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Abstract. By means of geometrical classification ([22]) of space
of initial conditions, it is natural to consider the three types, Pr1(Dg),
Pii(D7) and Prpp(Ds), for the third Painlevé equation. The fourth ar-
ticle of the series of papers [17] on the Painlevé equations is concerned
with Prr(Dg), generic type of the equation. The other two types,
Pi1(D7) and Prpp(Dsg) are obtained as degeneration from Ppyp(Dg); the
present paper is devoted to investigating them in detail.

Each of Pyr(D7) and Prp(Dg) is characterized through holonomic
deformation of a linear differential equation and written as a Hamil-
tonian system. Pip(D7) contains a parameter and admits birational
canonical transformations as symmetry, isomorphic to the affine Weyl
group of type Agl). Sequence of T-functions are defined for Pi1(Dr)
by means of successive application of the translation of the symmetry
of the equation; they satisfy the Toda equation.

The 7-functions related to algebraic solutions of Pryi(D7) are de-
termined explicitly. The irreducibility of Pir(D7), as well as that of
Pi1(Ds), is established, and there is no transcendental classical solu-
tion of these equations. A space of initial conditions is constructed for
each of P(D7) and Prp(Dg) by the use of successive blowing-up’s of
the projective plane P?2.

Contents

1. Introduction 146

2. Third Painlevé Equation 151
2.1. Fundamental transform .......... ... i 151
2.2. Hamiltonian system .......... ... 152

2000 Mathematics Subject Classification. 34Mb55, 34M15, 34M45.
Key words: Painlevé equations, Isomonodromic deformation, Backlund transforma-
tion, Differential Galois theory, Space of initial conditions.

145



146

1.

Y. Onyama, H. KaAwaAMUKO, H. SAKAT and K. OKAMOTO
2.2.1. Hamiltonian for Py (D7) «..vovn.. ..
2.2.2. Hamiltonian for Py (Dg) ....ovn....
2.3. Transformation group .....................
Holonomic Deformation and Degeneration
3.1. Holonomic deformation ....................
3.2. Degeneration ............. ...

3.3. Verification of Theorem 8 and Theorem 9 ..

7-Function

4.1. Global behavior of 7-function .......... ...
4.2, Toda equation .. ... ...
4.3. Bilinear forms ......... ...

Irreducibility Theorem

5.1. Proof of Proposition 17 ... ... ... i
5.1.1. Weights on K[p,q] «..ooouiiii i
5.1.2. Highest terms of F' ..................
5.1.3. Determination of Fo_1 and fos 1 ..ovvvvviiineennnn..
5.1.4. Condition (J) ...,

5.2. Verification of Proposition 18 ..............

5.2.1. Decomposition of an invariant divisor

5.2.2. Condition (J) ..ot

Algebraic Solutions

6.1. Algebraic solutions of Py (D7) «....o......
6.2. Proof of Theorem 23 ......................

Space of Initial Conditions

7.1. D;l)—surface and Dél)—surface ..............
7.2. Foliation associated with Py (D7) .........
7.3. Space of initial conditions for Py (Dg) «.o.vvvviniiiiiiiii...

Introduction

Succeeding to the series of papers [17], we will study in the present
article the third Painlevé equations Piy(«, 3,7, 0)

Py 1 /dy\® 1dy | P +8
da? vy T

(1)
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for y =0 and ad # 0, and for vy =6 = 0.
The values of complex parameters «, 3,7, 6 of the third Painlevé equa-
tions can be classified into the following four cases:

(Dg) 76 # 0.

(D7) ¥ =0, a6 #0 (or 6 =0, 3y #0),
(Dg) y=0, 6=0, af#0

(Q) a=0,y=0 (or =0,6=0).

In the case (@), P is solvable by quadratures ([10], [17]). Then all of
solutions of (@) are classical in the sense of [25], so that we exclude the case
(Q) from investigation on the Painlevé equations; we agree with the view
point of Gromak ([5]). While the type Dg, generic case of Pri(a, 3,7, 96),
has been studied in many articles ([17], [14]), the equations of type D7 and
Dg are put out of main consideration of the third Painlevé equation so far.
We cite [3], where the equation of type D7 has been studied.

The significance of the equation of type D7 and Dg has been pointed
out recently by [22]; the spaces of initial conditions for the equations of type
Dg, D7 and Dg are different from each other.

Here, a space of initial conditions can be characterized by a pair (X, D) of
a rational surface X and the anti-canonical divisor D of X. Each irreducible
component of D is a rational curve and, in the case of the Painlevé equations,
is called as a vertical leaf ([16]). The intersection diagram of D is given by
that of the certain root lattice and in particular, we have for Pr(a, 3,7, 6)
the three cases, Dél), D;l) and Dél); for details, see [22]. We note that it
is quite natural to classify the Painlevé equations into the following eight

types:

Pyi(Ds4), Py(Ds), Pmi(Ds), Pmi(D7), Pmi(Ds),
Prv(Es), Pu(Er), Pi(Eg).

The following equation, which we denote by P (a, 3,7,6):

d’¢ 1 (dg\* 1dg  ai® B ¢ 6
dez ¢ \ dt
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is equivalent to P(«, 3,7, 6) through the change of variables:
t=a2 y=uzxq (3)

Since a realization of action of transformation group on Py is simpler
than that on Pyr1, we consider in what follows Py instead of Py, cf. [17].
For Py (a, 3,7,6), we have thus the three cases, Py (Dg), Py (D7) and
Py (Ds).

By the change of variables

r=Ar1, y=py1  (Au#0), (4)

we can normalize values of the parameter (a, 3,7, ). The equation of type
Dg has two complex parameters and that of type D7 has one complex pa-
rameter, while the equation of type Dg contains no complex parameters.
For Py (D7), we consider the standard form:

g _1(dg\* 1dg 2 B 1 %)
dt tdt 2 4 ¢’

a2 ¢
and for Py (Dsg), the following:

d2 1 /dg\? 1d 2
SO

iz~ g \dt

1
tdt 2t (6)

The aim of the present article is to study Hamiltonian structures, trans-
formation groups, 7-functions and special solutions, with respect to the
equations, Py (D7) and Py (Ds). We consider also holonomic deforma-
tion of a linear differential equation and show that Hamiltonian structures
associated with Py (D7) and Py (Dg) are deduced from holonomic defor-
mation. Moreover, we give an explicit construction of the space of initial
conditions, for each of the equations. The irreducibility of the equations is
also a subject of our studies.

In Section 2, we give Hamiltonian structures considered in the present
article for Py (D7) and Py (Ds). It is known that the birational sym-
metries of Py (Dg) are given by I/IA/;(Al @ A;), where WA/;(A) denotes the
extended affine Weyl group of type A. We show that the group of birational
symmetries of Py (D7) is Wa(A;) and that of Py (Ds) is Zo.
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Section 3 is devoted to studies on holonomic deformation of a linear
differential equation. We consider mainly an equation of the form:
d2y

dy
EP) +P1(«T,t)a + pa(z,t)y = 0; (7)

we say that (7) admits holonomic deformation with respect to a parame-
ter, ¢, if (7) has a fundamental system of solutions whose monodromy and
Stokes multipliers are not depending on ¢. Such deformation has been of-
ten named as monodromy preserving or as isomonodromic one. In stead
of these terminology, we call it holonomic deformation. By considering the
deformation related to the third Painlevé equation, we have the following
degeneration scheme of the equations:

Py1(Dy) — Py(Ds) — Pu(Ds) — Pm(D7) — Pu(Ds)

N \
Pv(Es) — Pu(E7) — Pi(Eg).

Section 4 concerns 7-functions related to Py (D7) and Py (Dsg); a 7-
function is defined by:

d
d—tlogT = H,

up to a multiplicative constant, where H is a Hamiltonian function. By ap-

plying birational transformations successively, we have a sequence, {7, }, of

T-functions related to Py (D7), and see that it satisfies the Toda equation:
d, d Tn—1Tn+1

“tZlogT, =
qlq s =7/

n

Bilinear forms deduced from equation Py(D7) and Py (Ds) are investi-
gated; for example P (Dsg) is equivalent to the equation:

Dr.r+tr-7=2D?D1-T.

Here D is the Hirota derivative with respect to the derivation:

d
D=t—.
dt
Let y be a solution of the third Painlevé equation, and consider the
differential field, K = C(¢)(y), C(¢) being the field of rational functions. If
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the transcendental degree of K over C(t) is zero, then y is algebraic. In
Section 5, we will show that if y is transcendental, then

trans.degK/C(t) = 2

for Py (D7) and for Py (Dsg). This fact establishes the irreducibility of the
equations in the sense of Umemura([24]). For the other Painlevé equations,
the irreducibility is established except for the determination of algebraic
solutions of Py1(Dy); see for example [29, 30]. By virtue of the irreducibility
there is no transcendental classical solution of Py (D7) and Py (Dg).

The algebraic solutions of Painlevé equations are studied by many au-
thors, and in fact, many works on this subject have been studied by Belorus-
sian school (see [6]). An algebraic solution of the third Painlevé equations
has been found by Lukashevich ([10]), and then Gromak ([4], [5]) classi-
fied all algebraic solutions of Pyp(Dg) and those of Prp(D7). On the other
hand, Murata ([14]) has given the classification of algebraic solution of the
third Painlevé equation, by using the transformation group of the equation.
Pi1(Dg) has the two rational solutions, y = +1, and then (6) has the solu-
tions, ¢ = ++v/t. Algebraic solutions of Py (D7) are studied in Section 6.

