A Limit Theorem for Solutions of Some Functional Stochastic Difference Equations

By Takashi Kato

Abstract

In this paper, we study a limit theorem for solutions of some functional stochastic difference equations under strong mixing conditions and some dimensional conditions. This work is an extension of the work of Hisao Watanabe.

1. Introduction and Main Results

Diffusion approximations for certain stochastic difference equations or stochastic ordinary differential equations have been discussed in several papers. [9] [15], [16] and [17] treated such problem and derived the weak limit of appropriately scaled and interpolated process, which was given by the solution of a stochastic difference equation as a diffusion process. Concerning this, $[5],[6],[10],[11]$ and many other papers dealt with weak convergence of the solution of a stochastic ordinary differential equation.

In this paper, we study a limit theorem for stochastic processes X_{t}^{n} given by the following functional stochastic difference equations

$$
\begin{equation*}
X_{(k+1) / n}^{n}-X_{k / n}^{n}=\frac{1}{\sqrt{n}} F_{k}^{n}\left(X^{n}, \omega\right)+\frac{1}{n} G_{k}^{n}\left(X^{n}, \omega\right) \tag{1.1}
\end{equation*}
$$

and by linear interpolation as

$$
\begin{equation*}
X_{t}^{n}=(1-n t+k) X_{k / n}^{n}+(n t-k) X_{(k+1) / n}^{n} \tag{1.2}
\end{equation*}
$$

for $k / n<t<(k+1) / n$, and

$$
\begin{equation*}
X_{0}^{n}=x_{0} \in \mathbb{R}^{d} \tag{1.3}
\end{equation*}
$$

Here F_{k}^{n} and G_{k}^{n} are d dimensional random functions on $C\left([0, \infty) ; \mathbb{R}^{d}\right)$, the space of continuous functions from $[0, \infty)$ to \mathbb{R}^{d}, such that F_{k}^{n} has mean zero.

1991 Mathematics Subject Classification. Primary 60F05; Secondary 60B10, 39A12.

Under certain assumptions for F_{k}^{n} and G_{k}^{n}, we show that the distribution of X^{n} converges weakly to the solution of a martingale problem corresponding to functional coefficients.

The methods of the proof are based on [5] and [16]. However, we cannot use mixing inequalities in these papers, since the dimension of parameter space $C\left([0, \infty) ; \mathbb{R}^{d}\right)$ is infinite.

We show another version of mixing inequalities by assuming certain dimensional conditions for the set of random variables $F_{k}^{n}(w)$ and $G_{k}^{n}(w)$, which may look artificial but we give sufficient conditions for this assumption later.

The author thanks Professor Shigeo Kusuoka for a lot of precious advice and discussions.

Let $\left(\Omega^{n}, \mathcal{F}^{n}, P^{n}\right), n \in \mathbb{N}=\{1,2,3, \ldots\}$, be complete probability spaces. Let $F_{k}^{n}(w, \omega)=\left(F_{k}^{n, i}(w, \omega)\right)_{i=1}^{d}$ and $G_{k}^{n}(w, \omega)=\left(G_{k}^{n, i}(w, \omega)\right)_{i=1}^{d}: C([0, \infty)$; $\left.\mathbb{R}^{d}\right) \times \Omega^{n} \longrightarrow \mathbb{R}^{d}, k \in \mathbb{Z}_{+}=\{0,1,2, \ldots\}$, be random functions. Let \mathcal{B}_{t} be the σ-algebra of $C\left([0, \infty) ; \mathbb{R}^{d}\right)$ given by $\mathcal{B}_{t}=\sigma(w(s) ; s \leq t)$.

We introduce the following conditions.
[A1] $F_{k}^{n, i}$ and $G_{k}^{n, i}$ are measurable with respect to $\mathcal{B}_{k / n} \otimes \mathcal{F}^{n}$.
By [A1], we can regard $F_{k}^{n, i}$ and $G_{k}^{n, i}$ as random functions defined on the Banach space $C\left([0, k / n] ; \mathbb{R}^{d}\right)$.
[A2] $F_{k}^{n, i}(w, \omega)$ (respectively, $\left.G_{k}^{n, i}(w, \omega)\right)$ is twice (respectively, once) continuously Fréchet differentiable in w for P^{n}-almost surely ω.

We denote by L_{T}^{m} the space of real valued continuous m-multilinear operators on $C\left([0, T] ; \mathbb{R}^{d}\right)$ and denote by $|\cdot|_{L_{T}^{m}}$ its norm. Then the m-th Fréchet derivative $\nabla^{m} F_{k}^{n, i}(w):\left(w_{1}, \ldots, w_{m}\right) \longmapsto \nabla^{m} F_{k}^{n, i}\left(w ; w_{1}, \ldots, w_{m}\right)$ is regarded as the element of $L_{k / n}^{m}$ for each w (and so is $\nabla^{m} G_{k}^{n, i}(w)$). For $m=0, L_{T}^{0}=\mathbb{R}$ and $\nabla^{0} F_{k}^{n, i}(w)=F_{l}^{n, i}(w)$.

Let $p_{0}>3$ and $\gamma_{0}>0$. We assume the moment conditions with respect to p_{0} and the dimensional conditions with respect to γ_{0} as $[A 3]$ and $[A 4]$.
[A3] For each $M>0$, there exists a constant $C(M)>0$ such that

$$
\begin{equation*}
\sum_{m=0}^{2} \mathrm{E}^{n}\left[\sup _{|w|_{\infty} \leq M}\left|\nabla^{m} F_{k}^{n, i}(w)\right|_{L_{k / n}^{m}}^{p_{0}}\right] \leq C(M) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{m=0}^{1} \mathrm{E}^{n}\left[\sup _{|w|_{\infty} \leq M}\left|\nabla^{m} G_{k}^{n, i}(w)\right|_{L_{k / n}^{m}}^{p_{0}}\right] \leq C(M) \tag{1.5}
\end{equation*}
$$

for any $n \in \mathbb{N}$ and $k \in \mathbb{Z}_{+}$, where $\mathrm{E}^{n}[\cdot]$ denotes the expectation under the probability measure P^{n} and $|w|_{\infty}=\sup _{t \geq 0}|w(t)|$.

Let \mathcal{C}_{M}^{d} denote the set of $w \in C\left([0, \infty) ; \mathbb{R}^{d}\right)$ such that $|w|_{\infty} \leq M$. For a random function $U: C\left([0, \infty) ; \mathbb{R}^{d}\right) \times \Omega^{n} \longrightarrow \mathbb{R}$ and $\varepsilon>0$, let $N_{n}(\varepsilon, M ; U)$ be the smallest integer m such that there exist sets S_{1}, \ldots, S_{m} which satisfy $\mathcal{C}_{M}^{d}=\bigcup_{i=1}^{m} S_{i}$ and

$$
\mathrm{E}^{n}\left[\max _{i=1, \ldots, m} \sup _{x, y \in S_{i}}|U(x)-U(y)|^{p_{0}}\right]^{1 / p_{0}}<\varepsilon
$$

[A4]

$$
\begin{align*}
& \sup _{n, k} \sup _{\varepsilon>0} \varepsilon^{\gamma_{0}} N_{n}\left(\varepsilon, M ; F_{k}^{n, i}\right)<\infty \tag{1.6}\\
& \sup _{n, k} \sup _{l \leq k} \sup _{\varepsilon>0} \varepsilon^{\gamma_{0}} N_{n}\left(\varepsilon, M ; \nabla F_{k}^{n, i}\left(\cdot ; I_{l}^{n} e_{j}\right)\right)<\infty \tag{1.7}\\
& \sup _{n, k} \sup _{l, m \leq k} \sup _{\varepsilon>0} \varepsilon^{\gamma_{0}} N_{n}\left(\varepsilon, M ; \nabla^{2} F_{k}^{n, i}\left(\cdot ; I_{l}^{n} e_{j}, I_{m}^{n} e_{\nu}\right)\right)<\infty, \tag{1.8}\\
& \sup _{n, k} \sup _{\varepsilon>0} \varepsilon^{\gamma_{0}} N_{n}\left(\varepsilon, M ; G_{k}^{n, i}\right)<\infty \tag{1.9}
\end{align*}
$$

and

$$
\begin{equation*}
\sup _{n, k} \sup _{l \leq k} \sup _{\varepsilon>0} \varepsilon^{\gamma_{0}} N_{n}\left(\varepsilon, M ; \nabla G_{k}^{n, i}\left(\cdot ; I_{l}^{n} e_{j}\right)\right)<\infty \tag{1.10}
\end{equation*}
$$

for each $M>0$ and $i, j, \nu=1, \ldots d$, where $e_{j} \in \mathbb{R}^{d}$ denotes the unit vector j
along the j-th axis, i.e. $e_{j}=(0, \ldots, 0,1,0, \ldots, 0)$, and the function I_{l}^{n} :
$[0, \infty) \longrightarrow \mathbb{R}$ is given by

$$
I_{l}^{n}(t)= \begin{cases}0 & \text { if } 0 \leq t<\frac{l}{n} \\ n t-l & \text { if } \frac{l}{n} \leq t<\frac{l+1}{n} \\ 1 & \text { if } t \geq \frac{l+1}{n}\end{cases}
$$

[A5] Let

$$
\mathcal{F}_{k, l}^{n}=\sigma\left(F_{m}^{n, i}(w), G_{m}^{n, i}(w) ; i=1, \ldots, d, k \leq m \leq l, w \in C\left([0, \infty) ; \mathbb{R}^{d}\right)\right)
$$

and

$$
\alpha_{k}=\sup _{n} \sup _{l} \sup \left\{\left|P^{n}(A \cap B)-P^{n}(A) P^{n}(B)\right| ; A \in \mathcal{F}_{0, l}^{n}, B \in \mathcal{F}_{k+l, \infty}^{n}\right\}
$$

Then

$$
\begin{equation*}
\sum_{k=1}^{\infty} \alpha_{k}^{\varrho_{0}}<\infty \tag{1.11}
\end{equation*}
$$

where $\varrho_{0}=\frac{1}{2 s_{0}+4 \gamma_{0}}$ and $s_{0}=\frac{p_{0}}{p_{0}-3}$.
$[A 6] \mathrm{E}^{n}\left[F_{k}^{n, i}(w)\right]=0$.
We denote by \mathcal{K}^{d} the family of a compact set K of $C\left([0, \infty) ; \mathbb{R}^{d}\right)$ such that $\sup _{w \in K}|w|_{\infty}<\infty$.
[A7] Let

$$
\begin{aligned}
a_{0}^{n, i j}(k, w) & =\mathrm{E}^{n}\left[F_{k}^{n, i}(w) F_{k}^{n, j}(w)\right] \\
b_{0}^{n, i}(k, w) & =\mathrm{E}^{n}\left[G_{k}^{n, i}(w)\right] \\
A^{n, i j}(k, w) & =\sum_{l=1}^{\infty} \mathrm{E}^{n}\left[F_{k+l}^{n, i}\left(w\left(\cdot \wedge \frac{k}{n}\right)\right) F_{k}^{n, j}(w)\right] \\
B^{n, i j}(k, w) & =\sum_{l=1}^{\infty} \mathrm{E}^{n}\left[\nabla F_{k+l}^{n, i}\left(w\left(\cdot \wedge \frac{k}{n}\right) ; I_{k}^{n} e_{j}\right) F_{k}^{n, j}(w)\right]
\end{aligned}
$$

for $k \in \mathbb{Z}_{+}$and $w \in C\left([0, \infty) ; \mathbb{R}^{d}\right)$, where $a \wedge b=\min \{a, b\}$. The following limits exist uniformly on any $K \in \mathcal{K}^{d}$ for each $t \geq 0$:

$$
\begin{align*}
a_{0}^{i j}(t, w) & =\lim _{n \rightarrow \infty} a_{0}^{n, i j}([n t], w) \tag{1.12}\\
b_{0}^{i}(t, w) & =\lim _{n \rightarrow \infty} b_{0}^{n, i}([n t], w) \tag{1.13}\\
A^{i j}(t, w) & =\lim _{n \rightarrow \infty} A^{n, i j}([n t], w) \tag{1.14}\\
B^{i j}(t, w) & =\lim _{n \rightarrow \infty} B^{n, i j}([n t], w), \tag{1.15}
\end{align*}
$$

where $[x]$ denotes the greatest integer less than or equal to x.
[A8] Define $a(t, w)=\left(a^{i j}(t, w)\right)_{i, j=1}^{d}$ and $b(t, w)=\left(b^{i}(t, w)\right)_{i=1}^{d}$ by

$$
a^{i j}(t, w)=a_{0}^{i j}(t, w)+A^{i j}(t, w)+A^{j i}(t, w)
$$

and

$$
b^{i}(t, w)=b_{0}^{i}(t, w)+\sum_{j=1}^{d} B^{i j}(t, w)
$$

For each $T>0$, there exists a positive constant $C(T)$ such that

$$
\begin{equation*}
\left|a^{i j}(t, w)\right| \leq C(T)\left(1+\sup _{0 \leq s \leq t}|w(s)|^{2}\right) \tag{1.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|b^{i}(t, w)\right| \leq C(T)\left(1+\sup _{0 \leq s \leq t}|w(s)|\right) \tag{1.17}
\end{equation*}
$$

for $t \in[0, T]$ and $w \in C\left([0, \infty) ; \mathbb{R}^{d}\right)$.
[A9] Let

$$
\mathscr{L} f(t, w)=\frac{1}{2} \sum_{i, j=1}^{d} a^{i j}(t, w) \frac{\partial^{2}}{\partial x^{i} \partial x^{j}} f(w(t))+\sum_{i=1}^{d} b^{i}(t, w) \frac{\partial}{\partial x^{i}} f(w(t))
$$

for $f \in C^{2}\left(\mathbb{R}^{d}\right)$. The martingale problem associated with the generator \mathscr{L} and initial value x_{0} has a unique solution Q on $C\left([0, \infty) ; \mathbb{R}^{d}\right)$.

We will introduce the sufficient conditions for $[A 4]$ and $[A 9]$ in Section 5.

Define the stochastic process $X_{t}^{n}=\left(X_{t}^{n, i}\right)_{i=1}^{d}$ by (1.1), (1.2) and (1.3). Let Q^{n} be the probability measure induced by X^{n} on $C\left([0, \infty) ; \mathbb{R}^{d}\right)$.

Theorem 1. Assume $[A 1]-[A 9]$. Then Q^{n} converges weakly to Q on $C\left([0, \infty) ; \mathbb{R}^{d}\right)$.

Let us give some remarks on Theorem 1.
(i) In fact, using the arguments in [16], we can prove Theorem 1 without assuming the condition (1.10).
(ii) We can replace the assumption $[A 5]$ with
[$A 5^{\prime}$] For each $M>0$

$$
\begin{equation*}
\sum_{k=1}^{\infty} \alpha_{k}(M)^{\varrho_{0}}<\infty \tag{1.18}
\end{equation*}
$$

where

$$
\mathcal{F}_{k, l}^{n}(M)=\sigma\left(F_{m}^{n, i}(w), G_{m}^{n, i}(w) ; i=1, \ldots, d, k \leq m \leq l,|w|_{\infty} \leq M\right)
$$

and

$$
\begin{aligned}
& \alpha_{k}(M)=\sup _{n} \sup _{l} \sup \left\{\left|P^{n}(A \cap B)-P^{n}(A) P^{n}(B)\right|\right. \\
&\left.A \in \mathcal{F}_{0, l}^{n}(M), B \in \mathcal{F}_{k+l, \infty}^{n}(M)\right\}
\end{aligned}
$$

The proof needs no change.
(iii) Assuming the following uniform mixing condition $\left[A 5^{\prime \prime}\right]$ instead of [A5], we can remove the dimensional condition [A4] :
[$\left.A 5^{\prime \prime}\right]$ It holds that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \phi_{k}^{\varrho_{2}}<\infty \tag{1.19}
\end{equation*}
$$

where $\varrho_{2}=\frac{p_{0}-2}{2 p_{0}}$ and

$$
\begin{aligned}
\phi_{k}=\sup _{n} \sup _{l} \sup \left\{\left|\frac{P^{n}(A \cap B)}{P^{n}(A)}-P^{n}(B)\right|\right. & ; \\
& \left.A \in \mathcal{F}_{0, l}^{n}, B \in \mathcal{F}_{k+l, \infty}^{n}, P^{n}(A)>0\right\}
\end{aligned}
$$

Next we provide another version of Theorem 1. We introduce the following conditions.
[B4] For some $\gamma_{1}>0$, (1.6)-(1.10) hold with $\log N_{n}$ instead of N_{n}.
[B5] Let α_{k} be as in [A5]. Then there exists $\varrho_{1} \in\left(0, \frac{1}{2 \gamma_{1}}\right)$ such that

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(\frac{1}{\log \left(1 / \alpha_{k}\right)}\right)^{\varrho_{1}}<\infty \tag{1.20}
\end{equation*}
$$

Theorem 2. Assume $[A 1]-[A 3],[B 4],[B 5]$ and $[A 6]-[A 9]$. Then Q^{n} converges weakly to Q on $C\left([0, \infty) ; \mathbb{R}^{d}\right)$.

2. Mixing Inequalities

In this section we prepare some inequalities for strong mixing coefficients. Let (Ω, \mathcal{F}, P) be a probability space and $\mathcal{A}, \mathcal{B}, \mathcal{C} \subset \mathcal{F}$ be sub σ-algebras. Define $\alpha(\mathcal{A}, \mathcal{B})$ by

$$
\alpha(\mathcal{A}, \mathcal{B})=\sup \{|P(A \cap B)-P(A) P(B)| ; A \in \mathcal{A}, B \in \mathcal{B}\}
$$

The following lemma is shown in the proof of Theorem 17.2.2 in [4].
Lemma 1. Let $1 \leq p, q, r \leq \infty$ be such that $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=1, X$ be an \mathcal{A}-measurable random variable and Y be a \mathcal{B}-measurable random variable. Then

$$
\begin{equation*}
|\mathrm{E}[X Y]-\mathrm{E}[X] \mathrm{E}[Y]| \leq 8 \mathrm{E}\left[|X|^{p}\right]^{1 / p} \mathrm{E}\left[|Y|^{q}\right]^{1 / q} \alpha(\mathcal{A}, \mathcal{B})^{1 / r} \tag{2.1}
\end{equation*}
$$

Let (S, d) be a metric space, $\varepsilon, p>0$ and $U: S \times \Omega \longrightarrow \mathbb{R}$ be a continuous random function. We say that a family of sets $\left(S_{i}\right)_{i=1}^{m}$ is an (ε, p, U)-net of S if $S=\bigcup_{i=1}^{m} S_{i}$ and

$$
\mathrm{E}\left[\max _{i=1, \ldots, m} \sup _{x, y \in S_{i}}|U(x)-U(y)|^{p}\right]^{1 / p}<\varepsilon
$$

We denote the minimum of cardinals of (ε, p, U)-nets by $N(\varepsilon, p ; U)$.
Lemma 2. Let $1<p, q<\infty$ be such that $\frac{1}{p}+\frac{1}{q}<1$ and $U: S \times \Omega \longrightarrow$ \mathbb{R} be a continuous random function such that $U(x)$ is \mathcal{A}-measurable and $\mathrm{E}[U(x)]=0$ for each $x \in S$, and $X: \Omega \longrightarrow S, V: \Omega \longrightarrow \mathbb{R}$ be \mathcal{B}-measurable random variables. Then for any $\varepsilon>0$

$$
\begin{align*}
|\mathrm{E}[U(X) V]| \leq & 8\left(\mathrm{E}\left[\sup _{x \in S}|U(x)|^{p}\right]^{1 / p}+1\right) \tag{2.2}\\
& \times \mathrm{E}\left[|V|^{q}\right]^{1 / q}\left\{\varepsilon+\varepsilon^{1-r} N(\varepsilon, p ; U) \alpha(\mathcal{A}, \mathcal{B})\right\},
\end{align*}
$$

where $\frac{1}{r}=1-\frac{1}{p}-\frac{1}{q}$.
Proof. We may assume that the right-hand side of (2.2) is finite and $\alpha(\mathcal{A}, \mathcal{B})>0$. Set $N_{\varepsilon}=N(\varepsilon, p ; U)$ and $U^{*}=\sup _{x \in S}|U(x)|$. Let $\delta=p / r, \quad \tilde{\delta}=$ q / r,

$$
I=\mathrm{E}\left[\left|U^{*}\right|^{p}\right]^{1 / p} \varepsilon^{-1 / \delta}, \quad J=\mathrm{E}\left[|V|^{q}\right]^{1 / q} \varepsilon^{-1 / \tilde{\delta}}
$$

and

$$
U_{I}(x)=U(x) 1_{\left\{\left|U^{*}\right| \leq I\right\}}, \quad V_{J}=V 1_{\{|V| \leq J\}}
$$

Then we have

$$
\begin{equation*}
\frac{1}{\delta}+\frac{1}{\tilde{\delta}}=r-1 \tag{2.3}
\end{equation*}
$$

Let $\left(S_{i}\right)_{i=1}^{N_{\varepsilon}}$ be an (ε, p, U)-net. We may assume that all S_{i} are disjoint and not empty. Take any $x_{i} \in S_{i}$, and define the random variable $\tilde{X}: \Omega \longrightarrow$ S by

$$
\tilde{X}(\omega)=\sum_{i=1}^{N_{\varepsilon}} x_{i} 1_{\Omega_{i}}(\omega)
$$

where $\Omega_{i}=\left\{X \in S_{i}\right\}$. Then it follows that
(2.4) $|\mathrm{E}[U(X) V]| \leq|\mathrm{E}[(U(X)-U(\tilde{X})) V]|+\left|\mathrm{E}\left[\left(U(\tilde{X})-U_{I}(\tilde{X})\right) V\right]\right|$ $+\left|\mathrm{E}\left[U_{I}(\tilde{X})\left(V-V_{J}\right)\right]\right|+\left|\mathrm{E}\left[U_{I}(\tilde{X}) V_{J}\right]\right|$.

