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Stochastic Partial Differential Equations with Two

Reflecting Walls

By Yoshiki Otobe

Abstract. We study stochastic partial differential equations
(SPDEs) driven by space-time white noise with two reflecting smooth
walls h1 and h2. If the solution stays in the open interval (h1(x, t),
h2(x, t)), the dynamics obeys a usual type of SPDEs, and at a point
where the value of the solution is h1 or h2, we add forces in order
to prevent it from exiting the interval [h1, h2]. We will first show
the existence and uniqueness of the solutions, and secondly study the
stationary distribution of the dynamics and corresponding Dirichlet
forms.

1. Introduction

Stochastic partial differential equations of parabolic type are often con-

sidered in the context of fluctuation dispersion phenomena in (non-equi-

librium) statistical mechanics. For instance, if there are several distinct

pure phases coexist, interfaces are formed and separate them. SPDEs can

be regarded as to describe its mesoscopic time evolutions of such (random)

interfaces. In this paper, we will consider a case that such an interface is

formed in a small rubber hose, namely, the interface never sticks to the walls,

which repulse the interface. That is, we will study one-dimensional SPDEs

driven by space-time white noise Ẇ with two reflecting (deterministic) walls

h1 and h2 assuming they are smooth.

Namely, we will study an SPDE of the following type:

∂u(x, t)

∂t
=

1

2

∂2u(x, t)

∂x2 − f(x, t;u(x, t)) + Ẇ(1)

in x ∈ (0, 1) and t > 0 while h1(x, t) < u(x, t) < h2(x, t). If u(x, t) hits

h1(x, t) or h2(x, t), we add additional forces in order to prevent u from
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exiting [h1, h2]. Such an effect will be expressed by adding extra (unknown)

terms ξ and η in (1) which play a similar role to the local time in the usual

Skorokhod–Tanaka equation constructing Brownian motions with reflecting

boundaries. Such a method was first introduced by Nualart–Pardoux[7].

Their case corresponds to the situation that h1 = 0 and h2 = ∞. In this

case they used a comparison argument effectively, namely, the interface

with a wall occupies a high position than that without a wall almost surely.

Our situation, however, does not have this type of comparison. Therefore

we treat the walls one by one. The precise formulation will be given in

Section 2 and the existence of the solution and its uniqueness will be proved

there. After that we will study its stationary distribution in Section 3.

Finally, following Zambotti[11], we will give a Dirichlet form with which

our dynamics is associated.

We will put the following assumptions on the coefficients throughout the

present paper. The smooth walls hi(x, t), i = 1, 2, are continuous functions

satisfying h1(0, t) ≤ a, h1(1, t) ≤ b, h2(0, t) ≥ a, and h2(1, t) ≥ b for some

a, b ∈ R, and

(H1) h1(x, t) < h2(x, t) for x ∈ (0, 1) and t ≥ 0;

(H2) ∂hi/∂t + ∂2hi/∂x
2 ∈ L2([0, 1] × [0, T ]), where ∂/∂t and ∂2/∂x2 are

interpreted as distributions’ sense;

(H3) ∂
∂thi(0, t) = ∂

∂thi(1, t) = 0 for t ≥ 0;

(H4) ∂
∂t(h2 − h1) ≥ 0.

We also assume that an external force f : [0, 1] × [0,∞) × R → R satisfies

for every T > 0,

(F1) f(·, ·; 0) ∈ L2([0, 1] × [0, T ]);

(F2) there exists KT > 0 such that |f(x, t; z) − f(x, t; z̄)| ≤ KT |z − z̄| for

every x ∈ [0, 1] and t ∈ [0, T ].

For the sake of simplicity, f(x, t;u(x, t)) will be sometimes abbreviated as

f(u).

Before leaving this introduction, we summarize a preliminary result re-

lated to evolutionary variational inequalities needed in the paper. We omit
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the proof since it can be easily done using the arguments in [1, pp. 243–263,

pp. 287–290].

Proposition 1.1. Let u0 ∈ H2(0, 1) satisfy h1(x, 0) ≤ u0(x) ≤
h2(x, 0), u0(0) = a, and u0(1) = b. Then there exists a unique u ∈
C(0, T ;C([0, 1])) ∩ L2(0, T ;H2(0, 1)), du

dt ∈ L2(0, T ;L2(0, 1)), u(0, t) = a,

and u(1, t) = b such that, for every t ∈ (0, T ),(
∂u

∂t
, v − u

)
+

1

2

(
∂u

∂x
,
∂(v − u)
∂x

)
+ (f(u), v − u) ≥ 0(2)

is satisfied for every v ∈ H1 with h1(x, t) ≤ v(x) ≤ h2(x, t), v(0) = a and

v(1) = b, where (·, ·) denotes the usual L2-inner product.

