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Large Deviation for Periodic Markov Process on

Square Lattice

By Taizo Chiyonobu, Kanji Ichihara and Hideto Mituisi

Abstract. We discuss large deviations for the pinned motion of a
periodic Markov chain on the d-dimensional square lattice Z

d. Making
use of the harmonic transform based on a positive principal eigenfunc-
tion of the difference operator related to the Markov chain, a nice large
deviation principle is established.

1. Introduction

Let (Xn, Px) be a periodic, reversible Markov chain on the d−dimen-

sional square lattice Z
d. In general, the n-step transition probabilities of

the Markov chain decay exponentially in large time. For such a process we

are interested in the asymptotic behavior of the expectation of the type:

E
P

(n,y)
(0,x)

[
exp

(
−
n−1∑
k=0

m(Xk)

)]
,

where P
(n,y)
(0,x) is the probability law of the motion of X· pinned as X0 =

x,Xn = y and m is a periodic function with the same periodicity as the

above Markov chain. The first step in this direction is to establish a large

deviation principle for the pinned process. Such a result is obtained in this

paper.

Large deviation for the occupation time distribution of a Markov chain

has been established in a series of papers by Donsker and Varadhan [2] with

the strong ergodicity assumptions. Several subsequent results have been

obtained since then weakening the ergodicity conditions. However their re-

sults cannot be applied to our case, since our process is not expected any

longer to have a nice condtion like ergodicity. In fact, the n-step transition

probabilities of the processes generally decay exponentially in time. Conse-

quently we are not able to prove the usual large derivations for the process.
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Nevertheless it is possible to prove a nice large deviation as far as the pinned

processes are concerned if appropriate rate functions are adopted, which is

our main assertion in this paper. It is to be noted that one of the authors

has discussed this type of large deviation for a class of pinned covering

diffusions(See [4]).

The organization of this paper is as follows. In Section 2 some notations

are introduced and main results are stated. The principal eigenvalue prob-

lem for the difference operator corresponding to the original Markov chain

is discussed in Section 3. With the help of of the harmonic transform by a

positive principal eigenfunction obtained in Section 3, upper and lower esti-

mates for the transition probabilities of the Markov chain are given. Large

deviation result is proved in Section 4. Section 5 is devoted to a discus-

sion of the positivity of the bottom of the spectrum of the above difference

operator.

2. Notations and Statements of Main Results

Suppose we are given an irreducible Markov chain Xn on Z
d which has

a one-step transition probability {p(x, y)}. We assume the following condi-

tions:

(A.1) There exists a positive integer m0 such that

p(x + m0ei, y + m0ei) = p(x, y), x, y ∈ Z
d, i = 1, · · · , n

where ei = (0, · · · ,
i

1̌, · · · , 0).

(A.2) It holds that with a positive constant r0,{
y ∈ Z

d; p(x, y) �= 0
}
⊆ B1(x, r0), x ∈ Z

d

where B1(x, r0) =
{
y; ‖x− y‖ < r0

}
, ‖x‖ =

∑d
i=1 |xi|.

(A.3) There exists a positive function a = a(x) on Z
d satisfying

a(x)p(x, y) = a(y)p(y, x), x, y ∈ Z
d.

(A.4) inf
{
p(x, y); ‖x− y‖ ≤ 1, x, y ∈ Z

d
}
> 0.
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Define a difference operator L for a function u(x) on Z
d by

Lu(x) =
∑
y∈Zd

p(x, y)(u(y) − u(x))

and set T = Z/m0Z, T
d =

d︷ ︸︸ ︷
T × · · · × T. Denote by c the covering map from

Z onto T, i.e.,

c(x) = x (mod m0)

and set

c0(x) = (c(x1), · · · , c(xd)), x = (x1, · · · , xd) ∈ Z
d

Let M be the set of probability measures on T
d endowed with the topology

induced by the metric

d(µ, λ) =

√∑
x∈Td

|µ(x) − λ(x)|2, µ, λ ∈ M.

