have proved Theorem

6.3(i).

Next, we shall prove Theorem 6.3(ii). It follows from Lemma 6.4 and

(6.1) that (b) in Theorem 6.1(ii) holds. By noting (6.1) again, we see from

Lemma 6.3 that

δ(s)P (s, v) − αδ(v) = −
∫ s

v
P (τ, v)Γ(s− τ, τ)dτ (0 < v < s).
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Differentiating the above equation with respect to s, we find that for any

s, v (0 < v < s)

δ′(s)P (s, v)+δ(s)P (1,0)(s, v) = −P (s, v)Γ(0, s)−
∫ s

v
P (τ, v)Γ(1,0)(s−τ, τ)dτ.

Applying Lemma 5.1 to the above equation, we have

δ′(s)P (s, v) − δ(s)(β(s)P (s, v) +

∫ s

v
γ(s, u)P (u, v)du)

= −P (s, v)Γ(0, s) −
∫ s

v
P (τ, v)Γ(1,0)(s− τ, τ)dτ (0 < v < s).

Therefore, we see from (b) in Theorem 6.3(ii) that

∫ s

v
P (u, v)(Γ(1,0)(s− u, u) − δ(s)γ(s, u))du = 0 (0 < v < s).

Moreover, by differentiating the above equation with respect to v, we see

from (4.8) that for any s, v (0 < v < s)

α(Γ(1,0)(s− v, v) − δ(s)γ(s, v))

=

∫ s

v
P (0,1)(s, v)(Γ(1,0)(s− u, u) − δ(s)γ(s, u))du.

Let us fix any s > 0. Defining a function φs(v) (0 < v < s) by

φs(v) ≡ Γ(1,0)(s− v, v) − δ(s)γ(s, v),

we see that

φs(v) −
∫ s

v
(α−1P (0,1)(s, v))φs(u)du = 0.

Therefore, using the same method which was used to solve equation (5.6),

we find that φs = 0, which implies that

Γ(1,0)(s− v, v) = δ(s)γ(s, v) (0 < v < s).

For any t, s (t, s > 0), we replace s (resp. v) in the above equation by t + s

(resp. s) to get from (6.1) that

Γ(1,0)(t, s) = δ(t + s)Γ(s, t),
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which proves (a) in Theorem 6.3(ii). �

Concerning the uniqueness of equation in Theorem 6.3(ii), we shall show

the following general lemma.

Lemma 6.5. Let us be given any real valued continuous function δ =

δ(t) defined on [0,∞). Let F = F (t, s) be a real valued continuous function

defined on [0,∞) × [0,∞) such that for any fixed s > 0

(i) the function F (∗, s) = F (t, s) is C1 class with respect to t (t > 0),

(ii) the function F (∗, :) satisfies the following equation:

(a)
∂F (t, s)

∂t
= δ(t + s)F (s, t) (t > 0),

(b) F (0, s) = 0 (t = 0).

Then, F (t, s) = 0 (t, s ≥ 0).

Proof. Let us fix any positive number T and define two real constants

C1, C2 by

C1 ≡ max
0≤t,s≤T

|F (t, s)| and C2 ≡ max
0≤t,s≤T

|δ(t + s)|.

For the proof of Lemma 6.5, we have only to show the following inequality:

for any n ∈ N∗ ≡ {0, 1, 2, . . .}

|F (t, s)| ≤ C1C
4(n+1)
2

t2(n+1)

(2(n + 1))!

s2(n+1)

(2(n + 1))!
(0 ≤ t, s ≤ T ).(6.6)

We shall prove (6.6) by mathematical inducton with respect to n. Using

(a) and (b), we have

F (t, s) =

∫ t

0
δ(u1 + s)F (s, u1)du1

=

∫ t

0
δ(u1 + s)(

∫ s

0
δ(u2 + u1)F (u1, u2)du2)du1

=

∫ t

0

∫ s

0
δ(s + u1)δ(u1 + u2)F (u1, u2)du1du2.
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Therefore, we have

F (t, s) =

∫ t

0

∫ s

0
δ(s + u1)δ(u1 + u2)(6.7)

·(
∫ u1

0

∫ u2

0
δ(u2 + u3)δ(u3 + u4)F (u3, u4)du3du4)du1du2.

