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Invariant Measures for SPDEs with Reflection

By Yoshiki Otobe

Abstract. We investigate the stationary distribution for a time
evolution of continuous random fields on R driven by Langevin equa-
tion taking nonnegative values only. The dynamics have a reflecting
wall at zero. It is known that a stationary distribution for the dynamics
without reflection is expressed by locally transforming a shift-invariant
Gaussian measure on C(R,R) in a proper way. The purpose of this
paper is to establish a similar relationship for the dynamics with reflec-
tion. It will be shown that a Gibbs measure with hard-wall external
potential, which is expressed by using 3-dimensional Bessel bridge,
is a reversible (and therefore stationary) measure for such dynamics.
When the potential is strictly convex, the stationary distribution and
the Gibbs measure are both unique in a class of tempered distributions
and therefore coincide with each other.

1. Introduction

Stochastic partial differential equations (SPDEs) appear in several con-

texts. For instance, Hohenberg and Halperin[13] studied such equations

to describe a dynamic phenomena approaching to equilibrium in statistical

mechanics. Parisi and Wu[25] discussed them to construct a perturbation

theory for continuum gauge theories. We emphasise here that those dynam-

ics take both positive and negative values.

Nualart and Pardoux[22] and Donati-Martin and Pardoux[4] introduced

a method to make the solutions of SPDEs nonnegative. Those equations

are called SPDEs with reflection. Such equations were derived by studying

the equilibrium fluctuation for a Ginzburg-Landau ∇φ interface model on

a wall, see Funaki and Olla[9]. The hydrodynamic behaviour of this model

is investigated by Funaki[8]. The result of [9] shows that the SPDEs with

reflection have natural and meaningful bases in the context of statistical

mechanical problems related to entropic repulsion phenomena[2, 21].
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In those settings, our interest stays in studying stationary distribu-

tions of the evolutions, especially the relationship with the so-called Gibbs

measures. The Gibbs measures are characterised in terms of so-called Do-

brushin, Lanford and Ruelle’s (DLR) equations [3, 14], namely the probabil-

ity measures on C(R,R) of which the finite volume distribution conditioned

outside of the volume coincides with the so-called local specifications deter-

mined from certain Hamiltonian.

The aim of this paper is to study the stationary distributions for the

solutions of the SPDEs with reflection in terms of DLR equation: we will

establish the convergence in law of the solution of the SPDEs with reflection

on a finite interval [l, r] to that on R as [l, r] tends to R, see section 4.

The existence and uniqueness of the dynamics are summarised in section

2. To show the convergence, however, we shall prepare the concepts of

weak solution, which gives the definition of the solution for SPDEs with

reflection as a probability law, see section 3. Then we give a definition of

Gibbs measures with hard-wall external potential, see Definition 5.1. We

shall see that it is reversible under the solution of the SPDEs with reflection

on R and its finite volume distribution conditioned outside of the volume is

reversible under the finite volume evolution with the corresponding Dirichlet

boundary conditions, see section 5. In addition, if the potential is strictly

convex, we shall show the uniqueness of tempered stationary probability

measures and accordingly Gibbs measures, respectively.

2. Summary of Known Results for the SPDEs with Reflection

This section summarises the definition and known results for the SPDEs

with reflection. We denote by I the spatial interval on which we shall

consider the SPDEs with reflection, namely I = (l, r) for −∞ < l < r <∞
or I = R. We consider the following SPDE:

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
− f(x, u(x, t)) + η + σ(x, u(x, t))Ẇ (x, t)(2.1)

for (x, t) ∈ I × R+, where R+ := [0,∞). Ẇ (x, t) denotes the space-time

white noise, that is, Ẇ (x, t) is a (formal) Itô derivative of the white noise

process Wt with respect to t. Here we call {Wt}t∈R+ the white noise process

if Wt is an �′-valued process such that �′〈Wt, ψ〉� is a one-dimensional

Brownian motion multiplied by |ψ|L2(I), where � and �′ denote Schwartz
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space and its topological dual respectively, see [6, 18, 26] and others. The

norm |ψ|L2(I) is defined by |ψ|2L2(I) =
∫
I ψ(x)2 dx as usual. We further

denote by (Ω,�, P, {�t}t≥0) the filtered probability space on which {�t}-
white noise process is defined, i.e., Wt is {�t}-adapted and, for t > s ≥ 0,

Wt −Ws and �s are independent.

Two functions f, σ : R × R+ → R are called an external force and a

diffusion coefficient, respectively. To simplify the notation, we write f(ut)

and σ(ut) instead of f(x, u(x, t)) and σ(x, u(x, t)), respectively.

In the equation (2.1), η denotes (a formal derivative in t of) a random

measure on I × R+ to keep the condition

u(x, t) ≥ 0 for (x, t) ∈ I × R+(2.2)

and plays the similar role to the local time appearing in the usual

Skorokhod–Tanaka equation (see, e.g., [15]), that is, η satisfies∫ ∞

0

∫
I
u(x, t) η(dx, dt) = 0.(2.3)

Note that, in the case where I = R, the uniqueness fails in C(R,R+)

even if f ≡ σ ≡ 0[19], in which case (2.1) is just a heat equation since η

automatically vanishes. This means that C(R,R+) is too large to study our

problem and therefore we are lead to introduce a suitable state space.

