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Spin Structures on Seiberg-Witten Moduli Spaces

By Hirofumi Sasahira∗

Abstract. Let M be an oriented closed 4-manifold with a spinc

structure L. In this paper we prove that under a suitable condition
for (M,L) the Seiberg-Witten moduli space has a canonical spin struc-
ture and its spin bordism class is an invariant of M . We show that
the invariant of M = #l

j=1Mj is non-trivial for some spinc structure
when l is 2 or 3 and each Mj is a K3 surface or a product of two
oriented closed surfaces of odd genus. As a corollary, we obtain the
adjunction inequality for the 4-manifold. Moreover we calculate the
Yamabe invariant of M#N1 for some negative definite 4-manifold N1.
We also show that M#N2 does not admit an Einstein metric for some
negative definite 4-manifold N2.

1. Introduction

Since E. Witten introduced the Seiberg-Witten equations ([W]), the

moduli space of solutions to the equations has been applied to 4-dimensional

topology. M. Furuta used the Seiberg-Witten equations themselves, rather

than the moduli space, to obtain the 10/8 theorem ([F]). Roughly speaking,

the Seiberg-Witten moduli space is the zero locus of the map defining the

equations, which we call the Seiberg-Witten map, between two Hilbert bun-

dles over the Jacobian torus. Furuta used finite dimensional approximation

of the Seiberg-Witten map to prove the 10/8 theorem. Moreover using finite

dimensional approximation of the Seiberg-Witten map, S. Bauer and Furuta

refined the Seiberg-Witten invariants ([BF]). The refined invariant is more

powerful than the usual Seiberg-Witten invariant. There are 4-manifolds

for which the usual Seiberg-Witten invariants vanish but the Bauer-Furuta

invariants do not ([B, FKM]). It is, however, hard in general to detect the

Bauer-Furuta invariants.
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To detect the Bauer-Furuta invariants explicitly, we define new invari-

ants for 4-manifolds. This invariant is weaker than the Bauer-Furuta in-

variant, but easier to treat, in particular when the first Betti number of the

4-manifold is positive. An outline of the definition of the invariant is as

follows.

Let (M, g) be an oriented, closed 4-dimensional Riemannian manifold

with b+(M) > 1, and L a spinc structure on M . We write Ind(D) for the

index bundle of the Dirac operators parameterized by T = H1(M ; R)/

H1(M ; Z) (see §3.1). If c1(Ind(D)) ≡ 0 mod 2, then the Seiberg-Witten

moduli space allows a spin structure, and a choice of square root of the de-

terminant line bundle det Ind(D) determines a spin structure of the moduli

space. The spin bordism class of the moduli space is an invariant of M

which depends only on L and the choice of square root of Ind(D).

We calculate the invariant for M = #l
j=1Mj when Mj is a K3 surface

or a product of two oriented closed surfaces of odd genus, and l is 2 or

3. We take a spinc structure on M of the form L = #l
j=1Lj , where Lj is

a spinc structure on Mj induced by a complex structure. We show that

in this case c1(Ind(D)) ≡ 0 mod 2 and our invariant is non-trivial. As

an application, we obtain the adjunction inequality for such M , i.e., if an

oriented closed surface Σ of positive genus is embedded in M satisfying that

its self-intersection number Σ · Σ is nonnegative, then we have

Σ · Σ ≤ 〈c1(detL),Σ〉+ 2g(Σ)− 2.

Here detL is the determinant complex line bundle of L, and g(Σ) is the

genus of Σ.

As another application, following Ishida and LeBrun’s argument in [IL],

we compute the Yamabe invariant of M#N1 when N1 is an oriented, closed,

negative definite 4-manifold admitting a Riemannian metric with scalar cur-

vature nonnegative at each point. We also show that if N2 is an oriented,

closed, negative definite 4-manifold satisfying

4l − (2χ(N2) + 3τ(N2)) ≥
1

3

l∑
j=1

c1(Mj)
2,

then M#N2 does not admit an Einstein metric, where τ(N2) and χ(N2) are

the signature and the Euler number of N2 respectively.
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2. Finite Dimensional Approximations of the Seiberg-Witten

Map

In this section, we review the definition of the Seiberg-Witten map and

its finite dimensional approximation. We refer the readers to [BF] for details.

