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Displacement Exponents of Self-Repelling Walks and

Self-Attracting Walks on the Pre-Sierpiński Gasket

By Kumiko Hattori and Tetsuya Hattori

Abstract. We construct a family of self-repelling and self-at-
tracting walks (stochastic chains) on the (infinite) pre-Sierpiński gas-
ket. The family continuously interpolates the simple random walk and
a self-avoiding walk. The asymptotic behavior of the walks is given in
terms of the displacement exponent.

1. Introduction

In [3] Ben Hambly and the authors considered a family of self-repelling

walks with fixed endpoints on the finite pre-Sierpiński gaskets. We proved

the existence of the continuum limit, i.e., reducing the unit length to 0 (with

suitable scaling of time parameter). The limit is a family of continuous self-

repelling processes with specific fixed endpoints (‘pinned processes’). We

studied their sample path properties, such as Hölder continuity, short-time

speed and a generalized law of the iterated logarithm.

In this paper, we consider the same family of walks on the finite pre-

Sierpiński gaskets, which we recall in Section 2, but instead of taking con-

tinuum limit, we fix the unit length and extend the walks to the (infinite)

pre-Sierpiński gasket, thus remove the pinning condition and construct (in-

finite length) stochastic chains, and study their properties.

In Section 3 (Theorem 5) we construct a family of stochastic chains

on the pre-Sierpiński gasket consistent with the pinned self-repelling walks

on the finite pre-Sierpiński gaskets studied in [3]. Our family of walks is

parametrized by u which indicates the strength of self-repulsion. The walk

corresponding to u = 1 is the standard simple random walk, and for u = 0

the corresponding walk is self-avoiding and of infinite length. The path

measure for the self-avoiding (u = 0) case is rather complex, as is for all cases
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other than the simple random walk (u �= 1). In particular, it is supported

on walks without sharp turns for u = 0. The measure is natural, however,

from the renormalization group point of view [4], in that it corresponds

to the unique fixed point of the renormalization group recursion equation

(10) associated with the self-avoiding walks on the pre-Sierpiński gasket

which respect symmetries of the Sierpiński gasket. This family of walks

on the finite pre-Sierpiński gaskets parametrized by u is introduced in [3]

to interpolate the simple random walk and the measure on self-avoiding

paths by the path measures corresponding to the fixed points of the (u

dependent) renormalization group, which, hereafter we refer to as the fixed

point theories. (We can of course consider more general class of walks by

introducing more parameters, but to make clear the aim of this paper, we

will stick to the family studied in [3].) We can also construct the walks for

u > 1, which correspond to self-attracting walks.

It may also be worthwhile to note that the extension of pinned walks to

the infinite pre-Sierpiński gasket is not trivial for the walks. The continuum

limit continuous processes of [3] have exact self-similarities which can be

used to obtain extentions to large scales. The walk (chain), on the other

hand, has a finite unit, so that there is no exact self-similarity. It turns out,

as we see in Section 3, that the fixed point condition of the renormalization

group serves as a consistency condition in applying the extension theorems.

In this sense, we may say that the renormalization group fixed point theory

is an extended notion of a self-similar processes. Note also that since our

family of walks lack Markov properties, constructions based on analytic

approach cannot be applied in general.

In Section 4, we prove in Theorem 8 an asymptotic bahavior of the

self-repelling and self-attracting walks, in terms of the (u dependent) dis-

placement exponent γ. (The exponent is equal to the exponent for the

‘mean-square displacement’ in physics literatures, defined by E[|w(n)|2] ∼
n2γ . Our proof implies that the exponent is the same for all the moments

E[|w(n)|s] ∼ nsγ , s > 0.)

Main tools for the proof are a reflection principle and an estimate on

short and long paths. These tools have also been employed in [6], where

we proved the existence of displacement exponent for a self-avoiding walk.

We would like to emphasize that the reflection principle introduced in [6] is

similar in spirit to the reflection principle used in Section 4 but is actually
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entirely different. In fact, by comparing the definition of reflection principles

in [6] and that in this paper for the self-avoiding (u = 0) case, one should

notice that they are absolutely different reflections. A main reason for the

difference is that, in [6] we considered equal weights for self-avoiding walks

with a fixed number of steps, hence in applying a reflection principle we only

needed to compare the numbers of certain sets of walks and their reflections,

whereas we here consider fixed point theories, whose weights are natural

from renormalization point of view but complex from walks’ point of view

and also depends on u, so that a very delicate coupling type argument is

necessary. On the other hand, since we are working on fixed point theories,

the estimates on short and long paths are considerably easier than those in

[6].
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2. Self-Repelling Walks on the Finite Pre-Sierpiński gasket

The pre-Sierpiński gasket is defined as follows. Let O = (0, 0), a0 =

(1
2 ,

√
3

2 ), b0 = (1, 0), c0 = (−1, 0), d0 = (−1
2 ,

√
3

2 ), and aN = 2Na0, bN =

2Nb0, cN = 2Nc0, dN = 2Nd0, N ∈ N. Let F ′
0 be the set of all the

points on the vertices and edges of �Oa0b0. We define a sequence of sets

F ′
0, F

′
1, F

′
2, . . . , inductively by

F ′
N+1 = F ′

N ∪ (F ′
N + aN ) ∪ (F ′

N + bN ), N ∈ Z+ = {0, 1, 2, . . .} ,

where A + a = {x + a : x ∈ A} and kA = {kx : x ∈ A}. Let

F ′′
N = F ′

N ∪ (F ′
N + cN ) and F0 =

∞⋃

N=1

F ′′
N . We call F0 the (infinite) pre-

Sierpiński gasket. For N ∈ Z+, let FN = 2NF0 and denote the set of

vertices in FN by GN .
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For n ∈ Z+ we call w = (w(0), w(1), · · · , w(n)) an n-step path (or a path

of length n), if

w(i) ∈ G0, |w(i + 1) − w(i)| = 1, w(i)w(i + 1) ∈ F0, i = 0, 1, · · · , n− 1.

Similarly, we call w = (w(0), w(1), w(2), · · ·) an infinite path (or a path of

infinite length), if

w(i) ∈ G0, |w(i + 1) − w(i)| = 1, w(i)w(i + 1) ∈ F0, i = 0, 1, 2, · · · .

We denote the length of path w by L(w).

