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Decay of Magnetic Eigenfunctions on Asymptotically

Hyperbolic Plane

By Shin-ichi Shirai

Abstract. We prove a decay estimate for eigenfunctions of the
magnetic Schrödinger operator on two dimensional Riemannian mani-
fold M . We assume that M is simply connected, rotationally symmet-
ric, and asymptotically hyperbolic. The proof is based on a method
developed by S. Nakamura in [Nak1].

1. Introduction and Results

1.1. Main result

In this paper we study the decay property of eigenfunctions of the mag-

netic Schrödinger operators on (the trivial Hermitian line bundle over) a

rotationally symmetric, asymptotically hyperbolic two-dimensional Rieman-

nian manifolds with a pole. Here, we mean by pole a point at where the

exponential map gives a diffeomorphism.

More precisely, we make the following assumptions (M.1)–(M.4) on man-

ifolds.

(M.1) (M, gM ) is a two-dimensional smooth Riemannian manifold with a

pole p.

(M.2) In addition, the Riemannian metric gM is expressed as dr ⊗ dr +

g(r)2dθ ⊗ dθ in the geodesic polar coordinates (r, θ) ∈ (0,∞) × S1 at

p for some positive C2-function g.

(M.3) The radial curvature K(r) = −g′′(r)/g(r) is bounded from below on

M .

(M.4) The radial curvature K(r) is non-positive and has a limit

limr→∞K(r) = −1. Moreover, the integral
∫∞
0 |1 +K(r)|dr is finite.
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To formulate our result, we make the following assumptions on the

electro-magnetic fields on M .

(A.1) Let ∇ be a compatible (C1-)connection on the trivial Hermitian

line bundle over M . Moreover, there exists a real-valued, continuous

function B on [0,∞) such that B is positive near infinity, and the

curvature 2-form ω associated with the connection ∇ takes the form

B(r)g(r)dr ∧ dθ in the geodesic polar coordinates at p.

(A.2)τ The scalar potential V is real-valued, continuous function on M(∼=
{p}∪(0,∞)×S1) and extends to a bounded function Ṽ on [0,∞)×Sτ
for some τ > 0, where we set

Sτ = {z ∈ C | |Im z| < τ}.

Moreover, Ṽ (r, z) is analytic with respect to z ∈ Sτ .

(A.2)∞ The scalar potential V satisfies (A.2)τ for each τ > 0. Moreover,

Ṽ (r, z) tends to zero as r → ∞ in each Sτ .

We now introduce the magnetic Schrödinger operator with scalar poten-

tial

HV = ∇∗∇ + V

starting from domain C∞
0 (M), the space of all smooth functions with com-

pact support on M . Then HV is essentially self-adjoint under the conditions

(A.1) and (A.2)τ (see Section 2 below). In what follows we shall identify any

essentially self-adjoint operator with its operator closure. We shall denote

by L2(X,µ) the L2 space on X with measure µ, and denote by L2(M) the

L2 space with the Riemannian measure dV on M . We denote by Ck(X,Y )

the space of all Ck-maps from X to Y .

Throughout this paper, we always assume the following:

(E) A function ψ is a (non-zero) L2-eigenfunction of HV corresponding to

an eigenvalue E. Moreover, E belongs to the set of discrete spectrum

of HV (i.e., E is an isolated eigenvalue of finite multiplicity).

The main result of this paper is the following:

Theorem 1.1. Assume (M.1)–(M.4), (A.1), (A.2)∞, and (E). As-

sume that there exists a positive constant B0 such that limr→∞ |B(r)−B0| =
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0 and E < B2
0 + 1/4. Set ρ(r) = (B2

0 + 1/4 − E)1/2r. Then we have the

following two assertions.

1. For any ε > 0, the function e(1−ε)ρψ belongs to L2(M) and the es-

timate |ψ(r, θ)| ≤ Cεe
−(1−ε)ρ(r) holds on M . Moreover, there exists

c > 0 such that(∫ 2π

0
|ψ(r, θ)|2dθ

)1/2

≤ ce−(1−ε)ρ(r)e−r/2

holds for any r ≥ 0.

2. If we assume further that V is spherically symmetric, then for any

ε > 0 there exist c > 0 and r0 > 0 such that

(∫ 2π

0
|ψ(r, θ)|2dθ

)1/2

≥ ce−(1+ε)ρ(r)e−r/2

holds for all r ≥ r0.

Remark 1.2.

1. We need not to assume the discreteness of the eigenvalue E in the

assertion 2 in Theorem 1.1.

2. The positivity of the constant B0 is not crucial. In fact, the arguments

in Sections 3–5 below are still valid in the case of B0 = 0, and we

can reduce the case B0 < 0 to the case B0 > 0 via the transform

(r, θ) �→ (r,−θ) as in the Euclidean case.

3. A typical example of manifold under consideration is the hyperbolic

plane. In this case, the essential spectrum of the Schrödinger operator

HV with smooth, asymptotically constant magnetic field and with

scalar potential satisfying (A.2)∞ consists of two parts; the continuous

part [B2
0 + 1/4,∞) and the discrete part {(2n + 1)B0 − n(n + 1)}

(0 ≤ n < |B0| − 1/2), where the latter is empty if |B0| < 1/2 (see

Inahama and Shirai [I-S] and see also subsection 1.3 below). Thus,

in this case, the number B2
0 + 1/4 is the lower edge of the continuous

spectrum, therefore our result is valid for the eigenfunctions in all

spectral gaps of the essential spectrum of HV .
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4. The decay rate of the eigenfunctions as in Theorem 1.1 differs from

that of the Euclidean case. As is known (see subsection 1.2 below),

under conditions similar to (A.1), (A.2)τ , and (E), any eigenfunction

of the Schrödinger operator HV with (asymptotically) constant mag-

netic field has the Gaussian decay property at infinity (i.e., decays

like Ce−cr
2
) in the Euclidian case. This means that the (asymptot-

ically) constant magnetic field cannot bind strongly a quantum me-

chanical charged particle in the case of negative curvature. Note that

the spectrum of the Landau Hamiltonian H0 (= HV with V = 0) on

the hyperbolic plane has the absolutely continuous part, and H0 has

the norm-resolvent continuity with respect to the strength B0 of the

magnetic field (see Inahama and Shirai [I-S]).

5. In the case of the constant magnetic field on the hyperbolic plane, the

presence of non-zero scalar potential V can produce infinitely many

discrete spectra in the spectral gaps of H0 (see Shirai [Shi]).

The organization of the paper is as follows. In succeeding subsections

1.2 and 1.3, we recall some related works and some spectral properties of the

Schrödinger operator with constant magnetic field on the hyperbolic plane,

respectively. Section 2 contains some preliminary results. In Section 3 we

derive a weighted L2-estimate of the eigenfunction under a slightly general

setting. The proof is based on the method developed by Nakamura [Nak1].

In Section 4 we give a proof of Theorem 1.1. The upper bound estimate

for the eigenfunction follows from the result obtained in Section 3, and the

lower bound estimate follows from an argument in Donnelly [Don2].

Acknowledgment . The author thank Takefumi Kondo and Takuya

Mine for useful discussions.

1.2. Some related results

In this subsection, we recall some related results. The decay properties

of the magnetic eigenfunctions have been studied by many authors, in par-

ticular, in the case of the Euclidean spaces. Here, we refer to a few number

of works very close to ours.