Remark 1.1. Formally speaking, (2) can be rewritten as

(p(u), v − u) :=

(
∂u

∂t
− 1

2

∂2u

∂x2 + f(u), v − u
)

≥ 0.

It means that u obeys p(u) = 0 while h1 < u < h2. When u = h1, since

v − u ≥ 0, we have p(u) ≥ 0, and when u = h2, we have p(u) ≤ 0.

For the sake of simplicity of notations, we will denote ∂u
∂t and ∂2u

∂x2 by ut
and ∆u, respectively, if there is no possibility of confusions.

2. Existing of the Dynamics

In the present paper, we will consider the following SPDE for a pair of

a function and two measures (u, η, ξ):

ut =
1

2
∆u− f(x, t;u(x, t)) + η − ξ + Ẇ , x ∈ (0, 1), t > 0,(3)

under conditions


u(0, t) = a, u(1, t) = b for t ≥ 0;

u(x, 0) = u0(x) ∈ C([0, 1]);

h1(x, t) ≤ u(x, t) ≤ h2(x, t) for (x, t) ∈ [0, 1] × [0,∞);∫ ∞

0

∫ 1

0
(u(x, t) − h1(x, t)) η(dx, dt)

=

∫ ∞

0

∫ 1

0
(h2(x, t) − u(x, t)) ξ(dx, dt) = 0.
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Here the assumptions on f , and hi (i = 1, 2) are same with those of the

previous section.

2.1. Definition of the solution

We call a pair of a function and two measures (u, η, ξ) defined on a

filtered probability space (Ω,�, P ; {�t}) a solution to the SPDE (3) (called

a double reflection problem and denoted by (u0; a, b; f ;h1, h2)) if it satisfies

the followings.

(1) u = {u(x, t); (x, t) ∈ [0, 1] × [0,∞)} is a continuous and adapted (for

each T ≥ 0, u(·, T ) is �T -measurable) function satisfying h1(x, t) ≤
u(x, t) ≤ h2(x, t), u(0, t) = a, and u(1, t) = b almost surely.

(2) η(dx, dt) and ξ(dx, dt) are positive and adapted (for each T ≥ 0,

η(·, [0, T ]) and ξ(·, [0, T ]) are �T -measurable Borel) measures on

(0, 1) × [0,∞) satisfying

η((δ, 1 − δ) × [0, T ]) <∞, ξ((δ, 1 − δ) × [0, T ]) <∞

for every small δ > 0 and T > 0 almost surely.

(3) (u, η, ξ) satisfies the following stochastic integral equation:

(4) (u(t), φ) − (u0, φ) =
1

2

∫ t

0
(u(s), φ′′) ds−

∫ t

0
(f(u(s)), φ) ds

+

∫ t

0

∫ 1

0
φ(x)η(dx, ds) −

∫ t

0

∫ 1

0
φ(x)ξ(dx, ds) +

∫ t

0
(φ, dW (s))

for every φ ∈ C∞
0 (0, 1), the set of smooth functions on [0, 1] supported

on compact subsets in (0, 1), and t > 0 almost surely, where the last

term is a stochastic integral with respect to �t-adapted white noise

process W .

(4) (u, η, ξ) satisfies∫ ∞

0

∫ 1

0
(u(x, t) − h1(x, t))η(dx, dt)

=

∫ ∞

0

∫ 1

0
(h2(x, t) − u(x, t))ξ(dx, dt) = 0

almost surely.
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Then the main object of this section is to prove the followin theorem.

Theorem 2.1. Under the hypotheses (H1)–(H4), (F1)–(F2), and u0

enjoying the same properties of the Proposition 1.1, there exists a unique

solution to a double reflection problem (u0; a, b; f ;h1, h2).

Before giving the proof, we shall prepare some fundamental properties

of solutions to single reflecting problems.

2.2. The case of one reflecting wall

We now consider a reflecting problem with one smooth wall (which

will be called a single reflection problem) that was studied by Nualart–

Pardoux[7] (denoted by (v0; a, b; f ;h)):

vt =

1

2
∆v − f(x, t; v(x, t)) + η + Ẇ ,

v(x, 0) = v0(x), v(0, t) = a, v(1, t) = b,

v(x, t) ≥ h(x, t).

(5)

We define the solution to (5) in a similar manner of the two reflecting case.