2.1. The Seiberg-Witten map

Let M be an oriented, closed, connected 4-manifold and let g be a Rie-

mannian metric on M . Assume that b+(M) > 1. Choose a spinc structure

L on M . We write S±(L) for the positive and negative spinor bundles, and

detL for the determinant line bundle associated with L.

Let k be an integer larger than or equal to 4 and set Ĝ =

{γ ∈ L2
k+1(M,U(1))|γ(x0) = 1} for a fixed base point x0 ∈ M . Fix

a connection A0 on detL, and define T := (A0 + iKer d)/Ĝ, where d :

L2
k(T

∗M) → L2
k−1(Λ

2T ∗M) is the exterior derivative. The action of γ ∈ Ĝ
on A ∈ (A0 + iKer d) is defined by

γA := A+ 2γ−1dγ.(2.1)

Put

C̃(L) := L2
k(S

+(L)⊕ T ∗M),

Ỹ(L) := L2
k−1(S

−(L)⊕ Λ+T ∗M)⊕H1
g(M)⊕ (L2

k−1(M)/R),

where R represents the space of constant functions on M and H1
g(M) is

the space of harmonic 1-forms on M with respect to g. Let C(L) → T and

Y(L)→ T be Hilbert bundles on T defined by

C(L) := (A0 + iKer d)×Ĝ C̃(L),

Y(L) := (A0 + iKer d)×Ĝ Ỹ(L).

The action of Ĝ on (A0+iKer d) is given by (2.1). We define actions of Ĝ on

L2
k(S

+(L)) and on L2
k−1(S

−(L)) by fiber-wise scalar products. We define
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actions of Ĝ on the other terms to be trivial. We define U(1)-actions on

C(L) and Y(L) by scalar products on L2
k(S

+(L)) and L2
k−1(S

−(L)) and set

P :=
{
(g, η) ∈ Riem(M)× L2

k(Λ
2T ∗M)

∣∣[η]+g �= [FA0 ]
+
g

}
,

where Riem(M) is the space of Riemannian metrics on M , and [η]+g and

[FA0 ]
+
g are H+

g (M) parts of η and FA0 respectively. For (g, η) ∈ P, we define

the Seiberg-Witten map by

SWg,η : C(L) −→ Y(L)

(A, φ, a) �−→ (A,DA+iaφ, F
+
A+ia − q(φ)− η+, p(a), d∗a),

where q(φ) is a quadratic form of φ and p : L2
k(T

∗M) → H1
g(M) is the

L2-projection. The moduli space MM (L, g, η) of solutions to the Seiberg-

Witten equations perturbed by (g, η) is identified with SW−1
g,η (0)/U(1) nat-

urally.

The following fact is well known.

Theorem 2.1 ([KM]). For generic (g, η) ∈ P, MM (L, g, η) is a com-

pact smooth manifold and an orientation on H1
g(M ; R)⊕H+

g (M ; R) deter-

mines an orientation on MM (L, g, η).

2.2. Finite dimensional approximation

We explain finite dimensional approximations of the Seiberg-Witten map

briefly.

Let D : C(L)→ Y(L) be the linear part of the SW map:

D : C(L) −→ Y(L)

(A, φ, a) �−→ (A,DAφ, d
+a, p(a), d∗a).

By Kuiper’s theorem [Ku], we have a global trivialization of Y(L)

Y(L) ∼= T ×H,

where H is a Hilbert space. We fix a trivialization of Y(L). Since Y(L)

has the complex part and the real part, H decomposes into the direct sum

HC⊕HR of a complex Hilbert space HC and a real Hilbert space HR.

For a finite dimensional subspace W ⊂ H, let pW : Y(L) = T ×H →W

be the projection. We denote D−1(T × W ) by F(W ). Then we define

fW : F(W )→W by

fW = pW ◦ SW |F(W ) : F(W ) −→W.
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Theorem 2.2 ([BF]). Let W+ and F(W )+ be the one-point compact-

ifications of W and F(W ). Then fW : F(W ) → W induces a U(1)-

equivariant map f+
W : F(W )+ → W+, and there is a finite dimensional

subspace W ⊂ H such that the following conditions are satisfied.

(1) ImD + (T ×W ) = Y(L).

(2) For all finite dimensional subspace W ′ ⊂ H such that W ⊂ W ′, the

diagram

F(W ′)+
f+
W ′−−−−−−−−−−−→ (W ′)+∥∥∥ ∥∥∥

(F(W )⊕F(U))+ −−−−−−−−−−−→
(fW⊕pUD|F(U))

+
(W ⊕ U)+

is U(1)-equivariant homotopy commutative as pointed maps, where U is the

orthogonal complement of W in W ′.

