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Displacement Exponents of Self-Repelling Walks and
Self-Attracting Walks on the Pre-Sierpinski Gasket

By Kumiko HATTORI and Tetsuya HATTORI

Abstract. We construct a family of self-repelling and self-at-
tracting walks (stochastic chains) on the (infinite) pre-Sierpinski gas-
ket. The family continuously interpolates the simple random walk and
a self-avoiding walk. The asymptotic behavior of the walks is given in
terms of the displacement exponent.

1. Introduction

In [3] Ben Hambly and the authors considered a family of self-repelling
walks with fixed endpoints on the finite pre-Sierpinski gaskets. We proved
the existence of the continuum limit, i.e., reducing the unit length to 0 (with
suitable scaling of time parameter). The limit is a family of continuous self-
repelling processes with specific fixed endpoints (‘pinned processes’). We
studied their sample path properties, such as Holder continuity, short-time
speed and a generalized law of the iterated logarithm.

In this paper, we consider the same family of walks on the finite pre-
Sierpiniski gaskets, which we recall in Section 2, but instead of taking con-
tinuum limit, we fix the unit length and extend the walks to the (infinite)
pre-Sierpinski gasket, thus remove the pinning condition and construct (in-
finite length) stochastic chains, and study their properties.

In Section 3 (Theorem 5) we construct a family of stochastic chains
on the pre-Sierpinski gasket consistent with the pinned self-repelling walks
on the finite pre-Sierpiriski gaskets studied in [3]. Our family of walks is
parametrized by u which indicates the strength of self-repulsion. The walk
corresponding to w = 1 is the standard simple random walk, and for u = 0
the corresponding walk is self-avoiding and of infinite length. The path
measure for the self-avoiding (u = 0) case is rather complex, as is for all cases
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other than the simple random walk (u # 1). In particular, it is supported
on walks without sharp turns for v = 0. The measure is natural, however,
from the renormalization group point of view [4], in that it corresponds
to the unique fixed point of the renormalization group recursion equation
(10) associated with the self-avoiding walks on the pre-Sierpiniski gasket
which respect symmetries of the Sierpinski gasket. This family of walks
on the finite pre-Sierpiniski gaskets parametrized by wu is introduced in [3]
to interpolate the simple random walk and the measure on self-avoiding
paths by the path measures corresponding to the fixed points of the (u
dependent) renormalization group, which, hereafter we refer to as the fixed
point theories. (We can of course consider more general class of walks by
introducing more parameters, but to make clear the aim of this paper, we
will stick to the family studied in [3].) We can also construct the walks for
u > 1, which correspond to self-attracting walks.

It may also be worthwhile to note that the extension of pinned walks to
the infinite pre-Sierpinski gasket is not trivial for the walks. The continuum
limit continuous processes of [3] have exact self-similarities which can be
used to obtain extentions to large scales. The walk (chain), on the other
hand, has a finite unit, so that there is no exact self-similarity. It turns out,
as we see in Section 3, that the fixed point condition of the renormalization
group serves as a consistency condition in applying the extension theorems.
In this sense, we may say that the renormalization group fixed point theory
is an extended notion of a self-similar processes. Note also that since our
family of walks lack Markov properties, constructions based on analytic
approach cannot be applied in general.

In Section 4, we prove in Theorem 8 an asymptotic bahavior of the
self-repelling and self-attracting walks, in terms of the (u dependent) dis-
placement exponent 7. (The exponent is equal to the exponent for the
‘mean-square displacement’ in physics literatures, defined by E[|w(n)|?] ~
n?7. Our proof implies that the exponent is the same for all the moments
Ellw(n)[’] ~n®7, s> 0.)

Main tools for the proof are a reflection principle and an estimate on
short and long paths. These tools have also been employed in [6], where
we proved the existence of displacement exponent for a self-avoiding walk.
We would like to emphasize that the reflection principle introduced in [6] is
similar in spirit to the reflection principle used in Section 4 but is actually
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entirely different. In fact, by comparing the definition of reflection principles
in [6] and that in this paper for the self-avoiding (v = 0) case, one should
notice that they are absolutely different reflections. A main reason for the
difference is that, in [6] we considered equal weights for self-avoiding walks
with a fixed number of steps, hence in applying a reflection principle we only
needed to compare the numbers of certain sets of walks and their reflections,
whereas we here consider fixed point theories, whose weights are natural
from renormalization point of view but complex from walks’ point of view
and also depends on u, so that a very delicate coupling type argument is
necessary. On the other hand, since we are working on fixed point theories,
the estimates on short and long paths are considerably easier than those in

[6].
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2. Self-Repelling Walks on the Finite Pre-Sierpinski gasket

The pre-Sierpinski gasket is defined as follows. Let O = (0,0), ag =
(%,%) bo = (1,0), co = (—1,0) do = ( 21, \é‘g’), and anN = 2NCL0, bN =
2Nby, ey = 2N¢y, dy = 2Vdy, N € N. Let Fj be the set of all the

points on the vertices and edges of AOagbg. We define a sequence of sets
Fi, F{, F}, ..., inductively by

Fyp=FyU(Fy+an)U(Fy +by), NeZi={0,1,2,...},

where A4+a = {x+a : z € A} and kA = {kx : x € A}. Let
Fli = Fiy U (Fy + cy) and Fy = U . We call Fy the (infinite) pre-

Sierpinski gasket. For N € Z.,, let F v = 2VFy and denote the set of
vertices in Fiy by Gy.
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For n € Z4 we call w = (w(0),w(1),---,w(n)) an n-step path (or a path
of length n), if

w(i) € Go, lw(ii+1)—w(@)| =1, wi@)w(+1) € Fy, i=0,1,---,n— 1.