For a path w and A ⊂ F0, we define the hitting time TA(w) of A for

w, by TA(w) = min{j � 0 : w(j) ∈ A}. If the minimum does not exist,

we put TA(w) = ∞. For a path w on F0 and M ∈ Z+, define TM
i (w),

i = 0, 1, 2, · · ·, by induction as follows: TM
0 (w) = TGM

(w), and for i � 1, let

TM
i (w) = min{j > TM

i−1(w) : w(j) ∈ GM \ {w(TM
i−1(w))}}, if the minimum

exists, otherwise TM
i (w) = ∞. TM

i (w) is the time when the path w hits

a vertex of GM for the i + 1-th time (including the case i = 0), under the

condition that if w hits the same element of GM more than once in a row,

we consider it as once.

We mainly consider walks starting at the origin. (Notion for general

paths introduced so far are also used when we consider cutting and reflecting

procedures of paths in the proofs of our results.) For each n ∈ Z+, denote

a set of n-step paths on F0 starting at the origin O by W (n). Namely,

W (n) = { (w(0), w(1), · · · , w(n)) : w(0) = O, w(i) ∈ G0,

|w(i + 1) − w(i)| = 1,

w(i)w(i + 1) ∈ F0, i, i + 1 ∈ {0, 1, · · · , n} }.

For w ∈ W (n), L(w) = n. Let W ∗ =

∞⋃

n=1

W (n).

Fix N ∈ Z+ for the rest of this section. Let AN = {aN , bN , cN , dN}, and

define

WN,a = {w ∈ W ∗ : L(w) = TAN
= T{aN}},

WN,b = {w ∈ W ∗ : L(w) = TAN
= T{bN}},

WN,c = {w ∈ W ∗ : L(w) = TAN
= T{cN}},

WN,d = {w ∈ W ∗ : L(w) = TAN
= T{dN}},



Displacement Exponent of Self-Repelling Walks 421

and

WN = WN,a ∪WN,b ∪WN,c ∪WN,d.

For a path w ∈ WN and M ∈ Z+, define a ‘decimation’ map QM by

setting (QMw)(i) = w(TM
i (w)) for i = 0, 1, 2, . . . , j, where j is the smallest

integer such that TM
j+1(w) = ∞. QMw may be regarded as a path on FM .

If we write (2−MQMw)(i) = 2−Mw(TM
i (w)), then 2−MQMw is a path on

F0 and L(2−MQMw) = j. We will write L(QMw) = L(2−MQMw) for

the length of decimated path (with a unit step normalized to be 1), and

TN
i (QMw) = TN

i (2−MQMw) for the hitting times.

For a path w ∈ WN , define the reversing number NK(w) and the return-

ing number MK(w) for level K ∈ {0, 1, · · · , N − 1} in the following manner.

For � = 1, · · · , L(QK+1w), let

NK(�)(w) = �{i ∈ Z+ : TK+1
�−1 (QKw) < i < TK+1

� (QKw) :
−−−−−−−−−−−−−−−−−→
(QKw)(i− 1)(QKw)(i) · −−−−−−−−−−−−−−−−−→(QKw)(i)(QKw)(i + 1) < 0,

(QKw)(i) �= (QKw)(TK+1
�−1 (QKw)) },

(1)

where  a · b denotes the inner product of  a and  b in R
2, and

MK(�)(w) = �{i ∈ Z+ : TK+1
�−1 (QKw) < i < TK+1

� (QKw) :(2)

(QKw)(i) = (QKw)(TK+1
�−1 (QKw))},

NK(w) =

L(QK+1w)∑

�=1

NK(�)(w),

MK(w) =

L(QK+1w)∑

�=1

MK(�)(w).

Thus NK(w) counts the number of times the path QKw makes U-turns or

sharp-angle turns at vertices in GK \GK+1, and MK(w) counts the number

of times QKw revisits a vertex in GK+1. It is these types of steps that we

will suppress or enhance in our path measures.

For p, q ∈ {a, b, c, d}, we define bijections Rp,q : WN,p → WN,q as follows.

Ra,d, Rd,a, Rb,c, and Rc,b are defined as the reflection with regard to y-axis.

Consider the reflection of the parts of path within �OaNbN with regard

to the line y =
1√
3
x, and that of the parts within �OcNdN with regard
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to the line y = − 1√
3
x. This defines Ra,b, Rb,a, Rc,d, and Rd,c. Then

Ra,c = Rb,c ◦Ra,b defines Ra,c, and other cases are defined in a similar way.

Under these bijections, NK(w), MK(w) and L(w) remain invariant.

Let x > 0 and u � 0. For w ∈ WN , define

fN (u,w) = fN (w) =

N−1∏

K=0

uNK(w)+MK(w),(3)

and

ΦN (x, u) =
∑

w∈WN,a

fN (w)xL(w).(4)

Owing to the one-to-one correspondence shown above, if the summation

in (4) is taken over WN,b, WN,c or WN,d instead of WN,a, it gives the same

value. Thus, in the rest of this section, we work on WN,a. We will often

write Φ(x, u) instead of Φ1(x, u). For the explicit form of Φ, see [3]. We do

not use it here.

If w ∈ WN,a and M � N , then 2−MQMw ∈ WN−M,a. For w ∈ WN+1,a,

put w′ = 2−NQNw ∈ W1,a, and for each j = 1, 2, · · · , L(w′), consider a path

segment wj of the path w

wj = (w(TN
j−1(w)), w(TN

j−1(w) + 1), w(TN
j−1(w) + 2), · · · , w(TN

j (w))).(5)

This path segment is the ‘fine structure’ of the j-th step of the decimated

path QNw. (a) It is a path on G0 starting from w(TN
j−1(w)) ∈ GN and stop-

ping at w(TN
j (w)), a neighboring point of w(TN

j−1(w)) in GN , and (b) it has

no common point with GN other than the starting point w(TN
j−1(w)) before

it reaches its endpoint. A path with properties (a) and (b) can be identified,

via reflection, with a path w̃j ∈ WN,a, in such a way that w(TN
j−1(w)) and

w(TN
j (w)) correspond to O and aN , respectively. Conversely, given arbi-

trarily w′ ∈ W1,a, any w̃ ∈ WN,a can be the j-th path segment (5) of some

w ∈ WN+1,a such that 2−NQNw = w′. Thus there is a one-to-one corre-

spondence wj �→ w̃j ∈ WN,a. With this correspondence, there is a natural

one-to-one mapping

WN+1,a � w �→ (w′, w̃1, w̃2, · · · , w̃L(w′)) ∈ W1,a ×WN,a × · · · ×WN,a.(6)
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Also we have

L(w̃j) = TN
j (w) − TN

j−1(w),(7)

and

L(w) =

L(2−NQNw)∑

j=1

(TN
j (w) − TN

j−1(w)) =

L(w′)∑

j=1

L(w̃j).(8)

For any w ∈ WN+1,a, by considering the path decomposition (w′, w̃1,

w̃2, · · · , w̃L(w′)) determined by the correspondence (6), we have from (3)

fN+1(w) = f1(w
′)
L(w′)∏

j=1

fN (w̃j).(9)

Combining (3), (4), (8) and (9), we have the recursion relation of ΦN ,

ΦN+1(x, u) = Φ(ΦN (x, u), u) = Φ ◦ · · · ◦ Φ(x, u).(10)

This implies that for any M < N ,

ΦN (x, u) = ΦN−M (ΦM (x, u), u).(11)

Let ru be the radius of convergence for Φ(x, u) as a power series in x.