Section 7 is a supplement of [16], where spaces of initial conditions of
the Painlevé equations are constructed. A space of initial conditions of a
differential equation is, by definition, a fiber of a fiber bundle P = (E, w, B)
with the following properties: There is a foliation F on P associated with
the differential equation such that

a Each leaf of F intersects with each fiber transversally;

b Each path 7 on B can be lifted to a leaf -, that runs through a given
point p € 7 (7(0));

c 7|y, : 7p — B is surjective and v, is a covering space of B by .

The special cases of the third Painlevé equation, Py (D7) and Py (Dg),
has been settled out of consideration; they have hidden behind the generic
type Dg. In [16], only equation Py (Dg) is considered and we construct
space of initial conditions for Pp(D7) and Py (Ds), in the last section.
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2. Third Painlevé Equation

In this section we begin with a review of basic facts on the third Painlevé
equation ([17]) and then give explicit forms of Hamiltonian functions con-
sidered in what follows. The subject of our investigation consists of the
following three types of the equations:

d2¢ 1 (dq\?
PIII’(DG) : d—tg:;(_q>

d2¢ 1 /dg\*> 1d¢ 2¢2 B8 1
Py (D : _— = = —_— _—_——— = — - — — 9
ur(Dr) = G = 4 (dt) tdt 2 4t ¢ (9)
d?¢ 1 (dgq 2 1dg ¢* 1
Py (Ds) - 2 g (E) TaTe T (10)

2.1. Fundamental transform

We denote equation (1) by Pir(a, 5,7,6) and (2) by Pur(a, 3,7,0).
The third Painlevé equation contains four complex parameters, and there
are essentially two complex parameters; we see that by means of simple
transformation. In fact we have the

THEOREM 1 ([17]). (i) By the change of variables:
t=2a2 y=uaq, (11)
Pri(e, B,7,6) and Py (e, B,7,06) are equivalent.
(i) By replacing q by t/q in Puv(e, 8,7, 8), we obtain Py (—B, —a, —8, —).
(iii) By the change of variables:
t=13, q=¢, (12)

Pur(«, 3,0,0) is converted to Py (0,0, 2a,203) with respect to (t1,q1).
(iv) The change of scales:

t— X, q— puq (13)

takes Py (v, 8,7, 6) to Py (Aa, pA™1 8, X2y, > A=26).
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Py (Dg) is reduced to the special case of Py (Dg) through the quadratic
transformation given by (iii). For algebraic transformation of the Painlevé
equations, see [23]. By (iv), Pur(a, 3,0,6) (ad # 0) can be normalized as

9).

2.2. Hamiltonian system
2.2.1  Hamiltonian for Py (D7)
The Hamiltonian associated with (9) is

tH = ¢*p* + a1qp + tp + g, (14)

and the Hamiltonian system reads:

— = 2¢°p+ ong + 4,
4 (15)

L~ —2¢qp* — aqp — 1.

By eliminating p from (15), we obtain in fact Py (—8,4(1—a1),0,—4), that
is, the equation of the form (9). We denote (15) by H(«1), when considering
dependence of the system on a parameter.

Defining the auxiliary Hamiltonian by:

h=tH + a3 /4, (16)
we have from (14)—(15) the expression:

d2h dh
B _tm"‘alﬁ‘i‘l

2
2 (%)

i

It follows that:

PrROPOSITION 2. The auziliary Hamiltonian, h, satisfies the differen-
tial equation

azn\ 2 dn\2 / dh dh
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Inversely, for a solution of h(t) of (18), we have a solution (g, p) of (15)

by (17), provided that
d?h

W%O.

Note that the equation (18) admits a singular solution of the form
h = \t+ pu,
AINp4+ oA +1=0.

By means of (15) , we can show easily the

PROPOSITION 3. There exists the one-to-one correspondence between
the general solution h of (18) and a solution (q,p) of (15).

In fact suppose that % = 0. We have from (16)
dh
T
and then by the hypothesis p is constant. It follows from the second equation
of (15) that ¢ is constant; we thus arrive at contradiction with the first

b,

equation of (15).
2.2.2  Hamiltonian for Py (Ds)
We consider the Hamiltonian system

dg 9H dp  9H

= —, =—— 19
dt dp dt 0q (19)
with
tH=q¢p"+qp— < g+ - ). (20)
2 q
We obtain from this system equation Py (—4,4,0,0), that is, (10).
In this case we have an auxiliary Hamiltonian
h=tH
and then
1
9= —=an
2% (21)

_ ,d?hn dh
P=lgz + q-



154 Y. Onyama, H. KaAwaAMUKO, H. SAKAT and K. OKAMOTO

We state the results without entering into details.

PROPOSITION 4. h satisfies the differential equation
azp\?  [dh\? dh dh

t— | — | — 4dh —4t— +1 — = 22

(dt2> (dt) ( a >+dt 0 (22)

PROPOSITION 5. There exists the one-to-one correspondence from the
general solution h(t) of (22) and a solution (q,p) of (19).

Equation (22) admits a singular solution of the form

h = At + pu,
Ap+A—-1=0.

2.3. Transformation group

We make the list of explicit forms of birational canonical transformation
of Py (D7). We have a group of such symmetries, denoted by Cr(D7), and
see that this is realization of the affine Weyl group, V[N/a(Al) of type A;. we
give below the results without entering into details; verification is done by
means of straightforward computation.

THEOREM 6. The birational symmetry of Py (D7) is described as:

Cr(DY) = W,(Ay) = (s1,0).

The transformations are given by the following table:

x o al p q t tH
so(x —a a1 + 2« — 20 4 b —t|tH+ 1t -«

o(z) 0 1 0| P— P+ 2 ;11 1 . ) (23)
s1(x) || ao + 21 -1 —p —q— -5 | —t tH
o(x) a1 Qo -1 tp —t tH — qp

where ag = 1 — .

For example, if (q(t),p(t)) satisfies H(c1), then functions given by
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solve H(—a1). This gives the birational canonical transformation, associ-
ated with:

S1 .01 — —Q1.

On the other hand, for a solution (¢(t),p(t)) of H(a1),

Q. P0) = (-0, 257)

satisfies H(o (1)) = H(ap). The explicit form of the transformation = =
o o s1 will be used below in Section 4.2; see Proposition 13.

REMARK 1. By means of the table of Theorem 6, we obtain the trans-
formation corresponding to the transformation:

T=0081:a] — a] —1,

The explicit form of the transformation is of the form

apt 12 q
(¢,p) — (—tp+ — -7
q ¢

t (24

A transformation of the form (24) has been found for the first time by
Gromak [3], for equation (9) of the second order.

There is no parameter in Py (Dg) and we have the

THEOREM 7.

where
x P ql|t
25
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3. Holonomic Deformation and Degeneration

Consider a linear differential equation of the form:

d2 d
L(Ds) : ] +p1—y +p2y =0,

dz? dz
t 1—-46 1
plzn%—i_ O_noo_ )
x x T —q
tH Oy + 6 -2
p2:__2+7700(0 00) p+ p 7
T 2x T —q
1 99 2 1
H=_q0p — (Nooq” + Boq — not)p + §nm(00+9m)q . (26)

It is known ([18]) that the holonomic deformation of this equation is gov-
erned by a Hamiltonian system

dg OH dp  OH

dt ~ dp’ dt  9q° (27)

This system is equivalent to the third Painlevé equation Pyy (e, 3,7, 6) with
a = —4sbo0, B = 4no(1 + 0),y = 4102, 6 = —4n%. Here we assume
NoNeo 7 0; the deformation given above concerns Py (Dg).
To characterize the other equations of the third Painlevé equations, we
have to consider again the linear differential equation,
d?y

dy
@ +p1($)£ +p2($)y =0, (28)

for Py (D7) and that for Py (Dg).

3.1. Holonomic deformation

In this subsection, we study two linear differential equations; L(D7) and
L(Dg), of the form (28). First L(D7) is, by definition, equation (28) with
the following properties:

1. L(D7) has singularities at z = 0,00 and = = q,
2. x = 0 is an irregular singular point of Poincaré rank 1,

3. & = oo is an irregular singular point of Poincaré rank 1/2,
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4. x = q is an apparent singular point whose characteristic exponents
are 0 and 2.
On the other hand, for L(Ds), we demand:
1. L(Ds) has singularities at = 0,00 and z = g,
2. x =0 and = = oo are irregular singular points of Poincaré rank 1/2,

3. © = q is an apparent singular point whose characteristic exponents
are 0 and 2.

