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Hyperfunction Solutions

to Fuchsian Hyperbolic Systems

By Susumu Yamazaki

Abstract. To Fuchsian hyperbolic systems, the unique solvabil-
ity theorem is proved in two cases: (1) hyperfunction (or microfunc-
tion) solutions with a real analytic parameter to Cauchy problem;
(2) mild hyperfunction (or mild microfunction) solutions to bound-
ary value problem. These results extend that of H. Tahara to general
systems.

Introduction

In this paper, we shall show the unique solvability theorem for hyper-

function solutions with a real analytic parameter of Cauchy problem to

Fuchsian hyperbolic systems.

Fuchsian partial differential operator was first defined by Baouendi-

Goulaouic [B-G]. This includes non-characteristic type as a special case, and

Cauchy-Kovalevskaja type theorem (namely, unique solvability for Cauchy

problem) was proved in [B-G] under the conditions of characteristic ex-

ponents. After that, Tahara [T] treated a Fuchsian Volevič system and

proved Cauchy-Kovalevskaja type theorem in the complex domain under

the conditions of characteristic exponents. Further as an application, un-

der the hyperbolicity condition he obtained a Cauchy-Kovalevskaja type

theorem for this system in the framework of hyperfunctions. On the other

hand, Laurent-Monteiro Fernandes [L-MF 1] extended the notion of Fuch-

sian type to a general system of differential equations; that is, coherent

left �X -Module, here and in what follows, we shall write a Module with

a capital letter, instead of a sheaf of left modules. Their notion includes

Fuchsian Volevič system, and they proved a Cauchy-Kovalevskaja type the-

orem in the complex domain in general settings; that is, without conditions

of characteristic exponents. As for the uniqueness of hyperfunction solu-

tions for Cauchy problem, Oaku [O 1] and Oaku-Yamazaki [O-Y] extended
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the uniqueness result to Fuchsian systems. Hence in this paper, we shall

prove the solvability theorem for general Fuchsian hyperbolic systems in the

framework of hyperfunctions (that is, hyperfunctions with a real analytic

parameter, or mild hyperfunctions) without the conditions of characteris-

tic exponents. To this end, in addition to the Cauchy-Kovalevskaja type

theorem due to Laurent-Monteiro Fernandes [L-MF 1], we use the theory of

microsupports due to Kashiwara-Schapira (see [K-S]). This theory enables

us to prove our desired result, in fact, our key theorem (Theorem 2.2) is

only an exercise of this theory, and from this, we easily deduce the Cauchy-

Kovalevskaja type theorem for general Fuchsian hyperbolic systems in the

framework of hyperfunctions.

1. Preliminaries

In this section, we shall fix the notation and recall known results used

in later sections. General references are made to Kashiwara-Schapira [K-S].

We denote by Z, R and C the sets of all the integers, real numbers and

complex numbers respectively. Moreover we set N := {n ∈ Z; n � 1} ⊂
N0 := N ∪ {0} and R>0 := {r ∈ R; r > 0}.

In this paper, all the manifolds are assumed to be paracompact. If

τ : E → Z is a vector bundle over a manifold Z, then we set Ė := E\Z and τ̇

the restriction of τ to Ė. LetM be an (n+1)-dimensional real analytic man-

ifold and N a one-codimensional closed real analytic submanifold of M . We

denote by f : N →M the canonical embedding. Let X and Y be complexi-

fications of M and N respectively such that Y is a closed submanifold of X

and that Y ∩M = N . We also denote by f : Y → X the canonical embedding

with same notation f . By local coordinates (z, τ) = (x+
√
−1 y, t+

√
−1 s)

of X around each point of N , we have locally the following relation:

N� �

��

Rn
x × {0} � � f

�� M� �

��

Rn
x × Rt

Y Cn
z × {0} � � f

�� X Cn
z × Cτ

(1.1)

The embedding f induces a natural embedding f ′ : TNY ↪→ TMX and

by this mapping we regard TNY as a closed submanifold of TMX. Further,



Fuchsian Hyperbolic Systems 193

f induces mappings:

N

�

� �

iN
��

√
−1 T ∗

NM
π����

� �

i
��

N

�

� ���
� �

��

� � f
�� M� �

iM
��

T ∗
NY

πN
����

N×
M
T ∗
MX

π
����

fd���� N×
M
T ∗
MX

�π
����

� � fπ �� T ∗
MX

πM
����

N N N
� � f

�� M

(1.2)

Here πN , πM and π are canonical projections, iN , iM and i are zero-section

embeddings, and � means that the square is Cartesian.

