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Examples of Pseudo-Anosov Homeomorphisms with

Small Dilatations

By Hiroyuki Minakawa

Abstract. For a closed orientable surface Σg of genus g ≥ 2, we
give an upper bound for the least dilatation of pseudo-Anosov homeo-
morphisms of Σg. For this purpose, we construct a family of Birkhoff
sections for a suspension Anosov flow. Birkhoff sections have been con-
structed by using cut and paste arguments for surfaces in 3-manifolds.
But we construct them directly and then we obtain piecewise linear
models of the first return mappings of the Birkhoff sections. These
models enable us to investigate their dilatations explicitly, and we ob-
tain necessary estimates.

§0. Introduction

Let Σg be a closed orientable surface of genus g ( g ≥ 1 ). An orientation

preserving homeomorphism f : Σg → Σg is called pseudo-Anosov if there is

a pair of measured foliations (Fσ, µσ) ( σ = +,− ) possibly with common

prong singularities so that

(1) f preserves Fσ ( σ = +,− ),

(2) F+ and F− intersect transversely outside the singularities,

(3) f∗µ+ = λµ+, f∗µ− = λ−1µ− for some real number λ > 1,

where f∗µσ(γ) = µσ(f−1(γ)) for any transverse arc γ of Fσ ( σ = +,− )

( see, for example, [5], [6], and [18] ). Note that, in case g = 1, both F+

and F− are without singularities and f is an Anosov homeomorphism. The

constant λ is called the dilatation of f . The spectra of Σg are defined to be

the sets

Spec(Σg) = {log λ | λ is the dilatation of a p.A. homeomorphism of Σg}
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96 Hiroyuki Minakawa

and

Spec(Σg)
+

=

{
log λ

λ is the dilatation of a p.A. homeomorphism of Σg

with orientable invariant measured foliations

}
.

It is known that Spec(Σg) has no accumulation points ( see [1] ). We denote

the least element of Spec(Σg) ( resp. Spec(Σg)
+ ) by δg ( resp. δ+g ). It is

well known that δ1 = δ+1 = log 3+
√

5
2 which is the logarithm of the maximal

eigenvalue of a matrix

(
2 1

1 1

)
. In case g = 2, Zhirov showed that δ+2 is

equal to the maximal modulus root of x4 − x3 − x2 − x+ 1 = 0 ( [19] ), but

δ2 still has not been determined. In case g ≥ 3, we have log 2
6g−6 ≤ δg ≤ log 6

g

(see [2], [16] ). In this paper, we give an upper bound of δ+g which is an

improvement of the last upper bound. In fact, we shall prove that

δ+g ≤ log(2 +
√

3)

g
for any g ≥ 3.

This paper is organized as follows. In §1, we construct following Fried

[8], a family of Birkhoff sections Sn ( n ∈ N ) for the suspension Anosov

flow with monodromy

(
3 2

1 1

)
and reconstruct by our method them without

using cut and paste operations. For any n ∈ N, the first return mapping of

Sn gives us a pseudo-Anosov homeomorphism fn of Σn. In §2, we construct

a piecewise linear model of the pseudo-Anosov homeomorhism fn found in

§1. In §3, we estimate the dilatation λ(fn) of fn in a geometric way and show

that λ(fn) ≤ log(2+
√

3)
n for any n ∈ N. In §4, we calculate the characteristic

polynomial of (fn)∗ : H1(Σn) → H1(Σn) and find that f1 and f2 attain

δ1 and δ+2 respectively. We also observe that f2 is different from Zhirov’s

example mentioned above.

§1. Construction of Examples

In [8], Fried showed that every transitive Anosov flow of a closed 3-

manifold has a Birkhoff section. A non-singular flow φt of a closed, con-

nected 3-manifold M is called Anosov if there exists a continuous splitting
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TM = Tφt ⊕ Eu ⊕ Es of the tangent bundle TM of M into dφt-invariant

one-dimensional subbundles with the following properties.

(1) Tφt is tangent to the flow,

and moreover, given a Riemannian metric, there exist constants C > 0 and

0 < λ < 1 such that

(2) ‖dφt(v)‖ ≤ Cλt‖v‖ for any v ∈ Es, t > 0, and

(3) ‖dφ−t(v)‖ ≤ Cλt‖v‖ for any v ∈ Eu, t > 0.