Evidently (M, d) is a compact metric space. Let Ωx be the space of all

sequences X0, X1, X2, · · · with X0 = x and Xi ∈ Z
d. We have a probability

measure on Ωx induced by p(·, ·) which we will denote by Px. For each

ω ∈ Ωx, each positive integer n and a subset A of T
d, define

Ln
(
ω,A

)
=

1

n

n−1∑
k=0

χA(c0(Xk(ω)))

and for a measurable subset B ⊆ M,

Q
(n,y)
(0,x)(B) = P

(n,y)
(0,x)

(
ω;Ln(ω, ·) ∈ B

)
,

where P
(n,y)
(0,x) denotes the probability law of the Markov chain X· pinned as

X0 = x and Xn = y.

In this paper a large deviation principle for Q
(n,y)
(0,x) will be investigated.

In order to introduce an appropriate rate function for the present case, we

first discuss an eigenvalue problem for the difference operator L.
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Theorem 1. There exist a nonnegative number λ0 < 1 and a positive,

periodic function ϕ0 of period m0 such that

L
( ϕ0√

a

)
(x) + λ0

( ϕ0√
a

)
(x) = 0, x ∈ Z

d,

where ϕ0 is unique up to the multiplication by positive constants.

Making use of the function u0(x) = ϕ0(x)/
√

a(x), a new transition

probability function p0(x, y) is defined by

p0(x, y) =
p(x, y)u0(y)

(1 − λ0)u0(x)
, x, y ∈ Z

d.(1)

Let (X0
n, P

0
x ) be the Markov chain on Z

d induced by {p0(x, y)}. Denote by

p0
n(x, y) the n-step transition probability of X0

n. We introduce a distance

on Z
d by

d1(x, y) = inf{n; p0
n(x, y) > 0}.

Through upper and lower estimates of the n-step transition probability

p0
n(x, y) of the Markov chain X0

n, we can get upper and lower bounds for

the n-step transition probability pn(x, y) for Xn.

Theorem 2. There exist some positive constants Ci, i = 1, 2, 3, 4 such

that

C1(1 − λ0)
nu0(x)ϕ0(y)

2

u0(y)nd/2
e−

C2d1(x,y)2

n ≤ pn(x, y)

≤ C3(1 − λ0)
nu0(x)ϕ0(y)

2

u0(y)nd/2
e−

C4d1(x,y)2

n

for all x, y ∈ Z
d with d1(x, y) ≤ n.

It should be remarked here that the process X0
n is also periodic of period

m0. Set

π0u(x) =
∑
y∈Zd

p0(x, y)u(y).(2)
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Denote by U0 the set of periodic functions of period m0 on Z
d. The rate

function I0 on M is defined by

I0(µ) = − inf
u∈U0
u>0

∑
x∈Td

log
(π0u

u

)
(x)µ(x).(3)

Then we are able to show the following:

Theorem 3. (i) For any closed F ⊆ M,

lim sup
n→∞

1

n
logQ

(n,y)
(0,x)(F ) ≤ − inf

µ∈F
I0(µ).

(ii) For any open G ⊆ M,

lim inf
n→∞

1

n
logQ

(n,y)
(0,x)(G) ≥ − inf

µ∈G
I0(µ).

A corollary of the above theorem is stated as follows.

Corollary 3.1. If Φ is a real-valued weakly continuous functional on

M, then

lim
n→∞

1

n
logE

Q
(n,y)
(0,x) [e−nΦ(µ)] = − inf

µ∈M
[Φ(µ) + I0(µ)]

for any x, y ∈ Z
d.

3. Principal Eigenvalue Problem and Gaussian Estimates

In this section we shall give the proof of Theorem 1 and Theorem 2.

Consider the difference equation

L
( ϕ√

a

)
(x) + λ

( ϕ√
a

)
(x) = 0, x ∈ Z

d.(4)

It follows from the assumption (A.3) that

∑
y∈Zd

p(x, y)
( ϕ√

a

)
(y) =

1√
a(x)

∑
y∈Zd

√
p(x, y)p(y, x)ϕ(y).
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Hence

L
( ϕ√

a

)
(x) + λ

( ϕ√
a

)
(x)

=
1√
a(x)

{∑
y∈Zd

√
p(x, y)p(y, x)ϕ(y) + (λ− 1)ϕ(x)

}
.

