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p-Adic Weight Spectral Sequences of Log Varieties

By Yukiyoshi NAKKAJIMA

Abstract. We prove the Fs-degeneration of the p-adic weight
spectral sequence of a proper simple normal crossing log variety over a
log point whose underlying scheme is the spectrum of a perfect field of
characteristic p > 0. We also show some properties of the p-adic weight
spectral sequence and those of p-adic monodromy operators. The for-
mer ones complete the construction of the p-adic Steenbrink complex
in [M1]; the latter ones complete the proof of the interpretation of the
p-adic monodromy operator in [HK] by a corrected operator of the p-
adic Steenbrink complex in [M1]. We also complete some fundamental
facts in [HK].
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1. Introduction

In [Nak] Nakayama has proved the Es-degeneration of the [-adic weight
spectral sequence of a proper simple normal crossing log variety over a log
point. As a result we see that the graded pieces of the [-adic weight filtration
on the l-adic log cohomology of the log variety above are easily described
subquotients of direct sums of usual l-adic cohomologies (with Tate twists)
of intersections of the irreducible components of the log variety.

In the Part I of this paper, we prove one of Mokrane’s conjectures in [M1]:
we prove the Fs-degeneration of the p-adic weight spectral sequence of a
proper simple normal crossing log variety over a log point whose underlying
scheme is the spectrum of a perfect field x of characteristic p > 0. We
also prove the Es-degeneration of the p-adic weight spectral sequence of an
open smooth variety which is the complement of a simple normal crossing
divisor in a proper smooth variety over k. The former result and the latter
are generalizations of results in [M1] and [M2], respectively, in which & is
assumed to be a finite field.

In the [-adic case, the cospecialization map is a key ingredient for the
proof of the degeneration. In the p-adic case, it seems that there does not
exist the canonical cospecialization map. However there is a method of a
specialization argument due to Deligne-Illusie in [I1] influenced by the gen-
eral method of the reduction of geometric problems to arithmetic problems
due to Grothendieck ([EGA IV-3], [Gr]). This specialization argument does
a job in the p-adic case, and we obtain the Es-degenerations by a somewhat
tricky argument.

In [CL2| Chiarellotto and Le Stum have constructed the p-adic weight
spectral sequence of the open variety above by the method of rigid coho-
mologies, and they have proved the Fs-degeneration of the spectral sequence
when the base field is finite. We generalize this result for any field of char-
acteristic p by using Shiho’s comparison theorem ([Sh]).

As applications of the FEs-degenerations of the p-adic weight spectral
sequences, we prove the Fs-degenerations of the weight spectral sequences
of the log Hodge-Witt sheaves of a proper simple normal crossing log variety
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and an open variety.

In the Part II of this paper, we make some proofs for statements of
(idealized) log de Rham-Witt complexes perfect and make some statements
and some proofs about p-adic weight spectral sequences by the method of
log de Rham-Witt complexes perfect. Of course, we use ideas in published
papers and we do not claim that we reconstruct theory of log de Rham-
Witt complexes and theory of the p-adic weight spectral sequences from
the beginning; some published papers ([Hyl], [Hy2], [HK], [M1], [M2], [Lo])
and this paper are necessary for the theories, and some published papers
(e.g., [Sal, [Oc], [Nakk2], [KH]) have already used the theories.

In §6 we give theory of formal de Rham-Witt complexes. As a corollary
of this theory, I give a precise proof of the fact that the log de Rham-
Witt complex with compact support of a smooth scheme with a normal
crossing divisor is compatible with the canonical filtration as a complex
over the Cartier-Dieudonné-Raynaud algebra because I have an anxiety in
the sketchy proof in [M1].

In §7 we complete the proof of a fundamental fact in [HK] which tells us
that the log crystalline cohomology of a log smooth scheme of Cartier type
over a perfect field of characteristic p with a fine log structure is canonically
isomorphic to the cohomology of the log de Rham-Witt complex of it. We
also correct a proposition in [HK] which plays an important role in the proof
of the Hyodo-Kato’s isomorphism.

In §8, 89, §10 and §11, we correct and complete many results in [M1]. In
§8 we prove some fundamental properties of projections of log de Rham-Witt
complexes. The compatibility in the paragraph before the previous one, the
fundamental fact above claimed in [HK] and the fundamental properties of
projections are necessary for the construction of the p-adic Steenbrink com-
plex in [M1] as used in [loc. cit.]. In §9 we prove a complicated compatibility
of Poincaré residue isomorphisms with the Frobenius, which has not been
proved in [M1]. In §10 we give a right proof of the description of the bound-
ary morphism between the E1-terms of the p-adic weight spectral sequence
in [M1] of a proper simple normal crossing log variety, and correct the sign
of the boundary morphism in [M1]. In §11 we prove the coincidence of the
p-adic monodromy operator in [HK] and that in [Hy2]. This establishes a
relation between the p-adic monodromy operator in [HK] and an operator
v which will be defined in §11; in the same section, we point out mistakes
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in v in [M1] of the p-adic Steenbrink double and single complexes. Thanks
to results in §11, we can apply the method of Steenbrink-Rapoport-Zink
([St1], [RZ]) to the p-adic monodromy-weight conjecture ([M1]), which has
been used for the proof of the p-adic monodromy-weight conjecture for a
proper simple normal crossing log curve over a log point ([M1]), for a proper
semistable family of surfaces over a complete discrete valuation ring with
simple normal crossing special fiber ([Nakk4|), and for other cases ([Nakk3],
[Nakk4]).

In a future paper, I shall write the construction of the p-adic weight
spectral sequence of a family of open simple normal crossing log varieties
(cf. [SZ]) by a different, more natural method.

Acknowledgment. 1 am grateful to L. Illusie for explaining to me the
detail of the specialization argument in [I1] and for pointing out a mistake
in a preliminary version of this paper. I am also grateful to K. Kato for
his patience for removing my misunderstanding about a result in [HK] and
for discussing a delicate fact. I am also thankful to E. Grofle-Klonne for
his cordial encouragement. I thank E. Grofle-Klonne for giving preprints
[GK], and thank B. Chiarellotto for informing me of an article [CL1]. I
would like to thank mathematicians who have admitted the importance of
this paper and who have recommended me to write this paper. I greatly
appreciate the referee for reading this paper completely and for suggesting
a right formulation in §6, for giving a lot of advice for the improvement of
this paper and for pointing out many minor mistakes. I wrote some parts
of this paper during my stay at Institute Mathématique de Rennes. 1 would
like to express my sincere gratitude to B. Le Stum for inviting me there,
and the Institute for its warm hospitality.

Notation. (1) For a log scheme X in the sense of Fontaine-Illusie-Kato

([Ka2]), we denote by X the underlying scheme of X.

(2) For an affine scheme Spec(A) and a commutative monoid P with unit
element e, we denote by (Spec(A), P & A*) a log scheme whose underlying
scheme is Spec(A) and whose log structure is the association of a morphism
Poszr—0€A(z#e).

(3) Following Friedman [Fr|, for a morphism X — S of log schemes,
we denote by A% /5 (= wi /g In [Ka2]) the sheaf of the relative logarithmic
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differential forms on X/S of degree i (i € N); the small letter w is not
suitable for the symbol of a sheaf of differential forms.

(4) (S)NCL=(simple) normal crossing log, (S)NCD=(simple) normal
crossing divisor.

Conventions. We make the following conventions about signs (cf.
[BBM], [Co]).

Let A be an exact additive category.

(1) For a complex (E®,d®) of objects in A and for an integer n, (E*™",
d**t™) or (E*{n},d*{n}) denotes the following complex:

_ ga-1+n T pgtn A7 pgtitn
q—1 q q+1

dati+n

Here the numbers under the objects above in A mean the degrees.

For a morphism f: (E®,d}) — (F°,d}) of complexes of objects in
A, f{n} denotes a natural morphism (E*{n},d%{n}) — (F'*{n},d}{n})
induced by f. This operation is well-defined in the derived category: for
a morphism f: (E°®,dy) — (F*,d}) in the derived category D*(A) (x =
b, +, —, nothing) of the complexes of objects in A, there exists a naturally
induced morphism f{n}: (E*{n},d%{n}) — (F*{n},d%{n}) in D*(A).

(2) For a complex (E*®,d®) of objects in A and for an integer n, (E®[n],
d®*[n]) denotes the following complex as usual: (E®[n])? := EY™ with
boundary morphism d®[n] = (—1)"d**".

For a morphism f: (E®,d},) — (F*,d}.) of complexes of objects in A,
f[n] denotes a natural morphism (E®[n],d}[n]) — (F*[n],d}[n]) induced
by f without change of signs. This operation is well-defined in the derived
category as in (1).

(3) ([BBM, 0.3.2], [Co, (1.3.2)]) For a short exact sequence

0 — (B, dy) -1 (F*,dp) —2 (G®,d) — 0
of bounded below complexes of objects in A, let (E*[1],d}[1]) @ (F*, d}.) be
the mapping cone of f. We fix an isomorphism “(E*[1],d%[1]) ® (F'*,d}) >
(z,y) — g(y) € (G*,dg,)” in the derived category D1 (A).

(4) ([BBM, 0.3.2], [Co, (1.3.3)]) Under the situation (3), the bound-
ary morphism (G*,d§,) — (E*[1],d%[1]) in DT (A) is, by definition, the
following composite morphism

(G, dgy) < (B*[1], dy[1]) @ (F*, d3) ™ (B [1], dp[1) =5 (B*[1], dp[1)).
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(5) Assume that A is an abelian category with enough injectives. Let
F: A — B be a left exact functor of abelian categories. Then, under the
situation (3), the boundary morphism 9: RIF((G*,d%)) — RITLF((E®,
d%,)) of cohomologies is, by definition, the induced morphism by the mor-
phism (G*®,dg,) — (E°[1],dy[1]) in (4). By taking injective resolutions
(I°,d9), (J*,d%) and (K°*,d}) of (E®,dYy,), (F*,d}) and (G*,dg), respec-
tively, which fit into the following commutative diagram

0 —— (I%d}) —— (J*,dy) —— (K*,dy) —— 0

(1.0.1) T T T

0 —— (E*,d%) —— (F*,d%) —— (G*,d%) —— 0

of complexes of objects in A such that the upper horizontal sequence is
exact, it is easy to check that the boundary morphism @ above is equal to
the usual boundary morphism obtained by the upper short exact sequence of
(1.0.1). (For a short exact sequence in (3), the existence of the commutative
diagram (1.0.1) has been proved in, e.g., [NS, (2.7)] as a very special case.)

(6) For a complex (E*®,d®) of objects in A, the identity id: Y — EY
(Vq € Z) induces an isomorphism HI((E®, —d®)) — HI((E*,d*)) (Vq € Z)
of cohomologies. We sometimes use this convention.

(7) We often denote a complex (E®,d®) simply by (E*®,d) or E*® as usual
when there is no risk of confusion.

Part I. Degenerations at F» of p-Adic Weight Spectral Sequences

2. Brief review on the p-adic weight spectral sequence of an
SNCL variety

Let  be a perfect field of characteristic p > 0 and s = (Spec(k), N@ *)
a log point. Let W be the Witt ring of k and Ky the fraction field of W.
Let X/s be a proper SNCL variety of pure dimension (see [Nakk2, §2] for

the definition; in this paper, we do not assume that X is geometrically
connected, nor that the irreducible components of )O( are geometrically ir-
reducible.). For a positive integer j, let )O( () be the disjoint union of all
j-fold intersections of the distinct irreducible components of )% . Denote

by Hf(‘)g_crys(X/W) (h € N) the log crystalline cohomology of X/s over W
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([Ka2, §5, §6]). Let us recall the p-adic weight spectral sequence of X/s
([M1, 3.23]; see (2.2) (1) and (2) below):

(20.0)  BMMRXW) = @ HEZHX @D W) (=) — k)
j>max{—k,0}

= ity erys(X/W).

The following has been conjectured in [M1, 3.24] (under the assumption of

the projectivity of X):

CONJECTURE 2.1. The spectral sequence (2.0.1) degenerates at Eo
modulo torsion.

If k is a finite field, (2.1) is true ([M1, 3.32 (2)]) by the purity of the
weight of the crystalline cohomology of a proper smooth variety over s
([CL1, (1.2)] or (2.2) (4) below). In the Part I of this paper we prove (2.1)
for any perfect field of characteristic p > 0.

REMARK 2.2. (1) There are gaps and mistakes in the construction of
the p-adic Steenbrink complex in [M1, §3] and in fundamental properties of
it; we fill and correct them in §8, §9, §10 and §11 below.

Let « be a positive integer n or nothing. Let W A% be a complex
of W,(Ox)-modules defined in [HK] (cf. [Hy2]) and denoted by W,w% in
[loc. cit.]. Then there is a gap in the proof of [HK, (4.19)] which claims, as
a special case, that there exists a canonical morphism

Hl}tl)g—crys (X/W*)—>Hh (X7 W*AB()

[HK, (4.19)] is necessary for the construction of (2.0.1). We shall fill the
gap in (7.19) below.

(2) Let * be a positive integer n or nothing. Let 6, € I'(X, W*/NX}()
(W*]\B( = W,w% in [Hy2, (1.2.2)] and [M1]) be a global section constructed
in [M1, 3.4 (3)]. By convention, we consider only the following wedge
product (—1)%0,A: W*Ag — I/V,Jlé’(jJrl in the construction of the p-adic
Steenbrink complex, while Mokrane has considered a wedge product A in
[loc. cit.]; by following [RZ, p. 29], our boundary morphisms of the double
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complex W, A% are as follows:
W, A
(2.2.1;%) (-vio.n]
W*Ag (=1)/*'d W*Ai?l’j-

By this convention, the left wedge product ,A: W A — W, A% is a
morphism of complexes.

In (10.1.2;%) below, we shall describe the boundary morphisms between
the Fj-terms of (2.0.1). See also another change in (11.8.1; %) below.

Though we give no motivic statement in this paper, we need to give
statements of certain theorems motivically (e,g., [Nakk4]|, [Nakk5]). This
is a reason why we consider only the wedge product (—1)0,A. Evidently,
something p-adic should not be studied only for itself. Indeed, as in [Nakk5],
if we give motivic formulas of the zeta-functions of the h-th (h € N) log etale
and crystalline cohomologies of X over a finite field where the l-adic and
p-adic monodromy operators are killed respectively, we are obliged to take
the corresponding boundary morphisms of the I-adic and p-adic Steenbrink
complexes.

If one considers the right wedge product A, and if one wishes to give
motivic statements, one has to change numerous morphisms of complexes
in [RZ] (and in [SZ]) in order that they are compatible with the right wedge

product A0;.
The following boundary morphisms

W, A
(2.2.2;%) O*AT
W*Ag L, W*A;H’j
are the analogues of the boundary morphisms in the oo-adic case in [Stl,
(4.14)]. In an application for the interpretation of the p-adic monodromy op-
erator by a morphism of a p-adic Steenbrink complex, the p-adic Steenbrink
complex with boundary morphism (2.2.1; %) is useful for the left monodromy
operator, while the p-adic Steenbrink complex with (2.2.2;%) is useful for

the right monodromy operator. See (11.8.1;%) and (11.12.3) below for the
detail: note the difference between the left and the right wedge products of
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0, in them. Note also that the analogue of a morphism in [Stl, (4.16)] is
equal to the right wedge product without signs

WA Swr— wAbO, € (WAL, d+ (6 A x)).

By virtue of a canonical isomorphism stated in (11.12.7) below, the left
monodromy operator can be identified with the right monodromy operator.

Mokrane’s p-adic double Steenbrink complex with the following bound-
ary morphisms

WA
(2.2.3; %) d”::AG*T
W*Aé](' d:=(-1)"d W*A?I’j
is useful for the right monodromy ((11.9.1; %) below); however it obliges us
to change v in [M1, 3.13]. See (11.9) below for the detail.
Furthermore, by considering the anti-symmetry of the boundary mor-

phisms of double complexes with signs, one can also consider the Steenbrink
complex with the following boundary morphisms
W*Aé,{j+1
(2.2.4; %) d”::(—l)i(AH*)T
.. d/::d . .
WAy S5 WL AT
However I do not think about the boundary morphisms (2.2.4; x) any more.

(3) C. Nakayama has proved the Fs-degeneration of the l-adic weight
spectral sequence of a proper SNCL variety ([Nak, (2.1)]).

(4) We can show the purity of the Frobenius eigenvalues of the crystalline
cohomology of a proper smooth variety over a finite field in [CL1, (1.2)]
easily without using [Chl, I. Theorem 2.2] as follows (cf. [dJ, p. 52, 53]).
Assume that x is a finite field F,;, and let Y be a proper smooth variety
over F,. By [dJ, (4.1)], there exists a surjective morphism f: Z — Y
from a projective smooth variety. By [Kl, (1.2.4)], the induced morphism
[ HE (Y/W)ewKy — HE (Z/W)@wKo (h € Z) is an injection (In
the proof of [Kl, (1.2.4)] in the case of crystalline cohomologies, we need
the definition of the cycle class of a singular integral closed subscheme in
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the crystalline cohomology of a proper smooth variety over a perfect field
of finite characteristic ([Gs, II §4], [GM]) and we need the formula in [Gs,
IT (4.2.3)], [GM, II (1.1.3)].). Hence [CL1, (1.2)] immediately follows from
[KM, Corollary 1 2)] or [Fa, (5.2)]. As a consequence, as in [KM, Theorem
1, Corollary 1 1)] (cf. [CL1, (1.3), (1.4)]), we see that

(2.2.5)  det(1 — tF*|H} (Y/W) @w Ko) = det(1 — tF*|HE(YV, Qy)),
in particular,
(2.2.6) dimg, HlLyo(Y/W) @w Ko = dimg, H (Y, Q).

Here F: Y — Y on the left hand side of (2.2.5) is the ¢-th power endo-
morphism and F: Y — Y on the right hand side of (2.2.5) is the usual
geometric Frobenius morphism relative to IFy.

Let x be any field of characteristic p > 0 and W a Cohen ring of k.
Let Y be a proper smooth variety over k. Then we obtain the formula
(2.2.6) for Y/k by the perfection of k, by a standard deformation theory
(e.g., [I1, (3.10)], cf. §3 below), by a standard specialization argument on
l-adic cohomologies (e.g., [Nak, (2.3)]) and by a specialization argument of
Deligne-Illusie ([I1, (3.10)], cf. (3.4) below).

3. Specialization argument in log crystalline cohomology

Following [I1, (3.10)], we give a specialization argument in log crystalline
cohomologies, and we apply it to the solution of (2.1). This specialization
argument is an example of Grothendieck’s idea for the reduction of geometric
problems to arithmetic problems ([EGA IV-3 §9], [Gr, Part II, VII 5]).

We keep the notations in §2. By [Nak, (2.2)], there exist a finitely
generated subring A; of x over F), and a proper SNCL scheme ([Nakk3, §2])
X over 57 := (Spec(41),N & A}) with a natural morphism s — S} such
that X' xg,s = X. By [EGA IV-2, (6.12.5)], by [EGA IV-4, (17.15.2)] and by
the proof of [Ha2, II (8.16)], we can assume that A; is a smooth algebra over
a finite field IF,. Let A be a p-adically formally smooth algebra over W (F,)
which is a lift of A;. Endow Spf(A) with a log structure Nép A*, and let S be
the resulting log formal scheme over Spf(W (F,)) = (Spf(W (Fy)), W (F,)*).
The log formal scheme S has a PD-ideal pOg, which defines an exact closed
immersion S =, 8.
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For a log formal affine open subscheme T' of S, set T1 := Ty (5,)Fq.

Take a closed point ; of T1. The point ; is the spectrum of a finite field
kt. We fix a lift Fp: T — T of the Frobenius endomorphism(=p-th power

endomorphism) of %1. Then we have the Teichmiiller lift Op — W (k;)
(resp. Op — W) of the morphism Op, — k; (resp. O, — k) (e.g., [I12,
0. 1.3]). Here, by abuse of notation, we denote the global section I'(T, Or)
(resp. I'(T1,Or,)) by Or (resp. Opy). The rings W (k) and W become Orp-

algebras by these lifts. Endow Spf(W (k)) and t with the inverse images of
the log structure of T'. Set X7, := X' x5, 11 and X} := Xp, X7 L.

Let R be a p-adically separated and complete flat noetherian W (F,)-
algebra. The ring R has a PD-ideal pR. Let M be a fine log structure on
Spf(R) and set Spf(R)'°¢ := (Spf(R), M). Set Ry := R/pR, and denote by
Spec(R;)"8 the log scheme whose underlying scheme is Spec(R;) and whose
log structure is the pull-back of M. For a log formal affine open subscheme
T of S and for a morphism Spf(R)'°® — T of log formal schemes over
Spf(W(Fq)), set Xg, = An, XTlspeC(Rl)IOg.

We start with the following:

LEMMA 3.1. Let L be a finitely generated Og-module. Then there exists
a log formal affine open subscheme T of S such that Tor?T (L|r,R) =0.

ProOOF. By Deligne’s remark in [I1, (3.10)], we may assume that L|7 ~
Or or L|p ~ Op/p™Or (m € N) by shrinking T'. In the former case, (3.1) is
obvious. In the latter case, (3.1) immediately follows from an exact sequence

0— 0r 25 0p — Op/p™Or — 0

and from the injectivity of p™: R—R. (In fact, Tor®"(L|z, R) = 0 (Vr €
Z>1).) O

PROPOSITION 3.2. There exists a log formal affine open subscheme T
of S such that the canonical morphisms H{})g_crys(XTl/T) ®o, R—

Hl}cl)g—crys(XRl/R) for all h € N are isomorphisms of R-modules.

PrOOF. Let I'* := (I'*, d®) be a strictly perfect complex of O7-modules
representing RI'(Xp, /T) (cf. [BO, 7.14 Definition, 7.24.3 Theorem]). By
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(3.1), shrinking T if necessary, we can assume that Tor?T (L|r,R) = 0 for
L = H/(I'*) and L = Im(&’) (Vj € Z) since L is a finitely generated Og-
module in either case. Hence H"(I*®0, R) = HMI'*)®0, R. Because the
morphism X, — 77 is integral by [Ka2, (4.4) (ii)], the base change theorem
RF(XTI/T)(X%TR = RI'(Xg,/R) holds ([Ka2, (6.10)], cf. [Ogl, (3.3)]). By
taking the cohomologies of the both hands of the equality above, we obtain
(3.2). O

REMARK 3.3. Set K := R®zQ. If one wishes only to prove (3.6) below,
one may replace (3.2) with the following weaker proposition:

Hl}(L)g-crys(XTl /T) ®OT K = Hl}(L)g-crys(XRl /R)®RK (Vh S Z)

This follows from the existence of a strictly perfect complex of Op-modules

representing RI'(X7, /T) and the flatness of lﬁllf(‘)g_crys(XT1 /T)®7Q as an

Or®7Q-module. By shrinking T if necessary, we can easily check this flat-
ness by Deligne’s remark [I1, (3.10)]. In fact, this shrinkage is not necessary

by [Og2, Lemma 36]; Hﬂ‘)g_crys(X/S)®ZQ is a locally free Og®7Q-module.

The following has been suggested by L. lusie:

COROLLARY 3.4. There exists a log formal affine open subscheme T of
S such that the canonical morphism

(341) Hl}cl)g—crys(XTl /T)®OTW(Kt)%Hf)g—crys(Xt/W(’it))

for all h € N and any closed point ; of T
(resp. (3.4.2) Hidg erys (X1, /T) @03 W — Higy erys(X/W))

is an isomorphism of W (k¢)-modules (resp. W-modules). There also
exists the following (non-canonical) isomorphism of W@y W (k) =
W (kt)@w (w,) W -modules:

(343) Hl}(L)g-crys(X/W)@W(Fq)W(’ft)
— Hl}(L)g—crys(Xt/W(Rt))(@W(IFq)W (Vh S N)
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PrOOF. (3.4.1) and (3.4.2) follow from (3.2). By Deligne’s remark
[Il (3.10)], there exists a finitely generated W (F,)-module M such that

Hlog erys(X1 /T) = M®@w g, Or for a small log formal affine open sub-

scheme T of S. Hence we have the following isomorphism:

Hl,ég—crys(XTl /T)®OTW®W(FQ)W(K15)
= Hl}ég—crys(XTl /T)®OTW("%)®W(]FQ)W

Thus (3.4.3) follows from (3.4.1) and (3.4.2). O

ProprosITION 3.5.  There emsts a log formal affine open subscheme T

of S such that, for any closed point t of T1 and for all k, h € Z, there exists
a (non-canonical) isomorphism

Ey MW@ 5 ) W (ke) = By /W (k) @ v,y W
of Wawm,)W (k) = W(kt)@ww,) W-modules.

PROOF. Because we consider no (relative) Frobenius action on (log)
crystalline cohomologies in this proof, we ignore the Tate twists in (2.0.1).
By [I1, (3.10)] (cf. the proof of (3.2)), there exists a log formal affine open
subscheme 7' of S such that, for all j € Z>1,

(o}

HE (XD /W) = HE (XD ) T) 00, W

and
HY (2,9 )W (50)) = HE (XD ) T) @0, W (11).

Let d3*(X) (resp. d}*(X:)) be a boundary morphism between Ej-terms of
(2.0.1) for X (resp. &). The morphisms d$*(X) and d{®(X;) are the sums
(with signs) of the induced morphisms of closed immersions and Gysin mor-
phisms by (10.1) below; there are mistakes in [M1, 4.14]; see (10.2) (4) below
for the corrections and see also (10.2) (5) below. By [B1, VI (3.3.10)], there
exists the Gysin morphism for a smooth pair over any PD scheme. Set

Fohht @y HbSYC (X%j—i—k—s—l)/%)

crys
j>max{—k,0}
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and
G—k,h+k = Ker(F—k,h+k _ F_k+1’h+k)/1m(F_k_1’h+k _ F—k‘7h+k).

Here the two morphisms on the right hand side in the definition of G-tk
are the sums (with signs) of the induced morphisms of closed immersions and

Gysin morphisms as in (10.1.2;x). By the base change of Gysin morphisms
([B1, VI Theorem 4.3.12]) and by (3.1), we obtain

and
By MR W (1) = G R0, W ()

for all k, h by shrinking 7" if necessary. By Deligne’s remark, there exists a
finitely generated W (F,)-module M ~%"*¥ such that M‘k’h+k®W(Fq)OT ~
G~Fh+F by shrinking T'. Hence, as in (3.4.3), there exists an isomorphism

Ey SR X W) @w@y W (k) = By P X W (5)) @w ey W. O

THEOREM 3.6. (2.1) is true.

PROOF. Let the notations be as in (3.4). Let Ky(k:) be the fraction
field of W (k). By (3.5), we obtain

(3.6.1) dimg, (B; " (X /W) ow Ko)
= dim gy () (B3 " (X /W (50)) @ () Ko ()

By the purity of the weight ([CL1, (1.2)] or (2.2) (4)) and the yoga of weight,
(2.1) is true for &;. By (3.6.1) and (3.4.3), we obtain (3.6). O

REMARK 3.7. Because we do not construct the p-adic weight spectral
sequence for X7, /T in this paper, we cannot consider a boundary morphism
dy®* (X)) of E,-terms (r > 2) of the non-constructed spectral sequence for
X1, /T a priori; in this paper we cannot reduce the vanishing of d2*(X)
(r > 2) modulo torsion to that of dy*(X7,) and then to that of df*(X;)
in a more standard way. But it is possible to construct the p-adic weight
spectral sequence of X7, /T by using a (log) crystalline method. We shall
discuss this in another paper.
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4. The (pre)weight spectral sequences of the log Hodge-Witt
sheaves of an SNCL variety

Let the notations be as in §2. In this section we prove the Es-degener-
ation of the weight spectral sequence of the log Hodge-Witt sheaves on X
as an application of (3.6).

Following [FY], let us denote by A% /i the sheaf of log differential forms
on X/k of degree i. Let n be a positive integer and let W, A% (= W,w in
[HK] and [M1]) be the log Hodge-Witt sheaf of the log differential forms on
X of degree i.

THEOREM 4.1. Let i be a non-negative fixed integer. Then there exists
the following spectral sequences:

(4.1.1;m) B EMRW,AY)
= P HIEETED WwalE k)
> maxdok.0) ’ X (2i+k+1)
]7m X1— )
— HMX, WA {—i}) = H' (X, W,AY),
(Recall the notation {—i} in the Convention (1).)
(4.1.1)  EFMRWAY)
— @ Hh*i*j(%(2j+k+l) WQi—j—k )(_] . k;)
j>max{—k,0} 7 Xrrey
j>max{—k,

— HMX, WAL {—i}) = H'" (X, WAY).

PROOF. In this proof we use the notation ank instead of the notation
W,w% in [Hy2] and [M1, §2].

As in M1, 3.8], set W, A% = W, A7/ Pyw, A7 where P is the
filtration defined in [M1, 3.5].

By [M1, 3.15] (cf. (6.28) (9), (6.29) (1) below), the following sequence

(4.1.2) 0 — WAl 28y, 40 TRy g
(—=1)*0nA (—1)*0nA

=T WLAR Y S



528 Yukiyoshi NAKKAJIMA

is exact. (Note that the side and the sign of the wedge product of 6,, in
(4.1.2) are different from those in [M1, 3.8, 3.15] (cf. (2.2) (2)).) Let us
consider a single complex

(—=1)10pA

—1)%0, ~ ~ ,
. ( L " WnA?‘]+1/PjWnA?j+l — e )j207

(4.1.3) W,AY = (--

and let us define a preweight filtration P, on WnAgz as follows:

(4.1.4)  PW,A%

= (T (P + Py) (W A7)/ PyW, A U
First, we ignore the compatibility of the spectral sequence (4.1.1;n) with
the Frobenius. Then, by [M1, 3.7], we have

(4.1.5) gk WA = P e Wl {4}
j>max{~k,0}
_ ik
- @ WnQ)O((Qj-Hc-Fl){ ‘7}'
j>max{~k,0}

The compatibility of (4.1.5) with the Frobenius is considerably delicate.
Because the proof for this fact is quite long, we prove this in §9 below (the
proof of (9.9) below).

Thus we obtain (4.1.1;n).

By (8.6) (2) below, we obtain the complex W A% by taking the projective
limit with respect to the projection 7: W, 11 A% — W, A% (n € Zso). By
(8.6) (5) and by the proof of (9.9) (cf. (9.11)), we obtain (4.1.1). O

DEFINITION 4.2. We call (4.1.1;n) the preweight spectral sequence of
WnAg( and call (4.1.1) the weight spectral sequence of WAg(. We define the
preweight filtration P on H" (X, W, A%) and the weight filtration P on
H"{(X,WAL), respectively, as follows:

gl HVH( X, W AY) = ESFRE(W,AY) - (x = n or nothing).

(4.1.1) tells us that the graded pieces of the slope filtration on

H (X/W) @w Ko have weight filtrations (cf. (4.7.3) below).

log-crys
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REMARK 4.3. In this paper, as in (4.1.4), we call the filtrations P on
the (sheaves of) W,-modules in [M1] the preweight filtrations. The name
“weight filtration” in e,g., [M1, 3.6] is not appropriate; to take the projective
limit is essential for making the yoga of weight work as in the [-adic and
p-adic Galois representations.

REMARK 4.4. (1) The spectral sequence (4.1.1;n) is a generalization of
a spectral sequence in [RZS, §2], where i is assumed to be zero. (4.1.1;n)
has an interesting geometric application: using (4.1.1;n), we have

(4.4.1) lengthWnHO(X, (WnAgl()(g)r)

> lengthy, H(XW, (WRQE{} m)®’") (Vr € Zsy),

o
where d := dim X; hence we have the following inequality which we call the
“lower semicontinuity of (log) Kodaira dimensions” (cf. “The k-invariant
conjecture” of Persson [Per, Introduction p. ix]):

k(X,n) > max{k(X;,n)|X; : an irreducible component of X},

where 0 PN
— log(lengthy,, HY(X, (W,A r
) = i 2o, HOCK (¥
r—s00 ogr

and
___ log(lengthy, H%(X;, (W, Q% )®m)
k(Xj,n) = lim 2
T—00 logr
See [Nakk3] for the proof of (4.4.1).
(2) In (10.3) below, we shall describe the boundary morphisms of the

Ej-terms of (4.1.1;n).

