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An Extension Theorem for Real Analytic Solutions to

Relative Hyperbolic Systems

By Hiroshi Koshimizu

Abstract. We give a vanishing result for the cohomologies of
solution complexes to microlocally relative hyperbolic systems. As
an application, we prove a Bochner-type extension theorem on real
analytic solutions to such systems.
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1. Introduction

Let M be a real analytic manifold and N its submanifold of codimension

d ≥ 1. We denote by Y ⊂ X a complexification of N ⊂ M . Let AM (resp.

BM ) be the sheaf of real analytic functions (resp. Sato’s hyperfunctions) on

M and DX the sheaf of holomorphic differential operators on X. Then our

subject is to give a sufficient condition on a coherent DX -module M for the

vanishing of the cohomologies :

HjµNRHomDX
(M,BM ) � 0 for any j < d,(1.1)
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where µN is Sato’s microlocalization functor along N .

In this paper, we formulate the condition on M as “microlocally relative

hyperbolicity” introduced in our previous paper [10] (see also Section 2.2

for the detail). For the sake of simplicity, consider a product of two real

analytic manifolds M = M ′ × M ′′ = {(x′, x′′)} with its complexification

X = X ′×X ′′ and a closed submanifold N = N ′×M ′′ = {x1 = x2 = 0} ⊂ M

of codimension d = 2. We set V := X ×X′′ T ∗X ′′ and Λ := M ×M ′′ T ∗
M ′′X ′′.

Choose two operators :

Pj = Ej · Qj + (lower order terms) ∈ DX , j = 1, 2(1.2)

such that

1) the coherent DX -module (system) DX/ΣDXEj is partially elliptic

along V on Λ in the sense of Bony-Schapira[2].

2) for j = 1, 2 the operator Qj is 1 ∈ DX or hyperbolic in the direction

p ∈ Ṫ ∗
NM and its principal symbol σ(Qj) is written in the form qj(z; ζ ′).

3) the coherent DX -module M = DX/ΣDXPj is non-microcharacter-

istic for Y along V on Λ.

Then we will prove the vanishing of the cohomologies (1.1) for the system

M = DX/(DXP1 + DXP2).

As a result, a Bochner-type extension theorem will be deduced. Namely

every real analytic solution u ∈ AM of the system P1u = P2u = 0 defined on

an open tuboid Ω along N automatically extends to an open neighborhood

of N . The microlocal Holmgren’s theorem (Bony [1]) is useful to deduce

this result.

The vanishing of the cohomologies (1.1) has been considered for a long

time. First Kashiwara-Kawai [4] showed the vanishing result under the

additional condition of the ellipticity of M. Recently sufficient conditions

on M were given under the weaker condition of “microlocal hyperbolicity”

(Theorem 3.9 of Takeuchi [13]) or “partial ellipticity” (Theorem 4.8 of [13]).

The former is the case where M ′′ is reduced to a point, and the latter is the

case where Q1 = Q2 = 1 in our setting (1.2). Hence we consider that our

result would be a natural generalization of some results of [13] and [14]. For

another generalizations of the results in [13] and [14], see also [9] and Sugiki

[12] etc. It should be mentioned that the theory of bimicrolocalization and

the micro-support theory developed in [7] enabled us to relax the condition

on M.
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2. Preliminary Notions and Results

2.1. A vanishing theorem for microlocally hyperbolic systems

Let M be a real analytic manifold and N its closed submanifold of

codimension d ≥ 1. We denote by Y ⊂ X a complexification of N ⊂ M .

We recall the notion of micro-hyperbolicity ([6],[7]). Let M be a coherent

DX -module and

i : T ∗
MX ×M T ∗M −→ T ∗(T ∗

MX) � T(T ∗
MX)T

∗X(2.1)

the natural injection induced by the projection T ∗
MX −→ M . Assume

(q, p) ∈ T ∗
MX×M Ṫ ∗M . (If there is no risk of confusion, we identify p ∈ Ṫ ∗M

with it’s fiber.) Then we say that M is micro-hyperbolic in the direction

p ∈ Ṫ ∗M at q ∈ T ∗
MX if the characteristic variety ChM of M satisfies the

condition :

{i(q, p)} ∩ CT ∗
MX(ChM) = ∅.(2.2)

Moreover we say that M is hyperbolic in the direction p ∈ Ṫ ∗M , if M
is micro-hyperbolic in the same direction at any point (having the same

base point in M as p) of T ∗
MX. Note that by the conicness of ChM, M

is hyperbolic (to some direction) if and only if M is micro-hyperbolic at

the zero-section of T ∗
MX. Take a natural projection π̇ : Ṫ ∗

MX ×M T ∗M −→
T ∗M .