Thus (4) is equivalent to

∑
y∈Zd

√
p(x, y)p(y, x)ϕ(y) + (λ− 1)ϕ(x) = 0.(5)

Set q(x, y) =
√

p(x, y)p(y, x), then q(x, y) is symmetric in x, y and is a

periodic function of period m0, i.e., the condition (A.1) is fulfilled with

{q(x, y)}.
Define for any x, y ∈ T

d,

q(x, y) =
∑

k1,··· ,kd∈Z
q(x, y + k1m0e1 + · · · + kdm0ed).

Since ϕ is a periodic function of period m0, (5) is reduced to

∑
y∈Td

q(x, y)ϕ(y) + (λ− 1)ϕ(x) = 0, x ∈ T
d.(6)

Set q(x) =
∑
y∈Td q(x, y). It should be remarked that the Markov chain on

T
d induced by {q(x, y)/q(x)} is irreducible.

Let λ1 be the biggest nonnegative eigenvalue of the matrix Q =
(
q(x, y)

)
.

Making use of the irreducibility mentioned above and the Perron-Frobenius

Theorem, we can easily see that λ1 is strictly positive and that the cor-

responding eigenspace is one-dimensional. It is also possible to choose its

eigenvector whose components are all positive. Thus setting λ0 = 1 − λ1,

all the assertions in Theorem 1 except the nonnegativity of λ0 have been

verified.

Next we shall discuss upper and lower bounds for the n-step transition

probability pn(x, y) of the Markov chain Xn. In order to perform this, we

make use of the n-step transition probability p0
n(x, y) of the transformed
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process X0
n. A simple computation shows that, by (1),

p0
n(x, y) =

∑
x1,··· ,xn−1∈Zd

p0(x, x1)p
0(x1, x2) · · · p0(xn−1, y)(7)

=
pn(x, y)u0(y)

(1 − λ0)nu0(x)
.

Note that the process X0
n is reversible with respect to the measure {ϕ0(x)2},

i.e.,

ϕ0(x)2p0
n(x, y) = ϕ0(y)

2p0
n(y, x).

Set for x ∈ Z
d and r > 0,

B(x, r) =
{
y ∈ Z

d; d1(x, y) ≤ r
}
, V (x, r) =

∑
y∈B(x,r)

ϕ0(y)
2.

We can easily verify that for any x ∈ Z
d and r > 1,

C5r
d ≤ V (x, r) ≤ C6r

d

with some positive constants Ci, i = 5, 6. With these notations, we can

apply Theorem 1.7, Delmotte[1] for the Markov chain X0
n under our as-

sumptions. Thus we get the following Gaussian upper and lower estimates

for p0
n(x, y).

Proposition 1. There exist positive constants Ci, i = 7, 8, 9, 10 such

that for all n,

C7ϕ0(y)
2

V (x,
√
n)

e−
C8d1(x,y)2

n ≤ p0
n(x, y) ≤

C9ϕ0(y)
2

V (x,
√
n)

e−
C10d1(x,y)2

n

for all x, y ∈ Z
d satisfying d1(x, y) ≤ n.

Proposition 1 combined with the relationship between pn(x, y) and

p0
n(x, y) gives Theorem 2. Note that the nonnegativity of λ0 in Theorem 1

is immediate from Theorem 2.
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4. Proof of Theorem 3

We shall first prove the upper bound in the theorem. Set, for a strictly

positive u ∈ U0,

V (x) = π0u(x) and W (x) = log
(V (x)

u(x)

)
.

where π0 is given by (2). From the definition of the pinned process, noting

(7), we have

E
P

(n,y)
(0,x)

[
V (Xn−1) exp

(
−
n−1∑
k=0

W (Xk)
)]

=
1

pn(x, y)
EPx

[
V (Xn−1) exp

(
−
n−1∑
k=0

W (Xk)
)
p(Xn−1, y)

]

=
1

pn(x, y)

∑
x1,··· ,xn−1∈Zd

V (xn−1) exp
(
−
n−1∑
k=0

W (xk)
)
p(xn−1, y)

× p(x, x1)p(x1, x2) · · · p(xn−2, xn−1)

=
(1 − λ0)

n−1u0(x)

pn(x, y)
EP

0
x
[
V (X0

n−1) exp
(
−
n−1∑
k=0

W (X0
k)
)p(X0

n−1, y)

u0(X0
n−1)

]
.