Similarly, we call w = (w(0),w(1),w(2),---) an infinite path (or a path of
infinite length), if

w(i) € Go, |w(i+1) —w(@)| =1, wi@)w(+1) € Fy, i =0,1,2,---.

We denote the length of path w by L(w).

For a path w and A C Fj, we define the hitting time T4 (w) of A for
w, by Ta(w) = min{j =2 0: w(j) € A}. If the minimum does not exist,
we put Ta(w) = oo. For a path w on Fy and M € Z,, define T (w),
i=0,1,2,---, by induction as follows: T} (w) = Tg,, (w), and for i > 1, let
TM(w) = min{j > T, (w) : w(j) € Gp \ {w(TH, (w))}}, if the minimum
exists, otherwise TM (w) = oco. TM(w) is the time when the path w hits
a vertex of Gy for the i + 1-th time (including the case i = 0), under the
condition that if w hits the same element of Gj; more than once in a row,
we consider it as once.

We mainly consider walks starting at the origin. (Notion for general
paths introduced so far are also used when we consider cutting and reflecting
procedures of paths in the proofs of our results.) For each n € Z,, denote
a set of n-step paths on Fj starting at the origin O by W(n). Namely,

W(n) = { (w(0),w(d), - wn)): w0)=0, w() e G,
jw(i +1) —w(@)| =1,
w(i)w(i+1) € Fy, i,i+1€{0,1,---,n} }.

For w € W(n), L(w) =n. Let W* = Ej W(n).
1

Fix N € Z, for the rest of this section. Let Ay ={an,bn,cn,dn}, and
define

Wno={weW": L(w
Wy ={weW": L(
Wye={weW": L(w
Wna={weW":L(
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and
WN=WnoUWnpUWn:UWn4g.

For a path w € Wy and M € Z,, define a ‘decimation” map Qys by
setting (Qpw)(i) = w(TM (w)) for i = 0,1,2,...,7, where j is the smallest
integer such that Tf‘_{l(w) = 00. Quw may be regarded as a path on Fyy.
If we write (27MQpw)(i) = 27 Mw(TM (w)), then 27M Qs w is a path on
Fy and L2 MQpyw) = j. We will write L(Qyw) = L(2~MQpw) for
the length of decimated path (with a unit step normalized to be 1), and
TN (Quw) = TN (27 MQpw) for the hitting times.

For a path w € Wy, define the reversing number Ng (w) and the return-
ing number Mg (w) for level K € {0,1,---, N —1} in the following manner.
For (=1, -+, L(Qk+1w), let

Ng(O)(w) =#{i € Zy : T T (Qrw) <i < T[T (Qxw)
(1) (Qrw)(i — 1)(Qrw)(i) - (Qrw)(i)(Qrw)(i +1) <0,
(Qrw)(i) # (Qrw) (TS (Qxw)) },

where @ - b denotes the inner product of @ and bin R2, and

(2) Mg (0)(w) = #{i € Zy : TS (Qxrw) <i < T/ (Qrw) :
(Qrw) (i) = (Qrw)(TSTH(QKrw))},
L(Qry1w)
Ne(w)= Y Ng(f)(w),
/=1

L(Qk 41w

)
Mg(w)= Y Mg(0)(w).
=1

Thus Ng(w) counts the number of times the path @ xw makes U-turns or
sharp-angle turns at vertices in Gx \ Gx41, and Mg (w) counts the number
of times Qg w revisits a vertex in Gx1. It is these types of steps that we
will suppress or enhance in our path measures.

For p,q € {a,b,c,d}, we define bijections R, , : Wi, — Wy 4 as follows.
Rya, Ria, Ry, and R are defined as the reflection with regard to y-axis.
Consider the reflection of the parts of path within AOayby with regard

1
to the line y = —==, and that of the parts within AOcndy with regard

V3
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1
to the line y = —%x. This defines R,p, Rpq, Req, and Rg.. Then

Ry = Ry 0 R,y defines R, ., and other cases are defined in a similar way.
Under these bijections, Nx(w), Mg (w) and L(w) remain invariant.
Let z > 0 and u = 0. For w € Wy, define

N-1
(3) fa(u,w) = fy(w) = ] wMNetr M),
K=0
and
(4) On(z,u)= Y fa(w)z")
weEWN o

Owing to the one-to-one correspondence shown above, if the summation
in (4) is taken over Wy, Wi . or Wy g instead of Wi 4, it gives the same
value. Thus, in the rest of this section, we work on Wy ,. We will often
write ®(z,u) instead of ®;(x,u). For the explicit form of ®, see [3]. We do
not use it here.

If we Wy, and M < N, then 27 MO\ w e W Forw e Wi,
put w’ = 2"NQnw € Wy 4, and for each j = 1,2, -+, L(w’), consider a path
segment w; of the path w

(5) wy = (T3 (W), w(TY (w) + 1) w (T (w) +2),- -, w(T (w)).