By means of suitable changes of the dependent variables, the Riemann
scheme of L(D7) and L(Dg) read respectively as follows:

r=0 ax=q x=00(1/2)

—— ——
LD7) = Yt 1=ax 0 1 ag—1 ¢
0 0 2 -1 a1—3
x=0(1/2) z=¢q z=o00(1/2)
. —_—~ —~—
L(Ds) V2t -1/2 0 V2 o 1/2

—V2t —1/2 2 —/2 1/2
Hence the coefficients of L(D7) are given by:

t 1+ 1
pL=—+ -—
T T T —q

tH —1
__2_p 4 p ’
T T T —q

tH = ¢*p” + a1qp + tp + q.

p2 =

The explicit form of H is deduced from the property 4 by the use of the
Frobenius method. For L(Dg), we have:

2 1
b1 =—— 9
r xT—q
_ t tH 2p+1 P
P2= 7o T 2 2x x—q
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Moreover by putting

Y

Y = 1 dy )
—pYy + -~
T —q dx

we can rewrite these linear differential equations as the following systems:

d
L(D7) : _xY = A(l)(xata q;p)Yv (29)
p r—q
A(l)(x:t;%p): —qp* —oup—1 7]9_2 ot 14+ oy R
x2 x x2 x
d (2)
L(D8> : @Y =A (I‘,t, qap)Ya (3(])
p r—q
AP tap)=| ¢  ogpttp—-1 p 2
2qx3 212 T z P

By viewing ¢, p as functions of ¢, we consider holonomic deformation of
L(D7) and that of L(Dg). Now we state the theorems:

THEOREM 8. The holonomic deformation of (29) is governed by the

system of differential equations:

d o _ 1.0 0
thl - 2t[A0 a-A2 ]7 (31)
d 1
A = = (A 4 LAD AP A AT 62)
d q_ 1 (1) 1) 4
A = = (240 4+ (4, A1) (33)
where
m_ 1 0
A=y 4]
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A(l) _|2q+2tp —2q+2tp
2 T 2g—2tp —2q—2tp|’

(1 | 4 —4t
A3 _[—4t 4t |-

THEOREM 9. The holonomic deformation of (30) is governed by dif-

ferential equations

d 2 1. (2 1
TAT = 1A, A, (34)
d @ 17 @ 2 42
A = 2 (AP 4 AP, AP (35)
where
@) _ 1 0
Ao’ = 0 —J’
A0 _ [ 2 2]7
bRt
1 _t
AP =T 0
q+7 q+

We will verify these theorems at the end of this section.
It is not difficult to show that the equations (31),(32) and (33) are re-
duced to the Hamiltonian system:

dg 0H dp oOH

R el 36
dt  op’ dt dq’ (36)
tH = ¢°p* + c1qp + tp + q. (37)

Moreover, we see that the equations (34) and (35) are equivalent to Hamil-
tonian system:

d 0H d 0H

1 b_ (38)

ds  dp’'ds  9q

1 t
tH:q2p2+qp§<q+g). (39)
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Therefore we have the

THEOREM 10. The holonomic deformation of L(D7) is governed by
Hamiltonian system (36) with (37) and that of L(Dsg) is governed by (38)
with (39).

3.2. Degeneration

We derive the Hamiltonian systems associated with Py (D7) and
Pur(Dg) from that of Py (Dg) by means of successive process of degen-
eration.

In Hamiltonian H = Hyy(Ds), given by (26), we replace ¢ by t/no and
H by noH, and furthermore, put 6y = —a1,7. = € and 0, = 1/e. Then
the Hamiltonian H is holomorphic in €. Letting € to 0 in H, we arrive at
Hamiltonian H = Hyyp(D7). For simplicity, we express this procedure by

t
(Q7p7t7H) (q7 D, %7 T/OH)a (40)
O — —a1, Moo — &, BOoo — —, (6 —0).
g

Moreover degeneration from (36) to (38) is given by:

q 1 e 2 2¢e —1
) ath <__7 —2 ) _tv_ —)7 41
(@:pt, H) — (=5, —2p et Ll + oo (41)
ap—1—— (¢6—0).
3

We do not enter into detail of computation.
Note that (40) causes the degeneration from L(Dg) to L(D7). Changing
the variables y and x of L(D7) as

y — a2y g a2,
and then applying the degeneration (41), we obtain L(Dg).

3.3. Verification of Theorem 8 and Theorem 9
In this subsection, we verify Theorem 8 and Theorem 9. For L(D7), we
show the
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LEMMA 11. (i) By the change of variables

_ _ @ _[ €14 =&/
Y=PY, z=-", <P_[_p€_2 _p€+2}> (42)

system (29) is converted to the system:

d
d_é'y = A(l) (67 t7 q7p)y7 (43)
AD(E,t,q,p) = P! (—§A<1><—£2/4, ta,p)P d%P>
D 40 40
o A A A
_,40+§1+;2+§?§,

(ii) System (43) has formal solutions, Y () (€, t) and YO (€, 1), of the form:

YN (g, 1) = V(e 1) T D),

oo 1 €+ (an + 3)log(1/€) 0
(&, 1) [ 0 —&+ (a1 + 2)log(1/€)]’
> (00) |10 w1 w2 -1
V(g t) = [0 1] + [_w2 _wl]g ERRER (44)
wy = —2¢°p* — (201 — 1)qp — 2q — 2tp — M’
_ 20001 — 1
w2 = —gp — 4 )

YO(e, 1) = GYO(g, 1) 7€),

[y 0) —3log¢ 0
G = TO(£,4) =
7o) men=7 4 20y + 1) loge |
10 0 44 w 0
Y ,t:[ }Jr 12 +[3 }2+-~,45
1
w3 = —E(qzﬁ + a1gp + q + tp),

f and g being functions of t.
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(iii) The holonomic deformation of (43) is governed by (31)—(33).

PROOF. The assertions (i) and (ii) can be established by a straight-
forward calculation. We verify the assertion (iii). Let CIDI(;)O) (t),(bg)) (t) be
matrices defined by

k=0
o OTO -1 >
(0) Fr (0) — Z q)](;))(t)fk
k=-3

By using (44) and (45), we obtain the explicit forms of @@%(t),@g(t),

(I)(i)% (1), @éo) (t) and <I>,(€°°) (t), as follows:
299
/[0 0 ~©, [0 O 0, | 0 -2
<I>_3(t)_[0 0],<I>_2(t)_[0 S0l = _ap (;f ’

ap
0 - 0 0o 0 0
o0 = p] o= o wen.
Assume that (43) has a fundamental matrix solution )V whose monodromy
groups and Stokes multipliers are independent of ¢. Then there exist a
matrix, ') (€,1), depending rationally on £, and matrix O(t), such that

0

0
_ 0/ _
—ty—Q (&)Y, —tG_@(t)G.

Since the eigenvalues of .A(()l) and .Agl) are mutually distinct, /(1) (¢, ¢) and
O(t) can be written in the form:

o0 (g 1) ={G @ Qme + 2 me? + 2 me ) ¢!
+ o™ (1e} |

q=q(t),p=p(t)

L (A A, (46)
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(0) -1
o) =-GcaVmn G
®) o (1) ‘q:qaxp:p@>

_ [_M (1)3( )] ) (47)
tp(t)

Substituting (46), (47) into the integrability condition of

0

9y W

5eY = ALY, (48)
0y _ g

7Y =20, (49)

we obtain (31)—(33). Conversely, we assume (31)—(33). Let ) be a matrix
solution of (48)—(49), then the monodromy groups and Stokes multipliers of

Y are independent of ¢ because the entries of (1) are rational function of
&, see [7]. We have thus established the lemma. [

PrOOF OF THEOREM 8. It is sufficient to show that the holonomic
deformation of (43) is equivalent to that of (29). We assume that (43) has a
solution whose monodromy groups and Stokes multipliers are independent
of t. Then there exists a function Q = Q(x,t), rational in x, such that the
system

0 0
_ Ay Yy _
oY =AY, Sy =ov (50)

is completely integrable. By (42), equation (50) is converted to the system

0 0 ~
afy ADY, aty QY,

where Q = P! <Q(—§2/4, t)P — %—f). Since the entries of € are rational
in ¢, it follows that (43) admits a holonomic deformation. Conversely, we
assume that (43) admits a holonomic deformation. Then the system (48)-
(49) is completely integrable. Changing the variables Z — Y,& — z, we
have

0

—y = AWy,
Ox ’

0

—Y = QY.
ot ’
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where
0 /(1) -1
Q=Qet) = { 5 P+P-OED - P
2= 4z
q(t) p(t) _lg()z
3 t 4t
LA P + 5D gt p(t) + 4t
tx tx

Since entries of {2 are rational function of z, (29) admits a holonomic defor-
mation. [

Next we consider L(Dg).

PrROOF OF THEOREM 9. By the change of variables

_[ =& &) _¢
i B e | RO}
the equation (30) is written
d
@ = APy, (51)
(2) (2)
A® = AP + ATI + %.

In a way similar to the proof in Lemma 11 and Theorem 8, we can show
that the holonomic deformation of (51) is equivalent to that of (30), and
equation (51) admits a monodromy preserving deformation if and only if
the system

0 0
Z Yy =432 Zy-—Q®
8€y AP Y, my Q=Y.

S

(2)
2 A

YA, t) =

is completely integrable. By using these fact, we establish Theorem 9. []
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4. 7-Function

For any solution (g, p) of the Hamiltonian system,

dg OH dp  9H

== -7 2
dt  9p’ dt dq’ (52)
a T-function 7(t) is defined by
d
N IOg T(t> - H(t7 Q7p)7 (53)

dt

up to multiplicative constant.

4.1. Global behavior of 7-function

By means of the Painlevé property of the equation, H = H(t,q(t), p(t))
has only poles as movable singularities. As is well-known for the other
Painlevé equations we have the following result also for Py (D7), Py (Ds).

THEOREM 12. The 7-function 7(t) is holomorphic on the universal
covering of C — {0} and has simple zeros.

Since the equations we consider are derived from monodromy preserving
deformations, we can verify the theorem by the use of the result obtained
by Miwa ([13],[11]). Here we give direct proof of Theorem 12 for Py (D7).
In fact, let h be the auxiliary Hamiltonian given by (16). If A has a pole at
t =to (to # 0), then we deduce from (18):

¢
h~e—2 4 O((t—to)°),
t—to

where O((t — t9)°) denote the Landau’s symbol. It follows that:

1 a? 1
H=>-(h--)~ —t0)).
t( 4> 5 T Ot —t)")

By definition, 7(¢) has a simple zero at t = ty. We can verify the theorem
for Pp(Dg) in a similar way.
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It will useful to give local expression of a solution around a pole, t = tg.
Let T' =t — to be a local coordinate; then we have for Py (D7):

g=1T[1 +2—T+CT2 -], p : holomorphic,
to
_ 22— 2 _ 1 /2
=T+ o T+cT*+---], p—ﬁ[—to—i-cT + - (54)
q TQ[ +o T+l + -1, p to[ + 2to +T% 4]

Here ¢ denotes an arbitrary constant and ¢’ is determined in terms of g, o
and c. In the case of (54) H has a pole at T" = 0, while H is holomorphic
for the other cases. For Py (Dg), we obtain the following expansion:

t
¢ = T +c?+-],  pg= 0[1+—T+cT2+ -,
2o T 2o
2t3 1 to 1
= 1+ —T+cT%+--- =21+ -T+cT*+---].
q T2[+ +c ], pq T[+t0 + T 4]

A pole of H appears from the former.