For functions p(x) from R to R, define

‖p‖λ,∞ := sup
x∈R

|p(x)|e−λχ(x) for λ > 0,

where χ(x) is a symmetric C2-class function on R satisfying that χ(x) = |x|
for |x| ≥ 1. Let

� :=
⋂
λ>0

{p ∈ C(R,R); ‖p‖λ,∞ <∞} .

With the system of norms ‖ · ‖λ,∞, � becomes a Fréchet space and set

�̃
+

:= � ∩C(R, (0,∞)). We take the initial condition u0(x) for the SPDEs

with reflection from �̃
+
:

u(x, 0) = u0(x) for x ∈ I.(2.4)
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We further assume that u0(x) is 1/2-Hölder continuous in x. Note that even

if we consider the case of I = (l, r), we take u0 ∈ �̃
+
. In the case of I = (l, r)

we shall consider the SPDE (2.1) with Dirichlet boundary conditions, that

is,

u(l, t) = u0(l), u(r, t) = u0(r)

are satisfied for every t ≥ 0. Moreover, we extend the solutions of (2.1) by

putting

u(x, t) = u0(x) for x ∈ Ic, t ≥ 0.(2.5)

We also extend η to a measure on R × R+ by putting η ≡ 0 outside of

(l, r) × R+.

With these settings, we can give the definition of the strong solutions

for the SPDEs with reflection. Let �+ := � ∩ C(R,R+).

Definition 2.1. We call a pair (u, η) of a function and a measure a

strong solution of the SPDEs with reflection (2.1) if:

(1) ut := u(·, t) is a continuous �+-valued adapted function.

(2) η is an adapted measure such that, for every T and λ > 0,∫ T
0

∫
I
e−λχ(x)η(dx, dt) <∞(2.6)

a.s. Moreover, η satisfies (2.3).

(3) u satisfies the initial condition (2.4). Moreover, in the case of I = (l, r),

u satisfies the Dirichlet boundary conditions in the sense of (2.5).

(4) (u, η) satisfies the following stochastic integral equation:

〈ut, φ〉 = 〈u0, φ〉 +

∫ t
0
〈us, φ′′〉 ds−

∫ t
0
〈f(us), φ〉 ds

+

∫ t
0

∫
I
φ(x)η(dx, ds)

+

∫ t
0

∫
I
φ(x)σ(us)W (dx, ds) a.s.

(2.7)

for every t > 0 and φ ∈ C∞
0 (I).
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Here, 〈p, q〉 ≡ 〈p, q〉I :=
∫
I p(x)q(x) dx if the integral is absolutely con-

verging. The last term of (2.7) is considered as a stochastic integral with

respect to the white noise process. Moreover, we say ut and η are adapted if

〈ut, φ〉 and η(Γ) are �t-measurable for every φ ∈ C∞
0 (I) and Γ ∈ �(R×[0, t])

(recall that η was extended to R × R+), respectively.

Remark 2.1. In the case of I = (l, r), Nualart and Pardoux[22] re-

quired an integrability condition: η((l − δ, r − δ) × [0, T ]) < ∞ for every

δ, T > 0. In this paper, we assume u0(x) > 0 for x ∈ R. Hence the support

of η is actually contained in I × R.

The terminology “strong” was used in the usual sense, that is, the above

definition are considered for a fixed (Ω,�, P, {�t}, {Wt}). We shall give

another weaker definition of solutions for the SPDEs with reflection in the

next section.

Now we introduce conditions on the coefficients in (2.1). First of all we

will always assume Lipschitz continuity.

(A1) There exists a constant L > 0 such that

|f(x, z) − f(x,w)| + |σ(x, z) − σ(x,w)| ≤ L|z − w|

for every x ∈ I and z, w ∈ R+.

When I = R we further assume the following conditions.

(A2) f(x, 0) and σ(x, 0) are members of
⋂
λ>0 L

2(R, e−2λχ(x)dx).

(A3) In addition, if σ �≡ Const., there exist constants 0 < q < 1, ! ∈ R and

M > 0 such that

|f(x, z) − !z| + |σ(x, z)| ≤M(1 + zq)(2.8)

for every x ∈ R and z ∈ R+.

Theorem 2.1 ([4, 22, 24]). Under the assumptions (A1)–(A3), a so-

lution for the SPDEs with reflection (u, η) exists.
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For the proof of Theorem 2.1, they introduced the following penalised

SPDE, which will also play an important role in the present paper: For

ε > 0,

∂uεt
∂t

=
∂2uεt
∂x2

− f(uεt ) +
1

ε
(uεt )

− + σ(uεt )Ẇ (x, t)(2.9)

with uε0 = u0 ∈ �̃
+

and the same Dirichlet boundary conditions (2.5).

In this equation, f and σ are extended to the functions I × R → R by

putting f(x, z) := f(x, 0) and σ(x, z) := σ(x, 0) for z < 0, respectively, and

the solution uεt can take negative values. Here and after z− denotes the

negative part of z ∈ R, i.e., z− := −min(0, z). Then they showed there

exists a function ut such that ‖uεt − ut‖λ,∞ converges monotonically to zero

uniformly in t ∈ [0, T ] as ε ↓ 0 for every T > 0 a.s. In the case of I = (l, r),

the norm can be taken as ‖ · ‖∞ := ‖ · ‖0,∞. Moreover they also showed

(uε)−/ε converges to a positive Schwartz’ distribution, which they put η.

