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The L? Boundedness of Wave Operators for
Schrodinger Operators with Threshold Singularities I1.

Fven Dimensional Case

By Domenico FINCO* and Kenji YAJIMAT

Abstract. Let Hy = —A and H = —A + V(x) be Schrédinger
operators on R™ and m > 6 be even. We assume that F((z) 27V €
L™ (R™) for some o > mi*, my = =% and |V (z)| < C(a:)fé for some

§ > m + 2, so that the wave operators Wy = lim_, 4 et e~ 0

exist. We show the following mapping properties of Wi: (1) If 0 is
not an eigenvalue of H, W, are bounded in Sobolev spaces W*?(R™)
forall 0 < k <2and 1 < p < oo and also in L'(R™) and L>(R™);
(2) if 0 is an eigenvalue of H and if V satisfies stronger decay condition
V(z) < Ca)°, 6§ >m+4ifm=6and § >m~+3if m > 8, Wy are
bounded in W*P(R™) for all 0 < k < 2 and -5 < p < ; (3) the
same holds in Sobolev spaces of higher orders if derivatives of V(x)
satisfy suitable boundedness conditions. This paper is a continuation
of the one with the same title, part one, where odd dimensional cases
m > 3 are treated, however, it can mostly be read independently.

1. Introduction

In this paper we study the continuity property in Sobolev or Lebesgue
spaces of wave operators for m-dimensional Schrodinger operators H =
—A + V(z) when it may have spectral singularities at the bottom of the
continuous spectrum and when the spatial dimension m > 6 is even. This
is a continuation of the previous paper [26] with the same title, part one,
where the case m > 3 is odd is treated, however, we have tried to make the
paper as independently readable as possible though we refer to it for some
details. The paper [26] will be referred to as [I] in what follows.
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We assume as in [I] that potential V(x) are real valued and |V (z)| <
C(z)~® for some 6 > 2, (z) = (1 + |$|2)%, so that H is selfadjoint in the
Hilbert space H = L?(R™) with domain D(H) = W22(R™) and C§°(R™) is
a core; the spectrum o(H) of H consists of absolutely continuous part [0, co)
and a finite number of non-positive eigenvalues {\;} of finite multiplicities;
the singular continuous spectrum and positive eigenvalues are absent from
H. We denote the point and the absolutely continuous spectral subspaces
for H by H, and Hac respectively, and the orthogonal projections onto
the respective subspaces by P, and P,.; Hyp = —A is the free Schrodinger
operator.

The wave operators W are defined by the following strong limits in H:

Wy = lim etHe o,

t—=oo
It is well known that the limits exist, W, are complete in the sense that
Image W1 = H,. and that they satisfy the intertwining property: For Borel

functions f on R, we have
(1.1) f(H)Pac(H) = Wy f(Ho)WZ

and, in particular, the absolutely continuous part of H is unitarily equivalent
to Hp via Wy. It follows that the mapping properties of f(H)P,.(H) may
be deduced from those of f(Hp) once corresponding properties of W, are
known. In this paper we shall prove the following theorem. We say that H
is of exceptional type if there exist non-trivial solutions of —A¢+V ()¢ =0
which satisfy |p(z)| < C(x)>™™; H is of generic type otherwise (see Defini-
tion 3.3 for an equivalent definition). We write F for the Fourier transform.

Throughout this paper, we assume that V' satisfies the following condition:
1 m — 2

me m—1"

For integers k > 0, W*P(R™) is the Sobolev space of order k.

(1.2) F({(x)*V) e L™ for o >

THEOREM 1.1. Let m > 6 be even and V satisfy (1.2).
(1) Suppose, in addition, that |V (x)| < C<x>_(m+2+5) for some C,e > 0 and
that H is of generic type. Then, for all 1 < p < oo, Wi extend to bounded
operators in LP(R™):

(1.3) |Waulze < Cpllullze, w € LP(R™) N LA*(R™).
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For 1 < p < oo, Wy actually are bounded in WFP(R™) for 0 < k < 2.
If derivatives 0V (x) are bounded for |a| < ¢, in addition, then Wi are
bounded in WHP(R™) for all 0 <k <{+2 and 1 < p < co. Forp=1,00,
Wy are bounded in WEP(R™) if all 0°V (x), |a| < k, satisfy (1.2) and
109V (z)| < C{x)~ 2% for some C,e >0, k=0,1,....

(2) Suppose, in addition, that |V(z)] < C(:r)_(m+4+‘€) if m = 6,
and |V (z)| < C(z)~ ™34 if m > 8 for some C,e > 0, and that H is
of exceptional type. Then, for —=5 <p <3 and 0 <k <2, Wy extend to
bounded operators in WFP(R™):

(1.4) IWeullwrs < Cpllullwrn, e WFPR™) N LAHR™).

If 0%V (x) are bounded for |o| < ¢ in addition, then (1.4) holds for 0 < k <
042 and Wy are bounded in W*P(R™) for all0 < k </£+2,£=0,1,....

Some remarks are in order.

REMARK 1.2. Some condition like (1.2) is necessary for Wi to be
bounded in LP(R™) for all 1 < p < oo because of the counter example
due to [10] to the dispersive estimates for the corresponding time depen-
dent Schrodinger equation, see below.

REMARK 1.3. When m > 3 is odd, it is proved in [1] that W are
bounded in LP(R™) for all 1 < p < oo if V satisfies (1.2) and |V (x)| <
C<x>_(m+2+€) and if H is of generic type; for p between —"5 and 7 if
V satisfies (1.2) and |V (x)| < C<$>_(m+3+8) and if H is of exceptional
type. The argument in Section 7 below implies W are actually bounded in
WHP(R™) as in Theorem 1.1 under the same condition. In [4] an extension
for some non-selfadjoint cases in m = 3 and its application to nonlinear
equations are presented. When m = 1, it is recently shown ([6]) that W
are bounded in LP for all 1 < p < oo (but not for p = 1 or p = o0) if
Jg (@)|[V(z)|dz < oo and H is of generic type, or if [ (z)?|V(z)|dx < oo
and H is of exceptional type (see [21], [2] for earlier results).

REMARK 1.4. When m > 4 is even, it is long known ([23]) that (1.3)
is satisfied for all 1 < p < oo if V satisfies

1

la|<k+(m—2)/2
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for some po > % and € > 0 and if H is of generic type. If m > 6, con-
dition (1.5) implies that 0%V, |a| < k, satisfy both (1.2) and |05V (x)| <
C(z)~™*2+9) and Theorem 1.1 (1) improves the result of [23] for m > 6.
When m = 2, it is known ([24], [13]) that W4 are bounded in LP(R?) for
1 < p < oo if V satisfies |V (z)| < C(z) %7 and if H is of generic type.

REMARK 1.5. If m > 4 and if H is of exceptional type, Wi are in
general not bounded in LP(R™) when % < p < co because this would con-
tradict the well-known result on the decay in time in weighted L? spaces of
solutions e~*Hq, of the corresponding time dependent Schrédinger equation
([12], [17]). We strongly believe the same is true for 1 < p < 5 though
the proof is missing. Notice that when m =4, ~=5 = 3 = 2.

REMARK 1.6. By interpolating (1.3) for different k’s by the real in-
terpolation method ([3]), estimates of Theorem 1.1 can be extended to the

ones between Besov spaces.

When f()\) = e A (1.1) and (1.3) imply the so called LP-L? estimates
for the propagator of the corresponding time dependent Schrédinger equa-
tion:

)

D=

. _ 1
(1.6) le= Py < e ),

where p, g are dual exponents of each other, viz. 1/p+1/¢ =1, and 2 <
p < oo if H is of generic type and 2 < p < m/2 if H is of exceptional type.
When 1 < m < 3 and if H is of generic type, the LP-L? estimate has been
proven for 2 < p < oo for a much wider class of potentials by more direct
methods (][9], [18], [8]); when m = 3 and H is of exceptional type it is proved
that (1.6) holds for 2 < p < 3 and

. 1
le™ Peul| s < Cpt ™2 ul] 3.,

replaces (1.6) at the end point where LP? are Lorentz spaces ([7], [25]).
However, when m > 4, the result obtained by using wave operators via
Theorem 1.1 (1) or [23] gives the best estimates so far as far as the decay
and smoothness assumptions on the potentials are concerned. We should
also emphasize that the LP-L7 estimate (1.6) is proven for the first time
when m > 6 is even and H is of exceptional type.
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The intertwining property and the boundedness results, (1.1) and (1.3),
may be applied for various other functions f(H)P, and can provide useful
estimates. We refer the readers to [I] as well as [22] and [23] for some more
applications, and we shall be devoted to the proof of Theorem 1.1 in the
rest of the paper. Thus, we assume m > 6 is even in what follows unless
otherwise stated.

We explain here the basic idea of the proof and the plan of the paper
introducing some notation. We prove Theorem 1.1 only for W_, which we
denote by W for brevity. We shall mainly discuss the LP boundedness, as
the extension to Sobolev spaces is immediate as will be shown in Section 7.
We write R(z) = (H — 2z)~! and Ry(z) = (Hy — 2)~! for resolvents; H,, =
L2(R™, (2)*7dz) is the weighted L? space. We parameterize z € C \ [0, c0)
by 2 =M by A € Ct = {z € C: 3z > 0} and define G(\) = R(\?) and
Go(\) = Rg()\?) for A € C*. They are B(H)-valued meromorphic functions
of A € C* and the limiting absorption principle (LAP for short) asserts that
G(\) and Go(A) when considered as B(H,, H_)-valued functions, o, 7 > 3

and o + 7 > 2, have continuous extensions to C' = {z : Sz > 0}, the
closure of CT, possibly except A = 0. The proof is based on the stationary
representation of wave operators which expresses W via boundary values of
the resolvents on the reals (cf. [15], [16]):

(1.7) W= u— % [ GOV (G - Go(=N)uin.

As in odd dimensions ([26]), we decompose W into the high and the low
energy parts W = Ws + W. = WVU(Hy)? + W®(Hy)?, by using cut off
functions ®(\) and ¥(A) such that ®(\)2 +¥(\)2 =1, ®(\) = 1 near A =0
and ®(\2) = 0 for |A| > Ag for a small constant \g > 0 to be specified below.
By virtue of the intertwining property we have W~ = W(H )WV (Hj) and
W = ®(H)W®(Hp) and, combining this with (1.7)

(1.8) W< = ®(H)®(Hy)
_ /O°° B(H)GA)V (Go(A) — Go(—M)‘I’(HOV%
(1.9) W = W(H)U(Hp)

- /Ooo WH)GOV (Go(A) — Gol—A)U(H)A 2.

™



282 Domenico FiNcO and Kenji YAJIMA

Operators ®(H) and ®(Hp) have continuous integral kernels bounded by

Cn{x—y)~" for any N and they are bounded in LP(R™) for any 1 < p < co.

We study the operators defined by the integrals in (1.8) and (1.9) separately.
We use the following terminology.

DEFINITION 1.7. We say that the integral kernel K(z,y) is admissible
if

(1.10) sup/ \K(m,y)|dy+sup/ | K (z,y)|dx < oo.
x m Yy m

It is well known that integral operators with admissible integral kernels
are bounded in L for any 1 < p < oo. In what follows (z)? denotes the
multiplication operator with the function (x)?.

DEFINITION 1.8. For p > 0, the operator valued function K (\) defined
on an open interval (=g, Ao) is said to satisfy property (K), if the following
two conditions are met:

(1) Fory=0,..., 22 X — (2)’ TK(\){(z)’"7 € B(H) is of class C".

(2) For v =1, mT”, it is of class C7 for A # 0 and, for some C' > 0 and
N >0,

(1.11) ()~ 2 KB (A)(2)? 2 ||y < Cllog M)V,

(112) (@) "5 KT\ (@) "7 [Ipae < CIA log W)Y

These definition are introduced to formulate Proposition 4.2 of Section
4: If K(\) satisfies property (K), for some p > m + 1,

(113) Q= /0 T B(H)Go(NE () (Go(A) — Col—N)B(Hp)AB(A)dA

defines an integral operator with admissible kernel, where ® € C(R) is an
additional cut-off function such that ®(X\)®(\) = ®()).

Section 2 is preparatory in nature. We write v = (m — 2)/2; the branch
of 27 is always the one such that 22 >0 when z > 0. When m is even, the
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free resolvent Go(\), SA > 0, is the convolution with the kernel

ez)\|:c|

(1.14) Go(\, z) =

2(2m)" 2T (v + )|z -2

1
o) t V—y5
X / etV 3 (— - z)\|:c|> dt
0 2

and the (m — 2)-nd derivative with respect to A of Go(\) becomes logarith-
mically singular at A = 0 if m is even. In subsection 2.1, we shall study the
smoothness properties of the operator valued function Go(\) near A = 0 in
detail (see Proposition 2.6). In subsection 2.2, we recall from [22] the result
on the LP boundedness of Born approximations of wave operators.

In Section 3 we study (1+ Go(A)V)~! and show the followings where Py
is the orthogonal projection onto the 0 eigenspace of H:

(a) If H is of generic type, V(1 + Go(A\)V)~! satisfies the property (K),
for any p < 6 — 1;

(b) If H is of exceptional type, there exist finite rank operators D, and
an operator valued function R,(\) such that V R, (\) satisfies the con-
dition (K'), for any p < 6 —3if m =6 and p < 6 —2 if m > 8 and
such that

2 2
(1.15) (1+ Go(\)V)~! = Pg—;/ +3 ) N (log NEDjp + I+ Re(N),

§=0 k=1

In Section 4 and Section 5 we study the low energy part W, respectively
when H is of generic type and of exceptional type. For proving this we
substitute Go(A\)V (1 4+ Go(A\)V)~! for G(A\)V on the right of (1.8). Then,
the property (a) above and Proposition 4.2 imply that W, has an admissible
kernel if H is of generic type. Thus major task in Section 4 is the proof of
Proposition 4.2 which is a result of rather surprizing cancellation.

For studying W when H is of exceptional type, we substitute (1.15) for
(1+Go(N\)V)~L. Then, the identity I produces the first Born approximation,
which is bounded in LP for all 1 < p < co (Lemma 2.7); the property (b)
above and Proposition 4.2 imply that R,.()\) produces an integral operator
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with admissible integral kernel; and we need study operators produced by
the singular terms A\=2PyV + Z?:o Zizl M (log \)¥Dji. We shall deal with

Wiy = / T GV PV (Go(A) — Go(—A)A~ @(A)dA,
0

in Subsection 5.1, the one produced by the most singular term A “2P,V,
basically following the idea used for odd dimensional cases ([26]): If Py =
> ¢ ® ¢j, W m is a linear combination of

futa) = [ WONAE

|z — ym=2

where, with spherical average
Myu(r) = 5! / (Ve @) (r)dw,  a(e) = u(—z)
>

and X = S™~! being the unit sphere of R™, Fju(p) is given by

Fiu(p) = C/ / e_(t+s)(ts)m773dtds
o Jo

X {/ e (s — 2i)\p)mT_3 </ et + ZiAr)Teru(r)dr> d)\} .
0 R

Observing that Fju(p) and M;u(r) are one dimensional objects, we apply
the results of one dimensional harmonic analysis, weighted inequalities for
the Hilbert transform H and for the Hardy-Littlewood maximal operator
M. However, as the comparison of formulae above with those in the odd
dimensional case [26] suggests, the analysis in even dimensions becomes
much more intricate. In Subsection 5.2 we shall indicate how to modify
the argument in subsection 5.1 for dealing with the operators produced by
N (log \)* D .