Given a flow φt on a closed connected 3-manifold M , a Birkhoff section

for the flow is defined to be the pair of a compact connected surface S with

boundary and an immersion ι : S →M satisfying the following conditions.

(1) The restriction ι|Int(S) is an embedding transverse to the flow, where

Int(S) denotes the interior of S.

(2) Each component of the boundary ∂S covers a periodic orbit by ι.

(3) Every orbit starting from any point of M meets S in a uniformly

bounded time.

The image ι(S) is also called a Birkhoff section, and the image ι(∂S) is

called the boundary of ι(S).

Before explaining the main construction, we explain the method of con-

struction of Birkhoff sections in [8]. Let φt be a flow of a closed connected

3-manifold M . For any embedded arcs J1, J2 in M transverse to the flow,

J1 is said to be connected to J2 by φt if there exists a positive continuous

function τ : J1 → R such that for any x ∈ J1, φ
τ(x)(x) belongs to J2 and

the mapping g : J1 → J2, defined by g(x) = φτ(x)(x), is a homeomorphism.

The minimum element among all such functions as τ above is called the

arrival time mapping from J1 to J2. Then the flow band bounded by J1 and

J2 is defined to be the set

[J1, J2] =
{
φt(x) ∈M | x ∈ J1, 0 ≤ t ≤ τ(x)

}
,

where τ is the arrival time mapping from J1 to J2.

Now let φt be an Anosov flow of a closed connected 3-manifold M , and

R an immersed quadrangle XY ZU , whose interior is an embedded surface,
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in M transverse to φt. Suppose that the edge XY is connected to the edge

ZY by φt so that Y ∈ XY is connected to Y ∈ ZY and also ZU to XU so

that U ∈ ZU is connected to U ∈ XU . Then the union

P1 = R ∪ [XY,ZY ] ∪ [ZU,XU ]

is a topologically immersed surface of a pair of pants P , whose boundary

consists of periodic orbits through X, Y and U . Note that the periodic orbit

through Z is the same as that through X, and that some of these orbits

through X, Y and U may be identical. Take a defining topological immer-

sion ι1 : P →M of P1 such that ι1 is a covering map on each component of

∂P . Then perturb ι1 slightly on its interior Int(P ) and we get an immersion

ι : P →M such that ι|Int(P ) is transverse to the flow. Then we denote the

image ι(P ) by P (R). Note that, in general, even the restriction ι|Int(P ) is

not an embedding. This construction plays an important role in [8]. Indeed,

consider the finite union Σ′ of sufficiently many such surfaces P1, · · · , Ps as

P (R), for example, such that each orbit of φt goes through Int(Pi) for some

1 ≤ i ≤ s. If we suitably cut and paste Σ′ along its self-intersection point

sets, we obtatin a Birkhoff section ( see, for more details, [8] ). In his paper,

he found such a quadrangle by using a Markov partition of an Anosov flow.

But, in this paper, we will define such a quadrangle of a suspension Anosov

flow explicitly as follows.

Now, let A =

(
3 2

1 1

)
, and let Ā : T 2 → T 2 be the hyperbolic toral

automorphism defined by

Ā(

[
x

y

]
) =

[
A

(
x

y

)]

for any

[
x

y

]
∈ T 2 = R2/Z2. The mapping torus MĀ is the 3-manifold

defined by MĀ = T 2 ×R/ ∼, where ∼ is the equivalence relation generated

by (

[
x

y

]
, t + 1) ∼ (Ā

[
x

y

]
, t) for any

[
x

y

]
∈ T 2 and any t ∈ R. Let π :

T 2 × R → MĀ be the quotient map. It is well-known that the vector field
∂
∂t on T 2×R gives rise to an Anosov flow φt

Ā
of MĀ. We denote the quotient

image π(T 2 × {t}) by T 2
t , and we identify T 2 with T 2

0 .
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Let X =

(
0
1
2

)
, Y =

(
0

0

)
, Z =

(
1
1
2

)
, and U =

(
1

1

)
. Let X̄Ȳ Z̄Ū ⊂

T 2
0 = T 2 be the quotient image of the parallelogram XY ZU ⊂ R2. Note

that X̄ = Z̄ and Ȳ = Ū . Since Ā maps linearly the edge X̄Ȳ to Z̄Ȳ and

Z̄Ū to X̄Ū and fixes X̄ = Z̄ and Ȳ = Ū , we obtain an immersed surface

P̄ = P (X̄Ȳ Z̄Ū) in MĀ. By the method of the construction of P̄ , we may

assume that P̄ intersects T 2
t transversely for any sufficiently small t > 0.