Definition 2.3. When W ⊂ H satisfies (1) and (2), we call fW :

F(W )→W a finite dimensional approximation of the Seiberg-Witten map.

3. Spin Structures on Moduli Spaces

In §3.1, by using finite dimensional approximation of the Seiberg-Witten

map, we show a sufficient condition for the moduli space to be a spin mani-

fold. In §3.2, we will prove that the spin bordism class of the spin structure

on the moduli space is an invariant of M . In §3.3, we give some applications

of this invariant.

3.1. A sufficient condition for moduli space to have a spin struc-

ture

Let f = fW : V = F(W ) → W be a finite dimensional approximation

of the Seiberg-Witten map. Note that V has a natural decomposition V =

VC⊕ VR into the direct sum of a complex vector bundle and a real vector

bundle. Similarly decompose W as W = WC⊕WR.

If we take a generic (g, η) ∈ P as in Theorem 2.1, MM (L, g, η) does not

include reducible monopoles, hence f−1(0) lies in Virr := (VC\{0}) ×T VR.
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Put V̄ := Virr/U(1) and M := f−1(0)/U(1). We define a vector bundle

Ē → V̄ by Ē := Virr ×U(1) W = ĒC ⊕ ĒR, where ĒC = Virr ×U(1) WC,

ĒR = Virr×WR. Since f is U(1)-equivariant, f induces a section s : V̄ → Ē.

ThenM is the zero locus of s. If necessary, we perturb s on a compact subset

in V̄ so that s is transverse to the zero section of Ē and M is a compact

smooth submanifold of V̄ .

We can orient M by using an orientation on H1
g(X) ⊕ H+

g (X) in the

following way. The real part DR of D is independent of A ∈ T and

the cokernel is naturally identified with H+
g (X). So WR has the form

H+
g (X) ⊕W ′

R and DR induces the isomorphism between each fiber of VR
and W ′

R. (Hence VR is a trivial vector bundle on T .) If we choose orien-

tations on W ′
R and H+

g (X), we get an orientation on ĒR and orientations

on VR and H1
g(X) compatible with DR and O. T is naturally identified

with H1(X; R)/H1(X; Z), so the tangent bundle T (T ) of T has a natural

trivialization T (T ) ∼= T × H1(X; R) ∼= T × H1
g(X). The orientation on

H1
g(X) induces an orientation on T (T ). These orientations induce an ori-

entation on the tangent bundle T V̄ by Lemma 3.4 below. The derivative

of s induces an isomorphism between Ē|M and the normal bundle N of

M in V̄ . The orientation on Ē induces an orientation on N through this

isomorphism, and we have an orientation on M compatible with the de-

composition T V̄ |M = TM⊕N . (It is easy to check that this orientation

on M is independent of the choices of the orientations on W ′
R and H+

g (X).)

So we have the following.

Lemma 3.1. A choice of orientation on H1
g(X) ⊕ H+

g (X) induces an

orientation on M.

When T V̄ and Ē have spin structures, we can equip M with a spin

structure as in the case of orientation. The spin structure on Ē induces a

spin structure on N through the derivative of s. Since T V̄ |M is the direct

sum of TM and N , spin structures on T V̄ and N induce a spin structure

on M, from the next well-known lemma.

Lemma 3.2. Let X be a smooth manifold, F1 and F2 be oriented vector

bundles on X. If F1 and F2 have spin structures, then spin structures on

F1 and F2 determine a spin structure on F1 ⊕ F2. If F1 and F1 ⊕ F2 have

spin structures, then spin structures on F1 and F1 ⊕ F2 determine a spin

structure on F2 naturally.
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Therefore we have shown the following.

Lemma 3.3. Let f : V → W be a finite dimensional approximation

of the Seiberg-Witten map. Assume that T V̄ and Ē have a spin structure.

Choose spin structures sV̄ and sĒ on T V̄ and Ē. Then sV̄ , sĒ and f induce

a spin structure on M = f−1(0)/U(1).

We calculate w2(T V̄ ) and w2(Ē) to know when T V̄ and Ē have spin

structures.

Let a ∈ Z be the index of the Dirac operator, let IndD ∈ K(T ) be the

index bundle of the Dirac operators {DA}A∈T parameterized by T . Then we

have IndD = [VC]−[Cm] ∈ K(T ), VR = R
n, WC = C

m, WR = H+
g (X)⊕W ′

R,

dimW ′
R = n for some m,n ∈ Z≥0.