First, we recall some results in the Euclidean spaces. L. Erdös [Erd]

shows the Gaussian upper bound |ψ(r, θ)| ≤ Ce−cr
2

for eigenfunctions ψ of



Decay of Magnetic Eigenfunctions 323

the two-dimensional Schrödinger operator 1
2(D−A)2 + V with rotationally

symmetric magnetic field B(r) and bounded scalar potential V . He assumes

that B(r) ≥ B0 > 0 and E < B0/2 for some constant B0 and he put some

assumptions on the Fourier coefficients Vm(r) =
∫ 2π
0 e−m

√
−1θV (r, θ)dθ of

scalar potential V ; in particular, he requires that there exists a sequence

{am} such that |Vm| ≤ am,
∑
mmam < ∞, and am ≤ Cδm for some

constants D > 0, δ satisfying 0 < δ < 1.

S. Nakamura [Nak1] (see also [Nak2]) proves that any eigenfunctions ψ

of HV have the Gaussian upper bound in the constant magnetic field case

with the assumptions (A.2)τ and (E) above. In particular, the estimate

|ψ(r, θ)| ≤ Ce−(1−ε)B0r2/4 holds for any ε > 0 under (A.2)∞, where B0 is

the strength of constant magnetic field. Nakamura’s result is generalized

by V. Sordoni [Sor] to a class of non-constant magnetic fields in higher

dimension.

Their results require more or less some analyticity of the electro-mag-

netic fields. In fact, L. Erdös [Erd] also shows the eigenfunctions decay

slower than Gaussian in general if we drop the condition am ≤ Dδm above,

even in the constant magnetic field case.

In non-analytic case, H. D. Cornean and G. Nenciu [C-N] study the

decay property of magnetic eigenfunctions.

Next, we recall some results in the case of (non-compact) Riemannian

manifolds. H. Donnelly studies the properties of eigenfunctions of the

Laplace-Beltrami(-Schrödinger) operators without magnetic fields in a se-

ries of works [Don1]–[Don5]. In [Don1], he studies the decay properties of

the eigenfunctions φ of −�D on the exterior domain {z ∈ D|d(z, 0) ≥ r0},
where r0 > 0 and D is the Poincaré disk. He shows that if E < 1/4 there

exists a real analytic function A(θ) on [0, 2π) such that g1/2(r)h0(r)
−1φ(r, θ)

tends to A(θ) as r → ∞ uniformly in θ, where g(r) = sinh r, h0 is a solution

to the equation −h′′(r)+ (F (r)−E)h(h) = 0 and F (r) = 1
2g

′′/g− 1
4(g′/g)2.

Especially, the estimate |φ(r, θ)| ≤ C exp (−(1/4 − E)1/2r − r/2) holds. Re-

cently, A. Vasy and J. Wunsch [V-W] show that no eigenfunction of the

Laplace-Beltrami operator (without electro-magnetic fields) decays super-

exponentially in the case of certain class of manifolds with pinched negative

curvature.

In the magnetic case on (non-compact) Riemannian manifolds, it seems

that less results exist. V. Iftimie [Ift] studies the decay of eigenfunctions of
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the magnetic Schrödinger operators of the form HV = (Di − ai)g
ij(Dj −

aj) + V on manifold (Rn, g), using the Agmon-type estimates. He assumes

that the metric g−1 = (gij) satisfies 0 < λ(|x|)|ξ|2 ≤ gijξiξj ≤ Λ(|x|)|ξ|2
for some functions λ,Λ, and limr→∞ r−2Λ(r) = 0. The assumptions on

regularity of scalar and magnetic potentials are rather milder than ours;

a = (aj) ∈ L2
loc(R

n,Rn), g−1 ∈ L1
loc(R

n,Rn
2
), and V ∈ L1

loc(R
n,R).

Under some additional assumptions, he shows the L2-upper bound esti-

mate ‖eρψ‖ < ∞ and the pointwise estimate |ψ(x)| ≤ Ce−ρ(r) for the weight

function ρ(r) = (Σ(HV ) −E)1/2r, where r is the geodesic distance with re-

spect to the metric g and Σ(HV ) is the infimum of the essential spectrum

of HV (Theorem 2.4 and Theorem 4.4 in [Ift]). Here, Iftimie assumes that

the eigenvalue E is located below Σ(HV ), and in the proof of the pointwise

upper bound he also assumes that the function λ above is bounded from

below by some positive constant.

Thus, as we mentioned in Remark 1.2 (see also subsection 1.3 below),

the decay estimate for the eigenfunctions corresponding to eigenvalues in the

spectral gaps of the essential spectrum of HV does not follow directly from

Iftimie’s result in the hyperbolic case, and the weight function in Theorem

1.1 improves Iftimie’s one for such eigenfunctions.

1.3. The hyperbolic plane

The hyperbolic plane H is a typical example of manifolds we keep in mind

in Theorem 1.1. In this case the Schrödinger operator H0 with constant

magnetic field is called the Landau Hamiltonian or the Maass Laplacian (up

to gauge transform) and has been extensively studied by many authors (e.g.,

[Roe], [Els], [Fay], and [Com]). In this subsection we give some comments

in this case. However, this subsection contains no new results.

We recall some basic spectral properties of the Landau Hamiltonian H0

(without scalar potential) from Roelcke [Roe], Elstrodt [Els]. The spectrum

of H0 is given by

Spec(H0) =

{
(∪Nn=0{En})

⋃
[B2

0 + 1/4,∞) if B0 > 1/2,

[B2
0 + 1/4,∞) if 0 < B0 ≤ 1/2,

where N is the largest integer less than B0 − 1/2 and En = (2n + 1)B0 −
n(n + 1). We consider the case of B0 > 1/2. Each En is the eigenvalue

of infinite multiplicity, and a complete set {ψnk}∞k=−n of the eigenfunctions
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corresponding to En is given by

ψnk(r, θ) =

(
1 − tanh r2e

−
√
−1θ

1 − tanh r2e
√
−1θ

)−B0

×
√
Cnk(1 − tanh2 r

2
)B0−ne

√
−1kθ tanh|k| r

2

×2F1

(
B0 − n−B0 sign(k), B0 − n+B0 sign(k) + |k|

|k| + 1
; tanh2 r

2

)

in the geodesic polar coordinates, where 2F1 is the Gauss hyper-geometric

function and Cnk is the L2-normalizing constant given by

Cnk =
βnΓ(k + βn + n+ 1)Γ(k + n+ 1)

4πΓ(n+ 1)Γ(k + 1)2Γ(βn + n+ 1)

with βn = 2B0 − 2n− 1.

We note that the Riemannian manifold (H, R2g
H
) “converges” to

(R2, 4g
R2) as R → ∞ (see Section IV in Comtet [Com]). The decay-

ing factor (1 − tanh2 (r/2))B0−n in the expression of ψnk, which has the

asymptotics exp (−(B2
0 + 1/4 − En)

1/2r − r/2) as r → ∞, is transformed

into (1 − tanh2 (r/2R))B0R2−n on the space (H, R2g
H
), which converges to

the Gaussian factor e−B0r2/4 in the flat space limit R → ∞.

In the rest of this subsection, we show that the discreteness assumption

in (E) is crucial for Theorem 1.1 in general. More precisely, there exists

an eigenfunction corresponding to the ground state energy E0 which has no

decay estimate as in Theorem 1.1.