Choose a positive real number 0 < t0 < 1 such that P̄ intersects T 2
t for any

0 ≤ t ≤ t0, and fix it.

Given a positive integer n, choose a positive real number ε > 0 such

that nε < t0 and consider a fake surface P̄ ∪ T 2
ε ∪ T 2

2ε ∪ · · · ∪ T 2
nε. Then we

can cut and paste it suitably to obtain a Birkhoff section Sn. Note that the

boundary ∂Sn is the union of two periodic orbits of φt
Ā

through

[
0

0

]
and[

0
1
2

]
.

In this construction, the cut and paste process prevents us from seeing

the whole picture of Birkhoff section. In order to conquer the difficulties, we

reconstruct Sn as follows. We first perturb X̄Ȳ Z̄Ū ∪ (X̄Ȳ × [0, ε])∪ (Z̄Ū ×
[0, ε]) ⊂MĀ slightly on its interior without moving the boundary such that

the interior of the resultant surface R̄0 is transverse to the flow. Next, for

each 1 ≤ k ≤ n, we perform the same operation on T 2
kε ∪ (X̄Ȳ × [kε, (k +

1)ε]) ∪ (Z̄Ū × [kε, (k + 1)ε]) ⊂ MĀ and we get T̄n,k. Then glue these n+ 1

surfaces along the boundaries transverse to the flow and we again obtain

Sn.

Then the first return mapping of Sn induces a p.A. homemorphism

fn : Σ(n) → Σ(n) by collapsing each boundary component to a point ( [6] ).

More precisely, the first return map of Sn − ∂Sn determines a homeomor-

phism of the pre-immersed compact surface S̃n of Sn. Then we get a home-

omorphism of a closed surface by collapsing each boundary component of

S̃n to a point. It is the map fn which is a required homeomorphism in this

paper.

This reconstruction leads us to the construction of piecewise linear mod-

els of fn and of its invariant foliations F+
n , F−

n as in the next section, which

are useful for estimating the dilatation of fn.



100 Hiroyuki Minakawa

§2. Piecewise Linear Models

We use the same notations as in the construction of Sn in §1. Let R0

be the parallelogram XY ZU in R2, and n a positive integer. Put Rn =

[0, 1]2 × {1, 2, · · · , n} ∪R0 ( disjoint union ) and consider R0 to be a subset

of [0, 1]2 ×{0}. The compact surface S̃n is obtained from the rectangles R̄0,

T̄n,1, · · · , T̄n,n by gluing together in a suitable way along their boundaries

transverse to the flow ( see §1 ). Collapsing each boundary component

of S̃n to a point corresponds to collapsing each boundary component of

R̄0∪T̄n,1∪· · ·∪T̄n,n (disjoint union) tangent to the flow to a point. Then Σ(n)

is homeomorphic to the quotient space of Rn with respect to the following

equivalence relation ∼n. We define ∼n to be the equivalence relation on Rn

generated by the following relations.

(

(
x

0

)
, k) ∼n (

(
x

1

)
, k) (x ∈ [0, 1], 1 ≤ k ≤ n),

(

(
0

y

)
, k) ∼n




(

(
1

y

)
, k + 1) (y ∈ [0, 1

2 ], 0 ≤ k ≤ n− 1),

((1 − 2y)Y + 2yZ, 0) (y ∈ [0, 1
2 ], k = n),

(

(
1

y

)
, k) ∼n




(

(
0

y

)
, k + 1) (y ∈ [12 , 1], 0 ≤ k ≤ n− 1),

((2 − 2y)X + (2y − 1)U, 0) (y ∈ [12 , 1], k = n).

A cell complex structure C of Rn is defined as follows,

0-cell : each corner point of Rn,(
0
1
2

)
× {k},

(
1
1
2

)
× {k} for 0 ≤ k ≤ n,

1-cell : each connected component of ∂(Rn \ { 0-cells } ),

2-cell : each connected component of Int(Rn).