).

In order to prove the Fs-degeneration of (4.1.1) modulo torsion, we need
Gysin morphisms in Hodge- Witt cohomologies.

Let ¢ be an integer. Let Y be a proper smooth scheme over x and let D
be a smooth divisor on Y. By (9.6) (2) below (cf. [M1, 4.6]), we have the
following two exact sequences:

(4.4.2:4) 0 — WOy — WO (log D) 25 WS (—1){-1} — 0,
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(4.4.3;+) 0 — W, — W (log D) 23 WO (—1) — 0.
Let

(4.4.4;+) dy: WQH(-1){-1} — WQS[1]

and

(4.4.5; +) dV: Wit (—1) — WL [1]

be the boundary morphisms of (4.4.2;4+) and (4.4.3;+), respectively.
We call the induced boundary morphism H7(D,WQ51)(-1) —
HITY Y, WQL) by —d@ the Gysin morphism in Hodge- Witt cohomologies.
Recall that the boundary morphism dgf) of cohomologies is a classical bound-

(i)

ary morphism (Convention (5)) and note the minus sign in —d,
By [12, II (3.1.1)], we have the following slope spectral sequences

(4.4.6;+) EY(Y/W)y = HI (Y, W)

— EY(Y/W)y = HIL(Y/W),
(4.4.7;4) EY(D/W), := HI(D,WQh)

— EY(D/W)y = HEL(D/W).

The spectral sequences (4.4.6;+) and (4.4.7;+) degenerates at E; modulo
torsion by [12, II (3.2)].

The following easy lemma is necessary for the proof of (4.7) below.

LEMMA 4.5. The morphisms dy and {d@}i are compatible modulo tor-
ston in the following sense: the induced morphism

ES(D/W)4(~1) &w Ko — B (Y/W), @w Ko

by
dy: EY(D/W),(—1) @w Ko — ETITP2(Y/W) ;. ow Ko

1$ equal to the induced morphism by

dgf)' EY(D/W);(—1) @w Ko — EXY TN (Y /W), ow K.
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PROOF. The restriction of d4 obtained by the following spectral se-
quence

0 — WOE — WO (log D) 25 (WS (—1){~1})>" — 0

induces dgf) on (4.4.3;+). Thus (4.5) is clear. OJ

REMARK 4.6. For the proof of (10.3) which will be used in (4.7) below,
we have to pay the following attention to signs. The reader shall know that,
in this place of this paper, this remark is indispensable for the determination
of signs before the Gysin morphism G in (10.3) after he reads the proofs of
(10.1) and (4.7).

Let [ and i be two non-negative integers. Let (I*%,8), (J*,§), (K*,6) be
the Godement resolutions of WQ%,, W (log D) and WQ% ' (—1), respec-
tively. Let us make a convention on signs of the boundary morphisms of 7°*
as follows: Let d be the induced morphism I — I“**! by the morphism
d: WQ§/ — WQ%;FI. Then we fix the boundary morphisms as follows:

§: 11— [
(—1)ld1 Ili _ Il,iJrl.

We make the same convention for J*® and K*®*. Then we have double
complexes I*®, J** and K°*°, and single complexes (I°®,dy), (J® dy) and
(K*, dx).

Now we change all signs in the boundary morphisms for I*®, J** and
K**. For example, we have a double complex (I**, {(—1)"!d};cn, —6) and
a single complex (I*®,—d;). Furthermore we have the following two exact
sequences of complexes:

0— (I*,—d;) — (J*,—dyj) — (K*, —dg) — 0,
0— (I.i7 _6) - (‘].ia _6) - (K.i> _6) — 0.
Hence we have two boundary morphisms
d_: (K* —dg) — (I*,—ds)[1]

and '
dD (K%, —6) — (I, —6)[1].
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They are equal to

(4.4.4;-) d_: (WQp(=1){-1}, =d) — (WO}, =d)[1],
and

(4.4.5;—) dV: WS (—1) — WQL[1]
respectively.

On the other hand, by using the Convention (6), we have
H™(D(D, (K*, ~dx))) = H™/(I(D, (K*,dx))) = H™ (D, WQp)
and
H™(D(Y, (I°,—dy))) = H(D(Y, (I°,dr))) = H™ (Y, WQ3).
Hence we have the analogue of (4.4.6; +):

(4.4.6; ) EY(Y/W)_ == HI (Y, W)
— E(Y/W)_ = HL(Y/W).

crys

By the same way, we have the analogue of (4.4.7;+):

(4.4.7; —) EY(D/W)_ := HI(D,WQ)
= E"Y(D/W)_ := H(D/W).

Then, by the same proof of (4.5), we have the compatibility of {d@} with
d_ modulQ torsion. Moreover, it is easy to see that, by the constructions of
d_ and d(_l), the induced morphisms

d_: Heyo(D/W)(=1) — Hgl2(Y/W)

crys
d: HI(D, W) (—1) — HITY (Y, Wi

)

are equal to the induced morphisms by —d and 4" , respectively.

THEOREM 4.7. The spectral sequence (4.1.1) degenerates at E2 modulo
torsion.
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PRrROOF. Let Y be a proper smooth scheme over . By [I2, II (3.5)], we
have the following slope decomposition

h
(4.7.1) P H (v W ) @w K = Hoy (Y/ W)@y Ko.
i=0
The direct sum decomposition (4.7.1) is functorial; moreover (4.7.1) is also
compatible with Gysin morphisms in crystalline cohomologies and those in
Hodge-Witt cohomologies by (4.5). By (4.1.1) and (10.3) below (cf. [M1, 4.9,

4.12]), we have an analogous diagram of [loc. cit., 4.14] for
{H" (X, W A% ) }niez,- Hence we obtain

(4.7.2) dimg, (B; ™" (X /W) ow Ko)

h
= " dimg, (B, "M (WA ) @w Ko).
=0

By the formalism of WA% [HK, §4], we also have the following slope
decomposition as in [I2, IT (3.5)]:

h
(473) @ Hh_i (Xv WAZX)@)WKO = Hl}é)g-crys(X/W)@WKO-
1=0

By (4.7.3) and (3.6), we have the following equality:

h
(4.7.4) D dimg, (H" (X, WA )@w Ko)
i=0

=" dimp, (By “" X /W) @w Ko).
keZ
By (4.7.2) and (4.7.4), we obtain

h
> dimg, (H" (X, WA )@w Ko)
=0

h
=N dimg, (B, MM WA @w Ko).
=0 keZ
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Since

dim g, (H"71(X, WA )@wKo) < dimpg, (Ey " (WA )@w Ko)
keZ

for each 7, we obtain

dimp, (H" (X, WA )@wKo) = Y _ dimg, (Ey *" (WA )@w Ko).
ke

Thus we can finish the proof of (4.7). O

REMARK 4.8. Assume that the base field is the complex number field.
Let X be a proper analytic SNCL variety over a log point (Spec(C)**,N &
C*). Then we have an analogue of (4.1.1)

4.8.1 ETRhtE _ i )%(2j+k‘+1) Oi—i—k o
(481) E, D ( NI CE R
]Zmax{ k,0}

by [St2, (5.5)] and by the same proof as that of (4.1). ((4.8.1) has geometric
applications as in (4.4) (1).)

Let e: X' — X be the real blow up of X ([KN, (1.2)]) which is
denoted by 7 in [loc. cit.]; there is a natural map X'°& — S! of topological
spaces, where St := {2 € C | |2| = 1}. Let R — S! be the universal
covering of S'. Take a fiber product X, := X8 §<1 R ([U]). In [FN], Fujisawa

and Nakayama have constructed the following spectral sequence

(4.8.2) E;k:,thk _ @ Hh—2j—k(§((2j+k+l)’ Q)(—j — k)
j>max{—k,0}
— H"(Xo, Q).

The spectral sequence (4.8.2) degenerates at Fo by the theory of the weight

in Hodge theory (cf. [D4, (8.1.9) (iv)]) if the irreducible components of X
are Kéhler manifolds or the analytifications of algebraic varieties (cf. [D1,
(5.3)]). Moreover, they have proved that there exists an isomorphism
H"(Xo,C) — H"X, Ap). Here we fix the horizontal boundary morphism
and the vertical one of the Steenbrink double complex AZ® (cf. [St2, (5.3)])
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as in (2.2.1;x), and A is the single complex of this A*. By [St2, (5.5)],
we have an isomorphism H"(X, A%) <~ H"(X, A% /(C)' If the irreducible

components of X are Kdhler manifolds or the analytifications of algebraic
varieties, then the log Hodge-de Rham spectral sequence

(4.8.3) By = HY(X, Ny 0) = H™(X,A% )

degenerates at E; by mixed Hodge theory (cf. [D4, (8.1.9) (v)]). (If X
is algebraic, we can also prove the degeneration at F; of (4.8.3) by the
method of Deligne-Illusie [DI, (2.7)] and by [Ka2, (4.12) (3)].) Hence we
have dim¢c H"(Xo0,C) = Y2, ;—y, dime HI (X, A%y sc)- In [Nakk4], we have
proved that the boundary morphisms between the Ej-terms of (4.8.2) are
expressed by Gysin morphisms and the induced morphisms of closed im-
mersions. Hence (4.8.1) degenerates at E» by the same proof as that of
(4.7).

5. p-adic weight spectral sequences of open smooth varieties

Let k, W and Ky be as in §2. Let f: X — Spec(r) be a proper smooth
scheme and D an SNCD on X. Set U := X \ D. Consider the following
log structure M on X: M := {g € Ox | g is invertible outside D}. We
denote by H"((X,D)/W) the log crystalline cohomology H"((X, M)/W).
By Shiho’s comparison theorem ([Sh, Corollary 2.4.13, Theorem 3.1.1]),
H"(X,D)/W)ow Ky = Hﬁg(U/KO). In particular, H*((X, D)/W)@w Ko
is independent of the choice of the compactification (X, D) of U.

For the completeness of this paper, let us state some facts which will
be needed in (5.2) and (5.9) below. We can apply the general theory of
log de Rham-Witt complexes in [HK, §4] (cf. [Hyl], [Hy2]) to our situation
above because the morphism (X, M) — (Spec(k), k*) of log schemes is log
smooth and of Cartier type. In particular, we have a log de Rham-Witt
complex W,Q% (log D) on X (x = n € Zs or nothing) and a canonical
isomorphism

(5.0.1) H"((X,D)/W) = H"(X,WQ%(log D))

by (7.19) below.
By [M1, 1.4.5] and by (9.3) (1) below, there exists an isomorphism

(5.0.2;n)  Res: grl W, Q% (log D) = Wn Q% (—k){—k} (n € Zso).
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Here D) := X, and D®) (k € Z+) is the disjoint union of all k-fold inter-
sections of the distinct irreducible components of D, and P is the preweight
filtration on W, Q% (log D) defined in [M1, (1.4.1), 1.4.4] (cf. (4.3)). By (9.6)
(2) below, there exists an isomorphism

(5.0.2) Res: gri WQ% (log D) — WQw (—k){—k}.

By (5.0.2), we obtain the following spectral sequence (cf. [M2, (3.1)]; see
(9.3) (1) below.):

(5.0.3) Er it = HASHDW )W) (—k) = H"((X, D)/W).

crys

By [M1, 4.9], the boundary morphisms {d}*} of (5.0.3) are described by
Gysin morphisms.

Recall the complex W, Q5% (—log D) (x = n € Zs( or nothing) in [Hyl,
1] and set HI((X,D)/W,) = H"X,W,Q%(—logD)). By [Ml, 3.15.1]
(cf. (6.29) (1) below), W,Q5% (—log D) has a resolution
(5.0.4;n) 0 — W,0%(—1log D) — W, Q%

Because the projections
m: Wy1Q% (—log D) — W, Q% (- log D)

and
e Wn+1QD(k) e W QD(k) (k € N)

are surjective ([Hy1, p. 301]), we have the following exact sequence by taking
the projective limit of (5.0.4;n):

(5.0.4) 0— WQE((— log D) — WQB(
Let {Dy,}" ; be the irreducible components of D. For positive integers
N0, .. sk < M, set Dygeny = Dpg NN Dy Let tnon? ™t Dyygooyy ——

Dyy...nj..my, be the natural closed immersion. Set

(5.0.5) S = > Z 1)Jp0rma s

1<ng<---<n<m j=0
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Then the following holds:

PROPOSITION 5.1.  The cohomology HI((X, D)/W) with compact sup-
port has the following spectral sequence

(5.1.1) EYIGE = HASRDW /W) = HM (X, D)/W)

crys

. kh—k  pokh—k k+1h—k
such that the boundary morphism d : El,dW,c — El,dW,c s equal

; k)% . h—k k h—k k ;
z‘o Otl”;e) morphism 1(F)*: Hys (DR /W) — HEss (DEHD /W) induced by
5.0.5).

Proor. By (5.0.4), WQS(—log D) is quasi-isomorphic to the single
complex of the following double complex

d —d d

L0 ) L) (2%

2
D) WQD@)

(5.1.2) d —d d

L0 N L) (2%

1
D) WQD@)

d —d d

OF
[ 0
Wy —— W,

(D) 0
—_— WQD<2>

L(2)%
.

Hence H!((X,D)/W) has the following spectral sequence by considering
the stupid filtration o of (5.1.2) with respect to the columns:

(5.1.3) EYIE = HY (DWW, k) = HE (X, D)/W).

If k£ is even,

H"D® W, [-k) = H"(DW W . {—k}) = H"¥(D®, was,,).
If k£ is odd, we have

H"(DW, Wi, [-K]) = H*(D® W3, {k}) = H'H(DW, W)
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by using the Convention (6). Therefore we can identify (5.1.3) with the
following spectral sequence:

(5.1.4) Byt = Hib(DW /W) — HI(X, D)/W).

We claim that the boundary morphism dlf’h_k is equal to the morphism
B JEEDW W) — HAE(DED /W),

crys

Indeed, we have the following exact sequence

(5.1.5) 0 — WOy [~ (k +1)] — 0¥ /0" 2((5.1.2))
— WQ3 [~k — 0.

Hence d]f’hfk is equal to the induced morphism by the boundary morphism

WQ o [—k] — WQh o) [—(k + D][1] = WQ i) [—F]
by the Convention (4) and (5). By the Convention (3), (4) and by taking the
Godement resolution of three complexes in (5.1.5) (cf. the proof of (10.1)
below), we can easily check that this is equal to LR O

We call (5.0.3) (resp. (5.1.1)) the p-adic weight spectral sequence of
H"((X,D)/W) (resp. H!((X,D)/W)).

When k is a finite field, Mokrane has proved the F>-degeneration of
(5.0.3) modulo torsion in [M2, (3.2)] (under the assumption of the projec-
tivity of X; we need not assume this projectivity by [CL1, (1.2)] or (2.2)
(4)). The following (1) is a generalization of this result.

THEOREM 5.2. (1) The spectral sequence (5.0.3) degenerates at Fo
modulo torsion.
(2) The spectral sequence (5.1.1) degenerates at Ea modulo torsion.

PROOF. (1): The proof is the same as that of (3.6): all we need are
the existence of a model of (X, D) over a smooth affine scheme over a finite
field ([EGA IV-3, (8.9.1) (iii)]), the log base change theorem ([Ka2, (6.10)]),
the strict perfectness of the complex which produces the log crystalline
cohomologies of (X, M) (cf. the proof of (3.2)), the existence of the Gysin
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morphism over a PD-scheme, Deligne’s remark and the purity of the weight
in [CL1, (1.2)] or (2.2) (4).

(2): (2) follows from (1), (5.3)
Es-terms of (5.0.3)@w Ky and (5.1.
module over W), itself.) O

(2) below and the duality between the
1)®@w Kp. (Note that W, is an injective

The following (1) is a log version of Ekedahl’s duality (cf. [Ek1, II
(2.2.23)]), and (2) is a Poincaré duality which has been proved in [M2,
(4.2)] (cf. [Hy2]), though the proof in [loc. cit.] is quite sketchy.

THEOREM 5.3. Assume that X is of pure dimension d. Let n be a
positive integer. Then the following hold:
(1) There exists a canonical perfect pairing of W, -modules

(5.3.1)  HI(X, W, Q% (log D))@w, H* (X, W,, Q% (—log D)) — W,,.
(2) There exists a canonical perfect pairing of W, -modules

(5.3.2)  H(X,W,Q%(log D))@w, H* (X, W, Q% (—log D)) — W,,.

ProOOF. Let f,: W,(X) — Spec(WW,) be the projection. Then, by
[Ek1, 1] (here we have to use [Co, (2.2.7)]), faWn = W,Q%[d]. Hence (1)
follows from [Hal, VII Corollary 3.4 (c)] (cf. [Co, Theorem 3.4.4]) and [Hy2,
(3.3.1)]. (2) follows from (1) as in [B1, VII 2.1.5]. OJ

REMARK 5.4. (1) By the finite length version of (5.0.1), (5.3) (2) and
Tsuji’s Poincaré duality ([T]), we obtain

H (X, D)/Wa) = H"((X, M)/ W), Kx/w,).

(See [loc. cit., §5] for the definition of Kx . See also [NS, §19] for another
proof of the equality above.) Hence, by [T], [Sh, Corollary 2.4.13, Theorem
3.1.1] and [B4, (2.4)], we obtain H!((X,D)/W)ewKo = H}, (U/Ko).
(Note that the duality in [B4, (2.4)] holds for a separated smooth scheme
of finite type over k by the same proof of [loc. cit.] once the definitions of
the rigid cohomology Hgg(U/Ko) and the rigid cohomology HZ&C(U/KO)
with compact support are given for U/k ([B3, p. 335, Remarque|, [B2,
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(3.1)].) In particular, H*((X, D)/W)®w Ky is independent of the choice of
the compactification (X, D) of U.

(2) Though the compatibility of the pairing in (5.3) (2) with the Frobe-
nius is claimed in [M2, (4.2)], it is not proved in [loc. cit.]; the Frobenius on
W, Q% (& log D) is not defined in [loc. cit.]; in (9.1.2) and before (9.4) below,
we define the Frobenius on W, Q% (+log D), and in (9.4) (1), we prove the
compatibility.

Next, we prove the Fs-degenerations of the weight spectral sequences
constructed by Chiarellotto and Le Stum in [CL2] by the method of rigid
cohomologies.

Let V be a complete discrete valuation ring of mixed characteristics. Let
k (resp. K) be the (not necessarily perfect) residue (resp. fraction) field of
V. Let p be the characteristic of k. Let ¢ € Aut(V) be a fixed lift of the
p-th power endomorphism of k. For simplicity, assume that there exists a
closed immersion X — P into a formal V-scheme such that P/Spf(V') is
formally smooth around X. Then there exist the following weight spectral
sequences ([CL2, (3.8), (3.5)]):

—k,h+k -

(5.4.1) By = Hi NDW/K)(—k) = Hf, (U/K),
kh—k —

(5.4.2) EPhR = HER( DW/K) = H}, (U/K),

though the Tate twist in (5.4.1) has been forgotten in [loc. cit.]. The
boundary morphisms {d}*} of (5.4.1) (resp. (5.4.2)) are described by Gysin
morphisms of divisors (resp. the induced morphisms of closed immersions).
They have proved the Fs-degenerations of (5.4.1) and (5.4.2) when & is a
finite field.

REMARK 5.5. Asin the case (5.1.2) for (5.1.4), we have made the anal-
ogous convention on signs of the Mayer-Vietoris exact sequence in [CL2,
p. 165] for (5.4.2) to rid ambiguous conventions on signs.

THEOREM 5.6. The spectral sequences (5.4.1) and (5.4.2) degenerate at
Es.

PrROOF. By [B4, Remarque on p. 498], rigid cohomologies commute
with the extension of fields. Hence we may assume that x is perfect.
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By [B3, (1.9)], Eyi ¥ = EypwtowK. By (54) (1), HA, (U/K) =
HM(X,D)/W)®w K. Hence the Fa-degeneration of (5.4.2) follows from

(5.2) (2); the duality [B4, (2.4)] shows the Ej-degeneration of (5.4.1). O

REMARK 5.7. By the comparison of the chern class of an invertible
sheaf on a proper smooth variety in rigid cohomologies and in crystalline
cohomologies ([Pet]), we can prove the Es-degeneration of (5.4.1) directly
by [Sh, Corollary 2.4.13, Theorem 3.1.1] and (5.2) (1) without using the
E>-degeneration of (5.4.2).

Finally, we prove the Fs-degenerations of the weight spectral sequences
of the log Hodge-Witt sheaves on X. Let us assume again that the base field
k is a perfect field of characteristic p > 0. Let ¢ be a non-negative integer.
By (5.0.2;n) and (5.0.2), we obtain the following spectral sequences
(5.7.1;n) BME = g (D®) w0k (k)

= H" (X, W, Q% (log D)),

(5.7.1) B = g H(DW wailk ) (—k) = H"(X, WQk (log D)).
By (5.0.4;n) and (5.0.4), we obtain the following spectral sequences

(5.7.2;n) EYME = HRDW w00 )

— H" (X, W, Q% (—log D)),

(5.7.2) BEY"F = H'YRHDW Wl ) = H'YH(X, WQi(— log D)).

REMARK 5.8. As remarked in (4.4) (1), (5.7.1;n) and (5.7.2;n) have
some geometric applications.

THEOREM 5.9. The spectral sequences (5.7.1) and (5.7.2) degenerate at
E5 modulo torsion.

PrROOF. By [M2, (3.3)], there exists the following slope decomposition

h
P B (X, W (log D))@w Ko = H"((X, D)/W)@w K.
=0
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By the formalism of WQ% (—log D) ([Hyl]), there also exists the following
slope decomposition

h
P " (X, W (~log D))@w Ko = HI(X, D)/W)@w Ko.
=0

The rest of the proof is the same as that of (4.7) by using (5.2) (1), (2). O

REMARK 5.10. Assume that the base field is the complex number field
C. Let (X,D) be a proper smooth analytic variety over Spec(C)*" with
an SNCD. Then, by the obvious analogues of (5.0.2;n) and (5.0.4;n), there
exist the following two spectral sequences:

(5.10.1) BMHR = gh(D®, 0k ) (—k) = H'(X, 9 c(log D),

(510.2)  EP"E = H'RDW 0 ) = HI' (X, Qg e(—log D)).

If X is Kéahler or algebraic, then the Fs-degeneration of the spectral se-
quence (5.10.1) has been proved in [D3, (3.2.13) (iii)], though the upper in-
dices of the F1j-terms and those of the convergent terms in [loc. cit.] should
be replaced as in (5.10.1). The Es-degeneration of (5.10.2) follows from that
of (5.10.1) and from the duality between (5.10.1) and (5.10.2).

Part II. Fundamental Properties of (Idealized) Log de Rham-
Witt Complexes and Those of p-Adic Weight Spectral Sequences
of Log Varieties

Because methods in the theory of log de Rham-Witt complexes are del-
icate and because it is sometimes difficult to find mistakes in the proofs for
some facts in the theory in published papers and to realize that no one has
given correct proofs for some facts in the theory in them, there are many
non-minor mistakes and unproved facts in the theory in them. In the Part
II, we complete many of unproved facts, make the theory perfect by using
some ideas and results in published papers; results in [Nakk4] clarify some
mistakes in published papers as counter-examples (cf. (10.6) (1), (11.15) (1)
below).

We divide the Part II into six sections. In §6 we give theory of formal
de Rham-Witt complexes and as a corollary of this theory, we give a precise
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proof of the fact that the log Hodge-Witt sheaf with compact support of a
smooth scheme with an NCD is compatible with the canonical filtration as
modules over the Cartier-Dieudonné-Raynaud algebra. In §7 we complete
some fundamental results in [HK]. In §8 we study some fundamental prop-
erties of projections in the theory of log de Rham-Witt complexes. In §9
we prove the compatibility of the (pre)weight spectral sequences with the
Frobenii. In §10 we give a right proof of the description of the boundary
morphisms between the Fj-terms of (2.0.1); we also describe the boundary
morphisms between the Fi-terms of (4.1.1). In §11 we give a right proof of
the coincidence of the p-adic monodromy operators in [HK] and in [Hy2].
In §9, §10 and §11, we pay attention to signs; even one mistake in signs may
make many statements and proofs wrong (see (11.9) (1), (2) below), and
consequently someone has to correct the mistakes.

I hope that the reader shall read all in the Part II and references quoted
in the Part II closely and that he does not believe that there are only careless
mistakes in references.

6. Formal de Rham-Witt complexes

In this section we give theory of formal de Rham-Witt complexes (see
(6.9) below for the definition) associated to certain complexes, following
[Nakkl]. As a corollary, we give a detailed proof of [M1, 1.3.3] because the
proof in [loc. cit.] is sketchy (see (6.29) below for details) and [loc. cit.] has
been used in [M1, 3.15.1] and [M1, 3.15.1] is one of key ingredients for the
construction of the spectral sequence (2.0.1).

Let (7,A) be a ringed topos. Let ©'* and Q° are complexes of A-
modules and let ¢: Q'* — Q°® be an A-linear morphism of complexes of
A-modules. Let p be a prime number. Set '} := Q'*/p(QV'*), Q} := Q°/pQ°,
and A; := A/pA. We assume that the following conditions (6.0.1) ~ (6.0.5)
hold:

(6.0.1) Q" =0= Q' for i <0.

(6.0.2) Q" and Q (Vi € N) are p-torsion-free, p-adically complete .A-mod-
ules.

(6.0.3) ¢(V%) C {w € p'QY | dw € p'TIQIFLY (Vi € N).
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(6.0.4) There exists an A;-linear isomorphism

C7h Q" S HY(QD) (Vi e N).

(6.0.5) A composite morphism (mod p) o p~'¢: " — Q' — Qf factors
through Ker(d: Qf — Q’lﬂ), and the following diagram is commutative:

Q/i mod p Q,ll
e
Qf 0P i),

DEFINITION 6.1. Let C;’rel(’T, A) be the category of objects (Q'®,Q°,
¢, C~1) satisfying (6.0.1) ~ (6.0.5); a morphism in Cf{rel(’T,A) is defined
in an obvious way. Let Cf(7,.A) be the full subcategory of C;rel(’]', A)
whose objects satisfy an equality Q' = Q°. Let C%ﬂrel(T, A) be a full-
subcategory of Cif,rel(’f, A) of objects ('*,9Q°, ¢,C~1) such that Q'* and
Q°® are bounded. Set C(7,A) := CH(T,A4)N C%’rel(T, A). For simplicity
of notation, we denote (Q°,Q°,¢,C™1) € CE (T, A) by (Q°,¢,C71).

For a gauge e¢: Z — N ([BO, 8.7 Definition]), let  be the associated
cogauge to € defined by

Let 2 (vesp. Q7) be the largest complex of Q'® (resp. Q°) whose i-th
degree is contained in p<MQ* (resp. p"DQ) ([BO, 8.6 Definition]). Then
the following holds:

THEOREM 6.2. ([Nakkl]) Let e: Z — N be a gauge with associated
cogauge 1. Then the morphism ¢: '®* — Q° induces a quasi-isomorphism

pe: Qs — Q.
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PROOF. The proof is the same as that in [BO, 8.8 Theorem]; the con-
ditions (6.0.1) ~ (6.0.5) are nothing but ones which enable the proof in
[loc. cit.] to work in (6.2). O

COROLLARY 6.3. ([Nakkl]) Assume that Q% and Qp are bounded
above and that they consist of flat A-modules. Let M be an A-module.
Then the morphism

(6.3.1) ¢E®AidM:QIE®AM—>Q;®AM
1S a quasi-isomorphism.

PrROOF. Let MC(¢.) be the mapping cone of ¢.. Then MC(¢p) ® 4 M
is acyclic. Hence ¢, ® 4 id a4 is a quasi-isomorphism. [

COROLLARY 6.4. Let i (resp. n) be a non-negative (resp. positive) in-
teger. Then the following hold:
(1) (cf. [HK, (2.24)])

pi{w c Qz| dw € pn+1Qi+1}
pitn{w € Q| dw € pQit1} + pi-ld{w € Qi-1|dw € pQi}
¢ {we QY dw e p"itt)
— . .
an/z + dQyi—1

(6.4.1)

(2) ([Nakk1], ¢f. [IR, III (1.5)])
pH{w € Q] dw € p"HiQit1y
pH{w € Q| dw € pQitl} 4 pidQi—1
¢ {w e Q| dw € pY+1Y
«— n T
pnﬂlz _i_delzfl

(6.4.2)

Proor. (1): Set A :=Z, and M :=Z/p". Let € be any gauge such
that (¢ — 1) = 0. Then (6.3.1) at the degree i is equal to (6.4.1); we finish
the proof.

(2): Set A := Z, and M := Z/p". Let € be any gauge such that
€(i—1) =1 and €(i) = 0. Then (6.3.1) at the degree i is equal to (6.4.2). [J
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Henceforth, assume that (Q°,¢,C~!) € C&(7,Z,), where, by abuse of
notation, Z, in the notation C%(T, Zp) is the constant sheaf in 7 defined
by Z,. For a positive integer n and a non-negative integer 4, set

Zi = {w e V| dw € p"QH}, Bl = prQi 4 dQi

6.4.3 e
(6.43) 2,0 = Z /Bt .

Then we have an isomorphism

c—1
~

(6.4.4) W0 =H(Q]) < O

of Fp-modules by (6.0.4).

Let €: Z — N be a gauge with associated cogauge 7. Since Q° is
bounded and consists of torsion-free Z)-modules, so are 2? and 2.

Let us define morphisms

F: 90,0 — 2,0°, V:2,0 — 2,9, d: 20,0 — 20,07,
pP: 29,0 — QHnHQi and QHnHQi — 99,0

of sheaves of W-modules in 7 as follows: F' (resp. V') is a morphism induced
by id: QF — Q! (resp. p x id: Q' — QF); d is a morphism induced by
pd: {w € Q] dw € p"QT!Y — QL p is a morphism induced by
p Vg QF — Q' (note that —(i — 1) is positive if 4 = 0); 7 is the
following composite morphism (cf. [HK, (4.2)]):

i

(6.4.5) W12 = Zji1/Bs — 0" Znga /D' By

ROk izl (2L p Az

¢ ,
< 70 /B = 90,00

Then, the following formulas hold:

d>=0, FdV =d, FV =VF =p ,Fp=pF, Vp =pV,

(6.4.6)
dp = pd, pt = 7p = p.

The morphism 7 is surjective. Hence

Im(p: W, 19 — W, 1 Q) = Im(p: W, — 2,119
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(cf. [Hy2, p. 245]).

PROPOSITION 6.5. The morphism w is equal to the following composite
morphism:

(65.1) W1 = Ziy 1 /Blay ©% Zhoy /(0" 2]+ A2
(piii))il Z%
P+ pd§i—1

P 70 /Bl = 20,0,

PROOF. (6.5) immediately follows from the following commutative di-

agram:
PZi /0] 4 A S 73 (o 4 pdQi )
(6.4.2)
Pr0j~l Jproj, ]
o o 4 ¢ o
P/ 0B 4y NET) o 2B

REMARK 6.6. Let (W,9g;)” be the de Rham-Witt complex defined in
[12, I (1.3)] for a scheme U over k. As suggested in [IR, III (1.5)], we see
that 7 in (6.5.1) for U over k fits into the following commutative diagram

. C—(?’l+1) .
(Wnt1Q)" ——— Wp1 QY
(661) proj.l lﬂ’
. C_n .
(WRQy)"  —— W,
The commutativity of (6.6.1) will be used in (7.21) below.