Proposition 1.

(1) For each u � 0, ru > 0 and there is a unique fixed point xu of the

mapping Φ(·, u) : (0, ru) → (0,∞), that is, Φ(xu, u) = xu, xu > 0. As

a function in u, xu is continuous and strictly decreasing on [0, 1].

(2) Let λu =
∂Φ

∂x
(xu, u). Then λu is continuous in u and λu > 2.

Proof. The case of 0 � u � 1 corresponds to Proposition 2.3 in [3].

For u > 1, it is sufficient to show ru > 0. The rest follows just as in the

case of 0 � u � 1. Note that from the definitions of N0(w) and M0(w), we

have L(w) � N0(w) + M0(w). Thus if u > 1,

Φ(x, u) =
∑

w∈W1,a

uN0(w)+M0(w)xL(w) �
∑

w∈W1,a

(ux)L(w) = Φ(ux, 1).
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Since we already know that r1 > 0, we have ru � r1/u > 0. �

(10) implies that ΦN (xu, u) = xu for all N ∈ N. In the two extreme

cases, we know that x0 =

√
5 − 1

2
, λ0 =

7 −
√

5

2
(see [4, 6]), and x1 =

1

4
,

λ1 = 5 (see [1, 7]).

We next define a probability measure P u
N on WN,a by assigning to each

w ∈ WN,a,

P u
N [{w}] = (

N−1∏

K=0

uNK(w)+MK(w)) xL(w)
u /ΦN (xu, u) = fN (w)xL(w)−1

u(12)

P 1
N corresponds to the simple random walk on F ′′

N conditioned that

TAN
= T{aN}. Under P 0

N , only self-avoiding paths survive. (To be precise,

the measure corresponds to the fixed point of the renormalization group [4],

hence the measure is supported on the self-avoiding paths with no sharp

turns.) Let us denote by Eu
N the expectation with regard to P u

N .

We cite the following Proposition 2 – Proposition 4 from [3]. They hold

true also for u > 1.

For M � N , let QMP u
N be the image measure of P u

N induced by 2−MQM .

Combining (9), (11) and (12), we have

Proposition 2. If w ∈ WN,a and M � N , then 2−MQMw ∈ WN−M,a

and QMP u
N = P u

N−M .

For M ∈ Z+ and k ∈ N, put SM
k = TM

k − TM
k−1.

Proposition 3. Assume N � M and k ∈ N.

(a) Let w ∈ WN,a . Under the conditional probability P u
N [ · | SM

k (w) <

∞ ], the random variables SM
i (w) for i = 1, . . . , k are i.i.d. and they

are jointly independent of QMw.

(b) The law of SM
1 under P u

N is equal to that of SM
1 under P u

M . Eu
M [SM

1 ] =

λMu and the Laplace transform of SM
1 is given by

guM (t) = Eu
M [e−tS

M
1 ] =

1

xu
ΦM (xue

−t, u), t � 0.
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Proposition 4. The law of λ−N
u SN

1 under P u
N converges weakly as

N → ∞ to that of a random variable S∗, with properties Pu[ S
∗ > 0 ] = 1,

Eu[ S∗ ] = 1, and its Laplace transform gu(t) = Eu[ exp(−tS∗) ] being the

unique solution to

gu(λut) =
1

xu
Φ(xugu(t), u), g′u(0) = 1.

3. Existence of Stochastic Chain Consistent with the Renormal-

ization Group

Let N ∈ N. The probability measure P u
N in the preceeding section is

defined on the set WN,a, which is a set of paths on F ′′
N with fixed endpoints

O and aN . In deducing displacement exponents, we need to consider proba-

bility measures on sets of paths with fixed length (steps) n for all n ∈ N. We

prove the existence of a probability measure P u on the set of paths of infinite

length, for which the probability of the paths up to the first hitting time of

AN coincides with P u
N (The precise statement is given in Corollary 7).

Let P u
N,a be a probability measure on WN such that P u

N,a[A] = P u
N [A]

for any A ⊂ WN,a , and define probability measures P u
N,b, P u

N,c, P u
N,d, on

WN supported on WN,b, WN,c, WN,d, by the same formula as (12), with aN
replaced by bN , cN , dN , respectively. Define

W (∞) = {(w(0), w(1), w(2), · · ·) : w(0) = O, w(i) ∈ G0,

|w(i + 1) − w(i)| = 1,

w(i)w(i + 1) ∈ F0, i ∈ Z+},

and let F be the σ-algebra on W (∞) generated by cylinder sets

Cn(w) = {w′ = (w′(0), w′(1), w′(2), · · ·) ∈ W (∞) :

w′(j) = w(j) , j = 0, 1, 2, · · · , n},
w ∈ W (n), n ∈ N,

(13)

consisting of infinite-length paths whose first n steps are identical to w.

Theorem 5. There exists a probability measure P u on (W (∞),F)

satisfying the following: For each n ∈ N and w = (w(0), w(1), w(2), · · · ,
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w(n)) ∈ W (n), it holds that

P u[{w′ ∈ W (∞) : w′(j) = w(j), j = 0, 1, 2, · · · , n}]
=

1

4

∑

p∈{a,b,c,d}
P u
N,p[{w′ ∈ WN,p : w′(j) = w(j), j = 0, 1, 2, · · · , n}],(14)

for any integer N satisfying

|w(j)| < 2N , j = 0, 1, 2, · · · , n− 1,(15)

where | · | denotes the Euclidean metric.

We remark that 2N or more steps are required for a path starting from

O to hit AN = {aN , bN , cN , dN}, hence the condition (15) holds if 2N � n.