In Section 6, we prove that the high energy part W is bounded in LP
for any 1 < p < co. As the high energy part is insensitive to the low energy
singularities and as the argument used for the same purpose in [26] for odd
dimensions applies, we shall only very briefly sketch the proof. In Section
7, we show the continuity of W in Sobolev spaces and complete the proof of
Theorem 1.1. For 1 < p < oo, this follows from the intertwining property
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W = (H — 2)" W (Hy — z)’ and the well known mapping property of the
resolvent. For p = 1 and p = oo, we may adopt the commutator argument
as in [22] and we omit the discussion.

We use the same notation and conventions as in [I]: For v € H_, and
v € Hy, (u,0) = [ga u(z)v(z)dz is the standard coupling of functions;
|u){v| = u ® v will be interchangeably used to denote the rank 1 operator
¢ +— (v, ¢)u. For Banach spaces X and Y, B(X,Y) (resp. Boo(X,Y)) is the
Banach space of bounded (resp. compact) operators from X to Y, B(X) =
B(X,X) (resp. Boo(X) = Boo(X, X)). The identity operator is denoted
by 1. The norm of LP-spaces, 1 < p < oo, is denoted by |ull, = |lul/zs-
We write S(R™) for the space of rapidly decreasing functions. The Fourier
transform is defined by

~ 1 —ix
a(§) = Fu(§) = W /Rm e~y (x)dx

and F*u(§) = Fu(—¢) is the conjugate Fourier transform. For ¢ € R, we
define H?(R™) = FH,(R™); if 0 > 0 is an integer we have H?(R™) =
W%2(R™). For functions f on the line fU) is the j-th derivative of f, j =
1,2,.... For a € R, ay or a_ is an arbitrary number larger or smaller than
a respectively; [a] is the largest integer not larger than a. For a function on
an open interval, f € C* means that f is [s] times continuously differentiable
and f(5)) is locally Hélder continuous of order s — [s]. When I = [0,a) or
I = (—a,a) with 0 < a < oo, C§,(I) is the set of functions of order C* on I
which vanishes at A = 0 along with the derivatives upto the order [s]. We
sometimes say that u is of class Cfj, on I when u € C§ ().

2. Preliminaries

2.1. Free resolvent
As is well-known (see e.g. [16]), the mapping

(2.1) T HY(R™) 5 u— A"T u(\) € HJ((0,00), L2(X))

is bounded if 0 < v < 4. The upper bound for v, however, is relevant

only at A = 0 and, for any € > 0, the map (2.1) is bounded for any 0 < ~
if HJ((0,00),L?(X)) is replaces by H?((g,00), L*(X)). It follows by the
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Sobolev embedding theorem that the B(H.,, L?(X))-valued function defined
by

T(\): Hy 3w A D24(0) € L2(%),

is of class Cg*_%([O, 00)) if 3 <7 < 2 and if v — L is not an integer; and
it is of class C7~3 over (e,00) for any % <~vyande > 0if v — % is not an
integer. It is well known that the free resolvent Go(A\) may be expressed in
the following form in terms of I'(\):

(2.2) Go = [~ HEE

We shall use the following well known lemma on the division in Sobolev
spaces. The lemma is a result of repeated application of Hardy’s inequality
when s is an integer and of the complex interpolation theory when s is not
an integer.

LEMMA 2.1. For any s > 0, the operator f(z) — x~°f(x) is bounded
from HJ(RT,L*(%)) to H] *(RT, L*(2)).

We define operator valued function A(A) for A € R by

1 ,
(277)7”/2/ ATy (y)dydw, =€ R™.

It is clear that A(\) is an even function of A € R and p™ 1A(u) =
'(u)*T'(u). We shall use the following expressions for Gp(\), A € CT.

Y .Um_lA(,U) Y wm2signp A(p)
R /0 N 2 /oo = A dp.

(2.3) ANu(z) =

(2.5)

2 — A2 =3
It can be see from the last expression that Gp(A) becomes logarithmically
singular when it is differentiated by A more than m — 3 times. The following
lemmas are basic to the following analysis. We let D1, Do and D3 be the
closed domains in the first quadrant of (k, ) plane defined by

Dy ={(k,0) : k,£>0,k+£<m~—10<k},
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Do={(k,0): k20 k< ™1 1>y,

-1
Dy={(k,0) k>0, k+0>m—1,"" = <k<m-—1}.
They have disjoint interiors and D1 UDyUD3 = {(k,¢) : 0 <k <m—1,0<
¢}. Define the function og(k,?) for 0 <k <m —1 and 0 < ¢ by
kil (k,0) € Dy
(2.6) oo(k,0) =4 €+ 3, (k) € Dy,
k+¢—222  (k{) € D;.

The function og(k, ) is continuous, separately increasing with respect to k
and ¢ and, on lines k + ¢ = ¢ with fixed ¢, decreases with k.

LEMMA 2.2. Let £ > 0 be an integer and let 0 < k <m — 1. Let o9 =
oo(k,?) be as above and o > og. Then, X" "FAO(X) is a B(Hy, H_s)
valued function of A € R of class C°~°°.

PrROOF. Define p(MNu(w) = a(Iw) for A € R and w € ¥ and write
'y = T'(A) and py = p(A) for shortening formulae. We also write X, =
B(Hy, L?(X)). We have (A(MN)u,v) = (pru, pv). By differentiation,

1 - —IAwT « ol
pg\k)u(w) = —m/ (—iwz)ke %y (2)dr = Z Cow®pir(z%u)(w).
(2m) 2 m k
It follows by Leibniz’ rule that
(A9 (A = Y Caplwpa(zu),w’pr(z"u)).

|al+|5]=¢
In terms of I'y we may write this in the form
AR AO Nu,v) =27F YT CoplwTa(2%u),w Ty (2 u))
|lal+|B]=¢
It is an elementary to check that o¢g = o¢(k, ¢) is equal to

max min{max(a+|a|+ 1,0+ (8] +3):0<a,b< 2L a+ b=k}

|af+|8]=¢
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It follows that, if 0 > o9 then for any «, 3 such that |a|+ || = ¢ we can
find 0 <a,b < mT_l such that

1 1
(2.7) a+b=k, a<0—\a|—§, and b<0—|ﬁ|—§,

For these a,b, AT (z)!*! and )\*bF)\(@'B' are X -valued continuous. In-

deed, if a = =1, then, AT () = pa (@)l is a X,-valued function of

class C7~1%1=% by virtue of Sobolev embedding theorem because o — |a >

ooif a < 21 then, I‘)\(w>|a| is X,-valued function of class Cp, ([0, 00)),

v = min(%Z,0 — || — 1), and )F“I‘Mx)lo‘l is of class C(V=%)-(]0,00)) as a
X,-valued function. A similar proof applies to )\_’TA(@W | This and the
identity

AR (WOT (%), WPTy (2P0)) = (WOATT\ (%), WP AT (zPu))

imply that X — X"~ 1=k A ()) is B(H,, H_,) valued continuous on R. To
conclude the proof, we need show that it is of class C(?=90)-_ Since

(d/dNANTTFAON) = (m — 1 — B)A 2R AO () 4 A==k gD (),

and o(k + 1,0),0(k,0 +1) < o(k,£) + 1, X’ 1=k A ()\) is continuously
differentiable as an &;,114c-valued function for any € > 0. It follows that
we have only to show this when 0 < ¢ — og < 1 and that

||)\m717kA(£)(>\) — ,umilikA(e) (U)||Xao+1+a < CA =l

whenever A,y stay in bounded sets. Since ||)\m*1*kA(£)()\)HXGO+E is locally
bounded we have for 0 < p < 1 that

IEAG () = R AO () <O —ul?

‘|Xoo+p+e —

on bounded sets by interpolation and the lemma follows. [1

COROLLARY 2.3. Let 0 < a <m—1and b > 0. Let j > 0 and
o > oo(a,b+ 7). Then, N 1= A®)(\) is a B(H,, H_,)-valued continuous
function of A € R of class Ci+(7—00)—

Proor. It suffices to show that A — )\m_l_a_“/A(b+b/)(>\) €
B(H,,H_,) are continuous if ' + b < j and a + a’ < m — 1. This fol-
lows from Lemma 2.2 since, on the segment {(k,¢) :k+/{=a+b+j,0<
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a < k < m — 1}, op attains its maximum at (a,b + j') and og(a,b + j')
increases with 0 < 5. O

The following Lemma 2.4 is a slight improvement of Corollary 2.3 for
small . We omit the proof as it is identical with that of Lemma 2.1 of [I].

LEMMA 2.4. Let % < o1 < % be such that o + 1 > 2 and define
po =T+ 0 —2. Then, as a B(H,, H_,)-valued function, N~ 2A(\) is of
class CP for any p < po in R and of class Cmin(e=3.7-3) 4n R\ {0}.

LEMMA 2.5. (1) Let 1/2 < 0. Then, Go(\) is a Boo(Ho, H-y) valued
function of X\ € ct \ {0} of class C=3)-. For non-negative integers j <
1

0'—5,

(2.8) 1GY Msot, 2y < CiolN ™ A > 1.

(2) Let % <o,T< m—% satisfy o+71 > 2. Then, Go(\) is a Boo(Ho, H—7)-
valued function of A € C' of class CP—, px =min(r+o0—-2,7-1/2,0—-1/2).

PrROOF. The first statement is well known and follows immediately
from (2.4) and the property of I'(\) stated at the beginning of this sub-
section. By virtue of Corollary 2.3 and Lemma 2.4, signu p™ 2A(p) is a
Boo(Ho, H-7)-valued function of p € R since p, < m — 2. We apply the
Privaloff theorem to the last expression of (2.5). The second statement
follows. [

The (m — 2)-th derivative of signu ™ 2A(u) contains Heaviside type
singularity at u = 0 and, for any large o, A — (x>7UG(()m72)()\)<x>fa € B(H)
is not continuous at A = 0. We now examine this singularity. Let

1

k—1
BN = <GO(A> ~ Gol0) =+ = G 0) 1>!> |

PROPOSITION 2.6. Let m > 4 be even. Then:

(1) Let k=0,1,... m—3 and 0 < p<m—2—k. Let 0 > oo(k+ 1, p).
Then Ji(X) is a B(He, H—_o)-valued function of A € R of class C.
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(2) For 0 < £X < %, Go(A) has the following expression as an operator
from S(R™) to S'(R™):

—4

MF

N (€ %A(A) ~log Al A(N) + AT 2E(N),

<
I
=)

where A +— F()\) is even and, for k = 0,...,m — 1, N7 1=F[F())
satisfies the same smoothness property as N 1"FA(N) as stated in
Corollary 2.3 and Lemma 2.4.

Remark that proof of Lemma 2.2 implies that for A +—
m=4 . .
>0 NJ(=A)T71 s a B(H(mTfl)+,H7(mfl)+) valued polynomial and

2
hence is analytic.

Proor. If k = 0, statement (1) is contained in Lemma 2.5 (2). Let
k > 0. Substituting Z;:é M7=V (= X)Wk for (u— A)7! in the
second equation of (2.5), we have for A € C* that

E

—1

Moo < pmlsignu A(p)udp
Go(\) =Y = m=j=3 A(p)dp + N / :
o(N) 5 /_oou signp A(p)dp + By =1y

o

J
Since A(p) is even, the integrals in the sum vanish for odd j and for even j

L[> s > A(p) _(i£2) )
§/OOM T signp A(M)dﬂz/o Wd/i:(—A) /N,

Thus, we have for A € C*

1 [ pm2Fsigny A(p
/ ( )du'

(2.9) Te(A) =5 A

—00

If o > og(k+1,p) and p < m—2—k, p— p™ 2 Fsignu A(p) € B(Hy, H_o)
is of class C” by virtue of Corollary 2.3 and (1) follows by Privaloff’s theo-
rem.

(2) We substitute ™2 = (2 — A2)(u™ 4 + A2 =0 4 .. 4 XAy 4 Am 2
in the first of (2.5). The result is:

. . mea [ BA(u
(2.10)  Go(\) = NI (=AY 2/0 u2_()\)2d,u, AeCt.

3
IS

m‘

<.
I
o
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We rewrite the integral in (2.10). Take an even function x € C§°(R) such
that x(u) =1 for |u| < 1/4 and x(u) = 0 for |u| > 1/2, and split it as

(2.11) /0 :2_(‘;)2@:/0 M))\(Q)d +/0 u MZX(_Mi)Q W) g,

We denote B(u) = x(u)A(w), write the first integral in the form

(2.12) %</Ooo ji(fid +/OOO %d,;),

and take the boundary values at —z < A< 8

L' By > B(u)
2.13) = / dp + irB(\ +p.v./ du>, 0<+X< i
e 5 ([ 5 SORR A Sy 3

To fix the idea we let 0 < A < %. We split the domain of integral of the
second 1ntegral [0,00) = [0,2A)U[2A, 00). The integral over [2), 00) is equal
to f)\ ,u + ) _ldu, and we add it to the first integral which is equal to

f/\ p~tdu. We write the sum in the form
B —2B
</ / ) (n+2)+ ;‘; N =280 1 (og AW

and add this to

1 B [N(BA+) - BA—p)
3 p.v./0 ﬁdu_/o 2 dp.

Thus, we have arrived at the desired expression if we define F'(\) by

o0 _ A o i
(2.14) F(A):/o p(l M;c(_ui)zA(u)du_/o (B(A ;Z B(\))

YB(u+ N 4+ B(u— ) —2B(\)
+/0 o du.

dp

It is immediate to check that F(\) = F(—\). We prove that A™~1=FF()\)
£, %). The first integral

_m=2
vields (1 — x(v/Ho))H, 2 (Ho— A?)~! which is a B(H)-valued analytic of
A in a neighborhood of the interval (—

satisfies the desired smoothness properties on (—

£, 1) and we ignore it. Let k =m —1
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first. We have o(m —1,j) = j + 5. Hence, if 0 > F and 0 <t < 0 — 7,

B(u) is a B(H,, H_,)valued function of class C* and the last two integrals
are of class C'~. Indeed, if 0 <t < 1. Then

‘/’\+hB()\+h—u)—B()\+h)
A H
Since [[(B(A+h — p) = B(A+ h)) = (B(A — p) = B(N))|| < C'min(u’, h'),

A+h
duH S/ pt~tdp < Chl.
A

[ .
(B0 =)= BOE ) = (B0 - B(A)));H

" t—1 t A dp t
S/ Cp' ™~ du+Ch / — < Ch*(1 + |loghl).
0 R H
Thus, the first integral on the right of (2.14) is of class C*~. When t > 1,
we differentiate it and apply similar estimates. In this way we prove that it
is of class C(“~2)=. The proof for the last integral in (2.14) is simpler and
is omitted. We next let 0 < k <m — 2 and write m — 1 — k = t. We have

(2.15) Xf//\ B(/\—M)—B(A)du:/A (A—u)tB(A;u)—XfB(A)
0 0

dp
t ¢ A
1y N\t B
+€_ZI<£)/O p A= ) BN = pydp
The argument for the case k£ = 0 implies that the first integral on the right

satisfies the desire smoothness property. Since o(k+/¢,j) < o(k,?)+ ¢, each
summand on the right

A
| 0= B, et

which may be written in the form

A S9 s1
(2.16) (¢ — 1)!/ - / / p = B(w)dpds, . . . dsg_1,
0 o Jo

also enjoys the desired smoothness property. To prove the same for the last
integral in (2.14), we split it:

o.17) / B(u+;L B, / B(u—;L By,
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multiply it by Af, t = m —1—k and write the resulting function as in (2.15).
For the first integral in (2.15), as previously, it suffices to show

1 00
/ A+ ) B+ ) dp = / P B () (n— N dp
0 A

satisfies the desired property. However, this may be written in the form

(E—l)!/ / / WL B(u)dpds . .. dsp s
A Sp—1 S1

and obviously satisfies it by the same reason as (2.16) does. It is clear that
the same holds for the second integral of (2.17) and this completes the proof
of the proposition. [

2.2. Born terms
If we formally expand the right of G(A)V = (1 + Go(A\)V) L1Go(\)V
into the series Y_°°  (—1)""}(Go(A)V)™ and substitute it for G(A\)V in the

stationary formula (1.7), then we have W =1 —Q + Qg — --- where
1 o0
Quu = — (GoMV)"(Go(A) — Go(=A))urd\, n=1,2,....
0

The sum I — Q; +--- + (—1)"Q, is called the n-th Born approximation of
W_ and individual €2, is called the n-Born term. The following lemma is
proved in any dimension m > 3 ([22]) and it will be used for studying both
the low and the high energy parts of W.