Hence, since z → p(z, y)/u0(z) is bounded above by a positive constant

depending only on y, we have, by virtue of Theorem 2,

E
P

(n,y)
(0,x)

[
V (Xn−1) exp

(
−
n−1∑
k=0

W (Xk)
)]

≤ C11
(1 − λ0)

n−1u0(x)

pn(x, y)
EP

0
x
[
V (X0

n−1) exp
(
−
n−1∑
k=0

W (X0
k)
)]

≤ C12n
d/2u0(y)e

C13d1(x,y)2/nEP
0
x
[
V (X0

n−1) exp
(
−
n−1∑
k=0

W (X0
k)
)]

= C12n
d/2u0(y)e

C13d1(x,y)2/nu(x)
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for some C11 > 0, C12 > 0 and C13 > 0. Here, the last equality follows as in

the arguments in Donsker and Varadhan[2], page 8. Thus we have obtained

E
P

(n,y)
(0,x)

[
exp
(
−
n−1∑
k=0

W (Xk)
)]

≤ C12
nd/2u0(y)u(x)eC13

d1(x,y)2

n

infx∈Zd V (x)
.(8)

On the other hand, by the definition of Q
(n,y)
(0,x) , we have

E
P

(n,y)
(0,x)

[
exp
(
−
n−1∑
k=0

W (Xk)
)]

= E
P

(n,y)
(0,x)

[
exp
(
− n

n−1∑
k=0

W (c0(Xk))

n

)]
= E

P
(n,y)
(0,x)

[
exp
(
− n

∑
z∈Td

W (z)Ln(ω, {z})
)]

= E
Q

(n,y)
(0,x)

[
exp
(
−n

∑
z∈Zd

W (z)µ(z)
)]
,

and by noting that for any measurable subset C of M,

E
Q

(n,y)
(0,x)

[
exp
(
−n

∑
z∈Zd

W (z)µ(z)
)]

(9)

≥ Q
(n,y)
(0,x)(C) exp

(
−n sup

µ∈C

∑
z∈Zd

W (z)µ(z)
)
.

Combining (8) and (9), we obtain

Q
(n,y)
(0,x)(C) ≤ C12

nd/2u0(y)u(x)eC13d1(x,y)2/n

infx∈Zd V (x)

× exp
(
n sup
µ∈C

∑
z∈Td

log
(π0u

u

)
(z)µ(z)

)
,

and hence

lim sup
n→∞

1

n
logQ

(n,y)
(0,x)(C) ≤ inf

u∈U0
u>0

sup
µ∈C

∑
z∈Td

log
(π0u

u

)
(z)µ(z).(10)

Following the same arguments as in Donsker and Varadhan [2], it follows

from (10) that for any closed subset F of M,

lim sup
n→∞

1

n
logQ

(n,y)
(0,x)(F ) ≤ − inf

µ∈F
I0(µ),
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which completes the proof of the upper bound of Theorem 3.

In order to prove the lower bound, some preliminaries are required. We

shall start with

Lemma 1. Let µ be a probability measure on T
d of which support co-

incides with T
d. Then there exists a positive function V0 in U0 such that

I0(µ) = −
∑
z∈Td

log
(π0V0

V0

)
(z)µ(z).

Proof. We first introduce a one-step transition probability p̃0 on T
d

by

p̃0(c0(x), c0(y)) =
∑

k1,··· ,kd∈Z
p0(x, y + k1m0e1 + · · · + kdm0ed)(11)

for x, y ∈ Z
d and define an operator π̃0 for a function u on T

d as

π̃0u(x) =
∑
y∈Td

p̃0(x, y)u(y), x ∈ T
d.

Then it is evident that

I0(µ) = − inf
u∈K

∑
x∈Td

log
( π̃0u

u

)
(x)µ(x)

where

K =
{
u = (u(x))x∈Td ; u(x) > 0 for all x ∈ T

d and
∑
x∈Td

u(x) = 1
}
.

Set, for all u ∈ K,

f(u) =
∑
x∈Td

log
( π̃0u

u

)
(x)µ(x).

Obviously f is continuous in u.

For the proof of our lemma, it suffices to show that f attains its minimal

value on K. Since K is regarded as a subset of a hyperplane in an Euclidean

space, denote by K̄ the usual closure of K i.e.