For the uniqueness, we have only restricted results.

Theorem 2.2 ([22, 24]). If σ ≡ 1, the solution (u, η) is unique.

3. Weak Solutions for SPDEs with Reflection

This section gives another definition of a solution, i.e. a weak solution,

of the SPDEs with reflection, which can be described in terms of Stroock–

Varadhan’s martingale problem[28].

Let C
+ := C(R+,�

+) and let M be the space of nonnegative measures

on R×R+ satisfying (2.6) for I = R. Recall that (ul,r, ηl,r), a solution of the

SPDEs with reflection on (l, r), is extended to R × R+. Hence any strong

solution (u, η) (for I = R) or (ul,r, ηl,r) (for I = (l, r)) stays in C
+×M =: W

almost surely.

Let θ : W → C
+ and ξ : W → M be the canonical projections. Moreover

let θt : C
+ → �+ also denote the canonical projection (coordinate mapping

process). We simply use the symbols θt and ξ instead of θt(θω) and ξω for

ω ∈ W, respectively, if there is no confusion. Next, we introduce a suitable

class of test functions.

Definition 3.1. We say a function Ψ : �+ → R is in a class �C∞
b,I

if there exist a function ψ ≡ ψ(α1, . . . , αk) ∈ C∞
b (Rk), k = 1, 2, . . . and
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{ϕi}i=1,... ,k ⊂ C∞
0 (I) satisfying

Ψ(u) ≡ ψ (〈u, ϕ1〉 , . . . , 〈u, ϕk〉) .

For Ψ ∈ �C∞
b,I , we define a gradient operator ∇ and second derivative

∇2 by

∇Ψ(x, u) :=

k∑
i=1

∂ψ

∂αi
(〈u, ϕ1〉 , . . . , 〈u, ϕk〉)ϕi(x), x ∈ I(3.1)

∇2Ψ(x, y, u)(3.2)

:=
k∑
i,j=1

∂2ψ

∂αi∂αj
(〈u, ϕ1〉 , . . . , 〈u, ϕk〉)ϕi(x)ϕj(y), x, y ∈ I,

respectively. Using these operators, we define an operator LI acting on

�C∞
b,I by

(LIΨ)(u) := 〈∆u− f(x, u(x)),∇Ψ(u)〉

+
1

2
Tr

(
σ(x, u(x))σ(y, u(y))∇2Ψ(x, y, u)

)
,

(3.3)

where the coupling 〈·, ·〉 ≡ 〈·, ·〉I and ∆u := ∂2u/∂x2 are interpreted as

Schwartz’ distributions. Namely, we have

(LIΨ)(u) =
k∑
i=1

{〈u,∆ϕi〉 − 〈f(·, u(·)), ϕi〉}(3.4)

× ∂ψ

∂αi
(〈u, ϕ1〉 , . . . , 〈u, ϕk〉)

+
1

2

k∑
i,j=1

〈σ(·, u(·))ϕi, σ(·, u(·))ϕj〉

× ∂2ψ

∂αi∂αj
(〈u, ϕ1〉 , . . . , 〈u, ϕk〉) .

Put ξt := 1[0,t]ξ and define σ-fields on W by �t :=
∨

0≤s≤t σ ((θs, ξs))

and � :=
∨

0≤t �t. With these settings, now we give a definition of weak

solutions.
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Definition 3.2. We call a probability measure P on the measurable

space (W,�) a weak solution (more precisely, a law of a weak solution) of the

SPDEs on I with reflection, or a solution for LI -local martingale problem

with reflection, with an initial condition u0 ∈ �̃
+

if:

(1) P (θ0 = u0) = 1.

(2) For every Ψ ∈ �C∞
b,I ,

Ψ(θt) − Ψ(θ0) −
∫ t

0
(LIΨ)(θs) ds−

∫ t
0

∫
I
∇Ψ(x, θs)ξ(dx, ds)

is a local martingale with respect to (P, {�t}).

(3) We have P -almost surely that∫ ∞

0

∫
I
θt(x)ξ(dx, dt) = 0.

Similar problems without reflection terms were studied by several au-

thors, see [6, 18] and others. We shall discuss here only fundamental prop-

erties of weak solutions.

Proposition 3.1. The law on W of a strong solution gives a weak

solution.

Proof. We set P the law on (W,�) determined by a strong solution

(u, η). The properties (1) and (3) of Definition 3.2 are automatically satis-

fied. Let Ψ ∈ �C∞
b,I be given. Then, Itô’s formula implies

dΨ(ut) =

k∑
i=1

∂ψ

∂αi
(〈ut, ϕ1〉 , . . . 〈ut, ϕk〉) d 〈ut, ϕi〉

+
1

2

k∑
i,j=1

∂2ψ

∂αi∂αj
(〈ut, ϕ1〉 , . . . 〈ut, ϕk〉)