This path segment is the ‘fine structure’ of the j-th step of the decimated
path @Qnw. (a) It is a path on Gy starting from w(Tf\il(w)) € G and stop-
ping at w(TjN(w))7 a neighboring point of w(TJJ\il(w)) in Gy, and (b) it has
no common point with G other than the starting point w(TJAil(w)) before
it reaches its endpoint. A path with properties (a) and (b) can be identified,
via reflection, with a path w; € Wy 4, in such a way that w(Tf\l 1(w)) and
w(TJN (w)) correspond to O and ay, respectively. Conversely, given arbi-
trarily w’ € Wi 4, any @ € Wi 4 can be the j-th path segment (5) of some
w € Wpn41,, such that 2—N Qnw = w’. Thus there is a one-to-one corre-
spondence w; — w; € Wy . With this correspondence, there is a natural
one-to-one mapping

(6) WNJrLa SwW = (w/,ﬁ)l,ﬁ)Q, s 7U~)L(w’)) € Wl,a X WN,a X o0 X WN,a-
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Also we have

(7) L) = T (w) = T, (w),
and
L2~ NQyw) L(w’)
®) L= Y (T -T(w) =) L)
j=1 j=1

For any w € Wx41,4, by considering the path decomposition (w’, w1,

Wy, -+, Wr(y)) determined by the correspondence (6), we have from (3)
L(w")

9) fre(w) = fi(w) T fula;).
j=1

Combining (3), (4), (8) and (9), we have the recursion relation of @y,
(10) Oniq(z,u) =P(Pn(z,u),u) =Po--od(x,u).
This implies that for any M < N,
(11) Oy (z,u) =Py_p(Prr(x,u),u).
Let 7, be the radius of convergence for ®(x,u) as a power series in x.
PROPOSITION 1.

(1) For each uw 2 0, r,, > 0 and there is a unique fized point x, of the
mapping (-, u) : (0,7,) — (0,00), that is, P(xy,u) = Ty, x, > 0. As
a function in w, x, is continuous and strictly decreasing on [0, 1].

0]
(2) Let A\, = g—(zu,u) Then A\, is continuous in u and A\, > 2.
T

PRrROOF. The case of 0 =< u < 1 corresponds to Proposition 2.3 in [3].
For w > 1, it is sufficient to show r, > 0. The rest follows just as in the
case of 0 £ u < 1. Note that from the definitions of Ny(w) and My(w), we
have L(w) 2 No(w) + Mo(w). Thus if u > 1,

O(x,u) = Z uNoW)HMo(w) g L(w) < Z (uz) ™) = & (ux, 1).
weEW1 ¢ weWi
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Since we already know that r; > 0, we have r, = r;/u > 0. O

(10) implies that ®n(xy,u) = =z, for all N € N. In the two extreme

5—1 7T—V5 1
\/_2 , Ao = 2\/_ (see [4, 6]), and x1 = —

47

cases, we know that z¢ =
A1 =5 (see [1, 7)).

We next define a probability measure Py on Wy, by assigning to each
w e WNﬂ,

N—-1
(12) PEl{w}] = (J] uNe+Mx@)y gL iy (2, u) = fa(w)ak@)!
K=0

P]{, corresponds to the simple random walk on F}, conditioned that
Tay = T{ay)- Under Py, only self-avoiding paths survive. (To be precise,
the measure corresponds to the fixed point of the renormalization group [4],
hence the measure is supported on the self-avoiding paths with no sharp
turns.) Let us denote by E}; the expectation with regard to Py.

We cite the following Proposition 2 — Proposition 4 from [3]. They hold
true also for u > 1.

For M < N, let Qs P} be the image measure of Py induced by 27 MQ .
Combining (9), (11) and (12), we have

PROPOSITION 2. Ifw € Wy, and M < N, then 27 MQpyw € Wy_pr4
and Qum Py = Py -

For M € Z; and k € N, put S¥ =TM —TM,.
PROPOSITION 3. Assume N 2 M and k € N.

(a) Let w € Wi, . Under the conditional probability P& - | SM(w) <
oo |, the random variables SM(w) fori=1,... k are i.i.d. and they
are jointly independent of Qprw.

(b) The law of SM under P is equal to that of SM under PY,. E%,[SM] =
MM and the Laplace transform of SM is given by
1

gir(t) = Efyle™V) = —@p(ae™ ), 120,
u
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PROPOSITION 4. The law of A\; VSN under Py converges weakly as
N — oo to that of a random variable S*, with properties P,[ S* > 0] =1,
E"[ S*] =1, and its Laplace transform g,(t) = E"[ exp(—tS*) | being the
unique solution to

gut) = —B(aaga(1). 1), d(0) = 1.

u

3. Existence of Stochastic Chain Consistent with the Renormal-
ization Group

Let N € N. The probability measure Py in the preceeding section is
defined on the set Wy 4, which is a set of paths on F}; with fixed endpoints
O and ay. In deducing displacement exponents, we need to consider proba-
bility measures on sets of paths with fixed length (steps) n for alln € N. We
prove the existence of a probability measure P" on the set of paths of infinite
length, for which the probability of the paths up to the first hitting time of
An coincides with Py (The precise statement is given in Corollary 7).

Let Py , be a probability measure on Wy such that Py [A] = Py[A]
for any A C Wiy, and define probability measures Py ,, Py,
W supported on Wiy, Wi ¢, Wi 4, by the same formula’b as (172)7 with apn
replaced by by, cn, dy, respectively. Define

PJQ\L/,d’ on

W(oo) = {(w(0),w(1),w(2),--): w(0) =0, w(i) € Go,
jw(i +1) —w(i)| =1,
w(@w(i+1) € Fy, i € Z4},
and let F be the o-algebra on W (oo) generated by cylinder sets

Cp(w) = {w' = (w'(0),w'(1),w'(2), ) € W(c0) :
(13) w,(]):w(J)a J=0,1, a"'an}a
w e W(n), n €N,

consisting of infinite-length paths whose first n steps are identical to w.

THEOREM 5. There exists a probability measure P* on (W (o0),F)
satisfying the following: For each n € N and w = (w(0),w(1),w(2), -,
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w(n)) € W(n), it holds that
P'[{w" € W(o0) : w'(j) =w(j), j=0,1,2,---,n}]
1) =1 S Pl € Wy w(G) =w(), 5=0.1,2, )]
pefab,c,d}
for any integer N satisfying
(15) w(g)| <2V, j=0,1,2,--,n—1,

where | - | denotes the Fuclidean metric.