K̄ =
{
u =

(
u(x)

)
x∈Td ;u(x) ≥ 0,

∑
x∈Td

u(x) = 1
}
.
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Noting the irreduciblity of the Markov chain associated with the one-step

transition probability p̃0, it is easy to verify that for any u ∈ K̄ \K,

lim
K�v→u

f(v) = ∞.

Combining this fact with the continuity of f on K, it can be proved that f

attains its minimum on K. This completes the proof of Lemma 1. �

Now, with the help of V0 in Lemma 1, let a new transition probability

p̃1(x, y) on T
d be defined by

p̃1(x, y) =
p̃0(x, y)V0(y)

π̃0V0(x)
, x, y ∈ T

d,(12)

where p̃0 is given by (11). Then we have

Lemma 2.
{
p̃1(x, y)

}
constitutes the one-step transition probability of

a reversible Markov chain on T
d having µ as its unique invariant probability

measure.

Proof. Let, for all u ∈ Uo,

π̃1u(x) =
∑
y∈Td

p̃1(x, y)u(y)

and set I1 on M by

I1(ν) = − inf
u∈U0
u>0

∑
x∈Td

log
( π̃1u

u

)
(x)ν(x).

Following the same argument as in Donsker and Varadhan [2], it is shown

that I1(ν0) = 0 if and only if ν0 is the invariant probability measure for

{p̃1(x, y)}.
Assume µ to be the one given in Lemma 1. For a positive u ∈ U0,∑

x∈Td

log
( π̃1u

u

)
(x)µ(x)

=
∑
x∈Td

log
( π̃0(V0u)

V0u

)
(x)µ(x) −

∑
x∈Td

log
( π̃0V0

V0

)
(x)µ(x).
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Taking the definition of V0 into account, we see,

I1(µ) = − inf
u∈U0
u>0

∑
x∈Td

log
( π̃1u

u

)
(x)µ(x)

= − inf
u∈U0
u>0

∑
x∈Td

log
( π̃0(V0u)

V0u

)
(x)µ(x) +

∑
x∈Td

log
( π̃0V0

V0

)
(x)µ(x)

= 0.

In order to prove the reversibility of µ, we introduce another measure µ′

on T
d by

µ′(x) = ϕ0(x)2V0(x)π̃0V0(x).

It is easily seen that µ′ is a reversible measure for {p̃1(x, y)} i.e.

µ′(x)p̃1(x, y) = µ′(y)p̃1(y, x), x, y ∈ T
d. Note that a reversible measure is

also an invariant measure. Combining these with the fact that the Markov

chain has the unique invariant probability measure, we see that there exists

a positive constant C such that µ′(x) = Cµ(x), x ∈ T
d. Thus µ is reversible.

This completes the proof of Lemma 2. �

We are now ready to prove the lower bound. Let G be an open subset

of M and µ an arbitrary element in G whose support coincides with T
d.

First note that I0(µ) < ∞. We want to show for µ,

lim inf
n→∞

1

n
logP

(n,y)
(0,x)

(
ω;Ln(ω, ·) ∈ G

)
≥ −I0(µ).(13)

Denote by S(µ, ε) the open sphere of radius ε > 0 in M centered at µ.

Suppose ε is sufficiently small such that S(µ, ε) ⊆ G. For the proof of (13),

it suffices to verify

lim inf
n→∞

1

n
logP

(n,y)
(0,x)

(
ω;Ln(ω, ·) ∈ S(µ, ε)

)
≥ −I0(µ).(14)

From the definition of the pinned process, we have

P
(n,y)
(0,x) (Ln ∈ S(µ, ε))

=
1

pn(x, y)
EPx

[
p(Xn−1, y);Ln ∈ S(µ, ε)

]
,(15)

=
(1 − λ0)

n−1u0(x)

pn(x, y)
EP

0
x
[p(X0

n−1, y)

u0(X0
n−1)

;Ln ∈ S(µ, ε)
]
.
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Making use of the function V0 in Lemma 1, a new transition probability on

Z
d is defined by

p1(x, y) =
p0(x, y)V0(y)

π0V0(x)
, x, y ∈ Z

d.