× d [〈u·, ϕi〉 , 〈u·, ϕj〉]t ,

(3.5)

where [〈u·, ϕi〉 , 〈u·, ϕj〉]t is a quadratic variational process. Since∫ t
0

∫
I ϕ(x)η(dx, ds) is of bounded variation in t,

∫ t
0 〈∆ut − f(ut) + η, ϕ〉 ds is
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also of bounded variation. Here, we have used an abbreviation
∫ t
0 〈η, ϕ〉 ds ≡∫ t

0

∫
I ϕ(x)η(dx, ds). Hence, from (2.7), we have

d [〈u·, ϕi〉 , 〈u·, ϕj〉]t = 〈σ(ut)ϕi, σ(ut)ϕj〉 dt.(3.6)

Combining above computations (3.5), (3.6) with (2.7), we have

Ψ(ut) =Ψ(u0) +

∫ t
0

(LIΨ)(us) ds+

∫ t
0

∫
I
∇Ψ(x, us)η(dx, ds)

+

∫ t
0

k∑
i=1

∂ψ

∂αi
(〈us, ϕ1〉 , . . . , 〈us, ϕk〉) 〈σ(us)ϕi, dWs〉 .

Since the last term is a local martingale, the proof is completed. �

The above proposition combined with Theorem 2.1 implies the existence

of a weak solution. The next proposition shows some kind of equivalence

between strong solutions and weak ones. The proof is rather standard.

Proposition 3.2. Let P be a solution for LI-local martingale problem

with reflection. Then there exists a white noise process {Wt} on

(P,W,�, {�t}) such that, replacing (u, η) by (θ, ξ), (2.7) is satisfied.

Proof. As the first step, consider a �′(I)-valued process Mt := θt −
θ0−At, where At :=

∫ t
0 (∆θs − f(θs) + ξ) ds. Here we used an abbreviation

that ξ ds := ξ(·, ds). For ϕ ∈ C∞
0 (I) and N > 0, define a Markov time

τ := inf {t ≥ 0; |〈θt, ϕ〉| ≥ N}. Take ψN ∈ C∞
b (R) such that ψN (α) = α for

|α| ≤ N and set ΨN (u) := ψN (〈u, ϕ〉) ∈ �C∞
b,I . Then, since P is a solution

for LI -local martingale problem with reflection, from the property (2) for

Ψ = ΨN , we see that

(3.7) ψN (〈θt, ϕ〉) − ψN (〈θ0, ϕ〉) −
∫ t

0

∂ψN
∂α

(〈θs, ϕ〉) 〈∆θs − f(θs) + ξ, ϕ〉 ds

− 1

2

∫ t
0

∂2ψN
∂α2

(〈θs, ϕ〉) 〈σ(θs)ϕ, σ(θs)ϕ〉 ds

is a local martingale. Hence 〈θt∧τ , ϕ〉−〈θ0, ϕ〉−
∫ t∧τ
0 〈∆θs − f(θs) + ξ, ϕ〉 ds

is a martingale, which proves that Mt(ϕ) ≡ 〈Mt, ϕ〉 is a local martingale.
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Next, re-set ψN ∈ C∞
b (R) to satisfy ψN (α) = α2 for |α| ≤ N . Then

(3.8) Ht∧τ (ϕ) := 〈θt∧τ , ϕ〉2 − 〈θ0, ϕ〉2

− 2

∫ t∧τ
0

〈θs, ϕ〉 〈∆θs − f(θs) + ξ, ϕ〉 ds− Vt∧τ (ϕ)

is a martingale, where Vt(ϕ) :=
∫ t
0 〈σ(θs)ϕ, σ(θs)ϕ〉 ds. On the other hand,

Mt(ϕ)2 = (Mt(ϕ) + 〈θ0, ϕ〉)2 − 2 〈θ0, ϕ〉 (Mt(ϕ) + 〈θ0, ϕ〉) + 〈θ0, ϕ〉2 .

Hence we have

Mt(ϕ)2 − Vt(ϕ) ∼ (Mt(ϕ) + 〈θ0, ϕ〉)2 − 〈θ0, ϕ〉2 − Vt(ϕ) −Ht(ϕ),

where X ∼ Y means that X−Y is a local martingale, and this implies that

Mt(ϕ)2 − Vt(ϕ) ∼ At(ϕ)2 − 2 〈θt, ϕ〉At(ϕ) + 2

∫ t
0
〈θs, ϕ〉 dAs(ϕ).

Computing d {At(ϕ) 〈θt, ϕ〉} and recalling that d 〈θt, ϕ〉 = dMt(ϕ)+dAt(ϕ),

we finally obtainMt(ϕ)2 ∼ Vt(ϕ). Now we can apply Lévy’s characterisation

theorem for the white noise process on some extension of the space (see [18]),

which completes the proof. �

Now we move to the uniqueness problem. There are several types of

uniqueness theorem for the weak solution. We will, however, give here only

Yamada–Watanabe type theorem.

Proposition 3.3. Assume that the uniqueness for the strong solution

of an SPDE with reflection holds. Then the weak solution for the SPDE

with reflection is also unique.

Remark 3.1. Yamada–Watanabe type theorem for SPDEs had been

discussed e.g. by Funaki[6] when σ is somehow a constant. He, however,

had pointed out that generic version of Yamada–Watanabe might hold. The

proof of this type of theorem for finite dimensional SDEs can be found in

several literatures, see e.g. [15]. The difference in our situation mainly comes

from the fact that the white noise process {Wt} stays in S := C([0,∞),�′)
which is different from C := C(R+,�), the space of solutions ut. However,
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since S×W is a standard measurable space (see [1, Chapter 9] or [16]), the

proof of Proposition 3.3 also goes similarly and therefore it is omitted.