Lemma 3.4. Let π̄ : V̄ → T be the projection and define a complex line

bundle H → V̄ by H := Virr ×U(1) C. Then there is a natural isomorphism

T V̄ ⊕ R ∼= π̄∗T (T )⊕ (π̄∗VC⊗CH)⊕ π̄∗VR.

Proof. Let πirr : Virr → T and p : Virr → V̄ = Virr/U(1) be the

projections. Note that we have a U(1)-equivariant isomorphism

p∗(T V̄ )⊕ R ∼= TVirr = π∗
irr(T (T )⊕ V ).

where R stands for the U(1)-orbit direction. Then by dividing by the U(1)-

actions, we obtain the required isomorphism. �

By Lemma 3.4 and the triviality of VR, we have w2(T V̄ ) ≡ π̄∗c1(VC) +

(m+a)c1(H) mod 2. By (1) in Theorem 2.2, c1(VC) is equal to c1(Ind(D)),

thus we have

w2(T V̄ ) ≡ π̄∗c1(Ind(D)) + (m+ a)c1(H) mod 2.(3.1)

T-J. Li and A. Liu calculated c1(Ind(D)) in [LL] as follows.

Let {αj}b1j=1 be generators of H1(M ; Z). Then we obtain a natural iden-

tification,

T ∼= H1(M ; R)/H1(M ; Z) ∼= R
b1/Zb1 = T b1 .
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Let Ψ be a map M → T b1 ∼= T given by

x �−→
(∫ x

x0

α1, · · · ,
∫ x

x0

αb1

)
.

This map is well defined by the Stokes theorem and induces the isomorphism

Ψ∗ : H1(T ; Z) ∼= H1(M ; Z). Set βj = (Ψ∗)−1(αj) ∈ H1(T ; Z).

Proposition 3.5 ([LL]). Let IndD ∈ K(T ) be the index bundle of the

Dirac operators {DA}A∈T parameterized by T . Then the first Chern class

c1(Ind(D)) of Ind(D) is given by

c1(Ind(D)) =
1

2

∑
i<j

〈c1(detL)αiαj , [M ]〉βiβj ∈ H2(T ; Z).

By the equation (3.1) and Proposition 3.5, we have the following.

Lemma 3.6. The second Stiefel-Whiteny class of T V̄ is given by

w2(T V̄ ) ≡
∑
i<j

cij π̄
∗βiβj + (m+ a)c1(H) mod 2,

where cij :=
1

2
〈c1(detL)αiαj , [M ]〉.

On the other hand, by the definitions of Ē and H, we have Ē = mH ⊕
R
n+b. Hence we obtain the following.

Lemma 3.7. The second Stiefel-Whiteny class of Ē is given by

w2(Ē) ≡ mc1(H) mod 2.

By Lemma 3.3, Lemma 3.6 and Lemma 3.7, we have the following.

Proposition 3.8. Let f : V → W be a finite dimensional approxi-

mation of the Seiberg-Witten map such that m = dimCWC is even. Then

T V̄ and Ē have a spin structure if the pair (M,L) satisfies the following

conditions.

(∗)
{

(∗)1 a ≡ 0 mod 2

(∗)2 cij ≡ 0 mod 2 (∀i, j).
Moreover if we choose spin structures sV̄ and sĒ of T V̄ and Ē, then sV̄ , sĒ
and f equip M with a spin structure.
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3.2. Invariants for 4-manifolds defined by spin structures on M
An orientation on H1

g(M) ⊕ H+
g (M) determines an orientation on M

(§3.1). We will show that when the condition (∗) is satisfied, a certain

datum in addition to the orientation on H1
g(M) ⊕ H+

g (M) determines a

canonical spin structure on M. The datum is actually a square root of

det Ind(D). To explain it, we need the following lemma.

Lemma 3.9. Let X be a smooth manifold and F → X be a complex

bundle with c1(F ) ≡ 0 mod 2. A choice of complex line bundle L → X

which satisfies L⊗2 = detF naturally determines a spin structure on F .