Definition 2.1. ([13]) Let M be a coherent DX -module. We say M
is microlocally hyperbolic in the direction p ∈ Ṫ ∗M , if M satisfies :

i(π̇−1(p)) ∩ CT ∗
MX(ChM) = ∅.(2.3)

Note that this condition is strictly weaker than that of hyperbolicity

(ellipticity). Indeed let E (resp. Q) ∈ DX be an elliptic differential operator
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(resp. a hyperbolic operator in a direction p ∈ Ṫ ∗
NM) on X, and set P =

E ·Q+(lower order terms). Then the DX -module DX/DXP is microlocally

hyperbolic in the direction p ∈ Ṫ ∗
NM . But it’s not elliptic nor hyperbolic in

general.

In this situation, the following vanishing of cohomologies was proved in

[13].

Proposition 2.2. ([13]) Let M be a coherent DX-module and p ∈
Ṫ ∗
NM . If M is non-characteristic for Y and microlocally hyperbolic in the

direction p ∈ Ṫ ∗
NM , then we have:

HjµNRHomDX
(M,BM ) � 0(2.4)

at p ∈ Ṫ ∗
NM for every j < d.

We shall extend this result to relative cases in the next section. Note that

an application of Proposition 2.2 to the extension theorem of distribution

solutions (C∞-solutions) was given in [9].

Remark 2.3. The same vanishing result was proved also for partially

elliptic systems in [13]. Various edge of the wedge type extension theorems

for solutions to partially elliptic systems were deduced from this result. See

[13] and [14] for the details.

2.2. Microlocal relative hyperbolicity

Let M = M ′ × M ′′ be a product of two real analytic manifolds and g :

M −→ M ′′ the second projection. We consider a complexification X = X ′×
X ′′ of M = M ′×M ′′ and denote by gC : X −→ X ′′ the complexification of g.

Then we can define relative cotangent bundles T ∗(M/M ′′) and T ∗(X/X ′′)
by the exact sequences :{

0 −→ Λ = M ×M ′′ T ∗
M ′′X ′′ −→ T ∗

MX −→ T ∗(M/M ′′) −→ 0

0 −→ V = X ×X′′ T ∗X ′′ −→ T ∗X −→ T ∗(X/X ′′) −→ 0.
(2.5)

Note that ΣC
g := T ∗(X/X ′′) ×X V is considered as a complexification of

Σg := T ∗(M/M ′′) ×M Λ .

Since X is written as a product X ′ × X ′′ of two complex manifolds, we

have canonical isomorphisms :

T ∗X � T ∗X ′ × T ∗X ′′ �−→ ΣC
g = T ∗(X/X ′′) ×X V � TV (T ∗X).(2.6)
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Hence we can make use of the non-degenerated 2-form ΩX on T ∗X to con-

struct the Hamiltonian isomorphism :

T (TV (T ∗X))
�−→ T ∗(TV (T ∗X)).(2.7)

Since Σg (resp. ΣC
g ) is locally isomorphic to T ∗

MX (resp. to T ∗X = T ∗X ′ ×
T ∗X ′′), the isomorphism (2.7) and the injection :

Σg ↪→ ΣC
g � TV (T ∗X)(2.8)

induce an isomorphism :

TΣg(Σ
C
g ) � T ∗(Σg)(2.9)

as in the same way as the definition of micro-hyperbolicity.

Finally consider the injection :

ig : Σg ×M T ∗M ↪→ T ∗(Σg)(2.10)

and the projection :

π̇g : Σ̇g ×M T ∗M −→ T ∗M where Σ̇g := Ṫ ∗(M/M ′′) ×M Λ.(2.11)

Definition 2.4. Let M be a coherent DX -module. We say that M is

microlocally relative hyperbolic (w.r.t. g) in the direction p ∈ Ṫ ∗M ′ × M ′′

if M satisfies :

ig(π̇
−1
g (p)) ∩ CΣg(CV (ChM)) = ∅.(2.12)

Assume locally X = X ′×X ′′ = C
l
z′ ×C

n−l
z′′ with z′ = (z1, z2, ..., zl), z′′ =

(zl+1, ..., zn). Take a local coordinate system (z; ζdz), z = x + iy, ζ = ξ + iη

of T ∗X in which M = {y = 0} ⊂ X. Finally set ξ̂ = (ξ2, ..., ξl). Then the

following result was proved in [10].