We write M \ N = Ω+ 
 Ω−, where each Ω± is an open subset and

∂Ω± = N . We set M+ := Ω+ ∪N . By local coordinates, we can write

Ω+ = {(x, t) ∈M ; t > 0} ⊂M+ = {(x, t) ∈M ; t � 0}.

We remark that a natural morphism CM+
→ CN gives natural morphisms

RHomCM
(CN ,CM ) = ωN/M → RHomCM

(CM+
,CM ) = CΩ+

→ CM .

Here ωN/M denotes the relative dualizing complex. As usual, we denote

by ν•(∗) and µ•(∗) the specialization and microlocalization functors respec-

tively. Further, µhom(∗, ∗) denotes µhom bifunctor. We denote by Db(X)

the derived category of sheaves of C-linear spaces with bounded cohomolo-

gies. Let F be an object of Db(X). Then, by Kashiwara-Schapira [K-S,

Chapter IV], we have

Rfd!(f
−1
π µM (F )⊗ωN/M ) � Rfd!(f

−1
π µhom(CM , F )⊗ωN/M )

→ Rfd!(f
−1
π µhom(CΩ+

, F )⊗ωN/M )

→ Rfd!(f
−1
π µhom(ωN/M , F )⊗ωN/M )

= Rfd! f
−1
π µN (F ) → µN (f −1F ⊗ωY/X).

Therefore we obtain morphisms:

Rfd!(f
−1
π µM (F )⊗ωN/M ) → Rfd!(f

−1
π µhom(CΩ+

, F )⊗ωN/M )

→ µN (f −1F ⊗ωY/X).
(1.3)
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2. Near-Hyperbolicity Condition

Let F be an object of Db(X). We denote by SS(F ) the microsupport of

F due to Kashiwara-Schapira (see [K-S]). SS(F ) is a closed conic involutive

subset of T ∗X and described as follows: Let (w) be local coordinates of

X and (w0; ζ0) a point of T ∗X. Then (w0; ζ0) /∈ SS(F ) if and only if the

following condition holds: There exist an open neighborhood U of w0 in X

and a proper convex closed cone γ ⊂ X satisfying ζ0 ∈ Int γ◦a ∪ {0} such

that

RΓ (Hε ∩ (x+ γ);F ) ∼→ RΓ (Lε ∩ (x+ γ);F )

holds for any w ∈ U and any sufficiently small ε > 0. Here IntA denotes

the interior of A, γ◦a :=
⋂
ζ∈γ

{w ∈ X; Re〈w, ζ〉 � 0} and

Lε := {w ∈ X; Re〈w − w0, ζ0〉 = −ε}
⊂ Hε := {w ∈ X; Re〈w − w0, ζ0〉 � −ε}.

Next, we shall recall the definition of the near-hyperbolicity condition

due to Laurent-Monteiro Fernandes [L-MF 2, Definition 1.3.1]:

Definition 2.1. Let F be an object of Db(X). We say F is near-

hyperbolic at x0 ∈ N in ±dt-codirection if there exist positive constants C

and ε1 such that

SS(F ) ∩ {(z, τ ; z∗, τ∗) ∈ T ∗X; |z − x0| < ε1, |τ | < ε1, t �= 0}
⊂{(z, τ ; z∗, τ∗) ∈ T ∗X; |t∗| � C

(
|y∗|(|y| + |s|) + |x∗|

)
}

holds by local coordinates of X in (1.1) and the following associated coor-

dinates of T ∗X:

(z, τ ; z∗, τ∗) = (x+
√
−1 y, t+

√
−1 s;x∗ +

√
−1 y∗, t∗ +

√
−1 s∗).

Our first main result is as follows:

Theorem 2.2. Let F be an object of Db(X). Assume that F is near-

hyperbolic at x0 ∈ N in ±dt-codirection. Then, the morphisms in (1.3)
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induce isomorphisms for any p∗ ∈ T ∗
NY ∩ π−1

N (x0):

Rfd!(f
−1
π µM (F )⊗ωN/M )p∗ ∼→ Rfd!(f

−1
π µhom(CΩ+

, F )⊗ωN/M )p∗

∼→ µN (f −1F ⊗ωY/X)p∗ .

Proof. (a) First we shall prove that

Rfd!(f
−1
π µM (F )⊗ωN/M )p∗ → µN (f −1F ⊗ωY/X)p∗

is an isomorphism. Since the Fourier-Sato transformation gives an equiva-

lence, we may prove that

νM (F )
∣∣
TNY ∩τ −1

N (x0)
→ νN (f −1F )

∣∣
TNY ∩τ −1

N (x0)

is an isomorphism. If q = x0 ∈ TNN , then

f ′ −1νM (F )x0
= νM (F )f(x0) = Ff(x0)

→ νN (f −1F )x0
= (f −1F )x0

= Ff(x0).