Corollary 3.4. If σ ≡ Const., then the law of (u, η) on W is uniquely

determined.

Remark 3.2. For the generic diffusive case (σ �≡ Const.) there is no

uniqueness result for the SPDEs with reflection.

Remark 3.3. As usual, if we have the uniqueness result for the solu-

tion of LI -local martingale problem with reflection, it determines a diffu-

sion process in �+. A direct proof of this assertion can be found in [29] for

L2([l, r])-valued process, of which method can be applied to the case where

σ �≡ Const., that is, the solution obtained by taking limit for the solution

of penalised equation (2.9) is a diffusion process.

4. Convergence of Dynamics

From now on we assume that σ ≡ 1, see Remark 4.1 for the case where

σ �≡ Const. We denote by (ul,r, ηl,r) the (unique) solution of the SPDE with

reflection on I = (l, r). Note that (ul,r, ηl,r) is extended to R×R+ as (2.5).

We simply write the solution (u, η) in the case of I = R.

Let P l,r and P be probability laws on W induced by (ul,r, ηl,r) and (u, η),

respectively. In this section we shall discuss a converging result of (ul,r, ηl,r)

to (u, η) as (l, r) tends to R in the following sense.

Theorem 4.1. P l,r converges to P as (l, r) tends to R in the sense of

probability law.

To prove the theorem, since we have uniqueness (Corollary 3.4), it is

sufficient to prove the following proposition.

Proposition 4.2. The family {P l,r}(l,r)⊂R is relatively compact.

Proof. We prepare the following SPDE:


∂vl,rt
∂t

=
∂2vl,rt
∂x2

− f(ul,rt ) + Ẇ (x, t) x ∈ (l, r);

vl,r0 (x) = u0(x) x ∈ (l, r);

vl,rt (x) = u0(x) x �∈ (l, r) t ≥ 0.

(4.1)
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Then it is standard to show that the law of vl,r on C is tight, see Lemma

5.4 of [18]. Now we use Skorokhod’s representation theorem, that is, for

every limit point of the law of vl,r, there exists a random variable v̄ on some

probability space that v̄l,r converges to v̄ in ‖ · ‖Tλ,∞-norm for every λ > 0

and T > 0 almost surely, where v̄l,r’s have same laws with vl,r’s for every

−∞ < l < r < ∞. After here, we always consider the subsequence that

v̄l,r → v̄. Moreover, without confusion, we write vl,r → v̄ almost surely with

(l, r) → R to simplify the notation.

Now let us consider the following deterministic PDEs for (wl,r, ξl,r) and

(w̄, ξ̄). 


∂wl,rt
∂t

=
∂2wl,rt
∂x2

+ ξl,r x ∈ (l, r),

wl,r0 (x) = 0 x ∈ (l, r),

wl,rt (x) = 0 x �∈ (l, r), t ≥ 0,

wl,rt (x) ≥ −vl,rt (x) x ∈ (l, r),∫ T
0

∫ r
l
ξl,r(dx, dt) <∞ T > 0,∫ ∞

0

∫ r
l

(wl,rt (x) + vl,rt (x))ξl,r(dx, dt) = 0.

(4.2)




∂w̄t
∂t

=
∂2w̄t
∂x2

+ ξ̄ x ∈ R,

w̄0(x) = 0,

w̄t(x) ≥ −v̄t(x),∫ T
0

∫
R

e−λχ(x)ξ̄(dx, dt) <∞ λ, T > 0,∫ ∞

0

∫
R

(w̄t(x) + v̄t(x))ξ̄(dx, dt) = 0.

(4.3)

These PDEs are considered by [22, 24], in which it is shown that ξl,r and ξ̄

are obtained by

ξl,r(dx, dt) = lim
ε→0

1

ε

(
(wl,r)εt (x) + vl,rt (x)

)−
dx dt,

ξ̄(dx, dt) = lim
ε→0

1

ε
(w̄εt (x) + v̄t(x))

− dx dt,
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where (wl,r)ε and w̄ε are solutions of the following penalised PDEs, respec-

tively: 


∂(wl,r)ε

∂t
=
∂2(wl,r)ε

∂x2
+

1

ε

(
(wl,r)ε + vl,r

)−
x ∈ (l, r),

(wl,r)ε0(x) = 0 x ∈ (l, r),

(wl,r)εt (x) = 0 x �∈ (l, r), t ≥ 0.

(4.4)




∂w̄ε

∂t
=
∂2w̄ε

∂x2
+

1

ε
(w̄ε + v̄)− x ∈ R;

w̄ε0(x) = 0.
(4.5)

It is shown in [22, 24] that (wl,r, ξl,r) and (w̄, ξ̄) exist uniquely and wl,r, w̄ ∈
C(R+,�). In addition, ‖(wl,r)ε − wl,r‖T0,∞ → 0 and ‖w̄ε − w̄‖Tλ,∞ → 0 as

ε ↓ 0 for each l, r and the convergences are monotone.

