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Abstract. We generalize the logarithmic version of the Riemann-
Hilbert correspondence defined in [KtNk] to local systems with quasi-
unipotent local monodromies by working with a certain Grothendieck
topology. We also discuss its behavior with respect to direct images
and give applications to nearby cycles and the degeneration of relative
log Hodge to log de Rham spectral sequences.

Introduction

Let X be a proper and smooth scheme over C, and let U ⊂ X be the

complement of a divisor with normal crossings D on X. In its simplest

form, the Riemann-Hilbert correspondence sets up an equivalence between

the category of local systems of C-vector spaces of finite dimension on the
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analytic space Uan associated to U and the category of vector bundles on U

equipped with an integrable connection ∇ regular along D (i. e. extending

to a vector bundle on X equipped with an integrable connection with log

poles along D) (see Deligne ([D2], II 5.9) ; the (now common) terminology

“Riemann-Hilbert correspondence”, which does not appear in (loc. cit.),

was introduced later). Under this equivalence unipotent local systems (in

what follows we will say “local systems” for “local systems of C-vector

spaces of finite dimension”) on Uan correspond to connections with log poles

whose residues along the branches of D are nilpotent. M. Saito’s theory of

mixed Hodge modules ([Sai1], [Sai2]) provides far reaching amplifications

and generalizations of this correspondence. On the other hand, in [KtNk]

Kato and Nakayama presented a generalization of a more modest but rather

different nature. They define an extension of the correspondence to certain

log schemes over C. For simplicity, consider a proper and log smooth log

scheme X over C (a scheme X as above, with the log structure given by D, is

an example). Let U be the largest open subset of X where the log structure

is trivial (in the above example, this is X − D). Then, in [KtNk] there is

constructed a “log Riemann-Hilbert” equivalence Φ between the category

of unipotent local systems on Uan and the category of vector bundles on

X, equipped with an integrable connection (in the log sense) with nilpotent

residues. This equivalence involves passing through a certain topological

space X log mapping to Xan by a proper map τ , which is a homeomorphism

over Uan (more generally with fiber τ−1(x) homeomorphic to (S1)r if r

is the rank of the log structure at x), and such that the corresponding

open inclusion of Uan into X log is (locally at the boundary) a homotopy

equivalence (in particular, local systems on Uan extend uniquely to local

systems on X log). This space X log is defined more generally for any fs log

analytic space X and comes equipped with a sheaf of rings Olog
X , generated

by analytic functions on X and logarithms of sections of Mgp. The purpose

of the present paper is to address two questions left open in (loc. cit.) : (1)

how does the log Riemann-Hilbert equivalence Φ extend to quasi-unipotent

local systems ? (2) how does it behave with respect to maps X → Y ?

The answer to question (1) is rather easy : Φ extends to an equiva-

lence between the category of quasi-unipotent local systems on Uan and the

category of vector bundles on the “Kummer étale ringed site” Xket of X

endowed with an integrable connection satisfying a condition of nilpotence
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of the residues on this site ; the Kummer site is generated by Kummer log

étale maps of target X (whose prototype is A
1 → A

1, t �→ tn) ; see Theorem

4.4 for a precise (and more general) statement (formulated in the analytic,

rather than algebraic context). As a byproduct we obtain a (perhaps more

canonical) description of the so-called “canonical extension” ([D2] II, 5.5).

Let us also mention another generalization of Φ due to Ogus [O2], which

uses a “Lorenzon algebra” instead of the Kummer site, and works for local

systems with arbitrary (i. e. non necessarily quasi-unipotent) monodromies.

Question (2) is more delicate, and we have only partial answers. Our

main results (6.2, 6.3, 6.4) concern a proper, separated, log smooth mor-

phism f : X → Y of fs log analytic spaces. We have to assume in addition

that f is exact (roughly speaking, does not involve any log blow-up) or that

Y is log smooth. For simplicity, let us consider here this second case (so

that X is also log smooth). Let L be a quasi-unipotent local system on the

open subset of triviality U of the log structure of X (which is contained in

but can be strictly smaller than the inverse image by f of the open subset

of triviality V of the log structure of Y ) and let E be the vector bundle

with connection associated with it via the log Riemann-Hilbert correspon-

dence. Then, for all q, Rqf∗L is a quasi-unipotent local system on V , and

the vector bundle associated with it via the log Riemann-Hilbert correspon-

dence is Rqfket
∗ ω·,ket

X/Y (E) endowed with the Gauss-Manin connection (here

fket : Xket → Y ket is the extension of f to the Kummer étale sites, and

ω·,ket
X/Y (E) the corresponding relative de Rham complex of E).

Let us now briefly describe the contents of the paper. In Section 1 we

review the definition of X log and the log Riemann-Hilbert correspondence

of [KtNk]. The Kummer étale (ket, for short) sites and the extended ring

Oklog
X on X log are defined in sections 2 and 3. The log Riemann-Hilbert

correspondence in the quasi-unipotent case is constructed in Section 4, in a

way quite analogous to the unipotent case of (loc. cit.). The main tool for the

functoriality results sketched above is a “log Poincaré lemma” for log smooth

maps in the ket context, established in Section 5. It generalizes results of F.

Kato [KtF], Matsubara [M] and Ogus [O1], [O2]. The functoriality results

are then stated and proven in Section 6, using the log Poincaré lemma and

a key result on higher direct images of local systems, due to Kajiwara-

Nakayama [KjNk].

Sections 7 and 8 present some natural complements to the previous
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results. Section 7 is of a more algebraic flavor. For a proper and exact log

smooth map f : X → Y of fs log schemes of finite type over C, we know, by

a special case of the main theorems of Section 6 (for L the constant sheaf

C), that the higher direct images Rnfket
∗ ω·,ket

X/Y are locally free of finite type

on Y ket. We show that the relative Hodge to de Rham spectral sequence

Epq
1 = Rqfket

∗ ωp,ket
X/Y ⇒ Rp+qfket

∗ ω·,ket
X/Y

degenerates at E1 and that its E1 terms consists of vector bundles on Y ket

as well. This generalizes results of Deligne [D1], Steenbrink [Ste2], Illusie

[I1], Cailotto [C], and Fujisawa [Fjs1]. The proof combines some results of

Section 6 (to reduce to the case where the base Y is a reduced point) with

the standard mod p2 techniques of Deligne-Illusie [DI]. One basic theorem

of Steenbrink [Ste1] is that for a map X → Y , where Y is the unit disc,

which is semistable and smooth outside the origin, the relative (log) de

Rham complex ω·
X0

(of the log space X0 over the log point) calculates the

complex of nearby cycles RΨ(C). In Section 8 we generalize this to higher

dimensional bases. It is known that, because of the possible presence of

blow-ups, there is no “good” theory of nearby cycles on bases of dimension

> 1 (“good” meaning in particular preserving constructibility in a suitable

way). Some definitions and results, however, were sketched in [L]. Here

we present a different approach (whose relation with that of [L] remains to

be investigated). For a map f : X → Y of fs log analytic spaces and a

bounded below complex L of abelian sheaves on the space X log (which can

be thought of some substitute for the generic fiber), we define a complex

of nearby cycles RΨlogL on a certain space X ′log playing the role of the

special fiber (see 8.1 for a precise definition). When the base is a disc and

L is a locally constant sheaf, it is easy to recover the classical RΨL from

this more sophisticated object. In general, for f log smooth and exact and

L a quasi-unipotent local system, we obtain a comparison theorem à la

Steenbrink between the (ket) relative de Rham complex associated to L by

the log Riemann-Hilbert correspondence and the complex of nearby cycles

RΨlogL (8.6). This yields an alternate proof of one of the main results of

Section 6. Finally, in the appendix we collect some technical results (used

in sections 6 and 7) inspired by Tsuji’s theory of “saturated maps” [T1].

For example, we show how to render an exact log smooth map saturated by

Kummer extensions of the base.
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We wish to thank A. Ogus for useful discussions on these topics.

Notation. For a log analytic space X, we denote by
◦
X its underlying

analytic space. By abuse of notation, we denote by
◦
X (sometimes by X)

the log analytic space
◦
X endowed with the trivial log structure.

1. Log Riemann-Hilbert Correspondences (Review)

We review the results in [KtNk] on log Riemann-Hilbert correspon-

dences.

Let X be an fs log analytic space with log structure MX .

(1.1). In (1.1)–(1.3), we review the ringed space (X log,Olog
X ) over the

ringed space (X,OX), defined in [KtNk].

It is constructed as follows.

Any fs log analytic space is covered by open fs log analytic subspaces Uλ

having the following property: There exists an fs monoid S such that Uλ is

isomorphic to a locally closed analytic subspace of Spec (C[S])an endowed

with the log structure associated to S → OUλ
. Here C[S] denotes the

semi-group ring.

Step 1. First assume X = Spec (C[S])an with the log structure associ-

ated to S → OX . As a topological space, X is identified with Hom (S,C),

where C is regarded here as a multiplicative monoid. In this case,

X log = Hom (S,R≥0 × S1)

(R≥0 = {r ∈ R; r ≥ 0} regarded as a multiplicative monoid here, and

S1 = {z ∈ C; |z| = 1} regarded as a multiplicative group) with the natural

topology. We have a canonical continuous map τ : X log → X induced by

the homomorphism R≥0 × S1 → C; (r, u) �→ ru. The sheaf of rings Olog
X

is defined as follows. Let U = Spec (C[Sgp])an = Hom (Sgp,C×) regarded

as an open fs log analytic subspace of X. Then the log structure of U is

trivial and U is non-singular. The inclusion map j : U → X factors as

τ ◦ jlog where jlog : U → X log is induced by C× → R≥0 × S1; ru �→ (r, u)

(r ∈ R>0, u ∈ S1). Since Sgp ⊂ Γ(U,O×
U ) = Γ(X log, jlog

∗ (O×
U )), the con-

stant sheaf Sgp|Xlog on X log can be viewed as a subsheaf of jlog
∗ (O×

U ).

As a subsheaf of rings of jlog
∗ (OU ), Olog

X is generated by τ−1(OX) and
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log(Sgp|Xlog), where log(Sgp|Xlog) denotes the inverse image of Sgp|Xlog un-

der exp: jlog
∗ (OU ) → jlog

∗ (O×
U ).

Step 2. Next assume that X is a locally closed analytic subspace of

Y = Spec (C[S])an endowed with the log structure associated to S → OX .

Then

X log = X ×Y Y log, Olog
X = OX ⊗OY

Olog
Y .

Step 3. Finally any fs log analytic space X is covered by open fs log

analytic subspaces which are as in Step 2. The ringed space (X log,Olog
X ) is

constructed by glueing those constructed in Step 2. The reason why we can

glue is seen by the categorical definition of (X log,Olog
X ) given in (1.3) below.

(1.2). We give a categorical definition of X log. Let F be the functor

from the category of topological spaces over X to the category of sets defined

as follows. For a topological space T over X, F (T ) is defined to be the set

of all homomorphisms c : Mgp
X |T → Cont T (−,S1) such that c(f) = f/|f |

for f ∈ O×
X |T . Here |T means the inverse image on T of a sheaf on X, and

Cont T (−,S1) is the sheaf on T of continuous maps into S1. This functor

F is represented by the topological space X log over X. The canonical map

X log → X is denoted by τ .

For S and X as in (1.1) Step 1, MX (resp. Mgp
X ) is the subsheaf of

j∗(O×
U ) generated, as a sheaf of monoids (resp. groups), by O×

X and S (resp.

Sgp). The map c for T = X log = Hom (S,R≥0 × S1) in (1.1) Step 1 is

induced from the evident homomorphism Sgp → Cont T (−,S1).

An explicit construction of X log is given in [KtNk] as follows. As a set,

X log = {(x, h)|x ∈ X,h ∈ Hom (Mgp
X,x,S

1),

h(f) =
f(x)

|f(x)| for any f ∈ O×
X,x},

and τ : X log → X is the projection (x, h) �→ x. The topology of X log is

described as follows locally on X. Locally X has a chart. If X has a chart

S → MX with S an fs monoid, the topological space X log is embedded in

X × Hom (Sgp,S1) as a closed subset, by (x, h) �→ (x, hS) where hS is the

composition Sgp → Mgp
X,x

h→ S1. From this, we see that τ : X log → X is a

proper map.
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Proposition (1.2.1). Let X be a log smooth fs log analytic space over

C. Then any point of X log has a basis of neighborhoods whose intersection

with Xtriv is contractible.

Proof. By [O2] Theorem 3.1. �

Remark (1.2.2). In the above proposition, X log is actually a topolog-

ical manifold with the boundary X log − Xtriv. This is proved in [KjNk]

Lemma 1.2. Cf. [KtNk] (1.5.1).

(1.3). We give a categorical definition of the ringed space (X log,Olog
X )

over (X,OX). Let G be the functor from the category of ringed spaces

(T,OT ) over (X,OX) such that all stalks of OT are non-zero rings, to the

category of sets, defined as follows: G(T,OT ) is the set of all triples (log, c, ι)

where log is a homomorphism Mgp
X |T → OT /Z(1) (Z(1) denotes Z·2πi) such

that the composition log ◦ exp : OX |T
exp−→ Mgp

X |T
log−→ OT /Z(1) coincides

with the evident map, c is a homomorphism Mgp
X |T → Cont T (−,S1) such

that c(f) = f/|f | for f ∈ O×
X |T , and ι is an isomorphism L

∼=−→ L′ of ex-

tensions of Mgp
X |T by Z(1), where L is obtained from the exact sequence

0 → Z(1) → OT → OT /Z(1) → 0 by pull-back by log, and L′ is ob-

tained from the exact sequence 0 → Cont T (−,Z(1)) → Cont T (−,R(1)) →
Cont T (−,S1) → 0 by c. Then G is represented by (X log,Olog

X ). The pro-

jection (log, c, ι) �→ c corresponds to forgetting Olog
X .

For S and X as in (1.1) Step 1, (log, c, ι) for (T,OT ) = (X log,Olog
X )

in (1.1) Step 1 is described as follows; log is induced by log : jlog
∗ (O×

U ) →
jlog
∗ (OU )/Z(1), c is already described in (1.2), L is identified with the sub-

sheaf of jlog
∗ (OU ) additively generated by τ−1(OX) and log(Sgp|Xlog), and ι

is induced by OU → Cont U (−,R(1)); f �→ 1
2(f − f̄).

For another construction of Olog
X , see [KtNk].

We give some basic facts about Olog
X .

The canonical map τ−1(OX) → Olog
X is injective.

Denote by LX the sheaf L on X log in the above categorical definition

of (X log,Olog
X ). Then the canonical homomorphism LX → Olog

X is injec-

tive, and we regard LX as a subsheaf of Olog
X via this injection. We have

τ−1(OX) ⊂ LX ⊂ Olog
X . The canonical surjective homomorphism LX →

τ−1(Mgp
X ), which we denote by exp, extends exp : τ−1(OX) → τ−1(O×

X).
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For x ∈ X and y ∈ τ−1(x), if (li)1≤i≤r is a family of elements of LX,y

such that (exp(li) mod O×
X,x)1≤i≤r is a Z-basis of Mgp

X,x/O×
X,x, we have an

isomorphism of rings

OX,x[T1, ..., Tr]
∼=−→ Olog

X,y ; Ti �→ li.

(1.4). For an fs log analytic space X, let L(X) be the category of

local systems of finite dimensional C-vector spaces on X log and let Lunip(X)

be the full subcategory of L(X) consisting of the objects L satisfying the

following condition: for any y ∈ X log and any element g ∈ π1(τ
−1(τ(y))),

the action of g on Ly is unipotent. The category Lunip(X) is denoted by

Lunip(X
log) in [KtNk].

Definition (1.5). (Cf. [O1], [O2].) An fs log analytic space X is called

ideally log smooth if X is locally a closed subspace of a log smooth fs log

analytic space defined by a log ideal, more precisely, if X satisfies the con-

dition in [KtNk] (0.4), i.e. if there exist an open covering (Uλ)λ of X, fs

monoids Pλ, and an ideal Σλ of Pλ for each λ, such that Uλ is isomorphic

to an open analytic subspace of Spec
(
C[P λ]/(Σλ)

)
an

endowed with the log

structure associated to P λ −→ OUλ
.

Let X be an ideally log smooth fs log analytic space. Let Vnilp(X) be the

category of vector bundles V on X endowed with an integrable connection∇
with log poles satisfying the following condition locally on X: There exists a

finite family of OX -subsheaves (Vi)0≤i≤n of V satisfying ∇(Vi) ⊂ ω1
X/C⊗OX

Vi such that 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V , and such that for each 1 ≤ i ≤ n,

Vi/Vi−1 is a vector bundle and the connection induced on Vi/Vi−1 does not

have a pole. Here we say that the connection of V does not have a pole if the

image of ∇ is contained in the image of Ω1
X/C⊗OX

V −→ ω1
X/C⊗OX

V , with

Ω1
X/C the usual sheaf of differential forms. Note that Vnilp(X) is denoted

by Dnilp(X) in [KtNk].

Now we review the log Riemann-Hilbert correspondences obtained in

[KtNk].

Theorem (1.6). Let X be an ideally log smooth fs log analytic space.

Then there is an equivalence of categories

Φ′ : Lunip(X)
∼−→ Vnilp(X),
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given by Φ′(L) = τ∗(Olog
X ⊗C L), whose inverse Φ is defined by Φ(V ) =

(Olog
X ⊗τ−1(OX) τ

−1(V ))∇=0. Further, for an L ∈ Lunip(X), corresponding

to V ∈ Vnilp(X), there is a natural identification

Olog
X ⊗C L = Olog

X ⊗OX
V,

where Olog
X ⊗OX

V = Olog
X ⊗τ−1(OX) τ

−1(V ).

The two categories Lunip(X) and Vnilp(X) are abelian categories because

Lunip(X) is clearly abelian. The functors Φ and Φ′, being equivalences of

abelian categories, preserve exact sequences. Further they are compatible

with tensor products.

2. Analytic Ket Sites

In this section we introduce the Kummer log étale site on an fs log ana-

lytic space. This is nothing but the analytic correspondent to the Kummer

log étale site on an fs log scheme introduced in [Fjw], [FK], and [NC1] (see

also [I3]). See [KtNk] Section 1 for the definition of fs log analytic spaces

etc.

Definition (2.1). (Cf. [KtK1] (4.6) and [NC1] (2.1.2).) Let h : Q −→
P be a homomorphism of fs monoids.

(1) h is said to be exact if Q = (hgp)−1(P ) in Qgp.