Then we easily show the following lemma by a straightforward calculation.

Lemma 2.1. The quotient family C/ ∼n gives a cell complex structure

of Rn/ ∼n which has 3 vertices, 3n + 2 edges and n + 1 faces. Then the

Euler characteristic of Σ(n) is equal to 2 − 2n which follows that Σ(n) is a

closed orientable surface of genus n.
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Since the flow lines of φt
Ā

are given by vertical lines in T 2 × R and(
3 2

1 1

)
=

(
1 2

0 1

)(
1 0

1 1

)
, we see that the first return mapping of Sn

induces a homeomorphism fn of Σ(n) defined as follows. First define two
maps ϕn and Dn from Rn to itself by

ϕn(

(
x
y

)
, k)

=




(

(
x
y

)
, k + 1) (

(
x
y

)
∈ [0, 1]2, 1 ≤ k ≤ n− 1 or

(
x
y

)
∈ R0, k = 0),

(

(
1 2
0 1

)(
x
y

)
, 1) (

(
x
y

)
∈ [0, 1]2, k = n and x+ 2y ≤ 1),

(

(
1 2
0 1

)(
x
y

)
−
(

1
0

)
, 0) (

(
x
y

)
∈ [0, 1]2, k = n and 1 < x+ 2y < 2),

(

(
1 2
0 1

)(
x
y

)
−
(

2
0

)
, 1) (

(
x
y

)
∈ [0, 1]2, k = n and 2 ≤ x+ 2y),

and

Dn(

(
x
y

)
, k)

=




(

(
1 0
1 1

)(
x
y

)
, n) (

(
x
y

)
∈ [0, 1]2, k = n and x+ y ≤ 1),

(

(
1 0
1 1

)(
x
y

)
−
(

0
1

)
, n) (

(
x
y

)
∈ [0, 1]2, k = n and 1 < x+ y),

(

(
x
y

)
, k) otherwise.

Since two maps are both compatible with the relation ∼n, they induce

homeomorphisms ϕ̄n, D̄n of Σ(n) respectively. Then we have fn = ϕ̄n ◦ D̄n.

We can also see that the invariant measured foliations F+
n , F−

n of fn are

obtained as follows.

Let λ+, λ− be eigenvalues of the matrix A =

(
3 2

1 1

)
with λ− < λ+.

Let Fσ
A be the one-dimensional foliation of R2 whose leaves are all the lines

parallel to the eigenspace of λσ (σ = +,−). Copy them on R2×{k} for each

k and get a foliation Fσ
A,n of R2 × {0, 1, 2, · · · , n}. Then the restrictions of

Fσ
A,n to Rn give rise to foliations Fσ

n (σ = +,−) of Σ(n).
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Since both F+
A and F−

A are invariant under the associated linear trans-

formation A : R2 → R2, defined by

(
x

y

)
�→ A

(
x

y

)
, and

fn(

(
x

y

)
, k) =




(

(
x

y

)
, k + 1) ( if 0 ≤ k ≤ n− 1 ),

(A

(
x

y

)
, ∗) ( if k = n ),

the foliations F±
n are preserved by fn. Since fn is a pseudo-Anosov homeo-

morphism, the foliations F+
n , F−

n are automatically the invariant measured

foliations of it ([5], [6]).

§3. An Estimate of Dilatations

Let µ−n be a transverse invariant measure of F−
n . For any segment γ

in a leaf of F+
n , we can consider two kinds of lengths µ−n (γ) and leuc(γ) of

γ, where leuc(γ) is the total sum of the Euclidean length of each connected

component of the pre-image of γ in Rn.

Definition 3.1. Let r : [0, 1]2 → Σ(n) be an immersion which is an

embedding on its interior. The image r([0, 1]2) is called an Fn-rectangle if,

for any t ∈ [0, 1], r([0, 1]×{t}) is a segment in a leaf of F+
n and r({t}×[0, 1])

is that in a leaf of F−
n . For any t ∈ [0, 1], r([0, 1]×{t}) ( resp. r({t}×[0, 1]) )

is called an F+
n -segment ( resp. F−

n -segment ) of the Fn-rectangle r([0, 1]2).