Let k be a perfect field of characteristic p > 0. Let W (resp. W,,)
be the Witt ring of x (resp. the Witt ring of s of length n). Let o be
the Frobenius automorphism of W. Let CB(7,Z,; W) be a subcategory of
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C2(T,Z,) consisting of (Q°, ¢, C~1) such that Q* is a complex of W-modules
(W is the constant sheaf defined by the Witt ring ') which is compatible
with the Z,-module structure and such that ¢ is o-linear; a morphism in

C% (T,Zy; W) is assumed to be W-linear. Henceforth we consider only ob-
jects of CB(T,Zy; W).

LEMMA 6.7. Let x be a positive integer n or nothing. Set

WQ* = lim 20,0°.

™

Then there exists a natural Wy-module structure on 20,

PROOF. Let ¢:=(cg,...,cn—1) (c; € K (0 <i<n-—1)) be an element
of W,,. Let w be a section of Z%:. Then we define c - [w] as follows: ¢ - [w] =
[(Z;:& pj?:?n_]) -w|, where ¢; € W, is a lift of ¢;. It is a routine work to
check that this action is well-defined. By the same calculation as that in
the proof of the commutativity of (7.1.3) below and by taking the projective
limit, we see that there exists a natural W-module structure on 20, [J

By the proof of (6.7), we see that F (resp. V) is a o-linear (resp. o~ !-

linear) morphism and that 7 and p are W-linear morphisms.

LEMMA 6.8. (cf. [Hy2, (1.3.2)], [HK, (4.5)])
(1)

(6.8.1)  Ker(p: Wp19Q° — 2,119 = Ker(m: 2,19 — 25,Q°).

(2) The morphism p: W0 — W, 1 is injective.

(3) WO is a sheaf of torsion-free W -modules.

(4) dm = nd, Fmr = nF, Vm = @V the morphisms d, F and V induce
morphisms d: 0 — WL F: 900 — 20Q° and V : 20Q° — 0Q°,
respectively.

PROOF. (1): Since pm = p, it suffices to show the inclusion C. Let w
be a local section of Z! ,; such that there exists a local section n € Q" and
¢ € Q1 satisfying an equality pw = p"*1n + d¢. Then we see that n € Z%
and that ¢ € Z:~!. Hence p'w is the zero in the third sheaf of (6.4.5). This
shows (6.8.1).



p-Adic Weight Spectral Sequences of Log Varieties 549

(2): (2) immediately follows from (1).

(3): Let (wn)22; (wn € W, Q) be a local section of WO, Assume that
pwn+1 = 0. Then p(w,) = 0. By (2), we have w, = 0.

(4): Since pdr = dpm = pd = pwd and since p is injective, we have
dm = wd. The rest of the proof is the same by using two relations F)p = pF
and Vp = pV in (6.4.6). O

Let R be the Cartier-Dieudonné-Raynaud algebra over £ ([IR, I (1.1)]).
Set R, := R/(V"R + dV"™R). Then 20Q° (resp. 20,0°) is naturally an
R-module (resp. R,-module). Let CP(7,R,) be the category of bounded
complexes of left R,-modules. We have a functor

(6.8.2) W, : CR(T,Zy; W) — CP(T, Ry),

where, by abuse of notation, R, in (6.8.2) is the constant sheaf in 7" defined
by R..

DEFINITION 6.9. We call 20Q° (resp. 20,,2°) the formal de Rham-Witt
complex (vesp. formal de Rham-Witt complex of length n) of (Q°,¢,C71) €
CY(T, Zp; W).

DEFINITION 6.10. Let n be a positive integer. Set

0 (r>n),
(6.10.1)  Fil"20,Q" := { Ker(z"": 20,0 — 20,Q") (0 < r < n),
20, (r <0).
(6.10.2) Firgpo — | Rer — WA (r>0),
W (r <0).

Let x be a positive integer or nothing. For an integer r, set

(6.10.3) gr" W, 0 = Fil"Ww, Q' /Fil" 190, 0"

By the formulas pm = 7p and pd = dp in (6.4.6), the injective morphism
p: 20,0 — 20,19 induces injective morphisms

(6.10.4) p: WQ* — WO*
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and

(6.10.5) p: gr" WO — gr"twne.

ProrosiTiON 6.11. ([Nakkl], cf. [12, I (3.4)]) (1) The morphism of
a multiplication p’: W, 1 — W, 12 (0 < j < n+ 1) induces the
morphism p’ : QUnH_jQi — W, 1 Q.
(2)
(6.11.1) Ker(p’: 2,119 — 20,119
= Fil"™ 798, Q0 (0<j <n+1).

PROOF. (1): The equality p’ = p’7/ shows (1).
(2): By the following commutative diagram

;41 Z, 182
le pjTU
an_i,_l_jgi p— mn+1_jQi

and by the injectivity of p/ ((6.8) (2)), we have (2). O

Now, as suggested by the referee, we assume that 7 is the Zariski topos
)?mr of a scheme X over k. Let B be a p-torsion free quasi-coherent sheaf of
commutative rings with unit elements in )Nfzar with a surjective morphism
B — Ox of sheaves of rings in )Z'ZM. Assume that Ker(B — Ox) = pB
and that each Q' (i € N) is a quasi-coherent B-module. Then, as in the proof
of (6.7), we can endow 20,9’ with a natural W, (Ox)-module structure
(cf. [IR, IIT (1.5)]). For a projective system of exact sequences

0— Fp—Gn— Hp—0 (neN)

of quasi-coherent W,,(Ox)-modules, if F,, satisfies the Mittag-Leffler condi-
tion, then we have an exact sequence

n n n
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by considering the sections of linn H,, over a small affine open subscheme

of X. We can easily check that 203, is a quasi-coherent W,,(Ox )-module
and that the morphisms 7: 20,419 — 20, and p: 20,Q" — 20,1’
are morphisms of W(Ox)-modules (cf. the proof of (7.1) below). In this
situation, we prove the following in turn:

(A): Fil"0Q¢! = Vn0Q! + dV"wQi—!t  (n € N).

(B): d~1(pmwQitt) = FrapQr.

(C): R, ®@%WQ* =20,Q° (n € Zo).

(A)

ProprosITION 6.12. (1) ([Nakkl], cf. [I2, I (3.2)]) Let n be a positive
integer and r a non-negative integer such that r < n. Then

(6.12.1) Fil" 20,119 = V2,11 Q' +dV"2W, QL

(2) Let Fx: X — X be the Frobenius endomorphism of X. Assume
that ' ‘
C1: QL =5 w08 = HY(Fx. ()))

is an isomorphism of Ox-modules. If QJ (j =1 —1,i) is an Ox-module
of finite type and if Fx is finite, then 20,0 is a W,,(Ox)-module of finite

type.

PrOOF. (1): Since pr = p, p" "2 1="Vr90,,.1 0 = 0. Hence
V2,1, C Fil'W,,119Q! by (6.8) (2). Since nd = dr by (6.8) (4), the
inclusion D is obvious.

We prove the inclusion C by descending induction on . We may assume
that r > 1.

If r = n, we have

(6.12.2) Fil"20,1Q" = p "p'(p"Z; + p~'dZi 1) /p 0’ Bly
= (0"Zi +p 'dZi) /Bl

by (6.4.5). On the other hand,

(6.12.3) VRO 4+ dVW QT = ("7 +p " dp" ZY) /By
_ ( nZz +p—1de 1)/Bn+1
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Hence, by (6.12.2) and (6.12.3), we obtain (6.12.1) for the case r = n.
Next, assume that (6.12.1) holds for a fixed r < n. Since 7 is surjective,
we have the following exact sequence:

(6.12.4) 0 — Fil'Q0,, Q0 — Fil' 190,10 " Fil' 199, — 0.

Let z be a local section of Filr_lﬁﬂnHQi such that there exist local sections
y' € W0 and 2/ € 20,971 satisfying an equation 7"t "g = V'l +
dV™=12" in 20,9 Since 7 is surjective, we may assume that there exist
local sections y € W, 12,0 and z € W, 12_,.Q ! such that 3 = 7717y
and 2/ = 7"T17"2. Then we have 7" "(z — (V" ~ly + dV""12)) = 0.
Hence z — (V" ly + dV""12) € Fil'20,,19Q°. Induction on r shows that
T eV, 0 QO + AV, 0 QL

(2): By the pull-back of the Frobenius endomorphism W, 11(Ox) —
Fx.Wn11(Ox) and the W, 1(Ox)-module structure of 20,10,
Fx.20,1 is naturally endowed with a W, 1(Ox)-module structure. By
(6.12.1) we have a surjective morphism

(6.12.5) V4 dV": 0,0 @ 0,97 — Fil"90,,,,1

of abelian sheaves on X,,,. By the surjectivity of the morphism (6.12.5)
and by using the following relation

n+1

p"_lbpn+27jdw =/ lar" vw) mod p

(1<j<n) (beBweQ),
we see that Fy,Fil"20,,1Q" is an Ox = W,11(Ox)/VWypi1(Ox)-module

(cf. 12,1 (3.9)]). It is easy to see that the morphism (6.12.5) is the following
morphism of Ox-modules:

(6.12.6) V" +dV": Fel'a Q' e Fyt'as Q' — Fx, Fil"20,,,Q"

Because the source of the morphism above is an O x-module of finite type by
the assumptions of (2), so is the target. Hence Fil"20,,,1Q¢ is a W,,11(Ox)-
module of finite type. Now (2) follows from the induction on n and the
following exact sequence

0 — Fil"20,, .1 — 20,19 T 20,,Q° — 0
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of Wy41(Ox)-modules.
We finish the proof of (6.12). O

PROPOSITION 6.13. Let r be a positive integer. The following three
canonical morphisms

(6.13.1) W /p" W' — 1im 2, Q° /p" W, Y,

(6.13.2) WO VWO — lim 20,9 /V"2,,_, Q'
n>r

and

(6.13.3) WO/ FQ — lim 90, Q" /"2, 4,

n

are 1somorphisms.

PRrROOF. We prove only that (6.13.2) is an isomorphism; the proof for
(6.13.1) and (6.13.3) is similar.

Assume that n > 2r. Set K,, := Ker(V": 20,,_,Q° — 205,,Q%). Then,
K, C K/ = Ker(p": 0,_.Q" — 20,,Q%). By (6.11.1), K C
Fil"=2"90,,_,Q¢, that is, 7"(K’) = 0; hence n"(K,) = 0. In particular,
{K,}n>r satisfies the Mittag-Leffler condition. Note also that transition
morphism 7: 20,419 — 20,,Q¢ is surjective. Hence, by taking the projec-
tive limit of the following exact sequence

0— K, = iIU?%—rQi L anZ - 5'~)ﬂan/erﬁnn—er — 0,

we have the following exact sequence

(6.13.5) 0 — 20" 5 9007 — 1im 25,07/V"2W, Q' — 0.
n>r

The exactness of (6.13.5) implies that (6.13.2) is an isomorphism. [

PROPOSITION 6.14. (A generalization of [I2, T (3.19.2.1)] (cf. [Lo,
p. 258])) Let n > r be two positive integers. Then the following sequence is
exact:

(6.14.1;r, n) 0 — W, /Frap, 0 Y ap,0f v, Q'
— 20,0 — 0.
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Consequently the following sequence is exact:

(6.14.1;7) 0 — QL Frapoi—t Y 9p0i /vras0l — 95,01 — 0.

PrROOF. By (6.12), we have only to prove that dV" in (6.14.1;r,n) is
injective. Let [w] € 20, Q! (w € Z:~1) be a local section such that
dV'[w] € V"2, _.Q". Then djw] = F"dV"[w] € p"2W,,_,Q'. Hence there
exists a local section n € Qf such that p~ (" dw = p'n, that is, w €
Zi=1. Therefore [w] € F™205,Q'"!. Thus the sequence (6.14.1;r,n) is exact;
by taking the projective limit of (6.14.1;r,n) with respect to m, we obtain
(6.14.1;r) by (6.13). O

THEOREM 6.15. (cf. [I2, I (3.31)]) Let r be a non-negative integer.
Then the following formula holds:

(6.15.1) Fil"0Q = VT0QF + dV 0L,

PrROOF. By the definition (6.10.2), the equality (6.15.1) immediately
follows from the exactness of (6.14.1;r). O

COROLLARY 6.16. (cf. [Lo, (2.16)]) Let R be the Cartier-Dieudonné-
Raynaud algebra over k. Let n be a positive integer. Set R, := R/(V"R +
dV"R). The canonical morphism

(6.16.1) R, ®r WOQ* — 25,0°
18 an isomorphism.

Let us define the following abelian subsheaves of ¢ inductively for n €
N:

Zo =, 219 = ZO = Ker(d: Qf — QiF1),
(6.16.2) ct
Zn1 QU /BOE < 7,00

B := 0, B := BQj :=Im(d: Q)" — Q}),
(6.16.3) ¢t
Bn+1Q?L/BQ?l — B"Q?l'
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Usually, Z,9Q! and B,Q! are endowed with x-module structures induced
by that of Q%; they can also be inductively endowed with x-module struc-
tures such that C~!’s in (6.16.2) and (6.16.3) are s-linear isomorphisms.
However, in the all parts of this paper, we do not need either k-module
structures of ZnQil and BnQ?l.

LEMMA 6.17. (1) Z,9% = (Z§ + pQ?) /pQ (n € Zsg).
(2) BuQ = (p~ " ”le 1+ )/ (n € Zso).

PROOF. (1): It is easy to check that C~1 = p~'¢ induces an injective
morphism

(6.17.1)  (Zhpy +p)/(pQ + Q) €= (28 + p2) /pQ (n € L),

The morphism (6.17.1) is surjective by (6.4.2). Then induction on n € Z
shows (1).

(2): The proof of (2) is equivalent to proving that C~1 induces an iso-
morphism

(6.17.2) (p~"dZi + pQh) ) (pQF 4 A Y)

o1

S (pVAZEY 4 pQY QT (0 € Zso).

As in (1), we have only to prove that the morphism (6.17.2) is surjective.

Let n be a local section of Z:~1. Then, by (6.4.2), there exists a local
section w € ZZ ~! such that p"'n—¢(w) € p””_lZfl—i—pi_lin_Q. (Strictly
speaking, we have to consider a more local section of 7.) Hence p~"dn —
p~ip(p~ ™ Vdw) € dZi~'. Therefore the morphism (6.17.2) is surjective.
Induction on n € Zsq shows (2). O

Let us consider the following composite morphisms:

C

~

(6.17.3) C: Zpp1 Q1 /B 2% 7, 1 Q8 /BoQi s 2,01 /B (n > 0),

C

~

(6.17.4) C: Bpi1Qi/BQ Y% B,y Q1 /BoQi s B, /B (n > 1).
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The morphisms (6.17.3) and (6.17.4) induce the following morphisms, re-

spectively:
(6.17.5) C™: Zp 1 /B — ZQ% /BQ, = 20,0,
(6.17.6) C™: Bp,29Qt /BQ, — By /BQS.

Let us define an abelian subsheaf 20, Kﬁl in7 = )?Zar of 20, Q’l PN Qifl
fitting into the following exact sequence (cf. [Hy2, (2.3)], [HK, (4.4)]):

(6.17.7) 0 — WK} — (B2 /B & (Z,11 Q7 /BQTY
(©29C") B, /BQE — 0.

Note that d: Z, Q' /BQI™! = ,Qi~1 % By /BQS is well-defined by

(6.17) (2).

LEMMA 6.18. Let n be a positive integer. The following diagram is
commutative:

mn+1Qi = Qﬂn_,_lﬂl

(6.18.1) pmji lﬂn
(Ziy +pQ) ) (p + dQY) = Z,1 91 /BO, —S a0

n

Proor. We proceed by induction on n.
Consider the following diagram:

W, ¥ — w0 2z al/poi

(6.18.2) proji H

o1

Zni1 QB 2 7 QL Byl 2,00 /BQ

Consider sections [w] € Wyn41Q (w € Z),,4) and [n] € W,Q" (n € Z%) such
that p'w — ¢(n) € p'*"Z; +p~1dZ;~! ((6.4.1)). Since p"Zi +p~tdZi" ! C
pQ + p~tdZi7!, the image of w — p~ié(n) in Z, 119}/ B2} is the zero by
(6.17) (2). By the definition of 7 in (6.4.5) and by the commutative diagram
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(6.0.5), (6.18.2) is commutative. We prove the commutativity of (6.18.1) by
induction on n.

(6.18.1) for n =1 is equal to (6.18.2) for n = 1.

By the inductive hypothesis, the following diagram is commutative:

™

w0 L 95,0
(6183) proj.l H
2,0 /B2 <L 9y,

The commutativity of (6.18.3) and that of (6.18.2) show the commutativity
of (6.18.1). O

ProrosiTION 6.19. (cf. [Hy2, (2.3.1)], [HK, (4.4)]) The surjective mor-
phism

(6.19.1) (V™ dV™): 0,08 @ 0,01 — Fil"90,,,, Q'
((6.12)) induces an isomorphism

(6.19.2) (V™ dv™): (20,9 @ W97 /W, K) =5 Fil"90,,,1 Q.

PrOOF. Let ([w],[n]) (w € Z}, n € Zi™1) be a local section of ;0 @
20,01, Assume that V™([w]) + dV"([n]) = 0. Then there exist local sec-
tions w’ € O and ' € d¥~! such that p"w + p~ldn = p"t'w’ + dn’. Then
d(n —pn') = —p"H(w — pw'). Since [n] = [n — pn'] and [w] = [w — p'],
we may assume that dy = —p"*lw. Hence [ € Z,1971/BQ} and
[w] € BpoQi/BQY by (6.17). Moreover, n (resp. w) defines a section
Mnt1 € Wy QL (resp. [W]ns1 € W,119%), and we have a formula
dnn+1 = —[wln+1 and hence 7"d[n|p41 = —7"[w]nt1. Since md = dm,
we have dr"[n]p+1 = —7"[w]p+1. By (6.18), dC™[n] = —C"[w]. Therefore
(W], [n]) € Wi Ky,

Conversely, let ([w], [7]) (w € p_("“)dZ;_ﬁ, ZfH_ll) be a local sec-
tion of 2, K. Let N/, be the kernel of the morphism (6.19.1). First
consider the case [w] € Bn+1Q /B and [n] = 0. Then V"w] €
[p"p~ (" H=Ddzi=1, 1 C [dQ 41 = 0. Hence

V"'((Bn4191/B9,0)) = 0.
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Next, let us consider the general case. First note that C" induces an isomor-
phism C™: Bn+2QZi/Bn+IQZi = BQQ?[/BQ%. Therefore, by the definition
of W1 K}, we have —C~"dC"[n] = [w] in Bpy29%/By112. Because

CT"dC"[n) = CT"dr" [n]py1 = C7"m"d[n]ps1
= C_nﬂn[p_(n+1)dn]n+l = proj'([p_(n+1)d77]n+1)7

we have —[p~("tVdp] = [w] in B, 12Q}/By 1. Because V*((By19/
BQ,0)) = 0, we have [p"w + p"p~ T Ddn] = 0 in Fil"2W,, 19" This shows
that 20, K}, C N, . O

REMARK 6.20. We immediately obtain [HK, (4.4)] by the equality
(6.19.2); our proof is different from the proof of [loc. cit.].

(B)
ProposiTION 6.21. (cf. [12,1 (3.21)], [IR, II (1.3)], [M1, 1.3.4])

(6.21.1) Ker(d: 20,Q" — 20,0 = F"(20,,Q°).

PROOF. The proof is the same as that in [M1, 1.3.4]: we immediately
obtain (6.21) by taking the long exact sequence of the following exact se-
quence

0 — Q./pnﬂ. i Q./p2nQ. _ Qo/ano — 0.0

PropoOSITION 6.22. (cf. [I12, I (3.13) ~ (3.17)], [Hy2, (2.4.1), (2.4.2)])
(1) Let m be a non-negative integer. The injective morphism
p: gr" WO — gr"TMIBO® is a quasi-isomorphism.

(2) Let n be a non-negative integer. Let m be a positive integer. Then
the following canonical projection

(6221) e Qﬂn+m+1ﬂ'/pmﬂﬂn+m+19' — QUn+mQ'/meUn+mQ'

18 a quasi-isomorphism.
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(3) Let n be a positive integer. The following canonical projection
(6.22.2) 20Q° /p"WN* — 25,,Q°
1S a quasi-isomorphism.

PROOF. (1): We may assume that m = 1. Set 20pQ2®* = 0. Since p
is injective, we have only to prove, as in the proof of [I2, I (3.13)], that
gr" 100 /per"WQ* is acyclic. By the commutative diagram

gr" w0 e gr Qe

=| |=

Ker(2,419° — 20,0°) —2— Ker(2W,120° — 20,,,10°),

we have only to prove that Fil"*'90,,,0Q°/pFil"20,,1Q° is acyclic. By
(6.12), we have Fil"™'90,.,0° = V"H90,Qf + dV" 001 Let w
be a section of 200! such that dV"Tlw € p‘lﬁnHQi“. Then dw =
FrHlgyntly € pFrHig, o0 = 0. Hence, by (6.21), w € F2,0Q°.
Hence V" lw € p20,, 120 = p20,, 1.

(2): By the proof of (1), we have only to prove that the following se-
quence

(6.22.3) 0 — gr" WO /p"gr" WA — W12 /0" W ym19Q°
L Qﬂn+m§2'/pmﬂﬁn+mﬂ' — 0

is exact.

First let us prove the exactness at gr"™200° /p"er"WN°. Let w be a
local section of Fil" ™90, 1 1,192 NP W11 112, Then there exists a local
section n € W, 19" such that w = p™n. Since 7(w) = 0 and 7p = pr,
0 = p™m(n). Since p is injective, 7(n) = 0; thus n € Fil"W,,1Q¢. There-
fore the morphism gr"*"20Q! /pmar" W — Wit 192 /P Wity 180
is injective. Thus we have only to prove the exactness at an+m+1Qi /
P Wi mi1Q. Let w be a local section of 2,119 such that m(w) €
P"W,1m Q. Since 7 is surjective, we may assume that there exists a local
section € W, 1 m 19 such that 7(w) = p™w(n). Thusw € p" AW, 110+
Fil"™™90,, 1 1m11€2°. Now we have proved the exactness of (6.22.3).
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(3): The following sequence

(6.22.4) 0 — 9,,_,0° 25 93,,0° — 2,,Q°/p"W,,Q° — 0

is exact for m > n. Since the transition morphisms 7’s are surjective, we
have the following exact sequence

(6.22.5) 0 — 20° 25 WO* — 1im 25,,Q° /p"2W,,Q° — 0.
m

by taking the projective limit of (6.22.4). Hence

H'(2WQ° /p"WQ*) = H' (lim 2,,Q° /p"2W,,Q°)
= H'(R1im 20,,9° /p"20,,9°).

m

We have the following Leray spectral sequence
EY = R'lim(H (26,,9Q°/p"2W,, Q%)) = H" (R1im 25,,Q° /p"25,,Q°).

By (2), EY =0if i > 0. Hence

HY (R1im 20,,Q° /p"20,,Q°) = By’ = lim HY (20,,Q°/p" W, Q)

=H (20,0°). O

ProposITION 6.23. (cf. [I12, I (3.21.1.5)], [Lo, (1.20)]) Let n be a non-
negative integer. Then d~'(p"WQH) = F*0Q°.

PrROOF. We have only to prove the inclusion C. Let (wp)2_; (wm €
20,,Q) be a local section of d~!(p"WQt!). Then [w] €
HH (WO /pnWN*) = HI(2,0Q°). By (6.21.1), there exists a local section
Non € W, Q¥ such that w, = F™(n2,). By (6.14.1;r), we may assume that
there exists a local section 7 of 200" whose image in 209, is 72,,. Then
[w— F"n] = 0 in HY(20Q*/p"WN*). Hence w — F"n € dAWQ ! + p"0QL.
Since d = FdV and FV = p, w € F"0Q!. O
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(C)

THEOREM 6.24. (cf. [IR, II (1.2)], [Lo, (2.17)]) The isomorphism
(6.16.1) induces the following isomorphism in DP(T, W,[d]):

(6.24.1) R, ok w0 = 99,0

PROOF. The proof is the same as that of [IR, II (1.2)] by using (6.15)
and (6.23): the following sequence

"d) @y

0 — poi—t UEE) gpaic1 g apgi W — W, A — 0

is exact. [

COROLLARY 6.25. Let M be a positive integer. Let (Q,, dm, Cit) (0 <
m < M) be objects of CA(T,Zy; W). Let

(6.25.1;n) d d d

0 — W, —— 25,00 —— 2,0 —— .-

be a commutative diagram of Ry-modules (n € Z~q). If all horizontal lines
of (6.25.1;1) are ezact, then W, (n € Zwo) is quasi-isomorphic to the
single complex of the following double complex:
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+d Fd +d
QUHQ% _ QUnQ% _ QUan N
(6.25.2) +d Td +d
2,0 —— W, —— 2,0, ——

+d +d +d

2,00 —— 2,00 —— 2,08 —— ..

ProOOF. Using (6.24.1) and Ekedahl’s Nakayama lemma [Ek2, I
(1.1.3)], we can check (6.25) without difficulty. [J

REMARK 6.26. Let x be a positive integer or nothing. Since
2, : CX(T,Zy; W) — DP(R,) is functorial, the obvious generalizations
of the results (6.1) ~ (6.25) for copsimplicial sheaves hold.

Now we apply the theory above to (idealized) log de Rham-Witt com-
plexes.

Let s be a log point whose underlying scheme Spec(k) is the spectrum of
the perfect field of characteristic p > 0. Let X be an SNCL variety over s.
In order to express the projection 7: WnHA — W, AX in [Hy2, (1.3.2)]
locally, we need to recall the definition of the admissible lift of X (cf. [M1,
2.4.3], [Hy2, (1.1)]); the definition here is slightly different from that in [M1,
2.4.3], and it is the same as that in [GK] for an affine SNCL variety.

Let W{xg,...,zq} be the p-adic completion of the polynomial ring

Wiz, ... ,xq] over W. Assume that X is affine (for simplicity). A pair
(Y, X) of log formal schemes over Spf(W) is called an admissible lift of

X if Y is formally etale over Spf(W{zo,...,z4}) with structural mor-
phism Spf(W{zo,...,zq}) — Spf(W{t}) given by t — xg-- -z, (0 <
r < d), if the log structure of ) is associated to a morphism N't1 >
(0, ,0,1,0,...,0) — a1 € Oy, if X = Y&yl with the pull
back of the log structure of ) and if there exists the following cartesian
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diagram of (formal) fine log schemes:

X — X

l l

s —— (Spf(W),Ng W*).

Here the morphism s — (Spf(W),N @ W*) is the natural exact closed
immersion. The existence of the admissible lift of X has been shown in
[GK, 1.1] by using [SGA 1, I Proposition 8.1].

Let ®: (V,X) — (), X) be a lift of the Frobenius endomorphism of

the log scheme (Y ®w k, X) such that ®*(W{t}) Cc W{t} (cf. [Hy2, (1.1)]).

We say that the triple (Y, X, ®) is admissible. Note that ®*(X) = pX,
and it is easy to check that there exists an element of w € W{t} such that
O*(t) = tP(1 + pu).

PROPOSITION 6.27. (1) Let L be a fine log structure of Spec(k). Let
Y be a log smooth scheme of Cartier type over (Spec(k),L). Let
Y/(Spt(W),W (L)) be a formally log smooth lift of Y /(Spec(k), L) with a lift
®: Y — Y of the Frobenius of Y. Set YV, :==Y Qw Wy, (n € Z=g). Let A,
be the log de Rham complex of YV, /(Spec(W,,), Wy, (L)). Set A® := @n Ay
Let C71: AL =5 HY(A3) be the log Cartier inverse isomorphism ([Ka2,
(4.12) (1)]). Then (A®,®*,C™") satisfies the conditions (6.0.1) ~ (6.0.5)
for (T, 4) = (VaarsZy).

(2) Let X be an SNCL variety over s. Let (X,),®) be an admissible
triple of X over W{t}. Set (Vn,X,) := (V,X) @w Wy, and set A% =
Ox, ®oy, 3, yy, (l0g Xy) and A* :=1lim A3, Let C~': Aj = HI(AS) be
the log Cartier inverse isomorphism ([Hy2, (2.1.1)]). Then (A®,®*,CY)
satisfies the conditions (6.0.1) ~ (6.0.5) for (7, A) = (Xzar,Zp).

(3) Let (X, D) be a smooth scheme with an SNCD over Spec(k). Let
(X,D) be a lift of (X,D) over Spt(W) with a lift ®: (X,D) — (X,D)
of the Frobenius endomorphism of (X, D). Set (X,,Dy) := (X,D) @w W,
(n € Zso). Set Q% (—logD) := lim QF y (—logDy).  Let
ct: Q&/H(— log D) 'Hi(Q;(/n(—log D)) be the log Cartier inverse iso-
morphism ([DI, (4.2.1.3)]). Then (Q;(/W(—logD),q)*,C*I) satisfies the
conditions (6.0.1) ~ (6.0.5) for (T, A) = ()?ZM?ZP).
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PrOOF. (1): The conditions (6.0.1), (6.0.2) and (6.0.3) are obviously
satisfied. The condition (6.0.4) immediately follows from [Ka2, (4.12) (1)].

We show that (6.0.5) holds for the object (A®, ®*,C~1) in (1). Let m;
(j =1,...,17) be alocal section of the log structure of J. Then there exists
a section a; € Oy such that ®*(m;) = m?(l + paj). Let f be a section of
Oy. Then there exists a section g € Oy such that ®*(f) = fP + pg. Hence
we have

(p'®*)(fdlogmy - - dlog m;)

daq da;
— (fP dl o (dl ; )
(f* + pg)(dlogm + 1+pa1) (dlogm; + 1erai)
The reduction mod p of this section is equal to fPd(logm; + day)---
(dlogm; + da;) mod p; furthermore, we have d(fP(dlogm; + day)---
(dlogm; + da;)) =0 mod p and, for a positive integer k < i,

prdlogmjl H daj, = kd fpaijHdlogm]l H da;) mod p.

I=k+1 I=k+2

Therefore we have the commutativity of (6.0.5) by [Ka2, (4.12) (1)].

(2): The conditions (6.0.1), (6.0.2) and (6.0.3) are obviously satisfied.
The conditions (6.0.4) and (6.0.5) are nothing but the first isomorphism in
[Hy2, (2.1.1)].

(3): By using the Cartier inverse isomorphism in [DI, (4.2.1.3)], the
proof is the same as that of (1). O

COROLLARY 6.28. Let L be a fine log structure of Spec(k). Let'Y be
a log smooth scheme of Cartier type over (Spec(k),L). Let X be an SNCL
variety over s. Let (Z, D) be a smooth scheme with an SNCD over Spec(k).
Let * be a positive integer n or nothing. Let W, A® be an (idealized) log de
Rham-Witt complex W, A3, W*]\;( or W5 (—log D). Then the following
hold:

(1) ([Hy2, p. 245], [HK, §4], [Lo, §1]) Let ', V', w, d be standard operators
on W,A*. Then, Fp=pF, Vp=pV,dp=pd, pr =7p=p, Fn =nF,
Vr=7nV and dr = nd.

(2) (cf. [Hy2, (2.2.2), (2.2.3)], [HK, (4.5)]) The morphism p: W, A? —
Wi 1A is injective; the morphism 7: Wy 1A' — W, A" is surjective. The
sheaf WA® (i € N) is torsion-free.
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(3) (cf. [Lo, (1.16), p. 258]) Fil'W,A? = V"W, _,.A® + dV"W,_,Ai~!
(i,7 € Z) and FiI'WA* = VTWA! 4+ dV"WA! (i,r € N).

(4) Let O be Oy, Ox or Oy. Then W,A" (i € N) is a coherent sheaf of
Wy (O)-modules.