Let {αk}∞k=0 be a sequence of complex numbers satisfying
∑∞
k=0 |αk|2 <

∞ and put ψ0 =
∑∞
k=0 αkψ0k. In the case of n = 0, we have ψ0k(r, θ) =√

C0ke
√
−1kθρk(1 − ρ2)B0 and C0k = 1

4πΓ(2B0−1)
Γ(k+2B0)
Γ(k+1) , where we put t =

tanh(r/2), and the weight function ρ in Theorem 1.1 is given by (B2
0 +1/4−

E0)
1/2r = (B0 − 1/2)r. For any c satisfying 0 < c < B0 − 1/2, we have

ecrψ0(r, θ) = [(1 + t)/(1 − t)]c
∞∑
k=0

αk
√
C0ke

√
−1kθtk(1 − t2)B0

=

∞∑
k=0

αk
√
C0ke

√
−1kθtk(1 − t2)B0−c(1 + t)2c,
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where we used the relation r = 2 tanh−1(t) = log [(1 + t)/(1 − t)]. Then we

have

‖ecrψ0‖2
L2(H)(1.1)

=

∫ 1

0

4tdt

(1 − t2)2

∫ 2π

0
dθ

∣∣∣∣∣
∞∑
k=0

αk
√
C0ke

√
−1kθtk(1 − t2)B0−c(1 + t)2c

∣∣∣∣∣
2

= 4π
∞∑
k=0

|αk|2C0k

∫ 1

0
t2k(1 − t2)2(B0−c−1)(1 + t)4c(2t)dt

≥ 4π
∞∑
k=0

|αk|2C0k

∫ 1

0
t2k(1 − t2)2(B0−c−1)(2t)dt

= 4π
∞∑
k=0

|αk|2C0k

∫ 1

0
s(k+1)−1(1 − s)(2B0−2c−1)−1ds

= 4π
∞∑
k=0

|αk|2C0kB(k + 1, 2B0 − 2c− 1)

=
Γ(2B0 − 2c− 1)

Γ(2B0 − 1)

∞∑
k=0

|αk|2(k + 1)2c
(

(k + 1)−2c Γ(k + 2B0)

Γ(k + 2B0 − 2c)

)
,

where we used the Plancherel formula with respect to L2((0, 2π), dθ) in the

first equality and changed the variable s = t2 in the fourth equality, and

B(x, y) = Γ(x)Γ(y)/Γ(x + y) is the beta function. Given c > 0, we can

find a sequence {αk}∞k=0 for which
∑∞
k=0 |αk|2 converges but

∑∞
k=0 |αk|2k2c

diverges. Then, for such {αk}s, the rhs of (1.1) diverges since the Stirling

formula for the gamma function yields that limk→∞ k−2cΓ(k + 2B0)/Γ(k +

2B0−2c) = 1. This shows that ecrψ does not belong to L2(H) for any c > 0.

2. Preliminaries

2.1. Essential self-adjointness of H0

We start with the essential self-adjointness of H0 = ∇∗∇ on C∞
0 (M).

Throughout this paper, we always assume (M.1)–(M.3) and we identify the

pole p in (M.1) with the origin 0 in the tangent space at p.

Let g and B be as in (M) and (A.1), respectively. We introduce

a(r) =

∫ r

0
B(t)g(t)dt.(2.1)
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Lemma 2.1. Assume (A.1). Let (x1, x2) = (r cos θ, r sin θ) be the

geodesic coordinates around the pole p and let a be as in (2.1). Put ã =

ã1dx1 + ã2dx2 = −x2a(r)/r
2 dx1 + x1a(r)/r

2 dx2. Then ã defines a C1-

section of T ∗M and dã = (Bg/r)dx1 ∧ dx2 = Bgdr∧ dθ in this coordinates.

Proof. The assertion in the lemma is obvious unless r = 0, since

dã(x) = (Bg/r)dx1 ∧ dx2 holds if r �= 0. We need to consider the behavior

of ã at the origin. Note that g(0) = 0 and g′(0) = 1 in the geodesic polar

coordinate. The continuity of ã at the origin follows from the estimate

|ãj(x) − 0| ≤ |xj |
r2

|a(r)| ≤ 1

r

∫ r

0
B(t)g(t)dt ≤ sup

0≤t≤r
|B(t)|g(t) → 0

as r → +0. Next we show the existence of the partial derivative ∂x1 ã2(0) =

−B(0)/2. This follows from the definition limh→0(ã2(h, 0) − ã2(0, 0))/h =

limh→0 h
−2
∫ |h|
0 B(t)g(t)dt combined with the Taylor expansion of Bg at the

origin, because of the fact that g(0) = 0. Similarly we have ∂x2 ã1(0) =

−B(0)/2, ∂x1 ã1(0) = ∂x2 ã2(0) = 0. Thus we have dã(0) = B(0)dx1 ∧ dx2,

from which the lemma follows, because of the fact that g′(0) = 1. �

Throughout this paper, we denote −
√
−1∂/∂r by Dr, etc.

Lemma 2.2. Under the assumption (A.1), we can find a C1-section ã

of Λ1T ∗M satisfying the following properties (i)–(iii).

(i) If we denote by ∇̃ the connection on M defined by D−ã, the operator

∇̃∗∇̃ is expressed as

1

g
DrgDr +

1

g2
(Dθ − a(r))2(2.2)

in the geodesic polar coordinate at p, where a is as in (2.1).

(ii) The operator ∇̃∗∇̃ is essentially self-adjoint on C∞
0 (M).

(iii) The original Bochner Laplacian ∇∗∇ is also essentially self-adjoint

on C∞
0 (M) and its operator closure is unitarily equivalent to that of ∇̃∗∇̃

by some gauge transform.

Proof. We take ã as the one in the previous lemma. Then we find

the expression (2.2) by a simple calculation. The essentially self-adjointness

of the operator ∇̃∗∇̃ follows from Theorem 1.1 (with V = 0) in Shubin
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[Shu] since ã ∈ C1 by Lemma 2.1. The assertion (iii) follows from the same

argument as in the Euclidean case (see, e.g., the proof of Theorem 1.3 in

Leinfelder [Lei]) since both ∇ and ∇̃ give the same magnetic field Bgdr∧dθ
by (A.1) and Lemma 2.1. �

In what follows we identify ∇ with ∇̃ and adopt the expression (2.2),

for the assertions in the main theorems are independent of the choice of

gauge. (The eigenfunction ψ is transformed into e
√
−1λψ.) Needless to say,

the perturbed operator HV also has the unique self-adjoint extension under

the condition (V.2)τ .

2.2. Diamagnetic inequality

In this subsection we show that the scalar potential V decaying at in-

finity is relatively compact with respect to H0 (see Lemma 2.5 below). The

so-called diamagnetic inequality for H0 is crucial. All the results in this

subsection are well-known (see, e.g., Theorem KI in Brüning, Geyler, and

Pankrashkin [B-G-P]). We give, however, a proof for the sake of complete-

ness.

First we recall a basic property of the heat kernel on M . Let �M be

the (negative) Laplace-Beltrami operator on M and let p(t, x, y) is the heat

kernel on M .

Lemma 2.3. Assume (M.1)–(M.4). Then, for each t > 0, there exist

positive constants C1 and C2, which may depend on t, such that the estimate

0 ≤ p(t, x, y) ≤ C1e
−C2d(x,y)2

holds for all (x, y) ∈ M ×M , where d(x, y) is the Riemannian distance on

M . Moreover,
∫
M p(t, x, y)dV (y) = 1 holds for any x ∈ M . Here, Br(x)

stands for the geodesic ball centred at x of radius r.

Proof. This is a well-known fact in Riemannian geometry. However,

we give a proof for the sake of completeness. Under the assumptions (M.1)–

(M.4), the manifold M is complete by the Hopf-Rinow theorem, and the

Ricci curvature RicM of M is bounded below. In fact, RicM is given by

−(g′′/g)gM . Then M is a Cartan-Hadamard manifold, i.e., a complete,

simply connected manifold with non-positive sectional curvature. In partic-

ular, this implies that the injectivity radius of M is +∞. The completeness



Decay of Magnetic Eigenfunctions 329

of M implies that the essential self-adjointness of −�M on C∞
0 (M) by the

classical result of Chernoff [Che], and in this case, the heat kernel p(t, x, y)

of et	M exists.