We remark that 2V or more steps are required for a path starting from
O to hit Ay = {an,bn,cn,dn}, hence the condition (15) holds if oN > .
Also, for each j € Zy, X(j,-) : W(o0) — Gy defined by X (j,w) = w(j) is
a Go-valued stochastic variable on (W (o0), F, P%).

To prove Theorem 5, we first note the following. For a path in W1,
the first hit of G \ {O} occurs at one of Ay. By restricting the original
path to [0, T4, ], we have a correspondence W11 — Wiy

In Section 2, we introduced natural bijections R,, : Wy, — Wy,
p,q € {a,b, c,d} which maps w € Wy, to R, qw € Wy 4 in such a way that
its shape (modulo partial reflection) does not change, and in particular,

(16) fn(w) = fn(Ryq(w)).

For simplicity of notation, we may write R, , for an identity map, and, in
the proof of Theorem 5, we will fix u and write Py 4 for P g

PROPOSITION 6. Let N be a positive integer and let p € {a,b,c,d}.
Consider a path

w = (w(0),w(1),w(2), -, w(L(w))) € Whp.
Then for any integer N’ satisfying N' > N,

Z Pleq[{w € WN’,q : w(]) = ’LZ)(]), j = 07 1727 e ,L(UA})}]
g€{a,b,c,d}

= Pnp[{@}].
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PROOF. We prove the case N' = N + 1: The general case follows by
induction in N’. We also assume @ € Wy 4, since other cases are similar.
We decompose w € Wi i1,4 into (w', @1, -+, W) € Wig X Wi X
- X Wn 4, in the same way as in (6), where w' = 2~ NQnw and wj is
the j-th path segment identified, via appropriate reflection, with a path in
Wi o. Using (12), (8), (9) and (16), for the first equality, the condition that
w(j) = w(j), 7 =0,1,2,---, L(w) for the second, (4) for the third, and
finally, ®n(zy,u) = z, and W(L(Ww)) = ay , we have,

Pyirg{w € Wiiiq 0 w(j) =w0(j), {— 0,1,2, L(U?)}]
L(w

- ¥ -IHwaJqu

’wGWN_H q5
’LU(])—’[U( ) 071)2’ : 7L( )

L
= fy@)zE D=t ST ) [T Av@)e ™
w,GWLq; J=2 W;€EWN,
w'(1)=w(L(d))

= fn@)ag@7t YT fi(w) (@, )

Hence we have

Z PN+1,q[{w S WN+1,q : U)(]) = ?I)(j) y j = 07 1a 27 o ’L(w)}]
ge{a,b,c,d}

:fN(u?):cﬁ(ﬁ’)—l Z Z Fi(w L(w) 1

ge{ab,c,d} w'eWy 4;
w’(1)=ag
According to the definition of R,,, w' € Wi, is mapped by R,, to
Ryo(w') € Wi,, while if w'(1) = aop then this point is mapped to
Ry q(w')(1) = g. On the other hand, L(w') = L(Ryq(w)), and (16) im-
plies fn(w') = fn(Rga(w')). Note also that the first step w'(1) is a point
in Ag. Therefore

fN( ) L(w)—1 Z Z fl(w/)xL(

ge{ab,c,d} weW g;
w'(1)=ap
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— fN('lZ)) wﬁ(ﬁ;)fl Z Z fl(,wl)xﬁ(w/)fl
ge{ab,c,d} w'eWq q4;
w'(1)=q
= fr(@)z™7 3 f)el™) 7 = Py, [{i}]. O

w' €Wq 4

PROOF OF THEOREM 5. Let n € N. Take an n step path w € W(n)
and a cylinder set C,,(w) defined in (13). Take N satisfying (15), and put

~ 1
PalCu(w)] =7 Y Pupl{w € Wi,
(17) p€{a,b,c,d}

wl(]) :w(])7 3207172’7”’}]

We first prove that the right-hand side is independent of N. Let N’ > N.
For any w' € Wy, it holds that TV (w') < T} (w’). By restricting w’ up
to TN (w') , we have a path in Wy. Since (15) implies n < T3 (w'), we can
classify the paths in {w’ € Wy, : w'(j) =w(j), j=0,1,2,---,n} by the
behavior up to 77" (w') and we have

1 . . .
Z Z PN’,q[{wIGWN’,q: w/(]):w(j), ]20,1,2,"',”}]
qu{a,b,c,d}
S
p€{a,b,c,d} weEWN p;

w(]):w(j)v j:OaLQ:""n
X Z PN/,q[{w’ c WN’,q . w’(j) = 11)(]'), j=0,1,2,--- 7};(@)}]’
qG{a,b,c,d}

which, by Proposition 6, is equal to

1 . " N
Z Z PN,p[{wGWN,p: w(.]):’U)(]>, J:071727"'7n}]7
p€{a,b,c,d}

which proves that the right-hand side of (17) gives the same value for all N
satisfying (15).