(5) (cf. [Lo, (1.20.3)]) The canonical projection WA® /p"WA®* — W, A®
18 a quasi-isomorphism.
(6) (cf. [Lo, (1.20.1)]) d=L(p"WA®) = F"WA®.
(7) (cf. [Lo, (2.17)]) R, ®% WA® = W,A® (n € Zxo).

(8) (cf. [HK, (4.2)]) The projection mw: W41 A" — W, A" has the local
expression in (6.4.5) and (6.5.1).

(9) (cf. [M1, 3.15.1]) The complex W,Q%(—log D) (n € Zsg) is quasi-
isomorphic to the single complex of the following double complex:

C
C

d —d d

2 2 2
Wy o W2~ W02, s

(6.28.1) d —d d
(0) (1) (2)*
1 L 1 L 1 L
WnQy —— WoQp ), —— WoQl, ——
d —d d
L(O)* L(l)* L(2)*

Wo), —— W0 ) —— W00, —— -
Here 1 %) (k € N) is the morphism defined in (5.0.5).

REMARK 6.29. (1) I think that the proof of [M1, 1.3.3] is sketchy: the
sentence “Le lemme résulte alors, par un calcul formel (cf. [I2, I. 3.31] et [IR,
II. 1.2]), du lemme suivant.” in [M1, p. 307, 1. 8-9] and [M1, 1.3.4] are not
enough for the proof of [M1, 1.3.3]: as in the proof of [IR, II (1.2)], (6.28)
(3) (cf. (A)) and (6.28) (6) (cf. (B)) are necessary for the proof of [M1,
1.3.3]; (6.12) for W,Q% (—log D), (A) and (B) for WQ% (—log D) have not
been proved in [M1]; the proof of (6.28) (7) (cf. (C)) is a detailed proof of
[M1, 1.3.3]. Though the first isomorphism in [M1, 1.3.3] is a special case
of [Lo, (2.17)], [Lo, (2.17)] is not useful for the second isomorphism in [M1,
1.3.3]; as far as I know, any result in any published paper does not imply
the second isomorphism in [M1, 1.3.3].
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The second isomorphism in [M1, 1.3.3] has been used in the proof of
[loc. cit., 3.15.1](=(5.0.4;n) (cf. (6.28.1))) and [loc. cit., 3.15.1] is crucial for
proving a fundamental fact which tells us that the morphism

On: WA o (W, 410 TNy il CUON e 700)
is a quasi-isomorphism (cf. [M1, 3.15]). See also (9.5) (2) below.

(2) Let Z be a smooth scheme over a perfect field k of characteristic
p > 0. Let Dy U Dy be a union of two NCD’s over k such that D; U Dy is

also an NCD over k. Then we can define an idealized log de Rham-Witt
complex W, Q% (log(D1 — D2)) (x =a positive integer or nothing).

7. Obverse and reverse log de Rham-Witt complexes

In this section we define an abelian sheaf (W,,A})” which is a correction
of (W,A%L) in [HK, (4.6)] and which is shown to be a logarithmic version
of [Kal, §2 Corollary 3]. However, for the proof of the correction of [HK,
(4.6)], we have to use an expression of (W,A%)” which is different from
the logarithmic version of [Kal, §2 Corollary 3]. Though the proof for the
coincidence between our expression of (W,,A%.)" and the logarithmic version
of [Kal, §2 Corollary 3] is easy, our expression of (W, A%)" is crucial for the
proof of the correction of [HK, (4.6)]. We also prove the compatibility of
two projections of two log de Rham-Witt complexes. As applications, we
complete [HK, (4.6), (4.8)]; [HK, (4.8)] has been used in the proof of Hyodo-
Kato’s isomorphism ([HK, (5.1)]). Using an analogous compatibility (and
the log version of a lemma of Dwork-Dieudonné-Cartier), we also give a
right proof of [HK, (4.19)]; though it is claimed in [loc. cit.] that the proof
of the [HK, (4.19)] is the same as that of the proof of [12, II (1.4)], it is
not so because the log de Rham-Witt complex in [HK, (4.19)] is defined
by the method of Katz-Illusie-Raynaud and the log de Rham-Witt complex
in [I2, II (1.4)] is defined by the V-procomplex; as to some properties of
the projection of the log de Rham-Witt complex by the method of Katz-
Ilusie-Raynaud is nontrivial, while some properties of the projection of the
de Rham-Witt complex by the method of V-procomplex is evident. [HK,
(4.19)] has been used in the construction of the spectral sequence (2.0.1)
(and in [Nakk2, (4.10), (4.11))).

Let k be a perfect field of characteristic p > 0 and L a fine log structure
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on Spec(k). Let f: Y = (Y, M) — (Spec(k), L) be a log smooth morphism
of Cartier type of fine log schemes. Let (Spf(W,), W, (L)) (x is a positive
integer or nothing) be the canonical lift of (Spec(k), L) (cf. [HK, (3.1)]). Let

a: M — Oy be the structural morphism.
o

First, we define an abelian sheaf (W, A%)”. The sheaf (W,A%) on Y is
a quotient of

(7.0.1) {Wa(Oy) @z \(M%/ f 71 (L2))}
i—1
& {Wa(Oy) @z, [\ (M /f~ (L))}

divided by a Z-submodule F,, generated by the images of the local sections
of the following type

(7.02)  (vj(a(a1)) ® (a1 A -+ Aa;),0) = p’(0,v5(e(a1)) ® (a2 A -+ A ay))

(a1,...,a; € M, 0 <j<n),
where v;(b) := (0,---,0,b,0,...,0) for a local section b € Oy ([HK, (4.6)]).
———

j times
The sheaf (W,A%) is wrong and I think that [HK, (4.6)] does not hold.
Indeed, consider a case n > 2 and ¢ > 2 in [HK, (4.6)], and consider a section
(0,v;(a(a2)®) @ (ag A+ ANa;)) € (W,AL) for j > 1 and for e > 1. Then the
image of this section by a morphism s, : (W, A%) — Hi(Cy/(WmWn(L))) in
[HK, (4.9)] which is denoted by s in [loc. cit.] is equal to the class of

e(pr=i-1) _ _
alag) da(as)dlogas - - - dloga;

n—j

e

= ea(ag) dlogasdlogas - - - dlog a;,

which is the zero. However I think that this section does not belong to F,, in
general. Thus, for the case n > 2 and ¢ > 2, I define a log Hodge-Witt sheaf
(W, A%)” which is a quotient of (7.0.1) divided by F, and a Z-submodule
G/, where G/, is generated by the images of the local sections of the following
type

(7.0.3) (0,vj(a(az)®) @ (ag A -+ ANay))
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(ag,...,aiGM, 1<5<n, 66221)

as an abelian sheaf on Y,,,. K. Kato has given a remark that the Z-
submodule F,,+G,, is equal to F,,+G,,, where Gy, is a Z-submodule generated
by the images of the local sections of the following type

(7.04)  (0,vj(afaz)) ® (a2 A---Nag)) (a,...,a;€ M, 1 <j<n).

Indeed, let us consider the section (7.0.3). We may assume that e is
a power p” (r € N). In this case, (0,v;(a(ag)?’) ® (ag A -+ A a;)) =
p"(0,vj—r(a(az))@(agA- - -Aa;)) if r < j by the relation VF = p on W, (Oy),
and p’(0,vo(a(a2)” ') @ (ag A --- Aay)) if 7 > j. The former is equivalent
to the zero modulo G,; as for the latter, we have p?(0, vo(a(a2)?" ") ® (ag A
AN ag)) = pvolaaz)? )@ (@ Aag A--- Aay),0) modulo F,, which
is the zero. Hence F,, + G/, = F,, + Gp,. The economic expression F,, + G,
is a logarithmic version of the expression in [Kal, §2 Corollary 3]. The
reader may jump to the conclusion that the expression F,, + G/, is unnec-
essary. However he must not do so because we shall use the expression
Fn + G), crucially in the proof of (7.5): more concretely we shall use the ex-
pression F, + G, in a key fact that the isomorphism (V",dV™")C~1: (Al @
A /KL 5 Fil"(Wy,41A%) in [HK, (4.4)] factors through the surjective
morphism (A} @ A1) /KL — Fil"((W,11A%)") (see the proof of (7.5)
below for details). I think that [HK, (4.6)] itself and the proof of [loc. cit.]
are quite incomplete because the indispensable expression F,, + G/, for the
proof of [HK, (4.6)] has not appeared in [HK] and [Kal].

Ifn=1orifi=0ori=1, then we set (W,A})" := (W,A}) for the
unification of notation. For the time being, we consider the sheaf (W,,A%)"
only as an abelian sheaf on Yy,,. Later in (7.7) (2), we shall endow (W,,A%)"
with a natural W, (Oy )-module structure.

As explained in the paragraph before the previous one, the morphism
sp, in [HK, (4.9)] factors through a morphism
(7.0.5) St (WoA) — WoAy  (n € Zso).

In this section we prove that the following diagram is commutative:

Sn41

(Wn—ﬁ-lA%/)// E— n+1A§/

(7.0.6) projl lﬁ
(Wohb)" 5y WAL
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No one has proved the commutativity of (7.0.6) in a literature even if one
replaces (W, AL)” with (W, AL)" (m = n,n+1). Using the commutativity
of (7.0.6), we also complete the correction of [HK, (4.6)], that is, we prove
that the morphism s, in (7.0.5) is an isomorphism. In (7.6) below, this
correction and the commutativity of (7.0.6) will complete [HK, (4.8)]. In
order to prove the commutativity of (7.0.6), we use a local expression of 7
n (6.28) (8).

PROPOSITION 7.1.  The diagram (7.0.6) is commutative.

PROOF. The problem is local. Assume that there exists a formally log
smooth lift Y of Y over (Spf(W),W(L)). Assume, moreover, that there
exists a lift ®: Y — Y of the Frobenius of Y. Set V,, := Y ®w W,. Let
A? be the log de Rham complex of Y, /(Spec(W,,), Wy(L)). Then A} is
a crystalline complex Cyay, w;, )y of Y/(Wn, Wy (L)) ([HK, (2.19)]). Set
A®:=lim A7

Let a; (i =0,... ,n—1) be alocal section of Oy. Let a; € Oy, be a lift
of a;. Let

(7.1.1) 5,(0,0): (W, AY) =W, (Oy) (ag, ... ,an_1)

Ce HOA) = Wi AD

M |

be a morphism defined in [HK, (4.9)] and denoted by 7 in [loc. cit.]. Let

n—1

(7.12)  54(1,0): Wa(Oy) 3 (a0, ... can—1) — Y@ ‘da; € H'(A3)
=0

be a morphism defined in [HK, (4.9)] and denoted by 6 in [loc. cit.].
First, set ¢ = 0 in (7.0.6). Then we can check the commutativity of the
following diagram:

(WasaAp)" 02 W04
(713) proj.l lw
(Wohly 22OD gy po
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Indeed, the last term p™a}, in s,41(0,0)((ao,...,a,)) is the zero in the

n—1i n+1l—1

third sheaf in (6.4.5) in the case i = 0. Furthermore, ®*(a! )= a
mod p"T1=%. Hence the commutativity of (7.1.3) follows from the local
expression of 7 in (6.4.5).

Next we check the commutativity of the following diagram:

(Wn—‘rlA[})/)// L(LO)’ Wn+1A%,
(7.1.4) pmjl l”
WAy 2200 gy AL
The section sp41(1,0)((ao, ... ,a,)) is represented by > " Zn+1 i 1 ia.

Let @ € A be a local lift of a local section a € Oy. Then there exists
a local section b € pA° such that ®*(@) = @ + b. In the second sheaf
in (6.4.5) in the case i = 1, we have an equality pa?~'da = ®*(da) since
®*(da) — paP~'da = db; the image of aP~'da € Wn+1AL by the composite
morphism (6.4.5) is da = 0. Thus we may assume that a,, = 0 and a,, = 0.

By the definition of s,41(1,0), sp+1(1,0)((ao,... ,an—1,0)) is repre-
sented by a section Y .~ 01 "t “1da;. We claim that a formula

n—1

@*(Zafn Z “lda;) pz~pn+1 g

=0

holds in the second sheaf in (6.4.5). Indeed, by a formula in [HK, p. 251],

we have

n—1i

(@@ i (@) - @) = (Y @) ),
j=1

where ¢; = (p"~" — )I/(p"" — j)! (1 < j < p"7?) is an integer, and the
desired formula follows. Hence we have
n—1 »
o sp+1(1,0)((ag, ... ,an—1,0)) = the class of Zﬁf “Lda;
i=0
= s,(1,0)((ag, - .. ,an—1)).

Therefore the commutativity of (7.1.4) follows.
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Let M be the log structure of Y. Let b be a local section of the log
structure M of Y and let b € M be a local lift of b. Then there exists a local
section ¢ € Oy such that ®*(b) = bP(1 + pc). Then we have ®*(dlogb) =
pdlogh + dlog(1 + pc) = pdlogh + d(zjo-il(—l)jfl(pc)j/j); ®*(dlogh) is
equal to pdlogh in the second sheaf of (6.4.5) in the case i = 1. Hence (7.1)
follows from (6.28) (8) and from the following formulas:

n—i

Jif = d(p'®* (@ )f) (f € Oy,,.)

n—i

p'®*(al

and .
o (@ Tlday)df = d(@* (@ T'da)f) (f € Oy,,,). O

)

Next, we prove the corrected statement of [HK, (4.6)]: we prove that
sy, in (7.0.5) is an isomorphism of abelian sheaves. To do so, we need the
following three lemmas:

LEMMA 7.2. Let n be a positive integer. Then the following hold:
(1) The abelian subsheaf BpAl of Al ([Lo, (1.12)]) is generated by the
following local sections

oz(a’lf)dlogal---dlogai (at,...,a; € M, 0<r<n-1)

as an abelian sheaf on Y .
(2) The abelian subsheaf Z, A% of A% ([Lo, (1.12)]) is generated by Bp AL
and by the following local sections

(b’ )dlogay ---dloga; (ai,...,a;,b€ M)
as an abelian sheaf on Y.

PROOF. The proof is the same as that of [I2, 0, (2.2.8)].

Let C~1: AL, — H!(A%) be the log Cartier inverse isomorphism ([Ka2,
(4.12) (1)]).

(1): If n = 1, then the assertion is obvious since Oy is additively gener-
ated by Oy.. The following formula

C~Ha(ar)? dlogay - - - dloga;) = a(al)pTJrldlog aj ---dloga;
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and induction on n show (1).

(2): If n =1, then (2) holds by [Ka2, (4.12) (1)]. The rest of the proof
is the same as that of (1) by using the isomorphism C~1: Z, A% /B, A} —
Zp1Ay /By Ay O

LEMMA 7.3. Let Kﬁl be an abelian subsheaf BRHAg/ @ ZnAg,_1 defined
by the following exact sequence ([Hy2, (2.3)], [HK, (4.4)])

(7.3.1) 0 — Kl — Bpu A @ 2,01 2 Al o,
Then K is generated by the local sections of the forms of the following three
types

(w,0) (w € ByAY),

(0,7) (n€ BaAYY)

and
(a(aﬁ)n)dlogal -+ -dloga;, —a(aﬁ’n)dlogag ---dloga;) (ai,...,a; € M)
as an abelian sheaf on Y .

PROOF. By the definition of BnA{/ (j € N), we have C"(BHA{,) = 0.
We also have the isomorphism C™: B, 1A% /B, A} — BiAl.

Take a local section a(a’fn)dlogag---dlog a; of ZnAg;l (ai,...,a; €
M). Then the image of this section by the morphism dC"™ is equal to
da(ar) A dlogas---dloga;. The image of this section by C~" is equal to
a(a?n)dlog aidlogas - --dloga;. Hence K is generated by local sections of
three types in (7.3) as an abelian sheaf. [J

The following statement is due to K. Kato, which will be used in the
proof of (7.5):

LEMMA 74. Letg: Z = (Z,Mz) — S = (S, Mg) be a morphism of
log schemes. Let a: Mz — Oy be the structural morphism. Set

O = (07 02 \ME /g™ (M) & (O @z \ ME /g~ (MEP))
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and let N* be an abelian subsheaf of ' generated by
(a(a1) @ (a1 A+ Nag),—alar) @ (aa A+~ Nag)) (a1,...,a; € Mg).

Let AiZ/S be an Oz-module defined in [HK, (2.5)]. Then, for i > 1, the
morphism

(7.4.1) Q5b@(a A Nag),c® (ay A Nal)) —
bdlogay - --dloga; + dc A dlogal---dlogal, € AiZ/S.

mduces an isomorphism

(7.4.2) O /N' =5 Ay g

of abelian sheaves. (Note that, fori =0, Q'/N' = Oz.) In fact, there exists
an Oz-module structure on Q'/N' such that the isomorphism (7.4.2) is an
isomorphism of Oz-modules.

PROOF. Some steps are necessary for the proof. We identify a_l(O*Z)
with O% via the isomorphism a: a=1(0%) — O3,

Step 1. We define an Oz-module structure of Q!/N! as follows:
(7.4.3) u(b®a,c) = (ub® a — cu ® u, uc)

(ue 0y, ac M3P /g (ME), bce Oy).

Since Oy is additively generated by O3, Q'/N! has an O z-module structure
if this action is well-defined (it is easy to check the axioms of the O z-module
structure for Q' /N1); we have to show

(744) ) (cu; ®u;,0)
i
= Z(cvj ®wv;,0) if Zul = Zvj (ui,vj € OF).
J i J
To prove (7.4.4), we need the following formulas:

(7.4.5) (wu ®@u,0) = (—wu @ w,wu) (w,ue 0y),
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(7.4.6) Z(wuZ ® u;,0) = Z(wvj ®wv;,0) (we O0y).

i J
We can immediately check (7.4.5), (7.4.6) and (7.4.4) in turn. Consequently,
Ql/N' is an Oz-module because N is stable under the action of 0%. It is
easy to check that the morphism (7.4.2) for the case i = 1 is an Ogz-linear
morphism.

Step 2. We prove that (7.4.2) is an isomorphism for the case where
1 =1 and where Z and S are schemes with trivial log structures.
We have the following formula

(7.4.7) 0,zy) =y - (0,2) +2-(0,y) (z,y€Ox) in Q'/N.

Indeed, we may assume that x,y € O% by linearity. In this case, we imme-
diately obtain (7.4.7). Therefore, by the universality of Q, /g0 We have the
following Oz-linear morphism

(7.4.8) Q5 2 de— (0,2) € Q'/N".

We can easily check that the morphism (7.4.8) is the inverse of the morphism
(7.4.2).

Step 3. We prove that (7.4.2) is an isomorphism for the case i = 1.
Recall that Alz /s is a quotient sheaf of Oz-module

Oz @z (M3 /g~ (ME)) ® Qg

divided by an Oz-module generated by local sections (a(a) ® a, —da(a))
(a € Mz). We can construct the inverse morphism of (7.4.2) for the case
i =1 as follows. By the Step 1 and the Step 2, we have an Oz-linear mor-

phism G- le/s — QY/N?' characterized by the following: (O}’(da) = (0,a)

(a € Oz). We define a morphism G: Alz/s — Q!/N' defined by the

following: AIZ/S 5 (b®a,w) — (b®a,0)+ Gw) € /N (b € Oy,
a € MP/gHME), w e QIZ/S). It is easy to check that this morphism
is well-defined. Noting that Alz /8 and Q! /N I are quotients of Oy ®7

(M5 /g~ (MEP)), we see that the morphism is the inverse of the morphism
(7.4.2) for the case i = 1.
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Step 4. We prove that (7.4.2) for the general case ¢ > 1 is an isomor-
phism.

As in (7.4.3), we can define an Oz-module structure on Q°/N* (i > 1)
characterized by the following;:

(7.4.9) w-(b® (a1 A+ Aag),c® (ah A -+ Naj)) =

)

(ub@ (ar A Na;) —cu®@ (uNayA---Nay),cu® (ay A -+ Aaj))

(u€ OF, bc€ Oz, aj,a;, € MP /g ' (MEP), 1 <j<i, 2<k<i).

It is not difficult to check that there exists a morphism

AlZ/S®Oz " Q0y AlZ/S - QZ/*NZ

% times
of Oz-modules characterized by the following
(b1 ®a1,0)® - ® (b ®a;,0) — (b1 b; ® (a1 A+ ANay),0).

This morphism induces a morphism AiZ T Q!/N', which is the inverse
of the morphism (7.4.2). O

THEOREM 7.5. The induced morphism sy : (WnA'g,)" — WnAgf by a
morphism defined in [HK, (4.9)] is an isomorphism.

Proor. We proceed by induction on n.

Let C71: AL > WAL be the log Cartier inverse isomorphism ([Ka2,
(4.12) (1)]). By (7.4) and by the definition of s, we have the following
commutative diagram:

(W1AL)" —2— WiAL

| H

071
A, —S s WAL,

Hence we obtain (7.5) for the case n = 1.
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Assume that n > 1 and that s, is an isomorphism. Set

AL(Y) = {Wa(Oy) @z [\(M®/f7H(L#))}

& {W,(0y) @z \ (ME/ 1 (L2P))}
and
TL(Y) = {V"(Oy) @z [\(M/f (L))}

1—1

© {V"(Oy) @z \ (M= /(L))

Let Fil"((Wpr4+1A%)”) be the image of J.(Y) in (W,11A%)”. First we claim
that the following sequence

(7.5.1) 0 — Fil" (Wit AL)") — (Wit ALY 2% (W, ALY — 0
is exact. Indeed, set
()" = Ker(Wng1 A)" 2% (W,4%)").
Since the sequence
0— Oy AN Wint1(Oy) — W (Oy) — 0

is exact, we have the following commutative diagram with exact rows:

TY) —— A (V) 2 ALY) —— 0

(7.5.2) l l l

0 —— (K" —— (Wandy)" 225 (W,A})" —— 0
Since proj.: Fp41 + Gnr1 — Fn + Gy is surjective, the snake lemma for
(7.5.2) shows that the morphism J!(Y) — (K%)" is surjective. In other
words, (7.5.1) is exact.
As in [HK, p. 252], we define a morphism

(7.5.3) Ay @ A — Fil™ (Wi 1A%)")
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of abelian sheaves by the following

(7.5.4) (bdlogay - - -dloga;, 0) — (v, (b) ® (a1 A+ -+ A ay),0),

(7.5.5) (0,bdlogasg - - - dloga;) — (0,v,(b) ® (ag A -+ A a;))

(bGOy, a, ... ,aiGM).

By using the isomorphism (WlA{,)" s A{/ (j € N) in (7.4) and by noting
that Oy is generated by O3 as abelian sheaves, we can check that the mor-
phisms (7.5.4) and (7.5.5) are well-defined (cf. the proof of (7.4)). We claim
that the surjective morphism A} @ Ayt — Fil*((W,41A%)") defined by
(7.5.4) and (7.5.5) factors through (A% @ A1)/ Ki — Fil" (W11 A%)").
(Recall the sheaf K? in (7.3.1).) Indeed, let (w,0) (w € B,A%) be a section
of Ki. Then, by (7.2) (1), we may assume that w = a(azfr)dlog aj---dloga;
(aty...,a; € M,0 <7 <n-—1). Then the image of (w,0) by the morphism
(7.5.4) is

(vn(a(azl’T)) ® (a1 A+ ANai),0) =p (vp—r(aa1)) ® (a1 Aag A -+ Aaj),0).

This is equivalent to p"(0, vp—r((a1)) @ (a2 A- - - Aa;)) modulo F,41. Since
p = FV, the last form is in the image of V"1 (W (Oy)) @z N\~ (M=P/
fH(LP)) = 0. Next, let (0,n) (n € B,AL ') be a section of Ki. As
above, we may assume that n = a(agr)dlog as---dloga; (ag,...,a; € M,
0 <r <mn—1). Then the image of this section by the morphism (7.5.5)
is (O,vn(a(agr)) ® (a2 A--- Aa;)). This section belongs to Fri1 + G =
Fnt1 + Gnta (cf. (7.0.3) and (7.0.4)). Finally, consider a section

(a(a?")dlogay - - - dlog a;, —a(al )dlogay - - - dloga;) (ai,...,a; € M)
in (7.3). Then the image of this section by the morphism (7.5.3) is equal to
(o(a(a")) @ (a1 A+ A ag), —va(alal) @ (az A -+ A a).

This image is equal to p" (vo(a(a1))®@(ar1A- - -Aa;), —vo(a(ar))@(agA- - -Aa;)),
which is a section of Fj, 1.
Thus we see that the isomorphism

~

(V™ davm)CTt (A @ ALY /KL 5 FilN (W, 1AY)
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in [HK, (4.4)] (cf. (6.19), (6.20)) factors through the surjective morphism
(AL @ AV /KL — Fil*(Wa41A%)") (cf. [HK, p. 252]; “the isomorphism
(4.4) A

(V5,dVHO™: wl @ Wit 5 Ker(m)”
in [loc. cit.] is mistaken). Hence the morphism s, ; induces an isomorphism

Spi1: Fil(Woa1AY)") =5 Fil™ (W, 1 AY).

On the other hand, by the compatibility of two projections ((7.1)), we have
the following commutative diagram

0 —— Fil"(Wy1AL)") —— (WapAL)” 2205 (W,AL)" —— 0
(7.5.6) sm,gl % El
0 — Fil"'W, AL, —— W,y AY ——— W,AL, —— 0

with two horizontal exact sequences. Therefore the middle vertical mor-
phism s,,41 in (7.5.6) is an isomorphism of abelian sheaves. [

REMARK 7.6. Let the notations be as in [HK, (4.8)]. We correct the
proof of [loc. cit.]: [HK, p. 253, 1. -5] has to be replaced by the following

Waly o= (Wady)” = #'(Cy)z).

Here the number (7.5) is a number in this paper, and the morphism s,
above is similarly defined as in [HK, (4.9)].

REMARK 7.7. (1) As is well-known, W,A% is a W,,(Oy)-module: let
Y —= Y, be a closed immersion into a log smooth scheme over (Spec(Wy,),
Wi (L)) and let Cyaw, w, (L)) be the crystalline complex associated to the
closed immersion above. Then W, Ay = H'(Cy/w, w,(r))). The action of
c = (co,---cn-1) € Wn(Oy) on [w] € H'(Cy,aw, w,(r))) is given by the
following formula: ¢ - [w] = [(Z?:_()l P Ej;nﬂ) “w).

(2) We endow (W, A%)” with a W,,(Oy )-module structure, and we de-
fine operators R: (W,AL)" — (Wp_1AL), Vi (WpAL)" — (W, 1AL,
F: WAL —  (W,—1AY)”,  and  the boundary morphism
d: (WnAéf)” — (WnAZ;rl)” as follows: let b, ¢ be local sections of W,,(Oy),
and let aj, aj. be local sections of M (1 < j <4,2 <k <i).
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(a) Since W,A% is a W, (Oy)-module, we can endow (W,A%)” with a
Wy (Oy )-module structure by using the isomorphism s, in (7.5).
(

b) We define R by the following formula
)

(7.7.1 R(b® (N5—yaz),c® (Nigal))
= (R(b) ® (Aj=1a5), Rc) @ (Nj=paj)),
where R: W,,(Oy) — W,,_1(Oy) is the usual projection.

(c) We define the morphism V' by the following formula
(7.7.2) V(b® (Nieyaj), c @ (Ni_ya)))
= (V(b) ® (Nj=1a5), PV (€) ® (Aj=aaj)),
where V: W,,(Oy) — W,4+1(Oy) is the usual Verschiebung.

(d) Assume that ¢ := (co, ... ,cp—1) is a unit of W,(Oy). Then ¢y € Oy
We define the morphism F: (W,AL)" — (W,_1AL)” by the following
formula

(7.7.3) F(b® (N_ja;),c® (Ni_ga)) = (F(b) ® (Ai_a;),0)

+((ch,0,...,0) @ (co A /\EZQCL;), (1, ,Cn—2,0) ® (A;ZQaQ)),

where F': W,,(Oy) — W,_1(Oy) is the usual Frobenius morphism. The
operator F' is well-defined because the following diagram is commutative:

S

(WoAl)" —= WAL
(7.7.4) Fl lF

Sn—1
(Wh—1AL) —=— W, 1AL
By (7.5) and by the commutativity of (7.7.4) and (9.2.1) below, the mor-
phism
P'E: (Wnly)" — (Wp1Ay)”
is lifted to the Frobenius ®//| that is, the following diagram is commutative:

(WAl )" =22 (WAL

(7.7.5) H lpmj.

Wkl ) 5 (W, 1AL,
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(e) We define the boundary morphism d by the following formula

(7.76) db@ (a1 A+ ANay),c@(ayA---ANa}))=(0,b® (a1 A+ Aay)).

~

Then we can check that the isomorphism s,: @;so(WnAY)” —
@®,>0 Wn Al is an isomorphism which is compatible with W,,(Oy)-module
structures and with the operators R, V, F and d. In other words, s, is
an isomorphism of R(k)-modules, where R(k) is the Cartier-Dieudonné-
Raynaud algebra of x ([IR, I (1.1)]).

We give names to (W, A%)” and W, A}, because some mistakes arise by
confusing them.

DEFINITION 7.8. We call (W,A%)” (resp. W, A%) the obverse (vesp. re-
verse) log Hodge Witt sheaf of Y/(Spec(k), L), and (W,AS)"” (resp. W, AY)
the obverse (resp. reverse) log de Rham-Witt complex of Y/(Spec(k), L).

We obviously have the following commutative diagram:

Sn+1
. \// ~ 3
(Wn-i-lA%/) - n+1Ay

(7.8.1) pl lp

Sn+1
Y/ ~ L
(Wnt1AY)" —— WAy

By (7.1), (7.5) and the commutative diagram (7.8.1), the left vertical mor-
phism in (7.8.1) induces a unique morphism

(7.8.2) p”: (WnlAy)” — (Wni1Ay)”

fitting into the following commutative diagram:

S

(WAL ———  W,AL

(7.8.3) pf/l lp

Sn+1
: \// ~ 3
(Wi Ay) —— WAy
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PROPOSITION 7.9.  The morphism p” in (7.8.2) is injective.
Proor. (7.9) follows from (7.8.3) and [HK, (4.5) (1)] or (6.8) (2). O

Next, we give a right proof of [HK, (4.19)].

Because projections and other operators are not clear in some places in
[HK] (e.g., [HK, the proofs in (4.15) and (4.16)]), we have to clarify the
transition morphism

(791) pI‘Oj. : RUY/WR+1*(OY/WW+1) — RUY/WR*(OY/Wn)v

though it seems clear in this paper. The morphism (7.9.1) is, by definition,
the morphism induced by a natural exact closed immersion

(Spec(Wn),an, Wn(L)) L (SpeC(Wn+1)7an+17 Wn+1(L))

of base PD log schemes. The morphism (7.9.1) induces a morphism of
cohomologies:

proj.: Ruyjw, . «(Oyw,..) — R'uyw,(Oyyw,) (i €N).

Let m: Wy 41Ay, — W,AS, be the projection defined in [HK, (4.2)]. We
have, by definition, WA} := Riuy w, (Oyw,) (HK, (4.1)]).

Before giving a right proof of [HK, (4.19)], we point out the incom-
plete part of [HK, (4.19)]. Hyodo and Kato have claimed that a canonical
morphism

in [loc. cit.] is an isomorphism and is compatible with the transition mor-
phisms. However the commutativity of the following diagram(=(7.19.4)
below) has not been proved in [loc. cit.]:

RUY/WnH*(OY/WnH) - n+1A§/

(7.9.3) proj. | |~

Ruyw,«(Oyyw,) —— WaAL.
The proof of the following isomorphism

(794) RUY/W,L*(OY/W,L) ;> WnA;/
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in [HK, (4.19)] is also incomplete: the reduction of the isomorphism of
(7.9.4) to the isomorphism (7.9.4) in the case n = 1 has a gap because the
commutativity of (7.18.1) below has not been proved. In [loc. cit.], only a
canonical morphism

Ruyw,«(Oyyw,) — WaAy

has been constructed for each positive integer n. For the perfect proof of
[HK, (4.19)], we need the lemma (7.18) below whose proof is the same as
that of (7.1).