Also, for each j ∈ Z+, X(j, ·) : W (∞) → G0 defined by X(j, w) = w(j) is

a G0-valued stochastic variable on (W (∞),F , P u).

To prove Theorem 5, we first note the following. For a path in WN+1,

the first hit of GN \ {O} occurs at one of AN . By restricting the original

path to [0, TAN
], we have a correspondence WN+1 → WN .

In Section 2, we introduced natural bijections Rp,q : WN,p → WN,q,

p, q ∈ {a, b, c, d} which maps w ∈ WN,p to Rp,qw ∈ WN,q in such a way that

its shape (modulo partial reflection) does not change, and in particular,

fN (w) = fN (Rp,q(w)).(16)

For simplicity of notation, we may write Rp,p for an identity map, and, in

the proof of Theorem 5, we will fix u and write PN,q for P u
N,q.

Proposition 6. Let N be a positive integer and let p ∈ {a, b, c, d}.
Consider a path

ŵ = (ŵ(0), ŵ(1), ŵ(2), · · · , ŵ(L(ŵ))) ∈ WN,p .

Then for any integer N ′ satisfying N ′ > N ,
∑

q∈{a,b,c,d}
PN ′,q[{w ∈ WN ′,q : w(j) = ŵ(j) , j = 0, 1, 2, · · · , L(ŵ)}]

= PN,p[{ŵ}].
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Proof. We prove the case N ′ = N + 1: The general case follows by

induction in N ′. We also assume ŵ ∈ WN,a, since other cases are similar.

We decompose w ∈ WN+1,q into (w′, w̃1, · · · , w̃L(w′)) ∈ W1,q × WN,a ×
· · · × WN,a, in the same way as in (6), where w′ = 2−NQNw and w̃j is

the j-th path segment identified, via appropriate reflection, with a path in

WN,a. Using (12), (8), (9) and (16), for the first equality, the condition that

w(j) = ŵ(j) , j = 0, 1, 2, · · · , L(ŵ) for the second, (4) for the third, and

finally, ΦN (xu, u) = xu and ŵ(L(ŵ)) = aN , we have,

PN+1,q[{w ∈ WN+1,q : w(j) = ŵ(j) , j = 0, 1, 2, · · · , L(ŵ)}]

=
∑

w∈WN+1,q ;
w(j)=ŵ(j) , j=0,1,2,···,L(ŵ)

f1(w
′)x−1

u

L(w′)∏

j=1

fN (w̃j)

L(w′)∏

j=1

x
L(w̃j)
u

= fN (ŵ)xL(ŵ)−1
u

∑

w′∈W1,q ;
w′(1)=ŵ(L(ŵ))

f1(w
′)
L(w′)∏

j=2

∑

w̃j∈WN,a

fN (w̃j)x
L(w̃j)
u

= fN (ŵ)xL(ŵ)−1
u

∑

w′∈W1,q ;
w′(1)=ŵ(L(ŵ))

f1(w
′)ΦN (xu, u)L(w′)−1

= fN (ŵ)xL(ŵ)−1
u

∑

w′∈W1,q ;
w′(1)=a0

f1(w
′)xL(w′)−1

u .

Hence we have∑

q∈{a,b,c,d}
PN+1,q[{w ∈ WN+1,q : w(j) = ŵ(j) , j = 0, 1, 2, · · · , L(ŵ)}]

= fN (ŵ)xL(ŵ)−1
u

∑

q∈{a,b,c,d}

∑

w′∈W1,q ;
w′(1)=a0

f1(w
′)xL(w′)−1

u .

According to the definition of Rp,q, w′ ∈ W1,q is mapped by Rq,a to

Rq,a(w
′) ∈ W1,a , while if w′(1) = a0 then this point is mapped to

Rq,a(w
′)(1) = q . On the other hand, L(w′) = L(Rq,a(w

′)), and (16) im-

plies fN (w′) = fN (Rq,a(w
′)). Note also that the first step w′(1) is a point

in A0. Therefore

fN (ŵ)xL(ŵ)−1
u

∑

q∈{a,b,c,d}

∑

w′∈W1,q ;
w′(1)=a0

f1(w
′)xL(w′)−1

u
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= fN (ŵ)xL(ŵ)−1
u

∑

q∈{a,b,c,d}

∑

w′∈W1,a;
w′(1)=q

f1(w
′)xL(w′)−1

u

= fN (ŵ)xL(ŵ)−1
u

∑

w′∈W1,a

f1(w
′)xL(w′)−1

u = PN,p[{ŵ}]. �

Proof of Theorem 5. Let n ∈ N. Take an n step path w ∈ W (n)

and a cylinder set Cn(w) defined in (13). Take N satisfying (15), and put

P̃n[Cn(w)] =
1

4

∑

p∈{a,b,c,d}
PN,p[{w′ ∈ WN,p :

w′(j) = w(j) , j = 0, 1, 2, · · · , n}].
(17)

We first prove that the right-hand side is independent of N . Let N ′ > N .

For any w′ ∈ WN ′ , it holds that TN
1 (w′) < TN ′

1 (w′). By restricting w′ up

to TN
1 (w′) , we have a path in WN . Since (15) implies n � TN

1 (w′), we can

classify the paths in {w′ ∈ WN ′,p : w′(j) = w(j) , j = 0, 1, 2, · · · , n} by the

behavior up to TN
1 (w′) and we have

1

4

∑

q∈{a,b,c,d}
PN ′,q[{w′ ∈ WN ′,q : w′(j) = w(j) , j = 0, 1, 2, · · · , n}]

=
1

4

∑

p∈{a,b,c,d}

∑

ŵ∈WN,p;
ŵ(j)=w(j) , j=0,1,2,···,n

×
∑

q∈{a,b,c,d}
PN ′,q[{w′ ∈ WN ′,q : w′(j) = ŵ(j) , j = 0, 1, 2, · · · , L(ŵ)}],

which, by Proposition 6, is equal to

1

4

∑

p∈{a,b,c,d}
PN,p[{ŵ ∈ WN,p : ŵ(j) = w(j) , j = 0, 1, 2, · · · , n}],

which proves that the right-hand side of (17) gives the same value for all N

satisfying (15).