In the case where the reflecting wall h has the same regularity properties

with hi ((H2) and (H3)), we can show the existence and uniqueness result

by tracing the method of [7]. That is, let us consider a penalized equation:{
vεt =

1

2
∆vε − f(x, t; vε(x, t)) +

1

ε
(vε(x, t) − h(x, t))− + Ẇ ,

vε(x, 0) = v0(x), vε(0, t) = a, vε(1, t) = b,
(6)

where z− denotes the negative part of z, namely z− := −min(z, 0). Then

vε(x, t) is monotone increasing as ε ↓ 0, and converges (uniformly) to v(x, t)

and

η(dx, dt) = lim
ε↓0

1

ε
(vε(x, t) − h(x, t))− dx dt

as a positive Radon measure.

Lemma 2.2 (comparison). Let (v1, η1) and (v2, η2) be unique solutions

to single reflection problems (v0,1; a1, b1; f1;h1) and (v0,2; a2, b2; f2;h2),

respectively. If the coefficients satisfy a1 ≥ a2, b1 ≥ b2, v0,1 ≥ v0,2,

f1(x, t; z) ≤ f2(x, t; z), and h1(x, t) ≥ h2(x, t) for every x ∈ [0, 1], t ∈ [0,∞),

and z ∈ R, we have v1(x, t) ≥ v2(x, t) almost surely.
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Proof. Let us consider penalized equations (6) for (v0,i; ai, bi; fi;hi),

i = 1, 2, of which solutions are denoted by vε1(x, t) and vε2(x, t), respec-

tively. Then the standard comparison theorem for SPDEs ([9]) asserts that

vε1(x, t) ≥ vε2(x, t) almost surely for every ε > 0. Hence the lemma follows

immediately by taking limit ε ↓ 0. �

Lemma 2.3. Let v and v̂ be given continuous functions and let zε,δ be

a unique solution to the following deterministic PDE:




zε,δt =
1

2
∆zε,δ − f(zε,δ + v) +

1

δ
(zε,δ + v − h1)

−

− 1

ε
(zε,δ + v − h2)

+,

zε,δ(0, t) = zε,δ(1, t) = 0,

zε,δ(x, 0) = 0,

(7)

where z+ := max(z, 0). We also denote by ẑε,δ the solution to the above PDE

replacing v by v̂. Then we have, for some constant C > 0, ‖zε,δ− ẑε,δ‖T,∞ ≤
C‖v − v̂‖T,∞, where ‖w‖T,∞ := sup0≤t≤T,0≤x≤1 |w(x, t)|.

Proof. Set g(x, t; z) := KT z + e−KT tf(x, t; eKT tz). Then it is easily

checked that g(z) is monotone increasing. We denote by zε,δg the unique

solution to (7) replacing f by g, and v, h1 and h2 as well. Then we have

zε,δ = eKT tzε,δg . Therefore it is sufficient to prove the lemma under an addi-

tional assumption that f(x, t; z) itself is monotone increasing with respect

to z.

Define k := ‖v − v̂‖T,∞ and w(x, t) := (zε,δ(x, t) − ẑε,δ(x, t)) − k. Then

w enjoys the following PDE:

wt =
1

2
∆w −

(
f(zε,δ + v) − f(ẑε,δ + v̂)

)
+

1

δ

(
(zε,δ + v − h1)

− − (ẑε,δ + v̂ − h1)
−
)

− 1

ε

(
(zε,δ + v − h2)

+ − (ẑε,δ + v̂ − h2)
+
)
.

Now we note that, if w(x, t) ≥ 0, we have zε,δ + v ≥ ẑε,δ + v̂. Hence we

have
(
(zε,δ + v − h1)

− − (ẑε,δ + v̂ − h1)
−) /δ ≤ 0 and

(
(zε,δ + v − h2)

+ −
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(ẑε,δ + v̂ − h2)
+
)
/ε ≥ 0 on {(x, t);w(x, t) ≥ 0}. Combining with the mono-

tonicity of f and taking an inner product with w(x, t)+ in L2(0, 1) imme-

diately lead us to 1
2

d
dt‖w+‖2

L2 ≤ 0. Hence w(x, t) ≤ 0, and by changing the

role of v and v̂, we have the conclusion. �

The next lemma is a straight consequence of the above lemma.

Lemma 2.4. Let v and v̂ be given continuous functions and let (zε, ηε)

and (ẑε, η̂ε) be the unique solutions to single reflection problems (0; 0, 0; f +

(· + v − h2)
+/ε;h1) and (0; 0, 0; f + (· + v̂ − h2)

+/ε;h1), respectively. Then

we have ‖zε − ẑε‖T,∞ ≤ C‖v − v̂‖T,∞.