Though we do not need a log version of a lemma of Dwork-Dieudnonné-
Cartier (see (7.10) below) only for the construction of the morphism (7.9.2)
as in the classical case ([I2, pp. 602-603]), we need an explicit description of
the morphism (7.9.2) in a local case for the proof of a fundamental theorem
in [NS, §19] (=comparison theorem between the preweight-filtered zariskian
complex defined in [NS] and the preweight-filtered log de Rham-Witt com-
plex (W,Q% (log D), { PuW,Q% (log D) }iez) of a smooth scheme X with an
SNCD D over k); see [loc. cit.] for details. (If the reader wishes to know
only a right proof of [HK, (4.19)], he can skip (7.10)—(7.17).)

Thus we first prove this log version:

LEMMA 7.10. Let A be a p-torsion free commutative ring with unit
element. Let (A, P) := (A, P,a) be a prelog ring, that is, (P,-) is a com-
mutative monoid with unit element and «: (P,-) — (A,-) is a morphism
of monoids. Set

W(P):=Pa®(1+VW(A))

with natural morphism W («): W(P) — W(A) of monoids. Assume that P
is integral, and that o induces an isomorphism a1 (14+pA) — 1+pA, which
enables us to identify an element of 1+pA with that of o~ (1+pA). Assume,
moreover, that there exist an endomorphism ¢: P — P of monoids and
an endomorphism g%: A — A of rings such that

(7.10.1) ap = ¢a,

(7.10.2) Vz € P, 3y € A, o(x) = 2P (1 + py)

and such that

(7.10.3) ¢ is a lift of the Frobenius endomorphism of A/p.
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Let 5o’ A — W(A) be the morphism defined in [La, VII (4.12)] (cf. [12,
0 (1.3.16)]). Then there exists a natural morphism

(7.10.4) sp: P — W(P)

of monoids which is a section of the natural projection W(P) — P and
which makes the following diagram commutative:

P -2, W(P)
(7.10.5) o |w

A — L WA,

In other words, the morphisms Se and s, giwve a morphism
(7.10.6) (s&, sp): (A, Pya) — (W(A), W(P), W(«))
of prelog rings.

PrROOF. We use the argument in [La, VII 4].
Let n be a positive integer. Let x be an element of P. Let us define a
unique element y, € A characterized by the following formula

(7.10.7) " (z) = 2" (14 pyn).

Indeed, y, is uniquely determined since P is integral and A is p-torsion free.
Then we have

n—1 o
(7.10.8) L+pyn = 1+pp)" (14 po(Yn-1)).

We claim that there exists a unique sequence (1, s1,... , Sp,...) of elements
in A satisfying the following family of equations:

n—1

(7.10.9)  1+psh  +-+p" s+ p"sy =1 +pyn (0 € Zso).

Since A is p-torsion free, we have only to prove the existence of s1,...,
Sn, - ... We proceed by induction on n.
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There is nothing to prove in the case n = 1. Assume that s1,...,8,-1
exist. Then, by (7.10.8), we have

n—1 )
(7.10.10) (14 pyn) — (1 + ZPian_l)
i=1
X n—1 ) »
= (L+py)”" (L+pe(yn-1)) — (L+ D _p's )
=1

=Y P )~ ) modp,
Since g%(s{?’niiil) = sfnii mod p"~%, the right hand side of (7.10.10) is di-
visible by p™. Hence we know the existence of s,, € A.

Let x be an element of P and y,, the element in (7.10.7).
We define a map s,: P — W(P) as follows:

(7.10.11) P>z (x,(1,81,... ,8n,...,)) € W(P).

Obviously the map (7.10.11) preserves the unit element. Let x; (i = 1,2)
be an element of P and let y,(f) be the element of A in (7.10.7) for z = z;.
Then " (z122) = (z122)P" {(1 —i—pyg))(l —i—pyff))}. Hence, by the definition
of the multiplicative structure of W(A), the map (7.10.11) preserves the
multiplicative structure.

Now we prove the commutativity of the diagram (7.10.5).

Let = be an element of P and {s,}>°; the family of elements of A in
(7.10.9). Then we have

W(a)s,y(z) = (a(x),0,...,0,...) - (1,81,... ,Sn,...)

= (a(x),a(z)Ps1, ... ,a(x)P su,...).

Furthermore, we have
n ] . ) n ) .
(7.10.12) a(z)? + sz(a(x)p s =alx)P (1+ Zplsf )
=1 =1

= a(z)”" (1 4 pyn)
= ¢"(a(w)).
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Hence, by the definition of So» s(op(a(x)) = (a(z),... ,a(z)?"s,,...). There-
fore we obtain the commutativity of the diagram (7.10.5). OJ

COROLLARY 7.11. Let F': W(A) — W (A) be the Frobenius endomor-
phism of W(A). Then the following formulas hold:

o

(7.11.1) sp = (0, W(9))se,

(7.11.2) Wi(a)sop = FW(a)s,,.

PROOF. Let the notations be as in the proof of (7.10).
(7.11.1): We have the following formula:

o

(0, W(@))sp(@) = (@), (L, p(51), -+ @(5n); - ))-

The right hand of the formula above is equal to s,p(z) since g%(l +
S p'sy ) =14 pp(yn)-

(7.11.2): By the commutative diagram (7.10.5) and the formula Fs& =
ség%, the right hand side of (7.11.2) is equal to s(opc?)a. Let ¢: W(P) —
1 4+ VW(A) be the second projection. By (7.11.1), the left hand side
of (7.11.2) is equal to W(a)(go,W(g?J))s@. This is equal to ([ Jay) X
(W(c?))qsw) = ([ Jga) x W(c,%)q&p, where [ ] is the morphism A 5 z +——
(2,0,...,0,...) € W(A). By the calculation (7.10.12), the right hand side
of the last formula is equal to s(zacﬁa. Therefore we obtain (7.11.2). [J

REMARK 7.12. (1) If P = A* and if o is the natural inclusion A* =
A, then (7.10) is equivalent to the lemma of Dwork-Dieudonné-Cartier in
[La, VII 4].

(2) We can also prove the existence of {s,}°2; in (7.10.9) by using the
lemma of Dwork-Dieudonné-Cartier directly as follows.

Let B be the polynomial ring Z[X, Z,|n € N]. Let ® be a lift of the
Frobenius endomorphism of B/p defined by the following formula:

(I)(X) = Xp(]- +pZ1)a (I)(Zn) = Zg +pZn+1 (n € Z>0)
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Then, by the lemma of Dwork-Dieudonné-Cartier, there exists a family of
elements {T},}°°, in B with Tj := X satisfying the following equation for
alln e N:

n n—1
T +pIy 4+ +p"T, = "(X).

Then, by induction on n, we see that T}, € p~"X?" B. Since T, € B, we see
that T,, € XP"B. Set S,, := X P"T,, € B. Then we have

1 _|_p5'{’n71 4+ ptS, = X—p"q)n(X).

Since p™"Z[Z,|0 < m < n|NB = Z[Z,,|0 < m < n]in p~"B, we inductively
see that S, € Z[Z,,|0 < m < n].

Now the existence of {s,}72 ; in (7.10.9) is clear. Indeed, let {z,}5° ; be
a family of elements defined by the following formula

A=y, p(a) =25 + Pz

in A. Let C be the subring of A generated by {z,}32 over Z. Since C is a
quotient ring of Z[Z,|n € N], we see that there exists a family {s,}7°; of
elements of C in (7.10.9).

Let the notations and the assumptions be as in (7.10). Let n be a
positive integer. Set

(7.12.1) Wn(P) =P @ (1+ VW,(A)).
Then the morphism (7.10.6) induces a natural morphism
(7.12.2) (A, P) — (Wy(A), Wa(P))

of prelog rings. Let x be a positive integer or nothing. The reduction

mod p: A — A/p induces a morphism (W, (A), W, (P)) — (W,(A4/p),
W, (P)), where W, (P) on the right hand side is the canonical lift of P with
respect to the morphism P — W, (A/p): W, (P) = P& (1 + VW,(A/p))
(cf. [HK, (3.1)]). Hence we have a natural morphism

(7.12.3) (A/p*, P) — (Wi(A/p), Wi(P))

by (7.12.2).
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PROPOSITION 7.13.  The constructions (A, P) +—— (W.(A), W, (P))
and (A, P) — (W, (A/p), W,(P)) are functorial in the obvious sense.

PrROOF. The proof is obvious. [

PROPOSITION 7.14.  The morphism (7.12.3) for n = 1 is equal to the
following morphism

(A/p, P) 3 (a,2) — (a, (2,1)) € (A/p, P D 1).

PROOF. (7.14) immediately follows from the definitions of Sg and s,
((7.10.11)). O

DEFINITION 7.15. We call a quadruplet (7, O7r, M, «) a prelog ringed
topos if (7,07) is a ringed topos and a: M — O is a morphism of
sheaves of monoids in 7. We call a prelog ringed topos (7,071, M, «a) a log
ringed topos if a induces an isomorphism a~!(0%) — O as sheaves of
monoids in 7. We define a morphism of (pre)log ringed topoi in an obvious
way.

We leave the definition of an integral log ringed topos, a fine log ringed
topos, an fs log ringed topos and so on to the reader. We also leave the
definition of the pull-back and the direct image of the log structure on a
ringed topos by a morphism of ringed topoi to him.

Let T be the 2-category of log ringed topoi. For an object 7 = (7, Or,
Mz, a) of T and for a positive integer n, set 7, := (7, Op, My, a) :=
(T,07/p", My, a), where (M,,, o) is the associated log structure to the
composite morphism M — O — O,,. Let DDC;;0p be a 2-subcategory
of T whose objects are quintuplets (7, O7, M1, a; )’s satisfying the cor-
responding conditions in (7.10):

(7.15.1): O is p-torsion free.

(7.15.2): M is integral.

(7.15.3): ¢ is a lift of the Frobenius endomorphism of 7;.
(7.15.4):

a induces an isomorphism a~!(1 + pOr) — 1 + pOr.
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We define a morphism in DDC;‘DOp in an obvious way.
Let x be a positive integer n or nothing. Then there exists a natural
functor

W,: DDC}°®P — T

whose underlying functor of 2-subcategories of ringed topoi is the restriction
of the functor in [I2, 0 1.5].

As in [HK, (3.1)], we define the canonical lift of a log ringed topos of
characteristic p and for a positive integer n.

We obtain the following by the morphism (7.12.3) without difficulty:

COROLLARY 7.16. Let T be an object of DDC;‘)OP. Let 1: S — Th
be a morphism of log ringed topoi. Let W, (S) (n € Z~q) be the canonical
lift of S. Then the composite morphism S — T, — 7T, factors through a
natural morphism Wy, (S) — T,,.

Let p be a fixed prime number. Let FLSch,, be the category of formal log
schemes with p-adic topology. Let n be a positive integer. Let DDC;SCh be
the full subcategory of FLSch,, whose objects satisfy the similar conditions
to (7.15.1), (7.15.2) and (7.15.3) (the condition (7.15.4) is automatically
satisfied). Let LSch be the category of log schemes. Then there exists a
natural functor

W,: DDCy* — LSch.

We restate a special case of (7.16) (with slight generalization) in order
to clarify a relationship with [HK, (4.19)]:

COROLLARY 7.17. Let L be a fine log structure on Spec(k). Let Z
be an integral formal log scheme over (Spf(W), W (L)) such that Oz is p-
torsion free. Set Z, = ZQw W,,. Assume that Z has a lift of the Frobenius
endomorphism of Z1. Let v:Y S Zibea (not necessarily closed) immer-
sion of fine log schemes over the fine log scheme (Spec(k), L). Let Wy (Y)
(n € Zso) be the canonical lift of Y over W,,. Then the composite mor-
phism Y .z 5z, of immersions factors through a natural morphism
Wy (Y) — Z,, over (Spec(Wy,), Wy (L)).
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Next we prove a lemma which will be needed for the commutativity of
(7.9.3).

Let Y = Z be a (not necessarily closed) immersion from a log scheme
over (Spec(k), L) into a log smooth scheme over (Spec(W,,), W,,(L)). Let D
be the log PD-envelope of the immersion Y S5 Z. Let Cy/w,,wn(L)) be the
crystalline complex with respect to this immersion; the crystalline complex
can be defined for a (not necessarily closed) immersion. Let W, (Y) :=
(Wn(}c}),Wn(M)) be the canonical lift of ¥ = (?,M) over (Spec(WW,),
Wi(L)). Let Ay )/ (W W (1)) D€ the log de Rham complex of a log scheme
Wi (Y) over (Spec(Wy,), WnEL)) Then, in [HK, p. 251-252], a morphism

Un: Ay, vy oW winn)) — Waly =R (Cyyw,, wi(r))
is defined by the following:

(ao, - 70/71—1) — Sn(0,0)((ao, - ,an_l)) (ai €0y, 0<i<n— 1)
d(a07 s 7017171) — Sn(l,O)((CLO, cee 7an71)) (ai € OY70 <i<n-— 1)
and

dlogh— dlogb (b€ M(C Wy(M))),

where b is a lift of b to the log structure of an open log subscheme of Z
which contains Y as a closed log subscheme and s,,(0,0) (resp. s,(1,0)) is a
morphism defined in (7.1.1) (resp. (7.1.2)). The morphism v, is W, (Oy)-
linear.

LEMMA 7.18. The following two diagrams are commutative:

. ";Z)n+1 °
AW"+1(Y)/(WH+17Wn+1(L)) —— WhpAS
(7.18.1) pmjl l”
. n .
AWn(Y)/(Wn,Wn(L)) —— WhAy,

) "/)n y
Ay, ) /(W W (L) Waly

(7.18.2) dl ld

il Yn i+1
A vy wanmyy —— Waly.
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PROOF. We can check the commutativity of (7.18.1) by the same proof
of (7.1).

We can check the commutativity of (7.18.2) as follows: The problem
is local. Let Y be a log smooth lift of Y over (Spf(W),W(L)). Set Y, :=
Y@w W,,. Then we have only to check the following diagram is commutative:

i Yn ilAe
Myooryywawawy —— RS, waw))

(7.18.3) dl ld

ij thn Hi+1(Ao

(Y)/(Wn,Wn(L)) yn/(Wn7Wn(L))).

This commutativity immediately follows because the right vertical bound-
ary operator in (7.18.3) is the boundary morphism of the following exact
sequence

° p" ° proj. °
00— AY W W (L)) — M) (W Wan(£)) — By W wn(ry) — 0- U

Now we give a right proof of [HK, (4.19)]:

THEOREM 7.19. There exists a canonical morphism
(7.19.1) Ruyw,«(Oyw,) — WiAy.

The morphism (7.19.1) is an isomorphism and is compatible with the tran-
sttion morphisms.

PROOF. (The proof is not the same as that of the proof of [12, II
(1.4)].) Let Yo — Y be the Cech hypercovering of an open covering of
Y for the zariski topology. Take an embedding system (Ys, Zo)ecN Over
(Spec(W,,), Wy, (L)) of Y — (Spec(k), L) such that the immersion Y, —
Z, of simplicial log schemes factors through a morphism W, (Y,) — Z,
over (Spec(Wp,), Wp(L)). The embedding system above indeed exists by
(7.17) and the standard construction of the Cech diagram associated to lifts
of open log affine subschemes of Y which covers Y (cf. [I2, IT (1.1)]; see also
(7.20) below). (As we said before, we can avoid using (7.17) in this paper,
but we cannot in [NS].) Let

n: Yﬂzar — Yzar
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be the natural morphism of topoi.

Let Cyw, w,(r)) be the crystalline complex associated to the embed-
ding system (Y, Z,). By the proof of [HK, (4.19)], we have the following
composite morphism

[ ] d)n — [ ]
Cy ) (Wa W (L)) — AW (va) (W W (L)) ]~ HWAT).

Here @izo A%/VH(Y.) S (W Wi (I)),] ] is a sheaf of differential graded algebras
over W, which is a quotient of @izo A%/VH(Y.) (Wi Wi (L)) divided by a W,,-

submodule generated by the local sections of the following form dalil —
al=da (a € Ker(W,(Oy) — Oy), j >1). By the cohomological descent
for a bounded below complex, we have the morphism (7.19.1):

Ruy w,«(Oyyw,) — WaAT.

As in [I2, pp. 602-603], this morphism is independent of the choice of the
embedding system above.

Since Ruyw, «(Oyyw,) = En«(Cy/w,,wa(L)))> Wwe have the following
commutative diagram:

Ruyw,+(Oyyw,) By v o W) )
(7192) pr0j~l J{proj.
Ruyw, (Ovyw, 1) —— B0y, v yow s W a (o) 1

On the other hand, by (7.18) and the cohomological descent for a bounded
below complex, we have the following commutative diagram

By, vy sowa wan ) Wl
(7.19.3) pmjl l”
Rn*A;}anl(YO)/(anl,anﬂL)),[] — Wi 1AS.
By (7.19.2) and (7.19.3), we have the following commutative diagram:
RUY/Wn*(OY/Wn) —  WRAS
(7.19.4) pmji l”

RuY/Wn—l*(OY/Wn_1) e nflA;/.
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Let OY/(Wm,Wm(L)) L CY/(Wm+1,Wm+1(L)) (1 S m S n — 1) be the
induced morphism by the multiplication by p: Cy/w,..\ Wi (2)—
Oy ) (Wins1, Wi (L)) L€t pn1: Cyywi,L) — Cyyw,,w,(r)) be the follow-
ing composite morphism

(7.19.5) Cyw,L) — Cy/(Wa,Wa(L)) ki C ) (W, Wi (L))
Let P71 AV, 111~ Al va)/wawa(ry)) Pe an analogue of

(7.19.5). Then we have the following commutative diagram:

n—1
0 —  Cywpy —— Cy /(W Wa(1))
(7.19.6) | |
n—1
7 Ay ) T 7 Ay W)
— CY ) (W1 Wa1 (1) — 0
_proj. | ~1(A® )
T B W () /(W W (D), ]

Moreover, using (7.18), we have the following commutative diagram as in
(7.8.3):

n—1

T Ay ) T 1 Ao W) )
(7.19.7) w [
n—1
n~H(W1AY) P n L (WaAS).

Hence, by (7.19.6), (7.19.7), (7.18) and by [HK, (4.5) (1)] or by (6.22) (2),
we have the following commutative diagram of triangles

_1 1

— Cyywin) —— Cyyw Wa() — C¥)(War War(L)) ——

(7.19.8) l l l

n—1

— T (WA B T (WLAY) T (WaliAy) T
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By the cohomological descent, we have the following commutative diagram
of triangles:

n—1

- RuY/ka(OY/Wl) P RUY/WH*(OY/WH)
(7.19.9) l l
n—1
— WA R W,AS

=2 Ruyyw, W (Oyyw, ) ——

l +1

T, W, 1AL L,

By the proof [HK, (4.9)] and (7.14), the left vertical morphism in (7.19.9)
is induced by a Cartier inverse isomorphism C~1: A} > H!(A}) (i € N).
In particular, it is an isomorphism. Hence induction on n shows that the
middle arrow in (7.19.9) is an isomorphism. We finish the proof. [J

REMARK 7.20. (cf. [Sh, Proposition 2.2.11]) The claim of the existence
of the embedding system in [HK, p. 237] is not perfect and the argument
in [I2, p. 602, p. 604] is not perfect since cosq(Uy/X) — cosq(Yy/W) in
[loc. cit.] is not necessarily a closed immersion; in general, cosq(Uy/X) —
cosq(Yy/W) is only an immersion. We have only to change the definition of
the embedding system of [HK, p. 237] as in [Sh, (2.2.10)]: we allow the (not
necessarily closed) immersion in the definition of the embedding system.

REMARK 7.21. Let Y be the special fiber with canonical log structure
of a semistable family over a complete discrete valuation ring of mixed
characteristics. In [HK, (1.1)], we can find a claim that the complex W,,w},
in [HK, §1] is equal to Wyw} in [Hy2]. Though I do not use this fact in
this paper, I give a proof of it as follows because there is no proof for it in
literatures.

Let t: U — Y be an open immersion from a dense open smooth sub-
scheme of Y over k. Let (W,Qg)" (resp. Wy,Qg;) be the de Rham-Witt
complex defined in [I2, I (1.3)] (resp. [IR, III (1.5)]). Let (W,w$)” be the
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complex defined in [HK, (1.1)]. By [IR, III (1.4), (1.5)] we have an isomor-
phism

L (WaS2)" =, L(HH((Wa)")) = 6 (M (Rugpwi,(Ouyws,)))
= L*(WRQZU)7

which we denote by C~" by abuse of notation. Consider the following
diagram:

(Wi ) —— 1 (W)
(7.21.1) lc;n

By [12, I (3.27)] and [IR, III (1.4)] and by the definition of (W,wi.)", the
image of a local section

wdloguy - -~ dlogu; € (Wywi )"

(j < i, we Im(W,(Oy)(dWy, (Oy))20=7)
— L (W), ut, ... uj € 1(OF))

in (W, Q%) is C7"(w)dloguy - --dlogu;. This section is contained in
W, A% by the local description of the log scheme Y and by the definition of
W, A% Therefore we have a natural injective morphism C~": (W, )" -,
WAL .

The pro-sheaf (W,w} )" is stable by the operator V on ¢, (We2i;)”. In-
deed, we have V(dlogu) = pdlogu (u € 1.(Oy;)) by [12, I (1.15.4)]. Fur-
thermore, since d(dlog O;;) = 0, (Wywy)” is stable by the operator d on
L(W,08)". Hence we can consider Fil" ! ((W,wi)") := V"= Y (Wiwi )" +
AV (Wiwy )" in (Wuwi)”. By the commutativity of (6.6.1), we have
the following commutative diagram:

0 — Fil" N (Waw))") — (Wawi)” 22 (Woiywh)” — 0
(7.21.2) Cfnl Cl C%nfl)l
0 — Fil" ' (W,AL) —— WAL "= W, AL, —— 0.
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Here the lower horizontal sequence is exact; however we have not yet claimed
that the middle term of the upper one is exact. As to the middle term, we
claim only that Fil"~*((W,wi)") C Ker(Wpwi)” — (Wn_1wi)"). By
[IR, III (1.4.9)], we have the following commutative diagram

(Wwi, Y L0 (Wl )

(7.21.3) C_ll lc_”

winh L WAL
Furthermore, we also have the following commutative diagram by a formula
dF = pFd in (W,wi)", by [IR, III (1.4)], and by the definition of the
boundary operator d: W,AL " — W, AL

(Wi )" —— (W)

(7.21.4) Cfnl l -

WnAg;l 4, WnAg/.

By [HK, (4.4)] or by (6.19), the morphism
(VP hdvr o C7h (Whwy)" © (Wiwy )" — Fil'H(W,AY)

is surjective. Here, note that (Wjwi)” = w! by the definition of (W,wi )"
in [HK, (1.1)]. Hence, by the commutativity of (7.21.3) and (7.21.4), the
morphism C~": Fil" ! ((W,wi)") — Fil""}(W,A%) is surjective. By in-
duction on n and by (7.21.2), we see that the morphism C~": (W,wi )" —
WnAg/ is surjective. Putting all this together, the morphism
C™": (Wywi)” — W,A% is an isomorphism. Now we have proved the
claim on the coincidence.

Except in (7.21), I do not use W,wy in [HK, §1]. In particular, I do not
use the lower exact sequence of the diagram in [HK, p. 261], though I shall
use a symbolically similar exact sequence in (11.1).

8. Projections

The proposition (8.4) (2) below and the corollary (8.6) below are impor-
tant because they, the commutative diagram (8.4.3) and (7.19) are necessary
for the construction of the weight spectral sequence (2.0.1).
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Let n be a positive integer. Let k,s and W be as in §2 and let X be
a (not necessarily proper) SNCL variety over s. Set W, := Wj(k). Let
WoA% (= Whwk in [Hy2], [M1, §2]) be the log de Rham-Witt complex of
X/s. In [Hy2], X is assumed to be the special fiber with canonical log
structure of a semistable scheme over a complete discrete valuation ring
of mixed characteristics; however we need not assume this for the results
in [Hy2]. Let WnKB( be a complex which has been denoted by W,w% in
[loc. cit.]. Following [M1, 3.8], let us set~WnA§ = ané-(%jﬂ/ijnK;ier
(i,7 € N). Let 6, be a section of W, A} which has been constructed in
[Hy2, (1.2.2)] and [M1, 3.4 (3)].

Let i be a non-negative integer. In his article [M1, 3.8, 3.11], Mokrane
has constructed a double pro-complex W, A% of W,-modules which contains
the following complex as a sub-pro-complex:

(8.0.1) WAL Aoy, il Mo g2

Furthermore he has defined a morphism of pro-complexes [M1, 3.14]:

(8.0.2) WoAS 20 1w, A%,

However, in order to construct the pro-complex Wo A% in (8.0.1) and the
morphism of pro-complexes in (8.0.2), we have to check that the projection
T WnHK?j R WHJNX;}H + (7 € N) preserves the preweight filtration P
on meﬁjﬂ (m =n+1,n) (recall our terminology in (4.3)) and that the
following two diagrams are commutative:

ij+1 7r i j+1
Wy AZT T W, A%

(8.0.3) /\&LHT TAen
WpAY  — W,AY,
WnJrlAé({) —_— WnAZ)g
(8.0.4) /\0n+1T TAen
WAl —=— WAL .

These have been claimed in [M1, 3.8]. However no proof for these facts has
been given.



p-Adic Weight Spectral Sequences of Log Varieties 597

Hyodo has also claimed that the following exact sequence
(8.0.5) 0 — WA 2% W, A% — WuA% — 0

is compatible with projections ([Hy2, (1.4.3)]). However the proof of the
commutativity of the following diagram has not been given in any literature:

WpaAy —— W,A%
(8.0.6) Aenﬁ TAen

Woi Ayt —— W,AS

We can find a similar statement in [HK, (1.5)] for a semistable family over a
complete discrete valuation ring of mixed characteristics with perfect residue
field. However, strictly speaking, even for the semistable family above, [Hy2,
(1.4.3)] and [HK, (1.5)] are not the same statements (cf. (11.1)).

In (11.1) below, we shall consider the compatibility of (8.0.5) with the
Frobenius. Note that this compatibility has not been considered in any
literature except analogous compatibility in [HK, (1.6)] in the case of a
semistable family over a complete discrete valuation ring of mixed charac-
teristics.

In §8, we prove that the projection 7: Wn+11~\fx — Wn/~VX (1 € N)
preserves the preweight filtration P on Wm]\fX (m =n+1,n), and we show
the commutativity of (8.0.3), (8.0.4) and (8.0.6).

Let the notations be as before (6.27).

Set V, =Y w Wy, X, = X Qw Wy, A:z = OXn ®(9yn Q&H/Wn(log Xn)
and A® = thn /N\;l Let ¢ be a non-negative integer. We have WnAé( =
W, AL /(W AT A 6,,) by the definition of W, A% ([Hy2, (1.2)]). An equal-
ity ®*(6,,) = pb,, in Wn]\%( holds ([Hy2, p. 245], cf. the proof of (8.1) be-
low). The following diagram is commutative by the characterizations of 7’s
([Hy2, (1.3.2)]):

(8.0.7) l l

WAl —— W, AL
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PROPOSITION 8.1. Let i be a non-negative integer. Then the following
two diagrams are commutative:

W, At 2w, AR
(8.1.1) Gn/\T TGHHA
WAy —2— W, 1AL,
Wy AL T W, A
(8.1.2) 0n+1/\T T@n/\
WAy — " WoAi.

In particular, there exists a morphism

(8.1.3) OA = lim(0,A): WAY := lim, W, A% — lim, W, A%
= WAL

PrROOF. The question is local; we may assume that X is affine and
that there exists an admissible triple (), X, ®) of X (recall the definition of
the admissible triple before (6.27)). Then the commutativity of (8.1.1) is
equivalent to that of the following diagram:

~ Hi+1 foxd pi ~.
WnA:L);"_l ( / ) Wn-l,-lA:L);'i—l

(8.1.4) Hn/\T Tanﬂ/\
~. 7 * fo1—1 ~.
W, A% H@T/p), w1 N
Because there exists an element u € W{t} such that ®*(t) = t*(1 + pu),
®*(dlogt) = pdlogt + dlog(1l + pu) = pdlogt + d(E?’;l(—l)J_l(pu)J/j);

®*(dlogt) is equivalent to pdlogt modulo an exact form in H!(A®) ([Hy2,
p. 245]). Now the commutativity of (8.1.4) is obvious.
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We can easily check the commutativity of (8.1.2) by the following obvious
commutative diagram

Ni+1l p Ni+1l
Wi At 2 W, AR

9n+1/\T T9n+1/\

~. p ~.
WnJrlA%X I Wn+lA?X7

by the commutativity of (8.1.1), by the injectivity of p: Wn?\?l —
Wor AT ([Hy2, (2.2.2)], cf. (6.8) (2), (6.28) (2)) and by an easy diagram-
chasing. [J

COROLLARY 8.2. The diagram (8.0.6) is commutative.

PrOOF. We immediately obtain (8.2) by the commutativity of (8.0.7)
and (8.1.2). O

REMARK 8.3. (11.1) (2) below will give another proof of (8.2).

PROPOSITION 8.4. Let i be a non-negative integer. Then the following
hold: B N

(1) The morp@zism p: WAy — W1 Ay preserves the preweight fil-
tration P on WA (m =n,n+1). N

(2) The projection : Wyt As — W, A% preserves the preweight fil-
tration P on WAy (m=n+1,n).

PrROOF. We may assume that ¢ > 0. The question is local; we may
assume that X is affine and that there exists an admissible triple (), X, @)

of X; especially, 307 (resp. j.’ ) is formally etale over Spf(W{xo,...,z4})
(resp. Spf(W{xzo,...,xq}/(xo---2,))) with a structural morphism
Spt(W{zo, ... ,za}) — Spf(W{t}) defined by t — zo-- -z, (0 <r < d).
Set YV, =Y Qw Wy, X, = X Qw W, A7.1 = OXn ®Oyn Qaﬂn/Wn(IOg Xn)
and A® := lim | /NX;L

(1): Because @ is a lift of the Frobenius of the log scheme ()1, X1), there
exists a section y; € I'(Y, Oy) such that ®*(z;) = 2}(1 + py;) (0 <j < 7).
Then, as in the proof of (8.1), ®*(dlogz;) is equivalent to pdlog x; modulo
an exact form in lim Qi, W, (log Xy,).

n " Vn/Wn
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Furthermore, the morphism
/P A, — Ay (GEN)
obviously induces a morphism

/0 log X)) —

J
y"/W" Yn/Wn (= Vnt1/Wnt1 Q)’n-s-l/WnH(_ log Xp41).

Therefore the morphism p: Wn]\fx — n+1K§{ preserves the preweight
filtration P.

(2): ([M1, 3.8] is incomplete.) We prove (2) by descending induction on
the numbers of the preweight filtration P on W, A%

Let k be a positive integer less than or equal to min{i,r +1}. If k =
min{i,r + 1}, then P, W, Ay =W, AX, and there is nothing to prove. As-
sume that the prOJectlon T Wn+1A — W, Al % induces a morphism

PkWnHA — P, AZ By [M1, 3.7] and by the proof of (1), there
exists the followmg commutative diagram with exact rows:

0 — PaWuky —— AWAY == W0k —— 0
(8.4.1) Hl‘(@*/pifl)l Hi(q)*/pifl)J( Hi—k(q:’*/ i_k_l)l
Res

0 —— PoaWnnhy —— PaW, 1Ay —=5 W, O

X<k> — 0.