We next extend P̃n, defined in (17) on the cylinder sets Cn(w), to a

probability measure. Let Fn be the σ-algebra on W (∞) generated by the
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cylinder sets Cn(w) i.e., a family of sets which are determined by the first

n steps of the paths in W (∞). We extend P̃n to Fn by

P̃n[V ] =
∑

w∈W (n); Cn(w)⊂V
P̃n[Cn(w)], V ∈ Fn .(18)

To prove that P̃n is a probability measure, it is sufficient to prove

P̃n[W (∞)] = 1. Let N be a positive integer satisfying 2N � n. If w′ ∈ WN

then L(w′) � 2N (� n), hence there exists a unique w ∈ W (n) satisfying

w′(j) = w(j) , j = 0, 1, 2, · · · , n. Using also (17), we therefore have

P̃n[W (∞)] =
∑

w∈W (n)

P̃n[Cn(w)] = 1 .

Lastly, we note that it is a standard argument of the extension theorem

that if P̃n, n ∈ N, satisfies the consistency condition

P̃n+1[Cn(w)] = P̃n[Cn(w)] , w ∈ W (n) , n = 1, 2, · · · ,(19)

then there exists a probability measure P u on (W (∞),F) satisfying (14)

for all n ∈ N and w ∈ W (n) . To prove the consistency condition (19), let

n ∈ N and w ∈ W (n). Note that Cn(w) ∈ Fn ⊂ Fn+1. If 2N � n + 1 then

(18), and (17) imply

P̃n+1[Cn(w)] =
∑

w′′∈W (n+1);
w′′(j)=w(j), j=0,1,2,···,n

P̃n+1[Cn+1(w
′′)]

=
1

4

∑

p∈{a,b,c,d}

∑

w′′∈W (n+1);
w′′(j)=w(j), j=0,1,2,···,n

× PN,p[{w′ ∈ WN,p : w′(j) = w′′(j) , j = 0, 1, 2, · · · , n + 1}]

=
1

4

∑

p∈{a,b,c,d}
PN,p[{w′ ∈ WN,p : w′(j) = w(j) , j = 0, 1, 2, · · · , n}]

= P̃n[Cn(w)]. �
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Corollary 7. If N ∈ N and w ∈ WN , then

P u[{w′ ∈ W (∞) : w′(j) = w(j), j = 0, 1, 2, · · · , L(w)}]
=

1

4

∑

p∈{a,b,c,d}
P u
N,p[{w}].(20)

Proof. Put n = L(w). Then the definition of WN implies (15), hence

by Theorem 5 and Proposition 6 we have the statement. �

4. Displacement Exponents

In this section, we prove the following.

Theorem 8 (Displacement exponent). Let γu =
log 2

log λu
, u � 0, where

λu is a continuous function of u defined in Proposition 1. Then, for any

s > 0,

lim
n→∞

(log n)−1 logEu[ |w(n)|s ] = sγu ,

where | · | denotes the Euclidean metric.

Our proof below implies an additional statement on the correction to

the ‘leading term’ logE[|w(n)|s] ∼ sγu log n in Theorem 8. See (37) and

(38) for details.

Let us study the location of the walk after n-steps. Define for w ∈
W (∞) ∪

⋃
k�nW (k)

Dn(w) = min{ M � 0 : |w(i)| � 2M , 0 � i � n },

and

||w||n = max
0� i�n

|w(i)|.

Then

2Dn(w)−1 < ||w||n � 2Dn(w)(21)

holds. Let K(n) be the positive integer such that

λK(n)
u � n < λK(n)+1

u .(22)
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Proposition 9 (Long-path estimate). There exist positive constants

C1 = C1(u) and C2 = C2(u) such that for any positive integers n and M ,

P u[ Dn(w) � K(n) + M ] � C2e
−C12M .

To prove this proposition, we prepare a few lemmas. In the following

we fix u � 0 arbitrarily and simply write ΦN (·, u) = ΦN (·), Φ1(·, u) = Φ(·)
and λu = λ.

Lemma 10. If x < xu, then there exist positive constants C3 = C3(u, x)

and C4 = C4(u, x) such that ΦN (x) < C4e
−C32N for all N ∈ N.

Proof. We use the fact that Φ(x) is a power series of x without con-

stant and linear terms, with non-negative coefficients. We can easily see

that for x < xu, {ΦN (x)}N=1,2,··· is a decreasing sequence and since 0 is the

only fixed point of Φ in [0, xu), we see that ΦN (x, u) → 0 as N → ∞. We

also see

ΦN+1(x) = Φ(ΦN (x)) = ΦN (x)2P (ΦN (x)),

where P is expressed as a power series with non-negative coefficients. This

combined with P (ΦN (x)) < P (xu) = 1/xu, implies

2−(N+1){log ΦN+1(x) + log
1

xu
} < 2−N{log ΦN (x) + log

1

xu
}.

By repeated use of this inequality, we have

lim sup
N→∞

2−N log ΦN (x) = lim sup
N→∞

2−N{log ΦN (x) + log
1

xu
}

� log
x

xu
= −C3 < 0.

This implies that there is an N0 ∈ N such that ΦN (x) � e−C32N for any

N > N0. Taking C4 large enough, we have the statement. �

Lemma 11. For any δ > 0, there exist positive constants C ′
3 = C ′

3(u, δ)

and C ′
4 = C ′

4(u, δ) such that ΦN+M (x1+δλ−N

u ) � C ′
4e

−C′
32M , for any N,M ∈

N.

Proof. Since ΦN+M (x1+δλ−N

u ) = ΦM (ΦN (x1+δλ−N

u )), the statement

is proved from Lemma 10 if we show that there exists a positive constant ε
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such that

ΦN (x1+δλ−N

u ) < xu − ε(23)

for all N ∈ N. Let g̃N (t) = E[e−tλ
−NSN

1 ] =
1

xu
ΦN (xue

−λ−N t), t � 0, be the

Laplace transform of λ−NSN
1 . Note that

ΦN (x1+δλ−N

u ) = xug̃N (−δ log xu).(24)

Proposition 3 and Proposition 4 imply that g̃N (t) converges to g(t) =

E[e−tS
∗
] as N → ∞. Since P [S∗ > 0] = 1, we have g(t) < 1 for any t > 0.

Thus there exist an ε′ > 0 and N1 ∈ N such that ΦN (x1+δλ−N

u ) < xu−ε′ for

all N > N1. Since it holds that ΦN (x1+δλ−N

u ) < xu also for N = 1, · · · , N1,

there exists ε > 0 satisfying (23). �

Proof of Proposition 9. The equations (21) and (22) imply

P u[ Dn(w) � K(n) + M ] � P u[ S
K(n)+M−1
1 < n ]

� P u[ S
K(n)+M−1
1 < λK(n)+1 ].