We next extend P,, defined in (17) on the cylinder sets C,(w), to a
probability measure. Let F,, be the o-algebra on W (o) generated by the



Displacement Exzponent of Self-Repelling Walks 429

cylinder sets C,(w) i.e., a family of sets which are determined by the first
n steps of the paths in W(oo). We extend P, to F, by

(18) P,[V] = > Po[Cr(w)], V€ Fy.
weW (n); Cp(w)CV

To prove that P, is a probability measure, it is sufficient to prove
P,[W(c0)] = 1. Let N be a positive integer satisfying 2 > n. If w' € Wy
then L(w') = 2V (= n), hence there exists a unique w € W (n) satisfying
w'(j) =w(j), j=0,1,2,---,n. Using also (17), we therefore have

weW (n)

Lastly, we note that it is a standard argument of the extension theorem
that if P,,, n € N, satisfies the consistency condition

(19) I3n+1[Cn(w)] = f’n[Cn(w)], weW(n), n=1,2,---,

then there exists a probability measure P* on (W (00), F) satisfying (14)
for all n € N and w € W(n). To prove the consistency condition (19), let
n € Nand w € W(n). Note that C,,(w) € F,, C Fpy1. If 2V = n + 1 then
(18), and (17) imply

o1 [Co(w)] = > Pt [Cra (")

w” €W (n+1);
w”(]):w(.])7 j:0’1727'“’n

1
=7 2 D
pe{aﬂbyczd} 'LUNEVI/(TI,-‘r].)7
w//(]):w(])v j:071,2,"','fl

X PNW[{U}/ € WN,P : w/(j) = w//(j)7 j: 0a172>"'7n+ 1}]

1 ) N
B Z Z PN,P[{w, € WN,IJ: w,(]) = w(]): J= 0,1,2,“',71}]

pe{a,b,c,d}
= P,[Cp(w)]. O
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COROLLARY 7. If N € N and w € Wy, then

Pu[l{w/ S W(OO) : w/(]) = ’UJ(]), ] = 07 1a2¢ o aL(w)}]
20 =2 > PYlwll

pe{a7b7c7d}

PrROOF. Put n = L(w). Then the definition of W implies (15), hence
by Theorem 5 and Proposition 6 we have the statement. [J

4. Displacement Exponents

In this section, we prove the following.

log 2
log Ay
Au 18 a continuous function of u defined in Proposition 1. Then, for any
s >0,

THEOREM 8 (Displacement exponent). Let v, = ,u =0, where

lim (logn) " log B[ |w(n)|* ] = 57

n—oo

where | - | denotes the Fuclidean metric.

Our proof below implies an additional statement on the correction to
the ‘leading term’ log Ef|w(n)|*] ~ sy,logn in Theorem 8. See (37) and
(38) for details.

Let us study the location of the walk after n-steps. Define for w €
W (00) U Uy, W(k)

Dp(w) =min{ M 20 : |w@i@)| <2, 0<i<n},

and

lJwl|n = onax [w(i)].
Then
(21) 2P (=1 < Hja]],, < 2P ()

holds. Let K (n) be the positive integer such that

(22) AEM) <y < AE (AL
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PRrROPOSITION 9 (Long-path estimate). There exist positive constants
Cy = Ci(u) and Cy = Ca(u) such that for any positive integers n and M,
PY[ Dp(w) = K(n) + M | < Cpe 2",

To prove this proposition, we prepare a few lemmas. In the following
we fix u 2 0 arbitrarily and simply write @ (-, u) = ®n(-), P1(-,u) = D(+)
and A\, = A

LEMMA 10. Ifx < xy, then there exist positive constants Cs = Cs(u, x)
and Cy = Cy(u, ) such that ®n(z) < 04670321\] for all N € N.

PRrROOF. We use the fact that ®(x) is a power series of = without con-
stant and linear terms, with non-negative coefficients. We can easily see
that for z < zy, {®Pn(x)}nN=12.. is a decreasing sequence and since 0 is the
only fixed point of ® in [0, x,), we see that ®n(z,u) — 0 as N — oo. We
also see

Pyi1(z) = 2(n(2)) = P (2) P(Pn(2)),

where P is expressed as a power series with non-negative coefficients. This
combined with P(®y(z)) < P(xy) = 1/z,, implies

1 1
2~ N+ flog &1 (2) 4 log —} < 27N {log @ (z) + log —}.
Ty Ty
By repeated use of this inequality, we have

1
limsup 2~V log @y () = limsup 2~ {log ® v () + log —}
Ly,

N—oo N—oo
X

<log— =—-C5<0.
u

This implies that there is an Ny € N such that ®y(z) < e=2" for any
N > Ny. Taking C4 large enough, we have the statement. [

LEMMA 11. For any 6 > 0, there exist positive constants Cy = C4(u, 6)
and Cy = C)(u,6) such that <I>N+M(:U1ll+6)‘_N) < Cie‘céQM, for any N, M €
N.

PROOF. Since (I)N+M(J,'1+6>\_N) = CIDM(CDN(J;H‘SA_N)), the statement

u u
is proved from Lemma 10 if we show that there exists a positive constant &
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such that

(23) Oy (ztN My < gy —

_ 1 _
for all N € N. Let gy (t) = E[e ™ "51] = gc—ch(a:ue—A M), ¢ >0, be the

Laplace transform of A=V.S). Note that
-N -
(24) Oy (217 = g (—6log ).