LEMMA 2.7. Let 0 > 1/ms. Then there exists a constant C' > 0 such
that

(2.18) I12ullyrr < C D |1F (@)@ V) L () lullwsss
|| <k
(219) [ Qs < C( S IF@? V)l Tullwrn,
o <k
n=2...

for any 1 <p < 0.
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3. Threshold Singularities

The resolvent G(A) = (H — A?)7! of H = —A +V is a B(H)-valued
meromorphic function of A € C* with possible poles ikq,... ,ik, on iR

2 are eigenvalues of H and outside the poles we have

such that —/1%, e, —KL

(3.1) G\) = (1+Go(MNV)1Go(N), reC .

For A € R, Go(A\)V € Boo(H_) for all 3 < v < 6 — 1% and 1+ Go(\)V,
A # 0, is invertible if and only if A is an eigenvalue of H ([1]). Since positive
eigenvalues are absent from H ([14]), (1+ Go(\)V) ™! exists for A € R\ {0}
as well and the equation (3.1) is satisfied for all A € c’ \ {0}. The following
lemma is well known ([1], [16]).

LEmMMA 3.1. Let 3 <v<b6—1%. Then, G()) is a Boo(H~, H_) valued
function of A € c’ \ {0} of class CO=2)- . For 0 <gjg<vy-— %,

(3.2) IGD N B3, 2y < CiyATH A2 1.

Following [11], we define, with Dy = G (0),
(3.3) N={peH_:(1+DyV)p=0}.

It is well known ([11], [25]) that A is finite dimensional and it is indepen-
dent of % <y <6 — %; —(Vu,u) defines an inner product of N; and if
{b1,...,¢q} is an orthonormal basis of N, {—=V¢1,... ,—V ¢y} is the dual
basis of the dual space N* = {¢) € H, : (1 + V Dg)yp = 0}; it follows that
the spectral projection () in ‘H_, for the eigenvalue —1 of DoV is given by

Q= _2?21 ¢; @ (Voj). Weset Q=1-Q.
LEMMA 3.2. Let m > 6 and Dy = (—A)~2. Let ¢ € N. Then:

(34) Vo € Hizyma) ;|(D2V)(x)| < Cz)*™™ and D3V € H(ms) -

PROOF. The lemma follows since ¢ € N satisfy |p(z)| < C(z)” (™2
and Ds has the integral kernel C|z — y[*=™, m > 6. O
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By virtue of (3.4), N coincides with the eigenspace £ of H with eigen-
value 0 if m > 6 and the following definition is equivalent to the one given
in the introduction.

DEFINITION 3.3. We say that the operator H is of generic type if NV =
{0} and that H is of exceptional type if otherwise.

3.1. Generic case

When H is of generic type, G(\) as a B(H,, H_,) valued function,
% <y <o— %, satisfies the same regularity properties as Go(\) as stated in
Lemma 2.5 on R. We write

M) =1+Gy(\)V, AeR
in what follows.

DEFINITION 3.4. Let p > 0 be an integer and I be an open interval
containing 0. We say that a Banach space valued function f(\) on [ is
of class C% on I if f € CP(I\ {0}) N CP~1(I) and it satisfies || f(P)(N\)|| <
C(log \)V for constants C' > 0 and N > 0, X # 0.

LEMMA 3.5. Let % <y, T <6 — % be such that v+ 1 > 2. Let pg =
min(y—1/2,6 —y—1/2) and px = min(y—1/2,7—1/2,74+~v—2). Suppose
H is of generic type. Then:

(1) If po < m —2, M~Y(\) is a B(H_,) valued function of \ of class
CPo)=_ If po > m — 2, it is of class CPI)~ for X # 0 and of class
C™2 on R.

(2) For any A € R, M(\)~! — 1 may be extended to a bounded operator
from H_syy to H_r. If p» < m — 2, it is a B(H_s1y, H_r)-valued
function of class C )~ If p, > m —2, it is of class CP*)= for X\ # 0
and of class C™ 2 on R. If m = 4 and p. > 3, \(M(\)~' —1) is of
class CP)= for X\ # 0 and of class C3 on R.

C(log A) only, assuming p, > m — 2, as the rest may be proved, by virtue of
Lemma 2.5, by an almost word by word repetition of the proof of Lemma 2.7

PrOOF. We prove the estimates ||8T_2M_1(>\)||B(H_5+W,H,T) <
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of [I]. By using the identity O\M ~1(\) = —M Y N\)GH(A\) VM LX) we m—2
times formally differentiate M ~!(\)—I. This produces a linear combination
over j1+ - jk=m—2,j1,...,jy > 1 of

MYNGYI N VMY - MY WGP (VM (A).

If £ > 2, this is bounded in B(H_s4+,,H_7) near A = 0 by the proof of
Lemma 2.7 of [I]; and if & = 1, this is bounded by C(log A) by virtue of
Proposition 2.6 (2) and of the estimate

1852 (A" 1og AA(N))[B(ry ) < Clog ), Al <1
obtained via Corollary 2.3 and Lemma 2.2. The desired estimate follows. []

3.2. Exceptional case

In this subsection we assume H is of exceptional type. Then (1 +
Go(A\)V)7! is singular at A = 0. When m is even, the logarithmic sin-
gularities appear in addition to those due to the 0 eigenspace of H and the
analysis becomes more complex than in odd dimensions. In this subsection
we prove the following expansion formulae for (1 + Go(A)V)~!. Recall that
Py is the orthogonal projection in L?(R™) onto the zero eigenspace of H.

PROPOSITION 3.6. (1) Let m = 6 and |V (2)| < C{z)™° with § > 10 =
m + 4. Then, with E(X) such that V E(X) satisfies the condition (K), with
p>m+1,

—2

‘S
M

35) (1+GoWV) ' —1= ]D;—QV +

2
> DX logh A+ E()).
k=1

<
Il
o

Here Djj, are finite rank operators of the form

(3.6) Dji = RVD') RV + DV RV + RVDS),

where DY € B(N) DY ¢ B(N,H_3,) and D) € B(H N)
gk s Mk y FL—-34 gk —6+34> .

(2) Let m > 8 and |V (z)| < C(x)™° with § > m+ 3. Then, with a constant
cm and E(X) such that VE(X) satisfies the condition (K), with p > m+ 1,
4

(3.7  (1+GNV)t—1= —z Tmp® (Vo)A Clog A + E(N).
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Here ¢ = PyV with V being considered as a function. If m > 12, then
cme @ (Vip)A™=Clog X may be included in E(N).

The rest of this subsection is devoted to the proof of Proposition 3.6.
We use the following lemma as in the odd dimensional case.

LEMMA 3.7. Let X = Xy+A&) be a direct sum decomposition of a vector
space X. Suppose that a linear operator L in X is written in the form

Loo L01>
L =
<L10 L1
wn this decomposition and that Lgol exists. Set C' = L1 —L10L501L01. Then,
L= exists if and only if C~' exists. In this case
-l (Lgol + Log LorC ™ Lo Ly —Lgolec—l) .

(38) _CflLloLaol Cfl

Using the spectral projections @ and Q = 1 — Q, we decompose H_\ =
Q’I‘Lﬂ—/\/ as a direct sum. With respect to this decomposition, we write

_(QMNG QMMNQ _ (Lao(n) Lor(N)
(3.9) Mm‘(czM(A)@ QM(A)Q)‘(LTE(A) L(ﬁ(x))’

where the right side is the definition. We begin by studying Ly, (\). Since
Loo(0) € B(QH_,) is invertible by the separation of spectrum theorem for
compact operators, Lgg(\) is also invertible for small |A\| < A\g. We omit the
proof of the following lemma which is similar to that of Lemma 3.5.

LEMMA 3.8. Let % <, T < 6—% and v+ 1 > 2. Let pg = min(y —
1/2,6 =y —1/2) and p, = min(y —1/2,7 — 1/2,7 +~v —2). Then:

(1) If po <m—2, Loy (N) is a B(QH_~) valued function of X € (—Xo, o)
of class CP)~_ If po > m — 2, it is of class CPO)~ for X\ # 0 and of
class CT™2 on (—Xg, \o).

(2) For any A € R, Lyy (\) — Q may be extended to a bounded operator
from @H—5+7 to QH_r. If p» < m —2, it is of class CP)= as a
B(QH_s4y, QH_r)-valued function. If p, > m — 2, then it is of class
CP)= for X # 0 and of class C™2 on (—Xg, \o).
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Removing —A"2log A A()\) from Go()), we define

Goreg(N) = Go(A) + X" 2log A A(N), N(A) = Q(1 + Goreg(M)V)Q.

If v and po is as in Lemma 3.8, Proposition 2.6 implies that N(\) is a
B(QH_-) valued function of A € R of class C()~ and N () is invertible
in QH_ for A € (—Xo, Ao) if Ag > 0 is chosen small enough. We write

(310) L) =Lepg(N)-Q, X\ =N, X(N)=XN-q

We omit the proof of the following lemma which is also similar to that of
Lemma 3.5.

LEMMA 3.9.  Let v, 7 and po, p« be as in Lemma 3.8. Then:
(1) X(\) is a B(QH_~) functions of A\ € (—Xo, o) of class C(P0)-,

(2) For A € (—Xo,\o), X(\) extends to a bounded operator from QH_s4~
to QH_, and it is B(QH_s4~, QH_)-valued function of class Cpe)—,

We define Y(\) = Lyg (A\) — X (\). In what follows we shall often use the
arguments similar to the ones which will be used in (i) to (iv) of the proof
of the following corollary. We use the following elementary lemma:

LEMMA 3.10. Suppose f(z) is of class C§,(R), 0 < s < 1, then
log z f(z) is of class Cp, (R).

COROLLARY 3.11. Let v,7 and ps be as in Lemma 3.8 and j, k =
0,1,.... Then, Yjr(A) = NM(log\)*Y(N), X # 0, may be extended to a
bounded operator from QH_s~ to QH_r. Define Y;;,(0) = 0. If p, < m—2,
then Yir(\) is of class CP)= as a B(QH_g4~, QH_;)-valued function of
A€ (=Ao,A0). If px > m — 2, then it is of class CP )~ for X # 0 and of
class C™=2 on (—Xo, Ao)-

PROOF. We insert Ly (A) = Q + L()\) and X(\) = Q + X()\) into
(3.11) Y(A) = Loy M (A" ?1og AQANVQ) X (V)

This produces four terms. It is easy to check that they satisfy the desired
smoothness property outside A = 0, and we examine them near A = 0.
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(i) A" 2log A\QANVQ enjoys the desired property by virtue of Lemma 2.4.
(ii) To see the same for L(A)(A™ 2log A QA(N)VQ), we compute the I-th
derivative via Leibniz’ formula. If [ = a 4+ b < p,, it is easy to check

min(6 —a — 3,6 +7—2) > max(b+ 3,2 — )

and if we take x between these two numbers, we have
1 1
(3.12) b+§<n<6—a—§, T+ (6—k)>2and k+v> 2.

Then, as a B(QH)-valued function,
() TEO0) (@) - () (A" log AGANVD)® ()P

is continuous with respect to A € (=X, Ao) \ {0}. If b < m — 2, this is
continuous also at A = 0, and is bounded by (log A) if b =m — 2.

(iii) The argument which is entirely similar to the one used in (ii) proves
that QA" 2log A A(A\))VQX ()) satisfies the corollary.

(iv) For I = a + b < p, we choose k as in (3.12). Then in view of the result
in (ii), as a B(QH)-valued function,

() T{L)N"? Log AQAMN VR (2)" - (2) "X ) (2)° ™

is continuous with respect to A € (=g, Ao) \ {0}. If a < m —2 it is
continuous also at A = 0, and is bounded by (logA) if a = m — 2. Hence
LA (A 21log A QA(N)V Q)X (A) has the desired property. (]

Since the logarithmic singularity appears in the form A™~2(log \) A(\)
in Go()\) as in Proposition 2.6 and A™ 2log A is less singular in higher
dimensions, the proof of the proposition becomes easier as the spatial di-
mension m increases. Thus, we study the case m = 6 first and then discuss
the case m > 8 only briefly. In what follows we shall indiscriminately write
Eo(N\) for B(N) wvalued functions which satisfy the following property for
some N > 0:

Eo(\) is of class C™~ ((—Xo, Ao) \ {0}) and C™% (=)o, Ag) and
o m+2
IESD )] < Clog WY, INES? ()] < Cllog MY

m+2
Functions of class C, 2 on (—Ag, Ag) clearly satisfy the condition (3.13). We

often omit the variable A of operator valued functions. Note that m — 2 >
m-+2
2

(3.13)

when m > 6 with strict inequality when m > 6.
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3.2.1 Proof of Proposition 3.6 for m =6
In view of Lemma 3.7, we first study C'(A\) = L1 — L10L601L01- We have

Go(\) = Do + A2Dy — M (log \)A(N) + M F())
by virtue of Proposition 2.6. Since (14 DoV)Q = Q(1+ VDgy) =0,

L11(\) = XM2Q(D2 — A21og AMA(N) + A2F(\)VQ.
(3.14) Lo1(A\) = A2Q(Dg — A?log AMA(N) + A2F(\)VQ.
Lip(\) = N2Q(D2 — A21log AA(N) + A2F(\)VQ.

It is well known that QDsV Q is invertible in N and (QD2V Q)™ ! = RV,

PyVQ = PV and VQPy = VP (cf. §4.4 of [25]. Note, however, the sign
difference here and in [25]). Then, C'(A\) may be written in the form

(3.15) C(A) = X (QDVQ)(1 — PV E5 (X)),
E5(\) = A2 Foo + A2 log AFp1 + A Fag + X log APy + A2 Ep()),

where Fyo(A), Fo1(A), Foo(N) and Fy1(\) are defined by

Foo(\) = —Q(F(\) = DoVQLyy @D2)VQ, Foi = QANVQ,
(3.16) F20(>\) Q(F(NVQLy @D2 + D2VQLyy QF(N)VQ,
F1(A) = —Q(A(X )VQLOO QDs + DQVQLOO QAN))VQ,

and Ep()\) = MQ(log MA(N) — F(/\))V@Laol( Q (log AN — F(V))VQ is

) —
of class C4 thanks to (3.4) (recall § > 10). We write ij( ) for the operator
obtained from Fj;()\) of (3.16) by replacing Loy (A) by X (A\) = N71(\).

LEMMA 3.12.  As B(N)-valued functions of X\ € (—Xg, Ao),
(1) Foo(N), Fao(N) and Fa1(N) are of class CF;
(2) Foo(N), For(N), Fao(N) and Fy(N) are of class CO—4-;
(3) QANVQLNQF(NVQ is of class C2;

(4) QANVQX(NQF(M\)VQ is of class CO—4~.
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The same holds for the operators which are obtained by replacing one or
both of A(\) and F(X\) by the other.

