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Global Models of Contact Forms

By Atsuhide Mori

Abstract. We prove that any contact form α on a closed 3-
manifoldM3 admits a certain global expression. Using this expression,
we construct a contact immersion of (M3, α) into the standard contact
5-sphere.

1. Introduction

A Pfaff form α on an oriented odd-dimensional manifold M = M2n+1

is called a contact form if α ∧ (dα)n is a positive volume form on M . Then

the pair (M,α) is called a contact manifold. We say that a contact mani-

fold (M,α) is contactomorphic (resp. strictly contactomorphic) to another

contact manifold (M ′, α′) if there exists a diffeomorphism Φ : M → M ′

satisfying Φ∗α′ = fα for some positive function f (resp. for f ≡ 1) on M .

Note that fα ∧ {d(fα)}n(= fn+1α ∧ (dα)n) is a positive volume form for

any positive function f . We assume that all functions and forms are C∞-

smooth. Given a point P on (M,α), we can take a local coordinate system

(z, x1, y1, · · · , xn, yn) centered at P = (0, · · · , 0) such that

α = dz +

n∑
i=1

(xidyi − yidxi)

by Darboux’s theorem. Thus a contact form α on a paracompact manifold

admits a global expression in the following form:

α =
N∑
i=1

hi(fidgi − gidfi),

where (fi, gi) is a pair of real functions and hi is a non-negative function for

each i = 1, · · · , N(< ∞). Hereafter let N = N(M,α) denote the minimal
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number of the terms hi(fidgi − gidfi) among all such expressions for a fixed

contact manifold (M,α). Then it is easy to see that N must be greater

than the half of the dimension d = 2n + 1 of the manifold. On the other

hand we can show that N is not greater than
3d− (−1)n

2
(> d) if M is a

closed manifold (see Remark in the next section). We do not know, however,

whether there exists a closed contact manifold with N > d > 3.

Assume that (M,α) is a three-dimensional closed contact manifold for

the present. Then, as is shown in Gonzalo-Varela [3], the number N is equal

to two if and only if (M,α) is contactomorphic to the standard contact

three-sphere:

({x2
1 + y21 + x2

2 + y22 = 1}, x1dy1 − y1dx1 + x2dy2 − y2dx2).

We prove that N is equal to 3, the dimension, in the other cases. Namely,

Theorem. Let (M3, α) be a three-dimensional closed contact manifold.

Then we can take smooth functions fi, gi (i = 1, 2, 3) and h satisfying

α = eh
3∑

i=1

(fidgi − gidfi) and
3∑

i=1

(f2
i + g2i ) = 1.

Moreover φ = (f1, g1, f2, g2, f3, g3) is an immersion of M3 into the unit hy-

persphere S5 =

{
3∑

i=1

(x2
i + y2i ) = 1

}
in R

6 satisfying φ∗
3∑

i=1

(xidyi−yidxi) =

e−hα.

2. Preparatory Model

Let (M3, α) be a three-dimensional closed contact manifold. We owe

it to Ibort-Martinez-Presas [4] that we can take a complex-valued function

σ : M → C and a positive function f with the following properties (1), (2)

and (3) (see also Giroux [2]).

(1) The image σ(M3) is the unit disk on C. We put r = |σ| and θ = arg σ.

(2) The restriction of f on the domain {r ≥ 1
2} is a constant.
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(3) The restriction of d(fα) on the relatively compact surface Pθ = {θ =

const, r > 0} is a positive symplectic form for each value of θ ∈ R/2πZ,

i. e., dθ ∧ d(fα) > 0.

Note that (3) together with the fact that fα is a contact form implies that

α ∧ (rdr ∧ dθ) is positive on the domain {r < ε} for small ε > 0.

Using this picture, we construct a global expression of the contact form

α.

Proposition. We can take real functions f1, g1, · · · , f5, g5 : M3 → R

and non-negative functions h1, · · · , h5 : M3 → R≥0 on M3 satisfying α =
5∑

i=1

hi(fidgi − gidfi).

Here the number of the terms hi(fidgi− gidfi) is equal to
3d− (−1)n

2
=

3 · 3 − (−1)1

2
and greater than the dimension three. We prepare a lemma

to prove the proposition.

Lemma. A contact form α′ satisfying dα′|Pθ
> 0 (∀θ ∈ R/2πZ) defines

a contact structure isotopic to kerα.

Proof of Lemma. If a non-negative function δ of r satisfies δ ≡ 1 for

r ≥ ε and dδ/(rdr) > 0 for r < ε then αK = fα +Kδdθ is a contact form

satisfying dαK |Pθ
> 0 (∀θ) for any positive constant K. Let α′ be another

contact form satisfying dα′|Pθ
> 0 (∀θ). The family {βt = (1− t)αK + t(α′+

Kδdθ)}t∈[0,1] is a homotopy of contact forms if the positive constant K is

large enough. Actually,

βt ∧ dβt = {(1 − t)fα+ tα′} ∧ {(1 − t)d(fα) + tdα′}
+K[δdθ ∧ {(1 − t)d(fα) + tdα′}
+ {(1 − t)fα+ tα′} ∧ {(dδ/rdr)(rdr ∧ dθ)}]

is a positive volume form for large K > 0. Then Gray’s stability theorem

implies that the plane field kerα is isotopic to the plane field kerαK ; then

to the plane field ker(α′ + Kδdθ); finally to the plane field kerα′. This

completes the proof. �



450 Atsuhide Mori

The above proposition is proved by constructing a contact form α′ sat-

isfying

dα′|Pθ
> 0 and α′ =

5∑
i=1

hi(fidgi − gidfi)

for suitable real functions fi, gi and non-negative functions hi (i = 1, · · · , 5).

