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Gauge Theory and the A-Polynomial

By Olivier Collin

Abstract. In this article, we explain how to use instanton Floer
homology of various Dehn surgeries along knots in integer homology
spheres to prove that their A-polynomial is non-trivial. In particular,
we show that all non-trivial knots in S3 have non-trivial A-polynomial.

Not long ago, Kronheimer and Mrowka gave a gauge theoretic proof

of Property P for knots in S3. In fact, the proof found in [11] establishes

much more: all (1/n)–surgeries along a non-trivial knot in S3 admit a rep-

resentation of their fundamental group in SU(2) with non-abelian image.

Their work has been used in [2] by Boyer and Zhang to show that the A–

polynomial of any non-trivial knot in S3 is non-trivial. In this short note

we give a gauge-theoretic proof of this fact and various generalizations, the

approach being closer in spirit to the results of Kronheimer and Mrowka

contained in [11] and [12] since we use holonomy perturbations that natu-

rally arise in gauge theory.

Let us begin by recalling a crucial step in the proof of Property P:

one must establish that the 0–surgery of S3 along K has non-vanishing

Floer homology HF∗(Y0(K)). These Floer groups are generated by non-

degenerate flat connections on the SO(3)–bundle P over Y0(K) with non-

trivial second Steifel-Whitney class. If the moduli space of flat connections

M(Y0(K)) is degenerate, holonomy perturbations of the flatness equation

are used to define the Floer chain groups. The explicit construction of

Floer homology for Y0(K) is not important for our purpose, only matters

the fact that if the moduli space M(Y0(K)) is empty, then HF∗(Y0(K)) is

trivial. The 0–surgery being obtained by Dehn filling the knot complement

YK along the longitude λK , the moduli space M(Y0(K)) on P such that

w2(P ) �= 0 can be obtained from the moduli space of irreducible flat SU(2)–

connections over the knot complement M∗(YK) by taking flat connections
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with holonomy −I ∈ SU(2) along λK , see for example [3]. The result of

Kronheimer and Mrowka implies the following:

Theorem 1. Let K be a non-trivial knot in S3. The moduli space of

irreducible flat SU(2)–connections M∗(YK) is non-empty.

We want to use this to say something about the A–polynomial of K. We

first recall that SU(2) being a subgroup of SL(2,C), an SU(2)–representa-

tion naturally gives an SL(2,C)–representation. Moreover, it is well known

that different SU(2)–characters yield different SL(2,C)–characters. For the

construction of the A–polynomial, we refer the reader to [5]. The defini-

tion uses characters of SL(2,C)–representations of π1(YK) and a restriction

map to C
∗ ×C

∗ corresponding to characters of SL(2,C)–representations of

π1(∂YK). Showing that the A-polynomial is non-trivial amounts to showing

that the image of the restriction map is of complex dimension 1 in C
∗ ×C

∗

for some component in the character variety which contains an irreducible

character, and that on such a curve the character of the knot longitude is not

identically equal to 2. On the gauge-theoretic side, there is a corresponding

restriction map for flat SU(2)–connections: r:M(YK) → M(∂YK), com-

monly referred to as the pillow-case restriction. We prove the following

about this restriction map:

Theorem 2. Let K be a non-trivial knot in S3. Then M∗(YK) con-

tains an arc of irreducible connections {At} that can be locally parametrized

by the holonomy along the longitude λK .

A short proof that the A-polynomial of K is non-trivial follows. The arc

{At} ⊂ M∗(YK) of Theorem 2 yields, via the holonomy correspondance,

an arc of irreducible SU(2)–characters with non-constant trace along the

longitude of K. This arc therefore lies on a component X0 of SL(2,C)–

characters whose restriction to C
∗ ×C

∗ is 1-dimensional and can be locally

parametrized by the trace along the longitude. It follows directly that X0

cannot contribute trivially to the A-polynomial of K.

The proof of Theorem 2 relies on the use of holonomy perturbations.