2.3. Proof of Theorem 2.1

Let us consider a single reflection problem (u0; a, b; f + (· − h2)
+/ε;h1)

and denote by (uε, ηε) its unique solution. By virtue of the comparison

lemma (Lemma 2.2), uε(x, t) is a decreasing sequence bounded from below

by h1(x, t). Hence limε↓0 uε(x, t) exists for every (x, t) and it is easily seen

that the convergence is also in Lp(0, 1) (1 < p < ∞). We assert that

u(x, t) := limε↓0 uε(x, t) is a part of the solution to the double reflection

problem (u0; a, b; f ;h1, h2).

Now let us consider a stochastic heat equation with same initial-bound-

ary conditions:

{
wt =

1

2
∆w + Ẇ ,

w(0, t) = a, w(1, t) = b, w(x, 0) = u0(x),

and put zε(x, t) := uε(x, t) − w(x, t). Then zε(x, t) satisfies




zεt =
1

2
∆zε − f(zε + w) + ηε − 1

ε

(
(zε + w − h2)

+
)
,

zε(0, t) = zε(1, t) = 0, zε(x, 0) = 0,

zε(x, t) + w(x, t) ≥ h1(x, t),∫ ∞

0

∫ 1

0
(zε + w − h1)η

ε(dx, dt) = 0.

(8)

From the argument of Nualart–Pardoux[7], the unique solution zε to (8) is

obtained by taking limit δ ↓ 0 in the unique solution zε,δ to the PDE (7). We

denote by zε,δn the unique solution to the PDE (7) replacing w by a smooth



136 Yoshiki Otobe

function wn. Then, from a standard argument of variational inequalities

(see, e.g., [1]), zn(x, t) := limε,δ↓0 z
ε,δ
n (x, t) exists and is a unique solution

to an evolutionary variational inequality with two obstacles (Proposition

1.1). However we know ‖zε,δn − zε,δ‖T,∞ ≤ C‖wn − w‖T,∞ by Lemma 2.3.

Hence we can conclude that ‖zn− z‖T,∞ ≤ C‖wn−w‖T,∞, where z(x, t) :=

u(x, t)−w(x, t). Letting ‖wn−w‖T,∞ → 0 as n→ ∞ proves the continuity

of z.

Now, for ψ ∈ C∞
0 ((0, 1) × [0,∞)), zε fulfills the following integral equa-

tion:

(9) −
∫ ∞

0
(zε(t), ψt(t)) dt =

1

2

∫ ∞

0
(zε(t),∆ψ(t)) dt

−
∫ ∞

0
(f(zε + w), ψ(t)) dt

+

∫ ∞

0

∫ 1

0
ψ(x, t)(ηε(dx, dt) − ξε(dx, dt)),

where we put ξε(dx, dt) := (zε(x, t) +w(x, t)− h2(x, t))
+/ε dxdt. Then it is

clear that, under the limit ε ↓ 0, limε↓0 ηε−ξε exists in the sense of Schwartz

distribution. From the hypothesis (H1), we have supp ξε ∩ supp ηε ∩ ([δ, 1−
δ] × [0, T ]) = ∅ for every ε, δ > 0. Moreover, supp ξε decreases and supp ηε

increases as ε decreases. Hence, by choosing the support of ψ cleverly, it

can be shown that both ξε and ηε converge to positive distribution ξ and η,

respectively.

It is clear, by multiplying both sides of (9) by ε, that h1(z, t) ≤ z(x, t)+

w(x, t) ≤ h2(x, t). Finally, we can show
∫ T
0

∫ 1
0 (uε(x, t)−h2(x, t))ξ(dx, dt) ≤

0 for every T > 0, which shows
∫∞
0

∫ 1
0 (u(x, t) − h2(x, t))ξ(dx, dt) = 0.∫∞

0

∫ 1
0 (u(x, t) − h1(x, t))η(dx, dt) = 0 is easy. By taking ψ ∈ C∞

0 ((0, 1) ×
[0, T ]) such that ψ = 1 on supp η and ψ = 0 on supp ξ, we can conclude

η([δ, 1 − δ] × [0, T ]) < ∞ and similarly ξ([δ, 1 − δ] × [0, T ]) < ∞ for every

small δ > 0.

To show the uniqueness, it follows from a routine argument and a

mollifier technique used in [7], we only sketch of the proof. Let (u, η, ξ)

and (ū, η̄, ξ̄) be solutions to a double reflection problem (u0; a, b; f ;h1, h2).