It follows from a result at the end of Section 5 in Davies [Dav] that for

any δ > 0 there exists a positive constant cδ such that

0 ≤ p(t, x, y) ≤ cδ[Vol(Bt1/2(x))Vol(Bt1/2(y))]
−1/2e(δ−λ)te−d(x,y)

2/(4+δ)t

holds for any x, y ∈ M and all t > 0, where λ is the infimum of the spectrum

of −�M . It is enough to show that for any t > 0 there exists a positive

constant Ct such that Vol(Bt1/2(x)) ≥ Ct holds for all x ∈ M .

The Ricci curvature of the two dimensional manifold M coincides with

the sectional curvature of M , so we can use Bishop’s volume comparison

theorem (see e.g., [Cha], Theorem 3 in Section III). Since K(r) ≤ 0, it

follows that for fixed t > 0 the quantity Vol(Bt1/2(x)) is bounded from

below by the volume of a ball of radius t1/2 in R
2, which is given by πt and

this does not depend on the location of the ball.

Finally, it is well-known that
∫
M p(t, x, y)dV (y) = 1 holds if M is com-

plete and the Ricci curvature is bounded from below (see, e.g., [Cha], The-

orem 5 in Section VIII). �

Let L2
0(M) be the space of all L2-functions on M with compact support.

We say f belongs to L2
0(M)+L∞

ε (M) if for any δ > 0 there exist f1 ∈ L2
0(M)

and f2 ∈ L∞(M) such that f = f1 + f2 and ‖f2‖L∞ ≤ δ.

Lemma 2.4. Let �M be the (negative) Laplace-Beltrami operator on

M . The operator V et	M is compact if V ∈ L2
0(M)+L∞

ε (M) and 0 < t < 1.

In particular, V et	M is a Hilbert-Schmidt operator if V ∈ L2
0(M).

Proof. It follows from Lemma 2.3 that∫
M
p(t, x, y)2dV (y) =

∫
M
p(t, x, y)p(t, y, x)dV (y)

= p(2t, x, x)

≤ Ct−1(Vol(B1(x)))−1,

where we used, in the first equality, the symmetricity of the heat kernel,

which follows from the self-adjointness of the Laplacian, used the semi-group
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property in the second inequality and the estimate mentioned above in the

last inequality. Thus the integral kernel of V et	M satisfies the estimate∫∫
M×M

|V (x)p(t, x, y)|2dV (x)dV (y)

≤ Ct−1

∫
M
dV (x)|V (x)|2(Vol(B1(x)))−1,

which is finite if V ∈ L2
0(M) and 0 < t < 1. Thus, V et	M is a Hilbert-

Schmidt operator.

In the case of general V = V1+V2 ∈ L2
0(M)+L∞

ε (M), the lemma follows

from the uniform estimate ‖V et	M − V1e
t	M ‖op ≤ ‖V2‖L∞ . �

Lemma 2.5. Let z belong the resolvent set of H0. Let V ∈ L2
0(M) +

L∞
ε (M). Then the operator V (H0 − z)−1 is compact on L2(M).

Proof. It is enough to show that V e−tH0 is compact for any t > 0

because of the formula (A− z)−1 =
∫∞
0 e−te−tAdt.

We first show the so-called diamagnetic inequality for H0, following the

line of argument in the proof of Theorem 1 in Simon [Sim]. In order that,

we use Kato’s inequality −�M |f | ≤ Re(sgnf)∇∗∇ for any f satisfying f ,

∇∗∇f ∈ L1
loc(M), which is a special case of Theorem 5.7 in Braverman,

Milatovic and Shubin [B-M-S]. For any φ ∈ D(H0) satisfying φ ≥ 0 a.e. and

any u ∈ C∞
0 (M), we have

(φ, (−�M + 1)|u|)L2 ≤ Re(φ, (sgnu)(∇∗∇ + 1)u)L2(2.3)

≤ (φ, |(∇∗∇ + 1)u|)L2

by Kato’s inequality. If we set φ = (−�M + 1)ψ for any ψ ∈ C∞
0 (M)

satisfying ψ ≥ 0, then φ ≥ 0 since (−�M + 1)−1 is positivity preserving,

which follows from the non-negativity of the heat kernel of −�M . Set

f = (∇∗∇ + 1)u for any u ∈ C∞
0 (M). Then (2.3) implies

(ψ, |(∇∗∇ + 1)−1f |)L2 ≤ (ψ, (−�M + 1)−1|f |)L2 .(2.4)

Since ∇∗∇ is essentially self-adjoint on C∞
0 (M) by Lemma 2.2, the range

(∇∗∇+ 1)C∞
0 (M) is dense in L2(M). Then, by a simple density argument,

we obtain |(∇∗∇ + 1)−1f | ≤ (−�M + 1)−1|f | for any f ∈ L2(M). Using
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the positivity preserving property of (−�M + 1)−1 repeatedly, we have

|(∇∗∇ + 1)−nf | ≤ (−�M + 1)−1|f | for any f ∈ L2(M) and any n ∈ N.

Then we obtain the inequality |e−tH0f | ≤ et	M |f | by the formula e−tA =

s-limn→∞(A+ n/t)−n.
Then it follows from Proposition 3.1 in Doi, Iwatsuka, and Mine [D-I-M]

and Lemma 2.4 that V e−tH0 is a Hilbert-Schmidt operator if 0 < t < 1 and

V ∈ L2
0(M) since |V e−tH0f | ≤ |V |et	M |f |. For general V ∈ L2

0(M) +

L∞(M), by the same argument as that at the end of the proof of Lemma

2.4, we conclude that V e−tH0 is compact if 0 < t < 1. In fact, the conclusion

is true for all t > 0 because of the semi-group property of e−tH0 . �

2.3. Fourier transform

Define the Fourier transform F from L2(S1, dθ) to l2(Z) by

Ff(n) = (2π)−1/2

∫ 2π

0
e−

√
−1nθf(θ)dθ.

Naturally, F extends to a unitary operator Id ⊗ F from L2(M) to

L2((0,∞)) ⊗ l2(Z), etc. In the sequel we write F also for such extended

operators for simplicity. (Note that F commutes with any “radial” opera-

tor.) We find that

FHV F−1 =
∑
n∈Z

⊕
(

1

g
DrgDr +

1

g2
(n− a)2

)
+ V

on FC∞
0 (M), where

(Vf)(r, n) = (2π)−1/2
∑
m∈Z

FV (r, n−m)f(r,m).(2.5)

Here,
∑

⊕ stands for the direct sum with respect to the direct sum decom-

position of Hilbert space L2((0,∞)) ⊗ l2(Z) ∼=
∑
n∈N⊕L2((0,∞)).

As in Nakamura [Nak1], we can show the following two lemmata.

Lemma 2.6. Assume (A.1), (A.2)τ , and (E). Then there exists σ0 > 0

such that

eσ|n|Fψ belongs to L2((0,∞), gdr) ⊗ l2(Z)(2.6)
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if 0 < σ ≤ σ0.

If we assume further (A.2)∞, it is true that (2.6) for any σ > 0.