These were first used by Floer to define his invariant in [8] and, later on, to

prove the existence of a surgery exact sequence in [9]. An extension to knot

complements was defined by Herald, and this is the version we use here. We
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give a brief summary and refer to [10] and [4] for details. Take a collection

{γi:S1 × D2 → YK}1≤i≤n of embeddings of solid tori in YK whose images

are disjoint and away from the boundary torus of YK . Let η:D2 → R be

a bump function on D2 and define a function h on the moduli space of

SU(2)–connections by

h(A) =
n∑

i=1

∫

D2

hi(tr holA(γi(S
1 × {x})))η(x)dx2,

where {hi: R → R}1≤i≤n is a collection of smooth functions. The function

h is called an admissible perturbation function. We shall make use of the

perturbed moduli space Mh(YK) of flat SU(2)–connections satisfying the

equation ∗FA + ∇h(A) = 0. Herald proved in [10] that a generic holonomy

perturbation h makes M∗(YK) into a smooth 1-manifold M∗
h(YK). This

allows us to explicitely construct a perturbed moduli space Mh(Y0(K)),

by considering elements in Mh(YK) that have holonomy equal to −I along

λK . Alternatively, we could construct, as in [12], the space Mh(Y0(K)) by

considering elements in M∗(YK) satisfying a perturbed holonomy condition

along the longitude λK . The two approaches are equivalent. Also note that,

while large scale perturbations are needed to obtain a result like the Floer

surgery exact sequence, here we only need (small) holonomy perturbations

that change the Floer chain groups but not the Floer homology groups.

Proof of Theorem 2. Consider M(Y0(K)) as a subset of M∗(YK).

We first claim that some element in M(Y0(K)) lies on an arc {At} in

M∗(YK). Otherwise, since M∗(YK) is a compact real algebraic set, any

element A ∈ M(Y0(K)) ∩ M∗(YK) is isolated. Because A is isolated

we can choose our generic holonomy perturbation h such that for any

Ah ∈ M∗
h(YK), the holonomy of Ah along the longitude λK is different

from −I. This means that we have a generic holonomy perturbation for the

3-manifold Y0(K) for which the perturbed Floer chain complex is empty, ie

we have pushed off A from the top line in the pillow-case. It follows that

HF∗(Y0(K)) is trivial, since it is invariant under admissible perturbations,

which contradicts Kronheimer and Mrowka [11]. The rest of the proof is very

similar to the above. Suppose now that no arc {At} constructed above in

M∗(YK) admits a local parametrization by holonomy along λK . In partic-

ular, this means that {At} ⊂ M(Y0(K)). Now perturb exactly as above to
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exhibit an empty perturbed Floer chain complex, giving HF∗(Y0(K)) = 0,

again a contradiction. �

The method readily generalizes beyond the case of knots in S3. Indeed,

for knots in integer homology spheres, the Floer homology of the 0-surgery is

defined and we obtain a criterion for the non-triviality of the A-polynomial.

Theorem 3. Let K be a knot in an integer homology sphere Y 3.

Suppose that the Floer homology of the 0-surgery of Y 3 along K is non-

vanishing. Then the A-polynomial of K is non-trivial.

In our construction, there is nothing special about the longitudinal Dehn

filling other than the fact that we know (for knots in S3) the Floer homology

of this 3-manifold to be non-trivial. We can use holonomy perturbations for

any other filling, and this gives:

Theorem 4. Let K be a knot in a homology sphere Y 3 such that

for some r ∈ {∞, 0} ∪ {1/k | k ∈ Z
∗} the Dehn filling Yr(K) has non-

trivial Floer homology. Then there exists an arc {At} ⊂ M∗(YK) locally

parametrized by the holonomy along a peripheral element in π1(YK).

Theorem 4 does not quite imply that the A-polynomial is non-trivial.

We obtain existence of deformations of irreducible SL(2,C)–characters into

a 1-dimensional family of irreducibles, but the A-polynomial could still be

trivial. This would happen if all the irreducible characters for the knot

complement YK send the longitude λK to I ∈ SL(2,C), as happens in the

example below. From the gauge theory side, this situation illustrates how

much information can be lost by restriction to the pillow-case.