Next consider in v = (x0, η0) ∈ ṪNY ∩ τ −1
N (x0). We may assume x0 = 0

under local coordinates of X in (1.1). We set as in Bony-Schapira [B-S 2]

B(0, a) := {(x, t) ∈ Rn+1; |x| + |t| < a},
B′(0, a) := {x ∈ Rn; |x| < a},
K(a, δ) := Int γ

[
B′(0, a) ∪ {(0,±aδ)}

]
.

Here γ[ · ] denotes the convex hull. For an open convex cone Γ ⊂ Rn+1 (resp.

Γ′ ⊂ Rn), we set Γε := Γ∩B(0, ε) (resp. Γ′
ε := Γ′ ∩B′(0, ε)). Then, for any

k ∈ Z we have

HkνM (F )v = lim−→
V (a,δ;Γε)

Hk(V (a, δ; Γε);F )

→ HkνN (f −1F )v = lim−→
U(a;Γ′

ε)

Hk(U(a; Γ′
ε);F ).

Here Γ ⊂ Rn+1 (resp. Γ′ ⊂ Rn) ranges through the family of open conic

neighborhoods of (η0, 0) (resp. η0), and V (a, δ; Γε) (resp. U(a; Γ′
ε)) ranges
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through the family of open neighborhoods of K(a, δ) +
√
−1 Γε (resp.

B′(0, a) +
√
−1 Γ′

ε). Then the proof of (a) is reduced to Proposition 2.3

below.

Proposition 2.3. Let Γ′ ⊂ Rn be a conic neighborhood of η0 . If a and

ε are sufficiently small positive constants, then for any k ∈ Z there exist ε′,
δ > 0 and a conic neighborhood Γ ⊂ Rn+1 of (η0, 0) such that

lim−→
V (a,δ;Γε)

Hk(V (a, δ; Γε);F ) � lim−→
U(a;Γ′

ε)

Hk(U(a; Γ′
ε);F ).

Proof. The proof is same as [B-S 2, Lemme 3.2]. We use the following

lemma instead of [B-S 2, Théorème 1.1]:

Lemma 2.4 (cf. [B-S 1, Théorème 2.1]). Let Z ⊂ Ω ⊂ X be convex

sets such that Ω is an open set and Z is closed in Ω. Let G be an object of

Db(X). Set

A := {ζ; (w; ζ) ∈ SS(G) for some w ∈ Ω}.

Suppose that if a hyperplane with normal vector in A crosses Ω, then this

hyperplane always crosses Z . Then it follows that

RΓ (Ω;G) ∼→ RΓ (Z;G).

Proof of Lemma. This lemma is proved in Yamazaki [Y]. For the

sake of completeness of this paper, we reproduce the proof. Fix any k ∈ Z.

Then it is known that

lim−→
V

Hk(V ;G) ∼→ Hk(Z;G),

where V ranges through the family of open neighborhoods of Z in Ω (cf.

[K-S, Proposition 2.6.9]). Take every u ∈ Hk(Z;G). Then there exists a

neighborhood Ω′ ⊂ Ω of Z such that u is regarded as a section of Hk(Ω′;G).

Take any p ∈ Ω. Set U(p, δ) := {q ∈ Rn+1; |p− q| < δ}. Then there exists

a compact convex set K ⊂ Z such that if a hyperplane with normal vector
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in A crosses the closure ClU(p, δ), then this hyperplane always crosses K.

Take p0 ∈ K and choose sufficiently small 0 < ε < δ. We set

pt := (1 − t)p0 + tp,

Kε := {q ∈ Rn+1; dist(q,K) < ε} ⊂ Ω′,

St(p) := Int γ[U(pt, ε) ∪Kε] ⊂ Ω.

We remark that S0(p) ⊂ Ω′. Further for any q ∈ Z, there exists a p ∈ Ω \Z
such that q ∈ St(p) for any 0 � t � 1 (we may choose that p = q + cζ for

suitable c ∈ R and ζ ∈ X \ Z). Hence there exists a subset {pi}i∈I0 ⊂ Ω

such that {St(pi)}i∈I0 is an open covering of Z in Ω for any 0 � t � 1.

Now, instead of Zerner’s theorem, we can use the theory of microsupports

to prove:

RΓ (S1(pi);G) ∼→ RΓ (S0(pi);G)

(see the proof of [B-S 1, Théorème 2.1] and [K-S, Lemma 5.2.2]). We

refer this as a sweeping out method. Hence there exists a unique ui ∈
Hk(S1(pi);G) such that ui

∣∣
S0(pi)

= u
∣∣
S0(pi)

. We shall prove

ui
∣∣
S1(pi)∩S1(pj)

= uj
∣∣
S1(pi)∩S1(pj)

.