Putting w(x, t) := u(x, t) − ū(x, t), w formally obeys the following PDE:

wt =
1

2
∆w − (f(u) − f(ū)) + (η − η̄) − (ξ − ξ̄).(10)
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We will multiply both sides of (10) by w(x, t)φ(x)2, φ ∈ C∞
0 (0, 1), and

integrate them over [0, 1] × [0, T ]. Then we have ‖w(T )φ‖2
L2 ≤

1
2

∫ T
0

∫ 1
0 w(x, t)2(φ2(x))′′ dx dt. It is not difficult to show w(T ) = 0 from

this relation, see [7]. Hence the uniqueness comes from (10). �

2.4. Some properties of the dynamics

Proposition 2.5. Suppose that h1(0, t) < h2(0, t) and h1(1, t) <

h2(1, t). Let (u, η, ξ) be the solution to the double reflection problem

(u0; a, b; f ;h1, h2). Then we have

∫ T

0

∫ 1

0
x(1 − x)η(dx, dt) <∞, and

∫ T

0

∫ 1

0
x(1 − x)ξ(dx, dt) <∞.

Proof. We first note that
∫ T
0

∫ 1
0 x(1−x)(η−ξ)(dx, dt) <∞. The proof

of this assertion goes the same as Nualart–Pardoux did in [7]. However, we

already know that η([δ, 1− δ]× [0, T ]) <∞ and ξ([δ, 1− δ]× [0, T ]) <∞ for

every δ > 0. Hence, since h1(0, t) < h2(0, t) and h1(1, t) < h2(1, t), we can

take δ small enough so that supp η∩([0, δ]×[0, T ]) = ∅ and supp η∩([1−δ, 1]×
[0, T ]) = ∅, or supp ξ∩([0, δ]×[0, T ]) = ∅ and supp ξ∩([1−δ, 1]×[0, T ]) = ∅. �

Lemma 2.6 (comparison). Let (u1, η1, ξ1) and (u2, η2, ξ2) be solutions

to double reflection problems (u0,1; a1, b1; f1;h1,1, h2,1) and (u0,2; a2, b2; f2;

h1,2, h2,2), respectively. Suppose that u0,1(x) ≤ u0,2(x), a1 ≤ a2, b1 ≤ b2,

f1(x, t; z) ≥ f2(x, t; z), h1,1(x, t) ≤ h1,2(x, t), and h2,1(x, t) ≤ h2,2(x, t).

Then we have u1(x, t) ≤ u2(x, t) almost surely.

Proof. The proof comes immediately from Lemma 2.2 and the con-

struction of the solution. �

Proposition 2.7. Let (un, ηn, ξn)n≥1 be unique solutions to the re-

spectively double reflection problems (u0; a, b; f ;h0, hn) and (u0, η0) be a

unique solution to a single reflection problem (u0; a, b; f ;h0). Suppose that

limn→∞ hn(x, t) = +∞ for every (x, t). Then un → u0 almost surely as

n→ ∞.
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Proof. We may assume, taking a subsequence if necessary, that

hn(x, t) is monotone increasing with respect to n. From Lemma 2.2, how-

ever, we have un(x, t) ≤ u0(x, t), while un(x, t) is monotone increasing from

Lemma 2.6. It is clear that ū(x, t) := limn→∞ un(x, t) and η̄ := limn→∞ ηn
must be a solution to the single reflection problem (u0; a, b; f, h0), of which

solution is unique. �

3. Stationary Distribution

Let (u, η, ξ) be a unique solution to a double reflection problem

(u0; a, b; f ;h1, h2). In this section, we are concerned with stationary (re-

versible) distribution for the time evolution determined by S ≡ C([0, 1])-

valued diffusion process u(t). Here we say a probability measure µ on S

is stationary or reversible if Eµ[Φ(u(0))Ψ(u(t))] = Eµ[Φ(u(t))Ψ(u(0))] is

satisfied for test functions Φ and Ψ from � := {Ψ : S → R; Ψ(w) ≡
ψ((w, φ1), . . . , (w, φn)) for some n ≥ 1, ψ ∈ C∞

b (Rn,R), φ1, . . . , φn ∈
C∞

0 (0, 1)}. We denoted by Eµ the expectation on our measurable space

(Ω,�) with respect to Pµ which is a probability measure such that u(t) is

a Markov process with initial distribution µ on C([0, 1]).