(25)

Corollary 7 and (12) imply that, if 0 � M − 2 � J ,

P u[ SJ
1 < λJ−M+2 ] =

1

4

∑

p∈{a,b,c,d}
P u
J,p[ S

J
1 < λJ−M+2 ]

= P u
J,a[ S

J
1 < λJ−M+2 ]

=
1

xu

∑

w∈WJ,a,L(w)<λJ−M+2

xL(w)
u fJ(w) � 1

x2
u

ΦJ(x(1+λ−(J−M+2))
u ),

where we used SJ
1 (w) = L(w) for w ∈ WJ,a and x

L(w)(1+1/L(w))
u �

(x1+λ−(J−M+2)

u )L(w). This combined with Lemma 11 and (25) leads to

P u[ Dn(w) � K(n) + M ] � C2e
−C12M . �

Proposition 12 (Short-path estimate). There exists a positive con-

stant C5 = C5(u) such that for any positive integers n and M satisfying

M < K(n),

P u[ Dn(w) < K(n) −M ] � 1

xu
e−C5λM

.
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Proof. Put N = K(n) − M . Taylor’s theorem implies, for |z| � 1,

|Φ(xu + z) − xu| � λ|z|(1 + b|z|), where b =
1

2λ
max
|y|� 1

|Φ′′(xu + y)|. Let a be

a positive number such that a ·
∞∏

k=0

(1 + bλ−k) � 1. Then by induction we

can show that for |z| � aλ−N and any K � N ,

|ΦK(xu + z) − xu| � λK |z|
K−1∏

�=0

(1 + bλ−(N−�)) � λK |z|
a

.(26)

Since xu < 1, we can choose 0 < C5 < 1
2 so that (1 +

2C5

a
)xu � 1. Since

ex/2 � 1 + x for 0 � x � 1, (26) implies

ΦN (xue
λ−NC5) � ΦN (xu(1 + 2C5λ

−N )) � xu(1 +
2C5

a
) � 1.

Thus we have

Eu
N [ eλ

−NSN
1 C5 ] =

1

xu
ΦN (xue

λ−NC5) � 1

xu
.

Using Chebyshev’s inequality, we obtain

P u
N,a[

SN
1

λN
� λM ] � 1

xu
e−C5λM

.(27)

Note that Dn(w) < N implies that SN
1 > n. Therefore

P u[Dn(w) < N ] =
1

4

∑

q∈{a,b,c,d}
P u
N+1,q[Dn(w) < N ]

= P u
N,a[Dn(w) < N ] � P u

N,a[S
N
1 > n].

This combined with (22) and (27) implies the statement. �

We move on to the reflection argument. The exponent γu in Theorem 8

takes the same value as the one that governs the short-time speed of the

corresponding continuum limit process, E[|X(t)|s] ∼ tsγ , t → 0, obtained in

[3]. The reason is that both exponents are derived from the same renormal-

ization group analysis. However, to relate the renormalization group results
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to the asymptotic behaviors of the walks, we need different methods, as may

be easily anticipated from the fact that the continuum limit processes have

self-similarity, while the walks (discrete chains) do not. One of the main

tools here is a somewhat complicated use of a reflection principle, which we

will explain in detail.

In the reflection argument, we split paths into parts, hence we have to

consider paths starting from points other than O. Let

W =
∞⋃

n=1

{(w(0), w(1), · · · , w(n)) : w(i) ∈ G0, |w(i + 1) − w(i)| = 1,

w(i)w(i + 1) ∈ F0, i ∈ {0, 1, · · · , n− 1}}.

Namely, W is a set of finite-length paths whose starting points are not fixed

at O. We extend the definitions of the reversing number NK(w) and the

returning number MK(w) so that they hold also for any w ∈ W . Define

NK(w) =

L(QK+1w)+1∑

�=0

NK(�)(w) and MK(w) =

L(QK+1w)+1∑

�=1

MK(�)(w),

where, for � = 1, · · · , L(QK+1w), NK(�) and MK(�) are defined by (1) and

(2), and the term for � = 0 is counted only if TK+1
0 (QKw) > 1, with

NK(0)(w) = �{i ∈ Z+ : 0 < i < TK+1
0 (QKw) :

−−−−−−−−−−−−−−−−−→
(QKw)(i− 1)(QKw)(i) · −−−−−−−−−−−−−−−−−→(QKw)(i)(QKw)(i + 1) < 0 },

and the term for � = L(QK+1w) + 1 is counted only if (QKw)(L(QKw)) �∈
GK+1, with

NK(L(QK+1w) + 1)(w)

= �{i ∈ Z+ : TK+1
L(QK+1w)(QKw) < i � L(QKw) − 1 :

−−−−−−−−−−−−−−−−−→
(QKw)(i− 1)(QKw)(i) · −−−−−−−−−−−−−−−−−→(QKw)(i)(QKw)(i + 1) < 0,

(QKw)(i) �= (QKw)(TK+1
L(QK+1w)(QKw)) },

and

MK(L(QK+1w) + 1)(w)

= �{i ∈ Z+ : TK+1
L(QK+1w))(QKw) < i � L(QKw) :

(QKw)(i) = (QKw)(TK+1
L(QK+1w))(QKw))}.
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The definition of fN (w) given by (3) is unchanged.

Let w ∈ WN . Consider splitting w into two parts at a time t < L(w).

Let

w1(i) = w(i), 0 � i � t, and w2(i) = w(t + i), 0 � i � L(w) − t.

Then

L(w1) = t, L(w2) = L(w) − t.(28)

Note that for K � N ,

TK
0 (w2) = inf{i � 0 : w2(i) ∈ GK} = inf{i � 0 : w(t + i) ∈ GK}.

Proposition 13 (Path splitting). Let w ∈ WN . Assume that w is

split into two parts at some time t < L(w).

(1) If w(t) ∈ GM \GM+1 for some M < N , then

fN (w) � fN (w1) · fN (w2) � u−3(N−M)fN (w) for 0 � u � 1,

u−3(N−M)fN (w) � fN (w1) · fN (w2) � fN (w) for u > 1,

L(w) = L(w1) + L(w2).

(2) If w(t) = O, then

fN (w) = fN (w1) · fN (w2),

L(w) = L(w1) + L(w2).