We may show ui = uj at any p ∈ S1(pi) ∩ S1(pj).

(1) Assume that p ∈ S0(pi) ∩ S0(pj). Then we see ui = uj at p since

ui
∣∣
S0(pi)∩S0(pj)

= u
∣∣
S0(pi)∩S0(pj)

= uj
∣∣
S0(pi)∩S0(pj)

.

(2) Assume that p ∈ S0(pi) ∩ (S1(pj) \ S0(pj)) ⊂ Ω′. Then we can

construct St(p) such that

St(p) ⊂ S1(pj) ∩Ω′ for 0 � t � 1;

S0(p) ⊂ S0(pj);

p ∈ S1(p) ∩ S0(pi).

Since ui
∣∣
S0(pi)

= u
∣∣
S0(pi)

, we have ui
∣∣
S1(p)∩S0(pi)

= u
∣∣
S1(p)∩S0(pi)

. On the

other hand, we can find a unique v ∈ Hk(S1(p);G) such that v
∣∣
S0(p) =

u
∣∣
S0(p) by the sweeping out method. Using the uniqueness twice, we have

uj
∣∣
S1(p) = v = u

∣∣
S1(p). Therefore we have ui = u = uj at p.
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(3) Assume that p ∈ (S1(pi) \ S0(pi)) ∩ (S1(pj) \ S0(pj)). Then we can

construct St(p) as St(p) ⊂ S1(pi) ∩ S1(pj) for any 0 � t � 1. By the

uniqueness, we have ui
∣∣
S1(p) = uj

∣∣
S1(p) . Hence ui = uj at p.

Thus there exists a unique u′ ∈ Hk(
⋃
i∈I0

S1(pi);G) such that u′
∣∣
S1(pi)

=

ui . In particular, u′ = u holds in
⋃
p∈I0

S0(pi). We set:

Φ := {
⋃
j∈J

S1(pj); pj ∈ Ω, Z ⊂
⋃
j∈J

S1(pj), there exists a unique

v ∈ Hk(
⋃
j∈J

S1(pj);G) such that v = u in
⋃
j∈J

S0(pj) ∩Ω′}.

Then
⋃
i∈I0

S1(pi) ∈ Φ. Let {Vα}α∈A be a totally ordered set in Φ. There exists

a unique vα ∈ Hk(Vα;G) such that v
∣∣
Vα∩Ω′ = u

∣∣
Vα∩Ω′ . Set V :=

⋃
α∈A

Vα .

Then we can write V =
⋃
j∈J

S1(pj) for some {pj}j∈J ⊂ Ω. Then by the

uniqueness we can define a unique v ∈ Hk(V ;G) such that v
∣∣
Vα

= vα, hence

v = u holds in
⋃
j∈J

S0(pj). Thus V ∈ Φ.

By Zorn’s lemma, there exists a maximal element V =
⋃
i∈I
S1(pi) ∈ Φ.

Thus there exists a unique v ∈ Hk(V ;G) such that v = u holds in
⋃
i∈I
S0(pi).

Suppose that there exists a p ∈ Ω \ V . By the sweeping out method, we

can find a unique u′ ∈ Hk(S1(p);G) such that u′
∣∣
S0(p) = u

∣∣
S0(p) . By the

preceding argument, we have u′
∣∣
S1(pi)∩S1(p) = v

∣∣
S1(pi)∩S1(p) for any i ∈ I .

Therefore there exists a unique v′ ∈ Hk(V ∪ S1(p);G) such that v′
∣∣
V = v

and v′
∣∣
S1(p) = u′. Therefore V � V ∪ S1(p) ∈ Φ, which is a contradiction.

Thus Ω ∈ Φ. Hence there exists a unique v ∈ Hk(Ω;G) such that v
∣∣
Z =

u ∈ Hk(Z;G). Summing up, we obtain an isomorphism

Hk(Ω;G) � Hk(Z;G). �

We shall prove Proposition 2.3. We have only to follow the argument in

the proof of [B-S 1, Lemme 3.2] (cf. Tahara [T, Lemmata 2.1.1 and 2.1.2])
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to obtain

Hk(Mη,ε;F ) ∼→ lim−→
U(a;Γ′

ε)

Hk(U(a; Γ′
ε);F ).

Here

Mη,ε := Int γ
[
(B′(0, a) +

√
−1 Γ′

ε/2) ∪ {(0,±αδ) +
√
−1 η}

]
for an η ∈ Γ′

ε/4 and an independent constant α > 0. By the same argument

as in the proof of Lemma 2.4, we have

Hk(
⋃

η∈Γ′
ε/4

Mη,ε;F ) ∼→ lim−→
U(a;Γ′

ε)

Hk(U(a; Γ′
ε);F ).