(2) h is said to be Kummer if h is injective and for any a ∈ P , there

exists an n � 1 such that an ∈ h(Q).

A Kummer homomorphism is exact.

Definition (2.2). Let f : X −→ Y be a morphism of fs log analytic

spaces.

(1) (Cf. [KtK1] (4.6) and [NC1] (1.4), (2.1.2).) f is said to be strict

(resp. exact, resp. Kummer) if, for any x ∈ X, the homomorphism of fs

monoids (MY /O×
Y )f(x) −→ (MX/O×

X)x is an isomorphism (resp. exact, resp.

Kummer).

(2) (Cf. [KtK1] (3.2).) f is said to be a strict closed immersion if f is

strict and if the underlying morphism of analytic spaces is a closed immer-

sion.
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(3) (Cf. [KtK1] (3.3).) f is said to be log smooth (resp. log étale ) if for

any commutative diagram

T ′ s−−−→ X

i

� �f

T −−−→
t

Y

of fs log analytic spaces such that i is a strict closed immersion whose ideal

of definition I satisfies I2 = (0), there exists locally on T (resp. there exists

a unique) g : T −→ X such that gi = s and fg = t.

(4) f is said to be Kummer log étale if f is Kummer and log étale.

Sometimes we call such an f Kummer étale (or even ket) for short.

Theorem (2.3). (Cf. [KtK1] (3.5).) Let f : X −→ Y be a morphism

of fs log analytic spaces. Then f is log smooth (resp. log étale, resp. Kummer

log étale) if and only if locally on X and on Y , there exists a chart (MY ←−
Q

h−→ P −→MX) of f with Q and P fs satisfying the following conditions

(1) and (2) :

(1) hgp is injective (resp. hgp is injective and Cok (hgp) is finite, resp. h

is Kummer);

(2) The induced morphism X −→ Y ×(SpecCQ)an(SpecCP )an is a (strict)

open immersion.

Proof. The first two cases are proved in the same way as [KtK1] (3.5).

The last case is easily reduced to the second case. �

(2.4). Let X be an fs log analytic space. The Kummer log étale site

(or simply Kummer étale site) Xket of X is defined as follows. The category

of Xket is the category of fs log analytic spaces U over X whose structural

morphisms are Kummer log étale. The topology is the one associated to

the pretopology defined by surjective families (ui : Ui −→ U)i∈I (surjective

means that U is set theoretically the union of the images of the ui). Since a

Kummer morphism of fs log analytic spaces is universally surjective in the

category of fs log analytic spaces (the proof of this is the same as in the

algebraic context in [NC1] Section 2), Xket is indeed a U-site, where U is a

fixed universe. We denote by the same symbol Xket the induced topos.

The structural sheaf U �→ OU (U), U ∈ Ob Xket of Xket is denoted

by OXket = Oket
X . The sheaf U �→ MU (U) (resp. Mgp

U (U)) is denoted by
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Mket
X (resp. Mgpket

X ). (The proof of the fact that the presheaves OXket ,

Mket
X , and Mgpket

X are actually sheaves relies on an unpublished result in

[KtK2] that the ket topology is coarser than the canonical topology ; in

fact, OXket (resp. Mket
X ) is represented by the affine line X×SpecZ A1

Z (resp.

X ×SpecZ SpecZ[N]) ; the case of Mgpket
X is reduced to that of Mket

X . See

also [I3] Section 2.) We have (Mket
X )gp

∼=−→Mgpket
X .

If the log structure of X is trivial (i.e., MX = O×
X), then Xket is identified

with the usual topos of open sets of the underlying space of X, and OXket

is the same as the usual OX .

Problem (2.4.1). N. Nakayama ([NN]) introduced the category of ∂-

spaces (X,B) as a localization of the category of pairs of a complex analytic

space X and its nowhere-dense closed analytic subset B. He also introduced

the ∂-étale topology on (X,B). Compare this with the ket topology. For

example, let X be an fs log analytic space that is log smooth over C. Let X

be the ∂-space (X,X −Xtriv). Then the functor Xket � U
i�→ (U,U −Utriv)

preserves fiber products (cf. Example in p.470 of [NN]) so that it induces a

morphism of topoi from Xket to the ∂-étale topos. Is it an equivalence of

topoi?

(2.5). Let f : X −→ Y be a morphism of fs log analytic spaces. Then

f induces a morphism of topoi f = fket : Xket −→ Y ket (the proof of this

fact is the same as in the algebraic context in [NC1] (2.4)). In particular

if f is the natural map ε from X to
◦
X, where

◦
X denotes the underlying

analytic space of X endowed with the trivial log structure, ε induces a

natural morphism of topoi Xket −→
◦
X, also denoted by ε in the sequel.

Note that the morphism OX −→ ε∗OXket is an isomorphism.

(2.6). A vector bundle on Xket is a locally free OXket-module V of

finite rank; locally here means ket locally, that is, there is a ket covering

(Xi −→ X)i such that V |Xi is OXket
i

-free.

An example of a vector bundle of rank one (i.e. a line bundle) on Xket is

obtained as follows, from a divisor with Q-coefficients. Let X be a smooth

analytic space over C, let D be a divisor on X with normal crossings, and

endow X with the log structure associated to D. Let E be a divisor with

Q-coefficients on X whose restriction to X −D is with Z-coefficients (i.e.,
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the non-integer coefficients can appear only along D). Then we have a line

bundle OXket(E) on Xket defined as follows. For an object f : U → X of

Xket, OXket(E)(U) is the set of all meromorphic functions g on U such that

div(g) + f∗E � 0. For instance, if X is the projective line and D is the

divisor t = 0 (t is the coordinate function), then OXket( 1
nD), n ≥ 2, is the

line bundle which is, ket locally, generated by t−
1
n around D. This is an

nth root of OX(D), which doesn’t exist for the classical zariski (or étale)

topology, since the class of D in H2(X,Z/nZ(1)) is nontrivial.

3. Relation between X log and Xket

Let X be an fs log analytic space.

(3.1). We define a morphism of topoi τket : X log → Xket.

For a ket morphism U → X of fs log analytic spaces, the induced map

U log → X log is etale, i.e. a local homeomorphism ([KtNk] (2.2)). The func-

tor U �→ U log from the ket site Xket to the category of etale topological

spaces over X log is continuous and preserves fiber products, and induces a

morphism of topoi τket : X log → Xket.

We have an (essentially) commutative diagram of topoi

X log τket

−→ Xket

τ ↘ ↓ ε
X.

(3.2). We define a sheaf of rings Oklog
X on X log by

Oklog
X = Olog

X ⊗τ−1(OX) τ
ket−1(Oket

X ).

We have a commutative diagram of ringed topoi

(X log,Oklog
X ) −−−→ (Xket,Oket

X )� �
(X log,Olog

X ) −−−→ (X,OX).

Both diagrams are functorial with respect to X.
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The sheaf Oklog
X admits a description similar to that of Olog

X in (1.1), as

follows.

Step 1. First assume X = Spec (C[S])an with the log structure associ-

ated to S → OX , let U = Spec (C[Sgp])an = Hom (Sgp,C×) regarded as

an open fs log analytic subspace of X, and let jlog : U → X log be the map

defined in (1.1). Then as a subsheaf of rings of jlog
∗ (OU ), Oklog

X is generated

by τ−1(OX), log(Sgp|Xlog), and by n-th roots of local sections of S|Xlog for

n ≥ 1. When S ∼= Nr for some r ≥ 0, this is the ring of the Nilsson classes

([D2] III 1).

Step 2. Next assume that X is a locally closed analytic subspace of

Y = Spec (C[S])an endowed with the log structure associated to S → OX .

Then

Oklog
X = OX ⊗OY

Oklog
Y .

Step 3. Finally any fs log analytic space X is covered by open fs log

analytic subspaces which are as in Step 2. Again, thanks to the categorical

definition explained below, the sheaf Oklog
X is constructed by glueing those

constructed in Step 2.

There are several other equivalent definitions of Oklog
X . In fact each of

the following properties of Oklog
X characterizes it.

1. We have a categorical definition of the ringed space (X log,Oklog
X ) over

the ringed topos (Xket,OXket) as in (1.3), by just replacing the ringed space

(X,OX) in (1.3) by the ringed topos (Xket,OXket), M
gp
X |T by Mgp

Xket |T , and

OX |T by OXket |T .

2. Oklog
X is defined also as follows (exactly in the same way as the def-

inition of Olog
X in [KtNk] (3.2)). The proof of the equivalence is left to the

reader. Define a sheaf Lklog of abelian groups on X log by

Lklog = lim←−(Cont (−,R(1))
exp−→ Cont (−,S1)

c←− (τket)−1(Mketgp
X )),

where c is the homomorphism induced by the maps Mgp
U (U) −→

Cont (U log,S1) , a �→
(
(u, h) �→ h(au)

)
for objects U of Xket. Since there is

the commutative diagram

(τket)−1(Oket
X )

exp−−−→ (τket)−1(O×
Xket)

a

� b

�
Cont (−,R(1))

exp−−−→ Cont (−,S1),
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where a is induced by the maps OU (U) −→ Cont (U log,R(1)) , f �→
Im(f) (Im is the imaginary part), and b = c ◦α−1 is by OU (U)× −→
Cont (U log,S1), f �→ f/|f |, we have a homomorphism h : (τket)−1(Oket

X ) −→
Lklog of sheaves of abelian groups, which fits into the commutative diagram

with exact rows

0 −−−→ Z(1) −−−→ (τket)−1(Oket
X )

exp−−−→ (τket)−1(O×
Xket) −−−→ 0∥∥∥ h

� �
0 −−−→ Z(1) −−−→ Lklog exp−−−→ (τket)−1(Mketgp

X ) −−−→ 0∥∥∥ � �
0 −−−→ Z(1) −−−→ Cont (−, iR)

exp−−−→ Cont (−,S1) −−−→ 0.

Consider commutative (τket)−1(OXket)-algebras A on X log endowed with a

homomorphism Lklog −→ A of sheaves of abelian groups which commutes

with h. Then Oklog
X is the universal one among such A.

More explicitly, Oklog
X is defined by

Oklog
X := ((τket)−1(OXket)⊗Z SymZ(Lklog))/a,

where SymZ(Lklog) is the symmetric algebra of Lklog over Z and a is the

ideal of (τket)−1(OXket)⊗Z SymZ(Lklog) generated locally by local sections

of the form

f ⊗ 1− 1⊗ h(f) for f a local section of (τket)−1(Oket
X ).

Here 1 means the 1 ∈ Z = Sym0(Lklog), whereas h(f) belongs to Lklog =

Sym1(Lklog).

3. Oklog
X is the sheaf on X log associated to the separated presheaf U �→

lim−→
V

Γ(U, f−1Olog
V ), where the limit runs over the category of the pairs of an

object V ∈ Xket and a continuous map f : U → V log over X log. This is

seen as follows. First note that the above f is an open immersion. Then

the natural map is induced by the maps Γ(U, f−1Olog
V ) = Γ(f(U),Olog

V ) −→
Γ(f(U),Oklog

V )
∼=←− Γ(U,Oklog

X ). This is an isomorphism at stalks.

Remark (3.2.1). A. Ogus constructed a ring Õlog
X in [O2], which is

similar to our Oklog
X and which controls the log Riemann-Hilbert corre-
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spondence with arbitrary monodromies, as Oklog
X controls that with quasi-

unipotent monodromies. See (4.4.1).

(3.3). For each point x of an fs log analytic space X, let y be a point

of X log lying over x. Then we have a functor Xket −→ (Sets) defined by

F �→ Fx(log) := ((τket)−1F )y, which does not depend on the choices of y

up to non-canonical isomorphisms because this functor can be defined also

as in [NC1] (2.5) via log separably closed fields. (For example, in case of

X = (SpecC,N ⊕ C×), taking an element (yn)n ∈ lim←−X log
n with y1 = y,

we have an isomorphism lim−→F (Xn)
∼=−→ Fx(log) . Here Xn := (SpecC,N

1
n ⊕

C×), n ≥ 1 and the source does not depend on the choices of y.) These

functors (−)x(log) are points of Xket, and the family {(−)x(log) ; x ∈ X} is

conservative.

Remark (3.3.1). Let x be a point of X. There always exists a local

chart P −→ Γ(X ′,MX) around x (X ′ is an open neighborhood of x) such

that the induced map P −→ MX,x/O×
X,x is an isomorphism (the proof is

the same as in the algebraic context in [NC1] (1.6)). When we fix such

a chart, we have Fx(log) = lim−→
n≥1

(ε∗(F |Xket
n

))xn , where Xn := X ×(SpecCP )an

(SpecCP
1
n )an, and xn is the unique point of Xn lying over x.

The action of π1(x
log) = Hom ((Mgp

X /O×
X)x,Z(1)) ∼= Hom (P,Z(1)) on

Fx(log) , where Z(1) = Z · 2πi, extends to a continuous action of π1(x
ket) :=

Hom ((Mgp
X /O×

X)x, Ẑ(1)) on Fx(log) , where Ẑ(1) := lim←−
n≥1

{u ∈ C ; un =

1}. Here π1(x
log) is regarded as a subgroup of π1(x

ket) via the injection

exp: Z(1) −→ Ẑ(1).

Notation (3.4). Let X be an fs log analytic space and let X −→
(SpecCP )an be a chart with P an fs monoid. Then we write X×(SpecCP )an

(SpecCP
1
n )an as Xn for each n � 1.

Proposition (3.5). (Cf. [KtNk] (3.3)) Let X be an fs log analytic

space, x ∈ X, y a point of X log with image x in X, and let P := (MX/O×
X)x.

(1) Fix a homomorphism P −→ MX,x such that P −→ MX,x −→ P is

the identity. Then we have an OX,x-isomorphism

Oket
X,x(log)

∼= OX,x ⊗C[P ] C[P ⊗N Q≥0],
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where P ⊗N Q≥0 = ∪
n≥1

P
1
n .

(2) Let (ti)1≤i≤n be a family of elements of the stalk Ly whose image un-

der exp is a Z-basis of (Mgp
X /O×

X)x, where L is the non-ket version of Lklog,

introduced in [KtNk]. Then, as an Oket
X,x(log)

-algebra, Oklog
X,y is isomorphic to

the polynomial ring Oket
X,x(log)

[T1, · · · , Tn] in n variables by

Oket
X,x(log)

[T1, · · · , Tn] −→ Oklog
X,y ; Ti �→ ti.

In particular, Oklog
X is flat over Oket

X .

Proof. (1) We may assume that P −→ MX,x comes from a chart

P −→ Γ(X,MX). By (3.3.1), it is enough to show OXn,xn = OX,x ⊗C[P ]

C[P
1
n ], where xn is the unique point of Xn lying over x. We may as-

sume that X = (SpecC[P ])an. Then, by taking a presentation Nr ⇒
Ns → P (exact), we reduce this equality to the case where P is free,

which is clear. (That a finitely generated monoid is finitely presented is

of course well known, but it’s still good to recall an argument. Let P =

〈x1, . . . , xn ; fλ(x1, . . . , xn) = gλ(x1, . . . , xn), λ ∈ Λ〉 be a presentation of a

finitely generated monoid. Then there are finite number of λ1, . . . , λm such

that Z[P ] = Z[x1, . . . , xn]/(fλ−gλ ; λ ∈ Λ) = Z[x1, . . . , xn]/(fλj
−gλj

; 1 ≤
j ≤ m) = Z[P ′], where P ′ = 〈x1, . . . , xn ; fλj

= gλj
; 1 ≤ j ≤ m〉. This

equality implies P = P ′.)
(2) is proved as in [KtNk] (3.3). Note that the equality (MX

gpket/

O×
Xket)x(log) = (Mgp

X /O×
X)x ⊗Z Q implies that Q ⊗Z SymZ ((MX

gpket/

O×
Xket)x(log) ) = Q⊗Z SymZ ((Mgp

X /O×
X)x). �

Lemma (3.6). Let f : X −→ Y be a strict morphism of fs log analytic

spaces. Then

(1) Olog
X = (f log)−1Olog

Y ⊗(fτ)−1OY
τ−1OX .

(2) Oket
X = (fket)−1Oket

Y ⊗(fε)−1OY
ε−1OX .

(3) Oklog
X = (f log)−1Oklog

Y ⊗(fτ)−1OY
τ−1OX

= (f log)−1Oklog
Y ⊗((fτ)ket)−1Oket

Y
(τket)−1Oket

X .

Proof. These are checked stalkwise by [KtNk] (3.3) and the proposi-

tion above. �
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Proposition (3.7). Let X be an fs log analytic space.

(1) Let x be a point of X and F a sheaf of Z-modules on Xket. Then

(Rqε∗F )x ∼= Hq(π1(x
ket), Fx(log) ) for any q, where the right hand side is the

cohomology of the pro-finite group π1(x
ket) (3.3.1).

(2) For a sheaf M of Q-vector spaces on Xket, Rqε∗M = 0 for any q > 0.

(3) For an OX-module M , the natural homomorphism M −→
Rτ∗(Olog

X ⊗OX
M) is an isomorphism.

(4) For an OXket-module M , the natural homomorphism M −→
Rτket

∗ (Oklog
X ⊗O

Xket
M) is an isomorphism.

(5) For an OX-module M , the natural homomorphism M −→
Rε∗(Oket

X ⊗OX
M) is an isomorphism.

Proof. (1) is proved similarly as [NC1] (4.1). The point is that in the

notation in (3.4), Un ×U Un is the disjoint union of n copies of Un over U

as in the proof of [NC1] (4.1).

(2) is deduced from (1), since the cohomology of degree ≥ 1 of a profinite

group is a torsion group.

The case of (3) where M is a vector bundle was proved in [M1] 4.6.

For reader’s convenience, we recall its proof in the case where
◦
X consists of

only one point and M = OX , which will be used below. In this case X log is

homeomorphic to (S1)r, where r = rankZ (Mgp
X /O×

X), and Olog
X is a locally

constant sheaf whose local value is C[T1, · · · , Tr], Ti’s are indeterminates,

and the action of π1(X
log) on the stalk can be described as gi(Tj) = Tj +

δij2π
√
−1 (1 ≤ i, j ≤ r) in taking a suitable (Tj)j and (gi)i such that the set

{g1, · · · , gr} generates π1(X
log). It is enough to show that Hq(X log,Olog

X ) =

0 for q > 0 (resp. = OX,x for q = 0). The case where r = 1 is deduced from

the exactness of 0 → OX,x → OX,x[T1]
g1−id→ OX,x[T1] → 0. The general

case is reduced to this case by the Künneth formula.