Lemma 2.5. (Lemma 4.3 of [10]) Let M be a coherent DX-module.

Assume that M is microlocally relative hyperbolic (w.r.t. g) in the direction
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+dx1 ∈ Ṫ ∗M ′×M ′′. Then there exists a small ε > 0 such that ChM∩Uε = ∅
in an open neighborhood of M in T ∗X, where we set

Uε := {(z; ζ) ∈ T ∗X; 0 < ξ1 < ε|η′|, |ξ̂| < εξ1, |y| · |η′| < εξ1}.(2.13)

Before giving an example of microlocally relative hyperbolic operators,

we recall the notion of partial ellipticity. Consider the injection (2.8) and

the projection π̇Λ : Σ̇g −→ Λ.

Definition 2.6. (Bony-Schapira [2]) A coherent DX -module M is said

to be partially elliptic along V at p ∈ Λ if

π̇−1
Λ (p) ∩ CV (ChM) = ∅.(2.14)

For example, an elliptic operator on X ′ can be considered as a differential

operator on X = X ′×X ′′ partially elliptic along V on Λ. Moreover, we can

easily see that the principal symbol σ(E) of a differential operator E ∈ DX

partially elliptic along V on the whole Λ is written in the form e(z; ζ ′)
(use the partial ellipticity on the zero-section of Λ → M). Note also that

a coherent DX -module M partially elliptic along V on Λ is microlocally

relative hyperbolic in any direction p ∈ Ṫ ∗M ′ × M ′′.

Example 2.7. Let E ∈ DX be partially elliptic along V on Λ and as-

sume that Q ∈ DX is hyperbolic in the direction p ∈ Ṫ ∗M ′ × M ′′ and its

principal symbol σ(Q) is written in the form q(z; ζ ′). Then the operator

P := E · Q + (lower order terms) is microlocally relative hyperbolic in the

direction p ∈ Ṫ ∗M ′ × M ′′.

Example 2.8. Take two operators

Pj = Ej · Qj + (lower order terms), j = 1, 2(2.15)

such that the following conditions are satisfied :

1) the coherent DX -module (system) DX/ΣDXEj is partially elliptic

along V on Λ.
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2) for j = 1, 2 the operator Qj is 1 ∈ DX or hyperbolic in the direction

p ∈ Ṫ ∗M ′ × M ′′ and its principal symbol σ(Qj) is written in the form

qj(z; ζ ′).
Then M = DX/ΣDXPj is microlocally relative hyperbolic in the direc-

tion p ∈ Ṫ ∗M ′ × M ′′.

2.3. Microlocal Holmgren’s theorem

In Section 4, we make use of the microlocal version of Holmgren’s theo-

rem to sweep out microfunction solutions. Let M be a real analytic manifold

and N = {x1 = 0} its closed submanifold of codimension one. We denote

by Y ⊂ X a complexification of N ⊂ M and M+ = {x1 ≥ 0} a closed subset

of M . Then the classical Holmgren’s theorem for hyperfunction solutions is

stated as follows :

Proposition 2.9. Let M be a coherent DX-module for which Y is

non-characteristic. Then we have :

ΓM+HomDX
(M,BM ) |N= 0.(2.16)

In fact, we need a microlocal version of the above proposition. For

this purpose, we consider the same situation as Section 2.2. That is M =

M ′×M ′′ and consider the second projection g : M −→ M ′′. We take a closed

submanifold N = N ′×M ′′ ⊂ M of codimension one. Then g |N : N −→ M ′′

is also surjective. In this situation, a complexification Y of N can be taken

as Y = Y ′ × X ′′ in X = X ′ × X ′′. Now there is a natural injection :

T ∗
Y X ×X V −→ T ∗(X/X ′′) ×X V � TV (T ∗X)(2.17)

and a projection π̇Y : Ṫ ∗
Y X ×X V −→ V .