Thus, we can estimate it as follows:

|F (t, s)| ≤ C1C
4
2

∫ t

0

∫ s

0
du1du2(

∫ u1

0

∫ u2

0
du3du4)

= C1C
4
2

t2

2!

s2

2!
,

which implies that inequality (6.6) holds for n = 0.

Next, for any fixed k ∈ N∗, we shall assume that inequality (6.6) holds

for n = k. Using (6.7) again, we obtain the following estimate:

|F (t, s)| ≤ C1C
4(k+1)
2

∫ t

0

∫ s

0
du1du2(

∫ u1

0

∫
u2

u
2(k+1)
3

(2(k + 1))!

u
2(k+1)
4

(2(k + 1))!
du3du4)

= C1C
4(k+1)
2

∫ t

0

∫ s

0
du1du2

u2k+3
1

(2k + 3)!

u2k+3
2

(2k + 3)!

= C1C
4(k+1)
2

t2(k+2)

(2(k + 2))!

s2(k+2)

(2(k + 2))!
,

which implies that inequality (6.6) holds for n = k + 1. Therefore, by

mathematical induction with respect to n, we find that inequality (6.6)

holds for any n ∈ N∗. �

Finally, we shall obtain a concrete representation of the function Γ =

Γ(t, s) in (6.1) which is the unique solution of differential equation in The-

orem 6.3 by virtue of Lemma 6.5.

Theorem 6.4. The function Γ = Γ(t, s) (t, s ≥ 0) in (6.1) has the

following representation:

Γ(t, s) = g(t, s) +

∫ t

0

∫ s

0
δ(s + u1)δ(u1 + u2)g(u1, u2)du1du2

+
∞∑
n=1

∫ t

0

∫ s

0
δ(s + u1)δ(u1 + u2)du1du2
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·(
∫ u1

0

∫ u2

0
δ(u2 + u3)δ(u3 + u4)du3du4

(· · · (
∫ u2n−1

0

∫ u2n

0
δ(u2n + u2n+1)δ(u2n+1 + u2n+2)

·g(u2n+1, u2n+2)du2n+1du2n+2) · · ·)),

where the function g = g(t, s) (t, s > 0) is given by

g(t, s) = β(s)δ(s) − δ′(s) +

∫ t

0
δ(s + u1)(β(u1)δ(u1) − δ′(u1))du1.

Proof. It follows from Theorem 6.3(ii) that

Γ(t, s) = Γ(0, s) +

∫ t

0
δ(s + u1)Γ(s, u1)du1.

Using this equation again, we have

Γ(t, s) = Γ(0, s) +

∫ t

0
δ(s + u1)Γ(0, u1)du1(6.8)

+

∫ t

0

∫ s

0
δ(s + u1)δ(u1 + u2)Γ(u1, u2)du1du2

= g(t, s) +

∫ t

0

∫ s

0
δ(s + u1)δ(u1 + u2)Γ(u1, u2)du1du2,

where the function g = g(t, s) is defined by

g(t, s) ≡ Γ(0, s) +

∫ t

0
δ(s + u1)Γ(0, u1)du1.