Proposition 3 and Proposition 4 imply that gy (t) converges to g(t) =
E[e™*"] as N — oco. Since P[S* > 0] = 1, we have g(t) < 1 for any ¢t > 0.
Thus there exist an ¢’ > 0 and N; € N such that ®y(z2T") < 2, — &’ for
all N > Nj. Since it holds that @N(quj”s’\*N) < @y also for N =1,---, Ny,

there exists € > 0 satisfying (23). O
PROOF OF PROPOSITION 9. The equations (21) and (22) imply

P Dyp(w) 2 K(n)+ M | < PY| Sf(n)Jerl <n]

(25) < pr GROHM-T (K|

Corollary 7 and (12) imply that, if 0 S M —2 < J,

Pu[ Si] < )\J—M+2 ] — Z P},{;p[ Si] < )\J—M+2]
p€{a,b,c,d}
:P}fa[ Si] < AJ—M-FQ]

w 1 —(J—M+2)
- > i frw) £ — By,

X
v weW o, L(w)<AI—M+2

]

where we used Si](w) = L(w) for w € Wy, and xﬁ(w)(Hl/L(w))

(xLFATTMIYLW) - This combined with Lemma 11 and (25) leads to
P Dyp(w) = K(n) + M | < Coe 92" . O

A

PROPOSITION 12 (Short-path estimate). There exists a positive con-

stant Cs5 = Cs(u) such that for any positive integers n and M satisfying
M < K(n),

1
P Dp(w) < K(n) — M| < —e @M,
Ty
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PrROOF. Put N = K(n) — M. Taylor’s theorem implies, for |z| < 1,
1
|®(xy + 2) — xy| E A|2[(1 4 b|2|), where b= 2y nax |®" (2, + y)|- Let a be

ly=1
o0
a positive number such that a - H(l + bA7%) < 1. Then by induction we

k=0
can show that for [z £ aA™" and any K < N,

K-1 K
(26) @k (@ +2) — 2] < M| TT (14019 < A a‘Z"
=0

2
Since z, < 1, we can choose 0 < Cy5 < % so that (1 + —5)xu < 1. Since
a
2 <1+zfor0< 2 <1, (26) implies

205

Dy (zaer ) < By (zu(l+205AY)) < 2o (1 + “2)s1L
Thus we have
By N0 = Ly (e V) < L
Ty Ly

Using Chebyshev’s inequality, we obtain

T Y L o
(27) PN,a[A—Nz)‘ ]§x—u€ .

Note that D, (w) < N implies that S¥ > n. Therefore

in 1 U
PUDLw) <N =5 3 Py [Da(w) < N]
ge{a,b,c,d}
= Pio[Dn(w) < N £ Py, [S) > nl.

This combined with (22) and (27) implies the statement. [

We move on to the reflection argument. The exponent 7, in Theorem 8
takes the same value as the one that governs the short-time speed of the
corresponding continuum limit process, E[| X (¢)|°] ~ t*7, t — 0, obtained in
[3]. The reason is that both exponents are derived from the same renormal-
ization group analysis. However, to relate the renormalization group results
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to the asymptotic behaviors of the walks, we need different methods, as may
be easily anticipated from the fact that the continuum limit processes have
self-similarity, while the walks (discrete chains) do not. One of the main
tools here is a somewhat complicated use of a reflection principle, which we
will explain in detail.

In the reflection argument, we split paths into parts, hence we have to
consider paths starting from points other than O. Let

W = U {(w(0),w(1),---,w(n)): w(i)e€ Gy, |lw(i+1)—w(i)| =1,
n=1
w(i)w(i+1) € Fy, i € {0,1,---,n—1}}.
Namely, W is a set of finite-length paths whose starting points are not fixed

at O. We extend the definitions of the reversing number N (w) and the
returning number Mg (w) so that they hold also for any w € W. Define

L(QK+1w)+1 L(QK+1’LU)+1
Ng(w)= > Ng(®)(w) and Mg(w)= > Mg(l)(w),
=0 /=1

where, for £ =1, -+, L(Qx+1w), Nig(¢) and Mg (¢) are defined by (1) and
(2), and the term for £ = 0 is counted only if Tg* ™ (Qrw) > 1, with
Ng(0)(w) =t#{i € Z; : 0< i< TETH(Qruw) :

(Qrw)(i — 1)(Qrw)(i) - (Qrw)(i)(Qrw)(i+1) <0},
and the term for { = L(Qx+1w) + 1 is counted only if (Qrw)(L(Qrw)) &
GKJrl; with

N (L(Qx11w) + 1)(w)

=tlieZe: TS ) Qrw) <i S L(Qrw) —1:

(Qrw)(i — 1)(Qrw)(i) - (Qrw)(i)(Qxw)(i + 1) <0,
(Qrw)(@) # Qrw)(TL b1 1w (@rw)) ),

and
Mg (L(Qk+1w) + 1)(w)
=t{i € Zy : T (Qrw) <i S L(Qkw) :
(Qrw)(i) = (Qrw) (T b, wy(@rw))}-
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The definition of fx(w) given by (3) is unchanged.
Let w € Wy. Consider splitting w into two parts at a time ¢ < L(w).
Let

wi(i) =w(i), 050t and we(i) =w(t+i), 0=i=< L(w)—t.
Then
(28) L(wy) =t, L(wy) = L(w) —t.
Note that for K < N,

TE (we) =inf{i 2 0: wy(i) € G} = inf{i 2 0: w(t+1i) € Gk}

ProposITION 13 (Path splitting). Let w € Wy. Assume that w is
split into two parts at some time t < L(w).

(1) If w(t) € Gpr \ Gpry1 for some M < N, then
fn(w) £ fy(w) - fa(we) S N f(w) for 0w,
u PN iy (w) < fv(wn) - fv(wa) S fxv(w)  for w> 1,
L(w) = L(w1) + L(w2).
(2) If w(t) = O, then
fn(w) = fn(wr) - fn(wa),
L(w) = L(wy) + L(ws).

PrOOF. (1) First consider Ng(w) with M £ K £ N — 1. There is an

integer ¢(K') such that Tef((K)_l(w) St< TEI({K)(w). wo(TH (we)) coincides
either with w(TeI((K) (w)) or w(Tf({K)_l(w)). When we count sharp turns and
U-turns of w; and wa, at most two turns of (Qrw)(i) at i = £(K) — 1 or

¢(K) may elude the counting (see Fig. 1). Thus

Ng(w) — 2 = Ng(w1) + Ni(w2) = Nk (w).
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W(TI}(<K)+1)

w(Tfi)-) w(Tf(c)

Fig. 1.