Proof. The 2-fold cover of U(n) is given by

{(A, t) ∈ U(n)× S1|detA = t2},

which is naturally regarded as a subgroup of Spin(2n). Take an open cover-

ing {Uj}j of X such that F and L have trivializations on each Uj . Fix hermi-

tian metrics on F and L compatible with the identification L⊗2 = detF . We

denote transition functions on Ui ∩ Uj of F and L by gij : Ui ∩ Uj → U(n)

and zij : Ui ∩ Uj → S1. Then det gij = z2
ij , since detF = L⊗2. Put

g̃ij = (gij , zij) : Ui ∩ Uj → Spin(2n), then {g̃ij}ij satisfies the cocycle con-

dition and determines a spin structure of F . �

When the condition (∗)2 is satisfied, then c1(Ind(D)) ≡ 0 mod 2. So

we can take a complex line bundle L→ T such that L⊗2 = det Ind(D).

Proposition 3.10. Assume that the pair (M,L) satisfies the condi-

tions (∗). Let f : V → W be a finite dimensional approximation of the

Seiberg-Witten map such that m = dimCWC is even. Then the finite di-

mensional approximation f , an orientation O of H1
g(M) ⊕ H+

g (M) and a

complex line bundle L → T which satisfies L⊗2 = det Ind(D) determine a

canonical spin structure on M.

Proof. Suppose that the pair (M,L) satisfies the condition (∗). By

Lemma 3.3, spin structures on T V̄ , Ē and a finite dimensional approxima-

tion f induce a canonical spin structure on M. So it is sufficient to show

that O and L induce spin structures on T V̄ and Ē. By Lemma 3.4, we

have only to show that the choices of O and L induce spin structures on

π̄∗VC⊗H, VR, T (T ) and Ē.
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Since m is even and condition (∗)1 is satisfied, π̄∗L⊗H⊗m+a
2 is a square

root of det(π̄∗VC⊗H) = (π̄∗ detVC)⊗H⊗(m+a). So by Lemma 3.9, we have

a spin structure on π̄∗VC⊗H.

Recall that WR is the direct sum H+
g (X)⊕W ′

R. We fix orientations on

H+
g (X) and W ′

R, then we have orientations on VR and H1
g(X) compatible

with DR and O. (See §3.1.) Since the real part DR of D is independent of

A ∈ T , VR has a natural trivialization compatible with the orientation. This

trivialization equips VR with a spin structure. The tangent bundle T (T ) of T

has a natural trivialization T (T ) = T ×H1
g(M) and the orientation H1

g(X)

orients T (T ). So we have a spin structure on T (T ) compatible with this

trivialization.

Lastly we consider Ē. Let ĒC be the complex part of Ē, i.e. ĒC =

Virr ×U(1) C
m. Since det ĒC = H⊗m, H⊗m

2 is a square root of det ĒC. So

by Lemma 3.9, a spin structure of ĒC is determined. Let ĒR be the real

part of Ē. Then ĒR = Virr ×WR = Virr × (H+
g (X)⊕W ′

R). Hence ĒR has a

natural spin structure induced by the trivialization.

We have seen that f , O and L determine a spin structure on M if

we choose orientations on H+
g (X) and W ′

R. It is easy to see that this spin

structure is independent of the choices of orientations on H+
g (X) and W ′

R. �

Let π : M→ T be the restriction of the projection V̄ → T to M. We

show that the class (M, π) ∈ Ωspin
d (T ) induced by f,O, L is an invariant of

M . Here d is the dimension of M.

Theorem 3.11. Assume that the pair (M,L) satisfies the condition

(∗). The class (M, π) ∈ Ωspin
d (T ) which is induced by f,O, L is independent

of the perturbation (g, η) ∈ P and the finite dimensional approximation f .

Proof. Fix (g, η) ∈ P, and take different finite dimensional approxi-

mations fi : Vi → Wi, (i = 0, 1) of the Seiberg-Witten map SWg,η. Denote

f−1
i (0)/U(1) byMi and let πi be the restriction of the projections V̄i → T to

Mi. By considering a larger finite dimensional approximation f : V → W

with Vi ⊂ V and Wi ⊂ W , we can assume that V0 ⊂ V1,W0 ⊂ W1 without

loss of generality.