Generally speaking, if the external factors involving the dynamics vary

with a lapse of time, it does not have stationary distribution. Therefore we

further assume, in the sequel of the paper, that they do not depend upon

time variables, namely f(x, t; z) ≡ f(x; z), h1(x, t) ≡ h1(x), and h2(x, t) ≡
h2(x). In addition, in the sequel of the paper, we assume that

(F3) there exists an L2(0, 1)-function α(·) and a constant λ < π2/2 such

that

− α(x) − λ|z| ≤ f(x; z).(11)

First, let us recall that stationary distribution βf of X(t) which solves

the following SPDE:{
Xt(x, t) =

1

2
∆X(x, t) − f(x;X(x, t)) + Ẇ ,

X(0, t) = a, X(1, t) = b,

is given by the following formula:

βf (dw) =
1

Zf
exp

{
−2

∫ 1

0
F (x,w(x)) dx

}
β(dw),(12)
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where F (x, z) is a potential function such that ∂F (x, z)/∂z = f(x; z), and

β is the law on S induced by Brownian bridge w such that w(0) = a and

w(1) = b. Z ≡ Zf denotes the normalizing constant in the sequel and varies

in the context. Note that Zf <∞ by virtue of (11).

We also introduce some probability measures on S by β1(dw) := β(dw |
w(x) ≥ h1(x), 0 ≤ ∀x ≤ 1), and β1,2(dw) := β(dw | h1(x) ≤ w(x) ≤
h2(x), 0 ≤ ∀x ≤ 1). We also define βf1 and βf1,2 similarly to (12). Such

measures are naturally defined when neither w(0) nor w(1) touch the wall.

In the case they do, they are defined through limiting arguments, see [4].

Lemma 3.1. Let (u, η) be a unique solution to a single reflection prob-

lem (·; a, b; f ;h1). Then, βf1 is a reversible measure for u(t).

Proof. This assertion is essentially proved in [8, 10]. Let us consider

(6) (we denote the solution by uε). Then, the reversible measure for uε(t)

is given by

µε(dw) :=
1

Zε
exp

{
−1

ε

∫ 1

0
((w(x) − h1(x)) ∧ 0)2 dx

}
βf (dw).

Assume first that h1(0) < a, h1(1) < b. Then it is clear that µε(dw) →
βf1 (dw) and the reversibility comes from Lebesgue’s dominated convergence

theorem.

If h1(0) = a or h1(1) = b, we shall take sequences such that an ↓ a
or bn ↓ b, an > h1(0) and bn > h1(1). Note that, since f is Lipschitz

continuous, we can easily obtain

‖uε(t) − ūε(t)‖L2 ≤ eKT t‖u0 − ū0‖L2 ,(13)

where ūε is the corresponding solution to (6) with initial condition ūε(0) =

ū0. This equi-continuity with respect to initial conditions still holds for

u(t). Recall that βf1 in this case is the weak limit of such measures that are

defined similarly using an and bn. Then the assertion comes immediately

(cf. [5], [6, p. 64], and [10]). �

Theorem 3.2. Let (u, η, ξ) be a unique solution to a double reflection

problem (·; a, b; f ;h1, h2). Then, βf1,2 is reversible under u(t).
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Proof. Let us consider a single reflection problem (u0; a, b; f + (· −
h2)

+/ε;h1) which has a unique solution (uε, ηε), and uε(t) converges to u(t)

locally uniformly and monotonely. From the above lemma, we know that

µε(dw) :=
1

Zε
exp

{
−1

ε

∫ 1

0
((w(x) − h2(x)) ∨ 0)2 dx

}
βf1 (dw)

is reversible under uε(t). Similarly to the above lemma, we have the con-

clusion. �

Lemma 3.3. Let (u, ξ, η) and (ū, η̄, ξ̄) be unique solutions to double

reflection problems (u0; a, b; f ;h1, h2) and (ū0; a, b; f ;h1, h2), respectively.

Suppose that f fulfills a convexity condition such that infι≤z,z̄≤σ(f(x; z) −
f(x; z̄))/(z − z̄) > −π2/2, where ι := inf h1(x) and σ := suph2(x). Then

there exists a constant c > 0 such that ‖u(t) − ū(t)‖L2 ≤ e−ct‖u0 − ū0‖L2.

Proof. It is a routine task to show the desired inequality when we

consider a penalized equation (i.e., we replace η and ξ by (uε − h1)
−/ε and

(uε−h2)
+/ε, respectively, cf. (7)), with suitably extending the domain of f

to R. Recall that, as an operator satisfying Dirichlet boundary conditions,

∆ ≤ −π2. Hence the assertion comes immediately. �

Corollary 3.4. Suppose that f enjoys the criterion of the above

lemma. Then the stationary measure for u(t) is unique.