As for Mg (w) with M < K < N — 1, there is an integer ¢'(K + 1) such
that TZI’((}—(l-H)—l(w) <t< Tf,((}érl)(w). wo(TE (wq)) coincides either with

w(Tf&'{lﬁLl)(w)) or w(Tf,{(}r{lJrl)_l(w)). In the latter case, the first return of

Qrw to w(Ty(x41y—1(w)) after ¢ eludes the counting in Mg (wz). Thus
Mg (w) =1 = Mg (wi) + Mg (w2) S Mg (w).
Thus, for M < K we have

Ng(w) + Mg (w) =3 = Ng(w1) + Mg (w1) + Nk (w2) + Mk (w2)

(@9 < N(w) + My (w).

For Nk (w) and Mg (w) with 1 £ K < M, from the fact that wy(0) €
Gr+1 C Gy, it holds that

(30) Nk (w) = Nk (w1) + Nk (w2),

and

(31) MK(U)) :MK(w1)+MK(U12).
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(29), (31) and (30) combined with (3) prove the proposition. (2) is imme-
diate if we note that splitting at O does not affect Ni(w) or Mg (w). O

PRrROPOSITION 14 (Reflection principle). There ezists Cs = Cg(u) > 0
such that for any n € N and s > 0

Ce EU[ 2Dn(w)s’ ’w(n)’ > 2Dn(w)—2] > Eu[ 2Dn(w)s’ \w(n)] < 2Dn(w)—2]

ProOOF. First, fix arbitrarily N € N and condition on {D,(w) = N}.
Then it is enough to study the behavior of paths within Fy;, 41

For w € W(n) such that D,(w) = N, let T'(n, An_2) = sup{i < n :
w(z) c AN_Q}, where Ay = {CLM, bM,CM,dM}. Define

Un(z) ={w e W(n) : D,(w) =N, |w(n)| < oN=2 w(T(n, An_2)) = z},
Vn(z) ={w e W(n) : D,(w) =N, |w(n)| =2V2,
w(T(n,An—_2)) =z}, z € AN_2.

For w € Un(bny—2), let us denote by wg the n-step path obtained from
w by reflecting the part {w(i) : T(n, An_2) < i < n} with respect to a
line parallel to the y-axis that passes by_o (see Fig. 2). This mapping
is an injection from Upn(by_2) to Vi (by—_2). Also for the case that z €
{an_2,cN—2,dN_2}, we can define an injection from Uy (z) to Vn(z) in the
following way. For w € Uy(z), we first reflect the part {w(i) : T'(n, An_2) <
i £ n} at z, and if the reflected path leaks out of Fy , then reflect the leaking
part appropriately so that it lands on Fy (see Fig. 3). We denote the reflected
path for the cases z € {an_2,cn_2,dNn_2} also by wg.

For w € Un(z) U Vn(2), define

pn (@) =Y fypr(w)zbD

where the summation is taken over w' € Wy, with w'(i) = w(i) for i =
0,1,---,n. We claim that there exists a positive constant M3 that depends
only on w such that

(32) pn+1(wr) 2 Mspn1(w)

holds for all w € Un(2), 2z € Ay_2 and N € N.



438 Kumiko HATTORI and Tetsuya HATTORI

aN

dy2  an-2/ 0 \en-2

CN-2 O b2 PN-

reflection line

Fig. 2.

With (32), the proposition is proved as follows. Let

Uy ={w € Wny1 : Dp(w) =N, |w(n)| <2V7?},
Vv ={w € Wiy1 : Dp(w) =N, |w(n)| = 2N72}

Corollary 7 and (32) imply
EY[ 2P |w(n)| < 2P 2]

[e.9]

2VsPU[ D (w) = N, |w(n)] < 2NV72]
1

2 Y. Pll{wl]

1 pe{a,b,c,d} weUNNWN1,p

N S Y P lw)]

3 pe{a,b,c,d} weVy ﬂWN+1,p

|

Mz iMe i

A
T
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aN

CN-2 O i b

reflection line 2 reflection line 1

Fig. 3.

1 G Ns pu N-2
:ENZZLQ PY[ Dyp(w) = N, |w(n)| 2 2777 ]

1
= 35 B127 ()| 22772

1
This implies the statement, with Cg = U

3
It remains to prove (32). We prove for the case w € Un(by_2) and
0 < u £ 1. The other cases can be proved in a similar manner. Put ej; =

b
CLM“——FMJFH M € Z,. For a path w € Uy(bn—2), w(n) can lie either in

AOapn_obn_2 or in AOcny_odn_o. Let us consider the first case. Note that
wgr(n) € Aby_sen_2by—1. We will prepare some inequalities relating w
and wg. For w' € J,>,, W(k), put T'(n+,Gp) = inf{i = n: w'(i) € Gur},
M € N. Note that if w'(n) € AOan_2by_2, then W' (T(n+,Gn_2)) €
{an_2,bny_2,0} and if w'(n) € Aby_sen_obny_1 then w'(T(n+,Gn_2)) €
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{en—2,bn—2,bny—1}. We will extend w and wg up to time T(n+,Gn_2).
To this end, we define for w € Un(by-2) U Vy(bn—2)

U~J] = ZfN-‘rl(w/)xﬁ(w/)_l? z € GN—27

where the summation is taken over w’' € U W (k) satisfying w'(i) = w(i)
kzn
fori=0,---,n, and w'(L(w')) = ' (T (n+,Gn-2)) = z.
Taking into account the possibility that wgr makes a
turn at the reflection point by_o while w does not, we have

2N=2_scale sharp

(33) H(en—2)lwr] = uH (an—2)[w],
(34) H(by-2)[wr] = uH (by—2)[w],
(35) H(by-1)[wr] 2 uH (O)[w].