We can find ε′, δ > 0 and a conic neighborhood Γ ⊂ Rn+1 of (y0, 0) such

that

K(a, δ′) +
√
−1 Γε′ ⊂

⋃
η∈Γ′

ε/4

Mη,ε .

The proof is complete. �

(b) Next, we shall prove that

Rfd! f
−1
π µM (F )p∗ → Rfd! f

−1
π µhom(CΩ+

, F )p∗

is an isomorphism.

Let νΩ+
(F ) be the inverse Fourier-Sato transform of µhom(CΩ+

, F ).

By the same argument as in the proof of (a), we have only to prove that a

natural morphism

νM (F )
∣∣
TNY ∩τ −1

N (x0)
→ νΩ+

(F )
∣∣
TNY ∩τ −1

N (x0)

is an isomorphism. To this end, for any v ∈ TX and k ∈ Z, we calculate

HkνΩ+
(F )v = lim−→

V

Hk(V ; νΩ+
(F )),

where V ranges through the family of open conic neighborhoods of v such

that V ◦◦ = IntV . Here V ◦ denotes the dual cone. By Kashiwara-Schapira

[K-S, Proposition 3.7.12], we have

Hk(V ; νΩ+
(F )) = Hk+n+1

V ◦a (T ∗X;µhom(CΩ+
, F ) ⊗ orM/X).
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Here V ◦a := {ξ ∈ T ∗X; −ξ ∈ V ◦}, and orM/X denotes the relative orienta-

tion sheaf. By Schapira-Zampieri [Sc-Z, Theorem 1.1], it follows that

Hk(V ; νΩ+
(F )) = lim−→

U

Hk(U ;F ),

where U ranges through the family of open subsets of X such that

C(X \ U,M+) ∩ V = ∅.

Here C(∗, ∗) denotes the normal cone (see [K-S]). Therefore we have

HkνΩ+
(F )v = lim−→

W

Hk(W ;F ),

where W ranges through the family of open subsets of X such that v /∈
C(X \W,M+). Take v = (0, η0) ∈ TNY ⊂ TMX ⊂ TX arbitrary. Hence

we have

HkνΩ+
(F )v = lim−→

a,δ,Γ′
ε

Hk(D+(a, δ; Γ′
ε);F ).

Here Γ′ ⊂ Rn ranges through the family of open conic neighborhoods of η0,

and

D+(a, δ; Γ′
ε) := {(z, τ); (x, t) ∈ K(a, δ), y ∈ Γ′

ε, max{−t, 0} + |s| < ε|y|}.

For the same reasoning as in the proof of (a), we have

HkνM (F )v ∼→ HkνΩ+
(F )v . �

3. Microfunction with a Real Analytic Parameter

Recall the diagram (1.2). As usual, we denote by �X , �M := �X

∣∣
M ,

�M and �M the sheaves of holomorphic functions on X, of real analytic

functions on M , of hyperfunctions on M and of microfunctions on T ∗
MX

respectively. Although it is well-known that fd! f
−1
π �M is the sheaf of

microfunction with a real analytic parameter t, and fd! f
−1
π �M

∣∣
N is the

sheaf of hyperfunction with a real analytic parameter t (see Sato [S] and

Sato-Kawai-Kashiwara [S-K-K]), we give a detailed exposition about these

sheaves for the convenience of the reader.
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Definition 3.1. We set

�A
N |M := Rfd! f

−1
π �M , �A

N |M := i−1
N �A

N |M = RπN∗�A
N |M .

Proposition 3.2 (cf. [S-K-K, Chapter I, Theorem 2.2.6]).

(1) �A
N |M is concentrated in degree zero and conically soft ; that is, the

direct image of �A
N |M

∣∣
Ṫ ∗
NY on Ṫ ∗

NY/R>0 is a soft sheaf.

(2) There exists the following exact sequence:

0 → �M

∣∣
N → �A

N |M → π̇N∗�A
N |M → 0.

(3) There exists the following exact sequence:

0 → �A
N |M → �M

∣∣
N → π̇∗(�M

∣∣√
−1 Ṫ ∗

NM ) → 0.