PRrROOF. We prove statements (2). The proof for others is similar.

(i) Proposition 2.6 and properties (3.4) of ¢ € N imply that QF(\)VQ is
of class C®=2-: and the operators QF(\)VQD2VQ and QDVQF(AN)VQ
are of class C®=%~, The same holds when F()) is replaced by A()).

(ii) By virtue of Lemma 3.9 and (3.4), QD2V X (\) D2V Q is of class =3~
(iit) QF(\)VX(A\) D2V Q is of class C(®=2)-_ To see this we differentiate it
by A by using Leibniz’ formula. Then, by virtue of Lemma 3.9 and (3.4), for
some ¢ > 0, (z) 07T RE) NV X R2) (X)) (2)F is B(H)-valued continuous
as long as

ki+3+ko+5<8 ki+3<6+1 ko+3<6-1

and the latter inequalities trivially hold if k1 + ko < 6 — % Similar argu-
ment implies that the same holds for QDVQX (A)QF (A)VQ and for the
operators obtained by replacing F'(A) by A(X).

Combining (i), (ii) and (iii) we obtain statement (2). O

LEMMA 3.13. There exist A\og > 0 such that for A\ € (—Xo, o) \ {0},
C(N) is invertible in N' and C(\)~! may be written in the form

(3.17) A2RV + POV(log ADio+ Y N(log Dy, + Eg(A))POV
1<k<j<2

with Djx € B(N) and a B(N)-valued C function Eo(N).
PROOF. Since (QD2VQ)™! = PV and ||RyVE;(\)|| — 0 as A — 0 by

virtue of Lemma 3.12, there exists Ag > 0 such that, for 0 < |[A| < A9, C(})
is invertible and

CT ) =272 i(PoVES(/\))”PoV-
n=0

Lemma 3.12 implies that the sum A™2 > o (P)V E3(\))" PV and the terms
in A2 Zizl(POVE’Q"()\))”POV which do not contain any log A factors or
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contain factors A with j > 4 may be written in the form PyV Eq(\)PyV
with a C? function Ey()\). Hence, we have

C7YA\) = A2Py)V +log APV Fy PV
(3.18) —|->\2 log A P()V(F21 + FooPyV Fy1 + F01PQVF00)P0V
+ 22 log? \(PyV Fy1 )2 PV + PyV Eg(\) PyV.

The equation (3.18) remains valid if Fyyg, Foo and Fo; are replaced by Foo, Fao
and Fy respectively because the difference is of class C?4 by virtue of Corol-
lary 3.11. We then expand various operators in the resulting equation in
powers of A by using Taylor’s formula. More specifically:
(a) We expand PyV Fy1 (M) PyV = PyV A(A)V BV upto the order A\? with the
remainder A3R;()). Then, by virtue of the property (3.4) of eigenfunctions
and of Lemma 2.2, Ry()\) is a B(N)-valued function of class C” for any
p < &—5. Since § —5 > 4, it follows that A3log A Ri()\) satisfies the
property (3.13) and it may be written in the form PyV Ey(A) PV
(b) If we replace PoV (For(A) + Foo(A) BV For (A) + For(A) PoV Foo(A)) PoV
by the constant operator obtained by setting A = 0, the difference is A times
a B(N)-valued function Rg(A) of class C? for any p < 6 — 5 by virtue of
Lemma 3.12, and A3log A Ro()\) is of the form PyV Eg(A)PV.
(c) If we replace A()\) by A(0) in (PyVFn(\)2PV = (PVAWN)V Py)?V,
then the difference is A times a B(N)-valued function R3(\) of class C* and
A3 log? A R3(\) is of the form PyV Ey(\)PyV.

Equation (3.18) and (a), (b) and (c¢) imply the lemma. [

In what follows, we take and fix the constant Ao > 0 as in Lemma 3.13.
We denote the second member of (3.17) by C.(\): C,.(A) = C~L = A2RV.

LEMMA 3.14.  With an operator Dgll) € B(./\/',H(_l)i) and an operator
valued function Ro1(A) on (—Xo, N\o) which satisfies the properties below, we
have

(3.19) Lot (W Lot (W Cr(A) = A2log A DS PV + Ryt (A) PV

As B(N, H) valued functions, (z)~ "+ Ry1(N) is of class C° for 0 < o <
1
2; <m>_(a+5)+R01()\) is of class C7 for A # 0 for o = 3,4 and, for some
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N >0,

7
2

_ (9
(3.20) (@)~ @+ R Mlsvao + 1@) " AR (V) v
< C(log \)V.

ProoF. For shortening formulae we write Ey(A) for PoV Eo(A)PyV and
Djy, for P)V D PyV of (3.17) in the proof. Since Loi = Q(1 + GoV)Q is
a BV, H7(7+%)+)—valued function of class C7 for v < 4 and of class C{ if
~v >4, Lemma 3.8 implies that

Lo Lo1(\) Eo(A) = QLo1(X) Eo(A) + L(A)Lo1 () Eo ()

may be put into Ry (\)PyV. We need only consider 3" M (log A\)¥ Loy Lot D ;.-
We insert (3.14) for Lgj(A). Then, by virtue of Corollary 2.3, Lemma 2.4
and Proposition 2.6, A*7(log \)*Q(log AA(X) + F(M\))VQ is of class C7 if
v < 4 and of class C% if v > 4 as a B(V, H_(7+%)+)—valued function. Thus,
we see by writing again as Ly = Q + L(\) and by applying Lemma 3.8
that

Log (A (X2 (log \)*Q(log AMA(X) + F(X))VQ) Dy

may also be put into Rp1(A)FPyV. Writing Laol = Q+Y + X, we are left
with

(3.21) A2 (log \)F Lo (N @D2V QD = A1 (log \)* QD2V QD
+A2H (log )Y (N\)QD2VQDjy, + A2 (log \)* X (A\)QD2VQDjy.

Recalling that QD2V € BN, H_;_.) for any € > 0, we put the first term
on the right with j = 0 into \? log)\Déll) and with j > 1 into Rg1(\)PyV.
Note that if j = 0, we have only the term with £ = 1, see (3.17). Corollary
3.11 withy=6—1—¢ and 7 = 0 + 1 + € implies that the second term may
be put into Roi(\)PyV. For dealing with the last term, we write X(\) =
X (0)+ (X1(\) — X (0)) and, noticing that X (0)QD2VQ € B(N, H_%_E) for
any € > 0, we put A2+ (log \)* X (0)QD2VQD; into A2log ADSY if j = 0
and into Rg1(\)PyV otherwise. Finally,

N (log ) (X () — X(0))@D2VQDji
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may also be put into Ryi(\)PyV. This can be seen by differentiating it via
Leibniz’ rule and by applying Lemma 3.9. This completes the proof. [J

Recall 0¢(3,0) = § + 2 for ¢ < 3. In the following two lemmas, we set

[ max(0¢(3,0),3) =3, it o <2,
(3:22) v(o) _{ o+ 1, if2<o<4.

We parenthetically remark that we imposed the stronger decay condition
[V (z)| < C(x)° with § > m+4 for m = 6 instead of § > m+3 for proving the
following two lemmas, viz. for ensuring that V Rga(A)PyV and V PyV R3p()\)
below satisfy the property (K), with p > m + 1.

LEMMA 3.15.  With an operator Dé? € B(N,H_3)_) and an operator
valued function Roa(N\) on (—Xo, Ao) which satisfies the properties below, we
have

(3.23) Lot (N Lot (N CH(A) = A21log ADS BV + Roz(A) Ry V.

As a BN, H) valued functions, (z)~" 9% Roa(X) is of class C° on (—Xo, Ao)
for0<o <2, for \#0 foroc =3,4 and

324) (&) RE Vs ag + 1) " ARG (M) B2 < Cllog A).

PrROOF. In view of Lemma 3.14 it suffices to prove the lemma with
A"2PyV in place of C~1(\). We multiply the following by Ly, (A) from the
left:

Lot (MAT2PV = QDoV PV — X2 log A\QANV PV + N2QF (\)V RV.

(i) We may put Loy (\)QD2V PV = (Q + L(N\)QD2V PV into Roa(N\) PV
by virtue of Lemma 3.8.

(ii) In Lyg (\)QA2log X A(A\)V PyV we substitute Y (\) + X (\) + @ for Ly,
We may put Y (A\)QN2log A\ ANV PV = Nlog\Y()\) - QAN)V RV into
Rp2(A) PV by virtue of Corollary 3.11. We write in the form

M 1log AX (\)QAN)V = A2 1log AX (0)QA(0)V

B2 2 log X (A) = X(O)QAO)V + A2 log AX (W)(A() — AO)V.



L? Boundedness of Wave Operators II 305

Then, X(0)QA(0)V € BV, H(—%),) and we put the first term on the right

into A2 log)\Dg)PoV; it is easy to check by using Lemma 3.9 (2) that the
last two terms satisfy the properties of Rpa()). We write QA% log A A(\)V
as

QX log A A(0)V + QX log A (A(N\) — A(0))V-

Since QA(0)V € B(N,H_3, ), we put the first term into A\?log )\Dg). It
can be checked that the second term satisfies the properties for Ry by
differentiating it by A and by applying Lemma 2.2 and Corollary 2.3.

(iii) Since A2F(A)V is also is of class C7 as a B(N, H_,(,), )-valued function
by virtue of Proposition 2.6, we may put Ly; (\)QA2F(A)V into Roa()).
This completes the proof. [

We omit the proof of the following lemma which goes entirely in parallel
with that of the previous Lemma 3.15.

LEMMA 3.16. There exist an operator Dg) € B(H(—s43),,N) and an

operator valued function Rysz(\) which satisfies the property below such that
(3.26) C_lLlo()\)LO()(A) = )\2 log A P(]VD]SS) + PoVR()g()\).

Here, as a B(H,N') valued function, Roz(A)(z)®7 )= is of class C° on
(=0, X0) if 0 <0 <2, for \ 40 if o = 3,4, and with some N > 0

RS () (@) Y= g0 n + RS (W) (@) CT )=\ g 30 < Cllog Y.

Since VP()VEQ()\)PQV, VR01 ()\)P()V, VRQQ(/\)PQV and VPOVR03()\)
satisfy property (K), with p > m + 1, the following lemma completes the
proof of Proposition 3.6 for m = 6.

LEMMA 3.17. The operator valued function VLaOILmC*lLloL&)l sat-
isfies the condition (K), with p > m + 1.

PrOOF. We substitute A 2RV + C.(A) for C(\) and write
L01A72P0VL10 in the form

Q(ADy — M3 log AA(N) + N3F(A\)VP)V(ADy — A3 log AMA(N) + M3 F(\)Q.
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It follows from Corollary 2.3 that this is a B(H_stq0(2,5),» Hooo(2,5).)-
valued function of class C7(—\g, Ag) for 0 < j < 2, of class CU)((=Xg, Ag) \
{0}) for j = 3,4, and the third and the fourth derivatives are bounded
by C(log)) and C|A|~!(log)) in respective norms. It follows by writ-
ing Log (A\) = Q + (Lgg — Q) that VLgy Lot (A\™2PyV)LigLy, satisfies the
condition (K), with p > m + 1. It is then obvious that so does
VLaoleCr()\)LloLSol- The lemma follows. [

3.2.2 The case m > 8 is even
Let now m > 8. Define Fy(A), F1(X) and F»(\) by

Fo(A\) = Dy +A2Dy+ -+ A" 4D,y + A" 2F()\)
Fos(A) = Do+ -+ 4+ X" 0Dy + A" AF(N),
Fy(A) =Dg+ -4+ X"8D, 4 + X" OF())

so that Go()\) = Fo(A) — A 2log A A(N), Fy = Do + A2F5()\) and Fp(\) =
Do + A2Fy()). Since (14 DoV)Q = 0, we then have

(3.27) Lii(A) = AM2Q(Dy + N2Fy(\) — A og MAN))VQ;

and Lip(A) and Lgi(A\) are obtained from (3.27) by replacing one of @
by @Q as in (3.14). Recall that (QD:VQ)~! = PV, VQPy = VP, and
RVQ =PV,

LEMMA 3.18. Let ¢ = PyV where V' is considered as a function. Then
there exists Ao such that

(3.28)  CTYN) = A2PV + ¢, A" Clog Ao ® (V) + PoVEy(\) PV,

where ¢ = (2m)72 (MD™L and Eo(N\) is a B(N)-valued function of A €
(—=Xo, No) which satisfies the property (3.13).

PROOF. In this proof the smoothness of operator valued functions will
be referred to as B(N) valued functions. By virtue of Proposition 2.6,

Ep(N) = QF,(M)VQ is of class C™3*. Likewise Lemma 3.8, Proposition
2.6, property (3.4) of ¢ € N and that 2(m — 4) > mTH imply that

Ena(A\) = X2 D (log \)2QANVQLyy (NQANVQ,

Enz(\) = QRVQLy (NQFRVQ,
Fo(\) = Q(FIVQLyy QA+ AVQLyy QF1)VQ
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are all of class C™2~. With these definitions, we may write
(3:29)  Lio(A)Loo(N) ' Loi(A) = A (Eoa + Eoz — X *log AFyo(X)),
Thus, defining

Eo(X\) = PV (Eo1(X) — Eg2(N) — Eoz(\)),
Fio(\) = PBBVANVQ,  Fa(N) = ByV Fy(N),

subtracting (3.29) from (3.27) and factoring out A2Q D2V Q, we obtain
C(\) = A2QDVQ(1 — AN Hlog A Fig(A\) + A" 2log A Fag(\) + AN2Ep(N)).

It follows that C'(\) is invertible in N for 0 < |A| < A¢ for small enough Ao
and

CTHA) =A"2) (A" Hlog A Fig(A) — A™ 2 log AFao(A) — A Ep(M)"PoV.
n=0

It is easy to see by counting the powers of A in front of powers of log A that
+
the series over, 2 < n < oo produces a function of class C" 2~ . Thus, writing
Eo(X) for C*2~ 2 functions indiscriminately, we have
C7YN) = A 2P)V + X Slog A F1o(\) PV
— A" og X Fag(A)PyV + Eo()).
Since Fyo(A) is of class C™3" as mentioned above and m — 4 > 5 ifm > 8,

N4 1og A Fag(A\) PyV satisfies the property (3.13). If we expand A()\) =
A(0) + XA'(0) + Aa(N) with Aa(A) = A(X) — A(0) — X A'(0) in

A" 6 log X F1o(A)PyV = A™ Clog A Py VANV BV,

then, A Slog A PyV A3(\)V PV satisfies the property (3.13). Since A(0) =
¢ml ®1 and A'(0) = 0, the lemma follows. [

Lemma 3.18 and the following lemma complete the proof of Proposition
3.6 for m > 8. We use the following short hand notation.
Ri(A) = C7 (N Lio(M Loy (A), - Re(A) = Log (M) Lot (NCH(A)
Re(A) = Loy (A) Lo1 (MO~ 1(>\)L10()\)Loo (A)
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LEMMA 3.19. For sufficiently small A\g > 0 the following properties are
satisfied:
(1) Foro < mT_2, Ri(A) is a Xy = B(H(542-6),,N)-valued function of class
C? on (—Xo, Xo); it is of class C7 for X # 0 for 5 <o < mTH and

m—+2

(3) (%57)
I ) g + MBS Wlle < Cllog ).

(2) Foro < mTﬂ, R.(N) is a Yo = BN, H_(,42), )-valued function of class
C7; it is of class C7 for X # 0 for 5 <o < mT” and

m m+2
IR Wllyg + MBS (V) yp < Cllog ).