By the definition of \tilde{X}, we have

$$
\begin{align*}
& |\mathrm{E}[(U(X)-U(\tilde{X})) V]| \tag{2.5}\\
\leq & \mathrm{E}\left[\max _{i=1, \ldots, N_{\varepsilon}} \sup _{x, y \in S_{i}}|U(x)-U(y)| \cdot|V|\right] \\
\leq & \mathrm{E}\left[\max _{i=1, \ldots, N_{\varepsilon}} \sup _{x, y \in S_{i}}|U(x)-U(y)|^{p}\right]^{1 / p} \mathrm{E}\left[|V|^{q}\right]^{1 / q} \\
\leq & \varepsilon \mathrm{E}\left[|V|^{q}\right]^{1 / q}
\end{align*}
$$

By the Chebyshev inequality and the Hölder inequality, we have

$$
\begin{align*}
& \left|\mathrm{E}\left[\left(U(\tilde{X})-U_{I}(\tilde{X})\right) V\right]\right| \leq \frac{1}{I^{\delta}} \mathrm{E}\left[\left|U^{*}\right|^{1+\delta}|V|\right] \tag{2.6}\\
\leq & \frac{1}{I^{\delta}} \mathrm{E}\left[\left|U^{*}\right|^{p}\right]^{(1+\delta) / p} \mathrm{E}\left[|V|^{q}\right]^{1 / q}=\mathrm{E}\left[\left|U^{*}\right|^{p}\right]^{1 / p} \mathrm{E}\left[|V|^{q}\right]^{1 / q} \varepsilon .
\end{align*}
$$

Similarly we obtain

$$
\begin{equation*}
\left|\mathrm{E}\left[U_{I}(\tilde{X})\left(V-V_{J}\right)\right]\right| \leq \mathrm{E}\left[\left|U^{*}\right|^{p}\right]^{1 / p} \mathrm{E}\left[|V|^{q}\right]^{1 / q} \varepsilon \tag{2.7}
\end{equation*}
$$

Set $\bar{U}_{I}(x)=\mathrm{E}\left[U_{I}(x)\right]$ and $\tilde{U}_{I}(x)=U_{I}(x)-\bar{U}_{I}(x)$. Then it follows that

$$
\begin{align*}
\left|\mathrm{E}\left[U_{I}(\tilde{X}) V_{J}\right]\right| & \leq\left|\mathrm{E}\left[\bar{U}_{I}(\tilde{X}) V_{J}\right]\right|+\left|\mathrm{E}\left[\tilde{U}_{I}(\tilde{X}) V_{J}\right]\right| \tag{2.8}\\
& \leq \sup _{x \in S}\left|\bar{U}_{I}(x)\right| \mathrm{E}\left[|V|^{q}\right]^{1 / q}+\sum_{i=1}^{N_{\varepsilon}}\left|\mathrm{E}\left[\tilde{U}_{I}\left(x_{i}\right) V_{J} 1_{\Omega_{i}}\right]\right|
\end{align*}
$$

Since $\mathrm{E}[U(x)]=0$, we have

$$
\begin{equation*}
\left|\bar{U}_{I}(x)\right|=\left|\mathrm{E}\left[U_{I}(x)-U(x)\right]\right| \leq \frac{1}{I^{\delta}} \mathrm{E}\left[\left|U^{*}\right|^{1+\delta}\right]=\mathrm{E}\left[\left|U^{*}\right|^{p}\right]^{1 / p} \varepsilon \tag{2.9}
\end{equation*}
$$

By Lemma 1 and (2.3), we get

$$
\begin{align*}
\sum_{i=1}^{N_{\varepsilon}}\left|\mathrm{E}\left[\tilde{U}_{I}\left(x_{i}\right) V_{J} 1_{\Omega_{i}}\right]\right| & \leq 8 N_{\varepsilon} I J \alpha(\mathcal{A}, \mathcal{B}) \tag{2.10}\\
& =8 \mathrm{E}\left[\left|U^{*}\right|^{p}\right]^{1 / p} \mathrm{E}\left[|V|^{q}\right]^{1 / q} \varepsilon^{1-r} N_{\varepsilon} \alpha(\mathcal{A}, \mathcal{B})
\end{align*}
$$

By (2.4)-(2.10), we obtain the assertion.

Lemma 3. Let $1<p, q<\infty$ be such that $\frac{1}{p}+\frac{1}{q}<1$ and $U: S \times \Omega \longrightarrow$ \mathbb{R} be a continuous random function such that $U(x)$ is \mathcal{A}-measurable and $\mathrm{E}[U(x)]=0$ for each $x \in S$, and $X: \Omega \longrightarrow S, V: \Omega \longrightarrow \mathbb{R}$ be \mathcal{B}-measurable random variables. Suppose that there exist positive constants C_{0} and γ such that

$$
\begin{equation*}
\sup _{\varepsilon>0} \varepsilon^{\gamma} N(\varepsilon, p ; U) \leq C_{0} \tag{2.11}
\end{equation*}
$$

Then it holds that

$$
\begin{align*}
|\mathrm{E}[U(X) V]| \leq & 16\left(C_{0}+1\right)\left(\mathrm{E}\left[\sup _{x \in S}|U(x)|^{p}\right]^{1 / p}+1\right) \tag{2.12}\\
& \times \mathrm{E}\left[|V|^{q}\right]^{1 / q} \alpha(\mathcal{A}, \mathcal{B})^{\varrho}
\end{align*}
$$

where $\varrho=\frac{1}{r+\gamma}$ and $\frac{1}{r}=1-\frac{1}{p}-\frac{1}{q}$.
Proof. By Lemma 2, we get

$$
\begin{aligned}
|\mathrm{E}[U(X) V]| \leq & 8\left(C_{0}+1\right)\left(\mathrm{E}\left[\sup _{x \in S}|U(x)|^{p}\right]^{1 / p}+1\right) \\
& \times \mathrm{E}\left[|V|^{q}\right]^{1 / q}\left\{\varepsilon+\varepsilon^{1-r-\gamma} \alpha(\mathcal{A}, \mathcal{B})\right\}
\end{aligned}
$$

The assertion now follows by taking $\varepsilon=\alpha(\mathcal{A}, \mathcal{B})^{\varrho}$.
We denote by $\mathcal{A} \vee \mathcal{B}$ the smallest σ-algebra which includes both \mathcal{A} and \mathcal{B}. The following lemma is obtained by Lemma 3 and the arguments in the proof of Lemma 2 in [5].

LEMMA 4. Let $1<p, q, r<\infty$ be such that $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1$. Let $U, V: S \times \Omega \longrightarrow \mathbb{R}$ be continuous random functions such that $U(x)$ and $V(x)$ are \mathcal{A} and \mathcal{B}-measurable respectively and $\mathrm{E}[U(x)]=0$ for each $x \in S$, and $X: \Omega \longrightarrow S, Z: \Omega \longrightarrow \mathbb{R}$ be \mathcal{C}-measurable random variables. Suppose that there exist positive constants C_{0}, u^{*}, v^{*} and γ such that

$$
\begin{equation*}
\sup _{\varepsilon>0} \varepsilon^{\gamma}\{N(\varepsilon, p ; U)+N(\varepsilon, q ; V)\} \leq C_{0} \tag{2.13}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{E}\left[\sup _{x \in S}|U(x)|^{p}\right]^{1 / p} \leq u^{*} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{E}\left[\sup _{x \in S}|V(x)|^{q}\right]^{1 / q} \leq v^{*} \tag{2.15}
\end{equation*}
$$

Then there exists a constant $C>0$ depending only on C_{0}, u^{*}, v^{*} and γ such that

$$
\begin{equation*}
|\mathrm{E}[\Xi(X) Z]| \leq C \mathrm{E}\left[|Z|^{r}\right]^{1 / r} \alpha(\mathcal{A} \vee \mathcal{B}, \mathcal{C})^{\varrho^{\prime}} \alpha(\mathcal{A}, \mathcal{B} \vee \mathcal{C})^{\varrho^{\prime}} \tag{2.16}
\end{equation*}
$$

where $\Xi(x)=U(x) V(x)-E[U(x) V(x)], \varrho^{\prime}=\frac{1}{2 s+4 \gamma}$ and $\frac{1}{s}=1-\frac{1}{p}-\frac{1}{q}-\frac{1}{r}$.
Proof. Set $\tilde{\varepsilon}=\frac{\varepsilon}{2\left(u^{*}+v^{*}\right)}$. Let $t \geq 1$ be such that $\frac{1}{t}=\frac{1}{p}+\frac{1}{q}$. Then we have

$$
\begin{equation*}
N(\varepsilon, t ; \Xi) \leq N(\tilde{\varepsilon}, p ; U) N(\tilde{\varepsilon}, q ; V) \tag{2.17}
\end{equation*}
$$

Indeed, if we let $\left(S_{i}\right)_{i=1}^{N(\tilde{\varepsilon}, p, U)}$ and $\left(\tilde{S}_{j}\right)_{j=1}^{N(\tilde{\varepsilon}, q, V)}$ be $(\tilde{\varepsilon}, p, U)$-net and $(\tilde{\varepsilon}, p, U)$-net respectively, then the Hölder inequality implies

$$
\begin{aligned}
& \mathrm{E}\left[\max _{i, j} \sup _{x, y \in S_{i} \cap \tilde{S}_{j}}|\Xi(x)-\Xi(y)|^{t}\right]^{1 / t} \\
\leq & 2\left\{\mathrm{E}\left[\sup _{x \in S}|U(x)|^{t} \max _{j} \sup _{x, y \in \tilde{S}_{j}}|V(x)-V(y)|^{t}\right]^{1 / t}\right. \\
& \left.+\mathrm{E}\left[\max _{i} \sup _{x, y \in S_{i}}|U(x)-U(y)|^{t} \sup _{x \in S}|V(x)|^{t}\right]^{1 / t}\right\} \\
\leq & 2\left\{u^{*} \mathrm{E}\left[\max _{j} \sup _{x, y \in \tilde{S}_{j}}|V(x)-V(y)|^{q}\right]^{1 / q}\right. \\
& \left.+\mathrm{E}\left[\max _{i} \sup _{x, y \in S_{i}}|U(x)-U(y)|^{p}\right]^{1 / p} v^{*}\right\} \\
\leq & 2\left(u^{*}+v^{*}\right) \tilde{\varepsilon}=\varepsilon .
\end{aligned}
$$

Thus $\left(S_{i} \cap \tilde{S}_{j}\right)_{i=1, \ldots, N(\tilde{\varepsilon}, p ; U), j=1, \ldots, N(\tilde{\varepsilon}, q ; V)}$ is an (ε, t, Ξ)-net. This implies (2.17).

So we get

$$
\begin{equation*}
N(\varepsilon, t ; \Xi) \leq 2^{2 \gamma}\left(u^{*}+v^{*}\right)^{2 \gamma} C_{0}^{2} \varepsilon^{-2 \gamma} \tag{2.18}
\end{equation*}
$$

Then, using Lemma 3 with Ξ substituted for U, we have

$$
\begin{align*}
&|\mathrm{E}[\Xi(X) Z]| \leq C_{1}\left({\left.\operatorname{E}\left[\sup _{x \in S}|\Xi(x)|^{t}\right]^{1 / t}+1\right) \mathrm{E}\left[|Z|^{r}\right]^{1 / r} \alpha(\mathcal{A} \vee \mathcal{B}, \mathcal{C})^{\varrho^{\prime \prime}}}\right. \tag{2.19}\\
& \leq 2 C_{1}\left(u^{*} v^{*}+1\right) \mathrm{E}\left[|Z|^{r}\right]^{1 / r} \alpha(\mathcal{A} \vee \mathcal{B}, \mathcal{C})^{2 \varrho^{\prime}}
\end{align*}
$$

for some $C_{1}>0$ depending only on C_{0}, u^{*}, v^{*} and $\gamma>0$.
On the other hand, using Lemma 3 with $V(X) Z$ substituted for V, we have

$$
\begin{align*}
|\mathrm{E}[U(X) V(X) Z]| & \leq C_{2}\left(u^{*}+1\right) \mathrm{E}\left[|V(X) Z|^{t^{\prime}}\right]^{1 / t^{\prime}} \alpha(\mathcal{A}, \mathcal{B} \vee \mathcal{C})^{\varrho^{\prime \prime}} \tag{2.20}\\
& \leq C_{2}\left(u^{*}+1\right) v^{*} \mathrm{E}\left[|Z|^{r}\right]^{1 / r} \alpha(\mathcal{A}, \mathcal{B} \vee \mathcal{C})^{2 \varrho^{\prime}}
\end{align*}
$$

for some $C_{2}>0$ depending only on C_{0} and $\gamma>0$, where $\frac{1}{t^{\prime}}=\frac{1}{q}+\frac{1}{r}$ and $\varrho^{\prime \prime}=\frac{1}{s+\gamma}$.

Set $W(x)=\mathrm{E}[U(x) V(x)]$. By Lemma 1, we see

$$
|W(x)| \leq 8 u^{*} v^{*} \alpha(\mathcal{A}, \mathcal{B})^{1-1 / t} \leq 8 u^{*} v^{*} \alpha(\mathcal{A}, \mathcal{B} \vee \mathcal{C})^{2 \varrho^{\prime}}
$$

for each $x \in S$. Thus

$$
\begin{equation*}
|\mathrm{E}[W(X) Z]| \leq 8 u^{*} v^{*} \mathrm{E}\left[|Z|^{r}\right]^{1 / r} \alpha(\mathcal{A}, \mathcal{B} \vee \mathcal{C})^{2 \varrho^{\prime}} \tag{2.21}
\end{equation*}
$$

By (2.19), (2.20) and (2.21), it follows that

$$
\begin{aligned}
|\mathrm{E}[\Xi(X) Z]| & =|\mathrm{E}[\Xi(X) Z]|^{1 / 2}|\mathrm{E}[\Xi(X) Z]|^{1 / 2} \\
& \leq C_{3} \mathrm{E}\left[|Z|^{r}\right]^{1 / r} \alpha(\mathcal{A} \vee \mathcal{B}, \mathcal{C})^{\varrho^{\prime}} \alpha(\mathcal{A}, \mathcal{B} \vee \mathcal{C})^{\varrho^{\prime}}
\end{aligned}
$$

for some $C_{3}>0$ depending only on C_{0}, u^{*}, v^{*} and $\gamma>0$. This implies the assertion.

3. Proof of Theorem 1

Let $\varphi_{M} \in C^{\infty}\left(\mathbb{R}^{d} ; \mathbb{R}\right)$ be such that $0 \leq \varphi_{M} \leq 1$,

$$
\varphi_{M}(x)= \begin{cases}1 & \text { if }|x| \leq M / 2 \\ 0 & \text { if }|x| \geq M\end{cases}
$$

and the gradient of $\varphi_{M}(x)$ is bounded uniformly in $x \in \mathbb{R}^{d}$ and $M \geq 1$. Define the truncated functions $F_{k}^{n, M}(w)=\left(F_{k}^{n, M, i}(w)\right)_{i=1}^{d}$ and $G_{k}^{n, M}(\bar{w})=$ $\left(G_{k}^{n, M, i}(w)\right)_{i=1}^{d}$ by

$$
F_{k}^{n, M}(w)=\varphi_{M}(w(k / n)) F_{k}^{n}(w), \quad G_{k}^{n, M}(w)=\varphi_{M}(w(k / n)) G_{k}^{n}(w)
$$

We also define the stochastic process $X_{t}^{n, M}=\left(X_{t}^{n, M, i}\right)_{i=1}^{d}$ by (1.1) and (1.2) for which F_{k}^{n} and G_{k}^{n} are replaced by $F_{k}^{n, M}$ and $G_{k}^{n, M}$.

To make notations simple, we set $H_{k}^{n, M, i}(w)=F_{k}^{n, M, i}(w)+$ $\frac{1}{\sqrt{n}} G_{k}^{n, M, i}(w)$. Then $X_{t}^{n, M, i}$ satisfies the following equation

$$
\begin{equation*}
X_{(k+1) / n}^{n, M, i}-X_{k / n}^{n, M, i}=\frac{1}{\sqrt{n}} H_{k}^{n, M}\left(X^{n, M}\right) \tag{3.1}
\end{equation*}
$$

Proposition 1. For each $\omega \in \Omega^{n}$, if $\left|X_{t}^{n, M}(\omega)\right| \leq M$, then $\left|X_{s}^{n, M}(\omega)\right| \leq M$ for any $s \in[0, t]$.

Proof. We prove the contraposition of the assertion. Suppose that $\left|X_{s}^{n, M}\right|>M$ holds for some $s \in[0, t]$. Let $k=[n s]$. If $\left|X_{k / n}^{n, M}\right|>M$, we have $\left|X_{t}^{n, M}\right|=\left|X_{s}^{n, M}\right|>M$ obviously. So we may suppose $\left|X_{k / n}^{n, M}\right| \leq M$.

Then we see $\left|X_{(k+1) / n}^{n, M}\right|>M$. Indeed, if $\left|X_{(k+1) / n}^{n, M}\right| \leq M$, then $\left|X_{s}^{n, M}\right| \leq$ M holds by the convexity of the set $\left\{x \in \mathbb{R}^{d} ;|x| \leq M\right\}$, and this contradicts the supposition. So $X_{t}^{n, M}$ is in $\left\{u X_{s}^{n, M}+(1-u) X_{(k+1) / n}^{n, M} ; 0 \leq u \leq 1\right\} \subset$ $\left\{u X_{s}^{n, M}+(1-u) X_{k / n}^{n, M} ; u \geq 1\right\}$. Since $\left|X_{k / n}^{n, M}\right| \leq M$ and $\left|X_{s}^{n, M}\right|>M$ hold, we have $\left|u X_{s}^{n, M}+(1-u) X_{k / n}^{n, M}\right|>M$ for each $u \geq 1$. Thus $\left|X_{t}^{n, M}\right|>M$ holds and we obtain the assertion.

By Proposition 1, the assumption [A3] and the definition of $X_{t}^{n, M}$, we see that $X_{t}^{n, M}$ is $\mathcal{F}_{0,[n t]}^{n}$-measurable and that there exists a constant $C(M)>0$ such that

$$
\begin{equation*}
\sum_{m=0}^{2} \mathrm{E}^{n}\left[\left|\nabla^{m} F_{k}^{n, M, i}\left(X^{n, M}\right)\right|_{L_{k / n}^{m}}^{p_{0}}\right] \leq C(M) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{m=0}^{1} \mathrm{E}^{n}\left[\left|\nabla^{m} G_{k}^{n, M, i}\left(X^{n, M}\right)\right|_{L_{k / n}^{m}}^{p_{0}}\right] \leq C(M) \tag{3.3}
\end{equation*}
$$

for $n \in \mathbb{N}$ and $k \in \mathbb{Z}_{+}$.
Let

$$
Y_{k}^{n, M}(u, t)=X_{t \wedge(k / n)}^{n, M}+u\left(X_{t \wedge((k+1) / n)}^{n, M}-X_{t \wedge(k / n)}^{n, M}\right), \quad u \in[0,1]
$$

Easily we have

$$
Y_{k}^{n, M}(u, t)= \begin{cases}X_{t}^{n, M} & \text { if } t \leq \frac{k}{n} \tag{3.4}\\ X_{k / n+u(t-k / n)}^{n, M} & \text { if } \frac{k}{n}<t \leq \frac{k+1}{n} \\ X_{(k+u) / n}^{n, M} & \text { if } \frac{k+1}{n}<t\end{cases}
$$

By Lemma 3 and Lemma 4, we obtain the following two propositions.
Proposition 2. Let $1<q<\infty$ be such that $\frac{1}{q} \leq \frac{1}{2}\left(1+\frac{1}{p_{0}}\right)$, and let $U: C\left([0, \infty) ; \mathbb{R}^{d}\right) \times \Omega^{n} \longrightarrow \mathbb{R}$ be such that $U(w)$ is $\mathcal{F}_{k, \infty}^{n}$-measurable and $\mathrm{E}^{n}[U(w)]=0$ for each $w \in \mathcal{C}_{M}^{d}$, and $V: \Omega^{n} \longrightarrow \mathbb{R}$ be an $\mathcal{F}_{0, l}^{n}$-measurable random variable. Suppose that there exists a constant $C_{0}=C_{0}(M)>0$ such that

$$
\begin{equation*}
\sup _{\varepsilon>0} \varepsilon^{\gamma} N_{n}(\varepsilon, M ; U) \leq C_{0} \tag{3.5}
\end{equation*}
$$

Then there exists a constant $C>0$ depending only on M and C_{0} such that for all $l \leq k, u \in[0,1]$ and $\beta=\left(\beta^{1}, \ldots, \beta^{d}\right) \in \mathbb{Z}_{+}^{d}$ with $|\beta|=\beta^{1}+\cdots+\beta^{d} \leq$ 2

$$
\begin{align*}
& \left|\mathrm{E}^{n}\left[U_{\beta}^{M}\left(Y_{l}^{n, M}(u, \cdot)\right) V\right]\right| \tag{3.6}\\
\leq & C\left(\mathrm{E}^{n}\left[\sup _{|w|_{\infty} \leq M}|U(w)|^{p_{0}}\right]^{1 / p_{0}}+1\right) \mathrm{E}^{n}\left[|V|^{q}\right]^{1 / q} \alpha_{k-l}^{\varrho_{0}}
\end{align*}
$$

where $U_{\beta}^{M}(w)=D^{\beta} \varphi_{M}(w(k / n)) U(w)$ and $D^{\beta}=\frac{\partial^{|\beta|}}{\partial x^{\beta^{1}} \cdots \partial x^{\beta^{d}}}$.

Proof. Define $\hat{Y}_{l}^{n, M}(u, t)$ and \hat{V} by

$$
\hat{Y}_{l}^{n, M}(u, t)= \begin{cases}Y_{l}^{n, M}(u, t) & \text { if }\left|X_{(l+u) / n}^{n, M}\right| \leq M \tag{3.7}\\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\hat{V}= \begin{cases}V & \text { if }\left|X_{(l+u) / n}^{n, M}\right| \leq M \\ 0 & \text { otherwise }\end{cases}
$$

By (3.4) and Proposition 1, we see that $\left|\hat{Y}_{l}^{n, M}(u, t)\right| \leq M$ for all $t \geq 0$ almost surely and

$$
\begin{equation*}
\mathrm{E}^{n}\left[U_{\beta}^{M}\left(Y_{l}^{n, M}(u, \cdot)\right) V\right]=\mathrm{E}^{n}\left[U\left(\hat{Y}_{l}^{n, M}(u, \cdot)\right) D^{\beta} \varphi_{M}\left(X_{(l+u) / n}^{n, M}\right) \hat{V}\right] \tag{3.8}
\end{equation*}
$$

Using Lemma 3, we see that

$$
\begin{aligned}
&\left|\mathrm{E}^{n}\left[U\left(\hat{Y}_{l}^{n, M}(u, \cdot)\right) D^{\beta} \varphi_{M}\left(X_{(l+u) / n}^{n, M}\right) \hat{V}\right]\right| \\
& \leq \quad 16\left(C_{0}+1\right)\left(\mathrm{E}^{n}\left[\sup _{|w|_{\infty} \leq M}|U(w)|^{p_{0}}\right]^{1 / p_{0}}+1\right) \\
& \times \mathrm{E}^{n}\left[\left|D^{\beta} \varphi_{M}\left(X_{(l+u) / n}^{n, M}\right) \hat{V}\right|^{q}\right]^{1 / q} \alpha_{k-l}^{\varrho_{0}^{\prime}},
\end{aligned}
$$

where $\varrho_{0}^{\prime}=\frac{1}{s_{0}^{\prime}+\gamma}$ and $\frac{1}{s_{0}^{\prime}}=1-\frac{1}{p_{0}}-\frac{1}{q}$. Since $s_{0}^{\prime} \leq 2 s_{0}$ holds, which implies $\varrho_{0}^{\prime} \geq 2 \varrho_{0}$, and $D^{\beta} \varphi_{M}$ is bounded uniformly in x, we have our assertion.