Now we prove (3). Let x be a point of X. Since τ is proper (= univer-

sally closed) and separated, by proper base change theorem, (Rτ∗(Olog
X ⊗OX

M))x = Rτ∗(Olog
X |τ−1(x)⊗OX,x

Mx). ButOlog
X |τ−1(x)

∼= Olog
x ⊗Ox,xOX,x, where

x is regarded as an fs log analytic space endowed with the inverse image log

structure from X. Since Ox,x = C, we can proceed as Rτ∗(Olog
X |τ−1(x)⊗OX,x

Mx) = Rτ∗(Olog
x ⊗C Mx) = Rτ∗(Olog

x ) ⊗C Mx = Mx by the special case

explained above.

(4) Let x be a point of X. Take a local chart P −→ MX around x
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as in (3.3.1). Then, by proper base change theorem, (Rqτket
∗ (Oklog

X ⊗O
Xket

M))x(log) = lim−→
n≥1

Hq
(
xlog
n ,

(
Oklog

Xn
⊗O

Xket
n
M |Xket

n

)
|
xlog
n

)
in the notation in (3.3.1),

where x is regarded as an fs log analytic space as in the proof of (3). On

the other hand, the inclusion maps τ−1ε∗(M |Xket
n

) −→ (τket)−1(M |Xket
n

) for

all n ≥ 1 induce an isomorphism

lim−→
n≥1

Hq
(
xlog
n ,

(
Olog

Xn
⊗OXn

ε∗(M |Xket
n

)
)
|
xlog
n

)
∼=−→ lim−→

n≥1

Hq
(
xlog
n ,

(
Olog

Xn
⊗OXn

M |Xket
n

)
|
xlog
n

)
.

In the target group, note that Olog
Xn

⊗OXn
− = Oklog

Xn
⊗Oket

Xn
−. By (3),

the source group, which is viewed as lim−→
n≥1

(
Rqτ∗

(
Olog

Xn
⊗OXn

ε∗(M |Xket
n

)
))

xn
,

vanishes for q > 0 and is equal to lim−→
n≥1

(ε∗(M |Xket
n

))xn for q = 0, which is

nothing but Mx(log) .

(5) for a locally free M is a consequence of (2). We use only this case

later. See Appendix (A.1) for the proof of general case. �

(3.8). Let f : X −→ Y be a morphism of fs log analytic spaces. Then

we have a morphism of ringed topoi with log structures (Xket,Mket
X ) −→

(Y ket,Mket
Y ), and we define the complex ω

.,ket
X/Y on Xket of relative analytic

forms with log poles in the ket sense exactly in the same way as in [KtNk]

(1.7) and (1.9). Further, let ωp,klog
X/Y := Oklog

X ⊗Oket
X

ωp,ket
X/Y for each p ≥ 0.

Then we have the canonical derivation d : Oklog
X −→ ω1,klog

X/Y and the complex

ω
.,klog
X/Y of (f log)−1(Oklog

Y )-modules as in [KtNk] (3.5).

4. Quasi-Unipotent Log Riemann-Hilbert Correspondences

(4.1). For an fs log analytic space X, let Lqunip(X) be the full sub-

category of L(X) (1.4) consisting of the objects L satisfying the following

condition: for any y ∈ X log and any element g ∈ π1(τ
−1(τ(y))), all the

eigenvalues of the action of g on Ly are roots of the unity.

Lemma (4.2). For an object L of L(X), the following three conditions

(i)–(iii) are equivalent.
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(i) L belongs to Lqunip(X).

(ii) The following holds locally on X: There exists a finite family of C-

subsheaves (Lj)0≤j≤n of L such that 0 = L0 ⊂ L1 ⊂ · · · ⊂ Ln = L, and

such that for each 1 ≤ i ≤ n, Li/Li−1 is isomorphic to the inverse image of

a local system of finite dimensional C-vector spaces on Xket.

(iii) The following holds locally on Xket: There exists a finite family of

C-subsheaves (Lj)0≤j≤n of L such that 0 = L0 ⊂ L1 ⊂ · · · ⊂ Ln = L, and

such that for each 1 ≤ i ≤ n, Li/Li−1 is isomorphic to the inverse image of

a local system of finite dimensional C-vector spaces on X.

Proof. The implications (ii) ⇒ (iii) and (iii)⇒ (i) are clear. We prove

that (i) implies (ii). Let x ∈ X. We may work locally on X at x, and so

we may assume that there is a chart S → MX of MX such that S →
MX,x/O×

X,x is an isomorphism. Let Y = Spec (C[S])an and endow Y with

the log structure associated to S → OY , and let f : X → Y be the induced

morphism. Since π1(x
log) → π1(Y

log) is an isomorphism, there exists a

local system of finite dimensional C-vector spaces L′ on Y log whose pull

back on xlog is isomorphic to the pull back of L. By the proper base change

theorem,
(
τ∗Hom((f log)−1(L′), L)

)
x
→ Hom ((f log)−1(L′)|xlog , L|xlog) is an

isomorphism. From this we see that L and (f log)−1(L′) are isomorphic on

U log for some open neighbourhood U of x in X. Hence we may assume L =

(f log)−1(L′). Since the actions of π1(x
log) on the stalks of L|xlog are quasi-

unipotent, the actions of π1(Y
log) on the stalks of L′ are quasi-unipotent.

Hence we may assume that there exists a finite family of C-subsheaves

(L′
j)0≤j≤n of L′ such that 0 = L′

0 ⊂ L′
1 ⊂ · · · ⊂ L′

n = L′, and such that for

each 1 ≤ i ≤ n, L′
i/L

′
i−1 comes from a representation of a finite quotient

group of π1(Y
log). Then L′

i/L
′
i−1 clearly comes from Y ket. �

(4.2.1). Let L ∈ Lqunip(X). Then, by the above lemma and (3.7) (4),

Φ′(L) := τket
∗ (Oklog

X ⊗C L)

is a vector bundle on Xket (2.6). (For example, Φ′(C) = OXket .) Further

this vector bundle is endowed with the integrable connection with log poles

τket
∗ (d⊗ id), where d : Oklog

X −→ ω1,klog
X/C is the canonical derivation explained

in (3.8). Thus Φ′ defines a functor from Lqunip(X) to the category of vector

bundles V on Xket endowed with an integrable connection with log poles

∇ : V −→ ω1,ket
X/C ⊗O

Xket
V .
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(4.3). Let X be an ideally log smooth fs log analytic space (1.5). Let

Vqnilp(X) be the category of vector bundles V on Xket endowed with an

integrable connection ∇ with log poles satisfying the following condition

locally on Xket: There exists a finite family of OXket-subsheaves (Vi)0≤i≤n of

V satisfying ∇(Vi) ⊂ ω1,ket
X/C⊗O

Xket
Vi such that 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V ,

and such that for each 1 ≤ i ≤ n, Vi/Vi−1 is a vector bundle and the

connection induced on Vi/Vi−1 does not have a pole. Here we say that the

connection of V does not have a pole if the image of ∇ is contained in the

image of Ω1
X/C ⊗OX

V −→ ω1,ket
X/C ⊗Oket

X
V , with Ω1

X/C the usual sheaf of

differential forms.

Theorem (4.4). Let X be an ideally log smooth fs log analytic space.

Then Φ′ induces an equivalence of categories

Φ′ : Lqunip(X)
∼−→ Vqnilp(X),

whose inverse Φ is defined as Φ(V ) = (Oklog
X ⊗(τket)−1(O

Xket )
(τket)−1

(V ))∇=0. Further, for an L ∈ Lqunip(X), corresponding to V ∈ Vqnilp(X),

there is a natural identification

Oklog
X ⊗C L = Oklog

X ⊗O
Xket

V.

The above relates to its non-ket version (1.6) as follows: The fully faithful

functor ε∗ from the category of vector bundles on X to that for Xket induces

an equivalence between Vnilp(X) and the full subcategory of Vqnilp(X) con-

sisting of the objects (V,∇) such that V , as a vector bundle on Xket, is the

pull back of a vector bundle on X by ε∗. Further, ε∗ : Vnilp(X) −→ Vqnilp(X)

is compatible with the inclusion Lunip(X) ⊂ Lqunip(X) via both correspon-

dences.

The functors Φ and Φ′ are compatible with tensor products and are

equivalences of abelian categories, so that they preserve exact sequences.

Proof. First, for an L ∈ Lqunip(X), Φ′(L) belongs to Vqnilp(X), the

natural functorial homomorphism Oklog
X ⊗ Φ′(L) −→ Oklog

X ⊗ L induced by

the adjunction map (τket)−1Φ′(L) −→ Oklog
X ⊗ L is an isomorphism, and

this isomorphism induces a functorial isomorphism ΦΦ′(L) ∼= L. This is
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reduced to the equality Φ′(C) = OXket by ket localization with (4.2), and

devissage with (3.7) (4).

Next we show that for a V ∈ Vqnilp(X), Φ(V ) belongs to Lqunip(X).

By ket localization, we may assume that there exists a filtration (Vi)0≤i≤n

in (4.3). Then the natural homomorphism Oket
X ⊗OX

ε∗V −→ V is an

isomorphism, as seen by reducing to the case V = Oket
X by devissage. By

(1.6), it is enough to show that the natural homomorphism

h : (Olog
X ⊗OX

ε∗V )∇=0 −→ Φ(V ) = (Oklog
X ⊗OX

ε∗V )∇=0

is an isomorphism because ε∗V belongs to Vnilp(X). Since the stalks of the

target of h is described as the limit of the groups of the horizontal sections

of Olog
X′ ⊗OX′ g

∗ε∗V , where g : X ′ −→ X is ket, we reduce this to the fact

that the log Riemann-Hilbert correspondences in (1.6) commute with the

pull-backs.

We also see that the natural functorial homomorphism Oklog
X ⊗Φ(V ) −→

Oklog
X ⊗ V is an isomorphism by reducing to the case that V comes from

Vnilp(X) as above, which is seen by tensoring Oklog
X with the identification

in (1.6). Applying τket
∗ , we have a functorial isomorphism Φ′Φ(V ) ∼= V by

(3.7) (4).

We already proved the last statement when we saw that h is an iso-

morphism in the above. Finally, let (V,∇) ∈ Vqnilp(X) and assume that

V = ε∗V0 for some V0. Then V0 = ε∗V and (V,∇) = ε∗(V0,∇0), where

∇0 is the induced connection on V0. Now note that (V0,∇0) belongs to

Vnilp(X) if and only if L := Φ(V ) belongs to Lunip(X). The rest is to prove

that these equivalent conditions are satisfied. First we may assume that

X = SpecC. Put P := Γ(X,MX/O×
X). We may further assume P = N be-

cause Hom (P,N · 2πi) generates π1(X
log) = Hom (P gp,Z(1)). It is enough

to show that any subsystem L′ of L of rank one belongs to Lunip(X). Let V ′

correspond to L′. Let z be the generator of P = N. Then A := Oket
X,x(log)

is

identified with
( ⋃
n≥1

C[z
1
n ]
)
/(z) (3.5), where X =: {x}. Let σ be the genera-

tor of π1(X
log) such that σ(zp) = e2πipzp, p ∈ Q. Let e2πiq, q ∈ (0, 1]∩Q, be

the eigenvalue of the action of σ on L′. Then the stalk of V ′ is isomorphic

to Ae, where e is a basis of L′ and ε∗V ′ ∼= Cz1−qe. Since ε∗ε∗V ′ −→ V ′ is

injective, 1− q = 0. �

Remark (4.4.1). A. Ogus also generalizes (1.6) in [O2]. His equiva-
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lence works for the modules with arbitrary monodromies. (He does not use

ket sites.)

Example (4.5). Let X = C with the coordinate function z, and endow

X with the log structure associated to the divisor D = {0}. Let a be a

rational number. Consider the vector bundle of rank 1 on Xtriv = C× with

a basis e endowed with a connection ∇ which sends e to a · d log(z)⊗ e, let

L ∈ Lqunip(X) be the unique extension of the local system Ker (∇) on Xtriv,

and let V be the corresponding object of Vqnilp(X). Then

V = OXket(aD)e,

where OXket(aD) is as in (2.6). Locally on Xket, V has a basis z−ae which

belongs to the kernel of the connection, and L is the inverse image of the

local system Cz−ae on Xket. Let V ′ = ε∗(V ) and let ∇′ be the induced

connection on V ′. Then V ′ = OX(!a"D)e, where !a" is the greatest integer

which is not strictly bigger than a, and the basis z−�a�e of V ′ satisfies

∇′(z−�a�e) = (a − !a")d log(z) ⊗ z−�a�e. (Note that for a meromorphic

function g on X, div (g) + aD ≥ 0 if and only if div (g) + !a"D ≥ 0. Hence

ε∗(OXket(aD)) = OX(!a"D).) This (V ′,∇′) is the canonical extension of

(OXtrive,∇) on Xtriv to X, in the sense of [D2] II, 5.5, with respect to the

unique section τ of the projection C → C/Z such that 0 ≤ Re (τ) < 1.

More generally we have the following.

Proposition (4.6). Let

∆ = {z ∈ C; |z| < 1}, ∆∗ = ∆− {0}.

Let m,n ≥ 0, X = ∆n+m, X∗ = (∆∗)n × ∆m, and endow X with the log

structure associated to the divisor X − X∗. Let Yi = {z ∈ X; zi = 0} for

1 ≤ i ≤ n so that X − X∗ = ∪1≤i≤nYi. Let L be an object of Lqunip(X),

let V be the corresponding object of Vqnilp(X), and let V ′ = ε∗(V ). Then as

a vector bundle on X with a connection with log poles, V ′ is the canonical

extension of V |X∗ in the sense of [D2] II, 5.5 with respect to the section τ

of C → C/Z such that 0 ≤ Re (τ) < 1, which means that for any 1 ≤ i ≤ n

and for any eigenvalue a of the residue Resi(∇′) of the connection ∇′ of V ′

along Yi, a is a rational number satisfying 0 ≤ a < 1.



Log Riemann-Hilbert Correspondences 23

Proof. By (4.2), we may assume that L is the inverse image of a

locally constant sheaf L1 on Xket. In this case,

V = τket
∗ (Oklog

X ⊗C L) = Oket
X ⊗C L1.

The stalks of Oket
X ⊗C L1 are generated by

∏
1≤j≤n z

aj
j ⊗ l over OX , where

aj are rational numbers such that 0 ≤ aj < 1 and where l ∈ L1. We have

∇(
∏

1≤j≤n

z
aj
j ⊗ l) =

∑
1≤k≤n

akd log(zk)⊗
∏

1≤j≤n

z
aj
j ⊗ l,

and hence

Resi(∇)(
∏

1≤j≤n

z
aj
j ⊗ l) = ai

∏
1≤j≤n

z
aj
j ⊗ l

on Yi. �

Deligne-Manin’s canonical extension L �→ V ′ is not compatible with

tensor products, while our L �→ V is ; note that there is no contradiction

because ε∗ is not compatible with tensor products.

5. Log Poincaré Lemma

In this section we prove the following (holomorphic) Poincaré lemma

for log smooth morphisms. See [M1], [KtF], [O1] and [O2] for its non-ket

analogue.

Theorem (5.1). Let X and Y be fs log analytic spaces and let

f : X −→ Y be a log smooth exact morphism. Then the natural map

(f log)−1(Oklog
Y ) −→ ω

.,klog
X/Y(5.1.1)

is a quasi-isomorphism.

Remark (5.1.1). For a non-exact f , the above is not necessarily valid.

For example, let f be a log blow-up along the log structure (6.1.1), then

ω
.,klog
X/Y = Oklog

X and (5.1.1) is not necessarily an isomorphism (cf. [KtF]

(1.2)).

We will need the following lemmas.
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Lemma (5.2). Let S and S ′ be fs monoids such that S× = (S ′)× = {1},
and let S ′ −→ S be an exact injective homomorphism. Let A be a finite set,

let A′ be a subset of A, let

X = Spec (C[S])an ×CA

with the log structure associated to S, and let

Y = Spec (C[S ′])an ×CA′

with the log structure associated to S ′. Consider the natural projection

X −→ Y . Let x be a point of X log lying over the origin of X (= the

point of X defined by the map C[S] −→ C sending S − {1} to 0 and by

the origin of CA), and let y ∈ Y log be the image of x. Then the map

(5.1.1)x : Oklog
Y,y −→ ω

.,klog
X/Y,x is a homotopy equivalence of complexes of Oklog

Y,y -

modules.

Lemma (5.3). Let f : X ′ −→ Y ′ be a log smooth exact morphism of fs

log analytic spaces. Let p′ ∈ X ′, and q′ its image in Y ′. Then locally on X ′

and on Y ′ there is a commutative diagram

(X ′, p′) −−−→ (X, p)� �
(Y ′, q′)

i−−−→ (Y, q)

of pointed fs log analytic spaces with i being a strict closed immersion, where

X −→ Y is as in 5.2, and p and q denote the origins of both spaces, such

that the induced morphism X ′ −→ X ×Y Y ′ is a strict open immersion.

First we show that 5.1 follows from 5.2. In fact, let f : X −→ Y be as

in 5.1 and let x be a point of X log, and y ∈ Y log be the image of x. Then

we see by 5.3 that (X,x) −→ (Y, y) is obtained locally on X and on Y from

(X,x) −→ (Y, y) in 5.2 by a base change with respect to a strict closed

immersion. Since the homotopy survives under the base change, 5.2 implies

5.1.

Next we prove 5.3. By (2.3) (see also [NC2] (A.2)), we may assume that

there exist a chart by an injection h : Q ⊕ Zs −→ P ⊕ Zr for f such that
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Q −→ (MY ′/O×
Y ′)q′ and P −→ (MX′/O×

X′)p′ are isomorphisms, such that

Y ′ −→ (SpecC[Q⊕Zs])an is a strict closed immersion, and such that X ′ −→
Y ′ ×(SpecC[Q⊕Zs])an (SpecC[P ⊕ Zr])an is a strict open immersion. Since

P× = {1}, the induced map Zs −→ P is zero. We will reduce the problem

to the case where Q −→ Zr is also zero. Since h0 : Q −→ P is injective by

the exactness, there exists an n ≥ 1 such that Q −→ Zr −→ 1
nZr factors

through h0. Since (SpecC[P ⊕ (Zr −→ 1
nZr)])an is a local isomorphism of

log spaces, we may assume that Q −→ Zr factors through h0. Then by

twisting the map P ⊕Zr −→ Γ(X ′,MX′) with some P −→ Zr that induces

Q −→ Zr via h0, we may assume that the induced map Q −→ Zr is zero.