Definition 3.2. Let W = {W1,W2, · · · ,Wm} be a family of Fn-rect-

angles. A segment in a leaf of F+
n ( resp. F−

n ) is called an F+
n -segment

( resp. F−
n -segment ) of W, if it is an F+

n -segment ( resp. F−
n -segment ) of

some Wi ∈ W.

Choose a Markov partition W = {W1, · · · ,Wm} of fn : Σ(n) → Σ(n)

and fix it. Namely, each Wi is an Fn-rectangle, ∪m
i=1Wi = Σ(n), and the

following conditions are satisfied.

(M1) Int(Wi) ∩ Int(Wj) = ∅ for i �= j.

(M2) For any F+
n -segment γ of W, fn(γ) is a finite union of F+

n -segments

of W.
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(M3) For any F−
n -segment γ of W , f−1

n (γ) is a finite union of F−
n -segments

of W.

Lemma 3.3. There exist positive constants C1, C2 such that, for any

F+
n -segment γ of W,

C1µ
−
n (γ) ≤ leuc(γ) ≤ C2µ

−
n (γ).

Proof. Take an immersion ri : [0, 1]2 → Σ(n) defining Wi for any

i. The length leuc(ri([0, 1] × {t})) varies continuously with respect to the

parameter t and is non-zero, since the foliation F+
n is given by parallel Eu-

clidean straight line segments on Rn andWi∩([0, 1]2×{k}) (k ∈ {1, · · · , n} )

and Wi ∩R0 are Euclidean convex polygons or finite point sets. Then there

exist positive constants A1, A2 such that, for any F+
n -segment γ of W, we

have A1 ≤ leuc(γ) ≤ A2. We also have µ−n (γ1) = µ−n (γ2), for any 1 ≤ i ≤ m

and any F+
n -segments γ1, γ2 of Wi. Then there also exist positive constants

B1, B2 such that, for any F+
n -segment γ of W, B1 ≤ µ−n (γ) ≤ B2. So it

suffices to take C1 = A1/B2 and C2 = A2/B1. �

For any F+
n -segment γ of W and any positive integer k, (fn)k(γ) is a

finite union of F+
n -segments of W by the condition (M2) above. Moreover,

any two different F+
n -segments of W can intersect only at their end points

by the condition (M1) above. Then we have for any F+
n - segment of W,

C1µ
−
n ((fn)k(γ)) ≤ leuc((fn)k(γ)) ≤ C2µ

−
n ((fn)k(γ)).

Then the dilatation λn of fn is given by

λn = lim
k→∞

leuc((fn)k(γ))
1
k .

On the other hand, we can show that, for any F+
n -segment γ of W,

leuc((fn)n(γ)) ≤ (2 +
√

3)leuc(γ), and

leuc((fn)n+1(γ)) ≥ (2 +
√

3)leuc(γ),

because only fn|([0, 1]2 × {n}) expands the Euclidean length of an arc in

F+
n 2 +

√
3 times. Note that λ+ = 2 +

√
3. Then we have the following

theorem.
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Theorem 3.4. For any positive integer n, we have

log(2 +
√

3)

n+ 1
≤ λn ≤ log(2 +

√
3)

n
.

§4. Characteristic Polynomials

Since, for any n ≥ 1, both F+
n and F−

n are orientable, the dilatation λn
of fn is the leading eigenvalue of the homomorphism (fn)∗ : H1(Σ(n)) →
H1(Σ(n)) induced in the first homology (see, for example, [18]). The aim

of this section is to prove the following theorem.

Theorem 4.1. Let χn be the characteristic polynomial of the

homomorphism (fn)∗ : H1(Σ(n)) → H1(Σ(n)). Then we have χn =∑2n
i=0(−1)ixi − 2xn.

Remarks. (1) The map f1 : Σ(1) → Σ(1) is an orientation preserving

Anosov homeomorphism of the torus Σ(1) with only one fixed point given

by

(
0

0

)
∈ R0. We also see that it preserves transverse orientations of

the invariant foliations. Then it is topologically conjugate to the Anosov

diffeomorphism induced by a matrix

(
2 1

1 1

)
which attains δ1 = δ+1 .

(2) Since χ2 = x4 − x3 − x2 − x + 1, the map f2 attains δ+2 ( see §0 ).