4. Dirichlet Form

The final section of the present paper is devoted to presenting a Dirich-

let form determined by a diffusion process u(t). The corresponding re-

sult for single reflection problems (·; a, b; f ; 0), a, b ≥ 0, was obtained by

Zambotti[11]. In the case of double reflection problems, we can prove a

similar result by tracing him with the help of a divergence formula recently

obtained by Funaki and Ishitani[4].

Throughout this section, we further assume that the boundaries never

touch the wall, namely, h1(0) < a < h2(0) and h1(1) < b < h2(1).

For � � Ψ(·) = ψ((·, φ1), . . . , (·, φn)), we define its Fréchet derivative

∇Ψ by (∇Ψ(w))(x) :=
∑n

i=1 ∂iψ((w, φ1), . . . , (w, φn))φi(x). Then a usual

inner product (∇Φ(w),∇Ψ(w)) is well-defined in L2(0, 1). We denote by ∇2
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the second Fréchet differential operator on � and by ∆x the usual Laplace

operator ∂2/∂x2, that is, ∆x∇Φ(w)(x) := d2/dx2(∇Φ(w)(x)). We also

define an Ornstein–Uhlenbeck operator �OU on � by

�OUΦ(w) :=
1

2

(
Tr

[
∇2Φ(w)

]
+ (w,∆x∇Φ(w))

)
.

It is well known that a unique solution to an �OU-local martingale prob-

lem on � coincides with the (law of) unique solution to a stochastic heat

equation driven by space-time white noise.

Let us introduce a set K1,2 := {w ∈ C([0, 1]);h1(x) ≤ w(x) ≤ h2(x),

∀x ∈ (0, 1)} which is a support of β1,2. Then a kind of (infinite dimensional)

Gauss’ divergence formula holds on K1,2.

Theorem 4.1 (Funaki–Ishitani[4]). There exists a family of measures

{ν(r, ·)}r∈[0,1] such that, for every Φ ∈ C1
b (K1,2) and h ∈ H1

0 (0, 1)∩H2(0, 1),

∫
K1,2

(∇Φ(w), h)β1,2(dw)

= −
∫
K1,2

Φ(w)(h′′, w)β1,2(dw) +

∫ 1

0
h(r) dr

∫
Φ(w)ν(r, dw).

The family of measures ν describes the metrical boundary of K1,2 with

respect to β1,2. Such measures are supported on the set of paths which hit

h1 or h2 exactly once (note that the topological boundary of K1,2 is the

paths that may hit h1 or h2 many times). We omit to give the measure ν

in the statement precisely since the formula itself is not important here and

rather complicated.

Let us define Ξε(w) := exp
{
−1

ε

(
‖(w − h1)

−‖2
L2 + ‖(w − h2)

+‖2
L2

)}
and ζε(w;x) := 2

ε ((w(x) − h1(x))
− − (w(x) − h2(x))

+). Note that

ζε(w;x)Ξε(w) = ∇Ξε(w)(x). Straightforward computations lead us to

lim
ε↓0

∫
S

Φ(w)(h, ζε(w; ·))Ξε(w)β(dw)(14)

= −
∫ 1

0
dr

∫
h(r)Φ(w)ν(r, dw)
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for every Φ ∈ Cb(K1,2), and

(15)

∫
K1,2

(∇Φ(w),∇Ψ(w))β1,2(dw)

= −2

∫
K1,2

Φ(w)�OUΨ(w)β1,2(dw) +

∫ 1

0
dr

∫
∇Ψ(w)(r) Φ(w)ν(r, dw)

for every Φ ∈ C1
b (K1,2) and Ψ ∈ �.

Now, let us define a bilinear form by

�(Φ,Ψ) :=
1

2

∫
K1,2

(∇Φ(w),∇Ψ(w))βf1,2(dw)(16)

for Φ,Ψ ∈ �.

Theorem 4.2. (�,�) is a closable bilinear form and its closure deter-

mines a quasi-regular Dirichlet form with which u(t) is associated.

Proof. The proof will be done by tracing Zambotti’s method[11].

Let us start the proof with defining

�εΦ(w) := �OUΦ(w) +
1

2
(ζε(w; ·),∇Φ(w))

for Φ ∈ �, and µε(dw) := Ξε(w)βf (dw)/Zε. Then �ε is essentially self-

adjoint on L2(S;µε) ≡ L2(µε). We denote by (�ε, D(�ε)) its closure.