Thus we can write h = h0 ⊕ h1 for some h1 : Zs −→ Zr. Factor h1 into

Zs
h′
1

↪→ G
h′′
1
↪→ Zr, where G ∼= Zs and h′′1 is split. Since (SpecC[h′1])an is a

local isomorphism of log spaces, we may assume that h1 is split. Thus the

conclusion follows. �

(5.4). Our proof of 5.2 is a simple modification of the following proof

of the fact that for R = C[T1, · · · , Tn] (n ≥ 0), C −→ Ω.R/C is a homotopy

equivalence of complexes of C-vector spaces.

For q ≥ 1, let sq : Ωq
R/C −→ Ωq−1

R/C be the C-linear map which sends

n∏
i=1

T
m(i)
i · dTw(1) ∧ · · · ∧ dTw(q) (m(i) ≥ 0, w(1) < · · · < w(q))

to 0 if m(i) $= 0 for some i < w(1), and to

(
∏

i�=w(1)

T
m(i)
i ) · 1

m(w(1)) + 1
· Tm(w(1))+1

w(1) · dTw(2) ∧ · · · ∧ dTw(q)

if m(i) = 0 for all i < w(1). Let s : R −→ C be the C-linear map which

sends
n∏

i=1
T
m(i)
i (m(i) ≥ 0) to 0 if m(i) $= 0 for some i, and to 1 if m(i) = 0

for all i. Then dsq+sq+1d for q ≥ 1 and s+s1d are the identity maps. Hence

s : Ω.R/C −→ C is an inverse of C −→ Ω.R/C up to homotopy equivalences

of complexes of C-vector spaces.

Next we sketch the proof of the case of 5.2 where X is as in 4.5 and

Y = SpecC with the trivial log structure. Take a point x of X log lying

over 0 ∈ X. Take an element l ∈ Lklog
X,x such that exp(l) = z. Then the C-

linear map s1 : ω1,klog
X,x −→ Oklog

X,x which sends lmdl to 1
m+1 l

m+1 and zγlmdl
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(γ ∈ Q>0) to
m∑
j=0

(−1)jγ−j−1 m!
(m−j)!z

γlm−j is well-defined. Further ds1 and

s + s1d are the identity maps, where s is the C-linear map Oklog
X,x −→ C

which sends zγlm to zero unless γ = m = 0. Thus s : ω·,klog
X,x −→ C is the

desired inverse.

Now we prove 5.2.

Fix a Q-basis B of Sgp ⊗Q containing a Q-basis B′ of (S ′)gp ⊗Q.

For w ∈ A, let lw be the coordinate function of CA corresponding to w.

For w ∈ B, fix an element lw of Lklog
X,x such that exp(lw) = w. (Note that

lw is not the logarithm of the coordinate function for w ∈ A. This unusual

notation is for the simplification of the following calculations.)

Let

S̃ =
⋃
n≥1

S1/n ⊂ Sgp ⊗Q, S̃ ′ =
⋃
n≥1

S ′1/n ⊂ (S ′)gp ⊗Q.

Then, by (3.5),

OX,x = C{S ×NA} ⊂ Oket
X,x = C{S̃ ×NA},

⊂ Oklog
X,x = C{S̃ ×NA}[NB] = C{S̃ ×NA}[lw ; w ∈ B],

OY,y = C{S ′ ×NA′} ⊂ Oket
Y,y = C{S̃ ′ ×NA′},

⊂ Oklog
Y,y = C{S̃ ′ ×NA′}[NB′

] = C{S̃ ′ ×NA′}[lw ; w ∈ B′].

(Here OX,x denotes the stalk of OX at the image of x in X, and Oket
X,x

denotes the stalk of Oket
X (= OXket) at the point of the topoi of sheaves on

Xket defined to be the image of x. For w ∈ S, we identify w1/n ∈ S̃ with

exp( 1
n · lw) ∈ Oket

X,x. { } means convergent series which will be described

below.)

Let C = (A−A′)
∐

(B −B′) and endow C with a structure of a totally

ordered set. For a subset I = {w(1), · · · , w(q)} (w(1) < · · · < w(q)) of C,

let

ηI = dlw(1) ∧ · · · ∧ dlw(q).

When I ranges over all subsets of C such that >(I) = q, ηI forms an Oklog
X,x -

basis of ωq,klog
X/Y,x.

Let

Λ = S̃ ×NA�B.
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For λ = (γ,m) (γ ∈ S̃,m ∈ NA�B) ∈ Λ, let

tλ = γ ·
∏

w∈A�B
lm(w)
w ∈ Oklog

X,x .

Then Oklog
X,x (resp. ωq,klog

X/Y,x) coincides with the set of all formal power series

∑
λ∈Λ

aλ · tλ (resp.
∑

λ∈Λ,I⊂C
)(I)=q

aλ,I · tλ · ηI)

with aλ ∈ C (resp. aλ,I ∈ C), satisfying the following (i)–(iii).

(i) There exists an integer M > 0 such that if λ = (γ,m) and aλ (resp.

aλ,I) $= 0, then m(w) ≤M for any w ∈ B.

(ii) There exists an integer N > 0 such that if λ = (γ,m) and aλ (resp.

aλ,I) $= 0, then γ ∈ S1/N .

(iii) There exists a homomorphism ϕ from the multiplicative monoid

{tλ;λ ∈ Λ} to the multiplicative group R>0 such that ϕ(lw) = 1 for any

w ∈ B and such that
∑

λ |aλ| · ϕ(tλ) (resp.
∑

λ,I |aλ,I | · ϕ(tλ)) converges.

We define Oklog
Y,y -linear maps

sq : ωq,klog
X/Y,x −→ ωq−1,klog

X/Y,x (q ≥ 1)

s : Oklog
X,x −→ Oklog

Y,y .

For q ≥ 1, define sq by

sq( Σ
λ,I
aλ,I · tλ · ηI) = Σ

λ,I
aλ,Isq(tλ · ηI),

where sq(tλ · ηI) is as follows.

Write

λ = (γ,m), γ =
∏

w∈B
wn(w) (γ ∈ S̃,m ∈ NA�B, n(w) ∈ Q),

and for w ∈ A
∐
B, let

tλ,w = l
m(w)
w if w ∈ A, tλ,w = wn(w)l

m(w)
w if w ∈ B.
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Thus tλ =
∏

w∈A�B
tλ,w. Let v be the smallest element of I. If tλ,w $= 1 for

some w ∈ C such that w < v, let sq(tλ · ηI) = 0. If tλ,w = 1 for any w ∈ C

such that w < v, let

sq(tλ · ηI) = (
∏

w∈A�B
w �=v

tλ,w) · (
∫

tλ,vdlv) · ηI−{v},

where ∫
tλ,vdlv =

1

m(v) + 1
· lm(v)+1

v

in the case v ∈ A or in the case v ∈ B and n(v) = 0, and

∫
tλ,vdlv =

m(v)∑
j=0

(−1)jn(v)−j−1 · m(v)!

(m(v)− j)!
· vn(v)lm(v)−j

v

in the case v ∈ B and n(v) $= 0. Note

d(

∫
tλ,vdlv) = tλ,vdlv.(5.4.1)

We define s : Oklog
X,x −→ Oklog

Y,y by

Σ
λ∈Λ

aλ · tλ �→ Σ
λ∈Λ′

aλ · tλ,

where Λ′ = S̃ ′ ×NA′�B′ ⊂ Λ.

Then sq and s send convergent series to convergent series. We prove this

for sq. The proof for s is similar. For an element ν =
∑

λ,I aλ,I · tλ · ηI of

ωq,klog
X/Y,x (q ≥ 1), write sq(ν) in the form of a formal power series

∑
λ,I bλ,I ·

tλ ·ηI . Then the conditions (i)(ii) are satisfied for sq(ν) clearly. Take ϕ with

which (iii) is satisfied for ν. We show that (iii) for sq(ν) is satisfied with the

same ϕ. Let M and N be as in (i)(ii) for ν. Then by the definition of sq,

we have ∑
λ,I

|bλ,I | · ϕ(tλ) ≤ c
∑
λ,I

|aλ,I | · ϕ(tλ),

where

c = max(ϕ(lw) (w ∈ A), M !(M + 1)NM+1).
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Hence (iii) for sq(ν) is satisfied.

We prove that dsq + sq+1d (q ≥ 1) and s+ s1d are the identity maps.

First we prove dsq + sq+1d is the identity map for q ≥ 1. Let λ =

(γ,m) ∈ Λ, I ⊂ C, >(I) = q, and let v be the smallest element of I. If

tλ,w $= 1 for some w ∈ C such that w < v, then dsq(tλ · ηI) = 0. If tλ,w = 1

for any w ∈ C such that w < v, then by (5.4.1),

dsq(tλ · ηI) =

tλ · ηI +
∑

w∈A�B
w �=v

(
∏

u∈A�B
u �=v,w

tλ,u) · (
∫

tλ,vdlv) · dtλ,w ∧ ηI−{v}.

On the other hand,

d(tλ · ηI) = Σ
w∈A�B

xw, xw = (
∏

u∈A�B
u �=w

tλ,u) · dtλ,w ∧ ηI .

Assume first tλ,w $= 1 for some w ∈ C such that w < v, and let v′ be the

smallest element of {w ∈ C ; tλ,w $= 1}. Then for w ∈ A
∐
B,

sq+1(xw) = tλ · ηI if w = v′,

sq+1(xw) = 0 if w $= v′,

and hence

dsq(tλ · ηI) + sq+1d(tλ · ηI) = 0 + tλ · ηI = tλ · ηI

in this case. Assume next tλ,w = 1 for any w ∈ C such that w < v. Then

for w ∈ A
∐
B,

sq+1(xw) = −(
∏

u∈A�B
u �=v,w

tλ,u) · (
∫
tλ,vdlv) · dtλ,w ∧ ηI−{v} if w $= v,

sq+1(xw) = 0 if w = v.

Hence dsq(tλ · ηI) + sq+1d(tλ · ηI) = tλ · ηI also in this case.

We next prove s+ s1d is the identity map. For λ ∈ Λ, since S ′ −→ S is

exact, S̃ ∩ (S ′)gp ⊗Q = S̃ ′, and hence s1dtλ = tλ if λ does not belong to Λ′

and s1dtλ = 0 if λ belongs to Λ′.
Hence s(tλ) + s1dtλ = tλ for any λ ∈ Λ.

This proves 5.2.
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6. Functoriality of Log Riemann-Hilbert Correspondences

Proposition (6.1). Let f : X −→ Y be a proper separated log smooth

morphism of fs log analytic spaces. Let L be an object of Lqunip(X). Then

for any q ∈ Z, Rqf log
∗ L is an object of Lqunip(Y ).

Definition (6.1.1). Let P be an fs monoid, I its ideal, and X :=

(SpecC[P ])an. Then XI is by definition the saturation of the blow-up with

the natural log structure of (SpecC[P ])an along the ideal generated by I,

i.e. (Proj(
⊕
n
〈I〉n))sat. This is the toric variety with the natural log structure

associated to the finite polyhedral cone decomposition of Hom (P,Q≥0) de-

fined by I ([KKMS] I). Note that XI is covered by (SpecC[P [a−1I]sat])an,

a ∈ I, where P [a−1I] is the monoid generated by i
a , i ∈ I, in P gp. We say

a morphism f : X −→ Y of fs log analytic spaces is a log blow-up (along the

log structure) if locally on Y , f is the base change with respect to a strict

Y −→ Y0 := (SpecC[P ])an of some (Y0)I −→ Y0, where P is an fs monoid

and I is its ideal.

To prove 6.1, we need the following lemma.

Lemma (6.1.2). Let a : X ′ −→ X be a log blow-up along the log struc-

ture between fs log analytic spaces. Then for any x ∈ X, there exists x′ ∈ X ′

such that a(x′) = x and (Mgp
X /O×

X)x −→ (Mgp
X′/O×

X′)x′ is an isomorphism.

Proof. Taking a chart, we reduce to the case where X = (SpecCP )an

and X ′ = ((SpecCP )I)an. Here P is an fs monoid, I = 〈a1, . . . , an〉 is its

ideal, and we may assume that P/P× −→ (MX/O×
X)x is an isomorphism.

It is enough to show that there exists ai such that (P [a−1
i I]sat)× = P×

(because an extension P [a−1
i I]sat −→ C of P

x−→ C gives an x′). To see

this, we may assume that P× = {1}. Then the convex hull C of I in P gp
Q is

a rational convex polyhedral set (the convexity here is taken over Q as in

the proof of (A.3.2.2)), and we see that the set of vertices of C is contained

in {a1, . . . , an} by reducing to the case where n = 1 because any vertex of

the convex hull of the union of two rational convex polyhedral sets P1 and

P2 is a vertex of either P1 or P2. Take a vertex ai of C and a supporting

hyperplane H of {ai} for C. Then (P [a−1
i I]sat)× = {1} because a−1

i I − {1}



Log Riemann-Hilbert Correspondences 31

is contained in one of the open half spaces determined by the hyperplane

a−1
i H so that P [a−1

i I]sat ∩ a−1
i H = {1}. �

Proof of 6.1. Since Rqf log
∗ L belongs to L(Y ) (1.4) by [KjNk] Corol-

lary 0.2, it is enough to treat the quasi-unipotency. First we reduce to the

case where f is exact. Since the problem is local on Y , we may assume by

(A.4.4) that we have a cartesian diagram

X
a←−−− X ′

f

� �f ′

Y ←−−−
b

Y ′,

where a, b are blow-ups along log structures such that f ′ is

exact. Further, by (6.1.2), for any y ∈ Y , we can choose y′ ∈ Y ′

lying over y such that (MY /O×
Y )gp

y
∼= (MY ′/O×

Y ′)
gp
y′ (so that π1(y

log) ∼=
π1(y

′log)). Since Rf ′∗
log(alog)−1L = (blog)−1Rblog

∗ Rf ′∗
log(alog)−1L =

(blog)−1Rf log
∗ Ralog

∗ (alog)−1L = (blog)−1Rf log
∗ L (the first and the last equal-

ities are due to [KjNk] Proposition 5.3 (2) and (1) respectively), showing

the quasi-unipotency for Rqf log
∗ L at y reduces to that for Rqf ′∗

log(alog)−1L

at y′.
We will now prove 6.1 assuming that f is exact. By proper base change,

we may assume that
◦
Y = SpecC. Factor f into X

ν−→ X ′ f ′
−→ Y with

◦
ν

being identity and f ′ strict, and consider the spectral sequence

E2
p,q = Rpf ′∗

logRqνlog
∗ L⇒ Rp+qf log

∗ L.

The sheaf Rqνlog
∗ L is called the sheaf of log nearby cycles, and the commu-

tative group π1(Y
log) acts naturally on it because, in virtue of the exactness

(or the log injectiveness) of f , Rqνlog
∗ L on (X ′)log =

◦
X × Y log is locally on

Y log the pull-back of a sheaf of
◦
X. The log nearby cycles will be studied

systematically in the last section.

Since the above action of π1(Y
log) is clearly compatible with that on

Rp+qf log
∗ L, it is enough to prove that there exist positive integers n, l such

that (Tn − 1)l = 0 on Rqνlog
∗ L for any T ∈ π1(Y

log). Let x ∈ X. Then,

by proper base change theorem, the stalk of Rqνlog
∗ L at a point lying over

x is isomorphic to the q-th cohomology group Hq of a fiber of the map
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xlog −→ x′log with coefficient L, where x (resp. x′) is {x} endowed with

the inverse image log structure from X (resp. Y ). Take a chart of X by

P := MX,x/O×
X,x, recall that we write as xn := x×(SpecCP )an (SpecCP

1
n )an

(3.4), and take an integer n > 0 such that L|
xlog
n

is unipotent. Let π be the

projection xn −→ x. Then L|xlog −→ πlog
∗ (L|

xlog
n

) is a split injection and

the above Hq is a direct summand of the q-th cohomology group of a fiber

of xlog
n −→ x′log with coefficient L|

xlog
n

. Putting l := dimL|xlog , we have

(Tn − 1)l = 0 on (Rqνlog
∗ L)|xlog . In virtue of (4.2), the compactness of

◦
X

implies that the above n can be chosen to be bounded over
◦
X. �

Theorem (6.2). Let f : X −→ Y be a proper separated log smooth

morphism in (fs log analytic space). Assume either that Y is log smooth

over C or that f is exact. Let L be an object of Lqunip(X) and let V =

Φ′(L) = τket
∗ (Oklog

X ⊗C L) (cf. (6.2.2) (1) ). Then for any q ∈ Z, we have:

(1) Rqf log
∗ L is an object of Lqunip(Y ).

(2) Rqfket
∗ ω

.,ket
X/Y (V ) is locally free.

(3) Oklog
Y ⊗C Rf log

∗ L ∼= Oklog
Y ⊗Oket

Y
Rfket

∗ ω
.,ket
X/Y (V ).

(4) In case that Y is ideally log smooth, Rqfket
∗ ω

.,ket
X/Y (V ), endowed with

the Gauss-Manin connection, is an object of Vqnilp(Y ), which corresponds

to Rqf log
∗ L with respect to the log Riemann-Hilbert correspondence in (4.4).

Proof. (1) is by (6.1).

Consider the “log Poincaré map”

(i) Oklog
Y ⊗ L −→ ω·,klog

X/Y (V ),

which is induced by the equality Oklog
X ⊗ L = Oklog

X ⊗ V .

If f is exact, (i) is an isomorphism. This is reduced to the log Poincaré

lemma (5.1) by ket localization and dévissage.

Let W := Rτket
∗ Rf log

∗ (Oklog
Y ⊗ L). By (1), (3.7) (4), and the projection

formula, we have that W = τket
∗ (Oklog

Y ⊗ Rf log
∗ L) and that the m-th coho-

mology sheaf of it is isomorphic to Φ′(Rmf log
∗ (L)), that is, the vector bundle

on Y ket corresponding to Rmf log
∗ (L), and hence is locally free. By applying

Rτket
∗ Rf log

∗ = Rfket
∗ Rτket

∗ to (i) (we apply l.h.s. to l.h.s. and r.h.s. to r.h.s.

and use (3.7) (4) in r.h.s.), we obtain a canonical map

(ii) W −→ Rfket
∗ (ω

.,ket
X/Y (V )),
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which is an isomorphism if f is exact. Further (ii) is an isomorphism in

the case where Y is log smooth also. This is reduced to the case where f

is exact by log blow-up as follows: We may assume that there is a com-

mutative diagram as in the proof of (6.1). We already know that Rmf log
∗ L

corresponds to Hm(W ) via the log Riemann-Hilbert correspondence. Hence

(blog)−1Rmf log
∗ L = Rmf ′∗

log(alog)−1L corresponds to bket∗Hm(W ). Hence

bket∗Hm(W ) = Rmf ′∗
ket(ω

.,ket
X′/Y ′(a

ket∗V )) by the exact case. By applying

bket
∗ to this and using (6.2.3) below, we obtain Hm(W ) = Rmfket

∗ (ω
.,ket
X/Y (V )).

