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Abstract. We are studying some aspects of the action of the Ga-
lois groups on torsors of paths on an elliptic curve minus a point. We
construct objects whose behaviour is similar to the classical polyloga-
rithms on the projective line minus three points.

0. Introduction

0.1. Let E be an elliptic curve defined over a number field K and given
by an equation

(0.1.0) Vrazy+asy=2a>+arz®+asz+ ag.

Let us fix a prime number /.

We shall study the Galois action on the ¢-completion of the étale fun-
damental group m(Ex\{0},0) and on the m (F%\{0},0)-torsor of ¢-adic
paths 7(E%\{0}; 2, 0), where z € E(K)\{0} or z is a tangential base point
at 0 defined over K.

After a linear change of variables we can assume that the elliptic curve
E is given by an equation

(0.1.1) y? =423 —ax —b

1991 Mathematics Subject Classification. 11 Number Theory.

353



354 7. WOJTKOWIAK

with A = a3 — 27b% # 0.

Let 0 be the point at infinity. Let us set ¢t = —% and w = —%. Then the
point 0 has coordinates (t,w) = (0,0) and ¢ is a local parameter at 0. Let
0 be the tangential base point at 0 corresponding to the local parameter ¢.

Let us fix an embedding K C C. Let E(C) be a set of complex points
of E. We can assume that there is a lattice £ C C such that a map
C/L — E(C) given by z — (P(z,L£),P'(z,L£)) is an isomorphism. Let
L =7Zwy + Zwsy. Let z1, 29 € m (E(C)\{0},0) be two canonical generators
corresponding to w; and wy respectively. Let u € m(E(C)\{0},0) be a
small loop around 0 such that

u=(z1,20)" .
Observe that for any o € Gg, we have
(0.1.2) o(u) = uX9) .

To study the action of Gx on the ¢-completion of the étale fundamen-
tal group m (F#\{0},0) and on the m (F%\{0},0)-torsor of f-adic paths
W(EK\{O};Z76) we shall embed them both into the Q-algebra of non-
commutative formal power series in two variables. Then we can use the
full power of linear algebra to study these actions.

Let

kw1 (Ex\{0},0) — Q{{X1, X2}}

be a continuous multiplicative embedding into non-commutative formal
power series such that k(z;) = e for i = 1,2.

The action of Gx on 7 (Ez\{0},0) induces an action of Gx on a Q-
algebra Q{{X1, X2}},

(0.1.3) G — Aut (Q{{X1, Xa}}).

—

Let us set EF(K)\{0} := (E(K)\{0}) U tangential base points at 0 de-

fined over K. Let z € E(K)\{0}, p € W(E?\{O};Z,G) and 0 € Gg. Then
we define

o(p):=0-p- o1, l(o):==p " -o(p)

and
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LEMMA 0.1.4. LetT,0 € Ggx. Then

Ap(T-0) = Ap(7) - 7(Ap(9)) -

Now we shall embed the 71 (Ew\{0},0)-torsor m(E+\{0};2,0) into the
Qg-algebra Qu{{ X1, X2}}. Let

tp : T(Eg\{0}; 2,0) — m (Ex\{0},0)

1

be given by ,(¢) :=p~" - g. Observe that the composition

kot,: W(E?\{O}, Z, 6) - QZ{{Xl’XQ}}

is an embedding.

Let GL (Qp{{X1,X2}}) be a group of linear automorphisms of a Q-
vector space Qu{{X1, X2}}. The action of Gk on 7(Ex\{0};z,0) induces a
linear action of Gk on Q{{X1, X2}},

(0.1.5) ()p: Gr — GL(Qe{{X1, X2}})

given by
op(w) :=Ap(o) - o(w).

We describe briefly the contents of the paper.

In section 1 we consider the action of the Galois group G on the Q-
algebra Q{{ X1, X2}} induced by the action of Gk on 71 (E#\{0},0). Most
results we have obtained can be found in [5]. However we shall give proofs
because these results are very important in our study of the Galois actions
on torsors of paths.