Obviously the following diagram is commutative:

zi Res i—k
PWypia Ny ——— Waa Q4

(8.4.2) pl lp

PkWn+1A —> Wn—l-lQX(k)

By the commutativity of (8.4.1) and (8.4.2), by the injectivity of
p: W, le(l,i) — n+1QZX_(];2> in the trivial log case of [Hy2, (2.2.2)] (cf (6.8)
(2), (6.28) (2)) and by the definition of 7: Wn+1ﬂx(k) — W,k

0 in the
case above of [Hy2, (1.3.2)], the following diagram

Res
PkWnJrlA EE— WnJrlQX(k)

(8.4.3) wl lﬂ

PW, AL 22, ol
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is commutative. Therefore we have the following commutative diagram

0 —— Py 1Wn+1A —_— PkWn+1A Bes, W1 Q%

(8.4.4) wl Wl

Res

X(k) 0

W,k —— 0.

0 —— Pk_1Wn1~\fX — PkWnK?X X (k)

Conseguently the composite morphism Pk_QVnHKE( S, Pkl/VnHKg( LN
PkWnAfX induces a morphism 7: Pk_1Wn+1AiX — Pk_lVVnAé(. Thus we
can finish the proof of (2). O

REMARK 8.5. It is easy to see that PkWnKZX is a quasi-coherent sheaf
of W,(Ox)-modules. By (6.28) (4) and by the upper exact sequence of
(8.4.1) and by the descending induction on k, we see that P,W, A% (k € N)
is a coherent sheaf of W,,(Ox )-modules.

COROLLARY 8.6. (1) The diagrams (8.0.3) and (8.0.4) are commuta-
tive.

(2) Let i be a non-negative integer. Then the projection 7 : WnHK;( —
WnJNXB( induces a morphism w: Wy1 A — W, A% of complezes with
boundary morphisms in (4.1.3).

(3) Let W, A be the p-adic double Steenbrink complex in (2.2.1;n).
Then the projection m: Wn+1x3( — WnKB( induces a morphism
T Wh1 ASY — WLAS of double complezes.

(4) Let k be a mnon-negative integer. Then the morphism
T PkWnHA — PkW AX is surjective.

(5) Set PkWA =lim P Wy A' . Then the following sequence

(8.6.1) 00— PWAY — Pt WAY 25 WQS o {—k — 1} — 0

15 exact.

ProoF. (1): (1) follows from the commutativity of (8.1.2) and from
(8.4) (2).

(2): (2) immediately follows from a part of (1).

(3):  The morphism 7 commutes with the boundary morphism
d: WAy — WA ([Hy2, p. 245], cf. (6.8) (4)). Hence (3) follows
from (2).



602 Yukiyoshi NAKKAJIMA

(4): We proceed by induction on k. The problem is local. Let (), X)
be an admissible lift of X. Let notations be as in the proof of (8.4), and set
Y := ). Consider the following exact sequence

By [Hy2, Editorial comments (6)], the natural morphism
Wanf(— log X) = Hi( Sjn/Wn(— log Xy,))
— H (5, (log X)) = Wi (log X)
is injective. Since this morphism factors through the following morphism

(8.6.2) H(QS,, w, (—log &Xn)) — HAQS, ),

the morphism (8.6.2) is also injective. Hence we have the following exact
sequence

0— HZ( an/Wn(_ log &p,)) — Hi(ﬂgin/wn)
— HZ(QSJH/Wn/QSIn/Wn(_ log X)) — 0.
The exact sequence above is nothing but the following one:
(8_6_3) 00— WnQ%/(— log X) — Wnﬂg/ — POWW/N\%( — 0.

Because the morphism 7: W, 1Q! — WnQﬁ, is surjective, so is the transi-
tion morphism 7: POWn_,_l]\fX — POWn]\fX.

Let k be a positive integer. Because w: W, 11
surjective, the following commutative diagram

. )
S — WnQX(k) is

i—k

X (k) 0

0 —— PoWpAy —— PaW, Ay —— W, Q

| | |

0 —— PaWohy —— PW,Ay —— W05 —— 0

with exact rows and induction on k show (4).

(5): By (4), the projective system {P,W,A%}, satisfies the Mittag-
Leffler condition. Hence (8.6.1) is exact by (8.5). (The compatibility of
(8.6.1) with the Frobenius will be obtained in (9.12) below.) [
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Next let us consider the case of an open variety. Let (X, D) be a smooth
(not necessarily proper) variety with an SNCD over . Then [Hyl, p. 301]
(cf. (6.28) (2)) tells us that there exists a projection

(8.6.4) 7 W1 Q% (£log D) — W, Q% (£log D) (i € N).

The morphism 7 in [HK, (4.2)] in the case of the open variety above is equal
to the morphism m: W, 11Q% (log D) — W,Q% (log D) in (8.6.4) because
7 in [HK, (4.2)] satisfies a relation pm = p (cf. (6.28) (1), (6.4.6)), which is
the characterization of 7 in [Hyl].

PROPOSITION 8.7. Let m: Wyp11Q% (log D) — W, Q% (log D) be the
projection. Then the following hold:

(1) The morphism m preserves the preweight filtration P.

(2) The following diagram

. Res °
PWi1Q% (log D) ——— Wy Q5 {—k}

(8.7.1) wl lw

PW,Q%(log D) — W05, {—k}

15 commutative.

(3) The natural projection m: PyW,41Q% (log D) — P,W,, Q% (log D)
18 surjective.

(4) Set P,WQ%(logD) := lim PW, Q% (log D). Then the following
sequence

(8.7.2) 0 — P, 1WQ%(log D) — P,WQ% (log D)
R o
18 exact.

PROOF. (1): The proof is the same as that of (8.4) (2).

(2): Using [M1, 1.4.5] (cf. (9.0.1) below) and a relation pm = p in [Hyl,
p. 301], we can give the same proof of (2) as that of the commutativity of
(8.4.3).

(3): The proof of (3) is similar to that of (8.6) (4) and easier than it.
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(4): (4) follows from (8.7.1), [M1, 1.4.5] and (3). (The compatibility of
(8.7.2) with the Frobenius will be obtained in (9.6.2) below.) [

REMARK 8.8. By (6.28) (4) and by [M1, 1.4.5] and by the induction
on k, we see that PyW,Q% (log D) (k € N) is a coherent sheaf of W,,(Ox)-
modules.

9. Frobenius compatibility

In this section we prove the compatibility of the Frobenius in the finite
length version of (2.0.1), in (4.1.1;n), in (5.0.2;n), and in (5.4) (2); the proofs
of the former two are the same; the proofs of the latter two are much easier
than those of the former two. Unexpectedly, the proofs of the former two
is not easy because the easily defined operators F’s on (log) de-Rham-Witt
complexes due to the method of Katz-Illusie-Raynaud [IR, III (1.5)] are
morphisms from W,,-modules to W,,_1-modules; we show the compatibility
with the Frobenius from W,,-modules to themselves (cf. [I2, I (2.18.7)]).

For the time being, let the notations be as in §5. First, we clarify what
has been proved and what has not. As to (5.0.2;n), Mokrane has shown in
[M1, 1.4.5] that there exists an isomorphism

Res

(9.0.1) gri, WnQ% (log D) = W, Q%) {—k}

which makes the following diagram commutative:

Res

grkPWnHQ}((logD) — n—l—le)(k){_k}

(9.0.2) p-Fl lp-p
Res
gt W, 0% (log D) ——— Wn Q%o {—k}

We prove (9.3.1) and (9.4) (2) below, which are stronger than the above.

We can find an analogous compatibility in [M1, 3.22 (2)]. In the proof
of it, we find a Tate twist (j + 1) (j € N) in a pro-complex; this is mislead-
ing. For example, a sentence in [Ch2, p. 159, 1. 5~7] “The double complex
(W,A®®,d',d") is endowed with a Frobenius endomorphism ®,, defined on
each W,, A" by the usual Frobenius twisted by p~/~1” has non-sense since
W, A is a torsion W-module; to give the definition of ®,, in the sentence
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above is non-trivial. In (9.9) below we shall give the precise meaning of this
sentence. Moreover, we have to check the compatibility of ®,, with various
operators.

Now let us prove the compatibility of Frobenius in the finite length
version of (2.0.1), in (4.1.1;n), in (5.0.2;n), and in (5.4) (2). We first prove
(5.0.2;n) and (5.4) (2).

The following is necessary for the proof of (5.0.2;n).

LEMMA 9.1. Let Z — (Spec(k),L) be a log smooth morphism of
Cartier type of fine log schemes. Let (WnAiZ)” be the obverse log Hodge-

Witt sheaf on Z defined in §7 and let s,: (WpAL)" — W,AY (n € Z=) be
a canonical isomorphism defined in (7.0.5) ((7.5)). Then the following hold:
(1) The morphism s, is functorial, that is, for a commutative diagram

Y -7, 7z

J J

(Spec(w'), L') —— (Spec(x), L)

of fine log schemes, where k' is a perfect field of characteristic p > 0 and
where the left vertical morphism is a log smooth morphism of Cartier type,
the following diagram is commutative:

Sn

(WnA2)" —=—  Wahy = Ruzpw,.(Ozw,)
(9.1.1) v | s

gx(sn)
9+(WiAy)" —— g WAy = g Rluyyw; . (Oyywy,)-

Here W/ is the Witt ring of k' of length n.

(2) (Only for our memory) Let ®!: (W,AY)" — (W,AL)" and
D, : WnAiZ — WnAiZ be two morphisms induced by the absolute Frobenius
endomorphism of Z. Then the following diagram is commutative:

(Wndy)" —— WaAj

(9.1.2) c1>;4l l‘b"

S

(WuAL) ——s W, AL,
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PROOF. (1): By the general nonsense, the morphism ¢ indeed induces
a morphism
R'uzw,(Ozw,) — g« R'uywr . (Oypwr).

Indeed, ¢* induces a morphism

Ruzw,«(Ozw,) — Ruzw, Rgss.(Oyw;) = Rg«Ruy w1 (Oywr).

One can easily check that there exists a natural morphism

H'(RguRuy w1 «(Oyyw:)) — gH (Ruy w1 (Oy ).

Thus we have a morphism W, A}, — g, W/} A} .

The commutativity of (9.1.1) is a local question. It is easy to check this
commutativity by the local expression of s, (cf. [HK, p. 251]) and by the
existence of the local lift of g: Y — Z.

(2): (2) is a special case of (1). O

LEMMA 9.2. (cf. [I2, I (2.18.7)]) Let the notations be as in (9.1). Let

o | be the following composite morphism

n,n+

"

S . roi. 4
(W1 AD) =5 (W1 AY)" 2% (W,A%)".

Then the following hold:
(1) The following diagram is commutative:

Sn+41
(Wap1A%)" —— WAl

(9.2.1) o l lpzp
(WoAL)" —s WAL,
(2) The morphism ®,, in (9.1.2) fits into the following diagram commu-
tative:
WAy, —— W,AY,
(9.2.2) pz’Fl lé”
WhAl, ——— W,AY.
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(3) The morphisms @1 and O, fit into the following commutative
diagram:

R S )
Wi AYy ——— Wy AY

(9.2.3) Wl lw

WoAl,  —2n WAL

PRrROOF. The proof is an analogue of (7.1):

(1): The question is local. As in (7.1), we may assume that a formally
log smooth lift Z of Z over (Spf(W), W (L)) exists. Set Z,, := Z Quw W,,.
Let the notations be as in (7.1). Since the morphism F: W,1AY —
W, AZ is induced by the projection A}, ; — A}, we obtain the following
commutative diagram by a simple calculation:

sn+1(0,0
Win+1(Oz) 2n+1000), WA
(9.2.4) @;;nﬂl lF
Wo(0z) 200 A0,

—1 .
Because pah da, is an exact form, we have

n
n+1—1
pFOSn+1(170)(‘10>---: ) pH proj. Z f 1d~
=0

opnt1l—i__ -
:pZaf da; + pa?~day,

1=0
n+111
pZ

in H'(A2,). By this formula, we obtain the following commutative dia-

gram:
Wnt1(0z) 19 Wi1AY,
(9.2.5) @ ”“l lpF
Wo(0z) S0 gy AL,
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By (9.2.4), (9.2.5) and by the definition of the morphism s,, ((7.0.5), cf. [HK,
(4.9)]), we obtain (1) as in (7.1).

(2): The commutativity of (9.2.2) follows from that of (7.1), (9.1.2) and
(9.2.1).

(3): The commutativity of (9.2.3) immediately follows from the commu-
tativity of (7.1) and (9.1.2). O

Let the notations be as in §5. The following (1) is the precise content of
(5.0.2;n):

ProproSITION 9.3. (1) Let (X, D) be a smooth scheme with an SNCD
over k. The Frobenius endomorphism ®,: W,Q% (log D) — W,Q% (log D)
defined in (9.1) (2) preserves the preweight filtration P and makes the fol-
lowing diagram commutative:

Res
granQk(logD) — WnQb(M{—k}
(931) grf:(@n)l lpkq)n
Res

granQk(logD) e WnQ.D(k){_k}‘

Consequently there exists the following spectral sequence (cf. [M2, (3.1)]:

the convergent term HCQ;IJS”(U/W) in [loc. cit.] has to be replaced by
i+j .

He (U/W).) :

(9.3.2) BRI — gho k(DB )W) (k)

crys

— H"((X,D)/W,) (n € Zso).

As to the preservation, the following holds more generally:
(2) The morphism g* in (9.1.1) for the log Hodge- Witt sheaves of smooth
schemes with NCD’s over k preserves the preweight filtration.

PROOF. (1): By the same proof as that of (8.4) (1), it follows that
the endomorphism ®,,: W, Q% (log D) — W,Q% (log D) preserves the pre-
weight filtration P.

Next, we prove the commutativity of (9.3.1). This is a local question.
Let (X,D)/Spf(W) be a formally log smooth lift of (X, D)/Spec(k). Set
(Xn, Dy) = (X, D) @w Wy, (n € N). Assume that X is formally etale over
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Spf(W{z1,... ,z4}) and D is defined by an equation z; -+ 2, =0 (1 < r <
d). Let ®: (X,D) — (X,D) be a lift of the Frobenius endomorphism of
(X, D). Then, as in the proof of (8.1), ®*(dlogx;) (1 <i <r) is equivalent
to pdlogx; in W, Q% (log D) = Hl(Q;(n/Wn (logDy,)). By the definition of
®, ® induces a morphism D*) — DK) which is a lift of the Frobenius of
D). Hence we have the commutative diagram (9.3.1) by (9.0.1) due to
Mokrane.

(2): We can prove (2) in a similar way: the number of log poles in a
logarithmic differential form does not increase by the pull-back of a local
lift of a morphism of smooth schemes with NCD’s over . [J

Let us also prove that the two pairings in (5.3) are compatible with
the Frobenius. First, we have to define the Frobenius endomorphism of
W, Q% (—log D). This is essentially given in [Hyl] and [Hy2, p. 245]: if
we are given a triple (X, D, ®) as in the proof of (9.3) (1), we define the
Frobenius endomorphism to be the induced morphism ®, = H!(®*) on
W, Q% (—log D) = Hi(Q:Yn/Wn(_ log D,,)) by ®; this morphism is indepen-
dent of the choice of the lift (X, D, ®) by the product construction as ex-
plained in [Hyl, 2] (see also (9.5) (1) below for another method to define
the Frobenius endomorphism).

PROPOSITION 9.4. (1) The two pairings in (5.3) are compatible with
the Frobenius.

(2) An equality @, o1 = p'F: Wy11Q% (£log D) — W, Q% (+1log D)
holds.

(3) The morphisms ®,1 and ®, fit into the following commutative
diagram:

W1 Qi (£log D) 2L W41 Q¥ (£ log D)
(9.4.1;%) Wl lw

W, (£log D) —2" W, (+1log D).

PROOF. The questions are local. Let the notations be as in (9.3) (1).
(1): The pairing

W, Q% (log D) @w, W,Q% (—log D) — W,Q%(—log D) = W, Q%
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is compatible with the Frobenius. Here the last equality W,Q% (—log D) =
W, Q% follows from (6.28) (9). Since the isomorphism s,': W,Q% —
(W,,04)" is compatible with the Frobenius ((9.1.2)), the cup product

HI(X, W, Q% (log D)) @w,, H* (X, W, Q% (—log D)) — W,(—d)

is compatible with the Frobenius. Thus the pairing (5.3.1) is compatible
with the Frobenius. Similarly, the natural wedge product

W, Q% (log D) @w,, W,Q% (—log D) — W, Q% (—log D)

is compatible with the Frobenius. Hence the compatibility of the pairing
(5.3.2) with the Frobenius follows as above.

(2): Though the case for W, (log D) (m = n,n + 1) is a special case
of the commutativity of (9.2.2), we prove (2) for W,,,Q% (£1log D) at the
same time for notational reason. First, assume that ¢ = 0. Then (2) is a
special case of the commutativity of (9.2.2). Next, assume that i > 0. By
the definition of the morphism p: W, Q% (£1log D) — W;,11Q% (& log D)
([Hy1, p. 301]), we have an equality

®, = p’'p o H'(proj.): H' (%, yw,, (£10g Dy))
— HY(Q%,_ w,_, (£10gDp 1))

n

— H(Q%, w,, (£1og Dn)).

Since p o H!(proj.) = H'(proj.) o p, (2) follows from an equality p o7 = p
([Hyl, p. 301], cf. (6.28) (1)).

(3): The problem is local. By (2) and by the surjectivity of the morphism
7 Wipo QU (£ log D) — Wy, 11Q% (£ 1og D), we have only to prove that the
following diagram is commutative:

WisaQi (£ log D) 22y i (+10g D)

(9.4.2;%) Wl lw

Hi (proj.)
_—

W19 (£1og D) W, Q% (log D).

By the same proof as that of (6.8) (4), we obtain the commutativity of
(9.4.2;+). O
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REMARK 9.5. (1) Let M be the log structure defined by an NCD D
on X:

M = {f € Ox|f is invertible outside D}.

Let us consider the log crystalline site ((X,M)/ (Wn,W;))IC?%S Let
(U, T,t,Mp,6) be an object of ((X, M)/(Wn,W;))lC?%,s Because
v: (U, M|y) — (T, Mr) is an exact closed immersion, Mr/O} = My /Of;
on U,y = T,ar; hence the defining equation of the SNCD divisor D N U in
U lifts locally to a section of Mp. We define the ideal sheaf Tx/y, C
Ox/w, by the following: Zxw, (T)= ((the ideal generated by the im-
age of the local section above by the structural morphism Mp — Or)).
The sheaf Zx,y, is a special case of a sheaf defined in [T, §5]
(Zx/w, is denoted by Kx,w, in [loc. cit.]). By this remark, we see

that Zx,w, is a crystal on ((X, M)/(Wn,W;))IC?%,S (cf. [T, (5.3)]). Let

uxw, : (X, MWH, W), —> X,ar be the projection. If (X, D) lifts to
a smooth scheme X,,/W, with a relative SNCD D, over W,, then
Ruxw,«(Ix/w,) = HZ(Q;(H/WH(—logDn)) by [Ka2, (6.9)]. Hence, by
[Hyl, p. 301],

(9.5.1) Riux w,«(Ixw,) = Walx (—log D).

In particular, (9.5.1) also tells us that W,, Q% (— log D) is independent of the
choice of (X, D;,). Using (9.5.1), we also see that ®, on W, Q% (—log D) is
independent of the triple (X, D, ®) in the proof of (9.3) (1).

(2) Let (X, D) be a smooth scheme with SNCD over x with structural
morphism f: X — W,,. Let (X/Wy,)ays be the classical crystalline topos
of X/(Wy,pWy,[]) and ’Etx/WnZ ()?/\1/17,1)@yS —— X,ar the classical pro-

jection of topoi. Let Oy, be the structure sheaf in (X/Why)erys- Let
a®): D*) . X be the natural morphism. In [NS] and [Nakk6], as a
special case, we have obtained the following commutative diagram:

~

Ruxw,«(Ix/w,) —
(9.5.2) :l
W, Q% (~log D) ——
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[Rix/w,«(Oxyw,) — (& Rupo) sy (Opw ), —d) — -]

|=

W% — (@I W), —d) — 1.

Here the upper right hand side of (9.5.2) is, by definition, the single com-
plex of aX/Wn*(I") in D*(f~1(W,,)), where I*® is a double complex of

O x/w,,-modules such that, for each nonnegative integer k, I ke isa u X/ Wi~

acyclic resolution of (agﬁ}),s*(O D) /1w, )5 (—1)¥d). In particular, the canonical
morphism

W, Q% (—log D) — [W,Q% — (@l W08 ), —d) — ---].

is a quasi-isomorphism. In the arguments above, we do not use Ekedahl’s
Nakayama lemma ([Ek2, I (1.1.3)]).

Let Y be an SNCL variety over the log point s. By the above and by
the same argument as that of [M1, 3.15], we can give another proof of the
fact that the following canonical morphism

OnN: WAy — W, A,
is a quasi-isomorphism (cf. (6.29) (1)).

COROLLARY 9.6. (1) The following diagram

Res
grkPWnJrlQ;((lOgD) — n+1Qb<k)(_k){_k}

(9.6.1) wl lﬂ

Res

grg WnQ% (log D) —— W, (—k){—k}

15 commutative.
(2) The exact sequence (8.7.2) is compatible with the Frobenius in the
following sense: the following sequence

S Was b (—k){—k} — 0
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18 exact.

Proor. (1) follows from (8.7.1), the commutativity of (9.4.1;4) and
that of (9.3.1). (2) follows from (1) and (8.7.2). O

Now we come back to the SNCL case.

Let the notations be as in the case of the SNCL variety in §8. We can
avoid the obscure point in the proof in [M1, 3.22 (2)] by (9.7.3) below: it is
not necessary to give the meaning of the Tate twist (j+1) in [loc. cit.] if one
considers only the pro-system W, A%; later, in (9.9) below, we shall consider
the compatibility of W, AY with the Frobenius for a positive integer n. We
shall use (9.7.3) in the proof of (9.9).

PROPOSITION 9.7. Let i be a non-negative integer. Then the following
hold:

(1) The following diagram is commutative:

~. piF ~.
Wo AT ——— W,AY!

(9.7.1) 9n+1/\T T(’"A

Wn+1 AB{ —>p WnAfX .

(2) Let W, A% be the complex defined in (4.1.3). For the positive integers

n’s, the canonical quasi-isomorphisms Wy, A% Onty W, A% ([M1, 3.15], (6.28)
(9), (6.29) (1)) make the following diagram commutative:

Wi Aie 25y, Ale
(9.7.2) 0n+1/\T TQ"A

. p'F .
Wy Ny ——— W, A%

(3) (cf. [M1, (3.22) (2)]) Let k be an integer. The Poincaré residue
1somorphisms

Res: grf W, At = @ WuQ7" {—j} (neZs)
j>max{—k,0} X @D
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make the following diagram commutative:

Res
P i® ~ i—j—k :
Wn A Wn Qo -
grp Wnr1dAy —— jZma?fk,O} +1 X(2j+k+1){ J}
(9.7.3) piFl lpﬂk(pi—f—kF)
) Res .
grf WA —— O WL {—jh

n .
j>max{—k,0} X7k

PrROOF. The questions are local. Let the notations be as in the proof
of (8.4).

(1): Because the morphism F: W, AL = Hi(K;L+1) — WoAL =
Hi(A®) is induced by the projection proj.: KZH — A® ([Hy2, (1.3)]), (1)
is obvious.

(2): By the definitions of F’s in [Hy2, (1.3)] and in [M1, 3.8], (2) imme-
diately follows as in (1).

(3): For a positive integer I, let X be the disjoint union of all [-fold
intersections of the distinct irreducible components of the scheme X. Let
j be a non-negative integer such that j > —k. By [M1, 3.7], we have an
isomorphism

. o P itjtlAey ., pi—i—ke
Res : gr2j+k+1H J (An) H J ( X(2j+k+1)/W )
n n

(3) follows from the following obvious commutative diagram

Res
JH1(Ne ~ i—j—k (e
8194 k1 Tt (A1) — H (Qxﬁ;"““)/w )
H"”“(p"pmi)l lﬂi*j*k(piproj-)
P . Res .
it e L
ger—Hc—f-lHZ AR —— W (Q.X(2j+k+l)/w ).
n n

O

The following tells us that the Frobenius on torsion p-adic Steenbrink
complexes can be constructed by the method of Katz-Illusie-Raynaud ([IR,
III (1.5))).
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THEOREM 9.8. Let n, k be two positive integers and j a non-negative
integer. Then the following hold:

(1) There exists a unique morphism gk, WnAg( — WnAg( which
makes the following diagram commutative:

(9.8.1) pkpl lq,gc;j)

The morphisms \Ilgk;j) and \Ifq(lkJrl;jJrl) fit into the following commutative

diagram:
. d .
WA —S— W, AL
(9.8.2) ‘I’%k;% lq,;kﬂ;ﬂl)
d

WM, —5— WA

The morphism \I/;k;k): WnA])“( — WnA’)“( 18 equal to Py, : WnA’)“( — WnA])“(
in (9.1.2). The morphisms \I/gijl) and \IfgW) fit into the following commuta-
tive diagram:

(k;5)

n+1

Wn—HAg( I n+1AJX

(9.8.3) Wl ln

‘I,%k;j)

WA WA .

(2) There exists a unique morphism ) WnAgg — WnAgg which
makes the following diagram commutative:
Wy AY " W, AY
(9.8.4) Fl li,;on
W,AY  —— W, AY.
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The morphisms 5&0') (e > 0) make the following two diagrams commutative:

$ (03+1)

WAl Py g
(9.8.5) enAT TanA
. 3, (07) .
WoA% Pl A%

& (09)
0 n+1 0
”n+1AXJ ’ ”n+1A)g

(9.8.6) ﬂl lw

0j @ 0j
WoA% 2 g, A%,

(3) There exists a unique morphism gk, Wn/~\§( — WnZN\jX which
makes the following diagram commutative:
Wy Ny —— W, A%
(9.8.7) pkpl l@&k;j)
W, Ny —— W, A%.
The family {\Tl,(@k”)} (¢ > 0,k > 1) makes the following three diagrams
commutative:

(9.8.8) \i,%k;j)l l\i,glkﬂ;ﬁl)

Wkl — s W, R,

W, AL b Ity W, Al

(9.8.9) oun| [ oun
Wil 2wk

ni\yx ni\Vx,
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§ (ksd+1)

Y LA ¢
(9.8.10) enq TanA

\I,Sbk;j)

W, A WA .

The morphisms (1751’193 and \Tf&’“”’) fit into the following commutative diagram:

L
Wn+1A§( I n+1AJX
(9.8.11) Wl ln
i (I}’(lk;j) <
Wi A WAy
(4) The morphism \Tf,({“j) preserves the preweight filtration P on W,JXJX,
for an integer 1 > 1, glisitetd), W,ﬂKé}"H — WHK?'H induces an endo-
morphism N
U)W, Al — W, Al
of complexes. e
(5) Let i be a positive integer. The family {<I>,(fj)}i217j20 makes the fol-
lowing four diagrams commutative:

. - ..
Wn+1AZ)zv — WnAz)](

(9.8.12) pz’Fl l@;m
WnAY —— W,AY,
.. _1)Jj+1 . .
WAy E gy gt
(9.8.13) @Sj)l l(i)%wm)
Wy S g
. 5 (1,7+1) .
W AT 22w, A
(9.8.14) (—l)iOHAT T(—l)ian/\
i cE(ij) i
W, A% ” W, A4
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©j ci)gi)l i
Wn+1AX — n+1AX
(9.8.15) ﬂl lw

ij ey ij
WpAy —— W,A%.

(6) The following diagram is commutative:

. _1\j+1 .

W,A% VT g g

(9.8.16) @pj)l ﬁgn

W,A% CU oy 4l

(7) The following diagram is commutative:

. ‘i,%k;j) .
WAL B i WAL

(9.8.17) l l

(k;3)

. ~ . ~ . \\j . ~ . ~ .
Wil = W N /(00 AW ALY —— WAL = WA /(0 AW AL,

PROOF. Let Z/k be a smooth scheme. In this proof we do not use the
obverse de Rham-Witt complex constructed in [I2, I]; we use only the re-
verse de Rham-Witt complex W, constructed in [IR, III (1.5)](=[HK,
(4.1)] in the trivial log case). In particular, W, (Oz) is, by definition,
Rouzw, (Oz/w,)-

(1): The following composite morphism

i P i i F i
(9.8.18) WAy — Whp Ay — Wi Ay — WAy
is a desired morphism because pr = p ([Hy2, (1.3.2)]). The uniqueness of
w9 follows from the surjectivity of 7 ([Hy2, (2.2.3)]).
Next, let us prove the commutativity of (9.8.2). Because p: W,,AY —

Wi +1A% is a morphism of complexes ([Hy2, (1.3.1)]) and because the fol-
lowing diagram

W1 A% LN W1 A%
(9.8.19) Fl lpF

o .
W, —S WAL
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is commutative, we obtain the commutativity of (9.8.2) by (9.8.18).

The equality \Il,(lk;k) = @, follows from the commutativity of (9.2.2) and
(9.8.1), and from the surjectivity of .

Finally, let us prove the commutativity of (9.8.3). This follows from
(9.8.18) and from relations pr = 7p and F'r = 7 F in (6.28) (1).

(2): By [M1, 3.7], the Poincaré residue morphism

(9.8.20) W,AY = W, A P, A B 0, )

) be the Frobenius

o
X(+1)

is an isomorphism. Let ®,, : Wn(O;’((Hl)) — W”(O)'}(jﬂ)

endomorphism defined in (9.1.2). Set 3 .— Res™! 0 @, o Res. Because
the operators F’s are induced by the projections, there exists the following
commutative diagram

0i Res
Wy Ay —— Wopa (O

)

XU+

(9.8.21) Fl lF

Res

Wadd —— WaOg ).

Then the commutativity of (9.8.4) follows from that of (9.8.21), (8.4.3) and

(9.2.2). The uniqueness of 3% follows from the surjectivity of .

By [M1, 4.12], the left wedge product 6,A induces a morphism of the
sum (with signs) of the induced morphism W"(Of(uﬂ)) — Wn((’))o((HQ))
by restriction morphisms. The morphism ®,, defined in (9.1.2) is functorial.
Hence the commutativity of (9.8.5) is obvious.

Let 7: WHHKQ LN n+1/~\§ 1 be the projection. Consider the com-
posite diagram (9.8.6) o . The commutativity of (9.8.6) follows from that
of (9.8.4), from the relation F'r = 7F in [Hy2, p. 245] ((6.28) (1), (6.8) (4)),

o
X (G+1)

and from the surjectivity of : Wn+2/~X?X+1 — n+1AJX+ .
(3): Asin (1), the following composite

(9.8.22) WA, 2 W A 2 W A S W, A
is a desired morphism. The uniqueness of \Tf&k;j ) follows from the surjectivity
of m: Wy Al — Wi A ([Hy2, (2.2.3)]).



620 Yukiyoshi NAKKAJIMA

The proof of the commutativity of (9.8.8) is the same as that of the
commutativity of (9.8.2) by using the relation pd = dp in [Hy2, (1.3.1)] and
the commutativity of the following diagram:

. J i
Wyt Ny —— Wy AY

(9.8.23) Fl lpp

WAL WA
The commutativity of (9.8.9) follows from (9.8.22) and (8.1.1). The commu-
tativity of (9.8.10) follows from that of (9.8.18), (9.8.22), (8.1.1) and from
the commutativity of the following diagram:

(9.8.24) l l

WAy —P— WA
By using relations in (6.28) (1), the proof of the commutativity of (9.8.11)
is the same as that of the commutativity of (9.8.3).

(4): Because p: Wn~AJX—> n+1AJX preserves the preweight filtration
P ((8.4) (1)), so does gk by (9.8.22). Hence (4) follows from the com-
mutativity of (9.8.9).