Let (X1
n, P

1
x ) be the Markov chain on Z

d associated with the transition

probability {p1(x, y)}. Note that p1 is periodic and c0(X
1
n) is the Markov

chain on T
d whose one-step transition probability coincides with p̃1(x, y)

given by (12). Since

EP
0
x
[p(X0

n−1, y)

u0(X0
n−1)

;Ln ∈ S(µ, ε)
]

=
∑

x1,··· ,xn−1∈Zd

p(xn−1, y)

u0(xn−1)
χ{Ln∈S(µ,ε)}p

0(x, x1)p
0(x1, x2) · · · p0(xn−2, xn−1)

=
∑

x1,··· ,xn−1∈Zd

p(xn−1, y)

u0(xn−1)
χ{Ln∈S(µ,ε)}

(π0V0(x)p1(x, x1)

V0(x1)

)

×
(π0V0(x1)p

1(x1, x2)

V0(x2)

)
· · ·
(π0V0(xn−2)p

1(xn−2, xn−1)

V0(xn−1)

)
= EP

1
x
[p(X1

n−1, y)

u0(X1
n−1)

(n−1∏
k=0

π0V0(X
1
k)

V0(X1
k)

) V0(x)

π0V0(X1
n−1)

; Ln ∈ S(µ, ε)
]
,

by (15), we see that

P
(n,y)
(0,x) (Ln ∈ S(µ, ε))

≥ (1 − λ0)
n−1u0(x)

pn(x, y)

V0(x)

supx∈Zd π0V0(x)
(16)

× EP
1
x
[p(X1

n−1, y)

u0(X1
n−1)

exp
(n−1∑
k=0

log
π0V0(X

1
k)

V0(X1
k)

)
; Ln ∈ S(µ, ε)

]
.

Now we introduce, for ε′ > 0,

S1(n, ε
′) =

{
ω;
∣∣∑
x∈Td

log
(π0V0

V0

)
(x)Ln(ω, {x})

−
∑
x∈Td

log
(π0V0

V0

)
(x)µ(x)

∣∣ < ε′
}
,
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S2(n, ε
′) = {ω; Ln(ω, ·) ∈ S(µ, ε) ∩ S1(µ, ε

′)},

and

Ω1 =
{
ω; lim
n→∞

1

n

n−1∑
k=0

log
(π0V0

V0

)
(X1
k) =

∑
x∈Td

log
(π0V0

V0

)
(x)µ(x)

}
,

Ω2 = {ω; Ln(ω, ·) is convergent to µ}.

Since π0V0/V0 is periodic, the ergodic theorem applied to c0(X
1
n) implies

P 1
x (Ω1) = P 1

x (Ω2) = 1.

Therefore, noting Lemma 1,

EP
1
x
[p(X1

n−1, y)

u0(X1
n−1)

exp
(n−1∑
k=0

log
π0V0(X

1
k)

V0(X1
k)

)
; Ln ∈ S(µ, ε)

]
≥ exp

{
n
(∑
x∈Td

log
(π0V0

V0

)
(x)µ(x) − ε′

)}
EP

1
x
[p(X1

n−1, y)

u0(X1
n−1)

;S2(n, ε
′)
]

(17)

= exp(−nI0(µ) − nε′)EP
1
x
[p(X1

n−1, y)

u0(X1
n−1)

;S2(n, ε
′)
]
.

From the assumption (A.2), the set {x ∈ Z
d; d1(x, y) ≤ 1} is finite. Denote

this set by {y1, · · · , ym}. Set α = inf1≤j≤m
p(yj ,y)
u0(yj)

. Then,

EP
1
x
[p(X1

n−1, y)

u0(X1
n−1)

;S2(n, ε
′)
]

= EP
1
x
[p(X1

n−1, y)

u0(X1
n−1)

;S2(n, ε
′) ∩ {d1(X

1
n−1, y) ≤ 1}

]
=

m∑
j=1

EP
1
x
[p(yj , y)
u0(yj)

;S2(n, ε
′) ∩ {X1

n−1 = yj}
]

(18)

≥ α
m∑
j=1

P 1
x (S2(n, ε

′) ∩ {X1
n−1 = yj})

= α
m∑
j=1

P 1
x (X

1
n−1 = yj) − α

m∑
j=1

P 1
x ({X1

n−1 = yj} ∩ {Ω \ S2})