Hence (ii) is an isomorphism. Thus we have (2) and (4).

Next let (iii) be the isomorphism obtained from (ii) by applying

Oklog
Y ⊗Oket

Y
−. Consider also the canonical map

(iv) Oklog
Y ⊗Oket

Y
W −→ Oklog

Y ⊗ Rf log
∗ (L).

This is also an isomorphism by Hm(W ) = Φ′(Rmf log
∗ (L)) for any m.

By composing (iii) and (iv), we obtain (3). �

Problem (6.2.1). We assumed in (6.2) either that Y is log smooth over

C or that f is exact. Find a unified condition under which the conclusions

of (6.1) (2)–(4) hold.

Remarks (6.2.2). (1) In (6.2), note that Lqunip(X) was defined for

any fs log analytic space X in (4.1). (When L = C, V = Oket
X on any X.)

When X is ideally log smooth, V is the corresponding object in Vqnilp(X).

(2) We can prove the case of (6.2) where f is exact without the use

of (6.1) as follows: First we prove (3). For simplicity we explain here the

case of (3) where L = C. By log Poincaré lemma (5.1) and the projection

formula, we have Oklog
Y ⊗ Rf log

∗ C = Rf log
∗ ω

.,klog
X/Y . Since f is saturated af-

ter ket localization by (A.4.3), we deduce (3) from the above equality and

(8.6.6). For general L, see (8.6.2). Once we have (3), the rest follows: Since

Rqf log
∗ L ∈ L(Y ) for any q by [KjNk] Corollary 0.2, (3) implies (1). Further,

by (1), (3), and (3.7) (4), Φ′(Rqf log
∗ L) = Rqfket

∗ ω
.,ket
X/Y (V ). Thus we have

(2) and (4). ((2) can be deduced from (3) also by (A.2) without the use of

quasi-unipotency.)

Lemma (6.2.3). Let a : X ′ −→ X be a log blow-up along log structure

between log smooth fs log analytic spaces. Then Oket
X −→ Raket

∗ Oket
X′ is an

isomorphism.
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Proof. By [KKMS] I, Corollary 1 c) to Theorem 12, GAGA ([SGA 1]

XII 4.2), and (3.7) (2). �

Theorem (6.3). In (6.2), assume that f satisfies the condition that

for any x ∈ X, the cokernel of Mgp
Y,f(x)/O

×
Y,f(x) −→ Mgp

X,x/O×
X,x is torsion

free, and that L is in Lunip(X). Let V = τ∗(Olog
X ⊗C L). Then for any

q ∈ Z, we have:

(1) Rqf log
∗ L is in Lunip(Y ).

(2) Rqf∗ω
.
X/Y (V ) is locally free.

(3) Olog
Y ⊗C Rf log

∗ L ∼= Olog
Y ⊗OY

Rf∗ω
.
X/Y (V ).

(4) In case that Y is ideally log smooth, Rqf∗ω
.
X/Y (V ), endowed with

the Gauss-Manin connection, is an object of Vnilp(Y ), which corresponds to

Rqf log
∗ L with respect to the log Riemann-Hilbert correspondence in (1.6).

Proof. First (1) is proved similarly to (6.1): By the torsion freeness

assumption, the n in the proof of 6.1 can be taken to 1 ; note that the torsion

freeness of the cokernel of f−1(Mgp
Y /O×

Y ) −→Mgp
X /O×

X is stable under base

change with respect to log blow-ups. In fact the assumption that Y is log

smooth or that f is exact is not necessary for (1).

Next, writing Lq := Rqf log
∗ L, we see that τ∗(Olog

Y ⊗Lq) −→ ε∗τket
∗ (Oklog

Y ⊗
Lq) is an isomorphism by (1), (3.7) (3), (4), and (5). On the other

hand, by (6.2) (3), ε∗τket
∗ (Oklog

Y ⊗ Lq) ∼= ε∗Rqfket
∗ ω

.,ket
X/Y (ε∗V )

3.7 (2)
=

Rqf∗ε∗ω
.,ket
X/Y (ε∗V ) = Rqf∗ω

.
X/Y (V ) =: V q. Thus we have (2), (4), and a

natural isomorphism Olog
Y ⊗ Lq = Olog

Y ⊗ V q for any q. The rest is to con-

struct a natural map between both sides of (3). As in (6.2), let W be

τ∗(Olog
Y ⊗ Rf log

∗ L). Then we have a map W −→ Rf∗(ω
.
X/Y (V )). By com-

posing τ∗ of it with the isomorphism Olog
Y ⊗OY

W
∼=−→ Olog

Y ⊗ Rf log
∗ L, we

obtain the required map. �

Remark (6.3.1). The torsion freeness condition in (6.3) was intro-

duced in [KtF]. As [KtF], (6.3) may be directly proved by the “non-ket

version of the log Poincaré lemma” not via (6.2). We do not pursue it in

this paper.

Remark (6.3.2). This (6.3) is a generalization of results of T. Mat-

subara [M1], [M2], [M3], F. Kato [KtF], and S. Usui [U1], [U2].
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Remark (6.3.3). Here let f : X −→ Y be a log smooth morphism of

fs log analytic spaces. When f is integral, the torsion freeness condition in

(6.3), that is,

(a) for any x ∈ X, the cokernel of Mgp
Y,f(x)/O

×
Y,f(x) −→ Mgp

X,x/O×
X,x is

torsion free

is equivalent to

(b) each fiber of
◦
f is reduced;

and is equivalent also to

(c) f is saturated ((A.4)).

For a general (not necessarily integral) log smooth f , (c) implies (a) and

(b). These are corollaries of Tsuji’s results in [T1]. See Appendix (A.5) for

the proofs. We remark that for general log smooth f , neither (a) nor (b)

does not imply the other.

Theorem (6.4). In (6.2), assume that each stalk of MY /O×
Y is a free

monoid. Then Rqf∗ω
.
X/Y (V ) is locally free for any q.

Proof. As in the proof of (6.3), ε∗Rqfket
∗ ω

.,ket
X/Y (ε∗V ) = Rqf∗ω

.
X/Y (V ).

Thus 6.2 (2) together with the following lemma implies the theorem. �

Lemma (6.4.1). Let X be an fs log analytic space such that each stalk

of MX/O×
X is a free monoid. Then for a locally free OXket-module F of

finite rank on Xket, ε∗(F ) is a locally free OX-module of finite rank.

Proof. It is sufficient to prove that the stalk ε∗(F )x is flat over OX,x

for any x ∈ X. We may assume that there are a chart P → MX and an

integer n ≥ 1 such that P ∼= Nr for some r ≥ 0 and such that the pull

back of F on the ket site of Xn = X ×(SpecCP )an (SpecCP
1
n )an comes from

a locally free OXn-module F ′ of finite rank on Xn. Let G = Aut (Xn/X).

Then ε∗(F )x is identified with the G-invariant part of ⊕yF
′
y where y ranges

over all points of Xn lying over x. Since F ′
y are flat over OXn,y for all y and

since the underlying morphism of analytic spaces Xn → X is flat, ⊕yF
′
y is

flat over OX,x. The G-invariant part is a direct summand over OX,x, and

hence it is also flat over OX,x. �
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7. Log Hodge to de Rham Degeneration

Recall the following classical result, due to Deligne ([D1], 5.5). Let Y be

a scheme of characteristic zero and let f : X → Y be a proper and smooth

morphism. Then the relative Hodge to de Rham spectral sequence

Epq
1 = Rqf∗Ω

p
X/Y ⇒ Rp+qf∗Ω

.
X/Y

degenerates at E1 and the sheaves Rqf∗Ω
p
X/Y are locally free of finite type

(so that their formation commutes with any base change). Variants of this

result for Hodge and de Rham cohomology with log poles were given first by

Steenbrink ([Ste1], [Ste2]), then much later by Illusie [I1] and Cailotto [C] us-

ing the method of [DI], and by Fujisawa [Fjs1], Kato-Matsubara-Nakayama

[KMN] and Kawamata [Kw] using different approaches. We give here a

generalization of these, based on the method of [DI], combined with the

results of Section 6. Before stating it, recall that to any fs log scheme X

is associated the Kummer étale site of X, denoted Xket, whose objects are

fs log schemes which are Kummer étale over X ([NC1], [I3]). There is a

natural morphism of ringed sites

ε : Xket → Xet,

where Xet denotes the classical étale site of the underlying scheme. For a

map f : X → Y of fs log schemes, we denote by ωp
X/Y the sheaf of relative

p-differential forms, and we put

ωp
X/Y,ket := ε∗ωp

X/Y .

If U is Kummer étale over X, then ωp
X/Y,ket|U = ωp

U/Y . We denote by

ω.
X/Y,ket the corresponding de Rham complex. If f : X → Y is a map of fs

log schemes, we still denote by f the induced map on Kummer étale sites.

Theorem (7.1). Let Y be an fs log scheme of characteristic zero, and

let f : X → Y be a proper, log smooth and exact morphism.

Then :

(1) The sheaves Rqf∗ω
p
X/Y,ket are locally free of finite type over Yket and

commute with base change by any morphism g : Y ′ → Y of fs log schemes

(i. e. if f ′ : X ′ → Y ′ is the fs pull-back of f by g, the canonical base change

map g∗Rqf∗ω
p
X/Y,ket → Rqf ′∗ω

p
X′/Y ′,ket is an isomorphism).
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(2) The relative Hodge to de Rham spectral sequence

Epq
1 = Rqf∗ω

p
X/Y,ket ⇒ Rp+qf∗ω

.
X/Y,ket

degenerates at E1.

We prove this theorem.

(7.1.1). First observe that by the argument in 3.7 (1) (or Kummer

étale descent, using ([I3], 3.6)), the adjunction map

OX → Rε∗OX,ket

is an isomorphism, hence, by the projection formula, so is the adjunction

map

ωp
X/Y → Rε∗ω

p
X/Y,ket (resp. ω.

X/Y → Rε∗ω
.
X/Y,ket).

It follows that the sheaf Rqf∗ω
p
X/Y,ket (resp. Rnf∗ω.

X/Y,ket) on Yket

is the sheaf associated to the presheaf U �→ Hq(XU , ω
p
XU/YU

) (resp.

Hn(XU , ω
.
XU/YU

)). In particular, if ỹ is a log geometric point of Y , and

Y(ỹ) denotes the strict log localization of Y at ỹ and X(ỹ) = X×Y Y(ỹ), then

we have

(Rqf∗ω
p
X/Y,ket)ỹ = Hq(X(ỹ), ω

p
X/Y |X(ỹ))

and a similar formula for the stalk of de Rham cohomology sheaves.

(7.1.2). We first treat the case where the underlying scheme of Y is

Spec C. Since f is of finite type, it follows from A.4.3 that after a Kummer

étale extension of Y , f becomes saturated. So we may assume that f is

saturated. Choose a chart of Y modeled on a sharp fs monoid P . Since the

ket site of Y is generated by the Yn = (Spec C, 1
nP ), in view of 7.1.1 it then

suffices to show :

(2’) The Hodge to de Rham spectral sequence

Epq
1 = Hq(X,ωp

X/Y ) ⇒ Hp+q
dR (X/Y )

degenerates at E1.

We prove (2’) by the method of ([DI] 2.7). We may assume X connected,

of dimension d. Fix a chart P → C of Y with P× = 1. By the standard

technique of spreading out (cf. [T2] 4.11.1), one can find an fs log scheme Y
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with a chart P → OY , a �→ 0 if a $= 1, whose underlying scheme is of finite

type over Z, a proper, log smooth and saturated map f : X → Y of relative

dimension d, a strict map g : Y → Y, and a closed point y of Y having the

following properties :

(i) X/Y is the pull-back of X/Y by g ;

(ii) the characteristic p of y is > d ;

(iii) the map y = Spec k(y) → Y extends to W2(y) ;

(iv) the sheaves Rjf∗ωi
X/Y (resp. Rnf∗ω·

X/Y) are locally free of finite type

(hence commute with any strict base change), and are of constant rank.

Since f is saturated, the fiber fy : Xy → y is of Cartier type by ([T1],

II 2.14). Thanks to (ii) and (iii), the Hodge to de Rham spectral sequence

of Xy/y degenerates at E1 by ([KtK1], (4.12)(3)) (in (iii) of (loc. cit.), as

a lifting of (Xy)
′ over W2(y) (with log structure induced by that of Y, i. e.

the Teichmüller one) one can take the pull-back of XW2(y) by the Frobenius

endomorphism of W2(y)). The degeneration (2’) then follows from (i) and

(iv).

Let us now prove (7.1) in the general case. We follow the method

of ([D1], 5.5). By the Lefschetz principle and standard limit arguments,

we may assume that the underlying scheme of Y is the spectrum of a C-

algebra A of finite type. Since f is proper, it follows from 7.1.1 that the

sheaves Rqf∗ω
p
X/Y,ket (resp. Rnf∗ω.

X/Y,ket) on Yket are of finite presenta-

tion (as OY,ket-modules) and (ket locally) of the form ε∗Rqf∗ω
p
X/Y (resp.

ε∗Rnf∗ω.
X/Y ). Moreover, by (6.2) the sheaves Rnf∗ω.

X/Y,ket are locally free

of finite type, hence commute with any strict base change. Therefore, we

may further reduce to the case where A is an artinian C-algebra, and it

suffices to show that, for any n, we have

(∗) lgA(Rnf∗ω
.
X/Y,ket) =

∑
p+q=n

lgAR
qf∗ω

p
X/Y,ket.

Here lgA denotes the length of an A-module. Since the sheaves Rnf∗ω.
X/Y,ket

are locally free of finite type, we have

(∗∗) lgA(Rnf∗ω
.
X/Y,ket) = (lgA)(rkCR

n(fy)∗ω
.
Xy/y,ket),

where y is the spectrum of the residue field of A with the induced log

structure. On the other hand, by the remark above on the structure of the
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sheaves Rqf∗ω
p
X/Y,ket and (EGA III, (6.10.5)), we have

(∗ ∗ ∗) lgAR
qf∗ω

p
X/Y,ket ≤ lg(A)rkCR

q(fy)∗ω
p
Xy/y,ket.

Now, by the particular case already treated, we have

(∗ ∗ ∗ ∗ ) rkC(Rn(fy)∗ω
.
Xy/y,ket) =

∑
p+q=n

rkCR
qf∗ω

p
Xy/y,ket.

Putting (**), (***), (****) together we get the desired formula (*).

Corollary (7.2). Under the assumptions of (7.1), the Hodge to de

Rham spectral sequence

Epq
1 = Rqf∗ω

p
X/Y ⇒ Rp+qf∗ω

.
X/Y

degenerates at E1. If we assume moreover that each stalk of MY /O×
Y is a

free monoid, then Epq
1 is locally free of finite type for any p and q.

Proof. By (7.1.1) we have

Rnf∗ω
[a,b]
X/Y = Rε∗R

nf∗ω
[a,b]
X/Y,ket = ε∗R

nf∗ω
[a,b]
X/Y,ket

for any interval [a, b]. Therefore the degeneration of the Hodge to de Rham

spectral sequence follows from the (ket) one. The last assertion is a conse-

quence of a variant of (6.4.1). �

Remarks (7.3). (a) In the case of generalized semistable reduction

over a disc, statements essentially equivalent to (7.1) were proven by Steen-

brink ([Ste2], (2.9), (2.10)). The proof of (7.2) as a corollary of (7.1) is

similar to the deduction of ([Ste2] (2.11)) from those results. The case of

semistable reduction along a divisor with normal crossings was considered

in [Fjs1] and [I1]. The case of weakly semistable morphisms was dealt with

in [Kw]. Let us also mention that versions of 7.2 in the semistable reduc-

tion case over log points were proven (independently) by Steenbrink ([Ste3],

4.13) and Kawamata-Namikawa ([KwNm], 4.1).

(b) See [KMN] for analytic versions of (7.1) and (7.2) with coefficients.

(c) We don’t know whether (1) and (2) of 7.1 hold when Y is log smooth

and f is proper and log smooth, but not necessarily exact. (They hold

when Y is log smooth and f is projective, vertical and log smooth, but

not necessarily exact ([KMN]). See also [Fjs2], which treats some nonexact

cases.)
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8. The Nearby Cycles Functor and the Log de Rham Complex

We recall the definition of the classical nearby cycles functor ([SGA 7]

XIV). Let X be an analytic space over the open unit disc ∆ and let F ∈
D+(X∗,Z), where X∗ = X ×∆ ∆∗ = X − X0 (X0 denotes the fiber of X

on 0 ∈ ∆). Let ∆̃∗ be the universal cover of ∆∗, X∗ = X ×∆ ∆̃∗. We

denote by i and j the natural maps X0 −→ X and X∗ −→ X respectively.

Let I = π1(∆
∗). Then the nearby cycles complex RΨF ∈ D+(X0,Z[I]) is

defined by i∗Rj∗j∗F endowed with the natural action of I. Here the last j

means the natural map X∗ −→ X∗ by abuse of notation.

In this section we define the nearby cycles functor for any morphism of

fs log analytic spaces.

(8.1). Let f : X −→ Y be a morphism of fs log analytic spaces. Let

X ′ := Y × ◦
Y

◦
X = (

◦
X,

◦
f ∗MY ). Consider the commutative diagram of fs log

analytic spaces, with cartesian square

X
ν=νX/Y−→ X ′ −→

◦
X.

f ↘ ↓ ↓
◦
f

Y −→
◦
Y

By functoriality of (−)log, we get a commutative diagram of topological

spaces with cartesian square

X log νlog

−→ X ′log τX′−→
◦
X,

f log↘ ↓ ↓
◦
f

Y log −→
τY

◦
Y

where the composite of the upper row is τX . In particular, νlog is a proper

map. For F ∈ D+(X log,Z), the complex

(8.1.1) RΨlog
X/Y (F ) := Rνlog

∗ F ∈ D+(X ′log,Z)

is called the complex of log nearby cycles of F with respect to f . We call

RΨlog
X/Y : D+(X log,Z) −→ D+(X ′log,Z) the log nearby cycles functor.