4.2. Toda equation

In the present subsection, we concern 7-functions of Pyp(D7). Let H(a)
be Hamiltonian system (52) with (14), (¢g,p) a solution of H(«;) and h =
h(t,q,p,a1) an auxiliary function given by (16). We define a new auxiliary
function h by

- —2a1 +1
h:h—qp+T1. (55)
Then, by using the differential equations, we can show
q - t dt ’
d%h
p__1+dt_a1dt+tdt2. (56)

21 (E)

Let us consider (Q, P), given by:

2 apt

(Q’P):<_q_+7_t t> (57)
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We have the

PROPOSITION 13. (Q,P) is a solution of (52) with Hamiltonian
H(t,Q,P, a1 — 1)

This fact follows from Theorem 6; transformation (57) is corresponding
to m = o o0 s1. We give another verification of Proposition, by showing that

h(t,q,p, a1) coincides with the auxiliary function, h(t, @, P,a; —1). In fact,
we can verify by computation

H(taQapaal_l):H(ta%paal)_%a (58)

and it is easy to see the transformation given by (57) and (58) is canonical.
Moreover,

(a1 —1)?
h(t,Q,P,CYl—].) = tH(t7Q7P7a1_1)+T
a; —1)2
= tH(t,q,p,al)—qva%
1 -2« -
= h(t,q,p,0n) —qp + 1 L = h(t,q,p, a1).

REMARK 2. Put X = gp. We obtain from (17)

d?h dh
_tm‘i‘alg‘i‘l

dt
and on the other hand (56) results
d?h dh
y_otarrl-a)g -1 (60)

i
25

Starting from a solution (g, p) of H(«1), arbitrary fixed, we consider now
the sequence

(@nspn) = (7" (q), 7" (p)),

of pairs of functions, such that (go,po) = (¢, p)-
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Then (gy, pn) solves H(ag —n). We have a sequence {7, } of 7-functions,
defined by:
d
E IOng = H(t7 qn,Pn, 01 — n)

THEOREM 14. {7,} satisfies the Toda equation:

d d Tn—1Tn+1
218 Yog 1, = e(n) LIl 1
dttdt og T, c(n) - (61)

n

c(n) being non zero constants.

Proor. Put X,, = ¢,p,. From (58) we have

X
H(t> dn+1,Pn+1,01 — N — 1) = H(taqnapnval - n) - Tn
It follows that:
d Tn
X, =t—1 . 62
" dt 08 Tn+1 ( )

Let hy, be the auxiliary Hamiltonian for (¢,,p,). From (59), we have

¢ d2h,
2
Xn _ __ dt

+ (aq —n)% +1
dh :
254

On the other hand, by defining h,, in a way similar to (55), we deduce from
Lemma 13

hn—l = hna
and then from (60)

d%hy dhn
X _t a2 +(n—061>?—
n—1 — 9 dhn

dt

Therefore we have

v Ay dhn
T AT

Xpq — Xp = (63)
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Finally we obtain from (62) and (63)

dhy, ( )Tnfl'rn«kl
M o(p) 2
dt T2 7

n

which show the theorem. []

Since 7-functions are determined up to multiplicative constants, we can
normalize the functions, for example, as ¢(n) = 1. For algebraic solutions,
it is convenient to put ¢(n) = —3; see Section 6.1.

4.3. Bilinear forms

In this subsection, we rewrite equations Py (D7) and Py (Dsg) in terms
of bilinear forms, by using the method of [19], where a bilinear form of the
second Painlevé equation has been considered. The Hirota derivatives con-
sidered in what follows are, by definition, given by the following expressions:

Dg- f=(Dg)f —g(Df),  D?g-f=(D?*g)f —2(Dg)(Df)+ g(D*f),
Dig- f = (D) f —3(D*g)(Df) + 3(Dg)(D*f) — g(D*f), ...,

where D = t%. ‘We show the
THEOREM 15. Puyp(D7) is equivalent to the bilinear form:

D%*ri - 190 — a1 D7y - 19 = 71 - D710, (64)
DSTl'To—a1D2T1'TQZDTl'DTo+2tTl'TQ, (65)

with respect to two T-functions, Ty and Ty.

PROOF. In general, consider the three functions of ¢, H, H; and X,
such that

X=H,—H,
and let f and g be functions defined by
Hy =Dlogy, H = Dlog f,

respectively; we have

X =Dlog= =

9g_Dg-f
g f
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It is easy to verify the following fundamental formulae of differentiation:

D2g- f (Dg-f)2
DH, + DH = _
L g-f g-f )’
Dig.f D’ fDg-f <Dg-f>3
2 _ 2 — B
D2H, — D*H P A ]

Now consider Py (D7) and put

d d
H=tH(t,q,p,a1) = talogm, Hy=tH(t,Q,P,a; — 1) = taIOng,

7o, T1 being 7-functions. In this case we have
X=—qp, DH=tp, DH, =tP =q.
It follows that:
DH+DH,=tp+q=H — ¢*p*> —aigp=H — X? + i X,
from which we obtain the first bilinear equation, (64). Moreover, since
D*Hy, — D*H = D(q — tp) = (¢ + tp)(2qp + 1) — tp + 2t,
we have
D?H, — D°H = (DH, + DH)(oy — 2X) — DH + 2t,

from which we deduce (65).
Note that bilinear forms (64)—(65) are corresponding to the transfor-

mation a; — ag — 1. It is easy to verify that (64)—(65) are equivalent to
PHI’(D7)- ]

In the case of Py (Dg), which contains no parameter, we have no se-
quence of T-functions. We obtain instead a bilinear equation of the other
form, by using differential equation (22) satisfied by the auxiliary function.
In fact consider (22) and by using

h = D1/, Dh =D*r - 7/272,
D?h +2hDh = D?D7 - 7/72,  D3h 4+ 6(Dh)? = D'r - 7/272,
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we obtain the bilinear equation:
Dr .1 +tr-7=4D?D7 - T. (66)

The same method can be applied also to Py (D7), and we have the bilinear
equation:

Dir. 1+ (1—a2)D?r -1 — 2aytr -7 = 4D*D1 - 7. (67)
5. Irreducibility Theorem

In this section we will establish irreducibility of Py (D7) and Py (Ds),
that is, we will show the

THEOREM 16. None of Puy(D7) and Py (Dg) does have transcenden-
tal classical solutions.

By virtue of the theorem, Pyy(D7) and Py (Dsg) may have only alge-
braic solutions as classical solutions. We will prove the Theorem 16 by
using the method of Umemura and Watanabe [26], and then determine the
algebraic solutions of each equation in the next section.

Let K be a differential extention of C(¢) with respect to the derivation:
t% and K[p,q| the polynimial ring over K. For Py (D7) we consider on
K|[p, q] the Hamiltonian vector field:

0 0 0
Xp, (o) =t— + (2q2p + a1q + t) —_—— (2qp2 +a1p+ 1) (68)

ot dq ap’

To establish Theorem 16 for Py (D7), we introduce the following con-
dition, (J):

(J) For any differential field extension K/C(t), there exists no principal
ideal I of K|[p,q] such that 0 C I C K{p,q] and X (a;1)I C I.

By means of the theory of irreducibility given by [24], Theorem 16 follows
from Proposition 17 given below. In fact, if X = Xp,(a1) enjoys condition
(J), a transcendental solution of Py (D7) is non classical; see [26].

PROPOSITION 17. The derivation X = Xp.(a1) satisfies the condition

(/).
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For Py (Dg), Theorem 16 is an immediate consequence of irreducibility
of Priy(Dg) by the use of the transformation given above in Theorem 1 (iii),
cf. [27]. On the other hand, we will give below another proof by considering
the vector field:

0 5] 1 t 0
Xp. = t— + (242 2 (ogprarp—c(1- =) )=
Ds 87§+( q’p+q) 9 <qp +p 2( q2>> o (69)

on K|q,p|. Since

Xps(q) = (2gp + 1)g,

we have a principal ideal I = (¢) such that X () C I. To establish Theorem
16 for Py (Dg) in a way similar to the case of Py (D7), we have to introduce
instead of condition (J) the following condition :

(J) For any differential field extension K/C(t), there exists no principal
ideal I of K[p,q,q '] such that 0 C I C K[p,q,q '] and XTI C I.

In this section we will verify the

ProrosITION 18. The derivation X = Xpg satisfies the condition

(J)"

The irreducibility of Py (Ds) follows from Proposition 18; in fact, we
have the

PROPOSITION 19. Let L € K C C(t) be a sequence of extensions of
differential fields. If ¢ € L be a solution of Py (Ds) and trans.deg. L < 1,
then q is algebraic over K.

PrRooF. Put M = K(q,p), where p = #% - 2—1q, then M is a subfield
of L and trans.deg.,M < 1. We assume trans.deg.,rM = 1. Since q is
transcendental, p is algebraic over K(q). Let F(q,P) € Klgq, P] be the
minimal polynomial of p over K(q).

Differentiating F'(q, p) = 0 with respect to ¢, we obtain

Xps(F)(g,p) = 0.