= (I) − (II), say.
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Regarding µ(x) as a periodic function of period d0 on Z
d, it can be easily

checked with the help of Lemma 2 that the transition probability p1
n(x, y) of

the chain X1
n is also reversible with respect to µ. Thus we can again apply

Theorem 1.7 in Delmotte[1] to the transition probability p1
n(x, y) with the

distance d1(x, y) and obtain a Gaussian lower estimate for p1
n(x, y). Thus

we get

P 1
x (X

1
n−1 = yj) = p1

n−1(x, yj) ≥
C14e

−C15d1(x,yj)2

n−1√
(n− 1)d

for some C14 > 0 and C15 > 0, and thus we have

(I) ≥ C16

m∑
j=1

e−
C15d1(x,yj)2

n−1√
(n− 1)d

.(19)

for some C16 > 0. As for the second term (II), since the process c0(X
1
n) is an

irreducible Markov chain on T
d, the process is ergodic on T

d. Consequently

the large deviation prinsiple in Donsker and Varadhan[2] is proved to hold

for the process c0(X
1
n), which implies

(II) ≤ C17P
1
x (Ω \ S2) ≤ C18e

−C19n(20)

with some positive constants C17, C18 and C19. Combining (16), (17), (18),

(19) and (20), along with Theorem 2, it follows that

lim inf
n→∞

1

n
logP

(n,y)
(0,x) (ω; Ln(ω, ·) ∈ S(µ, ε)) ≥ −I0(µ) − ε′.

Since ε′ is arbitrary, the above implies

lim inf
n→∞

1

n
logP

(n,y)
(0,x) (ω; Ln(ω, ·) ∈ S(µ, ε)) ≥ −I0(µ)

and thus

lim inf
n→∞

1

n
logP

(n,y)
(0,x) (ω; Ln(ω, ·) ∈ G) ≥ − inf

G∩M1

I0(µ),

where M1 denotes the set of probability measures µ on T
d which have the

full support. By the same argument as in Donsker and Varadhan[2], we

have

inf
µ∈G∩M1

I0(µ) = inf
µ∈G

I0(µ).

This completes the proof of Theorem 3.
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5. Positivity of the Bottom of the Spectrum

In this section we shall discuss the positivity of the bottom of the spec-

trum of the difference operator L. To perform this, define for Φ(x) =t

(x1, · · · , xd) ∈ Z
d,

Yn = Φ(Xn) −
n−1∑
k=0

LΦ(Xk)

and Fn = σ(X1.X2, · · · , Xn), n = 1, 2, · · · for the above Markov chain

Xn.

It is easy to see the following.

Lemma 3. Under the assumptions (A.1), (A.2), (Yn,Fn)n≥1 is a d-

dimensional vector-valued martingale which satisfies the following condi-

tions:

(1) E|Yn|2 < ∞, n = 1, 2, · · · ,

(2)
∞∑
n=1

E|Yn − Yn−1|2
n2

< ∞.

Applying a strong law of large numbers for martingales(see e.g.

Shiryaev[5], Corollary 2, page 471-472) to {Yn}, we get

lim
n→∞

Yn
n

= 0.

Note that

LΦ(x) =
∑
y∈Zd

p(x, y)(Φ(y) − Φ(x))

is a periodic function of period m0. Combining these facts with the ergod-

icity of the Markov chain c0(Xn) on T
d, we have;

Proposition 2. It holds that

lim
n→∞

Xn
n

=
∑
x∈Td

LΦ(x)µ0(x) a.e. P.
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where µ0 is the unique invariant probability measure of the process c0(Xn).

The following theorem gives a criterion for the positivity of the bottom

of the spectrum.

Theorem 4. The following two conditions are equivalent;

(1) λ0 > 0.

(2)
∑
x∈Td

LΦ(x)µ0(x) �= 0.