This map is not topologically conjugate to Zhirov’s example, because f2
preserves the transverse orientations of the invariant foliations but Zhirov’

s not ([19]).

The rest of this section is devoted to the proof of the theorem above.

Let a1, b1, · · · , an, bn be oriented simple closed curves in the oriented

surface Σ(n) as in Figure 4.1. For simplicity, we use the same symbols for the

homology classes represented by them. Then {a1, b1, · · · , an, bn} is a basis

of the integral first homology group H1(Σn) of Σ(n). For any u, v ∈ H1(Σn),

let u·v denote the intersection number. This number is calculated as follows.

Choose closed curves a, b which represent u, v respectively and are in general

position. At each point p in the intersection a∩ b, define the integer (a · b)p
as in Figure 4.2. Then u · v =

∑
p∈a∩b(a · b)p.
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Figure 4.1.

Now let

ā1 = a1,

b̄i = bi for any 1 ≤ i ≤ n, and

āi =
∑i

k=1(−1)i−kak +
∑i−1

k=1(−1)i−kbk for any 2 ≤ i ≤ n.
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Figure 4.2.

Then we see the following lemma by a straightforward calculation.

Lemma 4.2. The collection {ā1, b̄1, · · · , ān, b̄n} is a symplectic basis of

H1(Σn). That is to say, for any i, j ∈ {1, · · · , n}, we have that āi · āi = 0,

b̄i · b̄i = 0, and āi · b̄j = δij, where δij denotes Kronecker’s delta.

By the definitions of ϕ̄n and D̄n, we easily check the following.

(ϕ̄n)∗(ai) = ai+1 for any 1 ≤ i ≤ n− 1,

(ϕ̄n)∗(bi) = bi+1 for any 1 ≤ i ≤ n− 1,

(ϕ̄n)∗(bn) = a1 + b1,

(D̄n)∗(ai) = ai for any 1 ≤ i ≤ n− 1,

(D̄n)∗(an) = an + bn,

(D̄n)∗(bi) = bi for any 1 ≤ i ≤ n.

Lemma 4.3.

(ϕ̄n)∗(an) =

{ ∑n
i=1(−1)i+1ai ( n is odd ),∑n
i=1(−1)iai + 2

∑n
i=1(−1)ibk (n is even ).

Proof. Since the case n = 1 is easy, we show the case n ≥ 2. By using

the picture of ϕ̄n(an) in Figure 4.3, we easily check the following.

ā1 · (ϕ̄n)∗(an) = a1 · (ϕ̄n)∗(an) = −1,

ai · (ϕ̄n)∗(an) = 0 ( 2 ≤ i ≤ n− 1, n ≥ 3),

an · (ϕ̄n)∗(an) = 1

b̄i · (ϕ̄n)∗(an) = b1 · (ϕ̄n)∗(an) = 0 ( 1 ≤ i ≤ n− 1 ),

b̄n · (ϕ̄n)∗(an) = bn · (ϕ̄n)∗(an) = −1
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Figure 4.3.

Then we have

āi · (ϕ̄n)∗(an) = (−1)i−1a1 · (ϕ̄n)∗(an) = (−1)i ( 2 ≤ i ≤ n− 1, n ≥ 3 ),

ān · (ϕ̄n)∗(an) = an · (ϕ̄n)∗(an) + (−1)n−1a1 · (ϕ̄n)∗(an) = 1 + (−1)n.

Since {ā1, b̄1, · · · , ān, b̄n} is a symplectic basis, by these data, we have

(ϕ̄n)∗(an)

= ān +
∑n−1

i=1 (−1)ib̄i + (1 + (−1)n)b̄n
=

∑n
i=1(−1)n−iai +

∑n−1
i=1 (−1)n−ibi +

∑n−1
i=1 (−1)ibi + (1 + (−1)n)bn

=
∑n

i=1(−1)n−iai +
∑n

i=1(−1)i(1 + (−1)n)bi. �

By Lemma 4.3 and the data just before it, we obtain the matrices rep-

resenting (ϕ̄n)∗ and (D̄n)∗ with respect to the basis {a1, b1, · · · , an, bn} of

H1(Σn) as follows:
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(ϕ̄n)∗ :


O2,2n−2 1 1

0 1

−1 0

0 0

1 0

0 0

I2n−2
...