Using the probability measure µε, we define another bilinear form by

�ε(Φ,Ψ) :=
1

2

∫
S
(∇Φ(w),∇Ψ(w))µε(dw)

for Φ,Ψ ∈ �. Then it is easily shown that

�ε(Φ,Ψ) = −
∫
S

Φ(w)�εΨ(w)µε(dw)(17)

for Φ ∈ D(�ε) ≡ D((−�ε)1/2) and Ψ ∈ D(�ε). Note that it holds especially

for Φ,Ψ ∈ �. Let us define a norm ‖·‖
W 1,2

ε
on � by ‖Φ‖2

W 1,2
ε

:= ‖Φ‖2
L2(dµε)+

‖∇Φ‖2
L2([0,1]×S;dx×dµε). We denote by �̄ε the completion of � by ‖ · ‖

W 1,2
ε

.

Then, (17) still holds for Φ ∈ �̄ε and Ψ ∈ �. Note that, it is clear thatW 1,2
ε ,
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the space of all functionals on S with finite ‖ · ‖
W 1,2

ε
-norm, is contained in

D(�ε). Now we see that (�ε,�) is a closable symmetric bilinear form and

(�ε, �̄ε) is a Dirichlet form which determines a diffusion process satisfying

uεt (x, t) =
1

2
∆xu

ε(x, t) − f(x, t;uε(x, t)) +
1

2
ζε(u

ε(x, t);x) + Ẇ ,

see Funaki[3] for detail. Hence, the semigroup P ε
t Φ(w) := Ew[Φ(uε(t))]

and the resolvent Gε
αΦ(w) :=

∫∞
0 e−αtP ε

t Φ(w) dt correspond to (�, �̄ε). It

means that Gα(L2(µε)) ⊂ �̄ε and

�ε
α(Gε

αΦ,Ψ) := �ε(Gε
αΦ,Ψ) + α(Gε

αΦ,Ψ)L2(µε) = (Φ,Ψ)L2(µε)(18)

for every Φ ∈ L2(µε) and Ψ ∈ �̄ε.

Now let us define a semigroup and a resolvent determined by the

diffusion process u(t) by PtΦ(w) := Ew[Φ(u(t))] and GαΦ(w) :=∫∞
0 e−αtPtΦ(w) dt, respectively. Then it is easy to see that P ε

t Φ(w) →
PtΦ(w) and Gε

αΦ(w) → GαΦ(w) as ε ↓ 0. Hence we have, by using (13)

and combining with (14), that∫
S
Gε

αΦ(w)(ζε,∇Ψ(w))µε(dw) → −
∫ 1

0
∇Ψ(w)(r) dr

∫
GαΦ(w)ν(r, dw).

It means, by comparing with (15), that limε↓0 �ε(Gε
αΦ,Ψ) = �(GαΦ,Ψ) for

every Φ ∈ � and Ψ ∈ Cb(K1,2).

On the other hand, from (18), we have �(GαΦ,Ψ) = −(αGαΦ − Φ,

Ψ)
L2(βf

1,2)
. Since Gα is a resolvent associated with u(t), there exists a

Dirichlet form (�̃, D(�̃)), Gα(L2(βf1,2)) ⊂ D(�̃), such that �(GαΦ,Ψ) =

�̃(GαΦ,Ψ) for every Φ ∈ L2(βf1,2) and Ψ ∈ �, which means that, �(Φ,Ψ) =

�̃(Φ,Ψ) for every Φ ∈ Gα(�) and Ψ ∈ �. The right hand side is defined for

Φ ∈ Gα(L2(βf1,2)) and Ψ ∈ D(�̃), that is, (�, Gα(�)) has a closed extension.

Finally, let us consider an approximating bilinear form �̃
(α)

(Φ,Ψ) :=

α(Φ − αGαΦ,Ψ)
L2(βf

1,2)
for �̃ defined for Φ,Ψ ∈ L2(βf1,2). It is well

known that ([2, Lemma 1.3.4]) �̃
(α)

(Φ,Φ) is monotone increasing with

respect to α, �̃(Φ,Ψ) = limα→∞ �̃
(α)

(Φ,Ψ), and D(�̃) = {Φ ∈ L2(βf1,2);

limα→∞ �̃
(α)

(Φ,Φ) < ∞}. Since �̃
(α)

(Φ,Ψ) = α�(GαΦ,Ψ), we can con-

clude that D(�) = D(�̃) = W 1,2(βf1,2). Now we proved that Gα is a re-

solvent associated with (�, D(�)), with which the diffusion process u(t) is

associated. Hence (�, D(�)) is a quasi-regular Dirichlet form. �
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