Proof. This follows from the standard translation-analytic argument

as in the proof of Lemma 3.1 and Lemma 3.2 in Nakamura [Nak1]: For any

ε > 0, define a unitary operator Tε on L2(M) by Tεf(r, θ) = f(r, θ − ε),

where we regard θ − ε as an element of S1 ∼= R/(2πZ). We write HV (ε) for

TεHV T
−1
ε , then it follows that HV (ε) = HV +(V (r, θ− ε)−V (r, θ)). Under

(A.2)τ , the family {HV (ε)}ε extends to an analytic family of type (A) on

{ε ∈ C||Im ε| < τ} (see, e.g., [R-S4]), and the eigenvalue E is stable for

all ε in a small region Sσ0 . Moreover, Lemma 2.5 and (A.2)∞ ensure the

stability of the essential spectrum of HV (ε) for any ε ∈ C. The argument

is still valid for any ε under (A.2)∞. Note that there exists a dense set of

translation-analytic vectors, which is in fact obtained by the pull back of

translation-analytic vectors in L2(R2), via the unitary operator Ug. �

Lemma 2.7. Let 0 < σ < τ . Assume (A.2)τ . Then eσ|n||(FV )(r, n)| is

uniformly bounded with respect to (r, n). If we assume further (A.2)∞, then

limr→∞ supn e
σ|n||(FV )(r, n)| = 0 holds.

Proof. This follows from the standard Payley–Wiener type argument:

FV (r, n) has the expression (2π)−1/2e−σ|n|
∫ 2π
0 e

√
−1ntṼ (r, t ∓

√
−1σ)dt if

±n ≤ 0, respectively. By Cauchy’s integral formula, we can show that

eσ|n||(FV )(r, n)| ≤ (2π)−1/2

∫ 2π

0
max{|Ṽ (r, t+

√
−1σ)|, |Ṽ (r, t−

√
−1σ)|}dt,

using the fact that Ṽ (r, z+2π) = Ṽ (r, z) holds for any (r, z) ∈ (0,∞)×Sτ by

the analytic continuation theorem. Then the lemma follows immediately. �

Lemma 2.8. Let r0 > 0. Assume that the radial curvature K(r) =

−g′′(r)/g(r) is bounded from below on some interval [r0,∞) and assume

that

k > max{|g′(r0)/g(r0)|, sup
r≥r0

K−(r)1/2}.

Here, we set K− = −min{0,K}. Then we have the estimate |g′(r)/g(r)| ≤
k for any r ≥ r0.
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Proof. Let ε denote either +1 or −1 and let k be as above. Put

Gε(r) = εeεk(r−r0). We have

(g′Gε − gG′
ε)

′ = −(K + k2)gGε.(2.7)

In the case of ε = +1, we have (g′Gε − gG′
ε)(r) ≤ (g′Gε − gG′

ε)(r0) for any

r ≥ r0, since the rhs of (2.7) is non-positive. Then we have

g′(r)/g(r) ≤ G′
ε(r)/Gε(r) +

g(r0)

g(r)
(g′(r0)/g(r0) − k)

≤ G′
ε(r)/Gε(r) = k,

where we used the fact that k > g′(r0)/g(r0) in the second inequality.

Similarly, in the case of ε = −1, it follows from (2.7) that

g′(r)/g(r) ≥ G′
ε(r)/Gε(r) +

g(r0)

g(r)
(g′(r0)/g(r0) + k)

≥ G′
ε(r)/Gε(r) = −k.

This completes the proof. �

3. L2-Exponential Estimate of the Eigenfunction

In this section, following the line of argument as in Nakamura [Nak1],

we derive an exponential estimate for the eigenfunctions, assuming (A.1),

(A.2)τ , (E), and

(A.3) Positive, monotone increasing, continuous functions a1 and a2 on

[0,∞) satisfy the following conditions (i) and (ii):

(i) 0 < a1(r) < a2(r) < a(r) holds for all r > 0, where a is as in (2.1).

(ii) There exist R > 0 and C0 > 0 such that

∫ a−1
2 (x)

a−1
2 (y)

[
(a(t) − a2(t))

2

g(t)2
+ F (t) − E

]1/2

+

dt ≤ C0|x− y|

holds if x ≥ y ≥ R, where [x]+ stands for the non-negative part of x

and

F (r) =
1

2

g′′(r)

g(r)
− 1

4

(
g′(r)

g(r)

)2

.(3.1)
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Given a1, a2 and a as in (A.3), we take and fix a monotone increasing,

continuous function a3 on [0,∞) satisfying 0 < a1 < a2 < a3 < a on [0,∞).

Note that each of ajs has the inverse function a−1
j on [0,∞). In what follows

we set a−1
j (n) = 0 for all n ≤ 0 for notational convenience.

For any real-valued function ã on [0,∞), we introduce the set

Ω(ã) = {(r, n) ∈ [0,∞) × Z|n < ã(r)}.
Then the inequality (n− a)2 ≥ (a− aj)

2 holds on Ω(aj) for any j = 1, 2, 3,

since the condition n < aj implies that n − a < −(a − aj), i.e., |n − a| ≥
|a− aj |.

Under the conventions above, we define a weight function

ρ(r, n)

=

{ ∫ r
a−1
2 (n)[(a(t) − a2(t))

2/g(t)2 + F (t) − E]
1/2
+ dt if (r, n) ∈ Ω(a2),

0 if (r, n) /∈ Ω(a2).

Lemma 3.1. Let V be as in (2.5). Then the operator eδρ(r,n)Ve−δρ(r,n)
is bounded on L2((0,∞)) ⊗ l2(Z) if δC0 < τ , where C0 is the constant

as in (A.3) (ii). In addition, if we assume (A.2)∞, then

limR→∞ ‖χ{r≥R}e
δρVe−δρ‖op = 0, where χ{r>R} stands for the character-

istic function of {(r, n)|r > R, n ∈ Z} and ‖ · ‖op stands for the operator

norm.

Proof. We prove this lemma as in the proof of Lemma 4.1 in Naka-

mura [Nak1]. First, we claim that

|ρ(r, n) − ρ(r,m)| ≤
∫ a−1

2 (n)

a−1
2 (m)

[(a(t) − a2(t))
2/g(t)2 + F (t) − E]

1/2
+ dt(3.2)

holds if n ≥ m. Indeed, ρ(r, n) − ρ(r,m) = 0 if a2(r) ≤ m ≤ n, and

|ρ(r, n) − ρ(r,m)| = |0 −
∫ r
a−1
2 (m) | ≤ |

∫ a−1
2 (n)

a−1
2 (m)

| if m ≤ a2(r) ≤ n, and

ρ(r, n) − ρ(r,m) =
∫ a−1

2 (n)

a−1
2 (m)

if m ≤ n ≤ a2(r).

Next, for any σ satisfying δC0 < σ < τ , we have

|eδρVe−δρf(r, n)|2

=(2π)−1

(∑
m∈Z

eδ(ρ(r,n)−ρ(r,m))|(FV )(r, n−m)f(r,m)|
)2
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≤(2π)−1

(∑
m∈Z

eδC0|n−m||(FV )(r, n−m)f(r,m)|
)2

≤(2π)−1

(
sup
m∈Z

|eσ|m|(FV )(r,m)|
∑
m∈Z

e−(σ−δC0)|n−m||f(r,m)|
)2

≤(2π)−1 sup
m∈Z

|eσ|m|(FV )(r,m)|2

×
(∑
m∈Z

e−(σ−δC0)|n−m|
)(∑

m∈Z
e−(σ−δC0)|n−m||f(r,m)|2

)