Definition 2.10. (Bony [1]) Let M be a coherent DX -module. We

say M is non-microcharacteristic for Y along V at p ∈ V if

π̇−1
Y (p) ∩ CV (ChM) = ∅.(2.18)

Recall that Λ = M ×M ′′ T ∗
M ′′X ′′ = M ×LT ∗

LX where L := g−1
C

(M ′′) ⊂ X

and set ΛN = N ×L T ∗
LX, Λ+ = M+ ×L T ∗

LX.
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Proposition 2.11. (Bony [1]) If M is non-microcharacteristic for Y

along V at p ∈ ΛN , then we have :

ΓΛ+(HomDX
(M, CM ) |Λ) |p= 0.(2.19)

3. A Vanishing Theorem for Microlocally Relative Hyperbolic

Systems

In this section, we shall give a vanishing theorem for microlocally rela-

tive hyperbolic systems. In the next section, we apply this theorem to the

extension of real analytic solutions.

We consider the same situation as in Section 2.2, 2.3 and inherit the

notations there. Now we take a closed submanifold N ′ ⊂ M ′ of codimension

d ≥ 1 and set N = N ′ × M ′′ ⊂ M . Then a complexification of N in

X = X ′ × X ′′ can be taken in the form Y = Y ′ × X ′′. Finally we set

(g |N )C : Y = Y ′ × X ′′ −→ X ′′.

Theorem 3.1. Let p ∈ Ṫ ∗
NM and d := codimR

MN ≥ 1. Assume that a

coherent DX-module M satisfies the conditions :

(i) M is non-microcharacteristic for Y along V at any point of ΛN i.e.

(Ṫ ∗
Y X ×X ΛN ) ∩ CV (ChM) = ∅.

(ii) M is microlocally relative hyperbolic (w.r.t. g) in the direction p ∈
Ṫ ∗
NM .

Then we have :

HjµNRHomDX
(M,BM ) � 0 at p ∈ Ṫ ∗

NM for every j < d.(3.1)

Note that by the assumption (i) the coherent DX -module M is non-

characteristic for Y on N in the usual sense (use the non-microcharactericity

of M on the zero-section of ΛN → N).

Proof of Theorem 3.1. Set L = g−1
C

(M ′′) ⊂ X, H =

(g |N )−1
C

(M ′′) ⊂ Y and ι : L ↪→ X. Next consider the complex G =
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ι!RHomDX
(M,OX)[n] where n = dimCX. Then the micro-support SS(G)

of G is estimated by

SS (G) ⊂ ι�(SS(RHomDX
(M,OX))) = T ∗L ∩ CT ∗

LX
(ChM)(3.2)

where T ∗L ↪→ T ∗T ∗
LX � TT ∗

LX
(T ∗X) is a natural injection(Corollary 6.4.4,

Proposition 6.2.4 of [7]). Now we prepare the following two lemmas to prove

the theorem.

Lemma 3.2. Let ρ1 : T ∗
NL −→ T ∗

NM be the projection induced by f :

M ↪→ L. Then we have :

µNRHomDX
(M,BM )p(3.3)

� Rρ1!µNRHomDX
(M, RΓL(OX) |L [n])p

Proof of Lemma 3.2. We consider the closed embedding f : M ↪→ L.

Then L.H.S. of (3.3) equals to µN (f !G)p. Hence by virtue of Theorem 6.7.1

of [7], the problem is reduced to the verification of the condition :

f is non-characteristic for G at p ∈ T ∗M. i.e. p /∈ f �
∞(SS(G)).(3.4)

From now on, we shall prove this by a contradiction. Assume that

p ∈ f �
∞(SS(G)), and we show that it contradicts the assumption (ii) of M.

The problem being local, we may assume :


X = C
l × C

n−l ⊃ L = C
l × R

n−l ⊃ M = R
l × R

n−l

Y = ({0} × C
l−d) × C

n−l ⊃ H = C
l−d × R

n−l ⊃ N

= R
l−d × R

n−l

(3.5)

where z = (z′, z′′), z′ = (z1, z2, ..., zl) = (z1, ẑ), z′′ = (zl+1, ..., zn) is the

coordinate system of X, X ′ = C
l and X ′′ = C

n−l respectively, and Y =

{z1 = · · · = zd = 0} ⊂ X (1 ≤ d ≤ l). We take the associated coordinate

system (z; ζdz) = (x+iy; ξ+iη) of T ∗X, and we may assume p = (0; +dx1) ∈
Ṫ ∗
NM without loss of generality.

By Proposition 6.2.4 of [7], we can find sequences :{
(z′n, x′′

n; ζ ′n, ξ′′n) ∈ SS(G) ⊂ T ∗L
(x̄′

n, x̄′′
n) ∈ M

(3.6)
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such that : 


(z′n, x′′
n) −→ (0, 0), (x̄′

n, x̄′′
n) −→ (0, 0)

((ξ1n, ξ̂n), ξ′′n) −→ ((1, 0), 0)

|(z′n − x̄′
n, x′′

n − x̄′′
n)| · |(ζ ′n, ξ′′n)| −→ 0

|(ζ ′n, ξ′′n)| −→ +∞.