In section 3 we study the action of G on the torsor of paths
(B \{0}; 2, 0). It follows from Lemma 0.1.4 that the function

Gr 2 0 — Ay(0) € Q{{X1, Xa}}

is a cocycle. Coefficients of A, usually are not cocycles. We are looking for
conditions when linear combinations of such coefficients are cocycles. This
is closely related to the Zagier conjecture about polylogarithms.
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Section 2 has motivic character. We are studying motivic version of the
coefficients of the power series A,.

In section 4 we are looking for an explicit arithmetic formula for the
coefficients of the power series Ap(c). In the special case p = z; (i = 1,2)
these coefficients are calculated in [5] and in a general case we are only
reinterpreting the results of Nakamura from [5].

In section 5 we show that the coefficients of A,(o) satisfy functional

equations analogous to function equations 7™~ 37 Li,,(£2) = Liy,(2") of
=1
the classical polylogarithms. ‘

The present paper is an elliptic version of our long paper “On f¢-adic
iterated integrals, I, IT and III” (see [6]). In [6] we are studying similar
questions for a projective line minus several points. Detailed motivations of
new definitions and constructions introduced in the present paper one can
find in [6] and also in [5].

We point the reader attention to papers [2] and [4]. We should explain
the relation between these papers and our work, however we are not able
to give a precise relation. The fiber of the f-adic realization of the elliptic
polylogarithm sheaf from [2] over a point z of an elliptic curve is a Galois
representation. The coefficients of this Galois representation, which are
functions from a Galois group to Qy, should be related to functions 57,
from Definition 3.3.0 in our work. We are preparing a paper "On f-adic
periods” where we hope to relate the polylogarithmic sheaf of Beilinson-
Deligne on a projective line minus three points to f-adic polylogarithms
defined and studied in [6].

1. Galois Action on the Fundamental Group

1.0. In this section we are studying the action of the Galois group Gx
on the Qg-algebra of non-commutative formal power series Q{{X1, X2}}
induced by the action of Gk on Wl(E?\{O},ﬁ) via the embedding k :
m1(Eg\{0},0) — Q{{X1, X2}}.

Let G (resp. L) be a group (resp. a Lie algebra). The subgroups I'""G
(resp. Lie subalgebras I'"L) of G (resp. L) are defined recursively by

MG =G (resp. 'L =1L), T""'G = (I'"G,G) (vesp. T""'L =[I"L, L))

forn=1,2,....
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We denote by Lie(X1, X2) a free Lie algebra over Qy on two genera-
tors X1 and Xo. Let L(X1,Xs2) := lim Lie(Xy, X2)/I'™ Lie(X1, X2) be a

completed free Lie algebra on X; and Xs. The elements of Lie(X;, X2)
and L(X1, X5) we identify with Lie elements in Qy{X1, X2} (algebra of
polynomials in non-commuting variables X; and X3) and in Q{{ X1, X2}}

respectively.
We shall use the following notation. If A and B belong to a Lie algebra
then [...A, B%] := A and [...A, BY] := [[...A, B~1], B] for j > 0.

We define an element U of L(X;, X3) by the equality
k(u) =eY.
Observe that U = log(e*2 - eX1 . e=X2 . ¢e=X1)_ It follows from 0.1.2 that
(1.0.1) o(U)=x(o)-U.

Let us set L' := [L(X1, X2), L(X;, X2)] and L” := [L’, L']. The elements
[...[..U,Xi], X}] for i,j > 0 form a linear topological base of L'/L". Let
Qel[u1, u2]] be a Q-algebra of formal power series in commuting variables u;
and ug. We introduce on L'/L" a structure of a Qy[[u1, ug]]-module setting

wy [ L UXG) XD =L U XY, X

and A ' ‘ .
ug [ [ U XY, XY =1 ..U, X, X3

and extending linearly (with respect to infinite sums) to the continuous ac-
tion of Qg[[u1, us]] on L'/L”. Observe that L' /L" is a free Qq[[u1, u2]]-module
generated by U. Hence L'/L" is also a free Qg[[u1, ug]]-module generated by
[X1, Xo).