Note that (wl,r + vl,r, ξl,r) has the same law with (ul,r, ηl,r). Now we

further prepare the following PDE:


∂(w̄l,r)ε

∂t
=
∂2(w̄l,r)ε

∂x2
+

1

ε

(
(w̄l,r)ε + v̄

)−
x ∈ (l, r),

(w̄l,r)ε0(x) = 0 x ∈ (l, r),

(w̄l,r)εt (x) = 0 x �∈ (l, r) t ≥ 0.

(4.6)

Then we can show:

Lemma 4.3. For every λ, T > 0, we have the following estimate inde-

pendent of ε:

‖(w̄l,r)ε − (wl,r)ε‖Tλ,∞ ≤ eKλT ‖v̄ − vl,r‖Tλ,∞,

where Kλ := sup{λχ′′(x) + (λχ′(x))2}.

The proof of this lemma is essentially given in [22, 24]; consider a PDE

satisfied by
(
(w̄l,r)εt (x) − (wl,r)εt (x)

)
e−Kλte−λχ(x)−‖e−Kλt(v̄−vl,r)‖Tλ,∞, we

can easily show that it is non-positive and we obtain the lemma by symme-

try. We omit the detailed proof.

Now we have the following estimate:

‖wl,r − w̄‖Tλ,∞ ≤ ‖wl,r − (wl,r)ε‖Tλ,∞ + ‖w̄ − w̄ε‖Tλ,∞
+ ‖(wl,r)ε − (w̄l,r)ε‖Tλ,∞ + ‖(w̄l,r)ε − w̄ε‖Tλ,∞

=: I + II + III + IV.

(4.7)
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Two terms I and II converge to zero as ε tends to zero, while III is

estimated by ‖vl,r − v̄‖ from Lemma 4.3. It only remains to estimate IV.

To this end, we prepare the following function:

(w̃l,r)εt (x) :=

∫ t
0

{
∂

∂y
Gl,rt−s(x, l)w̄

ε
s(l) −

∂

∂y
Gl,rt−s(x, r)w̄

ε
s(r)

}
ds,(4.8)

where Gl,rt (x, y) denotes the heat kernel on (l, r). Then from (4.5) and (4.6),

w̄εt (x) = (w̃l,r)εt (x) +
1

ε

∫ t
0

∫ r
l
Gl,rt−s(x, y) (w̄εs(y) + v̄s(y))

− dy ds

and

(w̄l,r)εt (x) =
1

ε

∫ t
0

∫ r
l
Gl,rt−s(x, y)

(
(w̄l,r)εs(y) + v̄s(y)

)−
dy ds

on x ∈ (l, r), respectively. We have, however,

(w̄εs(y) + v̄s(y))
− ≤

(
w̄εs(y) − (w̄l,r)εs(y)

)−
+

(
(w̄l,r)εs(y) + v̄s(y)

)−

≤
(
(w̄l,r)εs(y) + v̄s(y)

)−
.

Hence we have, since Gl,rt (x, y) ≥ 0, 0 ≤ w̄εt (x)− (w̄l,r)εt (x) ≤ (w̃l,r)εt (x).

Simple computations (see also [18]) lead us to∫ t
0

∂

∂y
Gl,rt−s(x, l)w̄

ε
s(l) ds

≤ sup
0≤s≤t

∣∣∣w̄s(l)e−λl∣∣∣ · 2eλ2t
2

(
1 − e−2λ(r−l)

)−1
e2λle−λx.

∫ t
0
∂
∂yG

l,r
t−s(x, r)w̄

ε
s(r) ds can be estimated similarly. Hence IV → 0 as

(l, r) → R uniformly in ε. Then, letting ε ↓ 0 in (4.7), we obtain ‖wl,r −
w̄‖Tλ,∞ → 0 as (l, r) → R, and in particular

sup
(l,r)⊂R

‖wl,r‖Tλ,∞ <∞.(4.9)

It still remains that ξl,r converges to some measure ξ̃. Returning to the

equation (4.2), we have∫ t
0

∫
R

φ(x)ξl,r(dx, ds) =
〈
wl,rs , φ

〉
−

∫ t
0

〈
wl,rs , φ

′′
〉
ds,(4.10)
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where φ ∈ C2
0 (R) and we took (l, r) sufficiently large such that suppφ ⊂

(l, r). Letting (l, r) → R, we obtain that ξl,r converges to some Schwartz’

distribution ξ̃. Since ξl,r’s are positive, so is ξ̃. After that, letting φ(x) →
e−λ

′χ(x) (λ′ > λ) shows

∫ T
0

∫
R

e−λχ(x)ξ̃(dx, dt) <∞

from (4.9). It is easy to show ξ̃ = ξ̄. The tightness of the law of vl,r

combined with (4.9) and the convergence of ξl,r proves the conclusion. �

Remark 4.1. Proposition 4.2 can be shown in the case where σ �≡
Const., if the solution (ul,r, ηl,r) on (l, r) is unique for each l and r. The

proof is modified by considering the following equation instead of (4.1):

∂vl,rt
∂t

=
∂2vl,rt
∂x2

− f(ul,rt ) + σ(ul,rt )Ẇ (x, t).