Let V1 = V0⊕V ′ and W1 = W0⊕W ′, then D|V ′ induces an isomorphism

V ′ ∼= T ×W ′. By Theorem 2.2, the maps

(f1)
+, (f0 ⊕ pW ′ ◦ D|V ′)+ : V +

1 = (V0 ⊕ V ′)+ →W+
1 = (W0 ⊕W ′)+
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are U(1)-equivariantly homotopic each other as pointed maps. It is clear

that the spin structure on M0 induced by f0 ⊕ pW ′ ◦ D|V ′ is equal to one

induced by f0. Let h : [0, 1]× V +
1 →W+

1 be a homotopy from (f0⊕D)+ to

f+
1 and set M̃ := h−1(0)/U(1). Let π̃ be the restriction of the projection

V̄1 × [0, 1] → T to M̃. By using a parallel argument to introduce spin

structures on M0 and M1, we can equip M̃ with a spin structure by using

h,O and L. Then (M̃, π̃) is a spin bordism between (M0, π0) and (M1, π1).

This implies that when (g, η) ∈ P is fixed, the class (M, π) ∈ Ωspin
d (T ) is

independent of a choice of f .

Next choose two elements (g0, η0), (g1, η1) ∈ P. By the assumption

b+(M) > 1, P is path connected, and there is a path (g(t), η(t))0≤t≤1 in P
satisfying (g(i), η(i)) = (gi, ηi), (i = 0, 1). We define parameterized Seiberg-

Witten map

S̃W : [0, 1]× C(L)→ [0, 1]× Y(L)

in the obvious way. Let f̃ : Ṽ → W̃ be a finite dimensional approximation

of S̃W . We can endow M̃ = f̃−1(0)/U(1) with a spin structure in the same

way as in the case of M. Denote Ṽ |{i}×T and W̃ |{i}×T by Vi and Wi for

i = 0, 1. Since fi := f̃ |Vi : Vi →Wi is a finite dimensional approximation of

SWgi,ηi , (M̃, π̃) is a bordism between (M0, π0) and (M1, π1). It is showed

that the class (M, π) ∈ Ωspin
d (T ) is independent of a choice of (g, η) ∈ P. �

Definition 3.12. We write σM (L,O, L) for the class in Ωspin
d (T ) rep-

resented by the spin structure on M induced by f,O, L and the restriction

π of the projection V̄ → T to M. Here d is the dimension of M.

3.3. Example

We give an example of calculation of the invariant defined in §3.2. For

preparation, we show the following two lemmas.

Lemma 3.13. Let Mi (i = 1, 2) be an oriented closed 4-manifold with

b+(Mi) > 1 and let Li be a spinc structure on Mi. Assume that (M1,L1)

and (M2,L2) satisfy the conditions (∗), then (M1#M2,L1#L2) also satisfies

the condition (∗).

Proof. The condition (∗)2 is satisfied for (M1#M2,L1#L2) by the

definition of cij . The condition (∗)1 is satisfied for (M1#M2,L1#L2) by
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the sum formula of the index of the Dirac operator. �

We write Σg for an oriented closed surface of genus g.

Lemma 3.14. Suppose M is a K3 surface or Σg×Σg′ with g and g′ odd.
Let L be a spinc structure on M which is induced by the complex structure.

Then (M,L) satisfies the condition (∗).

Proof. Note that c1(detL) = −c1(KM ). Let M be a K3 surface. The

first Betti number of M is equal to 0, so the condition (∗)2 is satisfied. By

the index theorem [AS], the index of the Dirac operator is

a =
c1(detL)2 − τ(M)

8
=

0− (3− 19)

8
= 2 ≡ 0 mod 2.

Hence (M,L) satisfies the condition (∗) when M is a K3 surface. Let M be

Σg × Σg′ with g and g′ odd. Then we have

c1(detL) = −c1(KM ) = 2(1− g)α+ 2(1− g′)α′

where α and α′ are the standard generators of H2(Σg; Z) and H2(Σg′ ; Z).

Since g and g′ are odd, we have c1(detL) ≡ 0 mod 4, and then

cij =
1

2
〈c1(detL)αiαj , [M ]〉 ≡ 0 mod 2,

which implies the condition (∗)2.
By the index theorem, the index of the Dirac operator is given by

a =
c1(detL)2 − τ(M)

8
=
c1(detL)2

8
.

Because c1(detL)2 ≡ 0 mod 16, we have a ≡ 0 mod 2. Hence the condi-

tion (∗)1 is satisfied. �

Let Mj be a K3 surface or Σg×Σg′ , where g, g′ are odd. By Lemma 3.13

and Lemma 3.14, the pair (#l
jMj ,#

l
jLj) satisfies the conditions (∗), where

Lj is a spinc structure on Mj induced by the complex structure. We show

that the invariant σ#l
j=1Mj

(#l
j=1Lj ,O, L) is non-trivial when l is 2 or 3.