Proof. (1) Consider a distinguished triangle:

RΓM (�M ) → �M → RΓṪ ∗
MX(�M )

+1−→(3.1)

and apply the functor Rfd! f
−1
π . Since iM : M → T ∗

MX and iN : N → T ∗
NY

are closed embeddings, we have

Rfd! f
−1
π RΓM (�M ) = Rfd! f

−1
π RiM ! �M � RiN ! f

−1�M

= RiN∗ f
−1�M = iN∗ f

−1�M .
(3.2)

On the other hand, since RΓṪ ∗
MX(�M ) = ΓṪ ∗

MX(�M ) is a conically flabby

sheaf, Rfd! f
−1
π RΓṪ ∗

MX(�M ) = fd! ḟ
−1
π �M and fd! ḟ

−1
π �M

∣∣
Ṫ ∗
NY is conically

soft. Here we set ḟπ : N ×
M
Ṫ ∗
MX → Ṫ ∗

MX. Summing up, we obtain a distin-

guished triangle:

iN∗ f
−1�M → �A

N |M → fd! ḟ
−1
π �M

+1−→ .

Hence �A
N |M is concentrated by degree zero, and

�A
N |M

∣∣
Ṫ ∗
NY = fd! ḟ

−1
π �M

∣∣
Ṫ ∗
NY
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is conically soft.

(2) Consider Sato’s distinguished triangle:

RπN ! �A
N |M → RπN∗�A

N |M → Rπ̇N∗�A
N |M

+1−→ .

Then we have RπN∗�A
N |M = �A

N |M
∣∣
N = �A

N |M , Rπ̇N∗�A
N |M = π̇N∗�A

N |M
and

RπN ! �A
N |M = RπN ! Rfd! f

−1
π �M � Rπ! f

−1
π �M

� f −1RπM ! �M � �M

∣∣
N .

(3) Set V := N ×
M
Ṫ ∗
MX \ √

−1 Ṫ ∗
NM for short. Consider a distinguished

triangle:

(ḟ −1
π �M )V → ḟ −1

π �M → (ḟ −1
π �M )√−1 Ṫ ∗

NM
+1−→ .(3.3)

Applying the functor Rfd! to (3.3) we have

Rfd!((ḟ
−1
π �M )V ) → Rfd! ḟ

−1
π �M → Rfd! (ḟ

−1
π �M )√−1 Ṫ ∗

NM
+1−→ .

Since

Rfd! (ḟ
−1
π �M )√−1 Ṫ ∗

NM

∣∣
Ṫ ∗
NY = RiN !Rπ̇! i

−1ḟ −1
π �M

∣∣
Ṫ ∗
NY = 0,

we have

Rfd!((ḟ
−1
π �M )V )

∣∣
Ṫ ∗
NY

∼→ Rfd! ḟ
−1
π �M

∣∣
Ṫ ∗
NY � �A

N |M
∣∣
Ṫ ∗
NY .(3.4)

Next, applying the functor Rfd∗ to (3.3) we have

Rfd∗((ḟ
−1
π �M )V ) → Rfd∗ ḟ

−1
π �M → RiN∗Rπ̇∗(�M

∣∣√
−1 Ṫ ∗

NM )
+1−→ .

(3.5)

Since fd : V → Ṫ ∗
NY is proper, by (3.4) we have

Rfd∗((ḟ
−1
π �M )V )

∣∣
Ṫ ∗
NY � Rfd!((ḟ

−1
π �M )V )

∣∣
Ṫ ∗
NY � �A

N |M
∣∣
Ṫ ∗
NY .
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On the other hand, from (3.1), we have

f −1RπM∗RΓM (�M ) ��

��

RπN∗Rfd∗ f
−1
π RΓM (�M )

��

f −1RπM∗�M
��

��

RπN∗Rfd∗ f
−1
π �M

��

f −1RπM∗RΓṪ ∗
MX(�M ) ��

+1
��

RπN∗Rfd∗ ḟ
−1
π RΓṪ ∗

MX(�M )

+1
��

As in (3.2) we have

RπN∗Rfd∗ f
−1
π RΓM (�M ) = �M

∣∣
N

and by [K-S, Proposition 3.7.5]

RπN∗Rfd∗ f
−1
π �M = Rπ∗ f

−1
π �M = f −1

π �M

∣∣
N = �M

∣∣
N .

Hence we have

0 �� �M

∣∣
N

�� �M

∣∣
N

�� π̇M∗�M

∣∣
N

��

��

0

0 �� �M

∣∣
N

�� �M

∣∣
N

�� π̇∗ ḟ
−1
π �M

�� 0

thus π̇M∗�M

∣∣
N = π̇∗ ḟ

−1
π �M . Applying the functor Rπ̇N∗ to (3.5) we have

0

��

0 �� �M

∣∣
N

�� �A
N |M

��

�� π̇N∗�A
N |M

��

�� 0

0 �� �M

∣∣
N

�� �M

∣∣
N

�� π̇∗ ḟ
−1
π �M

��

��

0

π̇∗(�M

∣∣√
−1 Ṫ ∗

NM )

��

0
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Thus by Snake Lemma we obtain

0 → �A
N |M → �M

∣∣
N → π̇∗(�M

∣∣√
−1 Ṫ ∗

NM ) → 0. �

We recall that the morphism in (1.3) induces restriction morphisms:

�A
N |M → �N , �A

N |M → �N .