(8.2). Take for Y the unit disc ∆ with the log structure defined by

the origin and let f : X −→ ∆ be a vertical morphism, where X is log
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smooth over C. In this case, ∆triv = ∆∗ = ∆− {0} and the verticality of f

means that Xtriv = X −X0 = X∗. As X is log smooth over C, this implies

that the log structure of X is the direct image of the trivial one on X∗

(and in particular is determined by the map of analytic spaces underlying

f). Since f ′ : X ′ −→ ∆ is a strict map, the topological space X ′log (resp.

X ′
0
log) is deduced from X (resp. X0) by pull-back by ∆log −→ ∆ (resp.

{0}log = S1 := {z ∈ C× ; |z| = 1} −→ {0}):

X ′log = ∆log ×∆ X, X ′
0
log = S1 ×X0.

We also have (trivially) X ′log − X ′
0
log = X∗. Let F ∈ D+(X log,Z). By

proper base change applied to the cartesian square

X log
0 −−−→ X log,� �

X ′
0
log −−−→ X ′log

where the vertical maps are given by νlog, we have a canonical isomorphism

RΨlog
X/∆(F )|X ′

0
log ∼−→ RΨlog

X0/{0}(F |X
log
0 ).

We shall compare RΨlog
X0/{0}(F |X

log
0 ) with the classical nearby cycles com-

plex RΨ(F |X∗) in the case F is a locally constant abelian sheaf. Recall

that if j : X∗ −→ X denotes the inclusion, (jlog)∗ induces an equivalence

from the category of locally constant sheaves on X log to that of locally con-

stant sheaves on X∗ (1.2.1), with inverse given by jlog
∗ . In order to state

the comparison result we need to relate D(X0,Z[I]) and D(X ′
0
log,Z), to

which RΨ(F |X∗) and RΨlog
X0/{0}(F |X

log
0 ) respectively belong. View I as the

automorphism group of the universal cover of S1 :

e : R −→ S1, t �→ exp(2πit).

The pull-back by Id × e sends sheaves on X ′
0
log = X0 × S1 to sheaves on

X0 ×R endowed with an action of I compatible with that of I on X0 ×R

through the second factor. The push-out by Id× p, where p : R −→ {0} is

the projection, sends I-sheaves on X0 ×R to I-sheaves on X0. Denote by

σ the composite

σ = R(Id× p)∗ ◦ (Id× e)∗ : D+(X ′
0
log,Z) −→ D+(X0,Z[I]).
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Theorem (8.3). Let F be a locally constant abelian sheaf on X log.

There is a natural isomorphism in D(X0,Z[I])

σRΨlog
X0/{0}(F |X

log
0 ) ) RΨ(F |X∗).

In particular, σRΨlog
X0/{0}(ZXlog

0
) ) RΨ(Z).

Proof. Let ∆̃log be the universal cover R≥0×R of ∆log = R≥0×S1,

and let ∆̃∗ be the inverse image of ∆∗ = ∆ − {0} in ∆̃log. Consider the

diagram (we call this diagram the big diagram)

D+(X∗) −→
pull

D+(X∗ ×∆∗ ∆̃∗) −→
push

D+(X∗)

↓ push (1) ↓ push (2) ↓ push

D+(X log) −→
pull

D+(X log ×∆log ∆̃log) −→
push

D+(X log)

↓ pull (3) ↓ pull (4) ↓ pull

D+(X log
0 ) −→

pull
D+(X log

0 ×S1 R) −→
push

D+(X log
0 )

↓ push (5) ↓ push (6) ↓ push

D+(X0 × S1) −→
pull

D+(X0 ×R) −→
push

D+(X0 × S1)

↓ push

D+(X0)

The squares (1), (2), (3), (5), (6) are commutative. ((1) is commuta-

tive since the pull backs in (1) are pull backs by etale morphisms. (5) is

commutative by the proper base change theorem applied to the proper map

X log
0 −→ X0 × S1. The commutativities of the squares (2)(3)(6) are clear.

The square (4) is not commutative, and this point will be considered in

8.3.1.)

By definition, the functor RΨ is the composite

D+(X∗) −→
pull

D+(X∗ ×∆∗ ∆̃∗) −→
push

D+(X) −→
pull

D+(X0).

By the proper base change theorem applied to the proper map X log −→ X,

this composite coincides with

(composite of right vertical arrows) ◦ (composite of upper rows)

in the big diagram.
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On the other hand, since X is log smooth over C and F is locally

constant, the image of F |X∗ in D+(X log) is F ((1.2.1)).

By the following (8.3.1), we have that the image of F |X∗ under

(composite of right vertical arrows) ◦ (composite of upper rows)

coincides with the image of F |X∗ under

(push to D+(X0)) ◦ (composite of lower rows) ◦ (composite of left vertical

arrows) in the big diagram.

Hence RΨ(F |X∗) is canonically isomorphic to the l.h.s. of the isomor-

phism in (8.3). It is clear that this isomorphism preserves the action of the

group Z = π1(∆
∗) = π1(S

1). �

Lemma (8.3.1). For locally constant sheaves on X log, the two compos-

ites

D+(X log) −→ D+(X log
0 ) ;

(right of (4)) ◦ (upper of (4)) ◦ (upper of (3)) and

(lower of (4)) ◦ (lower of (3)) ◦ (left of (3))

in the big diagram coincide.

Proof of (8.3.1). We have a canonical morphism of functors

(right of (4)) ◦ (upper of (4)) ◦ (upper of (3))

−→ (lower of (4)) ◦ (lower of (3)) ◦ (left of (3))

and we are showing that this morphism gives an isomorphism when it is

applied to a locally constant sheaf on X log. This can be checked locally on

X log. Since X log ×∆log ∆̃log is an etale Galois covering of X log with Galois

group Z, locally on X log, the composites

(upper of (4)) ◦ (upper of (3)) and

(lower of (4)) ◦ (lower of (3))

send a sheaf F to RMap(Z,F).

Further X log is a topological manifold with the boundary X log
0 by (1.2.2).

So both X log and X log
0 are locally contractible. Hence, if F is locally con-

stant, the stalk of RMap(Z,F) = Map(Z,F) at a point is Map(Z, the

stalk of F). This proves the lemma. �
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The above (8.3) is equivalent to the next.

Theorem (8.4). Let X −→ ∆ be as in (8.2). Let F be a locally con-

stant sheaf on X∗. Then the image of F under

D+(X∗) −→
push

D+(X log) −→
pull

D+(X log
0 ) −→

push
D+(X0 × S1) −→

pull

D+(X0 ×R)

is canonically isomorphic, as an object with an action of Aut (R/S1) =

π1(S
1) = Z, to the pull back of RΨ(F ) under X0 ×R −→ X0.

(Here, as before, the map X log
0 −→ X0 × S1 is νlog for X0 −→ 0, and

R −→ S1 is defined by t �→ exp(2πit).)

(8.5). We prove the equivalence of (8.3) and (8.4). First, by the fol-

lowing lemma, (8.4) implies (8.3).

Lemma (8.5.1). Let X be a topological space, and F an abelian sheaf

on X. Let p be the first projection X ×R −→ X. Then F
∼=−→ Rp∗p∗F .

Proof. It follows from [KS] 2.7.8. �

We prove that conversely (8.4) is deduced from (8.3). Let G be the

image of F in D+(X0 × S1) under the composite in (8.4), let G̃ be the pull

back of G in D+(X0 × R), and let p : X0 × R −→ X0 be the projection.

The isomorphism RΨ(F ) ∼= Rp∗(G̃) of (8.3) induces p∗RΨ(F ) −→ G̃. Our

task is to prove that the last morphism is an isomorphism. By (8.5.1) and

(8.5.2) below, each cohomology sheaf Hq(G̃) of G̃ satisfies Rsp∗Hq(G̃) = 0

for all s $= 0. Hence Hq(Rp∗(G̃)) ∼= p∗Hq(G̃). Again by (8.5.1) and

(8.5.2), p∗p∗Hq(G̃)
∼=−→ Hq(G̃). Hence p∗RqΨ(F )

∼=−→ p∗Hq(Rp∗(G̃)) ∼=
p∗p∗Hq(G̃) ∼= Hq(G̃). This proves that p∗RΨ(F ) −→ G̃ is an isomorphism.

Lemma (8.5.2). For each q ∈ Z, Hq(G̃) is isomorphic to the pull back

of a sheaf on X0 by p.

Proof of (8.5.2). By [KS] 2.7.8, it is sufficient to prove that for each

x ∈ X0, the pull back of Hq(G̃) to p−1(x) = R is a constant sheaf. Hence
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it is sufficient to prove that for each x ∈ X0, the pull back of Hq(G) to

τ−1(x) = S1 is a locally constant sheaf. By proper base change theorem

applied to the proper map X log
0 −→ X0 × S1, the pull back of Hq(G) to S1

is isomorphic to the q-th cohomology sheaf of the image of F under

D+(X∗) −→
push

D+(X log) −→
pull

D+(X log
0 ) −→

pull
D+({x}log)(8.5.2.1)

−→
push

D+(S1).

Let P = MX,x/O×
X,x. Then {x}log = Hom (P gp,S1), and the map {x}log −→

S1 is the map Hom (P gp,S1) −→ S1 induced by the canonical map Z =

M∆,0/O×
∆,0 −→MX,x/O×

X,x, hence is a locally trivial fibration.

This shows that the higher direct images of a locally constant sheaf on

{x}log under {x}log −→ S1 are locally constant sheaves. Since the image of

F in D+({x}log) is a locally constant sheaf, this shows that the cohomology

sheaves of the image of F in D+(S1) under (8.5.2.1) are locally constant

sheaves. �

Theorem (8.6). Let the notation be as in 8.1. Assume that f is log

smooth and exact. Let L be an object of Lqunip(X) (4.1) and let V =

τket
∗ (Oklog

X ⊗C L) (cf. (6.2.2) (1)). Then we have

Oklog
Y ⊗C Rνlog

∗ L ∼= Oklog
Y ⊗Oket

Y
ω
.,ket/Y
X/Y (V ) on X ′log,

where ω
q,ket/Y
X/Y (V ) is defined as (X ′ket � U �→ Γ(U ×X′ X,ωq,ket

X/Y (V ))), that

is, as νket
∗ ωq,ket

X/Y (V ).

Proof. This is obtained by the isomorphisms

l.h.s. = Rνlog
∗ (Oklog

Y ⊗C L)

= Rνlog
∗ (ω

.,klog
X/Y (V ))

= Oklog
Y ⊗Oket

Y
νket
∗ ω

.,ket
X/Y (V ).

Here the first isomorphism is by the projection formula, the second is

induced by the isomorphism (i) in the proof of (6.2), and the last one is by

the equality Rνlog
∗ Oklog

X = Oklog
Y ⊗Oket

Y
νket
∗ Oket

X . This equality is by (8.6.6)
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and (8.6.3) (1). The fact that ν is saturated after ket localization is by

(A.3.3), (A.3.4) and (A.4.2) of T. Tsuji as follows: By (A.3.3), there is

locally a chart of f by a Q-integral homomorphism h. This h gives also

a chart of ν. By (A.3.4) and (A.4.2), after ket localization, h becomes

saturated so that ν becomes saturated. �

Remark (8.6.1). In the case of a semistable family of (8.4) (resp. in

the situation of (8.8) (1)), by restricting the isomorphism in (8.6) to a

fiber of
◦
X0 × S1 −→ S1 (resp.

◦
X × S1 −→ S1), tensoring it with C by

the C-homomorphism Oklog
0 −→ C, and using (3.6) (2) and (8.6.5) (1),

we revisit the (non-canonical) isomorphism (in D+(
◦
X0,C)) of Steenbrink

in [Ste1] (4.14) (defined by ϕ and ψ in loc. cit. 2.6): RΨ(C) ∼= ω.X0/0

(resp. the isomorphism of Kawamata-Namikawa in the proof of [KwNm]

4.1: Rρ̃∗CX̃
∼= ω.X/0).

Remark (8.6.2). We can deduce the case of (6.2) (3) where f is exact

from (8.6) (cf. (6.2.2) (2)) by applying Rf ′∗
log to the isomorphism in (8.6),

where f ′ is the induced morphism X ′ −→ Y . In fact Rf ′∗
log of l.h.s. of (8.6)

is that of (3) by the projection formula. On the other hand, Rf ′∗
log of r.h.s.

of (8.6) is Oklog
Y ⊗Oket

Y
Rf ′∗

log(τket
X′ )−1νket

∗ ω
.,ket
X/Y (V ) by the projection formula,

which coincides with r.h.s. of (3) by (8.6.4) and (8.6.3) (1).

Here we prove facts referred in the above proof.

Proposition (8.6.3). Let f : X −→ Y be a morphism of fs log analytic

spaces. Assume that the underlying morphism of f is finite. Then the

following hold.

(1) For a sheaf M of Q-vector spaces on Xket, Rqfket
∗ M = 0 for any

q > 0.

(2) Rqf log
∗ Oklog

X = 0 for any q > 0.

Proof. (1) This is a generalization of (3.7) (2), and easily reduced to

it by ket localization on Y . Note that the underlying morphism of any base

change morphism of f in the category of fs log analytic spaces is also finite.

(2) We may assume that the underlying morphism of f is an isomor-

phism. We prove the vanishing in the stalk at x = y ∈ X. Let P :=

(MY /O×
Y )y, Q := (MX/O×

X)x, and P1 := Image (P gp
Q −→ Qgp

Q )∩Q (⊂ Qgp
Q ).
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Then h : P −→ Q factors into P
h1−→ P1

h2−→ Q so that Hom (h,S1) is the

composite of Hom (hi,S
1), i = 1, 2. Since Hom (h1,S

1) is a finite map,

the rest is to prove Oklog
X is acyclic for Hom (h2,S

1). Since the cokernel

of hgp
2 is torsion free, the stalk of the direct image sheaf at a point over x

is Hq(Ker (Hom (h2,Z(1))),OX,x ⊗C[Q] C[Q⊗N Q≥0][l1, . . . , lr]), where r is

the rank of Qgp. This vanishes by the next lemma. �

Lemma (8.6.3.1). Let Q be an fs monoid with Q× = {1}. Let l1, . . . , lr
be a basis of Qgp. Let A be a C[Q]-module, n ≥ 1, B := A⊗C[Q]C[Q

1
n ], and

M := B ⊗C C[l1, . . . , lr], where l1, . . . , lr are considered as indeterminates,

endowed with a C-linear action of Q̌ := Hom (Q,Z(1)) defined by g · (a ⊗
t ⊗

∏
l
mj

j ) = a ⊗ eg(t)t ⊗
∏

(lj + g(lj))
mj , g ∈ Q̌, a ∈ A, t ∈ Q

1
n , mj ≥ 0,

1 ≤ j ≤ r. Let g1, . . . , gr ∈ Q̌ be the dual basis of l1, . . . , lr, and K :=

〈g1, . . . , gs〉, 0 ≤ s ≤ r. Then

(1) H0(K,M) = BK ⊗C C[ls+1, . . . , lr].

(2) Hq(K,M) = 0 for any q > 0.

Proof. (1) This is proved by induction on s. The case s = 0 is

clear. To proceed from s to s + 1, it is enough to show that the equality∑
d≥0

bdl
d =

∑
d≥0

(g ·bd)(l+2πi)d, bd ∈ BK , implies bd = 0, d > 0. Here we write

l = ls+1, g = gs+1 for simplicity. Assume that bd′ = 0 for d′ > d ≥ 1. Then

bd is g-fixed and bd−1 = 2πid · bd + g · bd−1 in B. This shows bd = 0 with the

fact that any b ∈ BK is uniquely written as the sum of b′0, . . . , b
′
n−1 ∈ BK

such that g · b′k = e
2πik
n b′k, 0 ≤ k ≤ n− 1.

(2) It is enough to show that gj+1 − id is a surjective endomorphism on

M 〈g1,... ,gj〉 for j = 0, . . . , s − 1. Let G := 〈g1, . . . , gj〉. By (1), it is enough

to show that bld, b ∈ BG, d ≥ 0, belongs to (g − id)(MG), where we write

l = lj+1, g = gj+1 for simplicity. We proceed by the induction on d. Writing

b = b0 + · · · + bn−1 as in the proof of (1), we may assume that b = bk for

some k. In case k = 0, observe (g − id)(bld+1) = b((l + 2πi)d+1 − ld+1).

Then any bld belongs to the image. The case k > 0 is also done with

(g − id)(bld) = b(e
2πik
n (l + 2πi)d − ld). �

Proposition (8.6.4). Let f : X −→ Y be a strict proper separated

morphism in (fs log analytic space). Then the natural morphism
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(τket)−1Rfket
∗ −→ Rf log

∗ (τket)−1 of functors from D+(Xket,Q) to

D+(Y log,Q) is an isomorphism.

Proof. Let q ≥ 0 and F a sheaf of Q-modules on Xket. It is enough

to show that the stalk of (τket)−1Rqfket
∗ F −→ Rqf log

∗ (τket)−1F at a point

y′ of Y log is an isomorphism. Let y be the image of y′ in Y . We may

assume that there is a chart P −→ Γ(Y,MY ) such that the induced map

P −→ MY,y/O×
Y,y is an isomorphism. Let yn be the unique point of Yn

lying over y and let (y′n ∈ Y log
n )n be their compatible liftings such that

y′1 = y′. Then the stalk of the source is isomorphic to (Rqfket
∗ F )y(log) =

lim−→
n

(Rqfn∗ε∗(F |Xn))yn = lim−→
n

Hq(Zn, (ε∗(F |Xn))|Zn), where fn : Xn −→ Yn,

and Zn := (f log
n )−1(y′n) ∼= f−1

n (yn). Here the first equality comes from

(3.7) (2), and the second one is by proper base change theorem. On the

other hand, the stalk of the target is isomorphic to Hq(Z1, ((τ
ket)−1F )|Z1).

Thus, identifying compact Hausdorff spaces Zn, n ≥ 1, by the natural

homeomorphisms Zn −→ Z1 =: Z, we can reduce the problem to the

equality lim−→
n

(ε∗(F |Xn))|Z = ((τket)−1F )|Z . This is checked stalkwise as

lim−→
n

(ε∗(F |Xn))xn = Fx(log) , x ∈ f−1(y). �

In the propositions below, we use the theory of saturated morphisms.

See (A.4) for their definition and basic properties.