Proof. For the proof of Theorem 4, a large deviation result due to

Ellis[3] is required. Note that, for all t ∈ Z
d,

Ex
[
exp〈t,Xn〉

]
=
∑
y∈Zd

pn(x, y)e
〈t,y〉

=
∑

y1,··· ,yn∈Zd

e〈t,x〉
p(x, y1)e

〈t,y1〉

e〈t,x〉
p(y1, y2)e

〈t,y2〉

e〈t,y1〉
· · · p(yn−1, yn)e

〈t,yn〉

e〈t,yn−1〉

=
∑

y1,··· ,yn∈Zd

e〈t,x〉qt(x, y1)qt(y1, y2) · · · qt(yn−1, yn),

where 〈·, ·〉 is the Euclidean inner product on R
d and qt(x, y) =

p(x, y)e〈t,y〉/e〈t,x〉. Since qt(x, y) is periodic of period m0 in x, y, setting

q̃t(c0(x), c0(y)) =
∑

k1,··· ,kd∈Z
qt(x, y + k1m0e1 + · · · + kdm0ed), x, y ∈ Z

d,

we have

Ex
[
e〈t,Xn〉] = e〈t,x〉

∑
ỹ1,··· ,ỹn∈Td

q̃t(c0(x), ỹ1) · · · q̃t(ỹn−1, ỹn).

Regarding q̃t as the matrix having elements q̃t(x̃, ỹ), we have

Ex
[
e〈t,Xn〉] = e〈t,x〉

∑
ỹ∈Td

(q̃t)
n(c0(x), ỹ).(21)
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We now apply Perron-Frobenius Theorem for matrices with non-negative

components
(
q̃(x̃, ỹ)

)
x̃,ỹ∈Td to obtain:

lim
n→∞

1

n
logEx

[
e〈t,Xn〉] def

= c(t)(22)

exists and c(t) is equal to the logarithm of the positive maximal eigenvalue

of q̃t. From the fact that the stochastic matrix (p(x, y)) = (q0(x, y)) is

irreducible, it is easily checked that the positive maximal eigenvalue of q̃0

is simple. Therefore the implicit function theorem combined with Perron-

Frobenius Theorem applied to (26) implies that the function c(t) is differ-

entiable in a neighbourhood of the origin t = 0. Accordingly Theorem IV

in Ellis[3] along with Proposition 2 gives that for any ε > 0, there exists a

positive number Mε such that

Px
(∣∣Xn

n
−
∑
x∈Td

LΦ(x)µ0(x)
∣∣ ≥ ε

)
≤ exp(−Mεn).(23)

Now notice that we have the following inequality for any positive constant

C20,

Px
(
|Xn| ≤ C20

)
(24)

≤ Px
(∣∣Xn

n
−
∑
x∈Td

LΦ(x)µ0(x)
∣∣ ≥ ∣∣∑

x∈Td

LΦ(x)µ0(x)
∣∣− C20

n

)
.

Thus (27) shows that the left-hand side in (28)is exponentially decaying as

n tends to ∞ if
∑
x∈Td LΦ(x)µ0(x) �= 0. Thus (2) in Theorem 4 implies (1).

Conversely, suppose the condition (1) in Theorem 4 holds. Then it

can be easily checked by means of Theorem 2 that there exist two positive

constants C21 and C22 for a sufficiently small, positive constant ε0 such as

P0

(∣∣Xn∣∣ ≤ ε0n
)
≤ C21e

−C22n.

This together with (27) asserts that∑
x∈Td

LΦ(x)µ0(x) �= 0.

Thus the conditions (1) and (2) are mutually equivalent. �
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6. Example

In this section we shall give an example which illustrates our theorems.

Suppose {p(x, y)} to be a one-step transition probability on Z
d assigned as

p(x, y) =




pi, y = x + ei

qi, y = x− ei

r, y = x

0, |y − x| > 1

where pi, qi, r > 0 and
∑d
i=1(pi+qi)+r = 1. It is evident that the condition

(A.1) holds with any positive integer m0. Setting a(x) = Πdi=1

(
pi/qi

)xi ,
x = (x1, · · · , xd), it is easy to check that

a(x)p(x, y) = a(y)p(y, x), x, y ∈ Z
d.

Thus the Markov chain associated with {p(x, y)} above fulfills all the con-

ditions (A.1)-(A.4). Simple computations show:

λ0 = 1 − r −
d∑
i=1

2
√
piqi =

d∑
i=1

(
√
pi −

√
qi)

2,

u0(x) =
1√
a(x)

,

and p0(x, y) = p(x,y)u0(y)
(1−λ0)u0(x) is as follows:

p0(x, y) =




√
piqi

r+2
∑ d

i=1
√
piqi

, y = x + ei
√
piqi

r+2
∑ d

i=1
√
piqi

, y = x− ei

r
r+2

∑ d
i=1

√
piqi

, y = x

0, |y − x| > 1.
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