In order to study microlocal boundary value problems, Kataoka [Kt] defined

the sheaf
◦

�N |M+
of mild microfunctions on T ∗

NY , and
◦

�N |M+
:=

◦
�N |M+

∣∣
N

is called the sheaf of mild hyperfunctions. Note that

◦
�N |M+

= Rfd! f
−1
π µhom(CΩ+

,�X)⊗ orM/X [n+ 1]

holds by Schapira-Zampieri [Sc-Z].
◦

�N |M+
is conically soft, and there exists

an exact sequence:

0 → �M

∣∣
N →

◦
�N |M+

→ π̇N∗
◦

�N |M+
→ 0.

Further by (1.3), the restriction morphism �A
N |M → �N factorizes through

the boundary value morphism
◦

�N |M+
→ �N :

�A
N |M ��

��������
�N

◦
�N |M+

��������

4. Cauchy and Boundary Value Problems for Fuchsian Hyper-

bolic Systems

First, we recall the definition of Fuchsian differential operators in the

sense of Baouendi-Goulaouic [B-G].

Definition 4.1. Let us take local coordinates in (1.1). Then we say

that P is a Fuchsian differential operator of weight (k,m) in the sense of

Baouendi-Goulaouic [B-G] if P can be written in the following form

P (z, τ, ∂z, ∂τ ) = τk∂m
τ +

k∑
j=1

Pj(z, τ, ∂z) τ
k−j∂m−j

τ +
m∑

j=k+1

Pj(z, τ, ∂z) ∂
m−j
τ .
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Here ordPj � j (0 � j � m), and Pj(z, 0, ∂z) ∈ �Y (1 � j � k).

Note that a Fuchsian differential operator of weight (m,m) is nothing

but an operator with regular singularity along Y in a weak sense due to

Kashiwara-Oshima [K-O].

Let � be a �X -Module. The inverse image in the sense of �-Module is

defined by

Df∗� := �Y→X

L
⊗

f−1�X

f −1� ∈ ObDb(�Y ).

Here �Y→X := �Y ⊗
f−1�X

f −1�X is the transfer bi-Module as usual. Further

we set �Y := H0Df∗� = �Y ⊗
f−1�X

f −1�.

Next, let � be a Fuchsian system along Y in the sense of Laurent-

Monteiro Fernandes [L-MF 1]. Since the precise definition of Fuchsian sys-

tem is complicated, we do not recall it here. We remark that � is Fuchsian

along Y if and only if there exists locally an epimorphism
m⊕
i=1

�X

/
�XPi �

�, where each differential operator Pi is an operator with regular singularity

along Y in a weak sense.

Remark 4.2. (1) Let � be a coherent �X

∣∣
Y -Module for which Y

is non-characteristic. Then � is Fuchsian. More generally, any regular-

specializable system is Fuchsian.

(2) Let � be a Fuchsian system along Y . Then:

(i) By Laurent-Schapira [L-S, Théorème 3.3], all the cohomologies of

Df∗� are coherent �Y -Modules.

(ii) Laurent-Monteiro Fernandes [L-MF 1, Théorème 3.2.2] proved that

there exists the following isomorphism (that is, Cauchy-Kovalevskaja

type theorem):

f −1RHom�X
(�,�X) � RHom�Y

(Df∗�,�Y ).

Definition 4.3. Let � be a coherent �X

∣∣
Y -Module. Then we say

� is near-hyperbolic at x0 ∈ N in ±dt codirection if RHom�X
(�,�X) is

near-hyperbolic in the sense of Definition 2.1. We remark that

SS
(
RHom�X

(�,�X)
)

= char(�).
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Here char(�) is the characteristic variety of �.

Example 4.4. (1) Let P be a Fuchsian differential operator of weight

(k,m) in the sense of Baouendi-Goulaouic [B-G]. Then �X/�XP is Fuchsian

along Y . Moreover, assume that P is Fuchsian hyperbolic in the sense of

Tahara [T]; that is, the principal symbol is written as σm(P )(z, τ ; z∗, τ ) =

τk p(z, τ ; z∗, τ∗). Here p(z, τ ; z∗, τ∗) satisfies the following condition:{
If (x, t;x∗) are real, then all the roots τ∗j (x, t;x∗) of the

equation p(x, t;x∗, τ∗) = 0 with respect to τ∗ are real.
(4.1)

Then �X/�XP is near-hyperbolic (see [L-MF 2, Lemma 1.3.2]).