=C sup
m∈Z

|eσ|m|(FV )(r,m)|2
∑
m∈Z

e−(σ−δC0)|n−m||f(r,m)|2,

where we used (A.3) (ii) and (3.2) in the first inequality and the Schwarz

inequality in the third inequality. Then it follows that

‖χ{r>R}e
δρVe−δρf‖ ≤ C sup

r>R
sup
m∈Z

|eσ|m|(FV )(r,m)|‖f‖,

from which we have the result because of Lemma 2.7. �

Define a unitary operator Ug from L2(M,dV ) to L2(M,drdθ) by Ugf =

g1/2f . Then a simple calculation shows that

UgHV U
−1
g = D2

r +
1

g2
(Dθ − a)2 + F + V.(3.3)

Lemma 3.2. Let χΩ be the characteristic function of Ω and let ajs be

as above. Assume that 0 < δ < 1. Then there exists R > 0 such that

Re χ{r>R}χΩ(a3)e
δρ(r,n)F(HV − E)F−1e−δρ(r,n)χΩ(a3)χ{r>R}(3.4)

≥ min
{
(1 − δ2)

(
(a− a2)

2/g2 + F − E
)
,

×(a− a3)
2/g2 + F − E

}
χΩ(a3)χ{r>R}

−Re χ{r>R}χΩ(a3)e
δρVe−δρχΩ(a3)χ{r>R},

where Re stands for the real part.
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Proof. We have

Re eδρF(HV − E)F−1e−δρ(3.5)

= Re U−1
g eδρ

{∑
n∈Z

⊕
(
D2
r + (n− a)2/g2 + F − E

)
+ V

}
e−δρUg.

Since ρ(r, n) vanishes on Ω(a3) \ Ω(a2), the rhs of (3.5) is bounded from

below by ∑
n

⊕
(
(a− a3)

2/g2 + F − E
)

+ Re eδρVe−δρ,

where we used the fact that (n − a)2 ≥ (a − a3)
2 holds on Ω(a3). On

Ω(a2) ∩ {(r, n)|r > R}, the rhs of (3.5) is bounded from below by

Re U−1
g

∑
n

⊕
(
(n− a)2/g2 + F − E − δ2(∂rρ)

2
)
Ug

+Re U−1
g eδρVe−δρUg

≥
∑
n

⊕(1 − δ2)
(
(a− a2)

2/g2 + F − E
)
− Re eδρVe−δρ

if we take R > 0 so large that((a− a2)/g)
2 +F −E > 0 holds for all r > R.

Then the result follows. �

Let R > 0 and let fR be a smooth function on (0,∞)×Z satisfying the

following conditions: |∂rfR|+ |∂2
rfR| is bounded, 0 ≤ fR(r, n) ≤ 1 holds for

all (r, n) and

fR(r, n) =

{
1 if (r, n) ∈ Ω(a2) and r ≥ 2R,

0 if (r, n) /∈ Ω(a3) or r ≤ R.

Lemma 3.3. Let 0 < δ < 1 and let fR be as above. Then there exists a

constant C = C(R, ρ, δ, g, V, E) > 0 such that

CR‖eδρfRFψ‖ ≤ C‖ψ‖
holds for any large R > 0, where we define CR by

inf
r>R

min

{
(1 − δ2)

(
(a(r) − a2(r))

2

g(r)2
+ F (r) − E

)
,

(a(r) − a3(r))
2

g(r)2
+ F (r) − E

}
−3‖χ{r>R}e

δρVe−δρ‖op.



Decay of Magnetic Eigenfunctions 337

Proof. In this proof we put

Q = Re (eδρfRFψ, eδρF(HV − E)F−1e−δρeδρfRFψ).

Then it follows from Lemma 3.2 that Q is bounded from below by

(min
{
(1 − δ2)

(
(a− a2)

2/g2 + F − E
)
,(3.6)

(a− a3)
2/g2 + F − E

}
eδρfRFψ, eδρfRFψ)

−‖χ{r>R}e
δρVe−δρ‖op‖eδρfRFψ‖2,

where we used the fact that supp fR ⊂ Ω(a3) and fR · χΩ(a3) = fR hold.

On the other hand, Q is bounded from above by

|(e2δρfRFψ, [F(HV − E)F−1, fR]Fψ)|(3.7)

≤ |(e2δρfRFψ, [
∑
n

⊕1

g
DrgDr, fR]Fψ)| + |(e2δρfRFψ, [V, fR]Fψ)|

= |(eδρfRFψ, eδρ[
∑
n

⊕1

g
DrgDr, fR]Fψ)|

+|(eδρfRFψ, [eδρVe−δρ, fR]eδρFψ)|,

where we used the eigen-equation. Note that

ρ(r, n) ≤
∫ 2R

0

√
[(a− a2)2/g2 + F − E]+ dt

holds on the support of ∂rfR or on the support of 1− fR. The first term on

the rhs of (3.7) is bounded from above by

C(‖χsupp ∂rfRFDrψ‖ + ‖ψ‖)‖eδρfRFψ‖(3.8)

≤ C(‖H0ψ‖ + ‖ψ‖)‖eδρfRFψ‖,

where we used the fact that ‖Drψ‖ ≤ C(‖H0ψ‖ + ‖ψ‖) and used Lemma

2.8 and the boundedness of ∂rfR and ∂2
rfR. The second term on the rhs of

(3.7) is bounded from above by

2‖χ{r>R}e
δρVe−δρ‖‖eδρfRFψ‖(‖eδρfRFψ‖ + ‖eδρ(1 − fR)Fψ‖)(3.9)

≤ 2‖χ{r>R}e
δρVe−δρ‖‖eδρfRFψ‖(‖eδρfRFψ‖ + ( sup

0≤r≤2R
eδρ(r,0))‖ψ‖).
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Then the result follows from (3.6)–(3.9).

In fact, we need to regularize the weight function ρ appropriately, since

ρ is not bounded. However, the argument above remains valid for such

regularized weights. (For instance, we can use ρN (r, n) = min{ρ(r, n), N}
as in [Nak1]. See also Section 4 in [Sor].) �

Let 0 < σ < τ and 0 < δ < 1 and put

ρ1(r)(3.10)

= min{σa1(r), δ

∫ r

a−1
2 (a1(r))

[
(a(t) − a2(t))

2/g(t)2 + F (t) − E
]1/2
+

dt}.

The main result in this section is the following:

Proposition 3.4. Assume (M.1)–(M.3), (A.1), (A.2)τ , (A.3), and

(E). Let δ, σ, and ρ1 be as above. Assume that the constant CR as in

Lemma 3.3 is positive for some R > 0. Then eρ1ψ belongs to L2(M).

Proof. Since a−1
2 (n) ≤ a−1

2 (a1(r)) holds on Ω(a1) = {(r, n)|n < a1(r)},
we have

ρ(r, n) =

∫ r

a−1
2 (n)

[(a− a2)
2/g2 + F − E]

1/2
+

≥
∫ r

a−1
2 (a1(r))

[(a− a2)
2/g2 + F − E]

1/2
+

=: ρ̃(r).

Let fR be as before and take R > 0 sufficiently large. Then we obtain

‖χΩ(a1)e
δρ̃Fψ‖ ≤ ‖χΩ(a1)e

δρ(r,n)Fψ‖(3.11)

≤ ‖fRχΩ(a1)e
δρ(r,n)Fψ‖

+‖(1 − fR)χΩ(a1)e
δρ(r,n)Fψ‖

≤ ‖fReδρ(r,n)Fψ‖ + sup
0≤r≤2R

eδρ(r,0)‖ψ‖,

which is finite because of Lemma 3.3 and the positivity assumption on CR.

On the other hand, on Ω(a1)
c, we have

‖χΩ(a1)ce
σa1(r)Fψ‖ ≤ ‖χΩ(a1)ce

σ|n|Fψ‖,(3.12)
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which is finite because of Lemma 2.6. Then the results follows from (3.11)

and (3.12). �

The following result is a straightforward generalization of the L2-esti-

mate of eigenfunctions obtained by Nakamura [Nak1] in the Euclidean case.