Therefore, for any n ∈ N, using (6.8) n-times repeatedly, we have

Γ(t, s) = g(t, s) +

∫ t

0

∫ s

0
δ(s + u1)δ(u1 + u2)g(u1, u2)du1du2(6.9)

+
n∑

k=1

∫ t

0

∫ s

0
δ(s + u1)δ(u1 + u2)du1du2

·(
∫ u1

0

∫ u2

0
δ(u2 + u3)δ(u3 + u4)du3du4

(· · · (
∫ u2k−1

0

∫ u2k

0
δ(u2k + u2k+1)δ(u2k+1 + u2k+2)

·g(u2k+1, u2k+2)du2k+1du2k+2) · · ·))
+φn(t, s),
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where the function φn = φn(t, s) (t, s ≥ 0) is given by

φn(t, s) ≡
∫ t

0

∫ s

0
δ(s + u1)δ(u1 + u2)du1du2

·(
∫ u1

0

∫ u2

0
δ(u2 + u3)δ(u3 + u4)du3du4

(· · · (
∫ u2n−1

0

∫ u2n

0
δ(u2n + u2n+1)δ(u2n+1 + u2n+2)

·Γ(u2n+1, u2n+2)du2n+1du2n+2) · · ·)).

Let us fix any positive number T and define two real constants C3, C4

by

C3 ≡ max
0≤t,s≤T

|Γ(t, s)| and C4 ≡ max
0≤t,s≤T

|δ(t + s)|.

Similarly as in (6.6), we see that for any n ∈ N

max
0≤t,s≤T

|φn(t, s)| ≤ C3(
(C4T )2(n+1)

(2(n + 1))!
)2.

Therefore, since it follows that limn→∞ |φn(t, s)| = 0 for any t, s (t, s ≥ 0),

we see from (6.9) that Theorem 6.4 holds. �

We call Theorems 6.1, 6.2 and 6.3 together as the fluctuation-dissipation

theorem based upon KM2O-Langevin equation (5.25) associated with the

stochastic process X, which wad proved in [8] for the continuous time sta-

tionary Gaussian process associated with (l,m)-string.

Moreover, we define the quadrupulet (α, β, γ, δ) consisting of the co-

efficients α, β = β(t)(0 ≤ t < ∞), γ = γ(t, s)(0 ≤ s ≤ t < ∞) and

δ = δ(t)(0 ≤ t < ∞) in equation (5.25) associated with the stochastic

process X by

L(X) ≡ (α, β, γ, δ)(6.10)

and call it a KM2O-Langevin system associated with the stationary process

X.

7. KM2O-Langevin System and Covariance Function

Under the same situation as in Sections 5 and 6, in this section, we shall

derive a system of equations for characterizing the KM2O-Langevin system

L(X) from the covariance function R of the stationary process X.
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We define a subset L0 of the set L in (5.24) by

L0 ≡ {(α, β, γ, δ) ∈ L | Γ = Γ(t, s) ≡ γ(t + s, t)(t, s > 0)(7.1)

is C1-class with respect to t > 0 for any fixed s > 0}.

It then follows from Theorems 5.1 and 6.3 that

L(X) ∈ L0.(7.2)

We shall show

Lemma 7.1. R′(t−s) = −(β(t)R(t−s)+
∫ t
0 γ(t, u)R(s−u)du+δ(t)R(s))

(0 < s < t).

Proof. For any fixed v > 0, multiplying the both-hand sides of

KM2O-Langevin equation (5.25) by X(v) and taking expectation, we have

R(v − t) −R(v) = −
∫ t

0
(β(s)R(v − s)(7.3)

+

∫ s

0
γ(s, u)R(v − u)du + δ(s)R(v))ds

+αE(X(v)ν+
0 (t)).

It follows from (5.28) and (7.3) that for any t, v (0 < v < t)

R(v − t) −R(v) = −
∫ t

0
(β(s)R(v − s)

+

∫ s

0
γ(s, u)R(v − u)du + δ(s)R(v))ds

+α

∫ v

0
P (v, u)du.

Differentiating the above equation with respect to t and then replacing v by

s, we find that Lemma 7.1 holds. �

We shall show the second of main theorems in this paper.