Proposition 3. Let $U, V: C\left([0, \infty) ; \mathbb{R}^{d}\right) \times \Omega^{n} \longrightarrow \mathbb{R}$ be such that $U(w)$ and $V(w)$ are $\mathcal{F}_{k, k}^{n}$ and $\mathcal{F}_{l, l}^{n}$-measurable respectively and $\mathrm{E}^{n}[U(w)]=0$ for each $w \in \mathcal{C}_{M}^{d}$, and $Z: \Omega^{n} \longrightarrow \mathbb{R}$ be an $\mathcal{F}_{0, m}^{n}$-measurable random variable. Suppose that there exists $C_{0}=C_{0}(M)>0$ such that

$$
\begin{array}{r}
\sup _{\varepsilon>0} \varepsilon^{\gamma}\left\{N_{n}(\varepsilon, M ; U)+\varepsilon^{\gamma} N_{n}(\varepsilon, M ; V)\right\} \leq C_{0} \\
\mathrm{E}^{n}\left[\sup _{|w|_{\infty} \leq M}|U(w)|^{p_{0}}\right]^{1 / p_{0}} \leq C_{0} \tag{3.10}
\end{array}
$$

and

$$
\begin{equation*}
\mathrm{E}^{n}\left[\sup _{|w|_{\infty} \leq M}|V(w)|^{p_{0}}\right]^{1 / p_{0}} \leq C_{0} \tag{3.11}
\end{equation*}
$$

Then there exists a constant $C>0$ depending only on M and C_{0} such that for all $m \leq l \leq k, u \in[0,1]$ and $\beta, \beta^{\prime} \in \mathbb{Z}_{+}^{d}$ with $|\beta|+\left|\beta^{\prime}\right| \leq 2$

$$
\left|\mathrm{E}^{n}\left[\Xi_{\beta, \beta^{\prime}}^{M}\left(Y_{m}^{n, M}(u, \cdot)\right) Z\right]\right| \leq C \mathrm{E}^{n}\left[|Z|^{p_{0}}\right]^{1 / p_{0}} \alpha_{k-l}^{\varrho_{0}} \alpha_{l-m}^{\varrho_{0}},
$$

where $\Xi_{\beta, \beta^{\prime}}^{M}(w)=D^{\beta} \varphi_{M}(w(k / n)) D^{\beta^{\prime}} \varphi_{M}(w(l / n)) \Xi(w), \quad \Xi(w)=$ $U(w) V(w)-\mathrm{E}^{n}[U(w) V(w)]$.

Proof. Define \hat{Z} by

$$
\hat{Z}= \begin{cases}Z & \text { if }\left|X_{(m+u) / n}^{n, M}\right| \leq M \\ 0 & \text { otherwise }\end{cases}
$$

Then we have

$$
\begin{align*}
& \mathrm{E}^{n}\left[\Xi^{M}\left(Y_{m}^{n, M}(u, \cdot)\right) Z\right] \tag{3.12}\\
= & \mathrm{E}^{n}\left[\Xi\left(\hat{Y}_{m}^{n, M}(u, \cdot)\right) D^{\beta} \varphi_{M}\left(X_{(m+u) / n}^{n, M}\right) D^{\beta^{\prime}} \varphi_{M}\left(X_{(m+u) / n}^{n, M}\right) \hat{Z}\right],
\end{align*}
$$

where $\hat{Y}_{m}^{n, M}(u, t)$ is given by (3.7). Using Lemma 4, we see that there exists $C_{1}>0$ depending only on M and C_{0} such that

$$
\begin{aligned}
& \left|\mathrm{E}^{n}\left[\Xi\left(\hat{Y}_{m}^{n, M}(u, \cdot)\right) \varphi_{M}\left(X_{(m+u) / n}^{n, M}\right)^{2} \hat{Z}\right]\right| \\
\leq & C_{1} \mathrm{E}^{n}\left[\left|D^{\beta} \varphi_{M}\left(X_{(m+u) / n}^{n, M}\right) D^{\beta^{\prime}} \varphi_{M}\left(X_{(m+u) / n}^{n, M}\right) \hat{Z}\right|^{p_{0}}\right]^{1 / p_{0}} \alpha_{k-l}^{\varrho_{0}} \alpha_{l-m}^{\varrho_{0}} .
\end{aligned}
$$

Then we have our assertion.
Let $Q^{n, M}$ be the probability measure induced by $X^{n, M}$ on $C\left([0, \infty) ; \mathbb{R}^{d}\right)$.
Proposition 4. The family of measures $\left(Q^{n, M}\right)_{n}$ is tight for each fixed $M>\left|x_{0}\right|$.

Proof. Take any $T>0$. Let $0 \leq s<t<u \leq T, 0<\delta_{0}<\frac{p_{0}-3}{2} \wedge 1$ and set

$$
J_{0}^{n}=\mathrm{E}^{n}\left[\left|X_{u}^{n, M, i}-X_{t}^{n, M, i}\right|^{2}\left|X_{t}^{n, M, i}-X_{s}^{n, M, i}\right|^{1+\delta_{0}}\right] .
$$

By the argument in [1], [5] and [16], it suffices to show that there exists a constant $C_{0}=C_{0}(M, T)>0$ which is independent of s, t, u and n such that

$$
\begin{equation*}
J_{0}^{n} \leq C_{0}|u-s|^{1+1 / q_{0}} \tag{3.13}
\end{equation*}
$$

where $q_{0}=\frac{p_{0}}{1+\delta_{0}}$.
First we consider the case of $u-s<1 / n$. In this case, it follows that $[n s]+1=[n t]=[n u]$ or $[n s]=[n t]=[n u]-1$.

If $[n s]+1=[n t]=[n u]$, by assumption [A3] and Proposition 1, we have

$$
\begin{align*}
& J_{0}^{n}=\mathrm{E}^{n}\left[\left|\sqrt{n}(u-t) H_{[n t]}^{n, M}\left(X^{n, M}\right)\right|^{2}\right. \tag{3.14}\\
& \times \left\lvert\, \frac{1}{\sqrt{n}}(n t-[n t]) H_{[n t]}^{n, M}\left(X^{n, M}\right)\right. \\
& \left.+\left.\frac{1}{\sqrt{n}}(1-n s+[n s]) H_{[n s]}^{n, M}\left(X^{n, M}\right)\right|^{1+\delta_{0}}\right] \\
& =(\sqrt{n})^{1-\delta_{0}}|u-s|^{2} \mathrm{E}^{n}\left[\left|H_{[n t]}^{n, M, i}\left(X^{n, M}\right)\right|^{2}\right. \\
& \times\left\{(n t-[n t]) H_{[n t]}^{n, M, i}\left(X^{n, M}\right)\right. \\
& \left.\left.+(1-n s+[n s]) H_{[n s]}^{n, M, i}\left(X^{n, M}\right)\right\}^{2}\right] \\
& \leq(\sqrt{n})^{1-\delta_{0}}|u-s|^{2}\left\{E^{n}\left[\left|H_{[n t]}^{n, M, i}\left(X^{n, M}\right)\right|^{p_{0}}\right]^{\left(3+\delta_{0}\right) / p_{0}}\right. \\
& +E^{n}\left[\left|H_{[n t]}^{n, M, i}\left(X^{n, M}\right)\right|^{p_{0}}\right]^{2 / p_{0}} \\
& \left.\times E^{n}\left[\left|H_{[n s]}^{n, M, i}\left(X^{n, M}\right)\right|^{p_{0}}\right]^{\left(1+\delta_{0}\right) / p_{0}}\right\} \\
& \leq C_{1}(\sqrt{n})^{1-\delta_{0}}|u-s|^{2} \leq C_{1}|u-s|^{\left(3+\delta_{0}\right) / 2} \leq C_{2}|u-s|^{1+1 / q_{0}}
\end{align*}
$$

for some $C_{1}=C_{1}(M)>0$ and $C_{2}=C_{2}(M, T)>0$.
If $[n s]=[n t]=[n u]-1$, the similar calculation gives us the following estimation

$$
J_{0}^{n} \leq C_{3}|u-s|^{1+1 / q_{0}}
$$

for some $C_{3}=C_{3}(M, T)>0$. So the inequality (3.13) holds when $u-s<$ $1 / n$.

Next we consider the case of $u-s \geq 1 / n$. We will show that there exists a constant $C_{4}=C_{4}(M, T)>0$ such that

$$
\begin{equation*}
\mathrm{E}^{n}\left[\left|X_{v}^{n, M, i}-X_{r}^{n, M, i}\right|^{2} \Phi\right] \leq C_{4}|u-s| \mathrm{E}^{n}\left[\Phi^{q_{0}}\right]^{1 / q_{0}} \tag{3.15}
\end{equation*}
$$

for each $r, v \in[s, u]$ with $r \leq v$ and each $\mathcal{F}_{0,([n r]-1) \vee 0^{0}}^{n}$-measurable nonnegative random variable Φ.

Since we have

$$
\begin{aligned}
& \left|X_{v}^{n, M, i}-X_{r}^{n, M, i}\right|^{2} \\
\leq & 3\left\{\left|X_{([n v]+1) / n}^{n, M, i}-X_{v}^{n, M, i}\right|^{2}+\left|X_{r}^{n, M, i}-X_{[n r] / n}^{n, M, i}\right|^{2}\right. \\
& \left.+\left|\sum_{k=[n r]}^{[n v]}\left(X_{(k+1) / n}^{n, M, i}-X_{k / n}^{n, M, i}\right)\right|^{2}\right\}
\end{aligned}
$$

and the following equality

$$
\begin{equation*}
\left(\sum_{l=1}^{k} x_{l}\right)^{2}=\sum_{l=1}^{k} x_{l}^{2}+2 \sum_{l=1}^{k} x_{l}\left(x_{1}+\cdots+x_{l}\right), \quad x_{1}, \ldots, x_{k} \in \mathbb{R} \tag{3.16}
\end{equation*}
$$

it follows that

$$
\mathrm{E}^{n}\left[\left|X_{v}^{n, M, i}-X_{r}^{n, M, i}\right|^{2} \Phi\right] \leq 6\left(J_{1}^{n}+J_{2}^{n}+J_{3}^{n}+J_{4}^{n}+J_{5}^{n}\right)
$$

where

$$
\begin{aligned}
J_{1}^{n} & =\mathrm{E}^{n}\left[\left|X_{([n v]+1) / n}^{n, M, i}-X_{v}^{n, M, i}\right|^{2} \Phi\right] \\
J_{2}^{n} & =\mathrm{E}^{n}\left[\left|X_{r}^{n, M, i}-X_{[n r] / n}^{n, M, i}\right|^{2} \Phi\right], \\
J_{3}^{n} & =\frac{1}{n} \sum_{k=[n r]}^{[n v]} \mathrm{E}^{n}\left[\left|H_{k}^{n, M, i}\left(X^{n, M}\right)\right|^{2} \Phi\right], \\
J_{4}^{n} & =\frac{1}{\sqrt{n}} \sum_{k=[n r]}^{[n v]}\left|\mathrm{E}^{n}\left[F_{k}^{n, M, i}\left(X^{n, M}\right)\left(X_{k / n}^{n, M, i}-X_{[n r] / n}^{n, M, i}\right) \Phi\right]\right|, \\
J_{5}^{n} & =\frac{1}{n} \sum_{k=[n r]}^{[n v]}\left|\mathrm{E}^{n}\left[G_{k}^{n, M, i}\left(X^{n, M}\right)\left(X_{k / n}^{n, M, i}-X_{[n r] / n}^{n, M, i}\right) \Phi\right]\right|
\end{aligned}
$$

Since $\frac{2}{p_{0}}+\frac{1}{q_{0}}<1$, we have

$$
\begin{align*}
J_{1}^{n} & \leq \frac{1}{n}([n v]+1-v)^{2} \mathrm{E}^{n}\left[\left|H_{[n v]}^{n, M, i}\left(X^{n, M}\right)\right|^{p_{0}}\right]^{2 / p_{0}} \mathrm{E}^{n}\left[\Phi^{q_{0}}\right]^{1 / q_{0}} \tag{3.17}\\
& \leq C_{5} \times \frac{1}{n} \mathrm{E}^{n}\left[\Phi^{q_{0}}\right]^{1 / q_{0}} \leq C_{5}|u-s| \mathrm{E}^{n}\left[\Phi^{q_{0}}\right]^{1 / q_{0}} \tag{3.18}
\end{align*}
$$

for some $C_{5}=C_{5}(M)>0$. Similarly we have

$$
\begin{equation*}
J_{2}^{n} \leq C_{6}|u-s| \mathrm{E}^{n}\left[\Phi^{q_{0}}\right]^{1 / q_{0}} \tag{3.19}
\end{equation*}
$$

for some $C_{6}=C_{6}(M)>0$. We also have

$$
\begin{align*}
J_{3}^{n} & \leq C_{7} \cdot \frac{[n v]-[n r]+1}{n} \mathrm{E}^{n}\left[\Phi^{p_{0}}\right]^{1 / p_{0}} \tag{3.20}\\
& \leq C_{7}\left(|v-r|+\frac{2}{n}\right) \mathrm{E}^{n}\left[\Phi^{q_{0}}\right]^{1 / q_{0}} \leq 3 C_{7}|u-s| \mathrm{E}^{n}\left[\Phi^{q_{0}}\right]^{1 / q_{0}}
\end{align*}
$$

for some $C_{7}=C_{7}(M)>0$.
To estimate J_{4}^{n}, using Taylor's theorem (Theorem 1.43 in [12]), we have

$$
\begin{aligned}
& \mathrm{E}^{n}\left[F_{k}^{n, M, i}\left(X^{n, M}\right)\left(X_{k / n}^{n, M, i}-X_{[n r] / n}^{n, M, i}\right) \Phi\right] \\
&=\sum_{l=[n r]}^{k-1}\left\{\mathrm{E}^{n}\left[F_{k}^{n, M, i}\left(X_{\cdot \wedge((l+1) / n)}^{n, M}\right)\left(X_{(l+1) / n}^{n, M, i}-X_{l / n}^{n, M, i}\right) \Phi\right]\right. \\
& \quad+\mathrm{E}^{n}\left[\left(F_{k}^{n, M, i}\left(X_{\cdot \wedge((l+1) / n)}^{n, M}\right)\right.\right. \\
&\left.\left.\left.\quad-F_{k}^{n, M, i}\left(X_{\cdot \wedge(l / n)}^{n, M}\right)\right)\left(X_{l / n}^{n, M, i}-X_{[n r] / n}^{n, M, i}\right) \Phi\right]\right\} \\
&= \frac{1}{\sqrt{n}} \sum_{l=[n r]}^{k-1}\left\{\Lambda_{k, l}^{n,(1)}+\Lambda_{k, l}^{n,(2)}+\Lambda_{k, l}^{n,(3)}\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& \Lambda_{k, l}^{n,(1)}= \mathrm{E}^{n}\left[\varphi_{M}\left(X_{(l+1) / n}^{n, M}\right) F_{k}^{n, i}\left(X_{\cdot \wedge((l+1) / n)}^{n, M}\right) H_{l}^{n, M, i}\left(X^{n, M}\right) \Phi\right] \\
& \Lambda_{k, l}^{n,(2)}= \sum_{j=1}^{d} \int_{0}^{1} \mathrm{E}^{n}[\\
& \frac{\partial}{\partial x^{j}} \varphi_{M}\left(Y_{l}^{n, M}(u, k / n)\right) F_{k}^{n, i}\left(Y_{l}^{n, M}(u, \cdot)\right) \\
&\left.\quad \times H_{l}^{n, M, j}\left(X^{n, M}\right)\left(X_{l / n}^{n, M, i}-X_{[n r] / n}^{n, M, i}\right) \Phi\right] d u \\
& \Lambda_{k, l}^{n,(3)}= \sum_{j=1}^{d} \int_{0}^{1} \mathrm{E}^{n}\left[\varphi_{M}\left(Y_{l}^{n, M}(u, k / n)\right) \nabla F_{k}^{n, i}\left(Y_{l}^{n, M}(u, \cdot) ; I_{l}^{n} e_{j}\right)\right. \\
&\left.\times H_{l}^{n, M, j}\left(X^{n, M}\right)\left(X_{l / n}^{n, M, i}-X_{(n r] / n}^{n, M, i}\right) \Phi\right] d u
\end{aligned}
$$

Let r_{0} be such that $\frac{1}{r_{0}}=\frac{1}{p_{0}}+\frac{1}{q_{0}}$. Since

$$
\begin{equation*}
\frac{1}{2}\left(1+\frac{1}{p_{0}}\right)-\frac{1}{r_{0}}=\frac{p_{0}-3-2 \delta_{0}}{2 p_{0}}>0 \tag{3.21}
\end{equation*}
$$

using Proposition 2 with $U=F_{k}^{n, i}, V=H_{l}^{n, M, i}\left(X^{n, M}\right)$ and $u=1$, we have

$$
\begin{align*}
\left|\Lambda_{k, l}^{n,(1)}\right| \leq & C_{8}\left(\mathrm{E}^{n}\left[\sup _{|w|_{\infty} \leq M}\left|F_{k}^{n, i}(w)\right|^{p_{0}}\right]^{1 / p_{0}}+1\right) \tag{3.22}\\
& \times \mathrm{E}^{n}\left[\left|H_{l}^{n, M, i}\left(X^{n, M}\right) \Phi\right|^{r_{0}}\right]^{1 / r_{0}} \alpha_{k-l}^{\varrho_{0}} \\
\leq & C_{9} \mathrm{E}^{n}\left[\Phi^{q_{0}}\right]^{1 / q_{0}} \alpha_{k-l}^{\varrho_{0}} .
\end{align*}
$$

for some $C_{8}, C_{9}>0$ depending only on M.
Also we see

$$
\begin{align*}
& \mathrm{E}^{n}\left[\left|H_{l}^{n, M, j}\left(X^{n, M}\right)\left(X_{l / n}^{n, M, i}-X_{[n r] / n}^{n, M, i}\right) \Phi\right|^{r_{0}}\right]^{1 / r_{0}} \tag{3.23}\\
= & \mathrm{E}^{n}\left[\left|\varphi_{M}\left(X_{l / n}^{n, M}\right) H_{l}^{n, j}\left(X^{n, M}\right)\left(X_{l / n}^{n, M, i}-X_{[n r] / n}^{n, M, i}\right) \Phi\right|^{r_{0}}\right]^{1 / r_{0}} \\
\leq & M \mathrm{E}^{n}\left[\left|\varphi_{M}\left(X_{l / n}^{n, M}\right) H_{l}^{n, j}\left(X^{n, M}\right) \Phi\right|^{r_{0}}\right]^{1 / r_{0}} \\
\leq & M \mathrm{E}^{n}\left[\left|H_{l}^{n, M, j}\left(X^{n, M}\right)\right|^{p_{0}}\right]^{1 / p_{0}} \mathrm{E}^{n}\left[\Phi^{q_{0}}\right]^{1 / q_{0}} .
\end{align*}
$$

Then, using Proposition 2 again, we have

$$
\begin{equation*}
\left|\Lambda_{k, l}^{n,(2)}\right|,\left|\Lambda_{k, l}^{n,(3)}\right| \leq C_{10} \mathrm{E}^{n}\left[\Phi^{q_{0}}\right]^{1 / q_{0}} \alpha_{k-l}^{\varrho_{0}} \tag{3.24}
\end{equation*}
$$

for some $C_{10}=C_{10}(M)>0$. Thus

$$
\begin{align*}
J_{4}^{n} & \leq C_{11} \times \frac{1}{n} \sum_{k=[n r]}^{[n v]} \sum_{l=[n r]}^{k-1} \mathrm{E}^{n}\left[\Phi^{q_{0}}\right]^{1 / q_{0}} \alpha_{k-l}^{\varrho_{0}} \tag{3.25}\\
& \leq 3 C_{11}\left(\sum_{k=1}^{\infty} \alpha_{k}^{\varrho_{0}}\right)|u-s| \mathrm{E}^{n}\left[\Phi^{q_{0}}\right]^{1 / q_{0}}
\end{align*}
$$

for some $C_{11}=C_{11}(M)>0$.
By the similar calculation of (3.23), we have

$$
\begin{equation*}
J_{5}^{n} \leq C_{12}|u-s| \mathrm{E}^{n}\left[\Phi^{q_{0}}\right]^{1 / q_{0}} \tag{3.26}
\end{equation*}
$$

for some $C_{12}=C_{12}(M)>0$. Then the inequality (3.15) holds.
Using (3.15) with $v=u, r=t$ and $\Phi=\mid X_{t}^{n, M, i}-$ $\left.X_{s}^{n, M, i}\right|^{1+\delta_{0}} 1_{\left\{\left|X^{n, M}\right|_{[n t] / n \mid \leq M\}}\right.}$, we get

$$
\begin{equation*}
J_{0}^{n} \leq C_{4}|u-s| \mathrm{E}^{n}\left[\left|X_{t}^{n, M, i}-X_{s}^{n, M, i}\right|^{p_{0}} 1_{\left\{\left|X_{[n t] / n}^{n, M}\right| \leq M\right\}}\right]^{1 / q_{0}} \tag{3.27}
\end{equation*}
$$

Using (3.15) again with $v=[n t] / n, r=s$ and $\Phi=1$, we get

$$
\begin{equation*}
\mathrm{E}^{n}\left[\left|X_{[n t] / n}^{n, M, i}-X_{s}^{n, M, i}\right|^{2}\right] \leq C_{4}|u-s| \tag{3.28}
\end{equation*}
$$

Thus

$$
\begin{aligned}
& \mathrm{E}^{n}\left[\left|X_{t / n}^{n, M, i}-X_{s}^{n, M, i}\right|^{p_{0}} 1_{\left\{\left|X_{[n t] / n}^{n, M}\right| \leq M\right\}}\right] \\
\leq & C_{13}\left\{\mathrm{E}^{n}\left[\left|X_{[n t] / n}^{n, M, i}-X_{s}^{n, M, i}\right|^{p_{0}} 1_{\left\{\left|X_{[n t] / n}^{n, M}\right| \leq M\right\}}\right]\right. \\
& \left.+\mathrm{E}^{n}\left[\left|X_{t}^{n, M, i}-X_{[n t] / n}^{n, M, i}\right|^{p_{0}} 1_{\left\{\left|X_{[n t] / n}^{n, M}\right| \leq M\right\}}\right]\right\} \\
\leq & C_{14}\{ \\
& M^{p_{0}-2} \mathrm{E}^{n}\left[\left|X_{[n t] / n}^{n, M, i}-X_{s}^{n, M, i}\right|^{2}\right] \\
& \left.+\frac{1}{(\sqrt{n})^{p_{0}}}(n t-[n t]) \mathrm{E}^{n}\left[\left|H_{[n t]}^{n, M, i}\left(X^{n, M}\right)\right|^{p_{0}}\right]\right\} \\
\leq & C_{15}\left(|u-s|+\frac{1}{(\sqrt{n})^{p_{0}}}\right) \leq 2 C_{15}|u-s|
\end{aligned}
$$

for some $C_{13}, C_{14}, C_{15}>0$ depending only on M. Thus the inequality (3.13) holds also when $u-s \geq 1 / n$. This completes the proof of Proposition 4.

By Proposition 4, for any subsequence $\left(n_{k}\right)_{k}$, there is a further subsequence $\left(n_{k_{l}}\right)_{l}$ such that $Q^{n_{k_{l}}, M}$ converges weakly to some probability measure Q^{M} on $C\left([0, \infty) ; \mathbb{R}^{d}\right)$ as $l \rightarrow \infty$ for each fixed $M>1+\left|x_{0}\right|$.