”ym+2
2

(3) Foro < ™22 R.(\) isa Z, = B(H(s42-6). > H—(0+2), )-valued function
of class C°. Moreover it is of class C? for A # 0 for 3 <o < mTH and

(%) ("32)
[Be® (Mllzg + AR * " (Wzy, < CllogA).
2

PrOOF. We have 6 — 3 > mTH and
PoVLot(MVQLag (A) = 2R VI (MVQ(Q + L(N)).

Proposition 2.6 and Corollary 2.3 imply that T'(\) = PyV J2(A\)VQ satisfies
the property of Ry(\) of the lemma (recall that Ja(A\) contains
A4 log A A(X) and m — 4 > %), Since

NCTHA) = PV + emA™ Hlog A @ Vo + N>RV Eg(\) PV

satisfies property (3.13), statement (1) follows. We likewise see that

T(N) = (Q+L(\)Q2(NVQ

satisfies the property of R,(\) of the lemma. Then statement (2) follows
since A2C~1()\) satisfies the property (3.13). Statement (3) is obvious since
Ce(N) = T(N)Ci(N), Ci(X) satisfies (1) and T'(\) satisfies the property of
R,(\). O
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4. Low Energy Estimate I, Generic Case

In the following two sections, we study the low energy part W, of the
wave operator W_. We take and fix \g > 0 arbitrarily if H is generic type,
otherwise small enough so that Proposition 3.6 is satisfied. We take cut-off
functions ® and ¥ as in the introduction and define W as in (1.8):

W = &(H)B(Ho) - /0 T S(H)GNV(Go(A) — Go(—A\)B(H)A L.

™

In this section we study W, in the case that H is of generic type and prove
the following proposition. We assume that V satisfies the condition

(4.1)  F((z)*°V) € L™ (R™) and |V ()| < C(z)~® for some § > m + 2.

PROPOSITION 4.1. Let m > 6 be even and let V' satisfy (4.1). Suppose
that H is of generic type. Then W is bounded in LP(R™) for all1 < p < co.

The integral kernels ®¢(z, y) and ®(x,y) of ®(Hp) and ®(H ) respectively
are continuous and bounded by Cx(x —y)~" for any N ([23]) and a fortiori
®(H) and ®(Hy) are bounded in LP for all 1 < p < co. Hence, we have
only to discuss the operator defined by the integral

(4.2) /0 TGOV (Go(N) — Go(—N\)AD(Hp)dA.

We let L(\) = (1+ Go(A\)V)~! =1 as in Lemma 3.5 so that
GAN)V = Go(A)V 4+ Go(AMVL(A)

and substitute this for G(A)V in (4.2). Then, Go(A)V produces the Born
approximation ®(H)Q;®(Hy), which is bounded in LP(R™) for all 1 < p <
oo by virtue of Lemma 2.7, and the second term produces

(43) /0 () Go(MV LN (Go(A) — Go(—A)AD(Ho)B(\)dA,

where we have introduced another cut off function ®()\) € C§°(R) such that

D(N)P(A?) = ®(A?), and ®()\) = 0 for |A| > AZ.
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We prove that (4.3) is bounded in LP(R™) for all 1 < p < oo in the following
slightly more general setting. Note that V' L(\) satisfies the property (K),
for some p > m 4+ 1. Indeed, if we choose m — 1 < p < § — 1 and set
T=0—p+yorp—7vy=406—T,then miH(T—%,2T—2) >~ for v > 0, and
by virtue of Lemma 3.5, (z)”" "V L(\)(z)"” 7 satisfies the desired condition
of Definition 1.8.

PROPOSITION 4.2.  Let m > 6. Suppose K(\) satisfies property (K),
for some p>m+1. Let &,® € C5°(R) be as above and Q2 be defined by

(@4 0= [T BUHGNKN)(GolN) - Gol-N)2(H)ABN)A
0
Then,  is an integral operator with admissible integral kernel.

We prove Proposition 4.2 by using a series of lemma. We first remark
that (4.4) may be considered as Riemann integral of B(H,, H_,) valued
continuous function and that €2 may be extended to a bounded operator in
H. Indeed, since the multiplication by (z)~7, v > 1 is Hyp-smooth in the
sense of Kato ([15]), we have

(2 9)] < ilelgII@(/\)@WK(/\)@WHB(H)||<93>_7G0()\)‘1>(Ho)fHp(mmm)
x[[{@) " Go(N)R(H)gll r2rmnan) < ClIf gl

Define Q(z,y) = Q4 (x,y) — Q_(x,y), where

(45)  Qiley) = /O TR (NG(ENDo (-, 9), Go(—N)@(-, 2))A(A)dA.

LEMMA 4.3. The function Q(z,y) is continuous and S is an integral
operator with the integral kernel Q(z,vy).

Proor. Forvy>1,z— ®(-,z) and y — Py(-,y) are H-valued contin-
uous, and Oy (z, y) are continuous functions of (z, y) For f,g € C°(R™),
O(H = [®( y)dy and ®(H = [ x)dx converge as
Rlemann 1ntegrals in H It follows by Fublnl S theorem that

@r9) =2+ [ JEN)Gol=N)@(Hn) 1. Gol-NB(H)) DA
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is equal to /Q(x, y)f(y)g(x)dydz. The lemma follows. (]

We define
Go(\, - y) = e WG\ Do (-, y),
(4.6) Gor(\, - z) = e MG\ (-, 2),
(47) Fi()\,l’,y) < ()‘)GOl(j:)‘a 7y)7 07"( )>i)()‘)

and write (4.5) in the form

o0 .
(48) Qi(l’, y) - / elA(lxlilyDFﬂ:()‘a L, y))‘d)\
0

LEMMA 4.4. Let vy > % and B > 0 be an integer and let x,y € R™.
Then:
(1) As H wvalued functions of X\, ()P 7Gu(\, -, y) and {)P~7Go. (), -, x)
are of class CP(R) for 0 < 8 < m — 3, of class C’f(R) for 6=m —2 and
of class CB(R\ {0}) for any 8> 0.
(2) For0 < g <m-3, Gé?)()\, z,y) is continuous with respect to A > 0 and

(4.9) G0, 2,y) < C > m
B1+PB2=p

(3) Let 0 < \g < 1/2. For any 0 < 3 and € > 0, we have

m i m—3 __ _m=1
(410) (107 EGE (L y) < oA O ) )t
0< ‘)\| < Ap.
(4) With obvious modifications Gor (X, z, z) satisfies (4.10) and (4.9).

PROOF. Statement (1) follows from LAP, viz. Lemma 2.5 and Propo-

sition 2.6. By Leibniz’ rule G((f )()\, z,7) is a linear combination of

(i) (w, z, y))ﬂl et (w,z,y)
Kp, 6, (A z,y) = / N |z — w’m—2—,32

00 _ it L*l?’,ﬁ
(4.11) Hg(s):/ et (s+ )
0 2

Hpg,(Mw — z])®o(w, y)dw,
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over the indices (31, 32 such that 81 + B2 = 3. Here ¥(w, z,y) = |w — z| — |y|
satisfies [(w,z,y)] < |w — y| + |z|. It follows when B3 < m — 3 that
Kpg,8,(A, 2z,y) is continuous with respect to A upto A = 0 and, for any N,

(&) (w —y) N Cprp ()™
1K 316, (0,2,9)| < Cpy o /Rm w2 m WS

Statement (2) follows.

If B < 253, we have }s+”} 2 < O™ P 4 |t™2
|Hg, (s)| < C(s+1)"2 . It follows that
(4.12)  |Kp,p, (A 2,9)|
217 4w — gl
|z — w|m—2-F2

<) (2 —y)™ " forall |A < Ao

Hence, if f < 23, (4 10) is satisﬁes for [A| < Xo. If 272 < By, [s +

2
%\ _52<Cm1n{s >~ |t T —A2} and

(e.]
|Hp,(s)| < C (3"33’52/ ettmz3dt+/ ettm352dt).
0 s

Hence |Hpg, (s)| < Cp,s™ 7 7 P2 for s > 1 and for 0 < s < 1,

m—

7ﬁ2) and

<C (Alz — w| 4+ 1) % |®g (w, )| dw

1, if 33 < By <m—3
|Hp,(s)| <C < (1+]|logs|), if Ba=m—2,
sm—2=P2 if By >m — 1.

It is then easy to see that
(4.13)  [Hp,(s)]

mln(sL 1), m3 < Br<m—3
<C mm(smT* ,(1+]logs|)), pa=
m1n(sm2 —B2 ,§m2 [32) Bo >m — 1.
(

Using the estimate |Hg,(s)| < Cs™5 P2 of (4.13), we obtain that

z_%_ w — -N w
(2) 0 E Ky 5 (A 2)] < / Ote) = “{w —y)~d

Az = w72 |2 — w|m2-f(z)
</c<z>?€<w y) Ndw _ Clz)" 27
TSN T () T N (r ) ()
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and (4.10) for 3 < 3, follows. The proof for Go, (], -, z) is similar and we
omit it. [J

If we use the second estimate in (4.13), the argument of the proof above
show that |Kg, 3,(A, z,9)| is bounded by a constant time

(271 (2 — y)yPam+2, mo3 < By <m—3
(4.14) (2)" ((log A) +log(z —y)),  B2=m—2,
Am—2=P2 (V1 By >m—1.

The estimate (4.14) will be used in what follows.

m+2
By virtue of Lemma 4.4, Fi (A, x,y) is of class C, * on R with respect
_m=—1

to A for every fixed z,y € R and it satisfies |Q(z,y)| < C(x>_mT_1(y> T,
It is then easy to check that

(4.15) sup/ |z, y)|dy + sup/ 1z, y)|dx < .
zeR™ J||z[—|yl|<1 yeR™ J|z|—ly||<1

Thus, we hereafter consider (z,y) only on the domain ||z| — |y|| > 1. We
apply integration by parts k = (m + 2)/2 times to

1 X O\
(@16) 0ue9) = o /0 (55) =D Fe (0 y)rdn

The result is that Q(z,y) is the sum of

mx2 oo m+2
(@10 Do) =3 = [ EE O
= (=l £1yl) 2
+(m +2)i"5 [ ix(|z|£ly]) ()
(4.18) Lzy) =) ——— e WEL (N @, y)dA,
T 2(|z[ £ yl) 2 Jo

and the boundary terms:

—2

(4.19) Blx,y) =Y

»

. FO0,2,9)  FY0,2,y)
A ((ra:r Y (el - )

.
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LEMMA 4.5. The function B(x,y) of (4.19) is an admissible integral
kernel.

PROOF. Derivatives Fj(g )(0, x,y) are linear combinations over o + 3 +
y=jof

(4.20) ()P (KD (0)G5(0, -, y), G50, 2)

with coefficients (—1)7j!/algly!. In (4.20), we have for arbitrarily small
e>0

TR § =,

j+l-m
Jj+2—m
Jj+1-m

(y)
(y) if otherwise.
() if v = j,

(x) if otherwise.

N2y m=e=8 G 0, 2, )]l < c{

(4.21) "

X

NG (0, 2, 7)) < 0{

This can be seen as follows. By virtue of (4.9) we have

B

G(()lﬁ) (O) Z, y) < Z C
S B

and the like for G(()Z)(O,-,IE). Since (m—j—1+Fa+¢e)+(m—2— () > m,
we have either m —j — 1+ 2 +& > 5 or m — 2 — B > 5. Hence

) 24j5—m if /8 —
99y ([(syHomtae y _paiemy < o[ WP 8=
(4.22) [|{z) {(z—v) I=c (y)lﬂ*m, if otherwise.

Since p > m + 1, we have for 0 < ¢ <1 that
max(m —1—(j— f)+e,m—1-(j—7)+e) <p—a

and (-)m~1=G=NFe g(@)(0)(.ym~1=G=B)+s ¢ B(H) by property (K),. Thus,
(4.20) is bounded in modulus by a constant time

() )T B0, 4,
(4.23) Yogy(z,9) = § (@) 7" y)* " i g =,
()" y) T i B =0,
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It follows that the j-th summand of (4.19) is bounded by

(4.24) c >

a+pf+y=j

R e )
T+~ Qal =2 | Lo @y

and it is an easy exercise to prove that this is an admissible integral kernel.
(Indeed, summands with 3 # 0, j are admissible by virtue of Lemma 3.6 of
[I]; those with 3 = 0 or 3 = j are the same as (3.21) of [I] and the argument
in [I] following (3.21) applies also for 8 < 52 or v < ™2 if ;> 4.) This
completes the proof. [J

LEMMA 4.6. The integral kernel I3(z,y) defined by (4.18) is admissible.

ProOOF. By Leibniz’ rule Fj(f)()\, x,y) is a linear combination of

(4.25) Xex(\a,y) = (FD)HEONGY (1A, -,9), G (=2, -, ) @D ()

with + independent coefficients (—1)7(%)!/a!B8!y!n! over multi-indices § =
(a, B,7v,n) of length || = T . Thus, if we define

(4.26) 0L () = [ NI X ()
0

then Iz(z,y) is a linear combination over £ = (o, 8,7,7n) with |{| = & of

(1) (1)
(4 27) 125(:]; y) _ Q§7+($7y) . Q&_(J?,y)
: ) ’ m+2 m+2
(Il +1y) = (zl=1y) =

We estimate I ¢(x,y) for various cases of £ separately.
(1) The case & # (0,%,0,0),(0,0,%,0). In view of property (K),, we
estimate

(4.28) | Xex(A,z,9)| < Cl{) K@ M\)(2)"~*||lp )
||y~ GD (X, ) 1) COGT (£A, - )

Since p >m +1 and a+ 3+ v < 5, we have for 0 <e <1

(4.29) max(f+ 5 +e,7+ 5 +e)<p—a.
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Hence, by virtue of (4.10), we have that

(4.30) | Xer (N, 2,9)]
(x)""F ()", if both 8,y < M3
- A (z)” Tl<y>‘mz’1, if one of (3,7 = ™72,

where we have to modify the first line on the right by multiplying by (log A)"
when £ = (%,0,0,0). Thus after integrating with respect to A we obtain
for ||| — |y|| > 1 that

() c
7n+2 S +2 m—1 m—1"°

(4.31) —
(le| £ Jyl) 2 (lel £ Jyl) 2 (x) = (y) 2

It follows that I ¢ are admissible for these {’s.

(2) The case £ = (0,%,0,0). Recall the definition (4.11) of Kpg,3,(A, 2,¥).

We substitute Zﬁﬁﬂz:% 58,53, 8, (A, 2, y) for G(()F)()\, z,y) in

m
2

Xe+(\2,y) = (EDE (KNG (51, 1), Gor(=, ) ().