Moreover we see from the above proof how to construct a contactomorphism

Φ : (M3, α′) → (M3, α) and a positive function f satisfying Φ∗α = fα′. The

following construction of α′ will be improved in the next section in order to

prove the theorem.

Construction of Preparatory Model . Let σ = re
√
−1θ be as above. Put

f1 = r cos θ and g1 = r sin θ.

Then we have f1dg1 − g1df1 = r2dθ. First we trivialize the surface bun-

dle Pθ → θ except on [3π/4, 5π/4], that is, regard {Pθ}θ∈(−3π/4,3π/4) as

P0×(−3π/4, 3π/4). LetH2 : P0 → [0, 1] be a function on the closure P0 sup-

ported in a collar neighbourhood C = ∂P0 × [0, 1) and satisfying H−1
2 (1) =

{(p, q) ∈ C = ∂P0×[0, 1) | q ≤ 1/2}. We consider (∂P0, dp) as a contact-type

border of the symplectic manifold (P0, ι
∗d(x1dy1 − y1dx1 + x2dy2 − y2dx2))

where ι is a proper embedding (or immersion) of P0 into the open unit ball

in R
4 as a symplectic submanifold. That is, we take four functions F4, G4, F5

and G5 on P0 such that

(1) d(F4dG4−G4dF4 +F5dG5−G5dF5) is a symplectic form on P0 and

(2) the restriction (F4dG4 − G4dF4 + F5dG5 − G5dF5)C coincides with

(1 − q/2)dp.

Here the restriction (F4, G4, F5, G5)|P0 is nothing but the embedding (or

immersion) ι : P0 → R
4. Put

H3 =
(
1 +

q

2

)
H2 + 1 −H2 and

β = H3(F4dG4 −G4dF4 + F5dG5 −G5dF5).

Then dθ + pr∗(β|P0) is a contact form on P0 × (−3π/4, 3π/4) where pr :

P0 × (−3π/4, 3π/4) → P0 is the projection to the first factor. Next we

regard the surface bundle as the mapping torus P0 × [0, 2π]/µ for some
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diffeomorphism µ : P0 × {2π} → P0 × {0}, that is, as the quotient space

P0 × R/µ̃ under the identification map µ̃ : (x, θ+ 2π) → (µ(x), θ). Suppose

that the new projection pr′ to the first factor of P0 × [0, 2π) satisfies

pr′ |P0×[0,3π/4) = pr |P0×[0,3π/4) and

pr′ |P0×(5π/4,2π) = µ−1 ◦ pr ◦µ̃|P0×(5π/4,2π).

We may assume that µ is supported in the complement of a larger collar

neighbourhood C ′ ⊃ C and preserving dβ. Then the restriction of (pr′)∗(dβ)
on each fiber Pθ can also be denoted by dβ. Let h : M → [0, 1] be a

function supported in (P0 \ C) × [π/2, 3π/2] and satisfying h ≡ 1 on the

domain D = (P0 \ C ′) × [3π/4, 5π/4]. We regard pr |P0×(−3π/4,3π/4) and

pr′ |C′×[3π/4,5π/4] as the restrictions of the same map pr′′ defined on the

support of 1−h. Put h2 = h3 = h·(H3◦pr′) and h4 = h5 = (1−h)·(H3◦pr′′).
Let f2, g2, · · · , f5, g5 be functions on M such that

(1) f2 = F4 ◦ pr′, g2 = G4 ◦ pr′, f3 = F5 ◦ pr′ and g3 = G5 ◦ pr′ hold

on the support of the function h2(= h3) and

(2) f4 = F4 ◦ pr′′, g4 = G4 ◦ pr′′, f5 = F5 ◦ pr′′ and g5 = G5 ◦ pr′′ hold

on the support of the function h4(= h5).

Then putting

β′ = h2(f2dg2 − g2df2) + · · · + h5(f5dg5 − g5df5),

we have dβ′|Pθ
= dβ > 0 on each fiber Pθ and β′|L > 0 on the fibered link

L = σ−1(0). Take a small constant ε > 0 such that β′∧ (rdr∧dθ) is positive

on {r < ε}. Let δ = δ(r) be a non-negative function satisfying δ ≡ 1 for

r ≥ ε and dδ/(rdr) > 0 for r < ε. Then putting

h1 = Kδ/r2 and α′ =

5∑
i=1

{hi(fidgi − gidfi)}

for a sufficiently large constant K > 0, we have

α′ ∧ dα′ = β′ ∧ dβ′ +K{δdθ ∧ dβ′ + (dδ/rdr)β′ ∧ (rdr ∧ dθ)} > 0.