Proposition 5. $\quad Q^{M}\left(\mathcal{C}_{M}^{d}\right)=1$.
Proof. For each $T>0$, it follows that

$$
\begin{align*}
& Q^{M}\left(\sup _{0 \leq t \leq T}|w(t)|>M\right) \tag{3.29}\\
= & \lim _{\varepsilon \searrow 0} Q^{M}\left(\sup _{0 \leq t \leq T}|w(t)|>M+\varepsilon\right) \\
\leq & \lim _{\varepsilon \searrow 0} \operatorname{limin}_{n \rightarrow \infty} P^{n_{k_{j}}}\left(\sup _{0 \leq t \leq T}\left|X_{t}^{n, M}\right|>M+\varepsilon\right) .
\end{align*}
$$

Here we see

$$
\begin{aligned}
& P^{n}\left(\sup _{0 \leq t \leq T}\left|X_{t}^{n, M}\right|>M+\varepsilon\right) \\
\leq & P^{n}\left(\left|X_{k / n}^{n, M}\right| \leq M,\left|X_{k / n}^{n}\right|+\frac{1}{\sqrt{n}}\left|H_{k}^{n, M}\left(X^{n, M}\right)\right|>M+\varepsilon\right. \\
& \text { for some } k=0, \ldots,[n T]) \\
\leq & \sum_{k=0}^{[n T]} P^{n}\left(\left|H_{k}^{n, M}\left(X^{n, M}\right)\right| \geq \varepsilon \sqrt{n}\right) \leq C_{0} \times \frac{1}{\varepsilon^{3} \sqrt{n}}
\end{aligned}
$$

for some $C_{0}=C_{0}(M, T)>0$. Thus

$$
\begin{equation*}
Q^{M}\left(\sup _{0 \leq t \leq T}|w(t)|>M\right)=0, \quad T>0 \tag{3.30}
\end{equation*}
$$

This implies the assertion.
Next we define functions $a^{M, i j}(t, w)$ and $b^{M, i}(t, w)$ by

$$
\begin{aligned}
a^{M, i j}(t, w)= & \varphi_{M}(w(t))^{2} a^{i j}(t, w) \\
b^{M, i}(t, w)=\varphi_{M}(w(t)) b_{0}^{i}(t, w) & +\sum_{j=1}^{d}\left\{\varphi_{M}(w(t))^{2} B^{i j}(t, w)\right. \\
& \left.+\varphi_{M}(w(t)) \frac{\partial}{\partial x^{j}} \varphi_{M}(w(t)) A^{i j}(t, w)\right\}
\end{aligned}
$$

and let

$$
\mathscr{L}^{M} f(t, w)=\frac{1}{2} \sum_{i, j=1}^{d} a^{M, i j}(t, w) \frac{\partial^{2}}{\partial x^{i} \partial x^{j}} f(w(t))+\sum_{i=1}^{d} b^{M, i}(t, w) \frac{\partial}{\partial x^{i}} f(w(t))
$$

for $f \in C^{2}\left(\mathbb{R}^{d}\right)$.
Proposition 6. Q^{M} is a solution of the martingale problem associated with the generator \mathscr{L}^{M} and starting at x_{0}.

By Proposition 5, in order to prove Proposition 6, it suffices to show that

$$
\begin{align*}
& \mathrm{E}^{Q^{M}}\left[(f(w(t))-f(w(s))) \Phi\left(w\left(s_{1}\right), \ldots, w\left(s_{N}\right)\right)\right] \tag{3.31}\\
= & \mathrm{E}^{Q^{M}}\left[\int_{s}^{t} \mathscr{L}^{M} f(u, w) d u \Phi\left(w\left(s_{1}\right), \ldots, w\left(s_{N}\right)\right)\right]
\end{align*}
$$

for any C^{∞} function $f: \mathbb{R}^{d} \longrightarrow \mathbb{R}$ with compact support, integer N, real numbers $0 \leq s_{1}<\ldots<s_{N} \leq s<t$ and bounded continuous function $\Phi:\left(\mathbb{R}^{N}\right)^{m} \longrightarrow \mathbb{R}$. Until Proposition 14 , we omit the M in $X_{t}^{n, M}$ and $Y_{k}^{n, M}(u, t)$ as long as there is no misunderstanding, and simply denote $\left(n_{k_{l}}\right)$ by (n).

Since f and Φ are bounded, it follows that

$$
\begin{align*}
& \mathrm{E}^{Q^{n, M}}\left[(f(w(t))-f(w(s))) \Phi\left(w\left(s_{1}\right), \ldots, w\left(s_{N}\right)\right)\right] \tag{3.32}\\
& \longrightarrow \mathrm{E}^{Q^{M}}\left[(f(w(t))-f(w(s))) \Phi\left(w\left(s_{1}\right), \ldots, w\left(s_{N}\right)\right)\right]
\end{align*}
$$

On the other hand, Taylor's theorem implies

$$
\begin{align*}
& \mathrm{E}^{Q^{n, M}}\left[(f(w(t))-f(w(s))) \Phi\left(w\left(s_{1}\right), \ldots, w\left(s_{N}\right)\right)\right] \tag{3.33}\\
= & K_{1}^{n}+K_{2}^{n}+K_{3}^{n}+K_{4}^{n}+\frac{1}{2} K_{5}^{n}+K_{6}^{n}+\frac{1}{2} K_{7}^{n}+\frac{1}{2} K_{8}^{n},
\end{align*}
$$

where

$$
\begin{aligned}
K_{1}^{n} & =\mathrm{E}^{n}\left[\left(f\left(X_{t}^{n}\right)-f\left(X_{[n t] / n}^{n}\right)\right) \Phi\left(X_{s_{1}}^{n}, \ldots, X_{s_{N}}^{n}\right)\right], \\
K_{2}^{n} & =\mathrm{E}^{n}\left[\left(f\left(X_{[n s] / n}^{n}\right)-f\left(X_{s}^{n}\right)\right) \Phi\left(X_{s_{1}}^{n}, \ldots, X_{s_{N}}^{n}\right)\right], \\
K_{3}^{n} & =\frac{1}{\sqrt{n}} \sum_{i=1}^{d} \sum_{k=[n s]}^{[n t]-1} \mathrm{E}^{n}\left[\frac{\partial}{\partial x^{i}} f\left(X_{k / n}^{n}\right) F_{k}^{n, M, i}\left(X^{n}\right) \Phi\left(X_{s_{1}}^{n}, \ldots, X_{s_{N}}^{n}\right)\right], \\
K_{4}^{n} & =\frac{1}{n} \sum_{i=1}^{d} \sum_{k=[n s]}^{[n t]-1} \mathrm{E}^{n}\left[\frac{\partial}{\partial x^{i}} f\left(X_{k / n}^{n}\right) G_{k}^{n, M, i}\left(X^{n}\right) \Phi\left(X_{s_{1}}^{n}, \ldots, X_{s_{N}}^{n}\right)\right], \\
K_{5}^{n} & =\frac{1}{n} \sum_{i, j=1}^{d} \sum_{k=[n s]}^{[n t]-1} \mathrm{E}^{n}\left[\frac{\partial^{2}}{\partial x^{i} \partial x^{j}} f\left(X_{k / n}^{n}\right)\right. \\
K_{6}^{n} & =\frac{1}{n \sqrt{n}} \sum_{i, j=1}^{d} \sum_{k=[n s]}^{[n t]-1} \mathrm{E}_{k}^{n, M, i}\left(\frac{\partial^{2}}{\partial x^{i} \partial x^{j}} f\left(X_{k / n}^{n}\right) F_{k}^{n, M, j}\left(X^{n}\right) \Phi\left(X_{s_{1}}^{n}, \ldots, X_{s_{N}}^{n}\right)\right], \\
& \left.\times F_{k}^{n, M, i}\left(X^{n}\right) G_{k}^{n, M, j}\left(X^{n}\right) \Phi\left(X_{s_{1}}^{n}, \ldots, X_{s_{N}}^{n}\right)\right],
\end{aligned}
$$

$$
\begin{aligned}
& K_{7}^{n}=\frac{1}{n^{2}} \sum_{i, j=1}^{d} \sum_{k=[n s]}^{[n t]-1} \mathrm{E}^{n}\left[\frac{\partial^{2}}{\partial x^{i} \partial x^{j}} f\left(X_{k / n}^{n}\right)\right. \\
& \left.\quad \times G_{k}^{n, M, i}\left(X^{n}\right) G_{k}^{n, M, j}\left(X^{n}\right) \Phi\left(X_{s_{1}}^{n}, \ldots, X_{s_{N}}^{n}\right)\right] \\
& K_{8}^{n}= \\
& \quad \frac{1}{n \sqrt{n}} \sum_{i, j, \nu=1}^{d} \sum_{k=[n s]}^{[n t]-1} \int_{0}^{1}(1-u)^{2} \mathrm{E}^{n}\left[\frac{\partial^{3}}{\partial x^{i} \partial x^{j} \partial x^{\nu}} f\left(Y_{k}^{n}(u, k / n)\right)\right. \\
& \left.\quad \times H_{k}^{n, M, i}\left(X^{n}\right) H_{k}^{n, M, j}\left(X^{n}\right) H_{k}^{n, M, \nu}\left(X^{n}\right) \Phi\left(X_{s_{1}}^{n}, \ldots, X_{s_{N}}^{n}\right)\right] d u .
\end{aligned}
$$

Proposition $7 . \quad K_{j}^{n} \longrightarrow 0$ as $n \rightarrow \infty, j=1,2,6,7,8$.
Proof. By (3.2) and (3.3), we have

$$
\left|K_{6}^{n}\right| \leq \frac{1}{n \sqrt{n}} \sum_{k=[n s]}^{[n t]-1} C(M, f, \Phi) \longrightarrow 0
$$

for some constant $C(M, f, \Phi)>0$. Similarly we get $K_{7}^{n} \longrightarrow 0$ and $K_{8}^{n} \longrightarrow 0$. Taylor's theorem implies

$$
\begin{aligned}
\left|K_{1}^{n}\right| & \leq \frac{1}{\sqrt{n}} \sum_{i=1}^{d} \int_{0}^{1} \mathrm{E}^{n}\left[\left|\frac{\partial}{\partial x^{i}} f\left(Y_{[n t]}^{n}(u, t)\right)(n t-[n t]) H_{[n t]}^{n, M, i}\left(X^{n}\right) \Phi\right|\right] d u \\
& \leq \text { const. } \times \frac{1}{\sqrt{n}} \longrightarrow 0
\end{aligned}
$$

Similar arguments give us $K_{2}^{n} \longrightarrow 0$. Then we obtain the assertion.
To treat the convergent of K_{3}^{n}, K_{4}^{n} and K_{5}^{n}, we will show the following three propositions.

Proposition 8. Let $U_{k}^{n}: C\left([0, \infty) ; \mathbb{R}^{d}\right) \times \Omega^{n} \longrightarrow \mathbb{R}$ be a continuously Fréchet differentiable random function such that $U_{k}^{n}(w)$ is $\mathcal{F}_{k, \infty}^{n}$-measurable and $\mathrm{E}^{n}\left[U_{k}^{n}(w)\right]=0$ for each $w \in \mathcal{C}_{M}^{d}$, and $V^{n}: \Omega^{n} \longrightarrow \mathbb{R}$ be an $\mathcal{F}_{0,[n s]^{-}}$ measurable random variable. Suppose that there exists a constant $C_{0}=$
$C_{0}(M)>0$ such that

$$
\begin{align*}
& \sup _{\varepsilon>0} \varepsilon^{\gamma} N_{n}\left(\varepsilon, M ; U_{k}^{n}\right) \leq C_{0}, \tag{3.34}\\
& \sup _{l \leq k} \sup _{\varepsilon>0} \varepsilon^{\gamma} N_{n}\left(\varepsilon, M ; \nabla U_{k}^{n}\left(\cdot ; I_{l}^{n} e_{j}\right)\right) \leq C_{0}, \\
& \sum_{m=0}^{1} \mathrm{E}^{n}\left[\sup _{|w|_{\infty} \leq M}\left|\nabla^{m} U_{k}^{n}(w)\right|_{L_{k / n}^{m}}^{p_{0}}\right] \leq C_{0} \tag{3.35}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{E}^{n}\left[\left|V^{n}\right|^{p_{0} / 2}\right] \leq C_{0} \tag{3.36}
\end{equation*}
$$

for any $j=1, \ldots, d, n \in \mathbb{N}$ and $k \in \mathbb{Z}_{+}$. Then it holds that

$$
\begin{equation*}
\frac{1}{n} \sum_{k=[n s]}^{[n t]-1} \mathrm{E}^{n}\left[D^{\beta} \varphi_{M}\left(X_{k / n}^{n}\right) U_{k}^{n}\left(X^{n}\right) V^{n}\right] \longrightarrow 0, \quad n \rightarrow \infty \tag{3.37}
\end{equation*}
$$

for $\beta \in \mathbb{Z}_{+}^{d}$ with $|\beta| \leq 1$.
Proof. By Taylor's theorem, we have

$$
\begin{aligned}
& \quad \mathrm{E}^{n}\left[D^{\beta} \varphi_{M}\left(X_{k / n}^{n}\right) U_{k}^{n}\left(X^{n}\right) V^{n}\right] \\
& =\sum_{l=[n s]}^{k-1} \mathrm{E}^{n}\left[\left\{D^{\beta} \varphi_{M}\left(X_{(l+1) / n}^{n}\right) U_{k}^{n}\left(X_{\cdot \wedge((l+1) / n)}^{n}\right)\right.\right. \\
& \left.\left.\quad-D^{\beta} \varphi_{M}\left(X_{l / n}^{n}\right) U_{k}^{n}\left(X_{\cdot \wedge(l / n)}^{n}\right)\right\} V^{n}\right] \\
& +\mathrm{E}^{n}\left[D^{\beta} \varphi_{M}\left(X_{[n s] / n}^{n}\right) U_{k}^{n}\left(X_{\cdot \wedge([n s] / n)}^{n}\right) V^{n}\right] \\
& =\frac{1}{\sqrt{n}} \sum_{i=1}^{d} \sum_{l=[n s]}^{k-1} \int_{0}^{1}\left\{\mathrm { E } ^ { n } \left[\frac{\partial}{\partial x^{i}} D^{\beta} \varphi_{M}\left(Y_{l}^{n, M}(u, k / n)\right)\right.\right. \\
& \left.\quad \times U_{k}^{n}\left(Y_{l}^{n, M}(u, \cdot)\right) H_{l}^{n, M, i}\left(X^{n}\right) V^{n}\right] \\
& \quad+\mathrm{E}^{n}\left[D^{\beta} \varphi_{M}\left(Y_{l}^{n, M}(u, k / n)\right)\right. \\
& \left.\left.\quad \times \nabla U_{k}^{n}\left(Y_{l}^{n, M}(u, \cdot) ; I_{l}^{n} e_{i}\right) H_{l}^{n, M, i}\left(X^{n}\right) V^{n}\right]\right\} d u \\
& +\mathrm{E}^{n}\left[D^{\beta} \varphi_{M}\left(X_{[n s] / n}^{n}\right) U_{k}^{n}\left(X_{\cdot \wedge([n s] / n)}^{n}\right) V^{n}\right] .
\end{aligned}
$$

By Proposition 2, we see that

$$
\begin{align*}
& \left|\mathrm{E}^{n}\left[\frac{\partial}{\partial x^{i}} D^{\beta} \varphi_{M}\left(Y_{l}^{n, M}(u, k / n)\right) U_{k}^{n}\left(Y_{l}^{n, M}(u, \cdot)\right) H_{l}^{n, M, i}\left(X^{n}\right) V^{n}\right]\right| \tag{3.38}\\
\leq & C_{1} \alpha_{k-l}^{\varrho_{0}}
\end{align*}
$$

$$
\begin{align*}
& \left|\mathrm{E}^{n}\left[D^{\beta} \varphi_{M}\left(Y_{l}^{n, M}(u, k / n)\right) \nabla U_{k}^{n}\left(Y_{l}^{n, M}(u, \cdot) ; I_{l}^{n} e_{i}\right) H_{l}^{n, M, i}\left(X^{n}\right) V^{n}\right]\right| \tag{3.39}\\
\leq & C_{1} \alpha_{k-l}^{\varrho_{0}}
\end{align*}
$$

and

$$
\begin{equation*}
\left|\mathrm{E}^{n}\left[D^{\beta} \varphi_{M}\left(X_{[n s] / n}^{n}\right) U_{k}^{n}\left(X_{\cdot \wedge([n s]) / n}^{n}\right) V^{n}\right]\right| \leq C_{1} \alpha_{k-[n s]}^{\varrho_{0}} \tag{3.40}
\end{equation*}
$$

for some $C_{1}>0$ depending only on M and C_{0}. Thus

$$
\begin{aligned}
& \frac{1}{n} \sum_{k=[n s]}^{[n t]-1}\left|\mathrm{E}^{n}\left[D^{\beta} \varphi_{M}\left(X_{k / n}^{n}\right) U_{k}^{n}\left(X^{n}\right) V^{n}\right]\right| \\
\leq & 2 C_{1} d \times \frac{1}{n} \sum_{k=[n s]}^{[n t]-1}\left\{\sum_{l=[n s]}^{k-1} \frac{1}{\sqrt{n}} \alpha_{k-l}^{\varrho_{0}}+\alpha_{k-[n s]}^{\varrho_{0}}\right\} \\
\leq & 2 C_{1} d\left(\sum_{k=1}^{\infty} \alpha_{k}^{\varrho_{0}}\right)(t+1) \times \frac{1}{\sqrt{n}} \longrightarrow 0, \quad n \rightarrow \infty .
\end{aligned}
$$

Then we obtain the assertion.
Proposition 9. Let $U_{k}^{n}, V_{k}^{n}: C\left([0, \infty) ; \mathbb{R}^{d}\right) \times \Omega^{n} \longrightarrow \mathbb{R}$ be such that $U_{k}^{n}(w)$ and $V_{k}^{n}(w)$ are $\mathcal{F}_{k, k}^{n}$-measurable and continuously Fréchet differentiable random functions such that $\mathrm{E}^{n}\left[U_{k}^{n}(w)\right]=0$ for each $w \in \mathcal{C}_{M}^{d}$, and $Z^{n}: \Omega^{n} \longrightarrow \mathbb{R}$ be an $\mathcal{F}_{0,[n s]}^{n}$-measurable random variable. Suppose that there exists a constant $C_{0}=C_{0}(M)>0$ such that

$$
\begin{align*}
& \sup _{\varepsilon>0} \varepsilon^{\gamma}\left\{N_{n}\left(\varepsilon, M ; U_{k}^{n}\right)+N_{n}\left(\varepsilon, M ; V_{k}^{n}\right)\right\} \leq C_{0}, \tag{3.41}\\
& \sup _{l \leq k} \sup _{\varepsilon>0} \varepsilon^{\gamma}\left\{N_{n}\left(\varepsilon, M ; \nabla U_{k}^{n}\left(\cdot ; I_{l}^{n} e_{j}\right)\right)\right. \tag{3.42}\\
& \left.\quad+N_{n}\left(\varepsilon, M ; \nabla V_{k}^{n}\left(\cdot ; I_{l}^{n} e_{j}\right)\right)\right\} \leq C_{0}, \\
& \tag{3.43}\\
& \sum_{m=0}^{1} \mathrm{E}^{n}\left[\sup _{|w|_{\infty} \leq M}\left|\nabla^{m} U_{k}^{n}(w)\right|_{L_{k / n}^{m}}^{p_{0}}\right] \\
& \leq \\
& C
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{E}^{n}\left[\left|Z^{n}\right|^{p_{0}}\right] \leq C_{0} \tag{3.44}
\end{equation*}
$$

for any $j=1, \ldots, d, n \in \mathbb{N}$ and $k \in \mathbb{Z}_{+}$. Then it holds that
(i) $\frac{1}{n} \sum_{k=[n s]}^{[n t]-1} \mathrm{E}^{n}\left[D^{\beta} \varphi_{M}\left(X_{k / n}^{n}\right) D^{\beta^{\prime}} \varphi_{M}\left(X_{k / n}^{n}\right) \Xi_{k k}^{n}\left(X^{n}\right) Z^{n}\right] \longrightarrow 0$,

$$
\text { (ii) } \begin{align*}
\frac{1}{n} \sum_{k=[n s]}^{[n t]-1} \sum_{l=[n s]}^{k-1} \mathrm{E}^{n} & {\left[D^{\beta} \varphi_{M}\left(X_{l / n}^{n}\right)\right.} \tag{3.46}\\
& \left.\times D^{\beta^{\prime}} \varphi_{M}\left(X_{l / n}^{n}\right) \Xi_{k l}^{n}\left(X_{\cdot \wedge(l / n)}^{n}\right) Z^{n}\right] \longrightarrow 0
\end{align*}
$$

as $n \rightarrow \infty$ for $\beta, \beta^{\prime} \in \mathbb{Z}_{+}^{d}$ with $|\beta|+\left|\beta^{\prime}\right| \leq 1$, where $\Xi_{k l}^{n}(w)=U_{k}^{n}(w) V_{l}^{n}(w)-$ $\mathrm{E}^{n}\left[U_{k}^{n}(w) V_{l}^{n}(w)\right]$.