Let K(E(£>)) be an extension of K obtained from K by adding coor-

dinates of all £"-torsion points of E(K) for all n. Let us set
G(E) = Gal(K(E((>))/K)
and
Hy = (m1(Eg\{0},0)/T°m (Ex\{0},0)) © Q.

Observe that Hy is a G(E)-module and a GL(H;)-module and G(F) C
GL(H,).
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The groups G(E) and GL(Hy) act on the tensor algebra T'(H;) :=
i=0

Hf)i and on the completed tensor algebra f(Hg) = lim (T'(Hy)/( é

n i=n+1
H®%), The map Hy — Q- X1 + Qp - Xo, 2; — X;, for i = 1,2 identifies
the completed tensor algebra T(H;) with the Q-algebra Qg {{X1, Xs}}.
Hence the groups G(F) and GL(H;) ~ GL2(Qg) act on the Qg-algebra
Q¢{{X1,X2}}. The action of G(E) on the Qp-algebra Q,{{X1, X2}} we
denote by

n:G(E) — Aut (Qu{{ X1, X2}}).

The Lie algebras Lie(X;, X2) and L(X1, X2) as well as the degree n
part Lie(X7, X2), of the Lie algebra Lie(X;, X2) are preserved by this ac-
tion of G(E). Observe that Lie(X1,X»); = H;, Lie(X1,X2)s = A®Hj,
Lie(X1, Xo)3 = A H; ® H; and Lie(Xy, X2)s = A* H; ® S?H; as G(E)-
modules. We have also the following lemma.

LEMMA 1.0.2. Let V;, be a vector subspace of L'/L" spanned by ele-
ments |...[...U, X1, X3] with i+ j =n —2. Then V,, = \> H;® S"2H; as a
G(E)-module.

The actions of Gx on Q{{X1, X2}} defined in 0.1.3 and 0.1.5 are pro-
unipotent only for o € Gk (g(e~)). We shall modify these actions in such a
way that they will be pro-unipotent for any o € Gg.

We define a map

¢ : Gg — Aut (Qg{{Xl, XQ}})

by setting
6(0) i= o on(o) L.
We define a map

Yp 1 G — GL(Q{{X1, X2}})

by setting
Yp(0) = opon(o) 7.
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LEMMA 1.0.3. For any o € Gk the automorphisms ¢(o) and ,(o)
are pro-unipotent. For any 7,0 € G we have

(*) ¢(r-0) = o(1) o (n(7) 0 () on() )
and
() Up(7 - 0) = (1) 0 (n(7) 0 Pp(0) o m(7) 1)

Proor. We shall prove only the first identity. The proof of the second
identity is similar. We have ¢(7-0) =Tocon(r o)t =1000on(o) Lo
n(r)~" = ron(r) " ton(r)ooon(o)ton(r) =t = ¢(r)o(n(r)od(a)on(r)""). O

REMARK. The two equalities of Lemma 1.0.3 have the following inter-
pretation. Let us consider the action of Gx on Aut (Q/{{X1,X2}}) and

on GL(Qu{{X1,X2}}) given by o(f) = n(o) o f on(o)~t. The equal-
ities (*) and (%x) mean that ¢ : Gx — Aut (Q{{X1,X2}}) and v, :
Gk — GL(Qp{{X1, X2}}) are 1-cocycles on Gx with values in G g-groups
Aut (Qp{{X1,X2}}) and GL (Qu{{X1, X2}}) respectively.

1.1.  We shall study the action

G — Aut (Qu{{X1, X2}})
deduced from the action of Gk on 7 (E%\{0}, 0). Let 0 € G. Then there
are ol (o), ab(0) € Zy such that

o(x;) = x(fli(a) . x;%(a) mod %7 (Ex\{0},0)

for ¢ = 1,2. Hence there are f1(X1, X2)(0) and fo(X1, X2)(0) in L' such
that

(1.1.0) o'(eXi) = eai(U)Xl + a%(0) X2 _efi(XhXQ)(O')

for i« = 1,2. Therefore there are wq (X7, X2)(0) and we(X1, X2)(o) in L’
such that

(1.1.1) o(X;) = ot (0) X1 + ab(0) Xy + wi( X1, X2)(0)
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fori=1,2.
We recall that K(FE(¢>°)) is an extension of K obtained from K by

adding coordinates of all ¢"-torsion points of E(K) for all n. Let o €
GK(E(goo)). Then

o(x;) = z; mod T%m (Fx\{0},0) for i =1,2.