(3.7)

By the above relation, we obtain :

(ξ1n, ξ̂n) −→ (1, 0), |y′n| · |η′
n| −→ 0, |η′

n| −→ +∞.(3.8)

Moreover by the formula (3.2) and the well-known characterization (by se-

ries) of the normal cone CT ∗
LX

(ChM), for every n ∈ N there exists a se-

quence indexed by m ∈ N :{
(z′nm, z′′nm; ζ ′nm, ζ ′′nm) ∈ Ch(M)

cnm ∈ R
+(3.9)

satisfying : 


(y′′nm, ζ ′nm, ξ′′nm) −→ (0, 0, 0)

(z′nm, x′′
nm, η′′

nm) −→ (z′n, x′′
n, 0)

cnm(y′′
nm, ζ ′nm, ξ′′nm) −→ (0, ζ ′n, ξ′′n)

(3.10)

as m −→ +∞. Hence by extracting subsequences of (3.9), we obtain the

sequences : {
(z′j , z′′j ; ζ ′j , ζ ′′j ) ∈ Ch(M)

cj ∈ R
+(3.11)

such that :{
(cjξ1j , cj ξ̂j) −→ (1, 0), |y′j | · |cjη′

j | −→ 0, |cjη′
j | −→ +∞.

η′
j −→ 0, cjy

′′
j −→ 0

(3.12)

as j −→ +∞. Then (z′j , z′′j ; cjζ
′
j , cjζ

′′
j ) ∈ Ch(M) by the conicness of Ch(M)

and for any small ε > 0 there exists a sufficiently large j0 ∈ N such that :{
cjξ1j < ε|cjη′

j |, |cj ξ̂j | < ε|cjξ1j |
|yj | · |cjη′

j | < |y′
j | · |cjη′

j | + |cjy′′
j | · |η′

j | < ε|cjξ1j |
(3.13)
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for any j > j0. According to Lemma 2.5, this contradicts the microlocal

relative hyperbolicity of M. �

Lemma 3.3. Let ρ2 : T ∗
NL −→ T ∗

NH be the projection induced by h :

H ↪→ L. Then we have :

Rρ2∗µNRHomDX
(M, RΓL(OX) |L [n])(3.14)

� RHomDY
(MY , µN (RΓH(OY ) |H)[n − d])[−d].

Proof of Lemma 3.3. Let h : H ↪→ L be the embedding. Then the

R.H.S. of (3.14) is equal to :

µN (RΓH(RHomDY
(MY ,OY )[n − 2d]) |H)

� µN (RΓH(RΓY RHomDX
(M,OX)[n]) |H)

� µN (h!G).

(3.15)

Here the first isomorphism in(3.15) is a result of [3] (We can prove it by Ex

XI.1.11 of [7]). Hence by virtue of Theorem 6.7.1 of [7], it is enough to show

the condition :

h is non-characteristic for G. i.e. SS(G) ∩ Ṫ ∗
HL = ∅.(3.16)

We can prove :

Ṫ ∗
HL ∩ (CT ∗

LX
(ChM)) ⊂ Ṫ ∗

HL ∩ (CV (ChM))(3.17)

easily from the inclusion T ∗
LX ⊂ V . Then the condition (3.16) follows from

the non-microcharactericity of M (use Ṫ ∗
HL ⊂ Ṫ ∗

Y X) and the estimate (3.2)

of SS(G). �

Let us continue the proof of Theorem 3.1 : The complex

µN (RΓH(OY ) |H)[n − d] is concentrated in degree 0 by Kashiwara’s ab-

stract edge of the wedge theorem ([5]). Moreover it follows from the non-

microcharactericity of M that the morphism ρ2 is finite on

supp µNRHomDX
(M, RΓL(OX) |L [n]). Hence the conclusion follows from

Lemma 3.2 and 3.3. �
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4. An Extension Theorem for Real Analytic Solutions

In this section, we shall give an extension theorem for real analytic

solutions to microlocally relative hyperbolic systems under some conditions.