(5): By (4), the commutativity of (9.8.12), (9.8.13), (9.8.14) and (9.8.15)
immediately follows from that of (9.8.7), (9.8.8), (9.8.9) and (9.8.11), respec-
tively. ' 4

(6): By the surjectivity of 7: WnHA())g — WnAgg, by the relation
wd = dr in [Hy2, p. 245], and by the commutativity of (9.8.4) and (9.8.7),
it suffices to prove that the following diagram is commutative:

WnHA?? —4, Wn+1A;g
(9.8.25) r| |
d

WnAgg —_— WnAﬁg.

This follows from the commutativity of (9.8.23).
(7): (7) follows from (9.8.18) and (9.8.22), and (9.8.24). O
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By (9.8), we have the commutativity of (9.9.1) and (9.9.2) below:

THEOREM 9.9. Let W, AY be the double complex in (2.2.1;n). Then
there exists a unique endomorphism &),(:*): W,AS — W,AS (n € Zso) of

double complexes which makes the following diagram commutative:
Wy AY —— W, A%
(9.9.1) p-Fl l@%‘*)
WpAY —— W,AY.
)

The endomorphism 57(:* mduces an endomorphism

d,: WA — W, A%

of complexes; ®,, fits into the following commutative diagram:

WoAS —2m W,A%

(9.9.2) enAT TGn/\

WoA% —2m WA
The Poincaré residue tisomorphism Res induces an isomorphism
Res: grP W, A% — b (W% (=1 d) {25 — k} which
j>max{—k,0} X (2j+k+1)
makes the following diagram commutative:

Res
Py, A% —= W,0° 1)) {—25 — k
gr, x jzmag?—k,O}( X(2j+k+1)’( ) )‘{ J }
(9.9.3) ‘f’"l lw%
P Res -
LAY —— 2% (=D d) {25 — Kk},
gry, Wn A% jZmag{afk,O}(W £ (@irkt1) (-1) H{—2j }

Consequently there exists the following spectral sequence (cf. [M1, 3.23)]):

(9.9.4) EM = P

j>max{—k,0}

HI2R (XD (17,00 (~1)7Hd))(—j — )

nyto
X (2j+k+1)’

= Hli(L)g—crys(X/Wn) (TL € Z>0)‘
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PrOOF. We have only to prove the commutativity of (9.9.3).
Let ¢, 7 be fixed integers. Then we have the following commutative
diagram:

Res
P Titj+1 ™~ i—j—k
D gr2j+k+1W”AX N S, W2

j>max{—k,0} j>max{—k,0} X (2j+k+1)

(9.9.5) ‘i’"l lpﬂk@n

Res
Jal Nit+j+1 ~ W Qi—i—k
D gr2j+k+1””AX ’ D nfde 2j+kt1)
j>max{—k,0} j>max{—k,0} X1

Indeed, by [M1, 3.7] and (8.4.3), the morphism : grkPWnﬂAg —
grl WnAg is surjective. Consider the diagram (9.9.5) o w. Then the com-
mutativity of the diagram (9.9.5) o 7 follows from that of (9.8.7), (8.4.3),
(9.2.2) in the trivial log case, and (9.7.3). Since the horizontal boundary
morphisms of grkp W, A are twisted by signs in this paper (and also in [M1,
3.8]; [M1, (3.22) (2)] is mistaken), the Poincaré residue isomorphism induces
an isomorphism
Res: (grh o1 WaAy 7 (—1)7Hd) = (W"Q}{(ﬂm (—1)y*a)

of complexes. Hence we can finish the proof of (9.9); at the same time, we
have proved the Frobenius compatibility in (4.1.5) and hence in (4.1.1;n). O

REMARK 9.10. We have to make the following identification clearly:
because identification changes many things, it is important. Using the Con-
vention (6), we obtain

)

= HE (X /W) (e € Zoy).

crys

(9.10.1) H*(S’(@,(an( ,—d)) = H*(§<e>,wnﬂz(
X(e X(e

) )

Using this identification, we obtain the following spectral sequence

—k,htk —2j—k (v (2j ;
(9.102) B = @@ HEERXED W~ k)
j>max{—k,0}

= Hlfcl)g—crys (X/Wn)
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by (9.9.4). The Frobenius compatibility in (9.10.2) is not obtained in [M1].
We call the spectral sequence (9.10.2) the p-adic preweight spectral sequence
of X/s.

DEFINITION 9.11. (1) Set WAY = lim W,A% and WAL =
lim W,A%. Set & := lim &,: WAy — WAY ((9.2.3), & =
lim By WAY — WAY ((9.8.15)) and & := lim &,: WAY — WAY
((9.8.15)). Because 7: Wy 1Ay — W,A% and 7: W, 1A — W,A%
are surjective, we have an obvious analogue of (9.9) for WA%, W A%, ® and
.

(2) We call the following spectral sequence

—k,h+k 2k v (2] .
9111 BT = B HEI XD/ W) (< - k)
j>max{—k,0}
== Hl}tl)g—crys (X/W)
the p-adic weight spectral sequence of X/s. (The spectral sequence (9.11.1)

is obtained by the same argument as that of (9.9) and (9.10) for WAY,
WAS, ©, 3 and O.)

Finally, we define the Frobenius endomorphism D, : Wn]\fx — WanX
(i > 0) by the following formula:

7 (453) .
011.2) 5. {xyn | (l, > 1),
¢, in (9.1.2) (i =0).

Assume that we are given an admissible triple (V,X,®) of X (§6). Then,
®,, is equal to
H (®*mod p"): H'(Ox, ®0y, W), /w, (log X))
— H'(Ox, ®oy, Q3w (log X))
by (9.8.22). By (9.8.11), we obtain the following commutative diagram:

i &>7L+1 e
WAy —— WipAk

(9.11.3) ﬂl lw
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By (9.11.3), we can set ® := lim D,,.
Let k be an integer. Because the Frobenius on PkWnKB( is not defined in
[M1], the proof of [M1, 3.7] is not complete; we complete it by the following:

PROPOSITION 9.12.  For a non-negative integer k, PkWnT\}( is stable
by the Frobenius ®, on W,A%. The following two exact sequences

(9.12.1;n) 0 — PoWpA% — Pua Wy A%

R .
= WnQ;{(kH)(—k —1D){-k—-1} —0 (neN)

and
(9.12.1) 0 — P,WAY% — P WA%
Res °
— WQ)O((HU( E—1){-k—-1} — 0
are compatible with the Frobenius. Here the Frobenius on W,Q%, o (ne
X (k+1
N) is, by definition, given in (9.1.2), and the Frobenius on WQS, o) is the
X (k+

projective limit of those on W, Q% (n € N).
X (k+1)

PROOF. By the local description of &m and by the same proof as that
of (8.4) (1), we see that P,W, A% is stable by ®,. Now (9.12.1;n) follows
from this stability, from [M1, 3.7] and from the same proof as that of (9.3)

(1).
(9.12.1) follows from (9.12.1;n) and (8.6.1). O

10. The boundary morphism of the p-adic weight spectral se-
quence of an SNCL variety

In this section we give the description of the boundary morphisms of the
E;-terms (of the finite length version) of (2.0.1) with boundary morphisms
in (2.2.1;%); the proof of (10.1) below completes the proof of [M1, 4.14]; in
addition, in (10.2) (4) below, we correct signs of boundary morphisms in
[M1, 4.14].

THEOREM 10.1. Let k be an integer. Let G and p be the Gysin mor-
phism and the induced morphism by closed immersions defined in [MI,
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4.10] and [M1, 4.12], respectively. Let W, A% (x = a positive integer n
or nothing) be the single complex of the double complex in (2.2.1;%). Let
di: HMX,grtP W, AY) — H'MY X, grl (W,A%) be the boundary mor-
phism obtained from the following exact sequence

(10.1.1;%) 0 — grt W, A% — (Py/Pi_2)W, A% — grb W, A% — 0.

Then, under the identification in (9.10), the morphism d; is identified with
the following morphism:

(10.1.2;%) > [(-1YG{=2 — k+ 1} + (=17 Fp{—2j — k}]:
j>max{—k,0}

B HELE XD )W) () — k) —
j>max{—k,0}

P HLI X W)(— -k +1).
j>max{—k+1,0}

PROOF. Because signs are considerably delicate, I give the proof in full
detail.

As in (9.10), we have grl W, A% = @,>oerf WoAY{—j} (I € Z). Let
i, j be two non-negative integers. Let (I°¥ §), (J*U §), (K*9,6) be the
Godement resolutions of grkalW*Ag, (P /Pk_g)W*Ag and grf W*Ag, re-
spectively. Let us make a convention on signs of the boundary morphisms
of J*** as follows: Let d; (resp. d2) be the naturally induced morphism
JW — JhFLI (resp. J!W — JbHJ+L) by the horizontal (resp. verti-
cal) morphism (—1)7t'd: (Py/Py o)W, A — (Py/Pe o)W, AT (resp.
(1), A: (PrfPro)WiAY — (Ph/Pe_o)W,AY ™). Then we fix the
boundary morphisms as follows:

(10.1.3;G) §: Jhi s JitLig

(10.1.3;h) (=1)dy: JW —s Jhithi,

(10.1.3;v) (=Dldy: JW — ghigtl,
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We make the same convention for /°*® and K*°®*®*. Then we have triple
complexes I°*®, J*** and K***. Note that the boundary morphisms of
I°** — J*%°**t1 and K*** — K***t! are the zeros. Let J*® be a dou-
ble complex defined by J¥ := D ir—i JU"3. Similarly we have double
complexes I*® and K**. Then, for each j, I*, J* and K* are flasque res-
olutions of grﬁlW*A;g, (Py/ Pk_g)W*A;g and grl W*A;g, respectively, and
we have the following commutative diagram

0o — 1%{—j} — J*I{—j}

(10.1.4) T T

0 —— grf WA {—j} —— (Pu/Pu—o) WL A {5}
——  K%{-j} —— 0
—— g WAV (-} —— 0.

Let I*, J®* and K*® be the single complexes of 1**, J** and K*®, respectively.
Then we also have the following exact sequence

(10.1.5) 0—T(X,I°) — T'(X,J*) — TI'(X,K*) — 0.

Let dj, (resp. dy) be the horizontal (resp. vertical) boundary morphism of
Jee.

Let w = (W)itj=g € T(X,K9) = @,,;-, (X, KY) (¢ € N) be a co-
cycle. Let @¥ € I'(X,.JY) be a lift of w”. Then the image of w by the
boundary morphism of (10.1.5) is (°"%7); ., where

(10.1.653,5 — 1) Nt = dy, (@Y + dy (@Y.

First, we consider the horizontal morphism dj in (10.1.65i,5 — 1). The
section dj,(w") is obtained by the following exact sequence

0 — IY{—j} — JY{—j} — K{—j} —0.
By (10.1.4), this is isomorphic to
(10.1.7) 0 — (gri WeAY{—j}, (~1)"d)
— ((Pe/ Po—2) Wi AR {3}, (—1)7Hd)
— (grp WL AY {3}, (-1)"*1d) — 0.
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Moreover, by [M1, 4.11] and (9.9.3), the following diagram is commutative:

(grkPW*A;g{—j}’ d) L)

(10.1.8) Resl:
D, (—j — k){—2j — k) —SA2kHLL

j>max{—k,0} X (25+k+1)

(grh_ WA {—j}. d)[1]

Reslﬁ

b war (=j =k +1D{=2j —k+1}[1].

O o
]ZmaX{—k—‘rl,O} X (25+k)

As in the diagram [RZ, p. 31|, we use the Convention (6) for the following
cohomologies:

(10.1.9) H" (X, (er] Wi AR {=7}, (=1)/"d))

= H'(X, (g WoAY {—j}.d) (1 =h.k —1).
Hence the part of the Gysin morphism in (10.1.2;%) is obtained by noting
the signs of the horizontal boundary morphism in (2.2.1;%) and by the
Convention (5).

Secondly, we consider the vertical morphism d,, in (10.1.6;i, 7 —1). How-
ever we consider it in (10.1.6;i, j) because we wish to give the formula
(10.1.2;%). The morphism d): K1 5 w'Thi s d, (@) € [HLit!
is well-defined. Indeed, we can easily check this by noting that the vertical

morphism of K* — K**! is the zero and the injectivity of the morphism
I*+1 — J*+1 Then we have the following four commutative diagrams:

g W AT H—j =1} —— (Pi/Pea) WA {—j — 1}
(10.1.10) (_1)-9*@ T(—l)'é’*/\
erf WA =i} ——  (Pe/Po)WeAY{—j},
(Pe/Peoa)WAY = =1} —— J9 T {—j— 1)
(10.1.11) (_1)-9*@ Tdv
(Po/Pea) WA {—j} ——  J9{-j},
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IR p— TS Y
(10.1.12) d;T Tdv
K¥{—j} —— JY{-j},

grb W AYTH—j -1} —— 19t {—j -1}
(10.1.13) (—1)‘0*/\T ng
b W AY{—j} ——  K%{-j}.

The complex grkp W,A% is isomorphic to the complex @jZmax{—k 0}
(10.1.14;5), where (10.1.14;5) is the following complex

—1)it+1g . —1)i+1g
B A e LY G s Rl
X (25+k+1)

(4.9)

(10.1.14;5)

)

where (*,%) below the sheaf above means the bi-degree. On the other
hand, gri W, A% is isomorphic to D, 15max{—k+1,0p (10.1.15;5+1), where
(10.1.15;5 + 1) is

_1)i+2 . it

(10.1.15;5 + 1) LD g ik (g G
X (2j+k+2)
(i,j+1)

By the same proof as that of [M1, 4.12], we have the following commutative
diagram for [ < m:

Res
P Am+l _ ~ —l
nglW*A;? B W*Qg(wn
(10.1.16) G*AT T(fl)mflp
- Res
gf WA W*QT(_Z)Z.
X

Hence the morphism (—1)@'9*(\: grgW*Ag — grf_lw*Ag’(jle[l] is iden-
tified with a morphism (—1)"(—1)(+i+D=Q@i+k+l) ) — (1)K Hence,
by the commutative diagram (10.1.13), the morphism d,: K*{—j} —
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I*9+1 —j — 1} is induced by (—1)7**p. Now, as in (10.1.9), let us make the
following identifications:

(10.1.17) H'()O((%Lkﬂ)» (W*QX<2 e T2 R (= ) (=j — k) =
H.()o((zjﬂcﬂ)’ W*Q}((Qj+k+1){_2j kD) (—j — k),

(10.1.18) H*(X2i+h+2) (W*Q}((QHM){—% — kY (=1 2d) (=) — k) =
H (X 25H+2), WY (20— RN (R,

Under these identifications, the desired vertical morphism

h( v (2+k+1) _9i R AN
H (X WQX@MH{ 2j —k})(—j—k)
h(X2i+E+2) 7 95— k) (—j —
HM (X W {2 = k) (=i - k)
is (—1)7+kp.

Finally, we consider the Frobenius compatibility. By the commutativity
of (9.9.5) and (10.1.16), the following diagram

. (131+7+2) .

P i+j+2 L i+j+2
2o kWil x E— gr2]+k+2W*AX

(10.1.19) (—1)1‘@*@ T(—l)iew
— . (3147+1) .

P il P i+j+1

gr2j+k+1W*AX 5 gr23+k+1W*AX

is identified with the following commutative diagram

*Qifjfk i D, *Qif_jfk‘ o
W X (2+k+2) (=3 —k) W X (2j+k+2) (=5 = k)
(10.1.20) H)Hﬁ T(_l)mp
Ql ] k a4 ¢’* Qi—j—k i )
W X (2i+k+1) (== k) Wi X(2j+k+1) (=i =k

Therefore we have proved (10.1). OJ
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REMARK 10.2. (1) The description (10.1.2;%) is not the same as the p-
adic analogue of Rapoport-Zink’s description of the boundary morphism of
the Ej-terms of the l-adic weight spectral sequence in [RZ, (2.10)] because
their Cech-Gysin morphism [RZ, p. 39] corresponds to —G in [M1, p. 324].
If we wish to have the same description in the p-adic case as that in [RZ,
(2.10)], we need to make the following identification for example:

(10.2.1) HM(X, grf W, A%)

Res
~ h—2j—k . _ 1)+l —i—
= & =H (X, (W08 L G D)) (=) = k)
j>max{—k,0}
B h—2j—k . i
= P =H (X, (W*Q%(2j+k+l),d))( j—k)
j>max{—k,0}
= D HGITTEE W) (= - k)
j>max{—k,0}
. Q? X }(_1)j+k><
jZ>max{—k,0 945 o . .
— P HLZNEETHEY W (- - k)
j>max{—k,0}

for all h, j and k such that j > max{—k,0}. Here we have used the
Convention (6) for the second equality.

However the description of the boundary morphism in [RZ, (2.10)] is
mistaken in signs if we use the resolution [RZ, (2.6)], the formula

A ROLA = @bl T® = apu A(—1)[=2r] (1 € Zsg)

in [loc. cit., p. 37] and the double complex C in [loc. cit., p. 38]. See
[Nakk4] for the details and for the description using the formula above and
for another description.

(2) Let the notations be as in [M1, p. 323]. The formula Res{q (w) =
a A dlogxl-q|DIq in [M1, p. 323, 1. -9] is miswritten; the correct one is:
Res}’q (w) = (=) ta Adlog Tig| Dy, -

(3) The morphism (—1)7*Fp: W (- — k) —

X (25+k+1)
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W*Q;.;é ;ka) (—j — k) does not induce a morphism of complexes:

(—1)*p: (W05 {=2) —k}(=j — k), (-1)"d)

X(2 j+k+1)

— (W05 {2 — k= 1}(=j — k), (=1)"**d).

X (2i+k+2)

(4) Let us point out six mistakes in [M1, 4.13, 4.14] and correct them.
In this remark, as in [M1, 3.8], let us consider a double complex W, A%
with boundary morphisms (2.2.3;n). Let W, A% be the single complex of
W, A% . The mistakes in [loc. cit.] are as follows:

(a): The sign (—1)7~! before the term G in [loc. cit.] is necessary; be-
cause the horizontal boundary morphism W, A% — W, A" is (—1)7d(=
(—1)7=1(—d)), signs of the horizontal boundary morphism grkHW AY —
grl W, A'+1 '[ ] and that of the wusual boundary morphism
d: grk,+1WnAX — grb W, A%[1] (K € Z) are different.

(b): Grj;1W,A® and Gr;W,A*[1] in the diagram of [M1, 4.13] have to
be replaced by Gry1WeA® and GrpW,A®[1], respectively.

(c): The sign (—1)**! before the term p in [M1, 4.13] must be replaced
by (—1)¥; the number of the preweight filtration P on the source of the
boundary morphism grkp W WhAs — grkp WpA% is k+ 1 but not k.

(d): The Poincaré residue isomorphism in the diagram in [M1, 4.13] are
not isomorphisms of complexes.

(e): The Frobenius on the pro-system grkp WeA% is not considered.

(f): The two shifts [] and {x} are considered as the same operators (we
can find this confusion in many references).

By putting the above together and by the proof of (10.1), [M1, 4.14] is
corrected in a stronger form than [loc. cit.] as follows: the following diagram
is commutative:

HM(X, il W AY)

022 H
GB Hélrygj k— 1(X(2]+k+2 JWo)(—j —k—1) ——
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HM(X, grkPWnAB()

H

@ HER XD /W) (= — k),
j>—k
Jj=>0
where the lower horizontal morphism is
(10.2.3) S 1 G{=2) — kY + (< )Fp{=2j — k —1}]
j>max{—k—1,0}

and the two vertical identities are canonical isomorphisms.
(5) T do not understand why [M1, 4.13] is obviously obtained by [M1,
4.11, 4.12]: the notion of double complexes do not exist in a derived category.

Let ¢ be a fixed non-negative integer. Next, we consider the boundary
morphism

(10.2.4) H"(X, gy W AR{—i}) — H" (X, gri_ W, AR{—i})
arising from the following exact sequence
(10.2.5) 0 — gry | WoAR{—i} — (Py/Py_2) W AR {—i}
- gr/IqDW* R{-i} —0.
Let the notations be as in the proof of (10.1). Then we have the resolu-
tions I*%, J** and K*** of grfﬁlw*Agg, (Pr/Py—2)W, A% and grfW*Ai)},
respectively. As in the proof of (10.1), we make the same convention on

signs of, e.g., the boundary morphisms J'7 — Ji+147 and Ji — Jhid+l,
Then we have the following commutative diagram:

0 ——  sU){-i} —— s(J**){~i}

(10.2.6) T T

0 —— gr WiAR{—i} —— (Po/Peo2) W AR{—i}

s S(K*{—i} —— 0

I

—— grt W, AlR{—i} —— 0.
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Here s means the single complex of a double complex. We consider the
usual boundary morphism

(10.2.7)  di: HMX, grP W AR {—i}) = HMI(X, s(K**){—i})) —

HH DX, s(177°){=i})) = H" (X, grj_ WL AR{—i})
of the lower exact sequence of (10.2.6).
Let {Xn}%zl be the smooth irreducible components of X. For positive

integers 1 < mnp < -+ < mnp—1 < M, set X( ) = Xpg M- NX

no- N1 Nk—1°
Let [ be an integer. Let

Grgmi a0 H (X gy Wallx ) (1) —

Hl+1 (X( ’ W*Qi+1

N Mg — N
0 J k 1) X(”O“‘"j'“"k—l)

be the Gysin morphism of the closed immersion X(,g..0, ;) -

X (ng--fij-ny,_,) which is defined in §4. Set
k—1 A )
(10.2.8) G := > D (=1 Gg i
1<no<ni<--<ngp_1<M j=0
H/(XW W0 ) (-1) — HPH(XED w0 ).
Let

no N Ng—1% | rrl i
LnOA..nkil . H (X('I’LO"'ﬁj"'nk—l)’W* X(”O"‘ﬁj"'nk—l))

. )
H (X(nomnkflﬁW*Qg((nouﬂkil))

C

be the induced morphism by the closed immersion X —

X(no . Set

no-Mg—1)

1)

k—1
(10.2.9) p = Z Z(_l)JLZSZi_lnk_l*
1<ng<n1 < <nip_1<M j=0

H'(XED W yy) — HY(XW W00 ).



634 Yukiyoshi NAKKAJIMA

THEOREM 10.3. Let the notations be as above. Then the morphism
dy: HMX, grE W, Al {—i}) — HMY (X, gl W, AlR{—i})
in (10.2.7) is identified with the following morphism:

(10.3.1;%) > (1Y G{=2j — k+ 1} + (=1)Fp{—2j — k}]:
j>max{—k,0}

EB thifj()o((QjJrkJrl)’ W*Qio—];k: V(=) — k) —
j>max{—k,0} X @irktD)

@ HTTIHRXE W (k).
j>max{—k+1,0} X

PrOOF. By noting the sign in (10.1.3;G) and the remark (4.6), the
proof is the same as that of (10.1). O

REMARK 10.4. If we use the boundary morphisms of the p-adic Steen-
brink complex in (2.2.2; %), there exists the following spectral sequence

(10.4.1:%) E;k,thk _ EB Hg;gj—k(X(2j+k+1)/W*)(_j —k)
j>max{—k,0}
= Hllég—crys (X/W*)

Set

(10.4.2;%) p = (=1)%p: W,Q° — W,Q*

X(2j+k+1) X(@itk+2)’

Then the boundary morphism Efk’h+k — Efk+1’h+k in (10.4.1;%) is iden-
tified with

(10.4.3;%) > [FG{-2j—k+1}+/]
j>max{—k,0}

Though p’ is not a usual induced morphism of log de Rham-Witt complexes,
the convention (2.2.2; x) makes us free from the convention on the work for
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signs in (10.1). However, because (2.2.1; %) is naturally related to a left cup-
product OA in the lower exact sequence of a commutative diagram (11.8.1; %)
below, we have used (2.2.1; %) in this paper.

We conclude this section by giving the proof of the correction of the
duality in [M1, 4.15]:

ProPOSITION 10.5. Assume that )O( s of pure dimension d. Then the
following hold:

(1) Let n be a positive integer. Let {Ep }r>1 be the E.-terms of the
preweight spectral sequence (9.10.2). Then the Poincaré duality pairing

(10.5.1) () B o, B — W (—d)

1,n

nduces the following perfect pairing

(10.5.2) () By oy EEME W (—d).

cH2n

(2) The analogue of (1) for the weight spectral sequence (9.11.1) @y Ko
of He  (X/W)@w Ko holds.

og-crys

Proor. (1) By (9.10.2) we have

B @y AR XD ) (< — )
j>max{—k,0}
and
Epitt = @ HIERXCIR fw) (— + k)
j>max{k,0}
= P HEZHEXEHY W) ().
j>max{—k,0}

Since (2d — h — 2j — 3k) + (h — 25 + k) = 2dim X #+¥+1) and since —(d —
2j —k)—(j+ k) —j = —d, we have indeed the Poincaré duality pairing
(10.5.1).
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[¢]
R T 2j+k+1 —khtk . pp—k,htk —k+1,h+k
Set djj = dim X@HED - Let dy " B MY — By be

the boundary morphism of the Fi-terms of the preweight spectral sequence
(9.10.2). The morphism dik’w—h_k is given by the following diagram

n

ngdyjs,k*(h*ZjJrk) (;((Qj+k+2)/Wn)(_j _ k)

—
(105.3) Hepgs ™R (X G ) (< b)
(e
Hopg ™R XG0 W) (<~ k4 1)

By (10.1.2;n), the morphism d’f:2+k is given by
[(_1)j+kG + (_1)jp] . @ Hglr;SQj—l—k(X(2j+k+1)/Wn)(_j) _
j>max{—k,0}

P HLIXEE W) ().
j>max{—(k+1),0}

k—1,h+k

Hence the morphism dy ,,

is given by the following diagram

o

Hey P2 (X otk f w7, ) (= — 1)
(,1)(j+1)+kflc;l
(10.5.4) HES 240 (X Qitk+1) 1w, ) (—5)
s
Heryd (X THE) /W) (=)
Using the adjoint property of G and p, we have
(10.5.5) (dy B2 ) ) = (s, df R ().

Hence we obtain (1).
(2) immediately follows from (1). O
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REMARK 10.6. (1) In [M1, (4.15)], we have to kill the torsions of the
E,-terms in [loc. cit.] since the Poincaré duality does not hold over W
in general. Furthermore we have to make a restriction r < 2 in [loc. cit.]
since the F)-degeneration was not proved in [loc. cit.] (we do not need the
restriction in this paper thanks to (3.6)). The upper indexes of the E,-terms
of the duality in [loc. cit] are mistaken; there exist proper SNCL surfaces
over k such that Ei° @y Ko ~ Ky but E3?2 @ Ko = 0. See [Nakk4] for the
examples.

(2) If we make the identification (10.2.1), we have the formula

(10.6.1) (AR (), ) = — (o, dy T ().

instead of (10.5.5). The description (10.1.2;x) is better than the description
of d """ by the use (10.2.1).

n

11. p-adic monodromy operators

In this section, we define a complex (WnJNXB()” which is a correction of
(Wno%)' (n € Zso) in [HK, (4.20)]. Next we establish a relation between
(W,A%)” and W,,A% which has been denoted by W,&% in [Hy2] and [M1].
There is a similar relation in [HK, (4.20)] in a case where X is the special
fiber of a semistable family over a complete discrete valuation ring of mixed
characteristics with residue field k; but our relation in (11.1) below is dif-
ferent from the relation in [loc. cit.] a priori even in the semistable case.
In (11.5) (2) below, our relation will show that the monodromy operator
in [HK, §3] coincides with that in [Hy2, Introduction]| via a canonical iso-
morphism; the proof of the coincidence in [M1, 2.3] is mistaken; see (11.12)
(2) below for the reason. This coincidence gives a right proof of the inter-
pretation of the p-adic monodromy operator of Hyodo-Kato by a canonical
operator v of the p-adic Steenbrink complex; this claim in [M1, 3.18] is also
mistaken since v in [M1, 3.13] is not a morphism of complexes if dim X > 2:
see (11.9) (1) below for details.

(11.5) (2) below is necessary for the proof of the p-adic monodromy-
weight conjecture for a proper SNCL curve over a log point ([M1]; see also
(11.13) below), for a proper semistable family of surfaces over a complete
discrete valuation ring with simple normal crossing special fiber ([Nakk4])
and for other cases ([Nakk3], [Nakk4]). Of course, if one considers the p-adic
monodromy operator in [Hy2, Introduction] as the definition (cf. (11.3.8)
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below), then (11.5) (2) is not necessary for proving the p-adic monodromy
weight conjecture in the cases above; the analogous proof in [M1, 3.18]
is enough for proving it in the cases above if one considers the Frobenius
action into consideration in [Hy2, Introduction] and [M1, 3.18] (cf. (11.7.1;%)
below), and if one makes a correction in (11.9) below (cf. (11.8.1) below).
However, the definition in [Hy2, Introduction] is obviously valid only when
the base scheme is the spectrum of a perfect field or at most a perfect
scheme, and hence it is not very good to consider the p-adic monodromy
operator in [loc. cit.] as the definition of it; in a future paper we shall give
the definition of a p-adic monodromy operator in the same way as that in
[HK, (3.6)] for a more general base scheme by using the crystalline complex.

Let X be an SNCL variety with log structure M over s. Let a: M —
Ox be the structural morphism. Consider two abelian subsheaves F,, and
Gn in

(11.0.1) (Wn(Ox) @z [\ (M [a™} (7))
i—1
& (W (0x) @z /\ (M® /a™" (x"))) :

the sheaf F is, by definition, generated by the forms of the types (7.0.2),
and G, is, by definition, generated by the forms of the type (7.0.4). Set

(11.0.2) (WaA)" := {(Wa(Ox) @z \(ME /o (k%))

® (Wa(Ox) @z \ (M /a7 (%))} /(Fa + Gn)-

For the time being, we consider (Wn/A\/lX)”~ only as an abgljan sheaf on X,

We define a boundary morphism d: (W, A%)"” — (W,A%")” by the same

formula as that of (7.7.6). Thus we have a complex (W,A%)" of abelian

sheaves. Set (WA%)” := lim (W,A%)”. The Frobenius of X induces a
n

morphism

" (W,AY)" — (W,A%)" (x =n € Zsg or nothing ).
Let us also recall the Frobenius

®,: WAy — WAL (% =n € Zsg or nothing )
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defined in (9.11.2).

Let e be a global section of the log structure M, of s whose image in
I'(s, Ms/O7) is a generator. Let 7 be the image of e in I'(X,M). Let
dlog 7, be the image of 1® 7 € T'(X, W,(Ox) ® M2) in I'(X, (W,AL)").
Then dlog 7 is independent of the choice of e.

THEOREM 11.1. (1) There exists a canonical isomorphism
5 (WoA%)" = W,A%
which makes the following two diagrams commutative:

0 — (WaA%)"(—1)[-1] 1270 (W,R%)" — (WoA%)” — 0

(11.1.1;n) :l :l :J

0 —  WiuA%(=1)[-1] BAAN Wal% — WpA% — 0,

- Sn41 ~
" ~
(Wat1h%)" —— Wopihy

(11.1.2) projl lw
(WoA%) —— W,AY%.

(Note that, in (11.1.1;n), we have taken the left wedge products dlog T,
and 6,/\, and we have shifted the two left complexes in (11.1.1;n) by [—1]
in order that the horizontal sequences in (11.1.1;n) are exact sequences of
complezes.)

(2) The two projections proj: (WnpiA%) —  (WoA%)”,
proj: (Wpt1A%)”  —  (WRA%)” and the other two projections
T W,H_l/x;( — WnKS(, m: WAy — W,A% induce a morphism from
(11.1.1;n 4+ 1) to (11.1.1;n).