Hence we get that
Xi) Xi | efi(XhXQ)(U)

o(e??) =e™i

for ¢ = 1,2. It follows from 0.1.2 that

(1.1.2) (6—X2 . ef1(X1,X2)(0) .eXz) . ef2(X1,X2)(0)
(e=X1. ef2(X1,X2)(0) | eX1). e/1(X1,X2)(0)

Let us denote by O the product in L(X, X5) given by the Baker-Campbell-
Hausdorff formula. Then in L(X;, X2) we have

(1.1.3) ((=X2) O fi(X1, X2)(0) O X2) O f2(X1, X2)(0) =
((=X1) O fa(X1, X2)(0) O X1) O f1(X1, X2)(0).

From now on we shall work modulo L”. Tt follows from 1.1.3 that in
L'/L" we have

(1.1.4) ((=X2) O f1(X1,X2)(0) O X2) O (= f1(X1, X2)(0)) =

((=X1) O fo(X1, X2)(0) O X1) O (—f2(X1, X2)(0)) -
Using the Qy[[u1, ug]]-module structure on L'/L"” we get

(1.1.5) (" —1) f1(X1, X2)(0) = (" — 1) fo(X1, X2)(0) -
Hence there is F(X1, X2)(0) € L' such that
(1.1.6) filX1, X2)(0) = ((=X3) O F(X1, X2)(0) O Xi)

—F(Xl,XQ)(O') mod L//
for i =1,2.
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LEMMA 1.1.7.  Lel 0 € Gg(g~))- Then we have
O'(Xl) =X, + [XZ, —F(Xl,XQ)(O')] mod L"
fori=1,2 and for some F(X1,X2)(c) € L'.

Proor. It follows from 1.1.0 and 1.1.6 that o(X;) = X; O
fi(X1, X5)(0) = X; O ((=Xi) O F(X1, X2)(0) O Xi O (—F (X1, X2)(0))) =
F(Xl,Xg)(G')OXZ'O(—F(Xl, XQ)(O’)) = X7,+[X’[,7 —F(Xl, XQ)(O’)] modL”.
It follows from the considerations before the lemma that F(X;, X2)(0) €
r'.d

LEMMA 1.1.8. Let 0 € Gg(ge~)). We have
(log 7)(X:) = [Xi, —F(X1, X2)(0')] mod L"
fori=1,2 and for some F(X1,Xs2)(c) € L'.
PROOF. Observe that o([X1,X2]) = [X1 + [X1, —F(X1,X2)(0)],
Xo + [Xo, —F(X1,X2)(0)]] = [X1,Xo] + [X3, [Xo, —F (X1, X2)(0)] +

[ X1, —F (X1, X2)(0)], Xo] = [X1, X32] mod L. Hence o acts trivially on
L'/L". We have (logo)(X;) = (o —Id)(X;) — 3 (0 — Id)*(X;) + % (0 —

d)P3(X;)... = [X;,—F(X1,X2)(0)] — ([X + [Xi, —F (X1, X2)(0)],
o(—F(X1,X2)(0))] — [Xi, —F(X1,X2)(0)]) + --- = [X;, —F(X1,X2)(0)]
mod L”. O

We recall that
Oz, = Ly, ()00,

where Ly € GL (Q{{X1, X2}}) is a left multiplication by g.
LEMMA 1.1.9. Let 0 € Gg(g~)). Then we have
(logo,,)(1) = fi(X1, X2)(0) mod L”
fori=1,2.

Proor. It follows from 1.1.0 that Ay, (o ) = filX1.X2)(9) - Therefore
IOg(LAxi(a) o 0') = Lfi(Xl,Xg)(a) + loga + 5 [sz(Xl X3)(0)> loga} +



362 7. WOJTKOWIAK

The derivation logo acts trivially on L'/L”. Hence (logoy,)(1) =
fi(X1,X2)(0) mod L”. O

We recall that L'/L" is a free Qg[[u1, uz]]-module generated by U. The
element —F (X7, X9)(0) € L'/L", hence

o0

—F(X1,Xa)0) = > > Fyo)l..[..UXi], X3]

where an(X1,Xo)(0) = >, o Fij(0)...[...U, X{],X%]. It follows
from Lemma 1.0.2 that ay, (X1, X2) is a function from G (p(e)) to /\2 H®
Sn_2Hl.