Proof. (1) First consider NK(w) with M � K � N − 1. There is an

integer �(K) such that TK
�(K)−1(w) � t < TK

�(K)(w). w2(T
K
0 (w2)) coincides

either with w(TK
�(K)(w)) or w(TK

�(K)−1(w)). When we count sharp turns and

U-turns of w1 and w2, at most two turns of (QKw)(i) at i = �(K) − 1 or

�(K) may elude the counting (see Fig. 1). Thus

NK(w) − 2 � NK(w1) + NK(w2) � NK(w).
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O

w(Tl(K)-1)K

w(t)

w(Tl(K)+1)K

w(Tl(K))
K

Fig. 1.

As for MK(w) with M � K � N − 1, there is an integer �′(K + 1) such

that TK+1
�′(K+1)−1(w) < t < TK+1

�′(K+1)(w). w2(T
K+1
0 (w2)) coincides either with

w(TK+1
�′(K+1)(w)) or w(TK+1

�′(K+1)−1(w)). In the latter case, the first return of

QKw to w(T�′(K+1)−1(w)) after t eludes the counting in MK(w2). Thus

MK(w) − 1 � MK(w1) + MK(w2) � MK(w).

Thus, for M � K we have

NK(w) + MK(w) − 3 � NK(w1) + MK(w1) + NK(w2) + MK(w2)

� NK(w) + MK(w).
(29)

For NK(w) and MK(w) with 1 � K < M , from the fact that w2(0) ∈
GK+1 ⊂ GM , it holds that

NK(w) = NK(w1) + NK(w2),(30)

and

MK(w) = MK(w1) + MK(w2).(31)
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(29), (31) and (30) combined with (3) prove the proposition. (2) is imme-

diate if we note that splitting at O does not affect NK(w) or MK(w). �

Proposition 14 (Reflection principle). There exists C6 = C6(u) > 0

such that for any n ∈ N and s > 0

C6 Eu[ 2Dn(w)s, |w(n)| � 2Dn(w)−2 ] � Eu[ 2Dn(w)s, |w(n)| < 2Dn(w)−2 ]

Proof. First, fix arbitrarily N ∈ N and condition on {Dn(w) = N}.
Then it is enough to study the behavior of paths within F ′′

N+1.

For w ∈ W (n) such that Dn(w) = N , let T (n,AN−2) = sup{i < n :

w(i) ∈ AN−2}, where AM = {aM , bM , cM , dM}. Define

UN (z) = {w ∈ W (n) : Dn(w) = N, |w(n)| < 2N−2, w(T (n,AN−2)) = z},
VN (z) = {w ∈ W (n) : Dn(w) = N, |w(n)| � 2N−2,

w(T (n,AN−2)) = z}, z ∈ AN−2.

For w ∈ UN (bN−2), let us denote by wR the n-step path obtained from

w by reflecting the part {w(i) : T (n,AN−2) < i � n} with respect to a

line parallel to the y-axis that passes bN−2 (see Fig. 2). This mapping

is an injection from UN (bN−2) to VN (bN−2). Also for the case that z ∈
{aN−2, cN−2, dN−2}, we can define an injection from UN (z) to VN (z) in the

following way. For w ∈ UN (z), we first reflect the part {w(i) : T (n,AN−2) <

i � n} at z, and if the reflected path leaks out of F0 , then reflect the leaking

part appropriately so that it lands on F0 (see Fig. 3). We denote the reflected

path for the cases z ∈ {aN−2, cN−2, dN−2} also by wR .

For w̃ ∈ UN (z) ∪ VN (z), define

pN+1(w̃) =
∑

fN+1(w
′)xL(w′)−1

u ,

where the summation is taken over w′ ∈ WN+1 with w′(i) = w̃(i) for i =

0, 1, · · · , n. We claim that there exists a positive constant M3 that depends

only on u such that

pN+1(wR) � M3pN+1(w)(32)

holds for all w ∈ UN (z), z ∈ AN−2 and N ∈ N.
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cN-2 O bN-2 bN-1 bN

dN-2 aN-2 eN-2

aN

w(n) wR(n)

reflection line

Fig. 2.

With (32), the proposition is proved as follows. Let

UN = {w ∈ WN+1 : Dn(w) = N, |w(n)| < 2N−2},
VN = {w ∈ WN+1 : Dn(w) = N, |w(n)| � 2N−2}.

Corollary 7 and (32) imply

Eu[ 2Dns, |w(n)| < 2Dn−2 ]

=

∞∑

N=1

2NsP u[ Dn(w) = N, |w(n)| < 2N−2 ]

=

∞∑

N=1

2Ns 1

4

∑

p∈{a,b,c,d}

∑

w∈UN∩WN+1,p

P u
N+1,p[{w}]

�
∞∑

N=1

2Ns 1

4M3

∑

p∈{a,b,c,d}

∑

w∈VN∩WN+1,p

P u
N+1,p[{w}]
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cN-2 O bN

dN-2 aN-2

aN

w(n)

wR(n)

reflection line 2 reflection line 1

Fig. 3.

=
1

M3

∞∑

N=1

2NsP u[ Dn(w) = N, |w(n)| � 2N−2 ]

=
1

M3
Eu[ 2Dns, |w(n)| � 2Dn−2 ].

This implies the statement, with C6 =
1

M3
.

It remains to prove (32). We prove for the case w ∈ UN (bN−2) and

0 � u � 1. The other cases can be proved in a similar manner. Put eM =
aM+1 + bM+1

2
, M ∈ Z+. For a path w ∈ UN (bN−2), w(n) can lie either in

�OaN−2bN−2 or in �OcN−2dN−2. Let us consider the first case. Note that

wR(n) ∈ �bN−2eN−2bN−1. We will prepare some inequalities relating w

and wR. For w′ ∈
⋃
k�nW (k), put T (n+, GM ) = inf{i � n : w′(i) ∈ GM},

M ∈ N. Note that if w′(n) ∈ �OaN−2bN−2, then w′(T (n+, GN−2)) ∈
{aN−2, bN−2, O} and if w′(n) ∈ �bN−2eN−2bN−1 then w′(T (n+, GN−2)) ∈
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{eN−2, bN−2, bN−1}. We will extend w and wR up to time T (n+, GN−2).

To this end, we define for w̃ ∈ UN (bN−2) ∪ VN (bN−2)

H(z)[w̃] =
∑

fN+1(w
′)xL(w′)−1

u , z ∈ GN−2,

where the summation is taken over w′ ∈
⋃

k�n

W (k) satisfying w′(i) = w̃(i)

for i = 0, · · · , n, and w′(L(w′)) = w′(T (n+, GN−2)) = z.