(3) There exists the following commutative diagram:

dlog TN
—_

0 — (WA%)"(-1)[-1] (WA%)" — (WA%)" — 0

(11.1.1) N :l EJ . :l

0 — WAY(-D[-1] 25 WAy — WAY —— 0,
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PROOF. (1): For the time being, we ignore the Frobenius action. Fol-
lowing [HK, (4.9)], we first construct a morphism s, locally. Let M be

the log structure of X. Assume that X is affine. Let (), X) be an admis-

sible lift of X. Assume that ) is formally etale over Spf(W{xo,...,z4})
with structural morphism Spf(W{xo,...,zqs}) — Spf(W{t}) defined by
t — zo---x, (r < d). Let My be the log structures of ) associated
to a morphism N1 3 (0,...,0,1,0,...,0) — 211 € Oy. Let My
be the pull-back of My to X. Let My, be the pull-back of My to
X, = X Qw W,. Let Q%n/wn(log My,) be the log de Rham complex of
X, /(Spec(Wy), Wy). Set A}, = Ox, ®0,, Q3w (log X,,). Then the natural
surjection 2, (log Xp,) — QF W (log My, ) induces an isomorphism

(11.1.3) Ay 5 Q% iy, (log M)

As in [HK, (4.9)], we define three morphisms

n—1 ) _
(11.1.4)  3,(0,0): Wn(Ox) 3 (ao,-.. ,an-1) — Y _p'at € H(A}),
=0
n—1 » _
(11.1.5) 3,(1,0): Wn(Ox) 3 (a0, ... ,an—1) — » @~ 'da; € H'(A}),
=0
(11.1.6) dlog: M® 5 b+ dlogh € H'(A?),

where a; € Oy, and be M x,, are lifts of a; and b, respectively. Then, by the
same proof as that of [loc. cit.], 5,,(0,0), $,(1,0) and dlog are well-defined.
As in [loc. cit.], we have a morphism s, : (WnINVX)” — WnlA{fX (1 € N) of
abelian sheaves. It is a routine work to check that s, induces a morphism
Snt (W,JX;()” — ang( of complexes.

Next, we claim that s, is independent of the choice of the admissible
lift of X. Let (), X’) be another admissible lift of X. Let )/ be a scheme
over W, [t] constructed in, e.g., [M1, 3.4]: the scheme )/ is obtained by the
reduction mod p™ of an open scheme of a blow up of the product Y xg,¢w) V'
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along certain closed formal subscheme of the product [loc. cit.]. Then )
is a smooth scheme over W,, with relative SNCD X defined by ¢t = 0 and
such that there exists a commutative diagram

C

X X Yy —— Spec(Wy[t])

I |
(11.1.7) X Bme, yr V) —— Spec(W,[t])

I A H

X —— & Y}, —— Spec(W,[t]).

Here the morphism A,: X —— X is an exact closed immersion obtained
by the reduction mod p" of the strict transform in )" of the image of
the diagonal embedding X -, Y Xsptw) YV'. Let D, be the usual di-
vided power of the exact closed immersion A,. Let /N\;? be the log de
Rham complex of a morphism of log schemes X — (Spec(W,,), W}).
Let 3, : (W,A%)'—H*(A.,*) be an analogue of 3, for the admissible lift
(7, &), Let pr: (VI X2) — (Y, ) and pa: (Vi X) —> (Vh, XL be
the “projections”. By [M1, 3.4] (cf. [Hy2, p. 247-248)), p; and p} induces
an isomorphism

pi: H'(A;) == H*(Op, ®o,, A1),

o
ps: H*(R,") = H*(Op, ®o,, AT").

It suffices to prove that the following diagram is commutative:

4
Xy

(Wad%)" —2— He(A})
U lpf .
(11.1.8) (WoA%)” H*(Op, ®0,, A"

H Jr:

g/

(WyhS)" —"— HO(ALY).

Let s W,JX;( — H'(Opn®@%, A”*) be a morphism defined as in (11.1.4),
(11.1.5) and (11.1.6) by using the “diagonal” exact closed immersion
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An: X -5 X7 (3 is well-defined as in [HK, (4.9)]). By the symmetry,

n
it suffice to prove the commutativity of the following diagram

WAy H* (M)
(11.1.9) | |7
H*(Op, ®o,, MNi*) =—— H*(Op, ®0,, Al¥).

Since p1 oA, is the given exact closed immersion X S X, and since s,, and
s are defined by lifts of sections of W,,(Ox) and M®P, the commutativity
of (11.1.9) follows from the well-definedness of the morphism s/, which

is proved by the same argument as that of [HK, (4.9)]. Therefore s, is

independent of the choice of the admissible lift of X.
As in [HK, (4.20)], by [Hy2, (1.4.3)], we have the following commutative
diagram with exact rows:

dlog T, A
—_

(WaA%)"[-1] (Wah%)" — (WoA%)” — 0
(11.1.10) lg J lg

0, N
—_—

0 —  WnA%[-1] WAy —— WoA% —— 0.

Because s;, is an isomorphism, so is .

The compatibility of the upper row of (11.1.1;n) with the Frobenius is
obvious. Because s, is compatible with the Frobenius ((9.1.2)), we have
only to prove that s, is compatible with the Frobenius. This follows from
the local description of 5, and from the proof of (7.1).

Using (6.28) (8), we can prove the commutativity of (11.1.2) by the same
proof as that of (7.1).

(2): (2) follows from the commutativity of (11.1.1;n), that of (11.1.2)
and (7.1).

(3): (3) follows from (1) and (2). OJ

COROLLARY 11.2.  The sheaf @iZO(W*/N\%)” (x = n or nothing) has a
natural module structure over the Cartier-Dieudonné-Raynaud algebra of k.

PROOF. Since the sheaf QBZ-ZO W*fo has a module structure over the

Cartier-Dieudonné-Raynaud algebra of &, @izo(W*j\g()” also has it by
(11.1). O
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COROLLARY 11.3. (1) Let p”: (W,A%)" — N(W““KS()” be the in-
duced morphism by the multiplication by p: (Wy41A%)" — (W A%)".
Then p” fits into the following commutative diagram

S

(Wah%)" —— W,A%
(11.3.1) pf/l lp

(Wap1A)" —— WAy

(2) The abelian sheaf (WKZX)” (i € Z) on X,ay is torsion-free.

Proor. (1): (1) follows from (11.1.2) and the obvious analogue of
(7.8.1).

(2): By the injectivity of p: WoAly — W, AL ([Hy2, (2.2.2)]),
lim Wn/~\’X is torsion-free. Hence (2) follows from the commutative dia-
gram (11.3.1). [J

Let h be an integer. We define a monodromy operator as the boundary
morphism of the upper exact sequence of (11.1.1;n):

(113.2) (Narwa)": H' (X, (WoA%)") — H'(X, (W,A%)"(~1)[~1][1)
— HM(X, (WaA%)")(-1).

As in [Hy2, Introduction], we define a monodromy operator as the boundary
morphism of the lower exact sequence of (11.1.1;n):

(11.3.3) Narw.n: H"(X, WaA%) — H" (X, W, A% (—1)[-1][1])
= H"(X, W, A%)(—1).

As in [HK, (3.6)], let ((Xeo, M), (Ye, No)) be an embedding system
(recall (7.20)) of a composite morphism (X,M) — (Spec(k),L) —
(Spec(W,,[t]), L), where L is the log structure associated to a morphism
N3 1+t e Wy[t]. Let Cx/w, and Cx/w, w, (M) be the crystalline com-
plexes with respect to the embedding system above and ((Xe, M), (Ye®yy, |1
Wi, Ne @, g Wn)), respectively. Let

(11.3.4) 1t Xegar — Xoar
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be a natural morphism of topoi. Then we have a triangle
dlog Th A\
(11.3.5)  Bnu(Cxyw,.w(a)) (= D[=1] =" Rn.(Wn, @w,, vy Cx/w, )

|
— R« (Cx/ow,,w,(M,))) RES

by [HK, (3.6)], and let
(1136) NCTySJL: Hl}(L)g—crys(X/WTl) - H{Z)g—crys(X/Wn)(_l)

be the boundary morphism of the triangle above(cf. [loc. cit.]). By the upper
exact sequence of (11.1.1), we also have the following monodromy operator:

(11.3.7) (Narw)": H"(X, (WA%)") — H"(X, (WA%)")(-1).

Similarly, by the lower exact sequence of (11.1.1), we obtain the following
monodromy operator:

(11.3.8) Narw : H"(X, WAY) — H"(X, WA%)(-1).

Then the following hold:

Sx
~

THEOREM 11.4. (1) Via the identification H™MX,(W,A%)") ——
HMX,W,A%) in (7.5), (Narw +)” = Narw « (x = n or nothing).
(2) Via the identification H{(L)g_crys(X/Wn) = H"(X,W,A%) in (7.19),
NdRW,n = Ncrys,n

PrOOF. (1): (1) is obvious by (11.1).

(2): Let the notations be as before (11.4). Moreover, the embedding

system (X, M) -, (Ye, No) can be assumed to factor through the

exact closed immersion (Xo,M,) ——  (Wn(Xa.), Wn(M,)). Let

@izo A%,Vn(X.) IWal] be a differential graded algebra over W, which is a

quotient of P, A%/Vn( X)) (W W) divided by a W,,-submodule (not a Z-
submodule) generated by the local sections of the form dall — ali=Udq
(a € Ker(W,(Ox) — Ox), j = 1). Then we have a morphism Cx /y,, —
A;Vn( X)Wl | of complexes of W,,-modules. This morphism factors through
a morphism W, @, iy Cx/w, — AI./VTL(X.)/WTL,[ E As in [HK, p. 251], by us-
ing (7.4), we see that there exists a unique morphism All/Vn(X.)/(Wn,W:;) —
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n_l(anﬁ() of W, (Ox)-modules such that da (a € W, (Ox,)) is mapped
to 5,(1,0)(a) and such that dlogb (b € M,) is mapped to dlogb. This
morphism induces a morphism

EBAWn Xo)/Wh —’@77 (Wh Al

i>0 i>0

By (11.3) (2), by the same proof as that of [HK, (4.19)] and by the obvious
analogue of the commutative diagram (7.18.2), v, induces a morphism of
complexes

Ut Ay xawag ) — 1 (Wad%),

Hence we have a morphism
(11.4.1) Wn @w, 1y Cx/w, — L (WaAY).

By [HK, (3.6)], by (11.1) (1) and by the construction (11.4.1), we have the

following commutative diagram of triangles:

dlog Ty, A
R (Cxyw wo o)) (—1)[1] —=% R (Wa @w, 1y Cxyw,) ——

l !

o, N ~
WA (—=1)[—-1 2 W, AS —
(11.4.2) S (=1)[-1] %
1
B (Cx/(w,, W, (M) ~
W, A% _*

Hence we have (2). [
COROLLARY 11.5.  The following hold:
(1) Nerys,n = Napw n-
(2) Let the notations be as before (11.4). Set

HY s rgs(X/W) := H"(X, Rlim R (Cx/w, i (M)

and dlogT A x := RliLnn(dlong A x). Let

Ncrys: Hl]ég—crys (X/W) - Hl}(L)g-crys (X/W)(_l)
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be the boundary morphism of the following triangle
(11.5.1) Rlim B (Cxyow, w, (M) (=D [—1]

dlog TAx .
2L Rlim Ry, (W, @w, 5y Cx/wi)

n

+1

— Rlim Rn.(Cx/ow,,w, (M) —

n

o o o

in DY (f~Y(W,)). Here f: X — Spec(W,,) is the structural morphism.
Then Ncrys = Nde.

ProoF. (1): (1) immediately follows from (11.4) (1), (2).

(2):  Since the transitive morphisms of the projective system
{(Wy,A%)"}n are surjective and since (W, A%)” (i € N) is a sheaf of quasi-
coherent W,,(Ox)-modules, we have

Rjim(W,A%)" = lim(W,A%)".

Hence (2) follows from the obvious analogue (for ¢,) of the commutative
diagram (7.18.1) and from the commutative diagram (11.4.2). [J

DEFINITION 11.6. (1) Let x be a positive integer n or nothing. For
a non-negative integer k, the double complex W, AY(—k) is, by definition,
W, AS (—k) == W,AY with Frobenius action PP ((9.8), (9.9), (9.11)).
The complex W, A% (—k) is defined in a similar way.

(2) The morphism v,: W, A — W, A% is, by definition, the induced
morphism by a morphism (—1)"**!proj.: W*A% — W*Aggl’jﬂ. (It is
easy to check that vy is indeed a morphism of complexes with the convention
(2.2.1;x).) We call v the p-adic quasi-monodromy operator of X.

ProposITION 11.7. (1) The p-adic quasi-monodromy operator vy of X
is a morphism of complexes which is compatible with the Frobenius:
(11.7.15%) Ve: W, A — W AS(—1).

(2) Let k be a positive integer. Under the identification (9.9.3) and
(9.10.1)

h P o\ _ h—2j—k . o
H*(X, gy, W, A%) = . G?kO}H (W% (=T = k),
Jj2>maxq—k,
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the induced isomorphism

k. h—25—k . . ~
vl @ HMERX, WS )T k)
j>max{—k,0}
h—2j—k . s
B mrEwe, )ik
j>max{—k,0}

by the isomorphism v¥: grkPW*A;( = grljkW*AB((—k) is the identity if k
is even and (—1)"1 if k is odd.

PROOF. (1): We have only to prove that the following diagram is com-
mutative:

WA PR gy Ay
(11.7.2) péii_l’jﬂ)l l@gﬂ
A roi. y

WAL PR, A

This immediately follows from (9.8.22).
(2): The complex gr? Wi A% is equal to

P e WA (i} = P et WAL= — k),
j>k j=0

and the complex gr” kW*A;gHC(—k:){— j — k} is isomorphic to the following
complex:

g o (F1t i—j—k (g G
(11.7.3:5 + k) AN W*Q§<2j+k+1>( N=k) " —
(i—k,j+k)

The morphism v¥ induces a morphism ((—1)™/ThH%k: (10.1.14;5) —
(11.7.3;5 + k). First, assume that k is even. Then the complexes (10.1.14;5)
and (11.7.3;5 + k) are the same and v¥ = id. Next, assume that & is odd.

Then (11.7.3;5 + k) is equal to

y I e A e e B N Gl LR
(11.7.4:5 + k) — W*Q;((QHM)( D=k — :
(i—k,j+k)
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and vF = (—1)"J*1, The rest of the proof follows from the lemma below. (]

LEMMA 11.8. Let (E®,d) be a complex of objects in an abelian category
A. Let f*: (E®,d) — (E°®,—d) and ¢*: (E*,—d) — (E*,d) be morphisms
of complezes defined by f' = g .= (=1)*1: B! — E' (1 € Z). Then the
composite morphisms

HM(f®)

HA(B, ) AL (e, ) N O g (0, )
and
HI((E®, d)) S O ggn (e, —a)) "D wh (B, )

are the multiplications by (—1)"*1,

PROOF. The proof is easy. [

Our conventions (2.2.1;x) and (11.1.1; ) lead us to change the bound-
ary morphisms of the double complex W, B as follows (cf. [St1, p. 246],
[M1, p. 318]): the (4,j)-component W,BY (i,j € Z>¢) is, by definition,
WnAixfl’J‘(—l) @WnA;J(. The horizontal boundary morphism d’: Wnt —
WnB?Lj is, by definition,

d (w1, w2) = ((—=1)dwr, (—1)7 ' dwy)
and the vertical one d”: WnBég — I/VnBé’(jJrl is
d" (w1, ws) = ((—1)i9n A w1 + vy (wa), (—1)i9n A ws).

Here we have omitted a notation mod Pj; in the definition of d” for sim-
plicity. It is easy to check that W), BY® is indeed a double complex. Let
Wy, B% be the single complex of W, BY®.

Let \,: : WnKB( — W, B% be a morphism of complexes defined by
An(w) = (w mod Py,0, Aw mod Py) (w € WoA%). Then, by the lower

exact sequence of (11.1.1;n), there exists the following commutative diagram
(cf. [loc. cit.]):

0 —— WoA%(~1)[-1] —— WpB%Y — Wpd% — 0
(11.8.1;n) (6arl-1 a] oun |

0 —— WuA%(=1)[-1] -2 W,A% ——— W,A%Y —— 0.
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Set WBY := lim W, BY%. Moreover, by (8.1.2), [Hy2, (2.2.3)] and (8.4) (2),
there also exists the following commutative diagram:

0 —— WAB([—l](—l) — WBS( _— WAB( — 0

(11.8.1) orai-1 | g o]
0 —— WAB([—l](—l) L WKB( —_— WAS( — 0.

Note that, in the proof of [M1, 3.18], the Frobenius action is not considered.

REMARK 11.9. Asin [M1, 3.8], let us consider the p-adic double Steen-
brink complex (W, A%, d’,d"”) with boundary morphisms in (2.2.3;n) in this
remark.

(1) As in [M1, 3.13], let us consider a morphism

Vi WAl 3w (—1) 1w mod Py € WA (4,5 € N).

Then
(Vi1 @ V) (d + d")(w) = (~1)idw, (~1)Hw A 0)

and
(d + d”)yzj(w) = ((—1)idw, (—1)i+j+1w N0).

Hence the family {1/7} does not induce a morphism
(WpA%,d +d") — (W,A% (—1),d" +d")
of complexes nor
(WA, d +d") — WoA% (1), —(d' +d"))

if dimX >2andifp#2orifn>2 (IfdimX =1, then i v o (d +
d")=0=(d"+d")o3 Y and hence > i v happens to be a morphism
(WnA%,d +d") — (W, A% (—1),£(d +d")) of complexes.) In particular,
ifdimX >2andif p# 2orifn > 2, {1/,? } does not induce a morphism
HMX,W,A%) — H"X, W, A%)(—1) of cohomologies.

(2) Grofle-Klonne pointed out to me that the sign in the operator in v,
in [M1, 3.13] is mistaken in the following point.

In the diagram in [M1, p. 319], two [—1]’s has been used as {—1} in this

paper.
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Let (W, BY,d',d") be the double complex defined in the proof of [M1,
3.18]. The morphism d” has been defined by the following formula:

d"(w1,w2) = (w1 A by + vp(w2), w2 AOy)  ((w1,ws) € W, BY).

As in [loc. cit.], let W: WnJNXfX — W,,BY (i € N) be a morphism defined
by ¥(w) = (w mod Py,w A 0, mod Fy). In the proof of [M1, 3.18], it is
claimed that ¥ induces a morphism of complexes. This does not hold: since
d" oW (w) = (2w A6, mod Py,0) € W, BY for an odd positive integer i, the
composite morphism d” o ¥ is not the zero in general. Hence one has to
change signs in v, in [M1, 3.13].

Thus, let us consider a map e: N x N — {£1}, a new morphism
Vi WnAg S w+— €(i,j)w mod Pj+1WnA§1’jH (i,j € N) and a new
vertical morphism

d": Wnt 3 (wi,w2) — (w1 A Oy + l/flj(wg),wg NB,) € WnBé’gH.

Then, two relations d” o ¥ = 0 and (d")? = 0 implies that €(i,0) = —1 for
i <dimX —1and €(i,j + 1) = —€(4,j) for i + j < dim X — 2. Hence we
have €(i,j) = (—1)7*! for i + j < dim X — 1.

Thus we have to change the sign in v, in [M1, 3.13] as follows: we define
a new morphism g/ := (—1)7*1proj: W,, A% — W, AT (i, e N).
Grofle-Klonne has proposed this morphism; the elimination of the other
possibility for signs explained above is due to me.

Furthermore I would like to give the following remark: the family u, :=
{12} does not induce a morphism (W, A%, d'+d") — (W, A% (—1),d'+d")
of complexes if dim X > 2 and if p # 2 or if n > 2 as in (1); however
n, induces a morphism (W, A%, d + d") — (W, A% (-1), —(d' + d")) of
complexes. Therefore, by using the Convention (6), i, induces a morphism

pn: H'(X, (WoA%,d +d")) — H"(X, (W, A% (-1), —(d +d")))
= HMX, (W, A%, d +d"))

of cohomologies unconditionally. By the identification

h P o\ _ h—2j—k . i
H"(X, g, W, AX) = . E{BkO}H (W (=G~ k)
Jz2>maxy—k,
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by the use of the Convention (6), ¥ induces an isomorphism

k. h—2j—k . N~
Mo, @ H (X7W*9§(2j+k+l))( J k)—>
j>max{—k,0}
h—25—k ° i
@ B, )ik,
j>max{—k,0}

If k is an odd (resp. even) positive integer, u” is equal to e (—1)H
j>max{—k,0}
(resp. the identity).

Let W,,C$® be a double complex defined as follows: the (i, j)-component
of W,C% (i,j € N) is, by definition, W, A% "/ (~1) @ W,,A%}. The hori-
zontal (resp. vertical) boundary morphism d': W,CY — WnC;;rl’] (resp.
d': W,C3 — W,C% ™) is, by definition, d'(wi,ws) = ((—1)dw,
(—1)/dws) (resp. d” (w1, wa) = (w1 Ay + pin(w2),w2 ABy). (We have to check
that W,C%® is indeed a double complex.) Let py: WnAfX — Wang be
a morphism defined by p,(w) = (w mod Py,w A 8, mod F). Let W,C%
be the single complex of W,,C$*. Then p,: W,As — W, C% is clearly
a morphism of complexes. Moreover, we have the following commutative
diagram with exact rows:

0 —— WA (-1){-1} —— W, C% —— WA —— 0
(11.9.1;n) (78 (-1} | a ron |
0 —— WouA%(—1){-1} 2% W, A%, —— W,A% —— 0.
In conclusion, we have solved the problem of signs in [M1, 3.13] by using p,
(resp. W,,C$®) instead of v (resp. Bp®) in [loc. cit.] (resp. [loc. cit., 3.18]).
(3) We can also solve the problem in (2) in the following way.

We use the shift [~1] as [—1] in the Convention (2).
Consider a morphism

U W,AY 5w (—1)"w mod Py € WA (4,5 € N).
Then it is easy to check that &, := @ij&ilj is a morphism (W, A%, d' +d") —
(WnA% (—1),d'+d") of complexes. Asin (2), we define the following objects:

(a): a double complex W, D$: WnDég = WnAé;Lj(—l)EBWnA?(‘ (1,5 €
N);
dl(wlaw2) = ((_1)de1a (—1)j+1dQJ2),
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d”(W1,u}2) = (—w1 A6, + §n(wz),w2 AN (9”)
(b): Xn: WnIK’X Swr— ((-1)™w mod Py,wA6, mod Fy) € W,D¥.

Then we have the following commutative diagram of complexes with exact
TOWS:

0 —— W,A%(-)[-1] —— W, D% —— W, A% —— 0
(11.9.2;n) (i1 x| non]

0 —— WoA%(=1)[-1] -2 W,A%Y —— W,A% —— 0.

ProproOSITION 11.10. Let x be a positive integer n or nothing. Then
there exists the following commutative diagram:

HMNX, W, AY) —2— HMX, W, A%)(-1)
(11.10.1) 0.1, :T TG*/\, ~

Narw ,«
—_—

HM (X, W,A%) HM (X, W,A%)(~1).

In particular, the p-adic quasi-monodromy operator vy can be identified with
the p-adic monodromy operator in (11.3.6).

PrROOF. (11.10) immediately follows from the commutative diagram
(11.8.1;%). O

As in [M1, 3.19], we obtain the following:
COROLLARY 11.11. The monodromy operator
NCTYS: Hliég—crys (X/W) - Hl}cl)g-crys (X/W)(_l)
1s nilpotent.

PrROOF. (11.11) immediately follows from (11.5) (2) and (11.10) since
the p-adic quasi-monodromy operator v is nilpotent. [

REMARK 11.12. (1) Let f: Y — A be a proper semistable family
of analytic varieties over the open umit disk. Let X := f~!(0) be the
special fiber of f. Let A* be the punctured disk. Let A be an integer. The
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anticlockwise generator of w1 (A*,t) (t € A*) acts on H"(Y;, C). This action
extends to an automorphism of Rhf*ﬂg,/A(log X) ([St1, (2.18), (2.20)], [D2,

IT (5.4)]). Let Ty be the induced action on H"(X, AX/(C) Consider the
following exact sequence (cf. [St1, (2.19)])

dlo °
(11.12.1) 0— A% /c(-D[-1] e v/clog X) ®o, Ox

— AS(/C — 0.

Let Ny be the boundary morphism of (11.12.1) (cf. the Convention (5) in
§1):

(11.12.2) Not HM(X, A% ) — H'(X, A% e(~1)[~1][1])
= H"(X, A%/c) (1)

Then, by [D2, I (1.17)] (cf. [St1, (2.21)]), Tp = exp(—27v/—1Np).

The exact sequence in [Stl, (2.20)](=(11.12.1)) and the commutative
diagram [St1, (4.22)] are slightly confusing: we have to consider [—1] in
[St1, (2.19)] as [—1] in this paper, and to consider [—1] in [St1, (4.22)] as
{—1} in this paper, and to consider the following commutative diagram:

0o — AL{-1} — Be — AL — 0
(11.12.3) ratog | " natog |

Adlog t
0 — A% c(-D{-1} =25 % c(log X)®0, Ox — A%,c — 0.

We have to mention a very obvious fact that the two shifts [—1] and {—1}
are not the same; there are many literatures in which this distinction is not
made. Moreover, in [Stl, (4.22)], there is no explanation for a claim that
the boundary morphism of (11.12.1) and that of the following complex

/\dlogt

(11.12.4) 0 — A% /c(-D{-1} "— Q5 c(log X)®0, Ox

- AX/C —0

are the same. We need the following explanation: by the Convention (5), the
boundary morphisms of (11.12.1) and (11.12.4) are the induced morphisms
of the following morphisms of derived categories, respectively:

(11.12.5) Ayye — Aye- DI = (A% c(-1). d),
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and

(11.12.6) Ak /e — Axye(=D{-1}1] = (A% /c(=1), =d).

The point is that the two shifts {1} and [1] are not the same operations.
The right hand sides of (11.12.5) and (11.12.6) are identified as complezes
by the following isomorphism:

(11.12.7) (—1)'x: Ay o — Ayc (i €N).

By using this identification, the boundary morphisms of cohomologies in-
duced by the exact sequences (11.12.1) and (11.12.4) are the same.

Since the upper and the lower exact sequences in (11.1.1;n) and (11.1.1)
are literal p-adic analogues of (11.12.1), we formulate Ngqrw «, Nerysx and
Nirw . as in (11.3.2), (11.3.3), (11.3.6) and (11.3.7); we have not followed
the formulations of [Hy2, Introduction] and [HK, (3.6)], though we eas-
ily establish the relation between our monodromy operators and those in
[loc. cit.] as above.

(2) The explanation in [M1, 2.3] is very incomplete because a morphism

C(X, M) /(W triv) W, (t) Wn — Waok

in the notation of [loc. cit.](= the second vertical morphism in (11.4.2))
has not been constructed. Since (X, M)/(W,, W) is not log smooth, [HK,
(4.19)] is not useful for the construction of the morphism above. Note that
the commutative diagram in [M1, p. 311] is different from that in [HK,
p. 262]; the complex W,w% in [M1, 2.3] is more general than that in [HK,
p. 262]. Moreover, even in the case of the semistable family, we need a
proof for a fact that W,,w% in [M1, 2.3] in a local case is identified with that
in [HK, p. 262]: the commutative diagram in [HK, p. 261] and (11.1.1;n)
enable us to identify two W,w$’s. In addition, note that the crystalline
complex in [M1, 2.1.2, 2.3] is different from that in [HK, (2.19)]: the former
crystalline complex is the higher direct image of the latter by the natural
morphism (11.3.4) of topoi.

(3) By (11.5) (2) and (11.10) (cf. [M1, 3.18], (11.9)), we can use the strat-
egy of Steenbrink-Rapoport-Zink (cf. [St1], [RZ], the proof of [M1, 3.33]) in
order to investigate the relation between the p-adic monodromy filtration
and the p-adic weight filtration.
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I am not sure that the proof of the p-adic monodromy-weight conjecture
for a proper SNCL curve over a log point in [M1, 5.3] is perfect: I cannot
understand the implication “on déduit que vq: E2_62(1) — E%& est un
isomorphism” in [loc. cit., p. 329, 1. 19-20]. For this reason I give the proof
of the following proposition, though the argument in the proof is well-known
(cf. [St1, p. 254])).

ProposITION 11.13. Let X be a proper SNCL curve over s =
(Spec(k),N@k*). Then the monodromy filtration defined by the monodromy
operator

NCT}’S: Hl%)g—crys<X/W> Qw Ko — Hllog-crys(X/W)(_l) @w Ko
and the weight filtration on Hllog_cryS(X/W) ®w Ko coincide.

ProoOF. By (11.7) (2), the morphism

v B2 = HO (X®/W)(~1) ow Ko

crys

— BE{(=1) = Hoyo (X /W)(~1) ®w Ko
is the identify. By (11.5) (2), by (11.10) and by the definition of the
monodromy filtration, it suffices to prove that the induced morphism
v: By — E}%(—1) is an isomorphism. By (10.1), the boundary mor-
phisms dflzz Eflz — E?Q and d(l)oz E?O — Eim are identified with

G: HY (X /W) (1) ow Ko — H2, (XD /W) @ Ko

crys crys

and
pr HYyo(XW /W) @ Ko — Hoyo(X @ /W) @w Ko,

crys crys

respectively. By using the Q-structure as in [M1, 5.3], we see that the
Poincaré duality perfect pairing

(L) (O, (X W) @ Ko) @iy (Hys(XP /W) @1 Ko) — Ko

crys crys

satisfies the following property: if (v,v) = 0 (v € H (X® /W) @w Ko)

crys
and if v is Q-rational, then v = 0. Now (11.13) follows from the lemma

(11.14) below by setting A = Q in (11.14). O
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Let A be a commutative ring with unit element. Let p: L — M be a
morphism of A-modules. Set L* = Homy (L, A) and M* = Homyu (M, A).
Let (, )p: L®ag L* — A be the natural perfect pairing. Let (, )yr: M ®4
M — A be an A-linear perfect pairing. Using (, )as, we have an identifi-
cation t: M 3y (z —— (x,y)m) € M*. Then the following holds:

LEMMA 11.14.  Assume that, if (v,v)pr =0 (v € M), thenv = 0. Then
the following composite morphism

1

(11.14.1)  Ker(p*: M* — L*) == M* “— M — Coker(p: L — M)

is injective. In particular, if A is a field and if M is a finite dimensional
vector space over A, then the morphism (11.14.1) is an isomorphism.

PROOF. Let (, )j;: M ®4 M* — A be the natural perfect pairing.
Then we have (vi, v2) = (v1, t(v2)));. Let v be an element of M such that
t(v) € Ker(p*) and such that v = p(w) (3w € L). Then we have

(0,0} = (v, 0(v))r = {p(w), 1(v))3s = (w, p"(1(v)))1 = 0.

Hence v = 0 by the assumption. Therefore (11.14.1) is injective. O
We conclude this paper by stating the following:

REMARK 11.15. (1) There exist counter-examples of [M1, 6.2.4]: in
[Nakk4], we have constructed proper SNCL surfaces over the log point s such
that dimg, By ' # dimg, F3? and dimg, Ey '* # dimg, F3?. Therefore
the proof of [M1, 6.2.3] for the first and third log crystalline cohomologies
is mistaken. The surfaces above cannot be special fibers of algebraic proper
semistable families over any complete discrete valuation ring of neither equal
characteristic nor mixed characteristics with residue field , though they
are special fibers of formal proper semistable families over Spf(1¥). These
examples are also counter-examples of the conjecture in [Ch2, Introduction].
See [Nakk4] for more details.

(2) In [Nakk4], we have proved the p-adic monodromy-weight conjecture
for an algebraic proper semistable family of surfaces over a complete discrete
valuation ring of equal characteristic and mixed characteristics.
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