Corollary 3.5. Assume (A.1), (A.2)τ , (A.3) and (E). Moreover, as-

sume that

lim
r→∞

(a(r) − a2(r))/g(r) = ∞.(3.13)

Then eρ1ψ belongs to L2(M).

Furthermore, if we assume (A.2)∞, then we have the same conclusion

replaced ρ1 by

ρ2(r) = δ

∫ r

a−1
2 (a1(r))

[(a(t) − a2(t))
2/g(t)2 + F (t) − E]

1/2
+ dt.

Proof. The assumption (3.13) implies that the constant CR is positive

for any large R > 0. Under (A.2)∞, the assertion follows since we can take

τ (and so σ) arbitrary large by Lemma 2.6. �

Remark 3.6. In the case of spherically symmetric scalar potential V ,

the conclusions in Theorem 3.5 are still valid if we replace the function F

by F + V and the condition (3.13) by

E < lim inf
r→∞

(
(a(r) − a2(r))

2/g(r)2 + F (r) + V (r)
)
.

Indeed, in the proof of Lemma 3.3 above, we can replace F by F + V ,

and the last term in (3.6) and the commutator in (3.7) vanish.

4. Proof of Theorem 1.1

4.1. Upper bound

In this section we assume (M.1)–(M.4), (A.1), (A.2)∞, (E), and assume

further that the magnetic field B = B(r) approaches to a positive constant

B0 satisfying E < B2
0 + 1/4 at infinity. It is known that the assumptions
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on the radial curvature K = −g′′/g in Theorem 1.1 ensures the existence of

the two limits

c1 = lim
r→∞

e−rg(r) and lim
r→∞

F (r) = 1/4(4.1)

(see Lemma 3.5 in [Don2]).

By the assumption on B, for any ε > 0, there exists R0 > 0 such that

|B(r) −B0| < ε for all r ≥ R0, so we have

|a(r) −B0

∫ r

0
g(t)dt| ≤ (

∫ R0

0
+

∫ r

R0

)|B(t) −B0|g(t)dt

≤ Cε + ε

∫ r

0
g(t)dt

for some constant Cε and for all r ≥ R0. By (4.1), for any ε > 0, there

exists R1 > 0 such that (1−ε)c1e
r ≤ g(r) ≤ (1+ε)c1e

r holds for all r ≥ R1.

Hence, for any ε > 0, we find that

(1 − ε)B0c1e
r + C−(ε) ≤ a(r) ≤ (1 + ε)B0c1e

r + C+(ε)

holds for all r ≥ R1, where C±(ε) are independent of r.

Let R2 > 0 and 0 < ε1 < ε2 < 1, which are appropriately chosen below.

We choose a1, a2 in (A.3) so that

aj(r) =

{
B0c1e

εjr if r ≥ 2R2,

(j/3)a(r) if 0 ≤ r ≤ R2,
(4.2)

and ajs are continuous and monotone increasing. Then it follows that

lim
r→∞

(
(a(r) − aj(r))

2/g(t)2 + F (r)
)

= B2
0 + 1/4(4.3)

for j = 1, 2. Note that a−1
2 (x) = ε−1

2 (log x− logB0c1) for large x.

Lemma 4.1. For any ε > 0, there exists N > 0 such that

∫ a−1
2 (n)

a−1
2 (m)

[
(a(t) − a2(t))

2

g(t)2
+ F (t) − E

]1/2

+

dt(4.4)

≤ 1 + ε

ε2
(B2

0 + 1/4 − E)1/2|n−m|
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holds if n ≥ m ≥ N .

Proof. It follows from (4.3) that, for any ε > 0, there exists N > 0

such that, if n ≥ m ≥ N , the lhs of (4.4) is bounded from above by

(1 + ε)(B2
0 + 1/4 − E)1/2(a−1

2 (n) − a−1
2 (m))

= (1 + ε)(B2
0 + 1/4 − E)1/2(ε−1

2 log n− ε−1
2 logm)

=
1 + ε

ε2
(B2

0 + 1/4 − E)1/2 log (n/m)

≤ 1 + ε

ε2
(B2

0 + 1/4 − E)1/2|n−m|,

since log (X/x) = log (1 + (X − x)/x) ≤ (X − x)/x ≤ X − x holds if X ≥
x > 1. �

All the conditions in (A.3) are now satisfied for our choice of ajs, there-

fore, we can apply Proposition 3.4. In this case, there exists R3 > 0 such

that (a(r) − a2(r))
2/g(r)2 + F (r) − E > 0 and therefore

ρ2(r) = δ

∫ r

(ε1/ε2)r

(
(a(t) − a2(t))

2/g(t)2 + F (t) − E
)1/2

dt

for all r ≥ R3, because of (4.3), (4.2) and the assumption E < B2
0 + 1/4.

Moreover, there exists R4 > 0 such that

(
(a(t) − a2(t))

2/g(t)2 + F (t) − E
)1/2 ≥ (1 − ε1)(B

2
0 + 1/4 − E)1/2

holds for all t ≥ R4. Finally, it follows that

ρ2(r) ≥ δ(1 − ε1) (1 − (ε1/ε2)) (B2
0 + 1/4 − E)1/2r

holds for large r ≥ max{R1, R2, R3, R4}, from which we obtain the upper

estimate of ψ in Theorem 1.1 since we can choose positive numbers ε1 and

1 − δ arbitrarily small.

4.2. Upper bound of the L2-spherical average

In this subsection we obtain the upper bound of the L2-spherical average

of the eigenfunction ψ as in Theorem 1.1 and we obtain also the pointwise

upper bound of ψ.
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Lemma 4.2. Under the same assumption as in Theorem 1.1, the func-

tion �M (e(1−ε)ρψ) belongs to L2(M) for any ε > 0.

Proof. In this proof we denote the weight function (1 − ε)ρ by ρ for

simplicity. By Kato’s inequality, we have

−�M (eρ|ψ|) ≤ Re[(sgn(ψ))∇∗∇(eρψ)](4.5)

= Re[(sgn(ψ))(eρ∇∗∇ψ + [∇∗∇, eρ]ψ)]

= Re[(sgn(ψ))(eρ(E − V )ψ + [∇∗∇, eρ]ψ)],

where we used the eigen-equation in the last equality. We can find that

[∇∗∇, eρ] = [g−1DrgDr, e
ρ](4.6)

= 2(Drρ)e
ρDr + [(D2

rρ) + (Drρ)
2]eρ

+g−1(Drg)(Drρ)e
ρ.

Note that g′/g is bounded onM by Lemma 2.8, and alsoDrρ, D
2
rρ and V are

bounded. Then the rhs of (4.5) is bounded from above by Ceρ(|Drψ|+ |ψ|)
for some constant C > 0.