Proposition (8.6.5). Let f : X −→ Y be a saturated morphism of

fs log analytic spaces. Assume that the underlying morphism of f is an

isomorphism. Then

(1) Oket
Y

∼=−→ Rfket
∗ Oket

X .

(2) Oklog
Y

∼=−→ Rf log
∗ Oklog

X .

Proof. By (8.6.3), the cohomologies of higher degrees of r.h.s. of (1)

and (2) vanish.

(1) We show Oket
Y

∼= fket
∗ Oket

X . Let Y ′ −→ Y be a ket morphism. Then

the fiber product X ′ := X ×Y Y ′ in the category of log analytic spaces is

already saturated by (A.4) (2). Thus Γ(Y ′,OY ′)
∼=−→ Γ(X ′,OX′).

(2) We show Oklog
Y

∼= f log
∗ Oklog

X . We adopt the same notation in the proof

of (8.6.3). Since the cokernel of hgp is torsion free by (A.4.1), the stalk of
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f log
∗ Oklog

X at a point over x is H0(Ker (Hom (h,Z(1))),OX,x ⊗C[Q] C[Q ⊗N

Q≥0][l1, . . . , lr]). The rest calculation is reduced to (8.6.3.1) (1) and the

next lemma. �

Lemma (8.6.5.1). In the situation of (8.6.3.1), let P be an fs sub-

monoid of Q. Assume that P −→ Q is saturated and P gp = 〈ls+1, . . . , lr〉.
Then A⊗CP CP

1
n −→ BK is an isomorphism.

Proof. First we show BK = {
∑
q
aq ⊗CQ q ; q ∈ Q

1
n , aq ∈ A, g(q) ∈

Z(1) in 1
nZ(1) for any g ∈ K}. For any element b =

∑
q∈Q 1

n

aq ⊗ q of B, we

can associate a decomposition b =
∑

k∈(Z/nZ)s
bk to the decomposition as sets

Q
1
n =

∐
k=(k1,... ,ks)

Q
1
n
k , where Q

1
n
k = {q ∈ Q

1
n ; gj(q) ≡

kj
n

2π
√
−1 mod Z(1)

for 1 ≤ j ≤ s}. Then b is K-fixed if and only if b = b0 because for q ∈ Q
1
n
k ,

gj · q = e
2π

√
−1kj
n q (1 ≤ j ≤ s).

Next we show P
1
n ⊕ Q −→ Q

1
n
0 is surjective. Let a ∈ Q

1
n
0 . Then a is

considered as an element of Hom (Q∗, 1
nZ(1)), inducing a homomorphism

K
a′−→ Z(1). Take an extension Q∗ p−→ Z(1) of a′. Then pa−1 ∈ (Q

1
n )gp

kills K, so that (pa−1)n ∈ Qgp belongs to P gp. Thus pa−1 ∈ (P
1
n )gp, and a is

in the image of (P
1
n )gp⊕Qgp. By [T1] I Proposition 3.8, P

1
n

int
⊕P Q −→ Q

1
n

is exact, where int means that the push out in the category of integral

monoids. Thus a is in the image of P
1
n ⊕Q.

The rest is to show A ⊗CP CP
1
n −→ A ⊗CQ CQ

1
n is injective. Since

Q ⊕P P
1
n −→ Q

1
n is injective and exact by saturatedness and (A.4.1), we

reduce the problem to

Claim. Let h : P −→ Q be an exact injection of integral monoids.

Then C[h] is universally injective in the category of CP -modules.

Proof of Claim. Let M be a CP -module. Let s : M⊗CP CQ −→M

be the homomorphism which sends m⊗ q (q ∈ Q) to qm if q ∈ P , and to 0

if q $∈ P . This is well-defined by the exactness of h and s ◦ (idM ⊗C[h]) is

the identity. �
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Proposition (8.6.6). Let f : X −→ Y be a proper separated morphism

of fs log analytic spaces. Assume that, ket locally on Y , f is saturated, that

is, there is a ket covering Y ′ −→ Y such that the base change morphism

X ×Y Y ′ −→ Y ′ is saturated. Then

Rf log
∗ Oklog

X

∼=←− Oklog
Y ⊗Oket

Y
Rfket

∗ Oket
X .

Proof. Since the problem is ket local on Y , we may assume that

f is saturated. Further f = f ′ ◦ ν as in the proof of (6.1). Applying

(8.6.5) to ν, we may assume that f = f ′, that is, f is strict. Then

l.h.s.
(3.6) (3)

= Rf log
∗ (Oklog

Y ⊗Oket
Y
Oket

X ) = Oklog
Y ⊗Oket

Y
Rf log

∗ (τket)−1Oket
X = r.h.s.

by (8.6.4). �

(8.7). In this subsection we collect some variants in the preceeding

results (8.3) and (8.4). The first is suggested by A. Ogus to the authors:

Let Y be the polydisk ∆n endowed with the log structure given by ∆n −
(∆∗)n. Let hn −→ (∆∗)n be a universal cover of (∆∗)n, where h denotes

the upper half plane. Let f : X −→ Y be a vertical morphism of fs log

analytic spaces. Let F be an abelian sheaf on X∗ = f−1((∆∗)n) and let

RΨ(F ) := i−1Rj∗Rp∗p−1F , where i : X0 ↪→ X and j : X∗ ↪→ X are strict

immersions (X0 −→ 0 is the special fiber of f) and p is the base change

map X∗ ×(∆∗)n hn −→ X∗.

Proposition (8.7.1). In the above, assume that X is log smooth over

C, that for any x ∈ X, (MY /O×
Y )f(x) −→ (MX/O×

X)x is injective and that

F is locally constant. Then

(1) The complex of log nearby cycles Rνlog
X0/{0}∗((i

log)−1jlog
∗ F ) is

endowed with the natural action of π1(Y
log) = π1(0

log), and coincides

with RΨ(F ) paired with the action of π1(Y
log), that is,

Rτ ′∗Rp∗p
−1Rνlog

∗ ((ilog)−1jlog
∗ F )

∼=−→ RΨ(F ) as objects with actions of

π1(0
log), where τ ′ is the natural map (X0)

′log −→ (
◦
X0)

′ =
◦
X0 ((X0)

′ is

as in (8.1)) and p is the projection X0 ×Rn −→ X0 × 0log (Rn is regarded

as a universal cover of 0log).

(2) p−1Rνlog
∗ ((ilog)−1jlog

∗ F ) ∼= p−1τ ′−1RΨ(F ) as objects with actions of

π1(Y
log).
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Proof. (1) and (2) are variants of (8.3) and (8.4) respectively. The

proofs are similar. We use the injectivity assumption when we show that the

higher direct image of (ilog)−1jlog
∗ F |xlog by xlog −→ x′log (x ∈ X,x′ = ν(x))

is locally constant in the proof of the statement generalizing (8.5.2): By the

assumption, xlog −→ x′log is homeomorphic to Hom (h,S1) for some injec-

tion h of abelian groups, hence a topological fibration. Hence the associated

higher direct image functors preserve local constantness. �

The proof for the next is essentially a part of that for the above.

Proposition (8.7.2). Let Y be an fs log analytic space whose under-

lying analytic space is SpecC. Let Rn −→ Y log be a universal cover. Let

f : X −→ Y be a morphism of fs log analytic spaces. Assume that for any

x ∈ X, (MY /O×
Y )f(x) −→ (MX/O×

X)x is injective. Let F be a locally con-

stant sheaf F on X log and let RΨ(F ) := Rτ∗Rp∗p−1F , where p is the base

change map X log ×Y log Rn −→ X log. Then

(1) The complex of log nearby cycles Rνlog
X/Y ∗F is endowed with the nat-

ural action of π1(Y
log), and coincides with RΨ(F ) paired with the action of

π1(Y
log), that is, Rτ ′∗Rp∗p

−1Rνlog
∗ F

∼=−→ RΨ(F ) as objects with actions of

π1(Y
log), where τ ′ is the natural map X ′log −→

◦
X ′ =

◦
X (X ′ is as in (8.1)).

(2) p−1Rνlog
∗ F ∼= p−1τ ′−1RΨ(F ) as objects with actions of π1(Y

log).

Remark (8.7.2.1). In case of normal crossing varieties over the stan-

dard log point ((8.8) (1)), the above RΨ was introduced in [FN] as a nearby

cycles complex.

Remarks (8.8). (1) Y. Kawamata and Y. Namikawa made a similar

construction to our (8.1) in the proof of 4.1 in [KwNm]: Let 0 be the

standard log point. Let f : X −→ 0 be a morphism of fs log analytic spaces

which is, locally on X, isomorphic over 0 to the special fiber of a semistable

family endowed with the natural log structure (such an f is called a normal

crossing variety in [KwNm]). For such an f , they introduced the object

Rρ̃∗ZX̃ on
◦
X as a complex of nearby cycles, where ρ̃ : X̃ −→

◦
X is the base

change of νlog by the inclusion {1} −→ S1 so that Rρ̃∗ZX̃ is the restriction of

Rνlog
∗ Z. (Note that in this situation, Rνlog

∗ Z is an object on X ′log =
◦
X×S1.)

(2) Clearly the construction in (8.1) can be done in an l-adic setting:

Let f : X −→ Y be a morphism of fs log schemes, n an integer invertible
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on Y , and F in D+(Xket,Z/nZ). Then we can define as RΨlog
X/Y (F ) :=

R(νket
X/Y )∗F ∈ D+((X ′)ket,Z/nZ), where X ′ and νX/Y are defined similarly

as in (8.1). When Y is locally of finite type over C and f is log injective

in the sense of [NC1] (5.5.1), the comparison theorem [KjNk] Theorem C.1

implies

ε−1RΨlog
X/Y (F ) = RΨlog

Xan/Yan
(ε−1F ),

where ε denotes the morphism of topoi (X log
an )∼ −→ (Xket)

∼ or (Y log
an )∼ −→

(Yket)
∼. A problem to be investigated is to compare the algebraic log nearby

cycles here with the one studied in [NC2], [Vi1] and [Vi2] (see also [I3]). A

partial answer can be found in [NC3] A.2, which is an l-adic analogue of

(8.3) and in which Rνket
∗ (Z/nZ) for a log smooth family over a trait first

appeared.

(3) As explained in 8.2, by proper base change theorem, the composite

D+(X log) −→ D+(X0 × S1) in (8.4) coincides with the composite

D+(X log) −→
push

D+(X ×∆ ∆log) −→
pull

D+(X0 × S1).

(4) It is probable that there is a non-ket analogue of (8.6) under some

additional assumptions (cf. (6.3)). We do not pursue it here (cf. (6.3.1)).

Problems (8.9). (1) In (8.1), the dimension of the base Y is arbitrary.

In [L], G. Laumon also defined a vanishing cycles functor over any base

(scheme). What is the relationship of these two? Further, exact morphisms

could be a log geometric analogue of morphisms without blow-ups in C.

Sabbah’s [Sab]. Compare our RΨlog for exact morphisms with the one in

[Sab] for morphisms without blow-ups.

(2) Does RΨlog preserve the constructibility or perversity in a suitable

sense (cf. [GM])? More specifically, can 8.4 be generalized to the case that

F is an analytically constructible sheaf in the sense of [Ve2] 2.1.1 or that

F is a weakly R-constructible object of Db(X∗,Z) in the sense of [KS] 8.4?

How about the commutativity of RΨlog with the Verdier’s dualizing functor

([Ve1])?

(3) Compare the isomorphism in (8.6) with results of M. Kashiwara in

[Ks].
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Appendix

(A.1). Here we prove (3.7) (5). By (3.7) (2), it is enough to show that

M −→ ε∗ε∗M is an isomorphism. Let x ∈ X, n ≥ 1, and by (3.7) (1) and

(3.5) (1), it is enough to show that Mx
∼=−→ H0(πket

1 (x),Mx⊗CP CP
1
n ) is an

isomorphism, where P is as in (3.5). This is by (8.6.5.1) in taking P , {1},
and Mx as Q, P , and A there.

The next is mentioned in (6.2.2) (2).

Proposition (A.2). Let X be an fs log analytic space and V an OX-

module (resp. an OXket-module). If the Olog
X -module τ∗V (resp. the Oklog

X -

module τket∗V ) is locally free of finite rank, then so is V .

Proof. We will prove the case where V is an Oket
X -module. The other

case is similar and simpler. Let y ∈ X log, and x = τ(y). Since Oket
X,x(log)

−→
Oklog

X,y has a ring-theoretic section by (3.5) (2), we have an isomorphism

Vx(log)
∼= (OX,x(log) )

⊕n (n ≥ 0) as OX,x(log) -modules. Extend it on a ket

neighborhood U of x : (Oket
X |U )⊕n f−→ V |U , and consider the homomorphism

τket∗f of locally free Oklog
U -modules. To prove V |U is locally free of finite

rank, we may assume that X = U . Since τket∗f is an isomorphism at

each point of τ−1(x), so is on a neighborhood W of τ−1(x). Hence f is an

isomorphism on τ(W ) (take a section again), which is a neighborhood of x

because τ is a closed map. �

(A.3). Here we collect basic facts on Q-integral homomorphisms. See

also the book [O3].

Definition (A.3.1). Let h : P −→ Q be a homomorphism of integral

monoids.

(1) ([T1] I 2.2) h is said to be integral if for any homomorphism P −→ P ′

of integral monoids, the push out of P ′ ←− P −→ Q in the category of

monoids is integral.

(2) h is said to be Q-integral if h⊗N Q≥0 is integral.

(3) h is said to be GD (it means “going-down”) if for any q ∈ SpecQ

and p ∈ SpecP such that p ⊂ h−1(q), there exists q′ ∈ SpecQ lying over p

such that q′ ⊂ q.
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(4) h is said to be weak GD if for any q ∈ (Spech)−1(P − P×),

Spec (P −→ Qq) is surjective.

An integral homomorphism is Q-integral by the next criterion (A.3.1.1).

A local Q-integral homomorphism of saturated monoids are exact (local

means that the inverse image of the maximal ideal is the maximal ideal).

Further, a Q-integral homomorphism h : P −→ Q and for submonoids S

and T of P and Q respectively such that h(S) ⊂ T , PS −→ QT is also

Q-integral; the composite of Q-integral homomorphisms is Q-integral (cf.

[T1] I Propositions 2.8, 2.7 and 2.3).

Proposition (A.3.1.1). A homomorphism h : P −→ Q of integral

monoids is integral (resp. Q-integral) if and only if for any a1, a2 ∈ P ,

b1, b2 ∈ Q such that h(a1)b1 = h(a2)b2, there exist (resp. there exist an in-

teger n ≥ 1,) a3, a4 ∈ P and b ∈ Q such that b1 = h(a3)b and a1a3 = a2a4

(resp. bn1 = h(a3)b and an1a3 = an2a4).

Proof. By [KtK1] (4.1). �

Proposition (A.3.2). Let h : P −→ Q be a homomorphism of integral

monoids. Let P ′ := Ph−1(Q×). Consider the following conditions.

(i) (cf. [T1] I 2.11) (P ′/P ′× −→ Q/Q×)⊗NQ≥0 is injective and for any

b ∈ QQ≥0
, there exists b′ ∈ QQ≥0

such that hgp
Q (P gp

Q )b∩QQ≥0
= hgp

Q (P ′
Q≥0

)b′,

where (−)Q≥0
and (−)Q denote (−)⊗N Q≥0 and (−)⊗Z Q respectively.

(ii) h is Q-integral.

(iii) For any q ∈ SpecQ, (Ph−1(q) −→ Qq)⊗N Q≥0 is exact.

(iv) h is GD.

(v) P ′ −→ Q is weak GD.

Then

(1) we have (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v);

(2) when P and Q are fine, all the conditions are equivalent.

Remarks. (a) All the implications in (1) are strict.

(b) (iii) is satisfied if

(iii)′ SpecC[h] is exact.

When P is saturated, (iii) is equivalent to (iii)′. (These are proved easily.

Cf. (A.3.2.1) below.)
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Proof. (1) (i)⇒(ii). Since P −→ P ′ is integral, we may assume that

P = P ′. By replacing h with hQ≥0
, we may assume that P and Q are Q≥0-

monoids (= monoids on which Q≥0 acts). (Here we use (P/P×)⊗N Q≥0 =

PQ≥0
/(PQ≥0

)× for any monoid P .) Further, by replacing P and Q with

P/P× and Q/Q×, we may assume that P× ∼= Q× = {1} ([T1] I Proposition

2.5) so that h is injective. Now let a1, a2 ∈ P , b1, b2 ∈ Q such that

h(a1)b1 = h(a2)b2. Then there exist a3, a4 ∈ P and b ∈ Q such that

b1 = h(a3)b and b2 = h(a4)b. Hence h(a1a3) = h(a2a4), which implies

a1a3 = a2a4 because h is injective. Thus h is integral by (A.3.1.1).

(ii)⇒(iii). For any q ∈ SpecQ, Ph−1(q) −→ Qq is local and Q-integral so

that exact after tensoring with Q≥0 ([T1] I Proposition 2.8).

(iii)⇒(iv) is seen by applying the next lemma (1) to Ph−1(q) −→ Qq for

each q ∈ SpecQ.

(iv)⇒(v). Since Spec (P −→ P ′) is injective, P ′ −→ Q is GD.

(2) (v)⇒(i). We may assume that P = P ′ and that P× ∼= Q× = {1}.
(Note that SpecP/P× ∼=−→ SpecP (P is a monoid) is a natural equivalence

of functors from the category of monoids to that of lattices.) Then Spec (h)

is surjective by the assumption. Hence hsat is exact by the next lemma (2).

Thus h is injective and h⊗N Q≥0 is also. Since ι : Spec (PQ≥0
)

∼=−→ SpecP

(P is a monoid) is another natural equivalence of functors to the category

of lattices, we see that the problem is reduced to the following (A.3.2.2) (1)

by replacing h with h⊗Q≥0. �

Lemma (A.3.2.1). Let h be as in (A.3.2). Consider the following con-

ditions.

(i) h⊗N Q≥0 is exact.

(i)′ hsat is exact.

(ii) Spech is surjective.

Then

(1) we have (i) ⇔ (i)′ ⇒ (ii);

(2) when P and Q are fine, (ii) ⇒ (i).

Remarks. (a) The implication (i)′ ⇒ (ii) in (1) is strict.

(b) When P and Q are fine, the above conditions are equivalent also to

(iii) Hom (h,Q≥0) is surjective.