Therefore Xp,(F)(q, P) is divisible by F'(g, P); and then it follows from
condition (J)' that F' € K -¢! for certain I. F being the minimal polynomial
of p, we arrive at contradiction; hence trans.deg.; M = 0, which shows ¢ is
algebraic over K. [
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5.1. Proof of Proposition 17

We prove Proposition 17 by reductio ad absurdum; assume that there
would exist a principal ideal I of K [p, q], invariant under the action of X («).
Let F' € K|[p, q] be a generator of I. Then we have

X(ay)F = GF, (70)

for some G € K|p,¢q]. Such a polynomial, F', will be called as an invariant
divisor in the following of this section.
5.1.1 Weights on Klp, q]
We can associate a Newton polygon with derivation on K [p, q]; the New-
ton polygon of X («q) is of the form:

(1,1)

> 1

Taking the Newton polygon into consideration, we introduce two kinds of
weights on K|p, ¢]. First one, wy, is defined by:

wi(q) = -1, wi(p) =2
the weight of aqg'p’ is 2j — i for any a € K, a # 0. Let R4 be the K-linear
subspace of K|[p, q] generated by all the monomials of weight d; we have

R_q = K[¢’plq", Raa = K[¢*plp?, Raa—1 = K[q*plap”
for a non-negative integer d. Then we obtain the decomposition:
Klp,q] = @Rdu Rq- Ry = Rayq-
deZ
Consider three homogeneous derivations, X_o, Xo, X1, given by:
0
2

0
_ (92 _ -
X1 = (2¢°p+1) 3 2qp o
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0= a1 1qaq 1pap,
10
X_2 - —§a—p

Note that each X; maps Ry to Rgy; and X(ag) = X7 + Xo + X_o.
On the other hand, we introduce the second weight ws, defined by:

wa(q) =2, wa(p) =—1.

Let Sy be the K-linear subspace of K|[p, q] generated over K by all mono-
mials of weight d. We have, for any non negative integer d,

S_q = K(gp®]p®, Saq = Klap*lq®, S2a—1 = K[qp]q"p,
and

Klp,q) =D Sa, Sa-Sa = Saya-
deZ

The three homogeneous derivations Y7, Yy, Y_o by

0 0

YT = 2¢°p— — (1 +2¢p?) —

] P35, (+qp)8p,

0o = ot lqc“?q 1p8p7
0
Yo = t—
2 aqa

X(a1) = Y1+Yy+ Yoo,

and Y; maps Sg to Sg;.
Since the weight of X () is one with respect to both of the weights, G
can be written as:
G=Mp+up

for some A\, pu € K.
5.1.2  Highest terms of F
We consider the following decompositions of an invariant divisor, F:
F:Fm+Fm—1+"'+Fm—mov
erRka Fm#oa Fm—m()?éoa

F:fn+fn—1+"‘+fn—nov fk’esk‘v fn#oa fn—no#()? (72)

(71)
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corresponding to the weights, wy and wy. The homogeneous part of equation
(70) reads:

X1Fp 1+ XoFy + X 2Fk 2 = ApqFy_1 + pky, (73)
Y1 fr—1 + Yofe + Yoo fero = Apqfr—1 + pfr, (74)

respectively, where we agree to put Fp = 0 for &k < m — mg or k > m and
fr =0 for Kk <n —ng or k > n. In particular, we have

X1F,, = A\qpF, (75)
Ylfn = )\qpfrr (76)

We show the

LEMMA 20. (i) If XiF = A\gpF for F € K|q,p|, then F is not divisible

by q.
(ii) If Y1.f = A\qpf for f € K]|q,p], then f is not divisible by p.

PRrROOF. (i) Assume that
X\F = AqpF (77)
and that F' = ¢*F’ where k > 0, F' € K[q,p]: We obtain from (77):
q(X1(F") + 2kqpF") + ktF' = \qpF",

and then & = 0. The second assertion of the lemma can be verified in a
similar way. [

Therefore m, n are non-negative, even integers; we put

r, s being non-negative integers.
REMARK 3. Put L = ¢*p +t, M = ¢*p + 1; we have:

X1(L) =2gqpL, L € Ry,
Yi(M)=—2gqpM, M €5S,.
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We can write F, (m = 2r) as

For=p" Y b7, b €K.
320

and since

X1(For) = qp ™) 205 — 1) L.
j=0

we deduce from (75) that A = 2(jo — r) for a non-negative integer jo and
For =bp"L™M2 be K. (78)
Moreover we obtain from (76)
fos = cg®M* M2 ce K. (79)
The highest term of Fs, with respect to wo is:

2NN,

and we obtain
3
2r + §A S 2s.

On the other hand, by considering the highest term of fo, with respect
to wi, we have

258 — §)\ < 2r.
2
It follows that
3
2r 4+ 5)\ = 2s, (80)
and moreover, by comparing the coefficient; we have
b=c.

If F is an invariant divisor, then so is b~ 'F for any b € K*. Here, without
loss of generality, we assume b = ¢ =1 in (78)—(79).
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5.1.8 Determination of For._1 and fos_1
By means of (73), Fy, and Fy,_ satisfy the equations

X1 (For—1) + Xo(For) = AqpFar—1 + pFs,,

By writing Fa,_1 as:

k1
Py =p'qy d;iI7, d; €K,
7=0

we deduce from (81) that

Xl(F27°71) - )\qu27°fl

k1
=p" > d;i[(2=A—2r+2j) L7 + (A= 1+ 2r — 2j)tL7] .
7=0

On the other hand we have

i A,
pFor — Xo(For) = (M - %) L 2p
A

+ (o1 — 1)t <r + 5) L”%*lpT.

Comparing (83) and (82), we obtain k1 = r + A/2 — 1, and then

041)\
S )
==

Moreover we have
A
d0:07 dl:07"'7dk*1:07dk:(a1_1) 7"+§ .
It follows that:

1 _
Fgr_l = 5(0&1 — 1) (2?“ + )\) pquTJr)‘/Q 1.

177

(81)

(82)

(83)

(84)

We can compute fas_o in a way similar to Fa._1; we obtain in fact from

(79):
1
f2371 = 50&1 (28 — )\) qspMS_A/Q_l.
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F5,._1 contains the monomial:

2r+A/2—1 2r4+A—1
b

p q

and fys_1 contains the monomial

25s—A/2—1, 2s—A—1

q p

These two terms coincide each other by (80) and then we have
1 o
501 = 1)(2r + ) = 71(25 +A).
It follows again from (80) that:

4r
(6751 —2‘

A= (85)
5.1.4  Condition (J)
By taking into consideration the birational canonical transformations
given above in Section 2.3, we can assume, without loss of generality,

0<R o <1.

, 3\ is an integer by means of (80).

Then by (85) «ay is rational and 0 < a7 < 1; hence A is a non-negative
integer. We put, for a non-negative integer [,

Since r, s are non-negative integers

A= —4l.
It follows from (80) and (85) that:

r—3l =s,
o
2 — aq
respectively. We obtain:
r r
- > — <]
3= g='=h
which shows
r = l = s

and then A = s = pu = 0. Definitively, if F satisfies (70), then F' € K. We
have thus arrived at contradiction.
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5.2. Verification of Proposition 18

In this subsection, we establish condition (J)" for Py (Dsg), in a way
similar to the case of condition (J) for P (D7). Let X be the Hamiltonian
vector field given by (69); we suppose that there exist F,G € K[p,q,q ']
such that

XF = GF. (86)

F' is called an invariant divisor, also in this case. To prove Proposition 18,
it is sufficient to show that, if F' is an invariant divisor, then F' € K|[q, ¢~ }].
Note that

X(q) = (2¢+1)q.

By putting

we have from (69)

X:zx3+(x—£>g+tg. (87)

ox T

If F' is an invariant divisor, then we can assume F' € K|z, z] without a loss
of generality; in fact, if F' satisfies (86), then we have for F/ = 27" F

XF' = (G +nx)F.

We introduce two kind of weights, wi and wo, as follows:

wi(x) = =2,

wi(z) =1,
1, wa(z) = 2.

wa(z)

Let R; (Sq resp.) be the K-linear subspace of K|z, z] generated by mono-
mials of weight d with respect to w; (w9 resp.); we have the decompositions:

K[l’,Z] = 69dGZ}%d
= @®a>054-
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We have homogeneous derivations X; (Y; resp.) with respect to wi (w2
resp.) given by:

X]_:Zx_: t27 H:Zx—+x27
19, x 0z 15, 0z (88)
0 0 t 0
Xo=Yo =tz  Xa=wg,  Ya=-"97

such that
X = X1+Xo+X_3
= V" —|—Yb +Y_3.

Then X; maps Rj to Rgq4; and Y; maps to Sg to Sg ;.
5.2.1 Decomposition of an invariant divisor
We see firstly that G in (86) can be written in the form:

G:)\Z—f—/,b, )\a,U’GK’

in fact, the highest degree of terms of G is at most 1 with respect to both
weights.
We rewrite F' as a sum of homogeneous polynomials:

F=F,+F,1+-, (89)

with respect to the weight, wy. By considering terms of the highest degree
in (86), we have the equation:

X1 Fy = A\2Fyp, (90)

where X is given by (88).

It is easy to see that F}, is not divisible by z; hence m is a non-positive
even integer. If we put m = —2n, n being a non-negative integer, then
F,, = F_o,, is written in the form:

F o, =2"F, Fy € Rp.
We obtain successively

F o1 = x”zFé, Fé € Ry,
1
F72n72 = anr F6/7 Fél € R07
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and so on. Then F' can be decomposed as
F=a"F, F' € K[z, 2];

we have another invariant divisor F’. Therefore we can assume in (89)
m = 0, and put

Fo=>) apL*, a, € K,
where
L = x2% - 2t;

note that L € Ry and XL = zL. It follows from (90) that A is a non-
negative integer and that:

Fy=aL*, a€kK. (91)

We can assume without a loss of generality a = 1.
On the other hand, let

F = font fmos -

be the weighted homogeneous decomposition of F' with respect to ws. We
have the equation:

Yifim = Az fm. (92)

It is easy to show that f,, is not divisible by z, and then m is even. Since
fm is a homogeneous polynomial in = and 2%, we can put

fm = Z baﬁ%aMB, baﬁ S K,
2(a+B)=m

where
M =2z — 22, M € S,.