Proof. By Taylor's theorem, we have

$$
\begin{aligned}
& \mathrm{E}^{n}\left[D^{\beta} \varphi_{M}\left(X_{l / n}^{n}\right) D^{\beta^{\prime}} \varphi_{M}\left(X_{l / n}^{n}\right) \Xi_{k l}^{n}\left(X_{. \wedge(l / n)}^{n}\right) Z^{n}\right] \\
& =\sum_{m=[n s]}^{l-1} \mathrm{E}^{n}\left[\left\{D^{\beta} \varphi_{M}\left(X_{(m+1) / n}^{n}\right) D^{\beta^{\prime}} \varphi_{M}\left(X_{(m+1) / n}^{n}\right) \Xi_{k l}^{n}\left(X_{\cdot \wedge((m+1) / n)}^{n}\right)\right.\right. \\
& \left.\left.-D^{\beta} \varphi_{M}\left(X_{m / n}^{n}\right) D^{\beta^{\prime}} \varphi_{M}\left(X_{m / n}^{n}\right) \Xi_{k l}^{n}\left(X_{. \wedge(m / n)}^{n}\right)\right\} Z^{n}\right] \\
& +\mathrm{E}^{n}\left[D^{\beta} \varphi_{M}\left(X_{[n s] / n}^{n}\right) D^{\beta^{\prime}} \varphi_{M}\left(X_{[n s] / n}^{n}\right) \Xi_{k l}^{n}\left(X_{\cdot \wedge([n s]) / n}^{n}\right) Z^{n}\right] \\
& =\frac{1}{\sqrt{n}} \sum_{i=1}^{d} \sum_{m=[n s]}^{l-1} \int_{0}^{1}\left\{\mathrm { E } ^ { n } \left[\left\{\frac{\partial}{\partial x^{i}} D^{\beta} \varphi_{M} D^{\beta^{\prime}} \varphi_{M}\right.\right.\right. \\
& \left.+D^{\beta} \varphi_{M} \frac{\partial}{\partial x^{i}} D^{\beta^{\prime}} \varphi_{M}\right\}\left(Y_{m}^{n, M}(u, l / n)\right) \\
& \left.\times \Xi_{k l}^{n}\left(Y_{m}^{n, M}(u, \cdot)\right) H_{m}^{n, M, i}\left(X^{n}\right) Z^{n}\right] \\
& +\mathrm{E}^{n}\left[D^{\beta} \varphi_{M}\left(Y_{m}^{n, M}(u, l / n)\right) D^{\beta^{\prime}} \varphi_{M}\left(Y_{m}^{n, M}(u, l / n)\right)\right. \\
& \left.\left.\times \nabla \Xi_{k l}^{n}\left(Y_{m}^{n, M}(u, \cdot) ; I_{m}^{n} e_{i}\right) H_{m}^{n, M, i}\left(X^{n}\right) Z^{n}\right]\right\} d u \\
& +\mathrm{E}^{n}\left[D^{\beta} \varphi_{M}\left(X_{[n s] / n}^{n}\right) D^{\beta^{\prime}} \varphi_{M}\left(X_{[n s] / n}^{n}\right) \Xi_{k l}^{n}\left(X_{\cdot \wedge([n s]) / n}^{n}\right) Z^{n}\right] .
\end{aligned}
$$

Since

$$
\begin{array}{ll}
& \nabla \Xi_{k l}^{n}\left(w ; I_{m}^{n} e_{i}\right) \tag{3.47}\\
= & \nabla U_{k}^{n}\left(w ; I_{m}^{n} e_{i}\right) V_{l}^{n}(w)-\mathrm{E}^{n}\left[\nabla U_{k}^{n}\left(w ; I_{m}^{n} e_{i}\right) V_{l}^{n}(w)\right] \\
& +U_{k}^{n}(w) \nabla V_{l}^{n}\left(w ; I_{m}^{n} e_{i}\right)-\mathrm{E}^{n}\left[U_{k}^{n}(w) \nabla V_{l}^{n}\left(w ; I_{m}^{n} e_{i}\right)\right]
\end{array}
$$

holds, using Proposition 3, we get

$$
\begin{align*}
& \left|\mathrm{E}^{n}\left[D^{\beta} \varphi_{M}\left(X_{l / n}^{n}\right) D^{\beta^{\prime}} \varphi_{M}\left(X_{l / n}^{n}\right) \Xi_{k l}^{n}\left(X_{\cdot \wedge(l / n)}^{n}\right) Z^{n}\right]\right| \tag{3.48}\\
\leq & C_{1}\left\{\frac{1}{\sqrt{n}} \sum_{m=[n s]}^{l-1} \alpha_{k-l}^{\varrho_{0}} \alpha_{l-m}^{\varrho_{0}}+\alpha_{k-l}^{\varrho_{0}} \alpha_{l-[n s]}^{\varrho_{0}}\right\}
\end{align*}
$$

for some $C_{1}>0$ depending only on M and C_{0}. In particular it follows that

$$
\begin{align*}
& \left|\mathrm{E}^{n}\left[D^{\beta} \varphi_{M}\left(X_{k / n}^{n}\right) D^{\beta^{\prime}} \varphi_{M}\left(X_{k / n}^{n}\right) \Xi_{k k}^{n}\left(X^{n}\right) Z^{n}\right]\right| \tag{3.49}\\
\leq & C_{1}\left\{\frac{1}{\sqrt{n}} \sum_{m=[n s]}^{k-1} \alpha_{k-m}^{\varrho_{0}}+\alpha_{k-[n s]}^{\varrho_{0}}\right\} .
\end{align*}
$$

Thus we have

$$
\begin{aligned}
& \frac{1}{n} \sum_{k=[n s]}^{[n t]-1}\left|\mathrm{E}^{n}\left[D^{\beta} \varphi_{M}\left(X_{k / n}^{n}\right) D^{\beta^{\prime}} \varphi_{M}\left(X_{k / n}^{n}\right) \Xi_{k k}^{n}\left(X^{n}\right) Z^{n}\right]\right| \\
\leq & 2 C_{1}\left(\sum_{k=1}^{\infty} \alpha_{k}^{\varrho_{0}}\right)(t+1) \times \frac{1}{\sqrt{n}} \longrightarrow 0, \quad n \rightarrow \infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{1}{n} \sum_{k=[n s]}^{[n t]-1} \sum_{l=[n s]}^{k-1}\left|\mathrm{E}^{n}\left[D^{\beta} \varphi_{M}\left(X_{l / n}^{n}\right) D^{\beta^{\prime}} \varphi_{M}\left(X_{l / n}^{n}\right) \Xi_{k l}^{n}\left(X_{\cdot \wedge(l / n)}^{n}\right) Z^{n}\right]\right| \\
\leq & 2 C_{1}\left(\sum_{k=1}^{\infty} \alpha_{k}^{\varrho_{0}}\right)^{2}(t+1) \times \frac{1}{\sqrt{n}} \longrightarrow 0, \quad n \rightarrow \infty
\end{aligned}
$$

Then we obtain the assertion.
Proposition 10. Let $\psi: \mathbb{R}^{d} \longrightarrow \mathbb{R}$ be a continuously differentiable function such that $\psi(x)=0$ for any $x \in \mathbb{R}^{d}$ with $|x|>M$ and g^{n} :
$\mathbb{Z}_{+} \times C\left([0, \infty) ; \mathbb{R}^{d}\right) \longrightarrow \mathbb{R}, g:[0, \infty) \times C\left([0, \infty) ; \mathbb{R}^{d}\right) \longrightarrow \mathbb{R}$ be functionals. Suppose that $g^{n}(k, \cdot)$ is $\mathcal{B}_{k / n}$-measurable and continuous, and that there exists a constant $C_{0}=C_{0}(M)>0$ such that

$$
\begin{equation*}
\sup _{|w|_{\infty} \leq M}\left|g^{n}(k, w)\right| \leq C_{0} \tag{3.50}
\end{equation*}
$$

for each $n \in \mathbb{N}$ and $k \in \mathbb{Z}_{+}$. Moreover suppose

$$
\begin{equation*}
\sup _{w \in K}\left|g^{n}([n t], w)-g(t, w)\right| \longrightarrow 0, \quad n \rightarrow \infty \tag{3.51}
\end{equation*}
$$

for each $K \in \mathcal{K}^{d}$ and $t \geq 0$. Then it holds that
(3.52) $\frac{1}{n} \sum_{k=[n s]}^{[n t]-1} \mathrm{E}^{n}\left[\psi\left(X_{k / n}^{n}\right) g^{n}\left(k, X^{n}\right) \Phi\left(X_{s_{1}}^{n}, \ldots, X_{s_{N}}^{n}\right)\right]$

$$
\longrightarrow \int_{s}^{t} \mathrm{E}^{Q^{M}}\left[\psi(w(u)) g(u, w) \Phi\left(w\left(s_{1}\right), \ldots, w\left(s_{N}\right)\right)\right] d u, \quad n \rightarrow \infty
$$

Proof. Denote the left-hand side of (3.52) by K^{n}. Define L^{n} and S^{n} by

$$
L^{n}=\int_{s}^{t} \mathrm{E}^{n}\left[\psi\left(X_{k / n}^{n}\right) g^{n}\left([n u], X^{n}\right) \Phi\left(X_{s_{1}}^{n}, \ldots, X_{s_{N}}^{n}\right)\right] d u
$$

and

$$
S^{n}=\int_{s}^{t} \mathrm{E}^{n}\left[\psi\left(X_{u}^{n}\right) g\left(u, X^{n}\right) \Phi\left(X_{s_{1}}^{n}, \ldots, X_{s_{N}}^{n}\right)\right] d u
$$

Then we have

$$
\begin{aligned}
\left|K^{n}-L^{n}\right| \leq & C_{0} \int_{s}^{t} \mathrm{E}^{n}\left[\left|\psi\left(X_{u}^{n}\right)-\psi\left(X_{[n u] / n}^{n}\right)\right| \cdot|\Phi|\right] d u \\
\leq & \text { const. } \times \frac{1}{\sqrt{n}} \sum_{i=1}^{d} \int_{s}^{t} \int_{0}^{1} \mathrm{E}^{n}\left[\left\lvert\, \frac{\partial}{\partial x^{i}} \psi\left(Y_{[n u]}^{n}(v, u)\right)\right.\right. \\
& \left.\times(n u-[n u]) H_{[n u]}^{n, M, j}\left(X^{n}\right) \mid\right] d v d u \\
\leq & \text { const. } \times \frac{1}{\sqrt{n}} \longrightarrow
\end{aligned}
$$

Next we will show

$$
\begin{equation*}
L^{n}-S^{n} \longrightarrow 0 \tag{3.53}
\end{equation*}
$$

Take any $\varepsilon>0$. Then, by Proposition 4 , there exists a compact set $K \subset$ $C\left([0, \infty) ; \mathbb{R}^{d}\right)$ such that

$$
\begin{equation*}
\inf _{n} Q^{n, M}(K)>1-\varepsilon \tag{3.54}
\end{equation*}
$$

Set $K_{M}=K \cap \mathcal{C}_{M}^{d}$. Then, by Proposition 1, we have

$$
\begin{aligned}
& \left|\mathrm{E}^{n}\left[\psi\left(X_{u}^{n}\right)\left(g^{n}\left([n u], X^{n}\right)-g\left(u, X^{n}\right)\right) \Phi\right]\right| \\
\leq & \text { const. } \times\left\{\sup _{w \in K_{M}}\left|g^{n}([n u], w)-g(u, w)\right|\right. \\
& \left.\quad+\left|\mathrm{E}^{n}\left[\psi\left(X_{u}^{n}\right)\left(g^{n}\left([n u], X^{n}\right)-g\left(u, X^{n}\right)\right) ; X^{n} \notin K\right]\right|\right\} \\
\leq & \text { const } . \times\left\{\sup _{w \in K_{M}}\left|g^{n}([n u], w)-g(u, w)\right|\right. \\
& \left.\quad+\sup _{|w|_{\infty} \leq M}\left\{\left|g^{n}([n u], w)\right|+|g(u, w)|\right\} \varepsilon\right\} .
\end{aligned}
$$

for each $u \in[s, t]$. Since $K_{M} \in \mathcal{K}^{d}$ holds, by (3.50), we have
(3.55) $\quad \underset{n \rightarrow \infty}{\limsup }\left|\mathrm{E}^{n}\left[\psi\left(X_{u}^{n}\right)\left(g^{n}\left([n u], X^{n}\right)-g\left(u, X^{n}\right)\right) \Phi\right]\right| \leq$ const . $\times \varepsilon$.

Thus

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\mathrm{E}^{n}\left[\psi\left(X_{u}^{n}\right)\left(g^{n}\left([n u], X^{n}\right)-g\left(u, X^{n}\right)\right) \Phi\right]\right|=0 \tag{3.56}
\end{equation*}
$$

for each $u \in[s, t]$. By (3.50) again and the bounded convergence theorem, we get

$$
\begin{align*}
& \left|L^{n}-S^{n}\right| \tag{3.57}\\
\leq & \int_{s}^{t}\left|\mathrm{E}^{n}\left[\psi\left(X_{u}^{n}\right)\left(g^{n}\left([n u], X^{n}\right)-g\left(u, X^{n}\right)\right) \Phi\right]\right| d u \longrightarrow 0
\end{align*}
$$

Since

$$
F(w)=\int_{s}^{t} \psi(w(u)) g(u, w) \Phi\left(w\left(s_{1}\right), \ldots, w\left(s_{N}\right)\right) d u
$$

is continuous and Proposition 1 implies

$$
\begin{equation*}
Q^{n, M}\left(|F(w)| \leq C_{1}\right)=1 \tag{3.58}
\end{equation*}
$$

for each $n \in \mathbb{N}$, where

$$
C_{1}=C_{0}|t-s| \sup _{|x| \leq M}|\psi(x)| \sup _{y_{1}, \ldots, y_{N} \in \mathbb{R}^{d}}\left|\Phi\left(y_{1}, \ldots, y_{N}\right)\right|,
$$

using the continuous mapping theorem, we get

$$
S^{n} \longrightarrow \int_{s}^{t} \mathrm{E}^{Q^{M}}\left[\psi(w(u)) g(u, w) \Phi\left(w\left(s_{1}\right), \ldots, w\left(s_{N}\right)\right)\right] d u
$$

This completes the proof of Proposition 10.
By Proposition 8, 9(i) and 10, we have the following.
Proposition 11.
(i) $K_{4}^{n} \longrightarrow \sum_{i=1}^{d} \int_{s}^{t} \mathrm{E}^{Q^{M}}\left[\frac{\partial}{\partial x^{i}} f(w(u)) \varphi_{M}(w(u))\right.$

$$
\left.\times b_{0}^{i}(u, w) \Phi\left(w\left(s_{1}\right), \ldots, w\left(s_{N}\right)\right)\right] d u
$$

(ii) $K_{5}^{n} \longrightarrow \sum_{i, j=1}^{d} \int_{s}^{t} \mathrm{E}^{Q^{M}}\left[\frac{\partial^{2}}{\partial x^{i} \partial x^{j}} f(w(u)) \varphi_{M}(w(u))^{2}\right.$

$$
\left.\times a_{0}^{i j}(u, w) \Phi\left(w\left(s_{1}\right), \ldots, w\left(s_{N}\right)\right)\right] d u
$$

as $n \rightarrow \infty$.
Next we calculate the limit of K_{3}^{n}. Using Taylor's theorem, we have

$$
K_{3}^{n}=K_{3,1}^{n}+K_{3,2}^{n}+K_{3,3}^{n}+K_{3,4}^{n}+K_{3,5}^{n}+K_{3,6}^{n}+K_{3,7}^{n}+K_{3,8}^{n}
$$

where

$$
\begin{gathered}
K_{3,1}^{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{d} \sum_{k=[n s]}^{[n t]-1} \mathrm{E}^{n}\left[\frac{\partial}{\partial x^{i}} f\left(X_{[n s] / n}^{n}\right) \varphi_{M}\left(X_{[n s] / n}^{n}\right) F_{k}^{n, i}\left(X_{\cdot \wedge([n s] / n)}^{n}\right) \Phi\right] \\
K_{3,2}^{n}=\frac{1}{n} \sum_{i, j=1}^{d} \sum_{k=[n s]}^{[n t]-1} \sum_{l=[n s]}^{k-1} \mathrm{E}^{n}\left[\frac{\partial^{2}}{\partial x^{i} \partial x^{j}} f\left(X_{l / n}^{n}\right) \varphi_{M}\left(X_{l / n}^{n}\right)^{2}\right. \\
\left.\quad \times F_{k}^{n, i}\left(X_{\cdot \wedge(l / n)}^{n}\right) F_{l}^{n, j}\left(X^{n}\right) \Phi\right],
\end{gathered}
$$

$$
\begin{aligned}
& K_{3,3}^{n}=\frac{1}{n \sqrt{n}} \sum_{i, j=1}^{d} \sum_{k=[n s]}^{[n t]-1} \sum_{l=[n s]}^{k-1} \mathrm{E}^{n}\left[\frac{\partial^{2}}{\partial x^{i} \partial x^{j}} f\left(X_{l / n}^{n}\right) \varphi_{M}\left(X_{l / n}^{n}\right)^{2}\right. \\
& \left.\times F_{k}^{n, i}\left(X_{\cdot \wedge(l / n)}^{n}\right) G_{l}^{n, j}\left(X^{n}\right) \Phi\right], \\
& K_{3,4}^{n}=\frac{1}{n} \sum_{i, j=1}^{d} \sum_{k=[n s]}^{[n t]-1} \sum_{l=[n s]}^{k-1} \mathrm{E}^{n}\left[\frac{\partial}{\partial x^{i}} f\left(X_{l / n}^{n}\right) \varphi_{M}\left(X_{l / n}^{n}\right)\right. \\
& \left.\times \frac{\partial}{\partial x^{j}} \varphi_{M}\left(X_{l / n}^{n}\right) F_{k}^{n, i}\left(X_{\cdot \wedge(l / n)}^{n}\right) F_{l}^{n, j}\left(X^{n}\right) \Phi\right], \\
& K_{3,5}^{n}=\frac{1}{n \sqrt{n}} \sum_{i, j=1}^{d} \sum_{k=[n s]}^{[n t]-1} \sum_{l=[n s]}^{k-1} \mathrm{E}^{n}\left[\frac{\partial}{\partial x^{i}} f\left(X_{l / n}^{n}\right) \varphi_{M}\left(X_{l / n}^{n}\right)\right. \\
& \left.\times \frac{\partial}{\partial x^{j}} \varphi_{M}\left(X_{l / n}^{n}\right) F_{k}^{n, i}\left(X_{\cdot \wedge(l / n)}^{n}\right) G_{l}^{n, j}\left(X^{n}\right) \Phi\right], \\
& K_{3,6}^{n}=\frac{1}{n} \sum_{i, j=1}^{d} \sum_{k=[n s]}^{[n t]-1} \sum_{l=[n s]}^{k-1} \mathrm{E}^{n}\left[\frac{\partial}{\partial x^{i}} f\left(X_{l / n}^{n}\right) \varphi_{M}\left(X_{l / n}^{n}\right)^{2}\right. \\
& \left.\times \nabla F_{k}^{n, i}\left(X_{\cdot \wedge(l / n)}^{n} ; I_{l}^{n} e_{j}\right) F_{l}^{n, j}\left(X^{n}\right) \Phi\right], \\
& K_{3,7}^{n}=\frac{1}{n \sqrt{n}} \sum_{i, j=1}^{d} \sum_{k=[n s]}^{[n t]-1} \sum_{l=[n s]}^{k-1} \mathrm{E}^{n}\left[\frac{\partial}{\partial x^{i}} f\left(X_{l / n}^{n}\right) \varphi_{M}\left(X_{l / n}^{n}\right)^{2}\right. \\
& \left.\times \nabla F_{k}^{n, i}\left(X_{\cdot \wedge(l / n)}^{n} ; I_{l}^{n} e_{j}\right) G_{l}^{n, j}\left(X^{n}\right) \Phi\right], \\
& K_{3,8}^{n}=\frac{1}{n \sqrt{n}} \sum_{i, j, \nu=1}^{d} \sum_{k=[n s]}^{[n t]-1} \sum_{l=[n s]}^{k-1} \int_{0}^{1}(1-u) \mathrm{E}^{n}\left[\eta_{k l}^{n, M, i j \nu}\left(Y_{l}^{n}(u, \cdot)\right)\right. \\
& \left.\times H_{l}^{n, M, j}\left(X^{n}\right) H_{l}^{n, M, \nu}\left(X^{n}\right) \Phi\right] d u
\end{aligned}
$$

and

$$
\begin{aligned}
\eta_{k l}^{n, M, i j \nu}(w)= & \frac{\partial^{3}}{\partial x^{i} \partial x^{j} \partial x^{\nu}} f(w(l / n)) F_{k}^{n, M, i}(w) \\
& +\frac{\partial^{2}}{\partial x^{i} \partial x^{j}} f(w(l / n)) \nabla F_{k}^{n, M, i}\left(w ; I_{l}^{n} e_{\nu}\right) \\
& +\frac{\partial^{2}}{\partial x^{i} \partial x^{\nu}} f(w(l / n)) \nabla F_{k}^{n, M, i}\left(w ; I_{l}^{n} e_{j}\right) \\
& +\frac{\partial}{\partial x^{i}} f(w(l / n)) \nabla^{2} F_{k}^{n, M, i}\left(w ; I_{l}^{n} e_{j}, I_{l}^{n} e_{\nu}\right)
\end{aligned}
$$

Proposition 12. $K_{3, j}^{n} \longrightarrow 0$ as $n \rightarrow \infty, j=1,3,5,7,8$.
Proof. Applying Proposition 2 with $U=F_{k}^{n, i}$ and $V=$ $\frac{\partial}{\partial x^{i}} f\left(X_{[n s] / n}^{n}\right) \Phi$, we have

$$
\left|K_{3,1}^{n}\right| \leq \text { const } . \times \frac{1}{\sqrt{n}} \sum_{k=[n s]}^{[n t]-1} \alpha_{k-[n s]}^{\varrho_{0}} \leq \text { const } . \times\left(\sum_{k=0}^{\infty} \alpha_{k}^{\varrho_{0}}\right) \frac{1}{\sqrt{n}} \longrightarrow 0
$$

Applying Proposition 2 again with $U=F_{k}^{n, i}$ and $V=$ $\frac{\partial^{2}}{\partial x^{i} \partial x^{j}} f\left(X_{l / n}^{n}\right) \varphi_{M}\left(X_{l / n}^{n}\right) G_{l}^{n, j}\left(X^{n}\right) \Phi$, we have

$$
\left|K_{3,3}^{n}\right| \leq \text { const } . \times \frac{1}{n \sqrt{n}} \sum_{k=[n s]}^{[n t]-1} \sum_{l=[n s]}^{k-1} \alpha_{k-l}^{\varrho_{0}} \leq \text { const } . \times\left(\sum_{k=0}^{\infty} \alpha_{k}^{\varrho_{0}}\right) \frac{1}{\sqrt{n}} \longrightarrow 0
$$

Similarly we have $K_{3,5}^{n} \longrightarrow 0$ and $K_{3,7}^{n} \longrightarrow 0$. Since $\eta_{k l}^{n, M, i j \nu}(w)$ is the finite sum of the following terms

$$
D^{\beta} f(w(l / n)) D^{\beta^{\prime}} \varphi_{M}(w(k / n)) U(w)
$$

with $\beta, \beta^{\prime} \in \mathbb{Z}_{+}^{d}$ and $U(w)=F_{k}^{n, i}(w), \nabla F_{k}^{n, i}\left(w ; I_{l}^{n} e_{j}\right)$ or $\nabla^{2} F_{k}^{n, i}\left(w ; I_{l}^{n} e_{j}\right.$, $I_{l}^{n} e_{\nu}$), by Proposition 2, it follows that $K_{3,8}^{n} \longrightarrow 0$. Then we obtain the assertion.

For $K_{3,2}^{n}, K_{3,4}^{n}$ and $K_{3,6}^{n}$, we will show the following proposition.