Here Q≥0 is regarded as a monoid by addition. (This equivalence is not

used in our text.)
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Proof. (1) It is easy to see (i)⇔(i)′. To prove (i)′ ⇒ (ii), we may

assume that P and Q are saturated by replacing h with hsat. (Note that

SpecP = SpecP sat for any integral monoid P .) Let p ∈ SpecP and we have

to show that p is in the image of Spech. Replacing h with Pp−→ Qh(P−p),

we may assume that p is the maximal ideal P −P×. It is clear that an exact

homomorphism is local.

(2) We may assume that P and Q are fs and that P× is trivial. By

replacing Q by (hgp)−1(Q), we may further assume that Q ⊂ P gp. By

the assumption, dimP ≤ dimQ = rankZ(Qgp/Q×) so that Q× = {1}. If

P $= Q, there exists a proper face of P that contains an interior point of Q.

Thus Spech is not surjective. �

Proposition (A.3.2.2). Let h : P −→ Q be a local homomorphism of

integral Q≥0-monoids that are finitely generated as Q≥0-monoids. Assume

that P× ∼= Q× = {1} and that h is weak GD. Then the following hold.

(1) (cf. [T1] I 2.11) For any b ∈ Q, there exists (a unique) b′ =: π(b) ∈ Q

such that hgp(P gp)b ∩Q = hgp(P )b′.
(2) The map π : Q −→ Q defined in (1) satisfies the following.

(2a) The image of π is the union of the faces F of Q such that F ∩P =

{1} (or equivalently F gp ∩ P gp = {1}). Here and hereafter we identify P

with h(P ).

(2b) Q is the union of its submonoids FP for such F ’s.

(2c) For such an F , F × P −→ FP is an isomorphism of monoids and

π|FP corresponds to the first projection. In particular, π|FP is a homomor-

phism of monoids.

Proof. We identify P with its image h(P ).

(1) Let C := bP gp∩Q. This is a (rational) convex polyhedral set (= the

intersection of finite number of affine half spaces) in bP gp. (We omit the

adjective “rational” in this paper. All the objects in the geometry of convex

bodies are being considered rationally.) Let v1, . . . , vn be all the vertices of

C.

Claim. For any facet (= a face of codimension one) F of P , there exists

a hyperplane H in bP gp which is parallel to F gp such that C is contained

in an affine half space in bP gp determined by H.
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Proof of Claim. Let F ′ be the minimal face of Q that contains F .

By the assumption, Spech is surjective, so that F ′ ∩ P = F . In particular,

F ′ $= Q. Let H ′ be a supporting hyperplane of F ′ for Q. Then H ′ ∩ P =

F ′ ∩ P = F . Hence H ′ ∩ P gp = F gp, and H := H ′ ∩ bP gp has the required

property. �

By the claim, we have a unique facet CF of C which is parallel to F gp.

Assume that C is not simply generated as a P -set. Then there is a facet F of

P such that v := v1 $∈ CF . (Otherwise, v ∈
⋂
F

CF implies C ⊂ vP ). Let F0

be the minimal face of Q that owes v. Then we prove F0 ∩P = {1}. To see

it, it is enough to show that p | v in Q implies p = 1. Since v is a vertex of C,

vP−1 ∩ C = {v}. This implies the above. Now by the assumption of being

weak GD, there exists a face F1 of Q such that F1 ⊃ F0 and F1 ∩ P = F .

Since F0 � v, we have F1 ⊃ vF . Then F1 ⊃ C because v $∈ CF . Hence

F1 ⊃ aP , where a is any element of C, and F1 ⊃ P , that is a contradiction.

(2) In the notation of (1), π(b) = v ∈ F0 and F0 ∩ P = {1}. We will

show that for any face F of Q such that F ∩ P = {1} and for any b ∈ F ,

b = π(b). Let f ∈ bP gp ∩F ⊂ bP gp ∩Q = π(b)P . Then there exists a p ∈ P

that satisfies f = π(b)p. Since F is a face, F � p and p ∈ F ∩ P = {1}.
Hence f = π(b) and bP gp ∩ F = {π(b)}. In particular b = π(b). Further

F gp ∩ P gp = {1} is shown as follows: it is enough to show that f1p1 = f2p2

implies f1 = f2 (fi ∈ F , pi ∈ P , i = 1, 2). This is because π(fipi) = fi,

i = 1, 2. This argument also shows F × P = FP . Thus we have (2a) and

(2c). Finally (2b) is by (2a). �

Proposition (A.3.3). Let f : X −→ Y be an exact log smooth mor-

phism of fs log analytic spaces. Then there exists locally on X and on

Y a chart Γ(Y,OY ) ←− P
h−→ Q −→ Γ(X,OX) of f with P and Q

fs such that h is Q-integral and such that the induced morphism X
i−→

Y ×(SpecCP )an (SpecCQ)an is a strict open immersion.

Proof. Let x ∈ X, y = f(x), and let P −→ Γ(Y,OY ) be a chart of

Y with P fs such that P/P× ∼=−→ (MY /O×
Y )y. Take a chart Γ(Y,OY ) ←−

P
h−→ Q −→ Γ(X,OX) of f with P and Q fs such that the induced mor-

phism X
i−→ Y ×(SpecCP )an (SpecCQ)an is a strict open immersion (cf.

[KtK1] (3.5)). Localizing Q if necessary, we may assume that Q/Q× ∼=−→
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(MX/O×
X)x. Then, by the assumption that f is exact and the fact that the

image of the induced morphism i is an open set, the local homomorphism

P −→ Q satisfies the condition (v) in (A.3.2). Hence it is Q-integral by (2)

there. �

Remark. A morphism f : X −→ Y of fs log analytic spaces is said

to be Q-integral if for any x ∈ X, the homomorphism MY,f(x)/O×
Y,f(x) −→

MX,x/O×
X,x is Q-integral. In general, there are the implications

integral ⇒ Q-integral ⇒ exact ⇒ log injective.

Further, we have log smooth + log injective ⇒ Q-integral. A. Ogus commu-

nicated to the authors that A. Gray showed that when each stalk of MY /O×
Y

is a free monoid, then the Q-integrality implies the integrality.

Proposition (A.3.4). Let h : P −→ Q be a Q-integral homomorphism

of fs monoids. Then there exists an integer n ≥ 1 such that the cobase

change map Pn −→ Q′; p �→ [p, 1] of h with respect to n : P −→ P =: Pn in

the category of fs monoids is integral, where Q′ := lim−→(P
n←− P −→ Q) and

[p, q] denotes the element represented by p ∈ Pn and q ∈ Q.

Proof. Replacing P with Ph−1(Q×), we may assume that h is lo-

cal. Further we may assume that P× ∼= Q× = {1} since lim−→(P/P× n←−
P/P× −→ Q/Q×) = Q′/A, where A = [P×

n , Q
×] is the group generated

by the images of P×
n and Q× ([T1] I Proposition 2.5). In the following,

we denote P̃ = P ⊗N Q≥0, Q̃ = Q ⊗N Q≥0 for short. By (A.3.2.2), we

have the map π : Q̃ −→ Q̃. The image of Q by this π is the union of the

images of Q ∩ P̃F by the homomorphisms π|
P̃F

for faces F of Q̃ such that

F ∩ P̃ = {1}, which are finitely generated submonoids of Q̃. Thus there

exist finite number of elements a1, . . . , am ∈ π(Q) such that the submonoid

of Q̃ generated a1, . . . , am over Q contains π(Q).

Claim 1. There exists an integer n ≥ 1 such that

(A) For each j, a−1
j Q ∩ P̃ ⊂ P

1
n .

(B) Qgp ∩ P̃ gp ⊂ (P
1
n )gp. (Here and hereafter we denote Pn by P

1
n .)

Proof of Claim 1. For each a = aj or 1, there exists an n ≥ 1 such

that a−1Qgp ∩ P̃ gp ⊂ (P
1
n )gp. Thus (B) follows. Since P̃ ∩ (P

1
n )gp = P

1
n ,

(A) follows. �
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Claim 2. Q1 := Q′/tors = Q̃ ∩ ((P
1
n )gp ·Qgp) in Q̃gp.

Proof of Claim 2. In Qgp
1 = ((P

1
n )gp⊕P gpQgp)/tors = (P

1
n )gp ·Qgp,

Q1 is the saturation of the submonoid generated by P
1
n and Q. Then

(Q̃ ∩Qgp
1 )n ⊂ Q, and Q1 = Q̃ ∩Qgp

1 = r.h.s. �

Claim 3. π(Q) ⊂ Q1.

Proof of Claim 3. It is enough to show that each aj belongs to Q1.

Since aj ∈ π(Q), there exists p ∈ P̃ , q ∈ Q such that ajp = q. By (A),

p ∈ P
1
n . Hence aj ∈ (P

1
n )gp ·Qgp. By Claim 2, aj ∈ Q1. �

Now we prove that P
1
n

h′
−→ Q1 is integral. We will use the next propo-

sition. It is easy to see Q×
1 = {1} and h′ is injective. Let b ∈ Q1. Then,

by the assumption of Q-integrality and (A.3.2) (2), P̃ gpb ∩ Q̃ = P̃ b′, where

b′ = π(b) belongs to Q1 because π(Q1) = π(Q) ⊂ Q1 by Claim 3. We will

show (P
1
n )gpb∩Q1 = P

1
n b′. Let a ∈ (P

1
n )gp such that ab ∈ Q1. Then there

exists a′ ∈ P̃ such that ab = a′b′. Since bb′−1 ∈ Qgp
1 = (P

1
n )gp · Qgp, there

exist c ∈ (P
1
n )gp and d ∈ Qgp such that a′a−1 = cd. Since a′a−1 ∈ P̃ gp,

d ∈ Qgp ∩ P̃ gp ⊂ (P
1
n )gp by (B). Hence a′ = acd ∈ (P

1
n )gp ∩ P̃ = P

1
n . Thus

we conclude that h′ is integral by the next proposition (2). �

Proposition (A.3.4.1). (Cf. [T1] I 2.11) Let h be as in (A.3.2). Let

P ′ := Ph−1(Q×). Consider the following conditions.

(i) P ′/P ′× −→ Q/Q× is injective and for any b ∈ Q, there exists b′ ∈ Q

such that hgp(P gp)b ∩Q = hgp(P ′)b′.
(ii) h is integral.

Then

(1) we have (i) ⇒ (ii);

(2) when P and Q are fine, (ii) ⇒ (i).

Remark. The implication in (1) is strict.

Proof. This is a slight modification of a result of T. Tsuji ([T1] I

Proposition 2.11). The proof of (1) is similar to (1) (i) ⇒ (ii) in (A.3.2). (2)

is easily reduced to the case where h is local and to the result of T. Tsuji

mentioned above. �
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Next we collect basic facts on saturated morphisms.

Proposition and Definition (A.4). (1) ([T1] I Definition 3.12) A

homomorphism h : P −→ Q of integral monoids is said to be saturated if h

is integral and quasi-saturated.

(2) When P and Q are saturated, h is saturated if and only if h is integral

and for any homomorphism P −→ P ′ of saturated monoids, the push out

of P ′ ←− P −→ Q in the category of monoids is saturated.

(3) (Cf. [T1] II Definition 2.10.) A morphism of fs log analytic spaces

f : X −→ Y is said to be saturated if, for any x ∈ X, the homomorphism of

fs monoids (MY /O×
Y )f(x) −→ (MX/O×

X)x is saturated, or equivalently the

homomorphism of saturated monoids MY,f(x) −→MX,x is saturated.

Proof. (2) [T1] I Proposition 3.14. Use [T1] I Proposition 3.16 for

the equivalence in (3). �

A saturated morphism of fs log analytic spaces admits local charts by

saturated homomorphisms. Conversely, a morphism of fs log analytic spaces

admitting a chart by a saturated homomorphism is saturated ([T1] I Propo-

sitions 3.16 and 3.18).

Lemma (A.4.1). Let h : P −→ Q be a saturated homomorphism of fs

monoids with Q× = {1}. Then the cokernel of hgp is torsion free.

Proof. We may assume that h is local, and that P× = {1}. Then

Q′ := P
1
p ⊕P Q satisfies Q′× = {1} for any prime number p. Let b ∈ Qgp,

and a ∈ P gp such that bp = hgp(a). It is enough to show that b ∈ hgp(P gp).

Consider the element [a
1
p , b−1] of Q′gp. Since it maps to 1 ∈ (Q

1
p )gp by [h

1
p ,

inclusion] : Q′ −→ Q , the definition of quasi-saturatedness implies that

[a
1
p , b−1] ∈ Q′× = {1}. Thus a

1
p = b in Q′gp and there is an element of P gp

whose image by hgp coincides with b. �

Theorem (A.4.2) (T. Tsuji). Let h : P −→ Q be an integral homomor-

phism of fs monoids. Then there exists an integer n ≥ 1 such that the cobase

change map Pn −→ Q′; p �→ [p, 1] of h with respect to n : P −→ P =: Pn in

the category of fs monoids is saturated, where Q′ := lim−→(P
n←− P −→ Q)

and [p, q] denotes the element represented by p ∈ Pn and q ∈ Q.
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Proof. [T1] I Corollary 5.4. �

Together with (A.3.3), (A.3.4), we have the following.

Proposition (A.4.3). Let f : X −→ Y be an exact log smooth mor-

phism of fs log analytic spaces. Then locally on X and on Y , after suitable

ket base change Y ′ −→ Y , f becomes saturated.

To make a general map exact, we use the following lemma.

Proposition (A.4.4). Let h : Q −→ P be a morphism of fs monoids.

Let f : X −→ Y be the induced morphism (SpecC[h])an of fs log analytic

spaces. Then there is a non-empty, finitely generated ideal I of Q such that

the base change X ×Y YI −→ YI in the category of fs log analytic spaces is

exact, where YI is defined in 6.1.1.

Proof. Fix a prime p ∈ SpecP . Let Q′ be the inverse image of Pp in

Qgp by hgp. Take a set of generators q1
s , . . . ,

qn
s of Q′ (q1, . . . , qn, s ∈ Q)

and let J = Jp be the ideal of Q generated by q1, . . . , qn, s. If we show that

X ′ := X ×Y YJ −→ YJ is exact at each point x′ ∈ X ′ lying over p ∈ SpecP ,

then I :=
∏

p∈SpecP Jp is the desired ideal. Let x ∈ X, y ∈ Y and y′ ∈ YJ
the images of x′, and let Px := (MX/O×

X)x ∼= Pp/P
×
p , Qy := (MY /O×

Y )y,

and Qy′ := (MYJ
/O×

YJ
)y′ . We claim that s divides all the qi in Qy′ . To prove

this, we may assume that some qi divides the other qj and s in Qy′ . Since

s divides qi in Px, qi = s in Px′ := (MX′/O×
X′)x′ . This implies qi = s in Qy′

so that the claim follows. (Alternatively we can use some general facts to

prove this claim. See [NC1] (2.2.5.1) and (2.2.6) (i).)

Now we show that Qy′ −→ Px′ is exact. Let a ∈ Qgp
y′ and suppose that

the image of a belongs to Px′ in P gp
x′ . Then we have (1, am) = (p, q′) in

P gp
x ⊕Qgp

y
Qgp

y′ for some m � 1, p ∈ Px and q′ ∈ Qy′ . Hence there is an

element q ∈ Qgp
y that maps to p and amq′−1. By the definition of Q′, q is in

the image of Q′. Thus the above claim implies amq′−1 ∈ Qy′ and a ∈ Qy′ . �

(A.5). Here we prove facts announced in (6.3.3). Let the notation be

as in there. First assume that f is saturated. Let x ∈ X, y = f(x) and

h : P −→ Q a (local) chart of f around x and y with P and Q fs such that

P
∼=−→ (MY /O×

Y )y and Q/Q× ∼=−→ (MX/O×
X)x. Then h is saturated and
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A := C[Q]/〈P − {1}〉 is reduced by [T1] I Theorem 6.3 (1)⇒(8). Since a

neighborhood of x in the fiber f−1(y) is an open subspace of (SpecA)an, it

is reduced. On the other hand, since hF : P/F ∩ P −→ Q/F is saturated

for any face F of Q, the cokernel of hgp
F is torsion free by (A.4.1). Thus we

proved (c)⇒(a) and (b).

Next assuming that f is integral, we will prove (a)⇒(c) and (b)⇒(c).

Take x, y, and h : P −→ Q as above. Then h is integral. [T1] I Theorem

5.1 and I Theorem 6.3 (9)⇒(1) tell us that to prove that h is saturated, it

is enough to check that for any facet F of Q such that P $⊂ F , Qgp/P gpF gp

is trivial or that Spec (CQ/〈P − 1〉) satisfies (R0). When (b) is satisfied,

Spec (CQ/〈P − 1〉)an is reduced at least at the origin. Then the latter

condition for saturatedness follows. When (a) is satisfied, we have that

Qgp/P gpF ′gp is torsion free for any face F ′ of Q such that F ′ ∩ P = {1}.
We will prove the above condition on the facets. We may assume that

Q× = {1}. Then we reduce the problem to the next claim.

Claim. Let F be a facet of Q such that P $⊂ F . Then there exists a

subface F ′ of F such that F ′ ∩ P = {1} and Qgp/P gpF ′gp is torsion.

Proof of Claim. We reduce this to the similar claim of Q≥0-monoids

by tensoring with Q≥0. For simplicity, we use the same symbols P , Q, and

so on for the Q≥0-monoids. By (A.3.2) (1), we can apply (A.3.2.2) to

h. Let F ′ be a face of the maximal dimension among faces contained in

π(F ). Then F ′ ⊂ π(F ) ⊂ F and F ′gp ∩ P gp = {1}. The rest is to show

dimF ′ + dimP = dimQ. But we easily see that we can apply (A.3.2.2)

also to h′ : P ∩ F −→ F and that π for h′ is compatible with π for h, and

(A.3.2.2) (2a) for h′ implies dimF ′ = dimF − dim(P ∩ F ), which equals to

dimQ− dimP . �
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Rham à coefficients, Duke Math. 60(1) (1990), 139–185.

[I2] Illusie, L., Logarithmic spaces (according to K. Kato), in Barsotti Sym-
posium in Algebraic Geometry (Ed. V. Cristante, W. Messing), Per-
spectives in Math. 15, Academic Press, 1994, pp. 183–203.

[I3] Illusie, L., An overview of the work of K. Fujiwara, K. Kato, and C.
Nakayama on logarithmic étale cohomology, Cohomologies p-adiques
et applications Arithmétiques (II) (P. Berthelot, J. M. Fontaine, L.
Illusie, K. Kato and M. Rapoport., éd.), Astérisque 279 (2002), pp.
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pacts, Séminaire Bourbaki 1965/66 n◦ 300.
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