Theorem 3.15. Let Mj be a K3 surface or Σg×Σg′ with g, g′ odd and

Lj be a spinc structure on Mj which is induced by the complex structure.
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Put M = #l
j=1Mj and L = #l

j=1Lj for l = 2 or l = 3. Let σ0
M (L,O, L)

be the image of σM (L,O, L) under the natural map Ωspin
l−1 (T ) → Ωspin

l−1 (∗).
Then σ0

M (L,O, L) is non-trivial in Ωspin
l−1 (∗) ∼= Z2.

Proof. Let L→ T be a square root of det Ind(D). If l = 2, the dimen-

sion of the moduli space is one, so the invariant σ0
M (L,O, L) is in the one

dimensional spin bordism group Ωspin
1 (∗) ∼= Z2, and if l = 3, the invariant

σ0
M (L,O, L) is in the two dimensional spin bordism group Ωspin

2 (∗) ∼= Z2.

We will calculate the invariant for l = 2 for simplicity.

Let fj : Vj → Wj be a finite dimensional approximation of the Seiberg-

Witten map on Mj such that mj = dimWj,C is even, and set f = f1 × f2 :

V = V1 × V2 → W = W1 × W2. We make use of Bauer’s construction

(Theorem 1.1 in [B]). Bauer proved that there is a finite dimensional ap-

proximation on M which is U(1)-equivariantly homotopic to f .

In general, for a Kähler surface M with b+(M) > 1 and a spinc structure

L on M induced by the complex structure, the Seiberg-Witten moduli space

MM (L, g, η) consists of smooth one point, where g is the Kähler metric and

η is a suitable 2-form. See, for example, [N]. Thus we may assume thatMj =

f−1
j (0)/U(1) is one point. Hence f−1

j (0) ∼= S1 and M = f−1(0)/U(1)d =

(f1×f2)
−1(0)/U(1)d ∼= S1, where U(1)d is the diagonal of U(1)×U(1). For

some tj ∈ Tj = H1(Mj ; R)/H1(Mj ; Z), f−1
j (0) lies in a fiber Vj,tj of Vj → Tj .

Take a small open neighborhood of tj such that Vj |Uj
∼= Uj ×C

mj+aj ×R
n
j ,

where aj is the index of the Dirac operator associated with Lj . Set Sj =

Uj × (Cmj+aj\{0})×R
nj and S =

∏2
j=1 Sj , then S has a U(1)d-action and

a U(1)×U(1)-action. The U(1)d-action is defined by the scalar product on∏2
j=1(C

mj+aj\{0}). And for (α1, α2) ∈ U(1)×U(1), we define the action of

(α1, α2) on S by the scalar product of α1 on (Cm1+a1\{0}) and the scalar

product of α2 on (Cm2+a2\{0}). Set S̄ = S/U(1)d.

We write ξ for a spin structure on V̄ = Virr/U(1)d induced by L. The

restriction ξ|M of ξ to M is equal to (ξ|S̄)|M. Since H1(S̄; Z2) = 0, S̄ has

just one spin structure. So it is sufficient to consider the restriction of the

unique spin structure on S̄ to M.

Put U(1)q = U(1) × U(1)/U(1)d ∼= U(1), then the U(1) × U(1)-action

on S induces a free U(1)q-action on S̄ and S̄/U(1)q = S̄1 × S̄2, where

S̄j = Sj/U(1) ∼= Uj × CP
mj+aj−1 × R>0 × R

nj . Moreover this U(1)q-action

preserves M⊂ S̄ and induces a free U(1)q-action on M∼= S1. Since mj +
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aj−1 is odd, T S̄j has a spin structure. So T (S̄/U(1)q) has a spin structure.

Take a spin structure η on T (S̄/U(1)q) ⊕ R. Let p : S̄ → S̄/U(1)q be the

projection. Then there is a natural isomorphism T S̄ ∼= p∗(T (S̄/U(1)q)⊕R).