We consider the same situation as in Section 3 with d := codimR
MN ≥ 2

and inherit the notations there. The problem being local, we may assume :


X = C
l × C

n−l ⊃ L = C
l × R

n−l ⊃ M = R
l × R

n−l

Y = ({0} × C
l−d) × C

n−l ⊃ N

= ({0} × R
l−d) × R

n−l (2 ≤ d ≤ l)

X ′ = C
l, X ′′ = C

n−l and V = X ×X′′ T ∗X ′′.

(4.1)

In this section, we take a coordinate system of X as follows :

z = (z1, z2, ..., zd, zd+1, ..., zn) = (z1, z̄, z̃).(4.2)

Here Y = {z1 = 0, z̄ = 0} ⊂ X and we also take p = (0; +dx1) ∈ Ṫ ∗
NM .

In this situation, let us consider open tuboids Ωδ,ε ⊂ M = R
n along N

(resp. open subsets Ωδ of M = R
n) defined for ε, δ > 0 as follows.{

Ωδ = {x ∈ M = R
n; |(x1, x̄)| < δ, |x̃| < δ}

Ωδ,ε = {x ∈ M = R
n; x1 < ε |x̄|, |(x1, x̄)| < δ, |x̃| < δ}.

(4.3)

Theorem 4.1. Let M be a coherent DX-module satisfying the condi-

tions :

(i) M is non-microcharacteristic for Y along V .

(ii) M is microlocally relative hyperbolic (w.r.t.g) in the direction p ∈
Ṫ ∗
NM .

(iii) M is micro-hyperbolic in the +dx1-direction on Ṫ ∗
MX\Λ̇ where Λ̇ :=

M ×L Ṫ ∗
LX.

Then there exists a sufficiently small ε > 0 such that :

lim−→
δ>0

Γ(Ωδ;HomDX
(M,AM ))

�−→ lim−→
δ>0

Γ(Ωδ,ε;HomDX
(M,AM )).(4.4)

Namely every real analytic solution to M on an open tuboid Ωδ,ε for 0 <

δ << 1 extends to an open neighborhood of N as a real analytic solution.
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Proof. We have by Theorem 3.1 :

HomDX
(M,BM )0

�−→ lim−→
δ,ε>0

Γ(Ωδ,ε;HomDX
(M,BM )).(4.5)

This means that for every real analytic solution u ∈ Γ(Ωδ,ε;

HomDX
(M,AM )) with sufficiently small ε, δ > 0 :


there exist 0 < ε′ < ε and 0 < δ′ < δ such that

the restriction u |Ωδ′,ε′ of u to Ωδ′,ε′

extends to an open neighborhood of N

as a hyperfunction solution ũ of M.

(4.6)

By the analytic continuation theorem it is sufficient to show that ũ is ana-

lytic. We shall make use of a microlocal viewpoint to prove it.

First note that :

ũ ≡ 0 on Ṫ ∗
MX ∩ {x1 < 0}(4.7)

as a microfunction solution to M. Next set N ⊂ N0 := {x1 = 0} ⊂ M

and consider its complexification Y0 := {z1 = 0} ⊂ X. We also set M+ =

{x1 ≥ 0}, Λ̇+ = M+ ×L Ṫ ∗
LX and Λ̇N0 = N0 ×L Ṫ ∗

LX. Then by (4.7) and

the microlocal Holmgren’s theorem (Proposition 2.11) we obtain :

ũ ≡ 0 on an open neighborhood of Λ̇+ in Ṫ ∗
MX.(4.8)

It remains to show :

ũ ≡ 0 on (M+ ×M Ṫ ∗
MX)\Λ̇+ = M+ ×M (Ṫ ∗

MX\Λ̇).(4.9)

But this follows from the micro-hyperbolicity of M on Ṫ ∗
MX\Λ̇. This com-

pletes the proof. �

Example 4.2. Assume that d = codimR
MN = 2 and take two differential

operators P1, P2 ∈ DX so that the conditions of Theorem 4.1 are satisfied for

M := DX/ΣDXPj . For example we can take Pj = Ej · Qj(j = 1, 2) by set-

ting E1 = D1+
√
−1D3, E2 = D2+

√
−1D4, Qj = D1+(−1)ja(x5, ..., xn)D2.

Here a(x5, ..., xn) is a non-zero real-valued analytic function of x5, ..., xn.

Then there exists a sufficiently small ε > 0 such that every real analytic

solution :

u ∈ AM satisfying P1u = P2u = 0(4.10)
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on an open tuboid Ωδ,ε (for 0 < δ << 1) extends to an open neighborhood

of N as a real analytic solution.
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