For the tightness of vl,r, it is sufficient to prove

sup
(l,r)⊂R

sup
ε>0

E

[
sup

x∈R,0≤t≤T

∣∣∣(ul,r)εt (x)e−λχ(x)∣∣∣p
]
<∞,

which is essentially given in [24]. The uniqueness of (ul,r, ηl,r) is required

for the uniqueness of vl,r, and accordingly ξl,r.

5. Gibbs Measures with Hard-wall External Potential

This section is devoted to discussing Gibbs measures associated with

the SPDEs with reflection with σ ≡ 1. We call a function U = U(x, z),

(x, z) ∈ R × R+ the potential if it satisfies ∇U(x, z) = f(x, z), where

∇ denotes the partial derivative with respect to the second variable z.

The relationship between Gibbs measures and reversible (probability) mea-

sures associated with the SPDEs were discussed by several authors, see

e.g., [7, 11, 17]. Here we say a probability measure µ is reversible if

Eµ[F (u0)G(ut)] = Eµ[F (ut)G(u0)], where F,G ∈ �C∞
b ≡ �C∞

b,R and µ

is the initial distribution of u0. Note that ul,r and u determine diffusion

processes on �+.
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In the first place, we shall discuss reversible measures associated with

ul,r. In the following theorem, u0(l) and u0(r) may be zero (the case where

Nualart and Pardoux[22] studied).

We denote by βl,rψ the probability measure on C([l, r],R) induced by the

pinned Brownian motion {Bx}l≤x≤r satisfying Bl = ψ(l) and Br = ψ(r) for

ψ ∈ C(R,R+).

Theorem 5.1. Let f̃ be the extension of f to I × R → R by putting

f̃(x, z) = f(x, 0) for z < 0 and Ũ be its corresponding potential. Suppose

that Ũ is normalisable, i.e.,∫
C([l,r],R)

exp

{
−2

∫ r
l
Ũ(x, φ(x)) dx

}
βl,ru0 (dφ) <∞.

Then, a probability measure

µl,ru0(dφ) =
1

Z l,ru0
exp

{
−2

∫ r
l
U(x, φ(x)) dx

}
νl,ru0 (dφ)(5.1)

is reversible under the solution ul,r of the SPDEs (2.1) with reflection for I =

(l, r) with Dirichlet boundary condition (2.5), where νl,ru0 is the probability

law on C([l, r],R+) induced by 3-dimensional Bessel bridge {Bx}l≤x≤r with

Bl = u0(l) and Br = u0(r). Z
l,r
u0 is the normalising constant.

Proof. First, let us assume u0(l), u0(r) > 0. Note that 1
ε (z)

− =

−
(

1
2ε(z ∧ 0)2

)′
for z �= 0. It is known that a probability measure

(
µl,ru0

)ε
(dφ) :=

1

Al,ru0
exp

{
−2

∫ r
l
Ũ(x, φ(x)) dx

}

× exp

{
−1

ε

∫ r
l

(φ(x) ∧ 0)2 dx

}
βl,ru0 (dφ)

is reversible under the penalised solution (ul,r)ε, see [5, 7]. However, it is

easily seen that exp
{
−1
ε

∫ r
l (φ(x) ∧ 0)2 dx

}
→ 1{φ(x)≥0,∀x∈[l,r]}(φ) as ε tends

to zero. From Williams’ theorem (see [20]), it is shown that
(
µl,ru0

)ε
→ µl,ru0

weakly as ε ↓ 0. Note that the penalised solution (ul,r)ε converges to ul,r

uniformly as ε ↓ 0. Hence we have

E

(
µl,ru0

) ε [
F ((ul,r)ε0)G((ul,r)εt )

]
→ Eµ

l,r
u0

[
F (ul,r0 )G(ul,rt )

]
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for every F,G ∈ �C∞
b . The convergence when u0(l), u0(r) → 0 can be

easily obtained by a comparison theorem with respect to Dirichlet boundary

conditions[9]. �

Remark 5.1. The above proof is taken from [23]. Zambotti[29] gave

another proof of Theorem 5.1.

Remark 5.2. We supposed that Ũ is normalisable. It is satisfied if,

e.g., Ũ is bounded from below. Several conditions for Ũ are known (see

[27]). In [29], −ρ|z| ≤ f(x, z) with 0 ≤ ρ < π2/(r − l) is given.

Remark 5.3. Recall that 3-dimensional Bessel bridge does not hit zero

almost surely. Hence the condition that the initial value u0 ∈ �̃+ is natural

from a view point of reversible dynamics.

We now define the Gibbs measure with hard-wall external potential.

Definition 5.1. We call a probability measure µ on �+ Gibbs mea-

sure with hard-wall external potential if µ satisfies the following DLR-

equation:

µ( · | �l,r)(ψ) = µl,rψ ( · ), µ-a.e. ψ,(5.2)

where the left hand side denotes the regular conditional probability measure

of µ with respect to the σ-field �l,r generated by �+|[l,r]c . In the right hand

side, µl,rψ is a probability measure defined by (5.1) replacing u0 by ψ.

Under our assumptions (A1) and (A2), there exist Gibbs measures. Gen-

eral conditions are given by Hariya[12].

Theorem 5.2. Gibbs measure with hard-wall external potential is re-

versible under the solution u of the SPDEs (2.1) with reflection for I = R.