So p∗(η) is the unique spin structure ξ on T S̄. Because p is the projection

S̄ → S̄/U(1)q, the U(1)q-action on S̄ lifts to an action on ξ = p∗(η). So

the U(1)q-action on M∼= S1 lifts to an action on restriction of ξ|M. In the

same way, we can prove that the U(1)q-action on M lifts to an action on

the spin structure on Ē|M. Since f |S = f1|S1×f2|S2 : S1×S2 →W1×W2 is

U(1)×U(1)-equivariant, the U(1)q-action onM lifts to an action on the spin

structure of N induced by f and the spin structure on Ē|M. Therefore the

U(1)q-action on M lifts to an action on the spin structure on M induced

by f,O and L. Such a spin structure determines a non-trivial class in

Ωspin
1 (∗) ∼= Z2, so σ0

M (L,O, L) is non-trivial class in Ωspin
1 (∗) (See [K]).

In the case of l = 3, M is the 2-dimensional torus if we perturb the

equations suitably. We can show that the spin structure on M is the Lie

group spin structure as in the case of l = 2 and the spin bordism class

σ0
M (L,O, L) is non-trivial in Ωspin

2 (∗) ∼= Z2. �

Remark 3.16. Let l be larger or equal to 4. Then we may assume

that the moduli space is a (l− 1)-dimensional torus T l−1. In the same way

as in Theorem 3.15, we can see that the spin structure on M induced by

f,O and L is equal to the spin structure induced by the Lie group structure

of T l−1. Such a spin structure is trivial in Ωspin
l−1 (∗) if l is larger or equal to

4. Hence σ0
M (L,O, L) is trivial in Ωspin

l−1 (∗) when l is larger than or equal to 4.

By Theorem 3.15, we obtain the adjunction inequality for M . See [KM]

for proof.

Corollary 3.17. Let Mj,M and L be as in Theorem 3.15. Assume

that an oriented, closed surface Σ of positive genus is embedded in M and

its self intersection number Σ · Σ is nonnegative. Then

Σ · Σ ≤ 〈c1(detL), [Σ]〉+ 2g(Σ)− 2,

where g(Σ) is the genus of Σ.

There are applications of Theorem 3.15 to computation of the Yamabe

invariant and nonexistence of Einstein metric.
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Definition 3.18. Let M be an oriented, closed 4-manifold. Then the

Yamabe invariant of M is defined by

Y(M) = sup
γ∈Conf(M)

inf
g∈γ

∫
M sgdµg(∫
M dµg

) 1
2

where Conf(M) is the space of conformal classes of Riemannian metrics on

M , sg is the scalar curvature and dµg is the volume form of g.

Theorem 3.19. Let Mj and M be as in Theorem 3.15, and N1 an ori-

ented, closed, negative definite 4-manifold admitting a Riemannian metric

with scalar curvature nonnegative at each point. Then

Y(M#N1) = −4π

√√√√2

l∑
j=1

c1(Mj)2.

Theorem 3.20. Let Mj and M be as in Theorem 3.15. If N2 be an

oriented, closed, negative definite 4-manifold satisfying

4l − (2χ(N2) + 3τ(N2)) ≥
1

3

l∑
j=1

c1(Mj)
2,(3.2)

then M#N2 does not admit an Einstein metric.

Proof of Theorem 3.19 and Theorem 3.20. In [IL], Ishida and

LeBrun showed a similar statement under a somewhat different assump-

tion (Theorem D). The main point of their argument is non-vanishing of

the Bauer-Furuta invariant. In our case, the invariant σM (L,O, L) is non-

trivial. Hence we can apply their argument to our situation. �

On the other hand, there is a topological obstruction for 4-manifolds to

have an Einstein metric ([H]).

Theorem 3.21 (Hitchin-Thorpe inequality [H]). Let X be an oriented

closed 4-manifold admitting an Einstein metric, then

3|τ(X)| ≤ 2χ(X).(3.3)
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Example 3.22. Let Mi = Σgi × Σg′i
for positive odd integers gi, g

′
i, let

M = M1#M2 and let N = (#r
CP2)#(#sS1×S3). Then b+(N) = 0 and the

inequality (3.2) is satisfied if r ≥ 8

3
G−4s−4, where G :=

2∑
i=1

(gi−1)(g′i−1).

By Theorem 3.20, X = M#N does not admit an Einstein metric when

r ≥ 8

3
G − 4s − 4. On the other hand, if r ≤ 8G − 4s − 4, then X satisfies

the Hitchin-Thorpe inequality (3.3). Thus if

8

3
G− 4s− 4 ≤ r ≤ 8G− 4s− 4,

X satisfies the Hitchin-Thorpe inequality, but does not admit an Einstein

metric.
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