(2) Let P = ϑ− A(z, τ, ∂z) be a Fuchsian Volevič system of size m due

to Tahara [T]; that is,

(i) A(z, τ, ∂z) = (Aij(z, τ, ∂z))
m
i,j=1 is a matrix of size m whose compo-

nents are in �X with [Aij , τ ] = 0;

(ii) There exists {ni}mi=1 ⊂ Z such that ordAij(z, τ, ∂z) � ni − nj + 1 and

Aij(z, 0, ∂z) ∈ �Y for any 1 � i, j � m.

Set σ(A)(z, τ ; z∗) := (σni−nj+1(Aij)(z, τ ; z
∗))mi,j=1. Then

char(�m
X /�m

X P ) = {(z, τ ; z∗, τ∗) ∈ T ∗X; det(ττ∗ − σ(A)(z, τ ; z∗)) = 0},

and we can prove that �m
X /�m

X P is Fuchsian along Y . Moreover assume

that P is Fuchsian hyperbolic in the sense of Tahara [T]; that is,

det(ττ∗ − σ(A)(z, τ ; z∗)) = τm p(z, τ ; z∗, τ∗),

and p(z, τ ; z∗, τ∗) satisfies the condition (4.1). Then �m
X /�m

X P satisfies the

near-hyperbolicity condition.

Our main Theorem is:

Theorem 4.5. Let � be a Fuchsian system along Y . Assume that

� is near-hyperbolic at x0 ∈ N in ±dt-codirection. Then for any p∗ ∈
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T ∗
NY ∩ π−1

N (x0), the morphisms in (1.3) induce isomorphisms

RHom�X
(�,�A

N |M )p∗ ∼→ RHom�X
(�,

◦
�N |M+

)p∗

∼→ RHom�Y
(Df∗�,�N )p∗ .

In particular, the morphisms in (1.3) induce isomorphisms

RHom�X
(�,�A

N |M )x0
∼→ RHom�X

(�,
◦

�N |M+
)x0

∼→ RHom�Y
(Df∗�,�N )x0

.

Proof. Set F := RHom�X
(�,�X) for short. Then, we have

RHom�X
(�,�A

N |M ) = Rfd!(f
−1
π µM (F )⊗ orM/X)[n+ 1] ,

RHom�X
(�,

◦
�N |M+

) = Rfd!(f
−1
π µhom(CΩ+

, F )⊗ orM/X)[n+ 1] ,

and (see Remark 4.2):

RHom�Y
(Df∗�,�N ) = µN (RHom�Y

(Df∗�,�Y )⊗ orN/Y )[n]

= µN (f −1F ⊗ orN/Y )[n] .

Therefore by Theorem 2.2, we obtain the theorem. �

Remark 4.6. Oaku-Yamazaki [O-Y] showed that for any Fuchsian sys-

tem � along Y , two morphisms

Hom�X
(�,�A

N |M )p∗ � Hom�X
(�,

◦
�N |M+

)p∗ � Hom�Y
(�Y ,�N )p∗

are always injective without the near-hyperbolicity condition. Precisely

speaking, we always assumed that codimM N � 2 in [O-Y]. However, the

same proof also works even in the case where codimM N = 1; Oaku ([O 1],

[O 2]) defined the sheaf �F
N |M+

of F-mild microfunctions on T ∗
NY , and

�F
N |M+

:= �F
N |M+

∣∣
N is called the sheaf of F-mild hyperfunctions ([O 1],

[O 2], cf. [O-Y]). As is mentioned above, we can apply the methods in [O-Y]
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of the higher-codimensional case to the one-codimensional case to prove the

following: there exist natural morphisms

�A
N |M �

◦
�N |M+

� �F
N |M+

→ �N

such that the composite coincides with �A
N |M → �N , and that these induce

monomorphisms:

Hom�X
(�,�A

N |M ) �� ��

��

��

�

Hom�X
(�,

◦
�N |M+

)
��

��

Hom�Y
(�Y ,�N ) Hom�X

(�,�F
N |M+

)����

for any Fuchsian system � along Y . Hence, under the near-hyperbolic

condition, we obtain isomorphisms:

Hom�X
(�,�F

N |M+
) ∼→ Hom�Y

(�Y ,�N ),

Hom�X
(�,�F

N |M+
) ∼→ Hom�Y

(�Y ,�N ).

Our conjecture is: if � is a Fuchsian system along Y and satisfies near-

hyperbolicity condition, then the following holds:

RHom�X
(�,�F

N |M+
) ∼→ RHom�Y

(�Y ,�N ).
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