Proof. We trace a method used, for instance, by Funaki and Spohn

[10]. From Theorem 5.1, we have

Eµ
l,r
ψ [F (ul,r0 )G(ul,rt )] = Eµ

l,r
ψ [G(ul,r0 )F (ul,rt )](5.3)



442 Yoshiki Otobe

for F,G ∈ �C∞
b and (l, r) enough large to contain the support of F,G.

Define

W l,rψ := {g ∈ �+; g(x) = ψ(x) for x ∈ [l, r]c}.

We can rewrite the reversibility (5.3) usingW l,rψ (we extend µl,rψ to a measure

on W l,rψ naturally):

∫
W l,r
ψ

F (φ)El,rφ,ψ[G(ul,rt )]µl,rψ (dφ) =

∫
W l,r
ψ

G(φ)El,rφ,ψ[F (ul,rt )]µl,rψ (dφ),(5.4)

where P l,rφ,ψ is the law of ul,r such that u(x, 0) = φ(x) for x ∈ [l, r] and

u(x, 0) = ψ(x) for x ∈ [l, r]c.

Integrating both sides of (5.4) over �+ with respect to the Gibbs measure

µ with hard-wall external potential and using DLR property, we have∫
�

∫
W l,r
ψ

F (φ)El,rφ,ψ[G(ul,rt )]µl,rψ (dφ)µ(dψ)(5.5)

=

∫
�
F (ψ)El,rψ [G(ul,rt )]µ(dψ),

where P l,rψ denotes the law of u with u(x, 0) = ψ(x) for x ∈ R and u(x, t) =

ψ(x) for x ∈ [l, r]c, t ≥ 0. Using Theorem 4.1, the proof is completed. �

Next, we show an energy inequality.

Proposition 5.3. Assume that U(z) ∈ C2(R+) is uniformly convex

in the following sense that there exists a constant c := infz∈R+ U
′′(z) > 0

such that

(z − z̄)(f(z) − f(z̄)) ≥ c(z − z̄)2.

Let (u, η) and (ū, η̄) be two (unique) solutions with initial values u0 and ū0,

respectively. Then, there exists a constant K > 0 such that

|ut − ūt|2λ ≤ e−Kt|u0 − ū0|2λ.(5.6)
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Proof. Note that both ut and ūt satisfy the SPDE with reflection

(2.1) with σ ≡ 1 for I = R. Hence, at least formally speaking, taking the

difference of both hand sides of the equation leads us to a deterministic

PDE satisfied by wt := (ut − ūt) with initial value w0 := (u0 − ū0), that is,

∂wt
∂t

=
∂2wt
∂x2

− (f(ut) − f(ūt)) + η − η̄.

Formally speaking (the computations actually can be justified by using mol-

lifier technique[22]), multiplying both hand sides by eKtwt(x)φ(x)2 with

φ ∈ C∞
0 (R) and integrating, we obtain

∫ t
0

(
∂ws
∂s

, eKswsφ
2

)
ds =

∫ t
0

(
∂2ws
∂x2

, eKswsφ
2

)
ds

−
∫ t

0

(
f(us) − f(ūs), e

Kswsφ
2
)
ds

+

∫ t
0

∫
R

eKs(us(x) − ūs(x))φ(x)2(η − η̄)(dx, ds).

Note that ∫ t
0

∫
R

eKs(us(x) − ūs(x))φ(x)2(η − η̄)(dx, ds) ≤ 0

and using uniform convexity condition, it is easy to obtain

1

2

(
eKt‖wtφ‖2 − ‖w0φ‖2 −K

∫ t
0
eKs‖wsφ‖2 ds

)

≤ 1

2

∫ t
0

∫
R

eKsws(x)
2
(
φ(x)2

)′′
dx

−
∫ t

0
eKs

∥∥∥∥∂ws∂x φ
∥∥∥∥

2

ds− c
∫ t

0
eKs‖wsφ‖2 ds.

Now we approximate φ2(x) → e−2λχ(x) and there exists a constant Cλ such

that (φ(x)2)′′ ≤ Cλe
−2λχ(x). Taking λ and K so that K = 2c− Cλ > 0, we

have

|wt|2λ ≤ |w0|2λe−Kt. �
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Theorem 5.4. Assume that U fulfils the same conditions of Proposi-

tion 5.3. Then the tempered stationary measure for u is unique. In par-

ticular, the tempered reversible measure for u is also unique. Here, the

stationarity means the condition for the reversibility, but for all F ∈ �C∞
b

and G ≡ 1.

Proof. Let µ and µ̃ be two stationary probability measures and let

u and ũ be the corresponding solutions with initial distributions µ and µ̃,

respectively. Then, for every G ∈ �C∞
b , there exists a constant K > 0 such

that
∣∣Eµ[G] − Eµ̃[G]

∣∣ ≤ KE [|ut − ũt|λ] → 0 as t → ∞, where Eµ denotes

the expectation with respect to µ and we used Proposition 5.3. Thus the

proof is completed. �

Finally we obtained the following property.

Corollary 5.5. Assume that U satisfies the same conditions of

Proposition 5.3. Then the tempered Gibbs measure with hard-wall exter-

nal potential is unique. Moreover, it coincides with the tempered reversible

measure for the solution of the SPDE with reflection with the corresponding

potential.
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