Proposition 13. Let $\psi: \mathbb{R}^{d} \longrightarrow \mathbb{R}$ be a continuously differentiable function such that $\psi(x)=0$ for any $x \in \mathbb{R}^{d}$ with $|x|>M$, and $\xi_{k, l}^{n}$: $C\left([0, \infty) ; \mathbb{R}^{d}\right) \longrightarrow \mathbb{R}, k, l \in \mathbb{Z}_{+}, \Xi:[0, \infty) \times C\left([0, \infty) ; \mathbb{R}^{d}\right) \longrightarrow \mathbb{R}$ be functionals. Suppose that $\xi_{k, l}^{n}$ is $\mathcal{B}_{l / n}$-measurable and continuous, and that there exists a constant $C_{0}=C_{0}(M)>0$ such that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \sup _{l \in \mathbb{Z}_{+}} \sup _{|w|_{\infty} \leq M}\left|\xi_{k, l}^{n}(w)\right| \leq C_{0} \tag{3.59}
\end{equation*}
$$

for each $n \in \mathbb{N}$. Moreover suppose

$$
\begin{equation*}
\sup _{w \in K}\left|\sum_{k=1}^{\infty} \xi_{k,[n t]}^{n}(w)-\Xi(t, w)\right| \longrightarrow 0, \quad n \rightarrow \infty \tag{3.60}
\end{equation*}
$$

for each $K \in \mathcal{K}^{d}$ and $t \geq 0$. Then it holds that
(3.61) $\frac{1}{n} \sum_{k=[n s]}^{[n t]-1} \sum_{l=[n s]}^{k-1} \mathrm{E}^{n}\left[\psi\left(X_{l / n}^{n}\right) \xi_{k-l, l}^{n}\left(X^{n}\right) \Phi\left(X_{s_{1}}^{n}, \ldots, X_{s_{N}}^{n}\right)\right]$

$$
\longrightarrow \int_{s}^{t} \mathrm{E}^{Q^{M}}\left[\psi(w(u)) \Xi(u, w) \Phi\left(w\left(s_{1}\right), \ldots, w\left(s_{N}\right)\right)\right] d u, \quad n \rightarrow \infty
$$

Proof. Denote the left-hand side of (3.61) by U^{n} and set

$$
V^{n}=\frac{1}{n} \sum_{l=[n s]}^{[n t]-1} \sum_{k=1}^{\infty} \mathrm{E}^{n}\left[\psi\left(X_{l / n}^{n}\right) \xi_{k, l}^{n}\left(X^{n}\right) \Phi\left(X_{s_{1}}^{n}, \ldots, X_{s_{N}}^{n}\right)\right]
$$

Since Fubini's theorem implies

$$
\begin{equation*}
U^{n}=\frac{1}{n} \sum_{l=[n s]}^{[n t]-2} \sum_{k=1}^{[n t]-l-1} \mathrm{E}^{n}\left[\psi\left(X_{l / n}^{n}\right) \xi_{k, l}^{n}\left(X^{n}\right) \Phi\left(X_{s_{1}}^{n}, \ldots, X_{s_{N}}^{n}\right)\right] \tag{3.62}
\end{equation*}
$$

we have

$$
\begin{align*}
& \left|U^{n}-V^{n}\right| \tag{3.63}\\
\leq & C_{1}(M, \psi, \Phi)\left\{\frac{1}{n}+\int_{s}^{t} \sum_{k=[n t]-[n u]}^{\infty} \sup _{l \in \mathbb{Z}_{+}} \sup _{|w|_{\infty} \leq M}\left|\xi_{k, l}^{n}(w)\right| d u\right\}
\end{align*}
$$

for some $C_{1}(M, \psi, \Phi)>0$. By (3.59), the integrand in the right-hand side of (3.63) is bounded and converges to zero as $n \rightarrow \infty$ for $u \in[s, t)$. Thus, using the bounded convergence theorem, we have

$$
\begin{equation*}
U^{n}-V^{n} \longrightarrow 0 \tag{3.64}
\end{equation*}
$$

Since Proposition 10 implies

$$
\begin{equation*}
V^{n} \longrightarrow \int_{s}^{t} \mathrm{E}^{Q^{M}}\left[\psi(w(u)) \Xi(u, w) \Phi\left(w\left(s_{1}\right), \ldots, w\left(s_{N}\right)\right)\right] d u \tag{3.65}
\end{equation*}
$$

we have our assertion.
Proposition 14.
(i) $K_{3,2}^{n} \longrightarrow \sum_{i, j=1}^{d} \int_{s}^{t} \mathrm{E}^{Q^{M}}\left[\frac{\partial^{2}}{\partial x^{i} x^{j}} f(w(u)) \varphi_{M}(w(u))^{2}\right.$

$$
\left.\times A^{i j}(u, w) \Phi\left(w\left(s_{1}\right), \ldots, w\left(s_{N}\right)\right)\right] d u
$$

(ii) $K_{3,4}^{n} \longrightarrow \sum_{i, j=1}^{d} \int_{s}^{t} \mathrm{E}^{Q^{M}}\left[\frac{\partial}{\partial x^{i}} f(w(u)) \varphi_{M}(w(u)) \frac{\partial}{\partial x^{j}} \varphi_{M}(w(u))\right.$

$$
\left.\times A^{i j}(u, w) \Phi\left(w\left(s_{1}\right), \ldots, w\left(s_{N}\right)\right)\right] d u
$$

(iii) $K_{3,6}^{n} \longrightarrow \sum_{i, j=1}^{d} \int_{s}^{t} \mathrm{E}^{Q^{M}}\left[\frac{\partial}{\partial x^{i}} f(w(u)) \varphi_{M}(w(u))^{2} \varphi_{M}(w(u))\right.$ $\left.\times B^{i j}(u, w) \Phi\left(w\left(s_{1}\right), \ldots, w\left(s_{N}\right)\right)\right] d u$ as $n \rightarrow \infty$.

Proof. Define $\xi_{k, l}^{n, i j}$ by

$$
\xi_{k, l}^{n, i j}=\mathrm{E}^{n}\left[F_{k+l}^{n, i}\left(w\left(\cdot \wedge \frac{l}{n}\right)\right) F_{l}^{n, j}(w)\right] .
$$

By assumption [A7], we have

$$
\begin{equation*}
\sup _{w \in K}\left|\sum_{k=1}^{\infty} \xi_{k,[n t]}^{n, i j}(w)-A^{n, i j}(t, w)\right| \longrightarrow 0, \quad n \rightarrow \infty \tag{3.66}
\end{equation*}
$$

for any $K \in \mathcal{K}^{d}$ and $t \geq 0$.
By Proposition 9, it follows that

$$
\begin{equation*}
K_{3,2}^{n}-K_{3,2,1}^{n} \longrightarrow 0, \quad n \rightarrow \infty \tag{3.67}
\end{equation*}
$$

where

$$
\begin{aligned}
& K_{3,2,1}^{n}=\frac{1}{n} \sum_{i, j=1}^{d} \sum_{k=[n s]}^{[n t]-1} \sum_{l=[n s]}^{k-1} \mathrm{E}^{n}\left[\frac{\partial^{2}}{\partial x^{i} x^{j}} f\left(X_{l / n}^{n}\right) \varphi_{M}\left(X_{l / n}^{n}\right)^{2}\right. \\
&\left.\quad \times \xi_{k-l, l}^{n, i j}\left(X^{n}\right) \Phi\left(X_{s_{1}}^{n}, \ldots, X_{s_{N}}^{n}\right)\right]
\end{aligned}
$$

Since Lemma 1 implies

$$
\left|\xi_{k, l}^{n, i j}(w)\right| \leq 8 \mathrm{E}^{n}\left[\left|F_{k+l}^{n, i}(w)\right|^{3}\right]^{1 / 3} \mathrm{E}^{n}\left[\left|F_{l}^{n, j}(w)\right|^{3}\right]^{1 / 3} \alpha_{k}^{1 / 3}
$$

we have

$$
\begin{equation*}
\sum_{k=1}^{\infty} \sup _{l \in \mathbb{Z}_{+}} \sup _{|w|_{\infty} \leq M}\left|\xi_{k, l}^{n, i j}(w)\right| \leq C_{0} \sum_{k=1}^{\infty} \alpha_{k}^{1 / 3} \tag{3.68}
\end{equation*}
$$

for some $C_{0}=C_{0}(M)>0$. Then, applying Proposition 13, we get

$$
\begin{align*}
K_{3,2,1}^{n} \longrightarrow \sum_{i, j=1}^{d} \int_{s}^{t} \mathrm{E}^{Q^{M}} & {\left[\frac{\partial^{2}}{\partial x^{i} x^{j}} f(w(u)) \varphi_{M}(w(u))^{2}\right.} \tag{3.69}\\
& \left.\times A^{i j}(u, w) \Phi\left(w\left(s_{1}\right), \ldots, w\left(s_{N}\right)\right)\right] d u
\end{align*}
$$

Then we obtain the assertion (i).
The assertions (ii) and (iii) follow by the same way.
By Proposition 7, 11, 12 and 14, it follows that

$$
\begin{align*}
& \mathrm{E}^{Q^{n, M}}\left[(f(w(t))-f(w(s))) \Phi\left(w\left(s_{1}\right), \ldots, w\left(s_{N}\right)\right)\right] \tag{3.70}\\
& \longrightarrow \mathrm{E}^{Q^{M}}\left[\int_{s}^{t} \mathscr{L}^{M} f(u, w) d u \Phi\left(w\left(s_{1}\right), \ldots, w\left(s_{N}\right)\right)\right]
\end{align*}
$$

The equality (3.31) now follows by (3.32) and (3.70). This completes the proof of Proposition 6.

Proposition 15. The family of measures $\left(Q^{M}\right)_{M>1+\left|x_{0}\right|}$ is tight on $C\left([0, \infty) ; \mathbb{R}^{d}\right)$.

Proof. We define the matrix $\sigma^{M}(t, w)=\left(\sigma^{M, i j}(t, w)\right)_{i, j=1}^{d}$ by $\sigma^{M}(t, w)=\varphi_{M}(w(t)) a^{1 / 2}(t, w)$, where $a^{1 / 2}(t, w)$ is the square root matrix of $a(t, w)$. By Proposition 6, there exists the weak solution $\left(\Omega^{M}, \mathcal{F}^{M},\left(\mathcal{F}_{t}^{M}\right)_{t}\right.$, $\left.P^{M},\left(B_{t}^{M}\right)_{t},\left(X_{t}^{M}\right)_{t}\right)$ of the following stochastic differential equation

$$
\left\{\begin{align*}
d X_{t}^{M} & =\sigma^{M}\left(t, X^{M}\right) d B_{t}^{M}+b^{M}\left(t, X^{M}\right) d t \tag{3.71}\\
X_{0}^{M} & =x_{0}
\end{align*}\right.
$$

such that the distribution of X^{M} under P^{M} is equal to Q^{M}.
Let $T>0$. We will show that there exists a constant $C_{0}(T)>0$ such that

$$
\begin{equation*}
\mathrm{E}^{M}\left[\sup _{0 \leq t \leq T}\left|X_{t}^{M}\right|^{4}\right] \leq C_{0}(T) \tag{3.72}
\end{equation*}
$$

Fix any $R>0$ and define the stopping time τ_{R} and the function $m_{R}(t)$ by

$$
\tau_{R}=\inf \left\{t \in \mathbb{R}_{+} ;\left|X_{t}^{M}\right| \geq R\right\}
$$

and

$$
m_{R}(t)=\mathrm{E}^{M}\left[\sup _{0 \leq s \leq t}\left|X_{s \wedge \tau_{R}}^{M}\right|^{4}\right]
$$

where E^{M} denotes the expectation under P^{M}.
By the continuity of X^{M}, we see that $\tau_{R} \longrightarrow \infty$ as $R \rightarrow \infty$ almost surely under P^{M}. By the assumption [A8], the Hölder inequality and the Burkholder-Davis-Gundy inequality, we have

$$
\begin{aligned}
m_{R}(t) \leq & C_{1}\left\{\mathrm{E}^{M}\left[\sup _{0 \leq s \leq t}\left|\int_{0}^{s \wedge \tau_{R}} \sigma^{M}\left(u, X^{M}\right) d B_{u}^{M}\right|^{4}\right]\right. \\
& \left.+\mathrm{E}^{M}\left[\sup _{0 \leq s \leq t}\left|\int_{0}^{s \wedge \tau_{R}} b^{M}\left(u, X^{M}\right) d u\right|^{4}\right]\right\} \\
\leq & C_{1}\left\{t \mathrm{E}^{M}\left[\int_{0}^{t} 1_{\left\{s \leq \tau_{R}\right\}}\left|\sigma^{M}\left(s, X^{M}\right)\right|^{4} d s\right]\right. \\
& \left.+t^{3} \mathrm{E}^{M}\left[\int_{0}^{t} 1_{\left\{s \leq \tau_{R}\right\}}\left|b^{M}\left(s, X^{M}\right)\right|^{4} d s\right]\right\} \\
\leq & C_{2}(T) \mathrm{E}^{M}\left[\int_{0}^{t} 1_{\left\{s \leq \tau_{R}\right\}}\left(1+\sup _{0 \leq u \leq s}\left|X_{u}^{M}\right|\right)^{4} d s\right] \\
\leq & C_{3}(T)\left\{1+\int_{0}^{t} m_{R}(s) d s\right\}
\end{aligned}
$$

for each $t \leq T$ and for some constants $C_{1}, C_{2}(T), C_{3}(T)>0$. Applying the Gronwall inequality, we see

$$
\begin{equation*}
\sup _{0 \leq t \leq T} m_{R}(t) \leq C_{4}(T) \tag{3.73}
\end{equation*}
$$

for some $C_{4}(T)>0$. Letting $R \rightarrow \infty$, we get (3.72) by Fatou's lemma.
Then, using the Hölder inequality and the Burkholder-Davis-Gundy inequality again, we have

$$
\begin{aligned}
& \quad \mathrm{E}^{P^{M}}\left[\left|X_{t}^{M}-X_{s}^{M}\right|^{4}\right] \\
& \leq C_{1}\left\{\mathrm{E}^{M}\left[\left|\int_{0}^{t} 1_{\{u \geq s\}} \sigma^{M}\left(u, X^{M}\right) d B_{u}^{M}\right|^{4}\right]\right. \\
& \\
& \left.\quad+\mathrm{E}^{M}\left[\left|\int_{s}^{t} b^{M}\left(u, X^{M}\right) d u\right|^{4}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \leq C_{1}\left\{|t-s| \mathrm{E}^{M}\left[\int_{s}^{t}\left|\sigma^{M}\left(u, X^{M}\right)\right|^{4} d u\right]\right. \\
& \left.\quad+|t-s|^{3} \mathrm{E}^{M}\left[\int_{s}^{t}\left|b^{M}\left(u, X^{M}\right)\right|^{4} d u\right]\right\} \\
& \leq C_{5}(T)|t-s| \int_{s}^{t}\left(1+\mathrm{E}^{M}\left[\sup _{0 \leq v \leq u}\left|X_{v}^{M}\right|^{4}\right]\right) d u \leq C_{0}(T) C_{5}(T)|t-s|^{2}
\end{aligned}
$$

for some $C_{5}(T)>0$. Obviously $Q^{M}\left(w \in C\left([0, \infty) ; \mathbb{R}^{d}\right) ; w(0)=x_{0}\right)=1$ holds for all M. Then, using theorem 2.3 in [13], we obtain the tightness of $\left(Q^{M}\right)_{M>1+\left|x_{0}\right|}$.

Proof of Theorem 1. Proposition 15 implies that for any subsequence $\left(M_{k}\right)_{k}$, there exists a further subsequence $\left(M_{k_{l}}\right)_{l}$ such that $Q^{M_{k_{l}}}$ converges to some probability measure Q^{*} on $C\left([0, \infty) ; \mathbb{R}^{d}\right)$.

Take M_{0} large enough so that the support of f is contained in $\{x \in$ $\left.\mathbb{R}^{d} ;|x| \leq M_{0} / 2\right\}$. Since $\mathscr{L}^{M} f=\mathscr{L} f$ holds for $M>M_{0}$, by (3.31), it follows that

$$
\begin{align*}
& \mathrm{E}^{Q^{M_{k_{l}}}}\left[(f(w(t))-f(w(s))) \Phi\left(w\left(s_{1}\right), \ldots, w\left(s_{N}\right)\right)\right] \tag{3.74}\\
= & \mathrm{E}^{Q^{M_{k_{l}}}}\left[\int_{s}^{t} \mathscr{L} f(u, w) d u \Phi\left(w\left(s_{1}\right), \ldots, w\left(s_{N}\right)\right)\right]
\end{align*}
$$

for $M_{k_{l}}>M_{0}$. Letting $l \rightarrow \infty$, we see that Q^{*} is a solution of the martingale problem associated with the generator \mathscr{L}. Moreover, by the assumption [A10], Q^{*} equals to Q and is independent of a subsequence $\left(M_{k_{l}}\right)_{l}$. Then it follows that Q^{M} converges weakly to Q on $C\left([0, \infty) ; \mathbb{R}^{d}\right)$ as $M \rightarrow \infty$.

Finally, repeating the arguments in [5] p.119-120, we show that Q^{n} converges weakly to Q on $C\left([0, \infty) ; \mathbb{R}^{d}\right)$. This completes the proof of Theorem 1.

4. Proof of Theorem 2

To prove Theorem 2 , we will show two lemmas below. Let (Ω, \mathcal{F}, P) be a probability space and (S, d) be a metric space.

Lemma $5 . \quad$ Let $1<p, q<\infty$ be such that $\frac{1}{p}+\frac{1}{q}<1$ and $U: S \times \Omega \longrightarrow$ \mathbb{R} be a continuous random function such that $U(x)$ is \mathcal{A}-measurable and
$\mathrm{E}[U(x)]=0$ for each $x \in S$, and $X: \Omega \longrightarrow S, V: \Omega \longrightarrow \mathbb{R}$ be \mathcal{B}-measurable random variables. Suppose that there exist positive constants C_{0} and γ such that

$$
\begin{equation*}
\sup _{\varepsilon>0} \varepsilon^{\gamma} \log N(\varepsilon, p ; U) \leq C_{0} \tag{4.1}
\end{equation*}
$$

Then for each $\varrho \in(0,1 / \gamma)$ there exists a constant $C>0$ depending only on p, q, γ, ϱ and C_{0} such that

$$
\begin{align*}
& |\mathrm{E}[U(X) V]| \tag{4.2}\\
\leq & C\left(\mathrm{E}\left[\sup _{x \in S}|U(x)|^{p}\right]^{1 / p}+1\right) \mathrm{E}\left[|V|^{q}\right]^{1 / q}\left(\frac{1}{\log (1 / \alpha(\mathcal{A}, \mathcal{B}))}\right)^{\varrho}
\end{align*}
$$

Proof. We may assume that the right-hand side of (4.2) is finite. Set $\xi=\frac{1}{\log (1 / \alpha(\mathcal{A}, \mathcal{B}))}$. Using Lemma 2 with $\varepsilon=\xi^{\varrho}$, we have

$$
\begin{align*}
|\mathrm{E}[U(X) V]| \leq & 8\left(\mathrm{E}\left[\sup _{x \in S}|U(x)|^{p}\right]^{1 / p}+1\right) \tag{4.3}\\
& \times \mathrm{E}\left[|V|^{q}\right]^{1 / q}\left(\xi^{\varrho}+\xi^{(1-r) \varrho} \exp \left(C_{0} \xi^{-\varrho \gamma}-\xi^{-1}\right)\right)
\end{align*}
$$

where $\frac{1}{r}=1-\frac{1}{p}-\frac{1}{q}$. Since $\varrho \gamma \in(0,1)$ and $\xi \in(0,1)$, there is a constant $C_{1}>0$ which depends only on p, q, γ, ϱ and C_{0} such that

$$
\begin{equation*}
\xi^{(1-r) \varrho} \exp \left(C_{0} \xi^{-\varrho \gamma}-\xi^{-1}\right) \leq C_{1} \xi^{\varrho} \tag{4.4}
\end{equation*}
$$

By (4.3) and (4.4), we obtain our assertion.
Lemma 6. Let $1<p, q, r<\infty$ be such that $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1$. Let $U, V: S \times \Omega \longrightarrow \mathbb{R}$ be continuous random functions such that $U(x)$ and $V(x)$ are \mathcal{A} and \mathcal{B}-measurable respectively and $\mathrm{E}[U(x)]=0$ for each $x \in S$, and $X: \Omega \longrightarrow S, Z: \Omega \longrightarrow \mathbb{R}$ be \mathcal{C}-measurable random variables. Suppose that there exist positive constants $C_{0}, u^{*}, v^{*}>0$ and γ such that

$$
\begin{equation*}
\sup _{\varepsilon>0} \varepsilon^{\gamma}\{\log N(\varepsilon, p ; U)+\log N(\varepsilon, q ; V)\} \leq C_{0} \tag{4.5}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{E}\left[\sup _{x \in S}|U(x)|^{p}\right]^{1 / p} \leq u^{*} \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{E}\left[\sup _{x \in S}|V(x)|^{q}\right]^{1 / q} \leq v^{*} \tag{4.7}
\end{equation*}
$$

Then for each $\varrho^{\prime} \in\left(0, \frac{1}{2 \gamma}\right)$ there exists a constant $C>0$ depending only on $p, q, r, \gamma, \varrho^{\prime}, u^{*}, v^{*}$ and C_{0} such that

$$
\begin{align*}
& |\mathrm{E}[\Xi(X) Z]| \tag{4.8}\\
\leq & C \mathrm{E}\left[|Z|^{r}\right]^{1 / r}\left(\frac{1}{\log (1 / \alpha(\mathcal{A} \vee \mathcal{B}, \mathcal{C}))}\right)^{\varrho^{\prime}}\left(\frac{1}{\log (1 / \alpha(\mathcal{A}, \mathcal{B} \vee \mathcal{C}))}\right)^{\varrho^{\prime}}
\end{align*}
$$

where $\Xi(x)=U(x) V(x)-E[U(x) V(x)]$.
Proof. By (2.17), we have

$$
\begin{equation*}
\sup _{\varepsilon>0} \varepsilon^{\gamma} \log N(\varepsilon, p ; \Xi) \leq 2^{\gamma+1} C_{0}\left(u^{*}+v^{*}\right)^{\gamma} \tag{4.9}
\end{equation*}
$$

Then, by Lemma 5, we see that

$$
\begin{equation*}
|\mathrm{E}[\Xi(X) Z]| \leq C_{1} \mathrm{E}\left[|Z|^{r}\right]^{1 / r}\left(\frac{1}{\log (1 / \alpha(\mathcal{A} \vee \mathcal{B}, \mathcal{C}))}\right)^{2 \varrho^{\prime}} \tag{4.10}
\end{equation*}
$$

for some $C_{1}=C_{1}\left(p, q, r, \gamma, \varrho^{\prime}, u^{*}, v^{*}, C_{0}\right)>0$. By Lemma 1 and Lemma 5 , we have

$$
\begin{equation*}
\leq C_{2} \mathrm{E}\left[|Z|^{r}\right]^{1 / r}\left\{\alpha(\mathcal{A}, \mathcal{B} \vee \mathcal{C})^{1-1 / p-1 / q}+\left(\frac{1}{\log (1 / \alpha(\mathcal{A}, \mathcal{B} \vee \mathcal{C}))}\right)^{2 \varrho^{\prime}}\right\} \tag{4.11}
\end{equation*}
$$

for some $C_{2}=C_{2}\left(p, q, r, \gamma, \varrho^{\prime}, u^{*}, v^{*}, C_{0}\right)>0$. Since there is $C_{3}=$ $C_{3}\left(p, q, \varrho^{\prime}\right)>0$ such that

$$
\begin{equation*}
t^{1-1 / p-1 / q} \leq C_{3}\left(\frac{1}{\log (1 / t)}\right)^{2 \varrho^{\prime}} \tag{4.12}
\end{equation*}
$$

for all $t \in(0,1 / 4]$, we get

$$
\begin{equation*}
|\mathrm{E}[\Xi(X) Z]| \leq C_{2}\left(C_{3}+1\right) \mathrm{E}\left[|Z|^{r}\right]^{1 / r}\left(\frac{1}{\log (1 / \alpha(\mathcal{A}, \mathcal{B} \vee \mathcal{C}))}\right)^{2 \varrho^{\prime}} \tag{4.13}
\end{equation*}
$$

By (4.10) and (4.13), we obtain the assertion.
By Lemma 5, Lemma 6 and the same arguments in the proof of Theorem 1, we obtain Theorem 2.