LEMMA 1.1.10. The map

2
G (B(e=)) 2 0 — an(X1,X2)(0) € /\ H ® S" > H,

18 a homomorphism.

PROOF. Let 7,0 € Gg(gp~)). We have

1

log(t-0) =logT + logo + 5 [logT,logo] +---.

This implies
1
log(7 - 0)(X;) =log7(X;) + logo(X;) + 5 [log 7,log o](X;) + - - -

Observe that [log 7,logo](X;) = log 7(log o(X;)) — logo(log 7(X;)) = log T
([Xi, —F (X1, X2)(0)]) — log o([X;, —F (X1, X2)(7)]) = 0 because log 7 and
log o act trivially on L'/L”. Therefore we get

log( - 0)(X;) = log 7(X;) + log o(X;) mod L”.

Hence it follows from Lemma 1.1.8 that F/(X;, Xo)(7-0) = F(X1, X2)(7) +
F(X1,X5)(0) mod L”. This finishes the proof of the lemma. [J
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The map a, : GgEue) — AN H, ® S"~2H, given by o0 —
an (X1, X2)(0) is a homomorphism, hence it factors through
2
an Gy = [\ He® "~ He.

The Galois group G(E) = Gal(K(E(¢*))/K) acts on G%?(E(goo)) in the
following way. Let 7 € G(F) and let T be a lifting of 7 in Gx. We set
(o) :=7-0-7 ! for any o € G (p(e=)). Observe that the class of 7(0) in
G%)(E(zoo)) does not depend on a choice of a lifting 7 of 7.

ProrosiTioN 1.1.11. The homomorphism «y, belongs to

2
HomG(E)(G??(E(ZOO)V /\ H[ ® Sn_Q Hg) .

PROOF. Let 7 € Gk and 0 € G (pe~)). We have
log(r-0 -7 )(X;) = [Xi, —F(X1, X2)(7 -0 -7 )] mod L” .
On the other side
log(7 -0 - Tﬁl)(Xi) = (tologoo 7-71)(XZ-)

= r(logo(ad (771 X1 4+ ab (771 (Xa) + wi( X1, X2)(771)))
= 7([al(77") - X1+ ah(r7!) X, —F(X1, X2)(0)]) mod L”
by 1.1.1 and Lemma 1.1.8. Observe that

T(O/i(T_l) X1+ aé(T_l)XQ) =X, mod L

and
rlan(X1, X) (@) =7( 3 By LU Xi] X3))=
i+j=n-—2
Y Fyo)l.. L x(M) U, (a(r) X1+ a3(1) X2)1,
i+j=n—2

(a3(1) X1 + a3(7)X3)’] mod L".
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Hence we get
an (X1, Xo) (10 - 771 = 7(an (X1, X2)(0))
where on the right hand side we have an action of G(E). [

We shall define filtrations of the Galois group G associated with the
action of Gx on the fundamental group mi(Ew\{0},0) and on the
1 (B \{0}, 0)-torsor (B \{0}; 0). The action of Gk on 71 (B \{0}, 0)
induces

Gr — Aut (11 (E%\{0},0)).

We set

G, = Gn(E?\{O}vﬁ)
= ker (Gg — Aut (m(Fx\{0},0)/T" " (Fx\{0},0))).

Let z € E(K)\{0} and let p be a path from 0 to .
We set

Hp(2,0) := Hy(BEz\{0};2,0) := {0 € Gy, | I,(0) € T"m(Ex\{0},0)}
and

Hoo(2,0) := Hoo(Ex\{0}; 2,0) ﬂH 2,0).