Then it is enough to show that eρDrψ belongs to L2(M) since we have

already shown that eρψ belongs to L2(M). To see this, we first consider the

case where ρ is smooth and bounded. Then we have ‖eρDrψ‖ ≤ ‖Dr(eρψ)‖+
C‖eρψ‖ and

‖Dr(eρψ)‖2 ≤ ‖Dr(eρψ)‖2 + ‖g−1(Dθ − a)(eρψ)‖2

= (eρψ,∇∗∇(eρψ))

= (eρψ, eρ∇∗∇ψ) + (eρψ, [∇∗∇, eρ]ψ)

≤ C‖eρDrψ‖‖eρψ‖ + C‖eρψ‖2

≤ 1

2
‖eρDrψ‖2 + C‖eρψ‖2,

where we used (4.6) in the second inequality and used the elementary in-

equality 2XY ≤ X2 + Y 2 in the last inequality. Thus we have shown that

‖eρDrψ‖ ≤ C‖eρψ‖. Finally, we have the same conclusion by approximating

the original weight function ρ by smooth, bounded ones. �

Lemma 4.3. Assume that (M, g) satisfies (M.1)–(M.4). Assume that

both f and �Mf belong to L2(M). Then there exists a constant C > 0 such

that
∫ 2π
0 |f(r, θ)|2dθ ≤ Ce−r/2 for all large r ≥ 0.
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Proof. By (4.1), there exists R > 0 such that g(r) ≥ er/2 holds for

any r ≥ R. Let n be a positive integer. Fix ε > 0. Let φ ∈ C∞
0 (R) satisfy

the following conditions: 1 ≤ φ ≤ 1, φ(t) = 1 if n ≤ t ≤ n + 1, φ(t) = 0

outside [n− ε, n+ 1 + ε]. For any r ∈ [n, n+ 1], we have

|f(r, θ)| ≤
∫ r

n−ε
|∂t[f(t, θ)φ(t)]|dt

≤
(∫ r

n−ε

dt

g(t)

)1/2(∫ r

n−ε
|∂t[f(t, θ)φ(t)]|2g(t)dt

)1/2

≤
(

2

∫ r

n−ε
e−tdt

)1/2(∫ r

n−ε
|∂t[f(t, θ)φ(t)]|2g(t)dt

)1/2

≤ (2(ε+ 1)eε+1)1/2e−r/2
(∫ ∞

0
|∂t[f(t, θ)φ(t)]|2g(t)dt

)1/2

,

where we used Schwarz’ inequality in the second inequality and used the

fact that n ≤ r ≤ n+ 1 in the last inequality. Then we have

(∫ 2π

0
|f(r, θ)|dθ

)1/2

≤ Cεe
−r/2‖Dr(fφ)‖L2(M)(4.7)

≤ C ′
εe

−r/2(‖�Mf‖L2(M) + ‖f‖L2(M)),

where we used the facts that ‖Drf‖2 ≤ ‖�Mf‖‖f‖ and that each of the

derivatives of φ are bounded in the last inequality. The estimate (4.7) holds

for any r ≥ R+ε since the constant C ′
ε is independent of n. Then the result

obeys. �

Then the upper bound of the L2-spherical average of the eigenfunction

ψ follows from Lemma 4.2 and Lemma 4.3 with f = e(1−ε)ρψ. Note that a

local elliptic argument shows that the eigenfunction ψ is continuous, hence

bounded on each compact subset of M .

Finally, we show the pointwise estimate of |ψ(r, θ)|. We recall Sobolev’s

embedding theorem from Hebey [Heb], Theorem 3.4: Let (M, g) be a

smooth, complete n-dimensional Riemannian manifold with Ricci curvature

bounded from below and positive injectivity radius. Assume that q ≥ 1,

0 ≤ m < k, integers, and 1/q < (k −m)/n. Then Hqk(M) ⊂ CmB (M). Here,
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the spaces Hqk(M), CmB (M) are defined by the norms

‖u‖k,q =


 k∑
j=0

∫
M

|∇ju|qdV




1/q

,

‖u‖Cm
B (M) =

m∑
j=0

sup
x∈M

|(∇ju)(x)|,

respectively.

We use this with u = e(1−ε)ρψ, q = 2, k = 2, n = 2, and m = 0.

Then the conclusion is that |e(1−ε)ρψ| is bounded on M . (This estimate can

be also obtained as in the proof of Theorem 5.3 in Donnelly [Don5] using

Lemma 2.3.) This completes the proof of the assertion 1 in Theorem 1.1.

4.3. Lower bound of the L2-spherical average

In this subsection we obtain a lower bound of the L2-spherical average

of the eigenfunction ψ as in Theorem 1.1, following the line of argument as

in the proof of Theorem 3.6 in Donnelly [Don2]. We may assume that the

eigenfunction ψ is real-valued; otherwise we consider the real and complex

parts of ψ. We note that the discreteness assumption on the eigenvalue E

is not needed in the proof below.

Lemma 4.4. Let r0 ∈ R. Let u ∈ C2([r0,∞),R) ∩ L2((r0,∞), dr) and

u(r0) > 0. Let f, q ∈ C([r0,∞)), f ≥ 0 and q > 0. Assume that u satisfies

the ODE: u′′ = qu− f on [r0,∞). Then u is positive on [r0,∞).

Proof. This lemma is elementary and well-known in the theory of

ODE. However, we give a proof for the sake of completeness. We show

this by contradiction. Assume that there exists the first zero r1 (> r0)

of u. Then we can deduce that u′(r1) ≤ 0 and u is concave at r1, which

implies that u is concave and strictly negative on (r1,∞) by the ODE. This

contradicts the fact that u ∈ L2. �

In what follows we assume that V is spherically symmetric in addition

to (A.2)∞. The Plancherel formula with respect to L2(S1) yields that∫ 2π

0
|ψ(r, θ)|2dθ =

∑
n∈Z

|(Fψ)(r, n)|2(4.8)

≥ |(Fψ)(r, j)|2
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for any j ∈ Z. Put ψj(r) = g1/2(r)(Fψ)(r, j). Then, by the assumption on

V , each ψj satisfies the equation

(
D2
r + (j − a(r))2/g(r)2 + F (r) + V (r) − E

)
ψj(r) = 0

on [0,∞) by (3.3). We rewrite this equation as
(
D2
r + µ− E + q1

)
ψj = 0,

where we put µ = B2
0 + 1/4, q1 = (j − a)2/g2 + F + V − µ. We can find

and fix an integer j for which (Fψ)(·, j) is not identically zero, since ψ �= 0.

Then ψj is real-valued, smooth on [0,∞) and belongs to L2((0,∞), dr).

We claim that there exists r0 > 0 such that ψj(r) > 0 holds for all

r ≥ r0. To see this we take r̃0 > 0 such that µ − E + q1 > 0 holds for

all r ≥ r̃0, since µ − E > 0, q1 → 0 as r → ∞. Moreover, we can find r0
(≥ r̃0) so that ψj(r0) > 0 because of the choice of j; otherwise, we take −ψj
instead of ψj . Then the claim follows from Lemma 4.4 with u = ψj , f = 0,

q = µ− E + q1.

Let r0 be as above and let ε > 0 be fixed small enough. We introduce the

auxiliary function v(r) = (1/2)ψj(r0) exp (−(µ− E + ε)1/2(r − r0)), which

solves the equation (D2
r + µ− E + ε)v = 0 on [r0,∞).

We put γ = ψj − v, then γ satisfies the equation γ′′ = (µ− E + q1) γ −
(ε − q1)v with the boundary condition γ(r0) = ψj(r0)/2 > 0. Again, we

apply Lemma 4.4 with u = γ, q = µ − E + q1, and f = (ε − q1)v.

All the assumptions in Lemma 4.4 are satisfied for large r0 > 0, and so

Lemma 4.4 implies that γ(r) > 0 for all large r. This means that ψj(r) >

(1/2)ψj(r0) exp (−(µ− E + ε)1/2(r − r0)) if r is large enough. Then, by

(4.8), there exists c = c(r0) > 0 such that

∫ 2π

0
|ψ(r, θ)|2dθ ≥ c exp

(
−(µ− E + ε)1/2r

)
exp (−r/2)

holds for any large r > 0, from which the lower bound estimate in Theorem

1.1 follows. Now we complete the proof of Theorem 1.1.
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