Example 1. Take any integer homology sphere Y 3 with HF∗(Y ) non-

trivial, and consider an unknotted curve K contained in a small 3-ball in

Y 3. By construction, M∗(Y ) is non-empty and the knot complement YK
has fundamental group π1(YK) = π1(Y ) ∗ Z. It is then clear that M∗(YK)

contains at least one arc of irreducible flat connection parametrized by the

holonomy along the meridian µK . The 0-surgery will be Y � S1 × S2 and

hence HF∗(Y0(K)) is trivial. Because the longitude λK is trivial in π1(YK),

it follows directly that the A-polynomial is trivial.
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In the case of a knot K in S3, the non-triviality of HF∗(Y0(K)) is equiv-

alent to the non-triviality of the A-polynomial of K. For knots in arbi-

trary integer homology spheres, we can use Theorem 4 to see that the non-

vanishing of HF∗(Y0(K)) is not a necessary condition for the A-polynomial

of K to be non-trivial. Various examples can be constructed using gener-

alized Mazur manifolds. These are contractible 4-manifolds W±(l, k) for

k, l ∈ Z whose boundaries are integer homology spheres ∂W±(l, k). We

refer the reader to [1] for the construction, as we give below two examples

of knots in Mazur homology spheres whose A-polynomial is non-trivial but

for which HF∗(Y0(K)) = 0.

Example 2. Consider Mazur’s original manifold W+(0, 0) whose

boundary ∂W+(0, 0) is the Brieskorn homology sphere Σ(2, 3, 7). The Floer

homology of Brieskorn manifolds was explicitely computed in [7], but all

we need here is that HF∗(Σ(2, 3, 7)) is non-vanishing. Let K be a knot in

∂W+(0, 0) given as a small linking circle about the 1-handle used in the con-

struction of W+(0, 0). Performing a 0-surgery along K clearly gives S1×S2,

a 3-manifold over which there are no irreducible SO(3)–connections, so that

HF∗(Y0(K)) = 0. Now apply Theorem 4 to the filling Y∞(K) = Σ(2, 3, 7)

to construct an arc {At} ⊂ M∗(YK). To conclude that the A-polynomial

of K is non-trivial, we simply need to show, moreover, that {At} sat-

isfies holAt(λK) �= I. But this is immediate as otherwise the arc {At}
would provide irreducible flat SO(3)–connections over YK which extend to

Y0(K) = S1 × S2, a contradiction.

Example 3. In ∂W+(2, 0) let K be the knot given by a linking circle

along which the (+1)-surgery corresponds to a crossing change between the

two links in the Kirby diagram of W+(2, 0). This (+1)-surgery along K is

obtained by blowing down K and the 1-handle, therefore Y+1(K) can also

be seen as the result of a (+1)-surgery along some non-trivial knot in S3.

By [11] we know that HF∗(Y+1(K)) is non-vanishing. Also it is an easy

exercice to see that Y0(K) is again S1 × S2. As in Example 2, Theorem 4

therefore enables us to conclude that the A-polynomial of K is non-trivial

although HF∗(Y0(K)) = 0.

The following seems likely to be a difficult question: is it possible to

find knots in integer homology spheres whose A-polynomial is non-trivial
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but such that the Floer homology groups HF∗(Yr(K)) vanish for all r ∈
{∞, 0} ∪ {1/k | k ∈ Z

∗}?

References

[1] Akbulut, S. and R. Kirby, Mazur manifolds, Michigan Math. Jour. 26 (1979),
260–284.

[2] Boyer, S. and Z. Zhang, Every nontrivial knot in S3 has nontrivial A-
Polynomial, to appear in Proc. A.M.S.

[3] Braam, P. and S. Donaldson, Floer’s work on instanton homology, knots and
surgery , in The Floer Memorial Volume, 195-256, Birkhaüser (Berlin) 1995.
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