Theorem 7.1. The KM2O-Langevin system L(X) is the unique solu-

tion in the set L0 satisfying the following system of equations:
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(i) α =
√
−2R′(0+);

(ii) R′(t) = −(β(t)R(t) +

∫ t

0
γ(t, u)R(u)du + δ(t)R(0)) (t > 0);

(iii)
d

dt
β(t) = δ(t)2 (t > 0);

(iv) for any fixed s > 0


(a)
∂Γ(t, s)

∂t
= δ(t + s)Γ(s, t) (t > 0),

(b) Γ(0, s) = β(s)δ(s) − δ′(s) (t = 0).

Proof. (i), (ii), (iii) and (iv) come from (2.23), Lemma 6.2, Theorems

6.2 and 6.3, respectively. Note that we can get (ii) also by letting s in

Lemma 7.1 tend to 0.

Next, we shall prove the uniqueness. Let (α̃, β̃, γ̃, δ̃) be another element

of the set L0 satisfying the equations (i)–(iv). Immediately from (i), we see

α = α̃.(7.4)

Corresponding to Lemma 7.1, we shall show

R′(t− s) = −(β̃(t)R(t− s)(7.5)

+

∫ t

0
γ̃(t, u)R(s− u)du + δ̃(t)R(s)) (0 < s < t).

For that purpose, we define a function f = f(t, s) (t, s ≥ 0) by

f(t, s) ≡ R′(s) + β̃(t + s)R(s)(7.6)

+

∫ t+s

0
γ̃(t + s, u)R(t− u)du + δ̃(t + s)R(t).

In particular, we see from equation (ii) with β, γ and δ replaced by β̃, γ̃ and

δ̃ that for any s ≥ 0

f(0, s) = 0.(7.7)
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Defining another function h = h(t, s) by

h(t, s) ≡
∫ t+s

0
γ̃(t + s, u)R(t− u)du,(7.8)

we have

f(t, s) = R′(s) + β̃(t + s)R(s) + h(t, s) + δ̃(t + s)R(t).(7.9)

It follows that

h(t, s) =

∫ t

0
γ̃(t + s, u)R(t− u)du +

∫ t+s

t
γ̃(t + s, u)R(u− t)du

=

∫ t

0
Γ̃(t− u, s + u)R(u)du +

∫ s

0
Γ̃(t + u, s− u)R(u)du,

where Γ̃(t, s) ≡ γ̃(t + s, t). By using (a) in equation (iv) with Γ and δ

replaced by Γ̃ and δ̃, we can differentiate the above with respect to t to see

that

h(1,0)(t, s) = Γ̃(0, s + t)R(t) +

∫ t

0
Γ̃(1,0)(t− u, s + u)R(u)du

+

∫ s

0
Γ̃(1,0)(t + u, s− u)R(u)du

= Γ̃(0, s + t)R(t) + δ̃(t + s)

∫ t+s

0
γ̃(t + s, u)R(u− s)du.

Hence, it follows from (7.9) and (b) in equation (iv) with Γ and δ replaced

by Γ̃ and δ̃ that

f (1,0)(t, s) = β̃′(t + s)R(s) + δ̃′(t + s)R(t) + δ̃(t + s)R′(t) + h(1,0)(t, s)

= β̃′(t + s)R(s) + δ̃(t + s)R′(t)

+β̃(s + t)δ̃(s + t)R(t) + δ̃(t + s)

∫ t+s

0
γ̃(t + s, u)R(u− s)du.

Thus, by using equation (iii) with β and δ replaced by β̃ and δ̃, we have

f (1,0)(t, s) = δ̃(t + s)(δ̃(t + s)R(s) + R′(t) + β̃(s + t)R(t)

+

∫ t+s

0
γ̃(t + s, u)R(u− s)du),
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which implies that

f (1,0)(t, s) = δ̃(t + s)f(s, t) (t, s ≥ 0).(7.10)

By Lemma 6.5, we see from (7.7) and (7.10) that f(t, s) = 0 (t, s ≥ 0).