By taking Y1 M = 0 into consideration, we deduce from (92) that f,, can be
written in the form:

fm=b*M",  beK, m=2\+v). (93)
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Now we claim that A = v. In fact, with respect to wo, the highest degree
of monomials contained in L* is 4\. Hence,

AN < 2N +v). (94)

On the other hand, the highest degree of terms of f,, is —2\ 4+ 2v, with
respect to w1, so that,

—2\ 420 < 0. (95)

We deduce from (94)—(95) that A = v, and then m = 4\.

Since both Fy and f,, contain 2*22}, we can put a = b = 1. Therefore

we have
F, = L (96)
fmn = M>,  m=4)\, (97)

for a non-negative integer A, where
L =xz?—2t, M =2z — 2.

5.2.2  Condition (J)'
To finish the verification of Proposition 18, we compute terms, F_1 and
fm—1, following to Fy and f,,, respectively.
We begin with the term, F_1, which is determined by the equation:

XF 1+ XoFy = AzF_1 + pkyp.
It follows from (96) that
XF_| — A\2F_y = pL* + 2N L (98)

By putting
k1
Foy=az) bL* byeK, b, #0,
k=0

and then by computing the left hand side of (98), we obtain

kl kl
S A4k = N L 48> (14 2k — 20 LF = pL* + 2L (99)
k=0 k=0
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We claim that:
=0,  F_j=-2\zzl L
In fact, we have from (99)
k1+1=A, (14 k1 — Nbg, = p,
which shows p = 0, and then we see

bO:bl:"':bklflzo, blcl:b,\flz—Q)\.

)\Z2)\71

F_1 contains the term, x , whose degree is

AIN—1=m-—1,
with respect to we. So we compute f,,,—1 by means of the equation:
Yifm—1+ Yofm = Aefim—1 + tfm, m = 4.
Since Yy fr, = 0, u = 0, we have

Ylfm—l = /\me—l-

Since a solution of the equation (92) is given by (93), we have f,,,—1 = 0,
and then A = 0. It follows that, if XF = GF, then G =0 and F' € K. We
have thus established the proposition.

6. Algebraic Solutions

In the present section, we consider algebraic solutions of Py (D7) and
Py (Dg). We have shown in the previous section that these equations do
not admit a transcendental classical solutions, and so all classical solutions
of them are algebraic.

We begin with equation Pyr(Dg), which reduces to an equation of the
type P (Dg) through the quadratic transformation given above in Theorem
1 (iii). The classification of algebraic solutions of Pjy(Dg) is known; see [5]
and [14]. By means of the classification, we have the

PROPOSITION 21.  Pyp/(Dg) has only two rational solutions.
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In fact, it is easy to see that Pr(a, 3,0,0) has the constant solutions:
Yy = :t —,8/04,
and then Pjp/(—4,4,0,0) has algebraic solutions:

q::l:\/z.

6.1. Algebraic solutions of Py (D7)
Let H(a1) be the Hamiltonian system with the Hamiltonian

1
H = ;[quQ + a1pg +tp+q|.

We study algebraic solutions of Py (D7); it is known that

ProrosiTION 22 ([10, 4]). If ax =1, H(1) has the algebraic solution

1 1
P = 3B~ @i

1
a(t) = —5(2)*/°,
2
H(a1) has one and only one algebraic solution if and only if oy is an integer.

The rational solution given above has been found for the first time by
Lukashevich [10] for Py (D7) and we have rewritten it in terms of the
Hamiltonian structure.

We give below a few of algebraic solutions; when «; = 0, we have

(0.0) = (520" — 5P~ ).

and when a; = —1,

5(2t)3 + 24t +9(2)3 1+ 3(2t)3
o 2 2
2(1 n 3(27:)%) 3(2t)3

(¢,p) =

Starting from the algebraic solution of H(0), we can obtain that of H(—n)
by means of the transformation, 7™; see Section 4.2.
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The aim of this subsection is to determine 7-functions related to alge-
braic solutions. When a7 = 1, the Hamiltonian function associated with
the algebraic solutions given by

3
tH = ——(2t
~(21)

Wl
=
|

+5@0)

Then the 7-function is determined up to a multiplicative constant, c, as:

wlro

9 2
T = cexp <—§(2t) + §(2t)%> 36,

Moreover, when a1 = 0, we obtain

L
36

wiN

tH:—%%)+

and then
9
7 =c exp <—§(2t)%> tﬁ,
¢’ being a non zero constant. We put
s =3(20)3,

and let 7,, be the 7-function related to the algebraic solution of H(—n).
The 7-function satisfy Toda equation (61); in what follows, we consider the
equation

_ Tn—1Tn+1
dt dt T2

n

or equivalently

d d 1 Tn—1Tn+1
€L logr, = —=s2TnoATndl 1
S 08T 55 2 (100)

Moreover we put

(101)
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REMARK 4. Let (qo,po) be the algebraic solution of H(0) and Hy the
Hamiltonian function associated to it. By means of the canonical transfor-
mation given by (57), the Hamiltonian function at a; = —1 is given by

5
(2)3 — —.

3 2
tH = tHoy — qopo = —=(28)5 —
0 — qoPo 4( )3 36

1
2
Hence we obtain

7_1 :c”exp _2 2 % _§ 2t % t_%,
8 2

¢’ being a non zero constant. On the other hand, it follows from (100) for
n =0 and (101) that:

Sler

B 145 1 _
T| = exp 88 558

The 7-function, 7, = 7,(s), can be determined by means of (100). In
fact we have the

THEOREM 23. The T-functions related to the algebraic solutions are of
the form:

_ Lo, 1 —dn /12
Tn = €xXp ( g 2ns) s Sn(s),

where Sy, (s) are monic polynomials in s with integral coefficients, such that
Sn(0) # 0. Here

(102)

4 - 92 —1 n is even,
" lon2—4 n s odd.

REMARK 5. S,(s) satisfy the equation:

(54 n)Sn(s)% — 255, (s)Sn(s)" + 255;(5)2 —285,(s)S!,(s)

[ 58,-1(5)Sns1(s) n iseven, (103)
| Su-1(8)Snti(s)  n s odd.

by virtue of Toda equation (100).
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We give below the list of Sy, (s) for n =0,1,2,3,4,5:
5_3:82—48+5,

S o=s5—1,
S_1=1,
So(s) =1,
Si(s) =1,

Sa(s) =s+1,

S3(s) = s? +4s+ 5,
Su(s) = s* + 105> 4 405> + 70s + 35,
Ss(s) = 85 + 205> 4 1755 + 840s> + 22755% 4 32205 + 1925.

Note that, for n > 2, S, (s) admit only simple zeros, by means of Theo-
rem 12. By comparing S, (s) with Yablonskii-Vorob’ev polynomials, which
appear in the case of the second Painlevé equations, we might expect that
Sy (s) could be written in terms of the Schur functions; cf. [9]. This problem
remains unsettled.

6.2. Proof of Theorem 23

For any integer n, S, (s) is determined in a unique way by means of
(103) and the initial condition:

So(s) = Si(s) = 1.
Moreover it is easy to see:
LEMMA 24. Equation (103) admits a symmetry of the form:

S-n(s) = (1) Sn(=s),

|

where

n? n 1S even,

104
(n?—1) n is odd. (104

PN
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Note that d_,, = d,, e_,, = e,,. By agreeing that S, (s) are polynomials,
we can show

en, = deg Sy (s).

By virtue of Lemma 24 it is sufficient for verification of the theorem to
consider only the case when n is non-negative. Assume that

Sk(s) (0<k<n)
satisfy the following condition, as a function of s:

(P)r Sk(s) is a monic polynomial with integral coefficients and S (0) is an
odd integer.

We see that Si(s) (0 < k < 5) satisfy (P); and we establish the theorem
by showing that Sy,+1(s) also fulfills (P)p41.

We begin with considering the case when n is an odd integer. Let us
denote by T),(s) the left hand side of (103). By virtue of the assumption of
induction, T},(s) is a monic polynomial with integral coefficients, so is

T (0) = 185 (0)* — 25,(0)S,,(0);
in particular, 7,,(0) # 0. We determine S,1(s) by
Tn(s) = Sn—1(8)Sn+1(s); (105)

Sp+1(s) is holomorphic at s = 0 and may be rational in s. On the other
hand, a 7-function has to be holomorphic at any point s = sg, such that sg #
0. It follows that Sp,41(s) is a polynomial; T;,(s) can be divided by Sp—1(s).
Since Sy—1(s) and T}, (s) are monic polynomials with integral coefficients, so
is Sp+1(s). Moreover, both T,,(0) and S,,—1(0) are odd integers, and then
50 is Sp+1(0). We have thus arrived at (P),41.

We proceed to study the case when n is even. Recurrence formula (103)
reads as follows:

nSy(s) — 257 (s)
s (106)

Sn(8)2 = 28,(5)Sn(s)" + 25/, (s)* = 28,(s)
= Sp—1(5)Sn+1(s).
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Let us denote by Uy(s) the left hand side of (106), and we can show that
Un(s) is a monic polynomial with integral coefficients. In fact, we have the

LEMMA 25. Ifn is even, then

1S, (0) — 28" (0) = 0.