Taking into account the possibility that wR makes a 2N−2-scale sharp

turn at the reflection point bN−2 while w does not, we have

H(eN−2)[wR] � uH(aN−2)[w],(33)

H(bN−2)[wR] � uH(bN−2)[w],(34)

H(bN−1)[wR] � uH(O)[w].(35)

Next we introduce two quantities Ξ and Ξ′. Let W a
M = {w ∈ W :

w(0) = aM , L(w) = TAM+1
(w)}, M ∈ Z+, and Ξ =

∑

w∈Wa
0

f1(w)xL(w)
u . We

will show that for any M ∈ N,
∑

w∈Wa
M

fM+1(w)xL(w)
u = Ξ holds. Note that

if w ∈ W a
M , then 2−MQMw ∈ W a

0 . We split w into segments wi such that

wi(t) = w(TM
i−1(w)+ t), 0 � t � TM

i (w)−TM
i−1(w), i = 1, · · · , L(2−MQMw),

and apply (30) and (31). Noting that each wi can be identified, via reflection,

with a path in WM,a, we have

∑

w∈Wa
M

fM+1(w)xL(w)
u =

∑

w∈Wa
M

xL(w)
u

M−1∏

K=0

uNK(w)+MK(w) · uNM (w)+MM (w)

=
∑

v∈Wa
0

∑

w∈Wa
M

2−MQMw=v

L(v)∏

i=1

(xL(wi)
u

M−1∏

K=0

uNK(wi)+MK(wi)) · uN1(v)+M1(v)

=
∑

v∈Wa
0

L(v)∏

i=1

(
∑

wi∈WM,a

xL(wi)
u

M−1∏

K=0

uNK(wi)+MK(wi)) · uN1(v)+M1(v)

=
∑

v∈Wa
0

(ΦM (xu, u))L(v)uN1(v)+M1(v) = Ξ.
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Moreover, symmetry arguments imply that if the summation is taken over

paths starting at any other point in AM , instead of aM , the correspoinding

value is equal to Ξ. Let W e
,M = {w ∈ W : w(0) = eM , L(w) = TAM+1

(w)},
and Ξ′ =

∑

w∈W e
,0

f1(w)xL(w)
u . In a similar manner to the above argument, we

see that for any M ∈ N, it holds that
∑

w∈W e
,M

fM+1(w)xL(w)
u = Ξ′.

Now we are ready to prove (32). Let w ∈ UN (bN−2). We divide the

path w′ in the summation into segments by splitting at T (n+, GN−2), and

if necessary, also at T (n+, GN−1) and at T (n+, GN ). Then Proposition 13

gives,

pN+1(w) � (H(aN−2)[w] + H(bN−2)[w])Ξ3 + H(O)[w] · 4xu,

where we used ΦM (xu, u) = xu. Splitting wR at T (n+, GN−2), and, if

necessary, also at T (n+, GN−1) and T (n+, GN ), we have from Proposition

13 and (33) – (35),

pN+1(wR) � u9+6+3(H(eN−2)[wR] · Ξ′ Ξ2 + H(bN−2)[wR]Ξ3)

+ u9H(bN−1)[wR]Ξ2

� u19(H(aN−2)[w] · Ξ′ Ξ2 + H(bN−2)[w]Ξ3) + u10H(O)[w]Ξ2

� u19M1{(H(aN−2)[w] + H(bN−2)[w])Ξ3 + 4H(O)[w]xu}
� u19M1pN+1(w),

where we put M1 = min{1, Ξ′

Ξ
,

Ξ2

4xu
} > 0.

The case w(n) ∈ �OcN−2dN−2 can be handled in the same way to give

pN+1(wR) � u13M2pN+1(w), where M2 is a positive constant depending

only on u. Thus (32) holds with M3 = min{u19M1, u
13M2} > 0. �

Let C ′
6 =

1

1 + C6
. Proposition 14 implies

Eu[ |w(n)|s ] � Eu[ 2(Dn(w)−2)s, |w(n)| � 2Dn(w)−2 ]

� 1

1 + C6
Eu[ 2(Dn(w)−2)s ] = 2−2sC ′

6 E
u[ 2Dn(w)s ],

which, with the definitions of ||w||n and Dn(w), further implies



442 Kumiko Hattori and Tetsuya Hattori

Proposition 15. 2−2sC ′
6 E

u[ 2Dn(w)s ] � Eu[ |w(n)|s ] �
Eu[ ||w||sn ] � Eu[ 2Dn(w)s ].

Proof of Theorem 8. Assume β > 1.

Eu[ ||w||sn ] = Eu[ ||w||sn , ||w||n < (log n)βnγ ]

+ Eu[ ||w||sn , ||w||n � (log n)βnγ ]

� {(log n)βnγ}s + nsP u[||w||n � (log n)βnγ ],(36)

where we used ||w||n � n. Also, (21), (22), and γ = log 2/ log λ imply

P u[||w||n � (log n)βnγ ] � P u[Dn(w) � β log log n

log 2
+

log n

log λ
]

� P u[Dn(w) � β log log n

log 2
+ K(n)]

� C2 exp{−C1(log n)β},

where in the last inequality Proposition 9 was used. This combined with

(36) gives

(log n)−sβn−sγEu[ ||w||sn ] � 1 + (logn)−sβns(1−γ)C2 exp{−C1(log n)β}
� 1 + C2(log n)−sβn−γs,

for any large n such that C1(log n)β � s log n. Thus

lim sup
n→∞

(log n)−sβn−sγEu[ ||w||sn ] � 1.(37)

On the other hand, combining (21), (22) and Proposition 12 in a similar way

to the above argument, we see that for any α > 0 there exists a constant

C ′ > 0 such that

Eu[ ||w||sn ] � {(log n)−αnγ}s{1 − P u[||w||n < (log n)−αnγ ]}

� {(log n)−αnγ}s{1 − 1

xu
exp{−C ′(log n)α/γ}}.

Thus

lim inf
n→∞

(log n)sαn−sγEu[ ||w||sn ] � 1.(38)
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(37) and (38) imply lim
n→∞

(log n)−1 logEu[ ||w||sn ] = sγ, which combined

with Proposition 15, further implies the assertion of the theorem. �
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gasket, Probab. Theory Relat. Fields 124 (2002), 1–25.

[4] Hattori, K., Hattori, T. and S. Kusuoka, Self-avoiding paths on the pre-
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