5. Appendix

5.1. Sufficient conditions for [A9]

Let $a(t, w)=\left(a^{i j}(t, w)\right)_{i j=1}^{d}$ and $b(t, w)=\left(b^{i}(t, w)\right)_{i=1}^{d}$ be as in [A8], and let $\sigma(t, w)=\left(\sigma^{i j}(t, w)\right)_{i, j=1}^{d}=a^{1 / 2}(t, w)$. It is well-known that if we assume the Lipschitz condition of $\sigma^{i j}(t, w)$ and $b^{i}(t, w)$, then the condition [A9] holds. In fact, the local Lipschitz continuity of $b^{i}(t, w)$ is obtained by $[A 3]$ and $[A 5]$. In this section we introduce the sufficient condition under which $\sigma^{i j}(t, w)$ is Lipschitz continuous.
[A10] $a^{i j}(t, w)$ is twice continuously Fréchet differentiable in w for each $t \geq 0$, and for each $T>0$ there exists a positive constant $C(T)>0$ such that

$$
\begin{equation*}
\left|\nabla_{w}^{2} a^{i j}(t, w)\right|_{L_{t}^{2}} \leq C(T) \tag{5.1}
\end{equation*}
$$

for each $t \in[0, T]$ and $w \in C\left([0, \infty) ; \mathbb{R}^{d}\right)$, where $\nabla_{w}^{2} a^{i j}(t, w)$ denotes the second Fréchet derivative of $a^{i j}(t, w)$ with respect to w.

Here we remark that since $a^{i j}(t, \cdot)$ is measurable with respect to \mathcal{B}_{t}, we can regard $\nabla_{w}^{2} a^{i j}(t, w)$ as the element of L_{t}^{2} for each fixed $t \geq 0$.

Theorem 3. Assume $[A 1]-[A 8]$ and $[A 10]$. Then the conclusion of Theorem 1 holds.

Proof. Let $\sigma(t, w)=a^{1 / 2}(t, w)$. To check the condition [A9], it suffices to show that for each $M>0$ and $T>0$ there exists a constant $C_{0}=C_{0}(M, T)>0$ such that

$$
\begin{align*}
\left|\sigma^{i j}(t, w)-\sigma^{i j}\left(t, w^{\prime}\right)\right| & \leq C_{0} \sup _{0 \leq s \leq t}\left|w(s)-w^{\prime}(s)\right| \tag{5.2}\\
\left|b^{i}(t, w)-b^{i}\left(t, w^{\prime}\right)\right| & \leq C_{0} \sup _{0 \leq s \leq t}\left|w(s)-w^{\prime}(s)\right| \tag{5.3}
\end{align*}
$$

for any $t \in[0, T]$ and $w, w^{\prime} \in \mathcal{C}_{M}^{d}$.
By [A3], we have

$$
\begin{equation*}
\left|\nabla_{w} b_{0}^{n, i}(k, w)\right|_{L_{k / n}^{1}} \leq \mathrm{E}^{n}\left[\left|\nabla G_{k}^{n, i}(w)\right|_{L_{k / n}^{1}}\right] \leq C_{1}, \quad k \in \mathbb{Z}_{+}, w \in \mathcal{C}_{M}^{d} \tag{5.4}
\end{equation*}
$$

for some $C_{1}=C_{1}(M)>0$. Moreover, by $[A 3],[A 5]$ and Lemma 1, we have

$$
\begin{align*}
\leq & \sum_{l=1}^{\infty}\left\{\mathrm{E}^{n}\left[\left|\nabla^{2} F_{k+l}^{n, i}\left(w\left(\cdot \wedge \frac{k}{n}\right)\right)\right|_{L_{k / n}^{2}}^{3}\right]^{1 / 3} \mathrm{E}^{n}\left[\left|F_{k}^{n, j}(w)\right|^{3}\right]^{1 / 3}\right. \tag{5.5}\\
& \left.+\mathrm{E}^{n}\left[\left|\nabla F_{k+l}^{n, i}\left(w\left(\cdot \wedge \frac{k}{n}\right)\right)\right|_{L_{k / n}^{1}}^{3}\right]^{1 / 3} \mathrm{E}^{n}\left[\left|\nabla F_{k}^{n, j}(w)\right|_{L_{k / n}^{1}}^{3}\right]^{1 / 3}\right\} \alpha_{l}^{1 / 3} \\
\leq & C_{2} \sum_{l=1}^{\infty} \alpha_{l}^{1 / 3}, \quad k \in \mathbb{Z}_{+}, w \in \mathcal{C}_{M}^{d}
\end{align*}
$$

for some $C_{2}=C_{2}(M)>0$. By (5.4) and (5.5), we get (5.3).
To see (5.2), we introduce the following theorem (Theorem 5.2.3 in [14]).
THEOREM 4. Let $f(t, x)=\left(f^{i j}(t, x)\right)_{i, j=1}^{d}:[0, T] \times \mathbb{R} \longrightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{d}$ be a symmetric non-negative definite matrix-valued function. Suppose that $f^{i j}(t, x)$ is twice continuously differentiable in x for each $t \geq 0$ and that there is a positive constant $C(T)$ such that

$$
\begin{equation*}
\left|\frac{\partial^{2}}{\partial x^{2}} f^{i j}(t, x)\right| \leq C(T) \tag{5.6}
\end{equation*}
$$

for each $t \in[0, T], x \in \mathbb{R}$ and $i, j=1, \ldots, d$. Then it holds that

$$
\begin{equation*}
\left|g^{i j}(t, x)-g^{i j}(t, y)\right| \leq d \sqrt{2 C(T)}|x-y| \tag{5.7}
\end{equation*}
$$

for each $t \in[0, T]$ and $x, y \in \mathbb{R}$, where $g(t, x)=f^{1 / 2}(t, x)$.
For each fixed $T>0$ and $w, w^{\prime} \in C\left([0, \infty) ; \mathbb{R}^{d}\right)$, define the functions $f, g:[0, T] \times \mathbb{R} \longrightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{d}$ by $f(t, x)=a\left(t, w^{\prime}+x\left(w-w^{\prime}\right)\right)$ and $g(t, x)=$ $f^{1 / 2}(t, x)$. By [A10], $f(t, x)$ is twice continuously differentiable in x for each t and

$$
\begin{align*}
\left|\frac{d^{2}}{d x^{2}} f^{i j}(t, x)\right| & =\left|\nabla_{w}^{2} a^{i j}\left(t, w^{\prime}+x\left(w-w^{\prime}\right) ; w-w^{\prime}, w-w^{\prime}\right)\right| \tag{5.8}\\
& \leq C_{4} \sup _{0 \leq s \leq t}\left|w(s)-w^{\prime}(s)\right|^{2}, \quad t \in[0, T], x \in \mathbb{R}
\end{align*}
$$

for some $C_{4}(T)>0$. Then Theorem 4 implies

$$
\left|\sigma^{i j}(t, w)-\sigma^{i j}\left(t, w^{\prime}\right)\right|=\left|g^{i j}(t, 1)-g^{i j}(t, 0)\right| \leq d \sqrt{2 C_{4}} \sup _{0 \leq s \leq t}\left|w(s)-w^{\prime}(s)\right|
$$

This implies (5.2). Then the condition [A9] holds and we obtain the conclusion.

5.2. Sufficient conditions for [A4] and [B4]

In this section we provide sufficient conditions under which $[A 4]$ and [B4] are filled.

Let $\varepsilon>0,(S, d)$ be a metric space and A be a totally bounded subset of S. We say that a family of sets $\left(A_{i}\right)_{i=1}^{m}$ is an ε-net of A if $A \subset \bigcup_{i=1}^{m} A_{i}$ and $\sup _{x, y \in A_{i}} d(x, y)<\varepsilon$ for each $i=1, \ldots, m$. We denote by $\hat{N}(\varepsilon ; A, d)$ the minimum of cardinals of ε-nets of A in the metric d.

Theorem 5. Let (Ω, \mathcal{F}, P) be a probability space, $p \geq 1,(S, d)$ be a metric space, $\left(B,\|\cdot\|_{B}\right)$ be a Banach space and A be a totally bounded subset of B. Let $f: B \times \Omega \longrightarrow \mathbb{R}$ be a continuously Fréchet differentiable random function and $u: S \longrightarrow B$ be a continuous function such that $u(x) \in A$ for any $x \in S$. Suppose that there exists a positive constant C_{0} such that

$$
\begin{equation*}
\mathrm{E}\left[\sup _{y \in \tilde{A}}\|\nabla f(y)\|_{B^{*}}^{p}\right]^{1 / p} \leq C_{0} \tag{5.9}
\end{equation*}
$$

where \tilde{A} is a convex hull of A and

$$
\|\nabla f(y)\|_{B^{*}}=\sup _{z \in B, z \neq 0} \frac{|\nabla f(y ; z)|}{\|z\|_{B}}, y \in B
$$

Then for any $\varepsilon>0$

$$
\begin{equation*}
N(\varepsilon, p ; U) \leq \hat{N}\left(\varepsilon / C_{0} ; A, d_{B}\right) \tag{5.10}
\end{equation*}
$$

where $U(x, \omega)=f(u(x), \omega)$ and $d_{B}\left(y, y^{\prime}\right)=\left\|y-y^{\prime}\right\|_{B}, \quad y, y^{\prime} \in B$.
Proof. Let $\left(A_{i}\right)_{i=1}^{m}$ be an ε-net of A. We define $S_{i} \subset S$ by

$$
S_{i}=\left\{x \in S ; u(x) \in A_{i}\right\} .
$$

Then we have

$$
\begin{equation*}
S=\bigcup_{i=1}^{m} S_{i} \tag{5.11}
\end{equation*}
$$

and for each $x, x^{\prime} \in S_{i}$

$$
\begin{aligned}
\left|U(x)-U\left(x^{\prime}\right)\right| & \leq \int_{0}^{1}\left\|\nabla f\left(t u(x)+(1-t) u\left(x^{\prime}\right)\right)\right\|_{B^{*}} d t\left\|u(x)-u\left(x^{\prime}\right)\right\|_{B} \\
& \leq \sup _{y \in \tilde{A}}\|\nabla f(y)\|_{B^{*}} \times \varepsilon
\end{aligned}
$$

Then we have

$$
\begin{equation*}
\mathrm{E}\left[\max _{i=1, \ldots, m} \sup _{x, x^{\prime} \in S_{i}}\left|U(x)-U\left(x^{\prime}\right)\right|^{p}\right]^{1 / p} \leq C_{0} \varepsilon \tag{5.12}
\end{equation*}
$$

By (5.11) and (5.12), we see that $\left(S_{i}\right)_{i=1}^{m}$ is an $\left(C_{0} \varepsilon, p, U\right)$-net of S. Then we obtain the assertion.

Let B be a Banach space and $\mathcal{B}(B)$ be a Borel field of B. By Theorem 5 , under suitable conditions, we can check conditions $[A 4]$ and $[B 4]$ when $F_{k}^{n, i}$ and $G_{k}^{n, i}$ are represented in the following form

$$
\begin{equation*}
F_{k}^{n, i}(w, \omega)=f_{k}^{n, i}(u(k / n, w), \omega), \quad G_{k}^{n, i}(w, \omega)=g_{k}^{n, i}(v(k / n, w), \omega) \tag{5.13}
\end{equation*}
$$

where $f_{k}^{n, i}(x, \omega), g_{k}^{n, i}(x, \omega): B \times \Omega^{n} \longrightarrow \mathbb{R}$ be $\mathcal{B}(B) \otimes \mathcal{F}^{n}$-measurable random functions and $u(t, w), v(t, w):[0, \infty) \times C\left([0, \infty) ; \mathbb{R}^{d}\right) \longrightarrow B$ be $\left(\mathcal{B}_{t}\right)_{t}$-adapted (i.e. $u(t, \cdot)$ and $v(t, \cdot)$ are \mathcal{B}_{t}-measurable for each $t \geq 0$) deterministic functions.

We also have the condition $[A 4]$ when the image spaces of $F_{k}^{n, i}$ and $G_{k}^{n, i}$ are finite dimensional in $L^{p_{0}}\left(\Omega^{n}\right)$. Let $p \geq 1,(\Omega, \mathcal{F}, P)$ be a probability space, (S, d) be a metric space and $U: S \times \Omega \longrightarrow \mathbb{R}$ be a continuous random function which satisfies $\mathrm{E}\left[|U(x)|^{p}\right]<\infty$ for any $x \in S$. We define the metric space $\left(\mathcal{S}_{p}(U), d_{p}\right)$ by

$$
\mathcal{S}_{p}(U)=\left\{U(x) \in L^{p}(\Omega) ; x \in S\right\}
$$

and $d_{p}(X, Y)=\mathrm{E}\left[|X-Y|^{p}\right]^{1 / p}$.

ThEOREM 6. Suppose that there are constants $\gamma \in(0, p / 2), C_{0}>0$ and $C_{1}>0$ such that

$$
\begin{equation*}
\sup _{\varepsilon>0} \varepsilon^{\gamma} \hat{N}\left(\varepsilon ; \mathcal{S}_{p}(U), d_{p}\right) \leq C_{0} \tag{5.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{E}\left[\sup _{x \in S}|U(x)|^{p}\right] \leq C_{1} . \tag{5.15}
\end{equation*}
$$

Then for each $\lambda \in\left(0, \frac{p-2 \gamma}{p}\right)$ there exists a constant $C>0$ which depends only on $p, \gamma, \lambda, C_{0}$ and C_{1} such that

$$
\begin{equation*}
\sup _{\varepsilon>0} \varepsilon^{\gamma / \lambda} N(\varepsilon, p ; U) \leq C . \tag{5.16}
\end{equation*}
$$

Proof. Define $F: \mathcal{S}_{p}(U) \times \Omega \longrightarrow \mathbb{R}$ by $F(X, \omega)=X(\omega)$. Then we have

$$
\begin{equation*}
\mathrm{E}\left[|F(X)-F(Y)|^{p}\right]=\mathrm{E}\left[|X-Y|^{p}\right]=d_{p}(X, Y)^{p} \tag{5.17}
\end{equation*}
$$

for any $X, Y \in \mathcal{S}_{p}(U)$. By (5.14), (5.17) and the similar arguments in the proof of Theorem 1.4.1 in [7], we see that there exist a continuous modification \tilde{F} of F and a constant $C_{2}>0$ depending only on p, γ, λ and C_{0} such that

$$
\begin{equation*}
\mathrm{E}\left[\sup _{X, Y \in \mathcal{S}_{p}(U), 0<d_{p}(X, Y)<1}\left|\frac{\tilde{F}(X)-\tilde{F}(Y)}{d_{p}(X, Y)^{\lambda}}\right|^{p}\right] \leq C_{2} \tag{5.18}
\end{equation*}
$$

Define the random variable K by

$$
K=\sup _{X, Y \in \mathcal{S}_{p}(U), X \neq Y} \frac{|\tilde{F}(X)-\tilde{F}(Y)|}{d_{p}(X, Y)^{\lambda}}
$$

Then it holds that

$$
\begin{equation*}
\mathrm{E}\left[|K|^{p}\right] \leq 2^{p-1} C_{1}+C_{2} \tag{5.19}
\end{equation*}
$$

Thus, for each subsets $S_{1}, \ldots, S_{m} \subset \mathcal{S}_{p}(U)$, we have

$$
\begin{aligned}
& \mathrm{E}\left[\max _{i=1, \ldots, m} \sup _{x, y \in S_{i}}|U(x)-U(y)|^{p}\right]^{1 / p} \\
= & \mathrm{E}\left[\max _{i=1, \ldots, m} \sup _{x, y \in S_{i}}|\tilde{F}(U(x))-\tilde{F}(U(y))|^{p}\right]^{1 / p} \\
\leq & \mathrm{E}\left[|K|^{p}\right]^{1 / p} \max _{i=1, \ldots, m} \sup _{x, y \in S_{i}} d_{p}(U(x), U(y))^{\lambda} \\
\leq & C_{3} \max _{i=1, \ldots, m} \sup _{x, y \in S_{i}} \mathrm{E}\left[|U(x)-U(y)|^{p}\right]^{\lambda / p},
\end{aligned}
$$

where $C_{3}=\left(2^{p-1} C_{1}+C_{2}\right)^{1 / p}$. So we get

$$
\begin{equation*}
N(\varepsilon, p ; U) \leq \hat{N}\left(\varepsilon^{1 / \lambda} / C_{3} ; \mathcal{S}_{p}(U), d_{p}\right) \tag{5.20}
\end{equation*}
$$

for any $\varepsilon>0$. Then we have

$$
\begin{equation*}
\sup _{\varepsilon>0} \varepsilon^{\gamma / \lambda} N(\varepsilon, p ; U) \leq C_{3}^{\gamma} \sup _{\varepsilon>0} \varepsilon^{\gamma} \hat{N}\left(\varepsilon ; \mathcal{S}_{p}(U), d_{p}\right) \leq C_{3}^{\gamma} C_{0} \tag{5.21}
\end{equation*}
$$

This implies our assertion.
By Theorem 6, we can check [A4] under the following condition $\left[A 4^{\prime}\right]$.
[$\left.A 4^{\prime}\right]$ For some $\gamma_{2} \in\left(0, p_{0} / 2\right),(1.6)-(1.10)$ hold with γ_{2} and $\tilde{N}_{n}(\varepsilon, M ; U)$ instead of γ_{0} and $N_{n}(\varepsilon, M ; U)$, where $\tilde{N}_{n}(\varepsilon, M ; U)$ is the smallest integer m such that there exist sets S_{1}, \ldots, S_{m} which satisfy $\mathcal{C}_{M}^{d}=\bigcup_{i=1}^{m} S_{i}$ and

$$
\sup _{x, y \in S_{i}} \mathrm{E}^{n}\left[|U(x)-U(y)|^{p_{0}}\right]^{1 / p_{0}}<\varepsilon
$$

for each $i=1, \ldots, m$.

5.3. Examples

In this section, we give two examples of Theorem 2. Let (Ω, \mathcal{F}, P) be a complete probability space and let $\xi_{k}=\left(\xi_{k}^{i}\right)_{i=1}^{m_{1}}, k \in \mathbb{Z}_{+}$, be an $m_{1^{-}}$ dimensional stationary Gaussian process.
(a.) Let $f(x)=\left(f^{i}(x)\right)_{i=1}^{d}: \mathbb{R}^{m_{2}} \longrightarrow \mathbb{R}^{d}, \quad u(t, x, y)=\left(u^{i}(t, x, y)\right)_{i=1}^{m_{2}}$:
$[0, \infty) \times \mathbb{R}^{d} \times \mathbb{R}^{m_{3}} \longrightarrow \mathbb{R}^{m_{2}}$ and $\psi(x)=\left(\psi^{i}(x)\right)_{i=1}^{m_{3}}: \mathbb{R}^{m_{1}} \longrightarrow \mathbb{R}^{m_{3}}$ be Borel measurable functions. Let $\Psi(t, w, y)=\left(\Psi^{i}(t, w, y)\right)_{i=1}^{m_{2}}$ and $h(t, w, y)=$ $\left(h^{i}(t, w, y)\right)_{i=1}^{d}$ be such that

$$
\Psi^{i}(t, w, y)=\int_{0}^{t} u^{i}(s, w(t-s), \psi(y)) d s
$$

and

$$
h^{i}(t, w, y)=f^{i}(\Psi(t, w, y))
$$

We define $F_{k}^{n, i}(w)$ and $G_{k}^{n, i}(w)$ by

$$
\begin{equation*}
G_{k}^{n, i}(w)=\mathrm{E}\left[h^{i}\left(k / n, w, \xi_{k}\right)\right] \tag{5.22}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{k}^{n, i}(w)=h^{i}\left(k / n, w, \xi_{k}\right)-G_{k}^{n, i}(w) . \tag{5.23}
\end{equation*}
$$

We introduce the following conditions.
$[C 1] f^{i}(x)$ is three times continuously differentiable in x. Moreover $u(t, x, y)$ is three times continuously differentiable in x and y, and all derivatives are continuous in t.
[C2] It holds that

$$
\begin{gather*}
\sum_{|\beta| \leq 3} \sup _{x \in \mathbb{R}^{m_{2}}}\left|D^{\beta} f^{i}(x)\right|<\infty, \tag{5.24}\\
\sum_{|\beta|+\left|\beta^{\prime}\right| \leq 2} \int_{0}^{\infty} \sup _{x \in \mathbb{R}^{d}, y \in \mathbb{R}^{m_{3}}}\left|D_{x}^{\beta} D_{y}^{\beta^{\prime}} u^{j}(t, x, y)\right| d t<\infty \tag{5.25}
\end{gather*}
$$

and

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{m_{1}}}\left|\psi^{\nu}(x)\right|<\infty \tag{5.26}
\end{equation*}
$$

for each $i=1, \ldots, d, j=1, \ldots, m_{2}$ and $\nu=1, \ldots, m_{3}$.
$[C 3]$ Let $\mathcal{G}_{k, l}=\sigma\left(\xi_{\nu}^{i} ; i=1, \ldots, d, k \leq \nu \leq l\right)$ and

$$
\beta_{k}=\sup _{l} \sup \left\{|P(A \cap B)-P(A) P(B)| ; A \in \mathcal{G}_{0, l}, B \in \mathcal{G}_{k+l, \infty}\right\}
$$

Then for some $\varrho_{4} \in(0,1 / 2)$

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(\frac{1}{\log \left(1 / \beta_{k}\right)}\right)^{\varrho_{4}}<\infty \tag{5.27}
\end{equation*}
$$

Define $\hat{b}^{i}(t, w)$ and $\eta_{k}^{i j}(t, w)$ by

$$
\begin{equation*}
\hat{b}^{i}(t, w)=\mathrm{E}\left[h^{i}\left(t, w, \xi_{0}\right)\right] \tag{5.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{k}^{i j}(t, w)=\mathrm{E}\left[h^{i}\left(t, w, \xi_{k}\right) h^{j}\left(t, w, \xi_{0}\right)\right]-\hat{b}^{i}(t, w) \hat{b}^{j}(t, w) \tag{5.29}
\end{equation*}
$$

and $\hat{a}^{i j}(t, w)$ by

$$
\begin{equation*}
\hat{a}^{i j}(t, w)=\eta_{0}^{i j}(t, w)+\sum_{k=1}^{\infty}\left\{\eta_{k}^{i j}(t, w)+\eta_{k}^{j i}(t, w)\right\} \tag{5.30}
\end{equation*}
$$

Let
(5.31) $\hat{\mathscr{L}} f(t, w)=\frac{1}{2} \sum_{i, j=1}^{d} \hat{a}^{i j}(t, w) \frac{\partial^{2}}{\partial x^{i} \partial x^{j}} f(w(t))+\sum_{i=1}^{d} \hat{b}^{i}(t, w) \frac{\partial}{\partial x^{i}} f(w(t))$ for $f \in C^{2}\left(\mathbb{R}^{d}\right)$.

Theorem 7. Assume $[C 1]-[C 3]$. Then the conclusion of Theorem 1 holds replacing \mathscr{L} with $\hat{\mathscr{L}}$.