If (B1,B2) # (0,%), we have 3 < mT_2 and the first estimate of (4.14)

implies
_ m _1 _m—-1
(4.32) 1) T+ K 5, (A, )l < CAT 3 (y) T 7

Since 3+ 5 +¢e < p for 0 < e <1, it follows via the argument similar to
the one used for (4.28) that, for (51, 32) # (0, %),

m—1 m—1

[N Ky, (EX, -, 9), Gor (=X, )| < CAT2(2) ™75 (y) ™%

This implies that all members under the summation sign of

(£1)2 Cpyp,
m+2
Bi+Ba="1 (lz] £ yl) 2

></ AMEWD (K (N K5, 5, (20, -, 1), Gor(— A, -, ))dA,
0
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are admissible except those with (31, 32) = (0, % ). We are thus left with

m
2

+(£1)
= (2| £ |y)) >

m .
x / AMEWI (R (N) Kom (£, 1), Gor (=X, -, 2))dA.
0

For proving that s, (x,y) is admissible, we restore the factors eAMlzlEYD) o
the original position. Thus defining Gg, (), -, ) and Gm (A, z,y) by

Gor(A, -, ) = GoW)®(-, ) = e NG, (A, -, 2)

and G (X, z,y) = ei)‘|y|K0% (A, z,y) respectively, we rewrite, ignoring unim-
portant constants, Is, in the form

(£1)"5° o0 . _
4.33 = KNG m (N, y), Gor(= A, - 2))D(A)dA,
43 3 [ R IG (A 0). G ) B0

where, more explicitly G'm (A, z,y) is given by

ei)\|z7w\ © a3 ity —2

For proving that (4.33) is admissible, we use the following lemma:

LEMMA 4.7.
(1) There ezists a constant C' > 0 such that
(435) ‘GOT‘()VZ)‘I) —GQT(O,Z,SC)‘ < C’)\|<Z_-r>7mTil,
(436) G\ zy)| < Cmin (A3 (z )7 (- )77,
(2) For a fized (z,y), R > X — Gm (X, z,y) is continuous; for a fized y

and for v > 3, R\ {0} 2 A — Gun(A,-y) € H—y is continuous and
integrable.

(3) The integrand of (4.34) is integrable with respect to (t,\,w).
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PROOF. (1) Write the convolution kernel of Go(\) — G(0) in the form

CpeMel oo g (1t A C! (el — 1)
—me (S —idel) T = (5) T par TmE
a2 /0 SR T 2 T

and estimate it by C|)\](|x|3_m<x)m775 + |2[37™) for |A| < Xo. This yields
(4.35) since 51 < m — 3 for m > 6. Estimate (4.36) is contained in (4.10)
and (4.14).

(2) The continuity of A — Gm (A, z,y) is obvious by Lebesgue’s dominated
convergence theorem. Then the second statement follows from the estimate
(4.36) which also implies |Gm (A, z,y)| < C)\’%(z—y)’mTiS by interpolation.
(3) follows immediately if we integrate the modulus of the integrand with
respect to A first. [

We continue the proof that (4.33) is admissible. We first show that it
suffices to prove it after replacing K ()\), Gor(—A, -, x) and ®(\) by K(0),
GOT(O, -,x) and the constant function 1 respectively.

(i) Let Iéi) (z,y) be defined by (4.33) with K(0) in place of K()A). Via
Taylor’s formula, K(\) — K(0) = A fol K'(6X)d6 and property (K), implies
that

<C.
B(H)

() /0 1 K/ (62)d6) ()"~

Hence, using (4.10) for Go, (=X, -,x) and (4.36), we obtain

‘<(K()‘) - K(O))G% (i)‘a E y)a GOT(_)V " {E)>‘
< ClTIAG2 1) Gor(A - 2) | < CAT2(z) T ()T

It follows after integration with respect to A that

(4.37) T B T
(@)™ ()" (] — [u)

m+2
2

and Io,(z,y) — Iéi)(w, y) is an admissible kernel.
(ii) We then let Iéi) (z,y) be defined by (4.33) with K(0) and Gor(0,-,z) in
places of K(A) and Gy, (), -, x) respectively. Then, trading the factor A of
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(4.35) for estimating G'm (A, z,y) as above, we obtain

C
(4.38) Y (@, y) — I (2, 9)] € —r—as —
@) ()7 (|| — [y]) "

and 12(71) (x,y) — 12(3) (x,y) is also admissible.

(iii) From (4.36) we have |G (£, z,y)| < C’()\)fg(z - y)f% on the sup-

port of 1 — ®(\). Then the argument in (i) and (ii) implies that we may

further replace ®(\) by ®(0) = 1 for proving that (4.33) is admissible.
Thus the problem is reduced to proving that

ORI /OOO<K(0)G%(iA,-,y),ém(o,-,x»dx

4.39) Iy(x, -
(39) Do) = Z<|:r:|ﬂ:|y|>

is an admissible kernel. Since G m (X, -, y) satisfies the continuity property of
Lemma 4.7, (z)"K(0)(z)” € B(H) and Go,(0,-,z) € H_, for some v > 3,
we may perform the integration in (4.39) before taking the inner product
and write the integral in the form

<K(O) /OOO G%(i)\,-,y)dA,éor(',x)>.

Here the integral on the right is the Riemann integral of an H_, valued
function, however, Lemma 4.7 (2) implies that we may replace it by the
standard Riemann integral of the scalar continuous function G m (£ 2,9).
Then, by virtue of Lemma 4.7 (3), we may integrate (4.34) with respect to A
first via Fubini’s theorem. For a > 0 and ¢ > 0 we have by residue theorem

that
/OOO eMG(AaJr %t)_%d)\ - —/OOO e*““( A+ ”) i

and both sides are bounded in modulus by Cat™3. Tt follows that

(4.40) / G (A z,y)d\ = —/ Gm (= z,y)d\ = J(z,y),
0
P
(4.41) and \J(z,y)é/ Clole y)g‘ <<
R |z — (z—y) 2
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Thus, we have |(K(0)J(-,y), Goo(-,2))| < C{z)" "2 ()~ "2 and

1 1

m+2 m+2
‘(le+|y|) = (lyl=1=l) 2

The right side is the same as the summand in (4.24) with j = 8 =
o =~ = 0 and, hence, I5(z,y) is admissible.

(3) The case { = (0,0,%,0) . Define é%()\,z,x) by (4.34) with ®(w,x)
in place of ®g(w,y) and

m—2

(4.42) |L(z,y)| <C ()" )y

m—2

S and

J(z,x) /G% =\, z,x)dA

Proceeding virtually in the same way as in the case §{ = (0, %,0,0), we see
that it suffices to show that

1 1 - -
I(z,y) = S mzz | (K (O)Gu(0..). J(o
o) = (<|:c|+|y|> (el — o) ™3 >< OCa0.-). 1)

is admissible. It is obvious from the argument which lead to (4.41) that
|J(z,z)| < C(z — $>_mT_2 and have

(K (0)Gor(0, - y), T (-, 2))| < Cla)™ % ()~ ™2,

Thus, I3(z,y) is bounded by the right of (4.42) with z and y interchanged
and is therefore admissible. This completes the proof of Lemma 4.6. [

LEMMA 4.8. The integral kernel I4(x,y) defined by the integral (4.17):

.m+2

+i 2
I4(I,y) E —m+2 (|$|i\y|)F( )()\ T y))\d)\
(Jz[£1]yl)"=" Jo

s admissible.
PROOF. We proceed as in the proof of Lemma 4.6. Let as in (4.25):
Xe s\ a,y) = (EDAEONGY (EN, - ), G (=N, - 2)) M ()

for £ = (o, B8,7,7n) and define

m .
(4.43) O (x,y) = / eMIFED X, (A, 2, ) AdA.
0
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By Leibniz’ formula we have

0@ z, Q® v
(4.44) Ly = Y C et &_ e zL
¢ =2 (el +1y) 2 (] = ly) =

Let first £ # (0, 2%2,0,0), (0,0, 2, 0). Since a+max(8+%,v+%) < m+1
and p > m+ 1, there exists € > 0 such that max(8+ 3,v+ F) +¢ < p. By
virtue of (4.10) and the property (K),, we have with this € > 0 that
(4.45) IMIXe £ (N 2,9)| < M)~ K@ (A) ()|
x|l{2) "= IGE (A - y)
x |l{z) " IGE (A - 2)
< O 2 (log )V ()~ () "),

This implies that for the summands in (4.44) with these £ we have

Q) (x,y) C 1

(4.46) iz | S e e

(x| £ 1y) = (el 1y 2" (y) 2 (z) 2

and these are therefore admissible. We are left with those either with £ =
(0, mT”, 0,0) or £ = (0,0, mTH, 0) and we shall deal with the former case only
as the other case may be treated similarly. So let & = (0,0, mT*Q, 0) in what
follows. We substitute Zﬂﬁﬁz:me Cs,8,K38,8, (A, z,y) for G((J%)()\,z,y)
in (4.25) and plug this into (4.43). This produces several functions indexed
by 1 and (3 in the obvious manner and, by virtue of (4.10), (4.14) and
estimates corresponding to (4.45), they are all admissible except the one
with the index (81, 82) = (0, 22) which is written in the form as follows

as in (4.33) after restoring the exponents e?*(I#I£lYD) to the original position:
H(£1)"2T [
@) 3 R ()G g (0,00, G () BN
= (e[ £y))> Jo ’

The same argument as in the proof of Lemma 4.6 shows that it suffices to
show that (4.47) is admissible after replacing Go, (X, z,z) by Go,(0,z, ),
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K(X) by K(0) and () by the constant function 1. In this case the residue
theorem implies, for ¢ > 0 and ¢ > 0, that

/Ooo e (da+ %)gm = /Ooo e+ ’;)%dx

and the both sides are bounded in modulus by Ca=2t"3. Thus, we have

(4.48) /GmTﬂuz()\,‘,y))\d)\:/ Gan(—A,~,y)AdA
0 0

and both sides are bounded in modulus by C(z — y)fmT. It follows that
(4.47) with this change is bounded in modulus by

1 B 1 1
(Jyl — || (gl + )27 | (9)“=" ()2

and is admissible. This completes the proof of Lemma 4.8 and therefore
that of Proposition 4.2. [J

)7 )7

5. Low Energy Estimate II, Exceptional Case

In this section we discuss the low energy part W. in the case when H
is of exceptional type, assuming that

(5.1) |V(z)] < C{z)™® with§ >m +3if m>8and § > m+4 if m = 6.

so that we may apply Proposition 3.6. We substitute (3.5) when m = 6 or
(3.7) when m = 8 for L(\) = (1 + G_0(\)V)™! — I in formula (4.3). As
V E(\) satisfies property (K), with p > m + 1, Proposition 4.2 implies that
(4.3) with E()) in place of L(\) produces an operator with admissible inte-
gral kernel. Thus, we have only to discuss the operators which are defined by
(4.3) by replacing L()) by its singular parts A=2P)V and Y, A*(log A)? Dy,
(note that we have changed indices j, k to a,b). In Subsection 5.1 we prove
that

62 W= | " Go(V RV (GolN) — Go(—A)B(A)AdA,

is bounded in L? for =5 < p < 3 and in Subsection 5.2 we indicate how the
argument can be modified to prove the same for ®(H )W, 4, ®(Hy), where

(5.3) Wy = /0 h Go(N)V Doy (Go(N) — Go(=A)@ (M)A (log A)P dA.
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5.1. Estimate for W,
In this subsection, we prove the following proposition. We shall often
write v = (m — 2)/2.

PROPOSITION 5.1.  Let V' satisfy (5.1). Then, for any -5 <p < 7,
there ewists a constant C, such that

(5-4) Wsmullp < Gpllullp, v e Cg°(R™).

We first state two lemmas which we use for proving the proposition. The
first one may be found in [20].

LEMMA 5.2. (1) The function |r|* on R is an (A), weight if and only
if =1 < a < p—1. The Hilbert transform H and the Hardy-Littlewood
mazimal operator M are bounded in LP(R,w(r)dr) for (A), weights w(r).
(2) Let a function F(x) on R™ has a spherically symmetric decreasing in-
tegrable majorant, then

Fxg(z)| < CMg(x), o €R™
for a constant depending only on F.

For a function w on R™, M (r,u) is the spherical average of u:

1
M(r,u) = E/Eu(rw)dw, r € R.

LEMMA 5.3. Let m >3. Let ¢ € LY(R™) and u € S(R™). Then

(5.5) Fyu(A) = (1, (Go(A) — Go(=A))u)
= C’m/ et (/ e AT (t 4 2i)\r)mTi3rM(r,E * ﬂ)dr) dt
0 R
where u(x) = u(—x) and Cy, > 0 is a constant. Because of the choice of the

branch of the square root in the Green kernel (1.14), R(t + 2@')\7")% > 0 for
t>0and A € R.
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Proor. By Fubini’s theorem and by using polar coordinates,

m

6.GoW) = [ Gol\ o) < 0) @)y
:—cmlf}4#—%(Amahu—zmm%%MWQQAuyw>ﬁ.

Since M (r) = M (—r), it follows that — (i, Go(—\)u) is given by

00 | 00 ) N .
C’m/ etV </ et + 2iAr)Y T2 M (r, 9 * a)dr> dt
0 0
o0 1 0 i\ 1 —
= —C’m/ e itV </ e (t — 2iAr) T 2r M (r, 1) % a)dr> dt.
0 —0o0

Adding the two equations and changing r — —r, we obtain the lemma. [J

For fixed f,g € L'(R™), we define the operator Z = Z(f ® g) by
6.9 Z(f@gu= [ G ©9)(GolN) ~ Go(-2) B 1A

If we write Py = Z?Zl ¢; ® ¢; in terms of an orthonormal basis of PyH, we
have Wem = 3251 Z((Vy) © (Vy)).

LEMMA 5.4. With suitable constants Cj;, we have

m—4
2
fW) Kjpu(|z —yl)
5.7 Zu(x) = Ci dy
(57) 0= 30 O [, T

where with M (r,g 1) = M(r), Kju(|lz —y|), 0 < j,k < 252, are defined
by

(5.8) Kjku(p):pj/ ei)\p)\j+k—1(i)()\){/ / o (t+8) 2035~k 2v—3—j
0 o Jo

X (s — 21’)\/))% </ e ( 2i)\r)%rk+1M(r)dr> dtds}d)\.
R
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PrOOF. We remark that, for u € C5°(R™), (5.8) is well defined for all
4,k because M (r) is smooth, ()™~ 1M (r) is integrable and JrrM(r)dr =
0 because M(r) is even. By virtue of (5.5), we have

Zu(z) = /O TGN () - Fyu(\)dA

We substitute the right side of (5.5) for F, ,(\) and the expression

1 iNz—y| 0 m— m—
S e Tt () T2 T
(4m) "= T (252) Jrm |2 =y 0

2

for Go(A) f(z). We then change the order of integrations with respect to dA
and dy and, using the binomial formula, write

m—4

2 m—4
(t+2iAr) "2 = < ; >tﬂ%ﬁ'ﬁ(2iAr)j(t4—2iAr)%
=0

<

m—3

and similarly for (s — 2iAp) 2 . The lemma follows. [J

In what follows we assume f and g satisfy for some ¢ > 0 and C' > 0
(5.9) [f(@)] < Cx)™™5, g(a)] < Clx)™™ "
and define operators Wj;, for 0 < j, k < mT_4 by

f) Kjpu(lz —y|)
R™ |z — y|m—2

(5.10) Wiru(x) = dy

so that Z =) Cj;,Wji. We use the following lemma.

LEMMA 5.5. Let M(r) = M(r,g*u). Then:
1
P
(1) For1<p< oo, ( / \r\m—1|M<r>|pdr) < Cllglh Jull,.

(2) Forl<p<m, /R<r>\M(r)\dr < Cllull,.
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Proor. By Holder’s and Hausdorff-Young’s inequalities we have

1
P
(va*mamwm) < Cllg = ul, < Cllglhlul,

and (1) follows. Let 5 < g < oo be the dual exponent of p, 1/¢ = p/p—1
and h(z) = (z)|z[1=™. Then, h € L(|z| > 1) and h € L*(Jz| < 1), hence
17+ 1gllle < C(llglly + llgllg)- Tt follows that

[wnear < c [ DH00,,
R m

|x|m—1

<C Rm(h * gD W) luy)ldy < C(llglls + gl lullp- O

It is clear that Vi¢;, j = 1,... ,d, satisfy the condition (5.9) and Propo-
sition 5.1 follows from the following proposition.