Therefore, for any t, s (0 ≤ s < t), by replacing t and s in (7.6) by s and

t− s, respectively, we find that (7.5) holds.

By using (7.5) proved above, we shall prove that β = β̃, γ = γ̃ and δ = δ̃.

By Lemma 7.1 and (7.5), we see that for any t, s (0 ≤ s < t)

β(t)R(t− s) +

∫ t

0
γ(t, u)R(s− u)du + δ(t)R(s)

= β̃(t)R(t− s) +

∫ t

0
γ̃(t, u)R(s− u)du + δ̃(t)R(s).

This implies that for any t, s (0 ≤ s < t)

E((β(t) − β̃(t))X(t)

+

∫ t

0
(γ(t, u) − γ̃(t, u))X(u)du + (δ(t) − δ̃(t))X(0), X(s)) = 0.

Therefore, we see that for any t > 0

(β(t) − β̃(t))X(t) +

∫ t

0
(γ(t, u) − γ̃(t, u))X(u)du + (δ(t) − δ̃(t))X(0) = 0.

Combining this with (7.7), we see that the quadruplet (α̃, β̃, γ̃, δ̃) satisfies

the stochastic differential equation (5.25). Thus, by Theorem 5.1, we see

that β = β̃, γ = γ̃ and δ = δ̃. �

Corollary 7.1. The constants β(0) and δ(0) can be obtained as fol-

lows from the covariance function R :

(v) β(0) = −1

2
(
R′(0+)

R(0)
+

R′′(0+)

R′(0+)
);

(vi) δ(0) = −1

2
(
R′(0+)

R(0)
− R′′(0+)

R′(0+)
).
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Proof. Letting t tend to 0 in Theorem 7.1(ii), we have

β(0) + δ(0) = −R′(0)

R(0)
.(7.11)

We have proved (7.5) in the proof of the uniqueness part in Theorem

7.1. Letting s tend to t therein and noting (i) in Theorem 7.1, we have

α2

2
= β(t)R(0) +

∫ t

0
γ(t, u)R(t− u)du + δ(t)R(t) (t > 0).(7.12)

We rewrite (ii) in Theorem 7.1 into

R(0)δ(t) = −R′(t) − β(t)R(t) −
∫ t

0
Γ(t− u, u)R(t− u)du (t > 0).

Differentiating the above equation with respect to t, we see from (iv) in

Theorem 7.1 that

R(0)δ′(t) = −(R′′(t) + β(t)R′(t) +

∫ t

0
Γ(t− u, u)R′(t− u)du)

−β′(t)R(t) − Γ(0, t)R(0) −
∫ t

0
Γ(1,0)(t− u, u)R(t− u)du

= −(R′′(t) + β(t)R′(t) +

∫ t

0
γ(t, u)R′(u)du) − δ2(t)R(t)

−(β(t)δ(t) − δ′(t))R(0) − δ(t)

∫ t

0
γ(t, u)R(t− u)du.

Therefore, we have

δ(t)(δ(t)R(t) + β(t)R(0) +

∫ t

0
γ(t, u)R(t− u)du)

= −(R′′(t) + β(t)R′(t) +

∫ t

0
γ(t, u)R′(u)du)

which with (7.12) implies that for any t > 0

α2

2
δ(t) = −(R′′(t) + β(t)R′(t) +

∫ t

0
γ(t, u)R′(u)du).(7.13)

In particular, letting t tend to 0 in (7.13) and noting (i) in Theorem 7.1, we

have

δ(0) − β(t) = −R′′(0)

R′(0)
.(7.14)
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Therefore, combining (7.11) with (7.14), we see that Corollary 7.1

holds. �

We shall investigate the solvability of the system of equations in Theorem

7.1 for certain given non-negative definite function R defined on the bounded

interval [−T, T ] in the future.
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