Proof. We will check that $F_{k}^{n, i}$ and $G_{k}^{n, i}$ satisfy the assumptions of Theorem 2. $[A 1]-[A 3],[B 5]$ and $[A 6]$ are obvious.

Proposition 16. The condition [B4] holds with $\gamma_{1}=1$.
Proof. Let $U(w, \omega)=h^{i}\left(t, w, \xi_{k}(\omega)\right)$. We define $g(v, \omega): \hat{\mathcal{C}}_{R} \times \Omega \longrightarrow$ \mathbb{R} by $g(v, \omega)=f^{i}\left(v\left(\psi\left(\xi_{k}(\omega)\right)\right)\right)$, where $\hat{\mathcal{C}}_{R}=C\left(K_{R} ; \mathbb{R}^{m_{1}}\right), K_{R}=\{x \in$ $\left.\mathbb{R}^{m_{3}} ;|x| \leq R\right\}$ and $R=\sum_{i=1}^{m_{3}} \sup _{x \in \mathbb{R}^{m_{1}}}\left|\psi^{i}(x)\right|$. We also define $\tilde{\Psi}(t, w, y)=$ $\left(\tilde{\Psi}^{j}(t, w, y)\right)_{j=1}^{m_{2}}:[0, \infty) \times \mathcal{C}_{M}^{d} \times K_{R} \longrightarrow \mathbb{R}^{m_{2}}$ by

$$
\tilde{\Psi}^{j}(t, w, y)=\int_{0}^{t} u^{j}(s, w(t-s), y) d s
$$

Then it follows that

$$
\begin{equation*}
U(w, \omega)=g(\tilde{\Psi}(t, w, \cdot), \omega) \tag{5.32}
\end{equation*}
$$

By [$C 2$], we see that there is a constant $C_{0}>0$ such that

$$
\begin{equation*}
\sum_{j=1}^{m_{2}} \sum_{|\beta| \leq 1}\left|D_{y}^{\beta} \tilde{\Psi}^{j}(t, w, y)\right| \leq C_{0}, \quad w \in \mathcal{C}_{M}^{d}, y \in K_{R} \tag{5.33}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\tilde{\Psi}(t, w, \cdot) \in A_{R}, \quad w \in \mathcal{C}_{M}^{d} \tag{5.34}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{R}=\left\{v \in \hat{\mathcal{C}}_{R} ; v\right. \text { is continuously differentiable and } \\
& \left.\qquad \sum_{j=1}^{m_{2}} \sum_{|\beta| \leq 1} \sup _{|y| \leq R}\left|D^{\beta} v^{j}(y)\right| \leq C_{0}\right\} .
\end{aligned}
$$

[C2] also implies

$$
\begin{equation*}
|\nabla g(v, \omega ; \tilde{v})| \leq C_{1} \sum_{j=1}^{m_{2}} \sup _{|y| \leq R}\left|\tilde{v}^{j}(y)\right|, \quad v, \tilde{v} \in A_{R}, \omega \in \Omega \tag{5.35}
\end{equation*}
$$

for some $C_{1}>0$. Then, by Theorem 5 , we get

$$
\begin{equation*}
N(\varepsilon, p, M ; U) \leq \hat{N}\left(\varepsilon / C_{1} ; A_{R}, d_{\infty}\right) \tag{5.36}
\end{equation*}
$$

for each $M>0$ and $p \geq 1$, where $d_{\infty}\left(v, v^{\prime}\right)=\sup _{y \in K_{R}}\left|v(y)-v^{\prime}(y)\right|$ and $N(\varepsilon, p, M ; U)$ is the minimum of cardinals of (ε, p, U)-nets of \mathcal{C}_{M}^{d}.

Moreover, by Theorem XIII in [8], we have

$$
\begin{equation*}
\log \hat{N}\left(\varepsilon / C_{1} ; A_{R}, d_{\infty}\right) \leq C_{1} C_{2} \varepsilon^{-1} \tag{5.37}
\end{equation*}
$$

for some $C_{2}>0$ depending only on R and C_{0}. Then we get

$$
\begin{equation*}
\log N(\varepsilon, p, M ; U) \leq C_{3} \varepsilon^{-1} \tag{5.38}
\end{equation*}
$$

for some $C_{3}>0$ with $U(w, \omega)=h^{i}\left(t, w, \xi_{k}(\omega)\right)$.

Similarly we see that (5.38) holds with $U(w, \omega)=\nabla_{w} h^{i}\left(t, w, \xi_{k}(\omega) ; I_{l}^{n} e_{j}\right)$ and $U(w, \omega)=\nabla_{w}^{2} h^{i}\left(t, w, \xi_{k}(\omega) ; I_{l}^{n} e_{j}, I_{l}^{n} e_{\nu}\right)$. Then we obtain the assertion.

To check the condition $[A 7]$, we will show the following proposition.
Proposition 17. For each $K \in \mathcal{K}^{d}, t \geq 0$ and $k \in \mathbb{Z}_{+}$, it holds that

$$
\begin{align*}
& \sup _{w \in K, y \in \mathbb{R}^{m_{1}}} \left\lvert\, \Psi^{i}\left(\frac{[n t]+k}{n}, w\left(\cdot \wedge \frac{[n t]}{n}\right), y\right)\right. \tag{5.39}\\
&-\Psi^{i}(t, w, y) \mid \longrightarrow 0, \quad n \rightarrow \infty
\end{align*}
$$

Proof. Let

$$
\begin{aligned}
\delta_{T}(s ; w)=\sup \left\{\left|w(r)-w\left(r^{\prime}\right)\right| ; 0 \leq r, r^{\prime} \leq\right. & \left.T,\left|r-r^{\prime}\right| \leq s\right\} \\
& s, T>0, w \in C([0, \infty) ; \mathbb{R})
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \sup _{w \in K, y \in \mathbb{R}^{m_{1}}}\left|\Psi^{i}\left(\frac{[n t]+k}{n}, w\left(\cdot \wedge \frac{[n t]}{n}\right), y\right)-\Psi^{i}(t, w, y)\right| \\
\leq & \int_{t}^{([n t]+k) / n} \sup _{x, y}\left|u^{i}(s, x, y)\right| d s \\
& +\sum_{j=1}^{d} \int_{0}^{t} \sup _{x, y}\left|\frac{\partial}{\partial x^{j}} u^{i}(s, x, y)\right| \\
& \times \sup _{w \in K}\left|w^{j}\left(\left(\frac{[n t]+k}{n}-s\right) \wedge \frac{[n t]}{n}\right)-w^{j}(t-s)\right| d s \\
\leq & \int_{t}^{([n t]+k) / n} \sup _{x, y}\left|u^{i}(s, x, y)\right| d s \\
& +\sum_{j=1}^{d} \int_{0}^{t} \sup _{x, y}\left|\frac{\partial}{\partial x^{j}} u^{i}(s, x, y)\right| d s \sup _{w \in K} \delta_{t}\left(\frac{k+1}{n} ; w^{j}\right) .
\end{aligned}
$$

Since K is compact, we see that

$$
\begin{equation*}
\sup _{w \in K} \delta_{t}\left(\frac{k+1}{n} ; w^{j}\right) \longrightarrow 0, \quad n \rightarrow \infty, k \in \mathbb{Z}_{+} \tag{5.40}
\end{equation*}
$$

Then we have the assertion.
Define $a_{0}^{n, i j}(k, w), b_{0}^{n, i}(k, w), A^{n, i j}(k, w)$ and $B^{n, i j}(k, w)$ as in [A7].
Proposition 18. It holds that
(i) $\sup _{w \in K}\left|a_{0}^{n, i j}([n t], w)-\eta_{0}^{i j}(t, w)\right| \longrightarrow 0$,
(ii) $\sup _{w \in K}\left|b_{0}^{n, i}([n t], w)-\hat{b}^{i}(t, w)\right| \longrightarrow 0$,
(iii) $\sup _{w \in K}\left|A^{n, i j}([n t], w)-\hat{A}^{i j}(t, w)\right| \longrightarrow 0$,
(iv) $\sup _{w \in K}\left|B^{n, i j}([n t], w)\right| \longrightarrow 0$
for each $t \geq 0$ and $K \in \mathcal{K}^{d}$, where $\hat{A}^{i j}(t, w)=\sum_{k=1}^{\infty} \eta_{k}^{i j}(t, w)$.
Proof. By Proposition 17, we get

$$
\begin{aligned}
& \mathrm{E}\left[\sup _{w \in K}\left|h^{i}\left([n t] / n, w, \xi_{k}\right)-h^{i}\left(t, w, \xi_{k}\right)\right|\right] \\
\leq & \sum_{j=1}^{m_{2}} \sup _{x}\left|\frac{\partial}{\partial x^{j}} f^{i}(x)\right| \\
& \times \mathrm{E}\left[\left.\left|\sup _{w \in K, y \in \mathbb{R}^{m_{1}}}\right| \Psi^{j}\left(\frac{[n t]}{n}, w\left(\cdot \wedge \frac{[n t]}{n}\right), y\right)-\Psi^{j}(t, w, y) \right\rvert\,\right] \longrightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. Then we have the assertion (ii). Moreover this implies

$$
\begin{aligned}
& \quad \sup _{w \in K}\left|a_{0}^{n, i j}([n t], w)-\eta_{0}^{i j}(t, w)\right| \\
& \leq 2\left\{\sup _{x}\left|f^{i}(x)\right| \mathrm{E}\left[\sup _{w \in K}\left|h^{j}\left([n t] / n, w, \xi_{k}\right)-h^{j}\left(t, w, \xi_{k}\right)\right|\right]\right. \\
& \\
& \left.\quad+\sup _{x}\left|f^{j}(x)\right| \mathrm{E}\left[\sup _{w \in K}\left|h^{i}\left([n t] / n, w, \xi_{k}\right)-h^{i}\left(t, w, \xi_{k}\right)\right|\right]\right\} \longrightarrow 0, \quad n \rightarrow \infty
\end{aligned}
$$

Then the assertion (i) holds.
Since ξ_{k} is stationary, we have

$$
\begin{equation*}
A^{n, i j}([n t], w)=\sum_{l=1}^{\infty} \hat{\eta}_{l}^{n, i j}([n t], w), \tag{5.41}
\end{equation*}
$$

where

$$
\begin{aligned}
\hat{\eta}_{l}^{n, i j}(k, w)= & \mathrm{E}\left[h^{i}\left(\frac{k+l}{n}, w\left(\cdot \wedge \frac{k}{n}\right), \xi_{l}\right) h^{j}\left(\frac{k}{n}, w, \xi_{0}\right)\right] \\
& -\mathrm{E}\left[h^{i}\left(\frac{k+l}{n}, w\left(\cdot \wedge \frac{k}{n}\right), \xi_{l}\right)\right] \mathrm{E}\left[h^{j}\left(\frac{k}{n}, w, \xi_{0}\right)\right]
\end{aligned}
$$

By Proposition 17, we have

$$
\begin{aligned}
& \sup _{w \in K}\left|\hat{\eta}_{k}^{n, i j}([n t], w)-\eta_{k}^{i j}(t, w)\right| \\
\leq & 2\left\{\sum_{\nu=1}^{m_{2}} \sup _{x}\left|\frac{\partial}{\partial x^{\nu}} f^{i}(x)\right| \sup _{x}\left|f^{j}(x)\right|\right. \\
& \times \sup _{w \in K, y \in \mathbb{R}^{m_{2}}}\left|\Psi^{\nu}\left(\frac{[n t]+k}{n}, w\left(\cdot \wedge \frac{[n t]}{n}\right), y\right)-\Psi^{\nu}(t, w, y)\right| \\
& \left.+\sup _{x}\left|f^{i}(x)\right| \mathrm{E}\left[\sup _{w \in K}\left|h^{j}\left([n t] / n, w, \xi_{0}\right)-h^{j}\left(t, w, \xi_{0}\right)\right|\right]\right\} \\
& \longrightarrow 0, \quad n \rightarrow \infty
\end{aligned}
$$

for each $k \in \mathbb{Z}_{+}$and $t \geq 0$. Moreover, using Lemma 1 , we have

$$
\begin{equation*}
\sup _{w \in K}\left|\hat{\eta}_{k}^{n, i j}([n t], w)-\eta_{k}^{i j}(t, w)\right| \leq 16 \sup _{x}\left|f^{i}(x)\right| \sup _{x}\left|f^{j}(x)\right| \beta_{k} \tag{5.42}
\end{equation*}
$$

and $[C 3]$ implies

$$
\begin{equation*}
\sum_{k=1}^{\infty} \beta_{k}<\infty \tag{5.43}
\end{equation*}
$$

Thus the dominated convergence theorem implies

$$
\begin{align*}
& \sup _{w \in K}\left|A^{n, i j}([n t], w)-\hat{A}^{i j}(t, w)\right| \tag{5.44}\\
\leq & \sum_{k=1}^{\infty} \sup _{w \in K}\left|\hat{\eta}_{k}^{n, i j}([n t], w)-\eta_{k}^{i j}(t, w)\right| \longrightarrow 0, \quad n \rightarrow \infty
\end{align*}
$$

This implies the assertion (iii).
Since

$$
\begin{aligned}
& \nabla_{w} h^{i}\left(\frac{[n t]+k}{n}, w\left(\cdot \wedge \frac{[n t]}{n}\right), y ; I_{[n t]}^{n} e_{j}\right) \\
= & \sum_{\nu=1}^{m_{2}} \frac{\partial}{\partial x^{\nu}} f^{i}\left(\Psi\left(\frac{[n t]+k}{n}, w\left(\cdot \wedge \frac{[n t]}{n}\right), y\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \times \int_{0}^{k / n} \frac{\partial}{\partial x^{j}} u^{\nu}\left(\frac{[n t]+k}{n}, w\left(\left(\frac{[n t]+k}{n}-s\right) \wedge \frac{[n t]}{n}\right), y\right) I_{[n t]}^{n} \\
& \times\left(\frac{[n t]+k}{n}-s\right) d s
\end{aligned}
$$

we have

$$
\begin{align*}
\sup _{w \in K}\left|B^{n, i j}([n t], w)\right| \leq & 8 \sum_{\nu=1}^{m_{2}} \sup _{x}\left|\frac{\partial}{\partial x^{\nu}} f^{i}(x)\right| \sup _{x}\left|f^{j}(x)\right| \tag{5.45}\\
& \times \sum_{k=1}^{\infty} \int_{0}^{k / n} \sup _{x, y}\left|\frac{\partial}{\partial x^{j}} u^{\nu}(s, x, y)\right| d s \beta_{k}
\end{align*}
$$

Then, [C2], (5.43) and the dominated convergence theorem imply the assertion (iv).

By Proposition 18, we see that [A7] holds. Obviously $\hat{a}^{i j}$ and \hat{b}^{i} satisfies the condition $[A 8]$ and $[A 10]$. Then, using Theorem 3, we obtain Theorem 7 .
(b.) Let $f(x)=\left(f^{i}(x)\right)_{i=1}^{d}: \mathbb{R}^{m_{2}} \longrightarrow \mathbb{R}^{d}, \quad u(t, x, y)=\left(u^{i}(t, x, y)\right)_{i=1}^{m_{2}}$: $[0, \infty) \times \mathbb{R}^{m_{3}} \times \mathbb{R}^{m_{1}} \longrightarrow \mathbb{R}^{m_{2}}$, and $\psi(t, x)=\left(\psi^{i}(t, x)\right)_{i=1}^{m_{3}}:[0, \infty) \times \mathbb{R}^{d} \longrightarrow$ $\mathbb{R}^{m_{3}}$ be Borel measurable functions. Let $\Psi(t, w, y)=\left(\Psi^{i}(t, w, y)\right)_{i=1}^{m_{2}}$ and $h(t, w, y)=\left(h^{i}(t, w, y)\right)_{i=1}^{d}$ be such that

$$
\Psi^{i}(t, w, y)=\int_{0}^{t} u^{i}\left(s, \int_{s}^{t} \psi(r, w(r)) d r, y\right) d s
$$

and

$$
h^{i}(t, w, y)=f^{i}(\Psi(t, w, y))
$$

We define $F_{k}^{n, i}(w)$ and $G_{k}^{n, i}(w)$ by (5.22) and (5.23). We introduce the following conditions.
[D1] $f^{i}(x)$ is three times continuously differentiable in x. Moreover $u(t, x, y)$ (respectively, $\psi^{i}(t, x)$) is three times (respectively, twice) continuously differentiable in x, and all derivatives are continuous in t.
[D2] It holds that

$$
\begin{gather*}
\sum_{|\beta| \leq 3} \sup _{x \in \mathbb{R}^{m_{2}}}\left|D^{\beta} f^{i}(x)\right|<\infty \tag{5.46}\\
\sum_{|\beta| \leq 2} \int_{0}^{\infty} \sup _{x \in \mathbb{R}^{m_{3}}, y \in \mathbb{R}^{m_{1}}}\left|D_{x}^{\beta} u^{j}(t, x, y)\right| d t<\infty \tag{5.47}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{|\beta| \leq 2} \int_{0}^{\infty} \sup _{x \in \mathbb{R}^{d}}\left|D_{x}^{\beta} \psi^{\nu}(t, x)\right| d t<\infty \tag{5.48}
\end{equation*}
$$

for each $i=1, \ldots, d, j=1, \ldots, m_{2}$ and $\nu=1, \ldots, m_{3}$.
Theorem 8. Assume $[D 1],[D 2]$ and $[C 3]$. Then the conclusion of Theorem 1 holds replacing \mathscr{L} with $\hat{\mathscr{L}}$ which is defined by (5.28)-(5.31).

Theorem 8 is obtained by the similar arguments in the proof of Theorem 7. So we will check only the condition [B4].

Proposition 19. The condition [B4] holds with $\gamma_{1}=1$.
Proof. Let $U(w, \omega)=h^{i}\left(t, w, \xi_{k}(\omega)\right)$ and $\tilde{\mathcal{C}_{t}}=C\left([0, t] ; \mathbb{R}^{m_{3}}\right)$. We define $\varphi(w)=\left(\varphi^{j}(w)\right)_{j=1}^{m_{3}}: C\left([0, \infty) ; \mathbb{R}^{d}\right) \longrightarrow \tilde{\mathcal{C}}_{t}$ and $g(v, \omega): \tilde{\mathcal{C}}_{t} \times \Omega \longrightarrow \mathbb{R}$ by

$$
\left(\varphi^{j}(w)\right)(s)=\int_{s}^{t} \psi^{j}(r, w(r)) d r
$$

and

$$
g(v, \omega)=f^{i}\left(\int_{0}^{t} u\left(s, v(s), \xi_{k}(\omega)\right) d s\right)
$$

Then it follows that

$$
\begin{equation*}
U(w, \omega)=g(\varphi(w), \omega) \tag{5.49}
\end{equation*}
$$

Set

$$
C_{0}=\sum_{j=1}^{m_{3}} \sum_{|\beta| \leq 1} \int_{0}^{\infty} \sup _{x \in \mathbb{R}^{d}}\left|D_{x}^{\beta} \psi^{j}(s, x)\right| d s
$$

By [D2], we see that C_{0} is finite and

$$
\begin{equation*}
\varphi(w) \in \tilde{A}_{t}, \quad w \in C\left([0, \infty) ; \mathbb{R}^{d}\right) \tag{5.50}
\end{equation*}
$$

where

$$
\begin{aligned}
& \tilde{A}_{t}=\left\{v \in \tilde{\mathcal{C}}_{t} ; v\right. \text { is continuously differentiable and } \\
&\left.\sum_{j=1}^{m_{3}}\left(\sup _{0 \leq s \leq t}\left|v^{j}(s)\right|+\sup _{0 \leq s \leq t}\left|\frac{d}{d s} v^{j}(s)\right|\right) \leq C_{0}\right\} .
\end{aligned}
$$

Moreover we have

$$
\begin{equation*}
|\nabla g(v, \omega ; \tilde{v})| \leq C_{1} \sum_{j=1}^{m_{3}} \sup _{0 \leq s \leq t}\left|\tilde{v}^{j}(s)\right|, \quad v, \tilde{v} \in \tilde{\mathcal{C}}_{t}, \omega \in \Omega \tag{5.51}
\end{equation*}
$$

for some $C_{1}>0$. Then we have the assertion by the same arguments in the proof of Proposition 16.

References

[1] Billingsley, P., Convergence of probability measures 2nd. edition, WileyInterscience (1999).
[2] Borodin, A. N., A limit theorem for solutions of differential equations with random right-hand side, Theor. Prob. Appl. 22 (1977), 482-497.
[3] Fujiwara, T., Limit theorems for random difference equations driven by mixing processes, J. Math. Kyoto Univ. 32 (1992), 763-795.
[4] Ibragimov, I. A. and Yu. V. Linnik, Independent and stationary sequences of random variables, Groningen : Wolters-Noordhoff (1971).
[5] Kesten, H. and G. C. Papanicolaou, A limit theorem for turbulent diffusion, Comm. Math. Phys. 65 (1979), 97-128.
[6] Khasminskii, R. Z., A limit theorem for solutions of differential equations with a random right-hand sides, Theor. Prob. Appl. 11 (1966), 390-406.
[7] Kunita, H., Lecture on stochastic flows and applications, Tata Institute of Fundamental Research (1986).
[8] Kolmogorov, A. N. and V. M. Tihomirov, ε-entropy and ε-capacity of sets in functional spaces, Uspehi Mat. Nauk 14 (1959), 3-86, English transl., Amer. Math. Soc. Transl. (2) 17 (1961), 277-364.
[9] Kushner, H. J. and Hai-Huang, On the weak convergence of a sequence of general stochastic difference equations to a diffusion, SIAM J. Appl. Math. 40 (1981), 528-541.
[10] Papanicolaou, G. C. and W. Kohler, Asymptotic theory of mixing stochastic ordinary differential equations, Comm. Pure Appl. Math. 27 (1974), 641668.
[11] Papanicolaou, G. C., Stroock, D. W. and S. R. S. Varadhan, Martingale approach to some limit theorems, in Statistical Mechanics and Dynamical Systems, Duke Univ. Conf. Turbulence, Duke Univ. Math. Ser. 3, Durham, N.C. (1977).
[12] Schwartz, J. T., Nonlinear functional analysis, Gordon and Breach Science Publishers (1969).
[13] Stroock, D. W. and S. R. S. Varadhan, Diffusion processes with continuous coefficients I, Comm. Pure Appl. Math. 22 (1969), 345-400.
[14] Stroock, D. W. and S. R. S. Varadhan, Multidimensional diffusion processes, Springer-Verlag, Berlin (1979).
[15] Watanabe, H., Diffusion approximations of some stochastic difference equations, Pinsky, ed., Stochastic Analysis and Application, Marcel Dekker, New York (1984).
[16] Watanabe, H., Diffusion approximations of some stochastic difference equations II, Hiroshima Math. J. 14 (1984), 15-34.
[17] Watanabe, H., Diffusion approximations of some stochastic difference equations revisited, Stoch. Proc. Appl. 29 (1988), 147-154.
(Received February 14, 2005)

Graduate School of Mathematical Sciences The University of Tokyo Meguro-ku, Komaba 3-8-1
Tokyo 153-8914, Japan