PROPOSITION 5.6. Let f,g satisfy (5.9). Then, Wy, 0 < j,k < mT*‘L,
are bounded in LP(R™) for s < p < .

m—2

We prove Proposition 5.6 for various cases of j, k separately. By inter-
m m

and p = 5=

polation, we have only to show Proposition 5.6 for p = 5z

m—2—e

with arbitrary small e > 0. We denote the Hilbert transform by H and

(5.11) H=(1+H)/2

By Lemma 5.2 |r|m~ 170

0<%—0<1,Viz.

is a one dimensional (A), weight if and only if

m—3—e<f<m—-2—¢c if p=m/(m—2—2¢),

5.12
(5.12) l+e<f<2+c¢ if p=m/(2+¢).

(1) The case j, k> 1. If 1 < j,k < mTf4 the integrand of (5.8) is integrable
with respect to dtdsdrdX and we are free to change the order of integration.
Thus, we may write

(5.13) Kypap) = | MOYT (o)
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(5.14)  Tiulpr / / (o) 2=k 2R g (s, p, )t d,

(5.15)  Jjk —P“’kﬂ/ NPT NTRIG(N) (5 — 2iAp) 2 (¢ + 2idr) 2dA.
0

LEMMA 5.7. Let j,k > 1. Then, with a constant C' = Cj, we have

pj<p>1/27“k+1 <7“>1/2

(5.16) I Tlp )l < O\ ———5

Estimate (5.16) remains to hold if ® is replaced by any smooth function with
compact support and i and/or s2v=3- by t* and/or s® with a,b > 0.

PrROOF. Since (5.16) is obvious for |p — r| < 1, we prove it only for
|p — r| > 1. By integrating by parts j + k times with respect to A, we have

kst rkt] (—i)I Tk pipktl
i - _ Y- (s _ | ~ 7 v
J]k(svtvpvr) - (p_r)jJrk (.7+k 1)+ (p_,r)jJrk

S 4 y (j+k)
X / e”\(p_"){)\”k_l(b()\)(s—2i)\p)1/2(t+2i>\r)1/2}j X,
0

We insert this into (5.14). The boundary term produces

pjT]H_l

(5.17) T e

jk,b(pa ’I") =C

which satisfies (5.16). We compute the derivative via Leibniz’ rule:

d Jj+k ‘ 3
(ﬁ) {Aﬁ_k_lq)()‘)(s - Qi)\p)l/Q(t + Qi)\r)l/2}

= ) CaeWa(N(s — 2iAp) /2 70(2ip)(t + 2idr) /274 (2ir)
a+b+c=j+k
where ¥, (\) = {NTEF1H(N)}@.

Denoting summands on the right by
Eupe = Egpe(A, 8, t, p, 1), we define

ij+kp77"k+1

* iX(p—r
(p—r)j+k/() e o )Eabc()\asatapar)d)‘a

(5.18) Jape(s,t, py7) =
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and Type(p, r) by the right of (5.14) with Jup. replacing Jj. By using obvious
estimates |(s — 2iAp) 1(2iAp)| < 1 and |(t +2iAr)~1(=2iAr)| < 1, we obtain

1

(52 + M2 D+ +[Ar]2), i b=c=0;
1—(b+c) : )
‘Eabc| §C|\I/a()\)| % (f) ‘)‘| L %fbac%(L
r5(82+|)\p\5)\ |27¢ if b=0,c#0;
r2(t2 4 |Ap|2)|A |% ifb#£0,c=0.

Note that A=+, (), A2~2W, () and A27¢T,()\) are integrable func-
tions with compact supports in respective cases. It immediately follows
that

Pyt i)

(519) ‘Tabc(pv 7")’ < C (P o 74>j-‘,-k

and, by summing up, we obtain (5.16). The only property of ® which is
used in the argument above is that it is smooth and compactly supported;

tt2u—%—k —Sg 2u—

all estimate above go through if e~ ore 377 are replaced by

—sb

et or e7%s%, a,b > 0, and the last statement of the lemma follows. [

LEMMA 5.8. Let j,k > 1 and let Tji(p,r) satisfy (5.16). Let Wy, be
defined by (5.10) with Kj;, given by (5.13). Then Wy, satisfies Proposi-
tion 5.6.

Proor. By splitting the domain of integration, we estimate

20 Wl = </|— <1+/— |>1> |f(y\)x[?k;‘|i——2y|)|dy

=I(z) + Ix(z)

By Young’s inequality, (5.16) and Lemma 5.5 (2), we have for any 1 <p < %
that

lol<1

Kji(z)|
11l < Cl fllp </|| "gjj‘%dfC) < C sup |Kjr(p)|

[r[*+1 ()2
< C sup k\M( r)|dr < C ]rM r)|dr < Cllullp.
0<p<1Jr (1 —p)7t
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We estimate I3(z). Let p = 57, 0 < e < 1 and choose 6 = 2, see (5.12).
By Young’s inequality we have by using polar coordinates that
1

0o p %
(5.21) Hl'szSHle(/1 Pt = /RTjk(p,r)M(r)dr dp)

% i [P jr[E 1 (r) 2 ’
SC/l pr T r (W/RC”W’M( )’) dp.

Since \r\k_1<r>% < C(r— p)k_%pk_% for p > 1 (recall K > 1) and m —4 >
J+k

. l l .
P e L p R

. <C
p= (e — p)I TR T ey _ pyits

(r—p)*
Hence, the right of (5.21) is bounded by

C/ pm_l_ng(|T‘|2M)(P)pdp < C (/ ,rm—1|M(7«)|Pd,r) ’ < CHUHP
1 R

by virtue of the weighted inequality for the maximal functions and by
Lemma 5.5 (1).

When p = —5—, 0 < e < 1, we choose § = m — 3. Again by using
Young’s inequality and (5.16)

00 rlEHL p
N T (w / %IM( >|dr) o

Since pjfé < <r>j7% (r — p>j7% and m — 1 — pf is an (A), weight, the right
hand side is further estimated by

g ([
o </R<rp>'f+%'M( >|d> &
<C [ M M ) )P

<C [ ey M )
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Since k+j+1 < m-—3 =46 and p( —k — 1) < m, the last integral is
bounded by a constant time

1 o)
/ rm_l_p(e_k_l)M(r)pdr + / rm_lM(r)pdr
0 1

g+
= C/ %d@"* g+ all” < C(llgllq + llgll)Pllul,
<1 |zt

where ¢ is the conjugate exponent of p. This completes the proof. []

(2) The case j =0, k > 1. We now prove Proposition 5.6 for j = 0 and
1<k<v-1= mT_‘l by induction on k, using also the already proven result
for the case j,k > 1. For this and for dealing with the case (3) that £ =0
and j > 1 below we define as follows.

DEFINITION 5.9. (1) We say Jok(s,t, p,r) is £-admissible if operators
Wokin, 0 < I,n < v — {, defined by (5.10) with Kopm(p) =
J Tokin(p, )M (r)dr in place of K;i(p) are bounded in LP(R™) for -5 <
p < % where

(5.23)  Tokn(p,r / / ()2 —ken 205l g (s, 8, p7)dt ds.

(2) We say Jjo(s,t,p,r) is £- admissible if operators Wion, 0 <lin <v—1{,
defined by (5.10) with Ko, ln = [T om (p,m)M(r)dr in place of Kji(p)
are bounded in LP(R™) for " < p<7 Where

(5.24) Tjoum(p,r / / —(t+s)y2v—3-n2v—3 ]+le0(8,t,p,T')dtd$.

Compare (5.23) or (5.24) with (5.14). Note that the exponents 2v — 3 —
k+4+n,2v — % — [ are not smaller than 1 for all relevant [,n. It suffices to
prove the following lemma.

LEMMA 5.10. Let Jox(s,t,p,7), 1 < k < v —1, be defined by (5.15)
with ® € C§°(R) which is a constant near A = 0. Then, Joi(s,t,p,r) are
k-admissible.
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Proor. We prove the lemma by induction on k. We begin with the
case k = 1.

LEMMA 5.11. For all0 <l,n <v—1, Ty n(p,r) satisfies the estimate

(5.25) Tor,m(p,7)| < CW

ProoFr. This is obvious when |p — 7| < 1 and we assume [p—7| > 1in
what follows. Integrating by parts twice with respect to A, we have

ir? ir? 1 1
(5.26)  Joi(s,t,p,7) = W\/EjL = T)Z(p(t/s)i —r(s/t)2)

2 o ON2 /-~
iXp—r) [ Z 9 1/2 : 1/2
+ =12 /0 e (8>\> ((I)()\)(S 2idp) 4 (t + 2iAr) )d)\

We substitute this for Jp; in (5.23). Then the functions produced by the
boundary terms are bounded by

72 r(lpl + Ir]) [r*((p) + (r))
C(<P—r>+ (p—r)? )SC (p—m?

Denoting by ' the derivative with respect to the variable A, we compute:

"

('i)()\)(s — i) 2t + 2i)\r)1/2) = &"(\)(s — 20Ap)V2(t + 2ir) /2
"

128/ (\) ((s —2iAp)2(t+ 2m)1/2)' +B(N) ((s —2iAp) 2 (t+ 2m)1/2)

Since @' (\) = 0 near A = 0 and |(s—2i)\p)7%2p| < C(p/s)% for [A\| > C >0,
this is bounded in modulus by a constant time
[B7(A)I(s2 + Aol 2)(t2 + [Ar|2) + [ (N) o] (22 + A
= 1,1 1 ~ -
HP (V|72 (s2 + [Ap[2) + [@(N)|[tp — sr[*(s + [Ar])

)
(t+ |Nol) 2.

Nl N[

Hence integrating by dtds first and using also elementary estimates

o0 eTttadt
5.27 — <o) o0<b< 1
2 || G| <o b
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13
A(MWMWM

we obtain estimate (5.25). O

(5.28) <C a,b>0,a+b>1,

o
(r) + (p)’

LEMMA 5.12.  Let Joi(s,t,p,) be defined by (5.15) with ® € C°(R)
which is a constant near A = 0. Then, Jo1(s,t, p,r) is 1-admissible.

2 ol |2 2

e have G+ 0D _ 22

(r—p)* “{r=p? (r—p
on the right satisfies (5.16) with j = k = 1 and, by virtue of Lemma 5.8, it

suffices to show that Wp; is bounded in LP(R™) for "5 < p < % if

PRrROOF. . The first term

[l 71|
(5.29) Tonp, )| < O gc<|ry+ <p_r>>.

We estimate |[Woiu(x)| < Ii(x) + I2(z) as in (5.20). For I;(z) we use the
first of (5.29) and proceed as in the proof of Lemma 5.8. We have

|r[?[M (r) |dr
(p—r)

For I(x) we use Young’s inequality and the second of (5.29) to obtain:

1
o) p P
(5.30) IIIz||pSHf||1</ pm! m2/ [r[| M (r)|dr dp>
1 p R

S I R oI )é
+Hﬂh<A’p s [ L,

The first term is bounded by C/ 7| M (r)|dr < Cllu||p since p(m—2) > m

HAMSmuqu/
R

lp|<1

scwmAyMﬂmwscmm

1

R
for 5 < p < 5. For estimating the second, take ¢ > 0 arbitrarily small
and fix p € (m_”;_a,g—’j:e). Take 0 < ¢’ < € and choose % —1<6< %
sufficiently close to % —1 so that m —1 — pf is an (A), weight and so that
1+¢ <0 <m—3—¢. Then, using (p — )~ < Cu(p)® (1) (p — )=+,
we estimate the second integral by a constant time
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Y G N M L PN

(/1 ’ 1<pm38//R <p—r>1+s’ dr) dp)

0o m—1—pb M . p %

SC(/l " </R (p—r)t+e d) dp)

=¢ (/ Tmlp(01)<r>p€/!M(r)’pdr) p
R

()P |g * u(=)]
ol s

Since pe’ < p(§ — 1) < m, the right hand side is bounded by C/||ul|,. This
proves that ||I2]|, < C|lu||p. This completes the proof. [

=

B =

Completion of the Proof of Lemma 5.10. The lemma is satisfied
when £ = 1 by virtue of Lemma 5.11. We let £k > 2 and assume that
the lemma is already proved for smaller values of k. We write r**! =
r¥p—1*(p—r) in the definition (5.15) for Jox(s,t, p,r) and apply integration

by part to the integral containing r*(p — 7). We obtain

(531) JOk(S7t7p7T) = Jl(k—l)(S,t,PvT)
0

gk / ¢MP=1) (5) (Ak’lé(A)(s — 2iMp)3(t + zm)%)dA.
0
Thanks to results in case (1), Jix—1)(s,t,p,7) is (k — 1)-admissible and it
may be ignored. We insert the following for the derivative in the integrand:

(k — D)AF20(s — 2iAp)2 (£ + 2iAr)2 + P18/ (s — 2iAp)2 (¢ + 2iAr)?
! 3
—2ipAk—1q>(a—)(s—zz‘Ap)%(tJrQiAr)% FARLP (s — 2iNp) Bir (t 4 20Ar) 3
s

The first term produces (k —1)Jyz—1)(s,t, p,7), which is (k — 1)-admissible
by inducNtion hypothesis; the second does Jg(k_l)(s,zf, p, ) with A®'(\) re-
placing ®, which is also (k — 1)-admissible since A®'(\) = 0 near A\ = 0.
Define

ok [T iar—p) k=15 0 1 IR
Joriyy =20 | e A @(A)(%)(s_mp)z-(t+2W)sz
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and substitute this for Jji(s,t, p,r) in (5.23). This yields after integration
by parts with respect to the s variable

2T (k1) n (P> 7) + 220 = § = DTy k1), 041y (05 7)

and the result of case (1) implies Joy(3)(s,, p,7) is k-admissible. We rewrite
the last term A1 (s — QiAp)%ir(t + 21’)\7*)7% in the form

INF2H(\) (s — 2iAp)2 (E + 2iAr)E — M2 (N) (s — mp)%t(%) (t+ 2iAr)?

The first term again produces %Jo(k_l)(s,t,p,r). Define

N[

J, s.t.p.r)=rF AP N2 (\)(s — 20\
0k(4)( y Us P ) p P
0

- (%)(t—i— 2iAr)2d\

and substitute Jog)(s,t, p,7) for Jjr(s,t, p,r) in (5.23). This yields, after
integration by parts with respect to the t variable,

~Totk—1),4(n+1) (P:7) + 20 — 5 — k 4+ n) To(e—1) 1 (0, 7)

It follows by induction hypothesis that Jok(4)(s, t,p,r) is also k-admissible.
This completes the proof. [

(3) The case j > 1 and k = 0. We next prove Proposition 5.6 for j > 1
and k = 0. It suffices to prove the following lemma.

LEMMA 5.13.  Let Jjo(s,t,p,7), 5 =1,...,v =1, be defined by (5.15)
with ® € C§°(R) which is a constant near X\ = 0. Then, Jjo(s,t,p,r) are
j-admissible.