This completes the construction of α′ and the proof of the proposition.
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Remark. Given a higher dimensional closed contact manifold

(M2n+1, α), we can also take a complex-valued function σ with similar

properties to the above (see Ibort-Martinez-Presas [4]). Recently Giroux

and Mohsen characterized all contact manifolds up to contactomorphism

by using a symplectic open-book decomposition by Pθ = σ−1({arg z = θ})
(see [2]). Then (Pθ, d(fα)|Pθ

) is a Weinstein manifold with contact end

(L,α|L), that is, d(fα)|Pθ
is a Kähler form associated with some Stein com-

plex structure on Pθ. Since we can properly immerse a Stein manifold of

complex dimension n into C
m for m =

6n+ 1 − (−1)n

4

(
=

[
3n+ 1

2

])
, we

may assume that the symplectic form on each page is conformally equivalent

to the pull-back of the exact 2-form d
∑

(xidyi−yidxi) on the open unit ball

B ⊂ C
m under some proper immersion Pθ → B(see [1]). Then we see that

the number N is not greater than 2m+ 1 =
3d− (−1)n

2
(> d) as mentioned

in the introduction by constructing a similar contact form to the above α′.

3. Model on S5

The theorem stated in the introduction is proved by improving the above

construction. We construct here a contact form α′ on M3 such that

(1) (M,α′) is contactomorphic to (M,α) and

(2) (M,α′) is contactomorphic to an immersed contact submanifold of the

standard contact unit five-sphere S5 ⊂ C
3.

Construction of Model on S5. Let σ = re
√
−1θ, f1, g1, H2, C, (p, q),

C ′, pr, pr′, h and pr′′ be as above. Take a pair of functions (F3, G3) on P0

which induces an immersion of an open neighbourhood of the complement

of C into R
2. If we put

F2 =
√
k − q cos(2πp) and G2 =

√
k − q sin(2πp)

for a sufficiently large positive constant k, then we see that the 1-form

β = H2(F2dG2 −G2dF2) + F3dG3 −G3dF3

satisfies β|∂P0
> 0 and dβ|P0 > 0. We may assume that µ is supported in

the complement of a larger collar neighbourhood C ′ ⊃ C and preserving dβ.
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Then the restriction of (p′)∗(dβ) on each fiber Pθ can also be denoted by

dβ. Put h3 = 1− h and h2 = H2 ◦ pr′ +h. Let f2, g2, f3 and g3 be functions

on M such that

(1) f2 = F2 ◦ pr′ and g2 = G2 ◦ pr′ hold on the support of H2 ◦ pr′,

(2) f2 = F3 ◦ pr′ and g2 = G3 ◦ pr′ hold on the support of h and

(3) f3 = F3 ◦ pr′′ and g3 = G3 ◦ pr′′ hold on the support of h3.

Then putting

β′ = h2(f2dg2 − g2df2) + h3(f3dg3 − g3df3),

we have dβ′|Pθ
= dβ > 0 on each fiber Pθ and β′|L > 0 on the fibered link

L = σ−1(0). Take a small constant ε > 0 such that β′∧ (rdr∧dθ) is positive

on {r < ε}. Let δ = δ(r) be a non-negative function satisfying δ ≡ 1 for

r ≥ ε and dδ/(rdr) > 0 for r < ε. Put

h1 = Kδ/r2 and α0 =
3∑

i=1

{hi(fidgi − gidfi)}.

Then we see that α0 is a contact form.

By deforming the contact form α0, we construct the desired functions

in the theorem.

Put

αt =
3∑

i=1

{(hi + t)(fidgi − gidfi)} (t > 0)

Then {αt}t∈(0,ε′) is a family of contact forms for sufficiently small ε′ > 0.

Since the limit contact form α0 satisfies dα0|Pθ
= dβ > 0, we see that

(M3, αt) is contactomorphic to (M3, α) by using Lemma in the previous

section and Gray’s stability theorem. Then putting

h′ = ln
3∑

i=1

{(hi + t)(fi
2 + gi

2)}, f ′i = e−h′/2
√
hi + t fi and

g′i = e−h′/2
√
hi + t gi,
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we have

3∑
i=1

(f ′i
2
+ g′i

2
) = 1 and αt = eh

′
3∑

i=1

(f ′idg
′
i − g′idf ′i).

Moreover (f ′1, g
′
1, · · · , f ′3, g′3) defines an immersion of M3 into the unit hy-

persphere in R
6 since the volume form αt ∧ dαt is the pull-back of a 3-form.

This completes the construction.

Proof of the Theorem. Since we know how to construct a diffeo-

morphism Φ : M3 → M3 and a positive function f with Φ∗α = fα′, we

can take smooth functions fi, gi (i = 1, 2, 3) satisfying the condition of the

theorem. This completes the proof. �
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