Let S C E(K) \ {0} be a finite subset. We deﬁne subgroups of Gk setting

Hy,(S,0) := Hy(Eg\{0}; 5,0) := ] Ha(z,0)
z€eS
and
Hoo(S,0) := Hoo(E#\{0}; S, 0) ﬂH (S,0)

Observe that G = Hy(z,0) = Hy(S,0) = G K (E(t>))-

In the above definitions we can replace E\{0} by E7\S, where S C
E(K ) is a finite set. The corresponding subgroups of G we denote by

Gn(Ex\S,v), Hy(E#\S; 2,v) and H,(Ex\S; S,v), where v is a (possibly
tangential) base point and S C F(K)\S is a finite set.

These filtrations were studied in [6], section 3 for a projective line minus
a finite number of points.
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1.2.  In this section we shall use the automorphism —id : Ex\{0} —
Ex\{0} to study the action of G on 71 := 71 (E#\{0},0).
LEMMA 1.2.1. Let o € Gg. Then we have

() = 2711 xgé@') (1, 9) "2 ©1(0)-05(0)+3 (0h(0) =0 (@) + (-1~ x(0)

mod Iy

for some o' (0),ab(0) € Zy and fori=1,2.

Proor. The map f = —id induces

fe: T1(Eg\{0},0) — m(EE\{0},—0).

x(o)—1

Let s be a path from 0 to —0. We can choose s such that l(c) = u~ 2
We have

s7h fu(r)-s = (ay a7yt and sl fulme) s = oyt (aph agh).

Let us define functions ot,ab, B¢ for i = 1,2 from G to Z; by equalities

%

o(r;) = wiél(a) -xg‘é(”) (a1, :rg)ﬁi(‘j) mod I'® T
for ¢ = 1,2. The action of G commutes with f, hence we get

o(fe(wi)) = fulo(zi)) -

Therefore o(s™' - fu(zi) - s) = o(s)™ - fulo(x)) - o(s) = o(s)™ -
f*(ﬂé?ll(a) : ZI_U;ZQ(U) : (xl,xz)ﬂi(g)) co(s) = ls(o)7t - (_£U1,x2)o‘i<0) :
2y 2y O (g, 20y - (a7 2y )T () = @ Ny
(21, 22)8" (@) +(21(0) =0%(9) mod ¥ ;. On the other side o(s™! - fi(z;) -

s) =

x;ai(o) : x;a;(o) (@1, 9) (@) 04005+ (FDTIX@) od T3y

Comparing exponents at (x1,x2) we get

§(0) = —5 0i(0) - ab(o) + 5 (h(0) — (o) +

> S (1) (o).
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COROLLARY 1.2.2. Leto € Gi. Then

) . 1
o(X;) =aj(o) X1+ as(o) Xo + 3 o

mod I L(X1, X3)
fori=1,2.

LEMMA 1.2.3. The map

-,

m (Ex\{0}, —0) — m(E%\{0},0)

L. w- s commutes with the action of GK(E(=))-

given by cs(w) = s~

PROOF. Let 0 € Gg(g(e~)). Then o(s) = s. Hence we get o(s7tw-

s)=o0(s)t-o(w) -o(s)=st 0w)-s. 0O
The composition c¢s o f, induces a homomorphism of Q-algebras

¢ Qe{{ X1, Xa2}} — Qe{{ X1, Xa}}

given by

QO(SXl) — (E_XQ,G_Xl) . e—Xl — €—X2 . e—Xl . €X2

and

X2) _ 6*X2 . (6*X1’ efxz) — e*Xz . L .Xa ,6X2 .

p(e

Hence we get

3|»—t

— X1, X3 and (X3)

...... — X3, X7], X

p(X1) = Z
Z_

The homomorphism ¢ commutes with the action of Gk (g(e~)), hence ¢
commutes with log o for 0 € G (g(s=)). One computes easily that

(1.2.4) (log o) (¢(X;)) = [X;, F(X1, X2)(0)] mod L.
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We recall that
—F(X1,X5)(0) = i ap (o) in L'/L".
n=2
Observe that

€X2 '€X1 —Xo -e_Xl) _ (€_X2 -€_X1)2' (€X2 _eXl .e—XQ 'G_Xl)' (€X1 '€X2)2 )

o( €
Hence
1 . . .
A= U+i1+i2-§+j2>om o L DXL X mod 27
Let 0 € G,,. Then
(12.5) (¢ 0 log 0)(X:) = (—1)" " [X;, (o)

+ terms of degree 1 in U and degree >n —1

in L//L"”. Comparing 1.2.4 and 1.2.5 for o € G,, we get the following result.