PRrROOF. We prove the lemma by induction on j. Thus, we let j = 1
first. Comparing definitions of Jy; and Jyg and (5.25), it is obvious that

T10,(m) (0, 7)| < (]W



L? Boundedness of Wave Operators II 335

Since (p) + (r) < 4({p — 7) + |r|) and |r|?p(p — )2 satisfies (5.16) with
j =k =1, it suffices to show that Wiy has the desired property when

Ir(p
(p—r)

However, the right hand side is the same as the second term on the right of
(5.29) and the proof of Lemma 5.12 shows that Lemma 5.13 is satisfied when
j =1. We then let 7 > 2 and assume that the lemma is already proved for
smaller values of j. We write p/r = p?~1r2 + p?~Ir(p — r) in the definition
(5.15) of Jjo(s,t, p,r). The first term p?~1r? produces Jj—11(t, s, p,7) and
we may ignore it by virtue of results in case (1). We need study the operators

|T1o(p,7)| < C

corresponding to Wj; produced by functions

P! / Ap- 7‘> )(A’f—lé(A)(s — 2iAp)E (t + 2iAr)? )d)\

However, after this point the argument is completely in parallel with that
of Lemma 5.10 after (5.31) and we omit the repetitious details. [J

(4) The case j = k = 0. Finally we prove Proposition 5.6 for j =k = 0.
Recall the definition (5.8) and (5.14). In (5.8) we substitute

Jun

1 1
5)752 + s2t2,

[SIES

(s — QiAp)%((t + 22)\7")% - %) + ((s = 2iAp)

for (s — Qi)\p)%(t + Qi)\r)% and denote by K the operator produced by j-th
summand, j = 1,2, 3, so that Kog = K1 + K2 + K3. Define W; by (5.10)
with K in place of Kj;, so that Wog = W1+ Wa+ W3. For j =1 and j = 2,
we may change the order of integrations and write Kju(p) in the following
form:

Kju(p) = /RTJ-(/), r)yrM(r)dr, j=1,2

where T1(p,r) and Ta(p,r) are given by

3
Clrf / —(t+s) t2117* 21/75 %

. . 1
x / iA(p= %(A){ 2ir(s = 2iAp)® }d)\ dsdt,
0 (t+ 2iAr)2 + t2
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0o CSI B 2iC.
Tr(p,7) = 7"/ T / e’)‘(p_r)@()\){ ! 2? n }d/\ ds.
0 0 (s —2iAp)2 + s2
LEMMA 5.14. We have estimates

rle . Irle) | IrPe)?
(5.32) Tilpm)l <€ (’7" T T e ﬂ>2> |

11l

(5.33) Ta(p1)] < O 205

PROOF. The estimates are trivial for |r—p| < 1 and we suppose |p—r| >
1. We first prove (5.33). Integrating by parts, we estimate the inner integral
by the boundary contribution p|p — 7“]_15_% plus

1 [ [ [ 2iper=Pd()) 2ipe P& (X)(ip)
P—T</o ((3—21)\,0)% %+ ((3—21/\/))2 +s%)2(s—22)\p) >d)\)

1 0 i)
< Cr (L / Mcﬂ ,
(r=p) \Vs Jo (s|+|ro])2
The desired estimate follows since

([ ey [BOV)Ids  CdA
30 né<é Uﬂﬂm%>M§A<Mﬁ§

For proving (5.32) for T1(p,r) we apply integration by parts twice to the
inner integral. The result is

= [Q

a5 2 [ r \/§r>

» T (s,
p—rV2t (p—r)?2\Vis 3
. o BN
. r iX(p—T) g 2 i) A (8—21)\p)2 d\
D E— e .
(P—T)z/o <3A> ( ( )(t+2z’>\r)%+t%)

We estimate the second derivative by a constant time
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(B[ + 1A APV (P W)r(s + M)

Vi Vst (t + [Ar]) 2
B 1RWre [ B)Ir(s + M)
VEs+ ) Vst + )2 (¢ + x|

Desired estimate follows after integration via estimates similar to (5.34). O
LEMMA 5.15. For -5 < p < g, Wi and Wy are bounded in LP(R™).

Proor. Ti(p,r) is bounded by the right of (5.16) with j = k = 1;
To(p,r) by the right of (5.29). The lemma follows from Lemma 5.8 and
Lemma 5.12. [J

Finally we deal with W3. Recall that Ksu(p) is defined by (5.8) with
(st)% replacing (s—2i)\p)%(t+2i)\'r)%. Then, the inner most integral becomes
t independent and we may integrate out the (¢, s) integral. Result is

(5.36) Ksu(p) = C /0 T H( ety < /R ei”rM(r)dr) i

with a suitable constant C'. Since M(r) is even, we may write

. /R M (r)dr = /R &)\_DTM(r)dr:i /R rM(r) ( /0 ' ei’\”dv> dr.

Thus, if we define F'(v) by
+oo
F(v)—:l:/ rM(r)dr, for £v>0
v
and change the order of integration, we have

(5.37) Ksu(p) = C /0 b d(N)e ( /R eM”F(u)dv> d\

=C [H(@ « F)} (p).

We estimate |W3u(z)| < I1(x) + I2(x) as in (5.20). Recall that for 5 <

p<%and%—l<0<%wehavem—2—9>0. Let p= 57 and 6 = 2



338 Domenico FiNcO and Kenji YAJIMA

first for an arbitrarily small ¢ > 0. Then, applying Lemma 5.2 twice, once
for ‘H and once for M, we obtain

o0 B K p
a9 =i [ o (EglYy,
< C/ PTPH(® « F) (p) Pdp
0
< C/ ") (@ 5 F)(p)Pdp
0

o0

<c /0 P M(F) (p)Pdp < © /0 12| B () Pdp.

We then apply Hardy’s then Holder’s inequalities and estimate the right by

ea30) [T < [ (@ a@p < Clalg,

m

Let ¢ = ——5— be the dual exponent of p = Zﬂ% By Hoélder’s inequality

() < C ( /|y<1 pdy>% ( /MK1 qdy)é .

The second factor on the right is an LP function of 2 € R™ since |f(z)| <
C(z)"™7°. Then estimates (5.38) and (5.39) implies

/(W)

|z — y|m—2

Kzu(lyl)
|y|?

p

Kzu(ly|) dy

|L|p<C
P ly|?

lyl<1

1 «
<C [ M@ F) )P < Cllul

Let p = ——5— and 0 = m — 3 next. Then, using Lemma 5.2 twice as in
(5.38), we obtain
o (1) \P N
a0yl < el ([t () )

1
0 P
gc( /0 pm1p9|F<p>|pdp> .
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Then, Hardy’s inequality implies that the right side is bounded by

say ¢ ([ rpdp); <of [ s 'pdw); -

Since p(# — 2) < m, the right side is bounded by C||ul|,. For Ii(z) we
proceed as previously. By Holder’s inequality
1
q q
dy)

@) < ( /. pdyf </xy|<1

The second factor on the right is an LP function of x € R™ as previously.
Then (5.40) and (5.41) imply that the right hand side of

1 1
p P 1 « »
|all, <€ </| - dy) <c ( / pm1P9|H<<1>*F)<p>|pdp)
yl<

0
is bounded by C|ul|,. This proves W3 is bounded in L? for -5 < p <
and completes the proof of Proposition 5.1.

Kzu(ly|)
|y|m=3

f(y)
|z —y

K3(ly])
|y|m—3

5.2. Estimate for W, 4,
In this subsection, we indicate how the discussion in the previous sub-
section may be modified for proving the following proposition.

PROPOSITION 5.16. Let V' satisfies (5.1) and let Wy, be defined by
(5.3). Then, for any -5 <p <1,

m—

(5.42)  |O(H)Woa®(Ho)ul, < Cllully, u € CPR™).

ProOOF. By virtue of Proposition 3.6, VD, are finite rank operators
from H_(s_3)_ to Hs_3)_. Hence, they are finite linear combinations of
rank one operators f ® g with f,g9 € Hy,4- for some ¢ > 0, and it suffices
to prove (5.42) for ®(H)Z®(Hy), where Z is the operator defined by

(543) 7= /0 T G0N (f © 9) (GolN) — Go(—A)) BOYA log? AdA
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with such f, g, which is the same as (5.6) if \~! replaces A%T!log” \. Notice
that Z®(Hp)u is given by the same formula (5.43) with ®(Hp)g in place
of g and |®(Hp)g(z)| < C{x)"™ °. Thus, we may (and do) assume that g
satisfies the condition (5.9), |g(z)] < C{zx)"™ °, and ignore ®(Hy). After
this, we proceed as in the previous section: Define Kj“lfu(p) by the right side
of (5.8) with A +F+1+e(1og \)? in place of M +¥~1 and

K%y (lx —

so that Z is a linear combination of KJ“,S :

(5.45) Z CiWiu(z)
7,k=0

see Lemma 5.4. We then follow the argument in the proof of Proposition 5.6
for the case j, k > 1. The function M +¥+1+2(log \)? is certainly less singular
than M1*~1 at A = 0 and the proof of Lemma 5.7 implies, as previously,

— [ M un TR
R
with Tj“,f (r) which satisfies estimate (5.16):

<p>j+1/2rk+1 <r>1/2

(r—p)yi+t

)T (p, )‘SC

We then want to apply the argument in the proof of Lemma 5.8. Here it
is important to observe that we may pretend that f satisfies (5.9) as well:
|f(z)| < C{z)"™ . Indeed, we have

/m </ (@, 2)f(z - y)dz) %dy

<cf LS ]
~ Jre |z —y[m?

| @(H) W u(x)| =

dy

since |®(z,2)| < Cn(z — 2)~. Then, the proof of Lemma 5.8 applies
without any change and we obtain ||®(H )W, u||p < Cllullp for any 5 <
p <. 0
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6. High Energy Estimate

In this section we prove the following proposition. Recall that m, =
-1

S

3
m

PROPOSITION 6.1. Let V satisfy (1.2) and, in addition, |V(x)| <
C(z)™° for some § > m +2. Let ¥(\) € C°(R) be such that ¥(\) =0 for
IA| < Ao for some A\g. Then W is bounded in LP(R™) for all 1 < p < co.

Since the proof is entirely similar to the corresponding one in [I], we shall
only sketch it very briefly pointing out what modifications are necessary
for even dimensions. Iterating the resolvent equation, we have G(\)V =

S22 (1) HGo(A)V) 4 Go(A)Ny(N), where
Nu(X) = (VGo(N))"TVENV (Go(A)V)™

If we substitute this for G(A\)V in the right of (1.9), we have
(61) Ws HQ + Z jQ \If Ho) — QQn+17

62  Oor= /0 Go(A)Na(Go(N) — Go(=A)F(A)dA,

where ®()\) = AW (A\?)2. The operators ¥(Hp) and Q, ... , Qa, are bounded
in LP for any 1 < p < oo by virtue of Lemma 2.7. We show that, if n is
large enough, the integral kernel

Qo1 (2, y) = /O TN (Go(N) = Go(=A))6, Go(—N)6) AT2(A2)dA,

of Qo,41 is admissible. We define Go(\, z,z) = e *IGy(\,z — 2) and
Y(z,x) = |x — z| — |z| as previously.

LEMMA 6.2. Let j=0,1,2,.... We have for |\| > 1 that

. I
(z)’ Az

<(j + — |-
<|55_Z|m_2 |a:—Z|T1

(6.3)
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PRrOOF. Differentiate éé‘j)()\, z,x) by using Leibniz’s formula. The re-
sult is a linear combination over («, ) such that a + 8 = j of

i (2,z) & oo t V—%—ﬁ
¢ ¥z 2) / etV 3 <§ — iz — z\) dt.
0

|z — 2|m—2-5

Since [¢(z,2)|* < () for 0 < a < j and |z — 2| < |& —iXz — a2 <
(t + M|z — z|) when |A| > 1, (6.3) follows. [J

Define Ty (A, z,y) = <Nn()\)éo(:|:)\, L), Go(=X, -,x)) so that

Qont1(z,y)

_1 (6i)\(lml+\y\)T+()\7x7y) — e () 2, y)) T(N)dA.
™ Jo

The following lemma may be proved by repeating line by line the proof of
Lemma 3.14 of [I] by using (6.3) and Lemma 2.5.

LEMMA 6.3. Let0<s< mT‘FQ For sufficiently large n, we have

0

(6-4) ' <5> Te(\z, y)’ < Cph™3(2) ™ T (y) 7T

We then integrate by parts 0 < s < (m + 2)/2 times to obtain

o ~
/ MIEDTL (A, 2, )W (A)dA
0

_ /0“’ M/l (%)5 (Ti()\,x,y)\il()\)) dX

(lz| + |y[)®
and estimate the right hand side by using (6.4). We obtain

_ m+2 m—1 m—1

[Qri(z,y) <O (el £y~ (2)7F ()~ =
+

and Q1 (x,y) is admissible. Proposition 6.1 follows.
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7. Completion of Proof of Theorem

To complete the proof of Theorem 1.1 we have only to prove the con-
tinuity of W in Sobolev spaces. We prove this for the case 1 < p <
only. For the cases p = 1 and p = oo, we may apply without any change
the proof presented in Section 4 of [22] for odd dimensional cases where we
estimated the multiple commutators [p;,, [piy, [+ s [Diy, W] -+ -]]]. We use
the following two lemmas.

LEMMA 7.1. Let1l < p < oo and |[V(z)| < C < oo. Then for large
negative A, R(\) € B(LP, W?P) and R()\)% € B(LP,Wip),

PROOF. It is well known that Ry()) is bounded from LP to W?2P if
A < 0. Since Ro(—~2), k > 0, is the convolution operator with Go(z,ix) =
K™ 2Go(kx,1) and Go(-,i) and VGy(-,4) are integrable, we have for A < 0
that we have ||[Ro(\)|lpp < CIA|7! and |[VRo(A)]pp < Cp\)\|_%. It follows
that, for large negative A, 1+ Ry(A)V is an isomorphism of LP, R(\) = (1+
Ro(M)V)™IRy()) also in LP and ||R(\)||pp < C|A|7!. Hence, the resolvent
equation is also valid in LP,

(7.1) R(A) = Ro(A) = Ro(M)V R(),

and this implies R(\) € B(LP, W?P). It also follows that the integral in

N

VRO = VR = C [ i VRO = ) VRO - i
0

converges in the norm of B(LP) and VR(/\)% is bounded in LP(R™). O

LEMMA 7.2. Letl <p<ooandn=1,2,.... Then, for large negative
A the following statements are satisfied:
(1) Let |0°V (x)| < Cq for |a] < 2(n —1). Then, R(\)™ € B(LP, W?™P),
(2) Let |0°V (x)| < Cy for |a| < 2n —1. Then, R(A\)" € B(W1P W2ntlp),

ProOOF. We first prove (1) by induction on n. If n =1, (1) is contained
in Lemma 7.1. Let n > 2 and suppose that (1) is already proved for smaller
values of n. By virtue of (7.1),

(7.2) R\)™ = Ry(\)RN)" ' — Ry VRN 'R(N).
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By the assumption on V and the induction hypothesis R(A\)"~1, VR(\)"! €
B(LP, W?"P) and (1) follows since Ro(\) maps W?2™P to W?2"+2P boundedly.

We next prove (2). Let n = 1 first. Then, in (7.1), Ro(\) €
B(WP W3») and VR()\) € B(WP) by (1) for n = 1 and the assumption
on V. Hence (1) holds for n = 1. Let n > 2 and suppose that (2) is already
proved for smaller values of n. Then in (7.2), R(A\)"~! € B(Whp, W?2n—1p)
by the induction hypothesis, and VR(A)" 'R(\) € B(WLr W?2r-1Lp)
also by the assumption on V and Lemma 7.1.  Since Rp(A) €
B(W?2n=bp yy2ntlp) - (2) follows. OJ

By intertwining property we have for sufficient large negative A
RO\)"Wi = WaRo(\)", RO 2Wy = WeRy(\)" 2

From the first equation and Lemma 7.2 (1) we see that, if 0%V (z)| < C,

for |a| < 2(n—1), Wy € B(W?™P, W?2"P). Likewise from Lemma 7.1 and

Lemma 7.2 (2), we have Wy € B(W?2"+1p Ww2ntlp) if |92V (z)| < C, for

|a| < 2n — 1. This completes the proof of Theorem 1.1.
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