Proor. Consider the auxiliary function:

n?

d
= Hn i Hn:_l ns 1
h=tH, + 1 3 1087 (107)

which satisfies the differential equation:

azn\ 2 dr\? / dh dh

see Section 4.2. This equation can be written as:

d2h  _dh\’ dh\?% / dh ,dh 1,

with respect to s = 3(2t)*/3. On the other hand, we deduce from (107) with

1 1
Tp = €XP <—§s2 - 5ns> 875(9"271)5'”(8),

the following expression:

1
h=—+B 2
T s+ 0(s%),

where O(-) is the Landau Symbol and

_ 25,(0) = n5,(0)

B 65,(0)

Then, by putting s = 0 in (108), we obtain B = 0, which establishes the
lemma. [J
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Therefore we can deduce from
Un(s) = Sn-1(5)Sn41(s) (109)

that S,+1(s) is a monic polynomial with integral coefficients, in a way sim-
ilar to the case studied just above. Since n is even and S, (0) is odd,

Un(0) = Sn(0)* — 28,(0)5,,(0) + 25;,(0)* + (15, (0) — 257,(0))S5(0)

is an odd integer; in particular, U,(0) # 0. It follows that S,41(0) is an
odd integer. We have thus finished up the verification of the theorem.

7. Space of Initial Conditions

As is mentioned in Introduction, it is quite natural to distinguish the
three types of the third Painlevé equations from a point of view of geomet-
rical studies on the equations; cf [22]. By virtue of the Painlevé property,
to construct a space of initial conditions, we have only to determine a com-
pact space X and a set {D,} of subvarieties of X, satisfying the following
properties:

(i) D; 2 P! and D, contains a leaf of the foliation entirely;

(ii) D; U Dy(j # k) defines a singularity of the first class of the foliation
associated with the equation;

(iii) D; N Dy N Dy =0, (4, k, [ are distinct).

Given such a space X, then X = X — U;D; is a space of initial conditions.
In fact, by constructing X and {D;}, we obtain the fiber space P and the
foliation F, with properties, a, b and ¢, stated in Introduction. And we
have

X = 7771(250),

for any point ¢ty € B; cf [16]. We call each D; a vertical leaf. A singular
point of the first class is defined as a singular point which does not belong
to the closure of any leaf except vertical one. Provided that the Painlevé
property would be established, a singular point b = {(y,z) = (0,0)} of the
following equation is of the first class:

Zy, = )\+f(t,y,2), yZ,: _M+g(t7y7 Z)' (11(])
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Here we assume that A\, g > 0 and f, g are holomorphic near b with
f(t,0,0) =0, g(¢,0,0) = 0.

7.1. Dgl)—surface and Dél)—surface

Such a compact space X for the third Painlevé equations of type Dgl) is

called Dgl)—surface in [22] (i = 6,7,8), in fact this surface contains vertical
leaves {D;}, whose intersection form is expressed by the Cartan matrix of
DEU type. A Dél)—surface has been constructed from the Hirzeburch surface,
Eg)) , by 8 points blowing-ups in [16], and now we begin with P2. Note that,

since 28 and P? are birational each other, DW_surface is determined by

K3
this way.

If we regard X as a blowing-up surface of P? centered at 9 points, we have
only to write down the positions of the 9 points, including infinitely near
points, in P? to describe X. We can express Dgl)—surface and Dél) -surface
as follows:

Dgl)—surface:

z2=0.,2=0
I P1 <= P2 <= P3<—Ps < P9 pﬁ* *m pg* |
p7 — Ps -

pr: (0:1:0) «—py: <§,§ =(0,0) « p3 : <§7g>_(070)<_
— pg: <§,yj—; = (0, —2t) «
“— pg: (g, y(yQZ;-l 2tx3)) = (0, 4apt),
T
pr: (0:0:1) «—pg: (;,%)z(0,0),
T y—z
ps: (0:1:1) «—p7: (;’yw ):(O,Qal).
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Dél)—surface:
=0.,2=0

z
P1 < P2 < P3 < Pg < P9 D7
T z T Yz
:(0:1:0 [ —,— ) =1(0,0 [ —,= | =(0,0
e 0:1:0) g (22) =00 cps (L5) = 00) -
2
(T YEN
— D8 <§7 el (0,4t) —
T 2, — sa®
DP9t <_7 y(yi“> = (078t)7
Y T
. .0 - (Y Ty (Y T
y z(zz —y?)
—pr (;, T) = (0,0).

Here (x : y : z) denotes a homogeneous coordinate of P? and p (k = 1,...9)
are the 9 points in P?; p; < py, signifies that py is infinitely near p;.
Each vertical leaf is represented by the positive divisor D;, which rep-

resents a divisor class D; € Pic(X); here we give the table of D;:

Dgl)-surface:

Dy =& — & —& —E&, Dy=E —&, D3z=E — &,

Dy=& &, Ds=&E & —E4—E, Deg=E — &, D7=E — &,
Dy = &5 — &y,

Dél)—surface:

Dy =& —& —& —&, Dy=E3—Es, D3=E — &3,

Dy=&—&, Ds=E —&E —E4—E, Deg=E —E, Dr=E —Es,
Ds=E — &7, Dyg=Es—&Ey.

Here & is the class of total transform of a line in P? and & is that of the

closed point p; (k = 1,...,9). These surfaces and vertical leaves satisfy
property (iii) given above.
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7.2. Foliation associated with Py (D7)

We define a foliation induced from the each Painlevé equation on this
surface and show that properties (i) and (ii) are established. We begin with
the Painlevé equation of type D$1).

For canonical variables, ¢, p of the Hamiltonian system, we take a ho-

mogeneous coordinates as (z : y : z) = (g c—qp?: 1). We have then the
following differential equations
1 t -1
try =y — oy — 3, ty; = LT ) +ta} + oqyr,  (111)
2 2%1
, t 1 , 1
loy = —— — S22y, o =Yz | JY2 —x2+ a1, (112)
y2 2 2
r3(rs —1 tys 1
tay = Zolws = 1) + ty3 + arws, tys = L T3 (113)
Y3 xs 2

with respect to the coordinates (z1,41) = (%,%), (22,12) = (%, 2),

z
(z3,95) = (.2).
In P? there are vertical leaves, D1 = {z = 0} and D5 = {z = 0}, and
singular points:

p1 = {(z3,y3) = (0,0)}, pa = {(x1,91) = (0,0)},
ps = {(z1,91) = (0, 1)} = {(z3,y3) = (1,0)}.

By blowing up successively p1, ps and ps, we will obtain resolution of these
singularities. Since properties, (i) and (ii), are fulfilled apart from these
singular points, we have only to study the foliation around an exceptional
divisor, obtained by a blowing-up process at a singular point.

Put

'y Y1 T
(f?g):(xhyl): (_7_)7 G:_7 F:_)
A4 1 Y1
then we have the system:
1 G
tf' = fG — — = G =—— —t 114
;1 3 ;g—1 2 12
tF = — +tglh”, tg = ¥—— + 19 — tg°F“. (115)

2g 2F
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This system appears as result of a blowing-up at the point ps and we see
easily that the total transform of closed point ps consists of the vertical leaf,
Dyg, and the singular points:

pe ={(f,G)=(0,0)},  bss={(F,g9) =(0,0)}.

The latter is of the first class; the system can be reduced to a system of the
form (110) by a suitable change of variables.
Blowing up the point pg, we obtain

tf' =G —aif - % tG' = —fG* + a1G — t, (116)

1
tF'=F (g +tF —a1), tg' = Ya — tgF, (117)
where )
Ty Yz T
(f’g):<_7_)7 G:_27 F=—.
zZ'x T Yz

The foliation defined by the system (116) is transversal to the fiber, and
the total transform of pg does never give a vertical leaf. The resolution of
singularity, pg, is thus finished up.

We proceed to the blowing-up at singular point ps; we have

G—2041

1
t /: — - t /: _t 11
= fG-mftg, G =T, (118)
201 F — 1 1
= 2T g, gy = ST (g4 1)+ tg?F2, (119)
29 F
where

(fi9)=(r1,51 = 1) =

-1 —
T X y1 —1 Yy—z

SIS
<
SH
w
N—

The total transform consists of vertical leaf D7 and singular points,

pr = {(f7 G) = (072a1)} = {(Fag) = (1/20[1,0)},
b5,7 = {(Fv g) = (07 0)}

The latter is of the first class.
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To resolve singular point py, we put

(o) = (2072020

z T

2(y — z — 2a17) x

G = .
It follows that

tf'= 2G4+ a1 f + % tG' = —fG? — oG — 2, (120)

tF'=F(g+tF +a1), tg = — —tgF. (121)

We next blow up point p;; we have

—1
tf':fT—i-alx—i—thGQ, tG’:?—alG—i, (122)
F 1 ¢ 1
tF'= - 4+ -F(F+2 td == + =gF 123
FraF(From), =50k (123)
with
z X T y4
(fag):($3ay3):<_a_>a G:_a F=—.
y oy z X

The total transform of p; defines vertical leaf D4, and singular points py =

{(F,9) = (0,0)} and by 5 = {(f, G) = (0,0)}.

Since by 5 is of the first class, we blow up ps; putting

z X 1'2 Yz
(f?g):<_7_>7 G: ) F: PR
Ty Yz T

we obtain

R <3f+a1> G =L GeG ), (120)

G 2 f
F t 29 1
tF = - + O%F —t, tg' = fg + §g2F, (125)

We have again vertical leaf D3 and two singular points, ps = {(F,g) =
(0,0)} and bs 4 = {(f,G) = (0,0)}.
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By blowing up ps, we obtain the following system:

1 1+ 2tG 1
= = —t tG' = — - 12
f G+a1f , G f +G(2f 041>, ( 6)
F +2t 1 t 1
tF = — — | =¢?F — tgd = — + —g*F? 12
7 (29 a1>, 9 =5+t59F, (127)

where

3
Yz x T Yz
(f7g):<$27§>, G:—2 y F:—

The total transform consists of vertical leaf Do and singular points pg =

{(F9) = (=26,0)} = {(,G) = (0,=1/20)}, b2z = {(/,G) = (0,0)} and
bi2 = {(F,g) = (0,0)}. Singular points by 3 and b; 2 as well as bz 4 are of
the first class.