PROPOSITION 1.2.6. Let o € Gop41. Then ag,41(0) = 0.
2. Mixed Motives

2.0. We assume that there exist the categories of motives and mixed
motives. We assume that these categories have all good required proper-
ties such as in [1] and [3] for example. We do not know if the recent
constructions of Voevodsky and others are sufficient for our purpose.

Let Mg be the tannakien category of pure motives over Spec K gener-
ated by H := Hi(F). Let w : Mg — Vectg be the fiber functor of Betti
realizations. Let G be the fundamental group of Mg and let G := w(G).
Then the categories Mg and Rep(G) are equivalent.

Let MM g be the tannakien category of mixed motives M over Speck
such that Gry, M € Mg. We denote also by w : MM g — Vectq the fiber
functor of Betti realizations on MMg. The fiber functor w : MMpg —
Vectq prolongs w : Mg — Vectq. Let II be the fundamental group of
MMepg and let II := w(IT). Then the categories MMpg and Repll are

equivalent.
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The inclusion Mg — MM g induces surjections
II—-G and II—G.

Let us set
U:=ker(Il - G) and U :=ker(Il - G).

Then U is a pro-algebraic, pro-unipotent group scheme over Q. The exten-
sion

U—1—-G

induces
Ut —11/(U,U) - G.

The group G acts on U by conjugations and U is a semi-simple G-
module. The extension U% »— I1/(U,U) —» G is a semi-direct product

U, U X G — G.

2.1. Let B€ Mg and let
e:B— F - Q(0)
be an extension of Q (0) by B in MME. Let

pe : 11 — Aut(w(B) & Q),

w(B) Q
Q) > g — w(B) <<PB(9) ue(g)> € Aut(w(B) © Q)
Q 0 1

be the corresponding representation. The equality

pe(991) = pe(9) pe(g1)

implies
pe(g91) = pe(g) + ¢B(g) pe(g1) ,

where
e + TH(Q) — Hom(Q, w(B)) = w(B).

Observe that p. is a cocycle and

Extlyu, (Q(0), B) = H' (I w(B)) .
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Let w,u; € U(Q) and g € II(Q). Then pe(u - uy) = pre(u) + pe(u1) and
pe(g-u-g71) = pp(g) pe(u). Hence pe induces a G-homomorphism

ule) : U(Q) — w(B).

Having a G-homomorphism p : U%(Q) — w(B) we can construct a repre-
sentation p,, of U™ x G setting

i = (0 + 1)

)

and a cocycle i/ : U%®(Q) x G(Q) — w(B) setting u'((u,g)) = u(u). Hence
we have shown that

Extu,, (Q(0), B) = Home(U*(Q),w(B)) .

Let LieU be the Lie algebra of the pro-algebraic, pro-unipotent group
scheme U. We have
U = (Lie )

and
Homg (U™, w(B)) ~ Homg((Lie U)®, w(B)).

Let us set
LieU := gry, LieU .

Lie U is the associated graded Lie algebra. We have
Homg ((Lie U)®, w(B)) = Homg((Lie U)™, w(B)) .

The Lie bracket [, |riev : LieU A LieU — LieU is a G-morphism. Let
f € Homg(LieU,w(B)). We define a map

d : Homg(LieU,w(B)) — Homg(LieU A LieU,w(B))

by setting

We have
Homg ((Lie U)“b,w(B)) ={f € Homg(LieU,w(B)) | d(f) =0} .
Hence we get

(2.1.1)  Exthy,(Q(0),B) = {f € Homg(LieU,w(B)) | d(f) = 0}.
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2.2.  Let T(w(H)) be the tensor algebra on w(H) and let T(w(H)) be the
completed tensor algebra on w(H) with respect to the augmentation ideal.
Let Lie(w(H)) be the free Lie algebra over Q on w(H) and let L(w(H)) be
the completion of Lie(w(H)) with respect to the lower central series.