Next we introduce two quantities Z and Z'. Let Wi, = {w € W

w(0) = an, L(w) = Ta,,,,(w)}, M € Zy, and E = Z fi(w)zL®)  We
weWy
will show that for any M € N, Y far1(w)af™) = = holds. Note that
weWy,

if w e Wj§;, then 27 MO yw € Wg. We split w into segments w; such that
wi(t) = w(ﬂﬂfl(w) +t)7 0 g t é TZM(w) - T;Afl(w% =1, ’L(ziMQMw%
and apply (30) and (31). Noting that each w; can be identified, via reflection,
with a path in Wy, 4, we have

> fupw)al™ = N 2l M 1uNK )M (w) g Naa (w)+ M (w)
wews, wewe, K=0
L(v) M-
= Z Z H (2k H (i) T M (wi)) . N1(0)+Ma (v)
VEWE  weWwsy  i=1 K=0
27 MQpw=v
L(v) M-1
— Z H ( Z H u Ve (wi)+ M ( wl)) N )+ M1 (v)
VEWE i=1 w;EWp 4 K=

[

=D (‘PM(mu,u))L(v)uNl(v)Jer(v)
veWy
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Moreover, symmetry arguments imply that if the summation is taken over
paths starting at any other point in Ay, instead of aps, the correspoinding
value is equal to Z. Let W9, = {w e W : w(0) = ey, L(w) = Ta,,,, (w)},
and E' = Z f1(w)zE®) In a similar manner to the above argument, we
weW§
see that for any M € N, it holds that Z Farsr (w)zE®) =
weWs,

Now we are ready to prove (32). Let w € Un(by_2). We divide the
path w’ in the summation into segments by splitting at T'(n+, Gny_2), and
if necessary, also at T'(n+, Gn_1) and at T'(n+,Gn). Then Proposition 13
gives,

/

[1]

pn+1(w) < (H(an—2)[w] + H(by—2)[w])E* + H(O)[w] - 4z,

where we used ®p/(zy,u) = z,. Splitting wgr at T(n+,Gn_2), and, if
necessary, also at T'(n+,Gn—1) and T'(n+,Gy), we have from Proposition
13 and (33) — (35),

pnii(wr) 2 WO (H(en o)[wr] - E'E% + H(by—2)[wr]E?)

+ UQH(bel)[wR]E2

u® (H(an_2)[w] - E' 2% 4+ H(by_2)[w]E?) + u'° H(O)[w]=?
u Mi{(H (an—2)[w] + H(by—2)[w])E® + 4H (O)[w]a, }

u'* Mipy11(w),

v 1 v

= =2
where we put M; = min{1l, =, 4;} > 0.
= 4z,
The case w(n) € AOcy_adn_o can be handled in the same way to give
pN+1(wWR) 2 u13M2pN+1(w), where M is a positive constant depending
only on u. Thus (32) holds with M3 = min{u'® My, u'*Ms} > 0. O

Let Cf = . Proposition 14 implies

_ 1
1+ Co
Eu[ ’w(n)’s ] 2 EU[ 2(Dn(w)_2)$’ |w(n)| g 2Dn(w)—2]
1
1+ Cs

1\

Eu[ 2(Dn(w)—2)s ] _ 2_280é EU[ 2Dn(w)s ]

9

which, with the definitions of ||w||, and D, (w), further implies
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PROPOSITION 15. 27 23C§ E¥[ 2P»(w)s ] s EY|w(n)®] <
B [[w]l;,] < B 2509,

PrROOF OF THEOREM 8. Assume 3 > 1.

E'[lwlly] = E*[|lwll;, , |lwlls < (logn)’n?]
+ B[ [Jwll}, , Jwlln 2 (logn)’n" ]

(36) {(logn)"n?}* + n*P|||wlln = (logn)’n],

[IA

where we used ||wl|,, < n. Also, (21), (22), and v = log 2/log A imply

logn

e u Bloglogn
P[[lwl|n 2 (logn)ﬁrﬂ] < PY[Dp(w) 2 log 2 + log )\]
Bloglogn
PY|D, > 7o T K
[Dn(w) 2 gz (n)]

< Cyexp{—Ci(log n)ﬁ},

A

where in the last inequality Proposition 9 was used. This combined with
(36) gives

(log n)_sﬁn_‘”E”[ l|wl||5 ] 1+ (log n)_sﬁns(1_7)02 exp{—C1(log n)ﬁ}

S
< 14 Coy(logn)~*Fn=7s,

for any large n such that C;(logn)® > slogn. Thus

(37) limsup(log n)~*n " E* ||} ] < 1.

n—0o0

On the other hand, combining (21), (22) and Proposition 12 in a similar way
to the above argument, we see that for any o > 0 there exists a constant
C’ > 0 such that

E'[w[l;, ] = {(ogn)™*n"}*{1 — P*[[|w||, < (logn)~*n"]}
> {(logn)~*n"}*{1 — x—lu exp{—C"(logn)*/ "} }.
Thus

(38) liminf(log n)**n™*7E“[ ||w||}, ] = 1.

n—oo
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(37) and (38) imply lim (logn)~'log E*[ ||w||$ ] = sy, which combined
with Proposition 15, further implies the assertion of the theorem. [
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