...

−1 0

0 0

1 0

0 0




,




O2,2n−2 −1 1

−2 1

1 0

2 0

−1 0

−2 0

I2n−2
...

...

−1 0

−2 0

1 0

2 0




n : odd n : even

(D̄n)∗ :


0 0

I2n−2
...

...

0 0

0 · · · 0 1 0

0 · · · 0 1 1




Here, we denote the k× l zero matrix by Ok,l and the m×m identity matrix

by Im respectively. In order to prove Theorem 4.1, it suffices to show the

following lemma.

Lemma 4.4. The characteristic polynomial of the matrix




O2,2n−2 c1 d1

c2 d2

c3 d3

I2n−2
...

...

c2n d2n




is equal to

∣∣∣∣∣c1 + c3x+ · · · + c2n−1x
n−1 − xn d1 + d3x+ · · · + d2n−1x

n−1

c2 + c4x+ · · · + c2nx
n−1 d2 + d4x+ · · · + d2nx

n−1 − xn

∣∣∣∣∣ .

Proof. Let n be a positive interger and P the 2n× 2n matrix in the

statement of this lemma. Define 2n×2n matrices P (0), P (1), · · · , P (2n−2)

inductively as follows:

(1) Let P (0) = P − xI2n.
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(2) Let P (k+1) be the matrix obtained from P (k) by adding the (2n−k)-
th row of P (k) multiplied by x to the (2n − k − 2)-th row for each

0 ≤ k ≤ 2n− 3.

Since the matrices P (0), · · · , P (2n − 2) have the same determinants, the

characteristic polynomial det(P − xI2n) of P is equal to the determinant

of P (2n − 2). Since the matrix P (2n − 2) has the form

(
O2,2n−2 Q

I2n−2 ∗

)
,

where the 2 × 2 matrix Q has the form

(
c1 + c3x+ · · · + c2n−1x

n−1 − xn d1 + d3x+ · · · + d2n−1x
n−1

c2 + c4x+ · · · + c2nx
n−1 d2 + d4x+ · · · + d2nx

n−1 − xn

)
,

we have

detP (2n− 2)

= detQ

=

∣∣∣∣∣c1 + c3x+ · · · + c2n−1x
n−1 − xn d1 + d3x+ · · · + d2n−1x

n−1

c2 + c4x+ · · · + c2nx
n−1 d2 + d4x+ · · · + d2nx

n−1 − xn

∣∣∣∣∣ . �

Now, it is time to complete the proof of Theorem 4.1. For any posi-

tive integer n, the matrix Mn of (fn)∗ = (ϕ̄n)∗(D̄n)∗ relative to the basis

{a1, b1, · · · , a2n, b2n} above has the form




O2,2n−2 2 1

1 1

−1 0

0 0

1 0

0 0

I2n−2
...

...

−1 0

0 0

1 0

0 0




,
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if n is odd, and 


O2,2n−2 0 1

−1 1

1 0

2 0

−1 0

−2 0

I2n−2
...

...

−1 0

−2 0

1 0

2 0




if n is even. Then, by Lemma 4.4, the determinant of the matrix Mn−xI2n
is equal to∣∣∣∣∣2 − x+ · · · + (−1)ixi + · · · + xn−1 − xn 1

1 1 − xn

∣∣∣∣∣ =
2n∑
i=0

(−1)ixi − 2xn

if n is odd, and∣∣∣∣∣x− x2 + · · · + (−1)i−1xi + · · · + xn−1 − xn 1

−1 + 2x− · · · + (−1)i−12xi + · · · + 2xn−1 1 − xn

∣∣∣∣∣ =
2n∑
i=0

(−1)ixi − 2xn

if n is even. This completes the proof of Theorem 4.1. �

Remarks. (1)For any integer n ≥ 1, Hironaka and Kin found a home-

omorphism hn of Σn whose dilatation is equal to that of fn in this paper ( see

[11] ). They found them in the study of a family of pseudo-Anosov braids.

It seems that studying the relations between fn and hn is an interesting

problem.

(2) Leininger found an example of pseudo-Anosov homeomorphism of

Σ5 whose dilatation is smaller than that of f5 in this paper ( see [12] ).
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