When we blow up pg, we arrive at

tf = —é — 2% f2G? + 2 f3G? + 2ty — %f4G2 + a1 f,
_ 1—daptG 1 (128)

tG' =
o Tar—an
+G (22 fG? = 3tf*G* + f*G* — o),
tF,__F—4oz0t_ F?
N 2g 2(gF — 2t)
— g% (2t%g — 3tg*F + ¢°F? — au ), (129)
2t 1
tg' = — ¢ ZyF -t
9= F o Y (21/ )
with
2 3 4 2 3
2t 2t
(f.q) = (Wf) ¢=— % p-dyztiT)
T Y y(y?z + 2tx3) T

The total transform yields vertical leaf Dy, a singular point, pg = {(F, g) =
(4oot,0)} = {(f,G) = (0,—1/4apt)}, and another one, byo = {(f,G) =
(0,0)}, of the first class.
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We can resolve singular point pg as follows:

1 (f + 4Oéot)2

/—___ —_—
b= 2G 2(f2G + daptfG — 2t)

1
— S f7G° — dagt['G® — 8aft* PGP +

1
+ gtf3G2 + 68200 * G + Fau f + 20, (130)

G(4adtfG + 1603t2G + f + 6agt)
2(f?2G +4aptfG — 2t)
— 1602t f2G* — 4t£2G3 — 12312 fG3 + 212°G? — o G,
gF?% + 4adtgF + 6tagF + 1603t?
2(g%F — 4aptg — 2t)

tG' =

3
+ §f4G4 + 1000t f3G* +

tF' =

3
— §g3F4 — 10tagg® F3 — 16a(2)t293F2 + 4tg?F? + (131)
+ 12a0t292F — 4tzg + ag,

ot 1
tg' - g’ (—92F — 2aptg — t) ,

~ 2F — dagtg — 2t 2
where
y(y?z + 2tz?) — dapta? x
(f? g) = A s )
Z Yy
G x° Fo y(y(y?z + 2tx3) — dagta?)
 y(y(y?z + 2tx3) — dagta?)’ B P ’

In conclusion, we obtained the foliation satisfying (i), (ii) and (iii),
defined by the Painlevé equation of Dgl) type. The vertical leaves are
Dy, ..., D7 with singular points of first class bj, = D; N Dy ((jk) =

(02), (12), (23), (34), (45), (56), (57)) and all of b, .

7.3. Space of initial conditions for Py (Dsg)
We determine foliation on Dél)-surface in a way similar to the case of

Dgl)—surface. If we take the homogeneous coordinates:

(r:y:2)=(1:2gp+1:2q),
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the differential equations read as follows:

1
t = —y1, ot =~ 4922 4 2 (132)
T 2
2t 1
twy=——+ Y2, typ =220, (133)
Y2 2
T3 2 L 4 / Qtyg 1
t / —_ 9 2.[: _ t = — — — 134
T3 " + Y3 21’3, Y3 T3 21:31/37 ( )
where (z1,11) = (f, %), (72,12) = (%v %)7 (z3,y3) = <§’ %)

In P2 we have vertical leaves defined by Dy = {z = 0} and D5 = {x = 0}
and singular points, p1 = {(z3,y3) = (0,0)} and ps = {(x1,y1) = (0,0)}.
By blowing up p; and p4, we arrive at resolution of these singularities.

We can pursue the process of blowing-up’s, obtaining vertical leaves and
singular points. In what follows, we give only results of computations.

By bowing-up at p4, we have:

tf = —fG, tG' = % — 2tf, (135)

F 1
L= =+ 2gF, g = —SE PP 4, (136)

with

vertical leaf : D7 = {g =0},
singular point : ps; = {(F,g) = (0,0)}.

By blowing-up at ps, we have:

1 1-G
tf = —— + 2t 2G? G = —— — 4tf3G? 137
f 5 TG 7 [°G7, (137)
1-F 1 1
tF = —— 4 4tg>F3 tg = —— — 2g*F? + = 138
J + 4tg°F°, g 5F gEF + 3, (138)

with
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vertical leaf : Dg = {g = 0},
singular points : ps = {(F,g) = (1,0)} = {(f,G) = (0, 1)},
bse ={(F,9)=(0,0)}, bs7={(G,f)=1(0,0)}.

By blowing-up at pg, we have:

1 = =g A 16,

/ 1 1 2 3 2 4 (139)
tG = — 4+ —— — 2232+ 8f2 +7f +2)G*,
57 T 711 PR +8f7+T7f+2)
F F?2
tF = —— — + 2tg* (3> F3 + 8¢°F? + TgF + 2),
2g gF+1 (140)
tg = —— 1 9tgSF? 415 F —otg" +
gF +1 2’
with
2 3 2
zx—y* y y z(zz — y°)
(f?g) ( y2 ,Z> b Z(Z"I:—y2) y3 b

vertical leaf : Dg={g =0},
singular points : p7 = {(F,g) =(0,0)}, bss = {(f,G)=(0,0)}.

Definitively by resolution of singularity, p7, we arrive at:

1 2
= o f2é+1 L2 L2GRBIC + 811G+ TSC + 2),
141
/ 2fG 376 £6 3 42 2 (141)
tG = Pai1 —4tfG°(2f°G° + 5f*G* +4f°G + 1),
F2
tF,:_g;?—i—l+4t9(296F3+5g4F2+4g2F+1)7 (142)
142
1 1
I = _ — 2B F? — 4tgSF — 2tg* + =
tg 2F 41 tg g 9 +3
with
z(zz—y?) y y! 2*(zx — y?)
— Z G = F=
(f?g) ( y3 ) Z) ’ ZZ(Z.I — yz)’ y4
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We have thus separated all leaves passing through singular point p4.

Singular points, bs ¢, be.7, be g are of the first class. We proceed now to what
concerns singular point p;.

By blowing-up at p;, we have:

1 t 1
tfl = —= + 2 2G> — = tG' = 143
f el f 2f, 7 (143)
F 2tg> 1
tF = — td = =2 — —g’F
7’ g T ~ 39 5

with

(f79)=(3337y3)=<2 x), ag=8_"7 r3 _ 2

v
vertical leaf Dy ={g =0},
b2 = {(Fag) = (070)}5

By blowing-up at p2, we have:

singular points

b4,5 = {(fv G) = (070)}

1 1 1
tf = = tG = —= +2tG% — ~ £2G* 145
'=a f+ STASE (145)
F o1 29 1
tF = — + Zg?F? — 2t td = =2 — —3F 146
g+29 , 9=7—59F (146)
with )
(f,g)z(z,f), G="\, F=%
Ty

vertical leaf D3 ={g =0},

p3 = {(Fag) = (070)}a

By blowing-up at p3, we have:

singular points

b3a =A{(f,G) = (0,0)}.

/_i 142_ /_4tG_1
tf_G+2fG 2t, tG' =

— 3G3, 147

7 (147)
F— 4t 2 1

tF = — ¢F3 td = = — —¢*F 148

p g F”, 9=%-59F (148)
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with
Yz x x Y-z
(f?g):( _>a G:Tv F:_7

x2y

vertical leaf : Dy = {g = 0},
singular points : pg = {(F,g) = (4t,0)} = {(f,G) = (0,1/4t)},
b2,3 = {(f7 G) = (070)}7 b1,2 = {(F7g) = (an)}

By blowing-up at pg, we have:

1
tf = el 1662 f3G3 + 8tfAG3 + f5G3 — 4t,
(149)

8tG — 1 1 3
tG' = — — PG 22+ 10t f + 1682
G 27 T fG(2f+Of—|—6 ,
F—8t F? 3
tF = % + 2GF T D) + ¢* (592F2 + 10tgF + 16t2> ,
150
=2 (L o
= grva 7\ ’
with
(f.g) = Y2z — 4Ata® T G- x? F_y(y22—4tw3)
7g - 563 7y I _y(y22_4t$3)7 - $4 I

vertical leaf : Dp = {g =0},
singular points Lo P9 = {(F7 g) = (Sta O)}7 60,2 = {(f7 G) = (070)}

Resolution of singularity, pg, gives the following:

1 (f +8t)?

tf = — 96t f1G* + 24t 5G4
P =Gt PG rsipGran T OSG RASG
+ gfﬁG4 +80¢7 2 G2 + 167 f2G* + 10t £*G® — 8t,
G(64t2G + 8tfG — 12t —
tG = ( / f) (151)

8tfG + 4t + f2G
— fG3 <24t2 2G? + 2082 fG + 4t +

1
+ Ttf3G? 4 3tf2G + §f4G2),
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R —64t% — 8tgF + 12tF + gF?
8tg + 4t + g2F
1
+g <24t2g2 + 20t2g 4 412 + Ttg*F + 3tg*F + 3 g4F2> ., (152)
2t 1
tg = ——————— — gt (4tg+ 2t + = ¢*F
T = Stg+rat+g2F 7 < gF2t a9 )
with
(f.q) = y(y?z — 4tad) — 8tat x
7g - 1'4 ) y )
G z° Fo y(y(y?z — 4ta®) — 8tat)
 y(y(y?z — 4ta3) — Stat)’ N xd ‘
Finally we have vertical leaves,Dy,... ,Dg and singular points b;; =

D;N Dy ((jk) = (02), (12), (23), (34), (45), (56), (67), (68)), of the first class.
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