Let p be a path from 0 to z € E(K)\{0}. We recall that in section 0 we
have defined a Galois representation

(p: G = GL(Qu{{X1, X2}}) -

Passing to Lie algebras and then to associated graded Lie algebras we get
morphisms of Lie algebras

Lie( )p : Lie(H1(z,0)/Hoo(2,0)) = L(x,,x5) X Der(L(X1, X2))
and of associated graded Lie algebras
gr(Lie( )p) : gr Lie(Hi(z,0)/Hoo(2,0)) = Lise(x, xs) % Der(Lie(X1, X2))

where Lp(x, x,) C End(Qg{{X1,X2}}) is the Lie algebra of left multipli-
cations by elements of L(X1,X2) and Lp(x, x,) X Der(L(X1, X2)) is the
semi-direct product of Lie algebras. Similarly is defined the target of the
second arrow.

Observe that the representation gr(Lie( ),) depends only on z. It does
not depend on a choice of a path p.

We shall assume that there exists a representation

p.g: M — GL(T(w(H))).

Passing to Lie algebras and then to associated graded Lie algebras we get
morphisms of Lie algebras

Lie(p, 5) : LieU — End (T(w(H)))
and of associated graded Lie algebras
grLie(p, ) : LieU — End (T'(w(H))).

We recall that w : Mg — Vectq is the fiber functor of Betti realizations.
Hence we can identify T'(w(H)) ® Qp with Q{ X1, X2} sending the class of
the loop z; onto X; for i =1, 2.
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We shall assume that the representation gr(Lie( ),) is an f-adic realiza-
tion of the representation gr Lie(p, 5), i.e.,

(gr(Lie( )p) ® Idq) o v = grLie(p, 5) ® Idg,,
for some surjective morphism of Lie algebras
v: LieU ® Q — grLie(Hi(z,0)/Hs(2,0)) ® Q.
Hence it follows that the representation gr Lie(p, ) factors through
grLie(p, ) : LieU — Lyje(w(m)) x Der(Lie(w(H))) =~

Lie(w(H)) x Der(Lie(w(H))).

Let 7 : Lie(w(H)) x Der(Lie(w(H))) — Lie(w(H)) be the projection on the
first factor.

The Lie algebra Lie(w(H)) is a graded Lie algebra, i.e., Lie(w(H)) =
@2, Lie(w(H));, where Lie(w(H)); is the degree i part. Notice that each
Lie(w(H)); is a G-module.

For any G-equivariant projection § : Lie(w(H)) — w(B) we define a
symbol [2,6]5 setting

2,0]5 := Bomogr Lie(p, 5) -

We recall that d([z,0]5) = [2,0]30 [, ]zier , where [, |zier is the Lie
bracket of LieU. We denote by [, ] the Lie bracket of the Lie algebra
Lie(w(H)) x Der(Lie(w(H))) as well as the Lie bracket of the Lie algebra
(Lie(w(H)) x Der(Lie(w(H)))) ® Qg ~ Lie(X1, X2) x Der(Lie(X1, X3)).

Observe that

d([2,0]g) = Bomo], Jogr Lie(p, 5) A gr Lie(p, 5)-

This allows to calculate d of symbols [z,0]3.
In small degrees decomposition of Lie(w(H)) into a direct sum of G-
modules is as follows

Lie(w(H))1 = w(H), Lie(w(H))z = [\ w(H),
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2 2
Lie(w(H))s = \ w(H) @ w(H), Lie(w(H))s = [\ w(H) ® S*w(H),

Lie(w(H))s = \w(H) ® SPw(H) & [\ w(H)® \w(H) @ w(H).

We point out that A% H = Q(1) - the Tate motive.

PROPOSITION 2.2.1. Let pry : Lie(w(H)) — w(H) be the obvious pro-
jection. Then

d([zv 0]er) =0.

PROOF. Observe that
d([2,0lpr,,) = prgomogr(Liep,g) o[, leev
= prygomol,]o(gr(Liep,z) Agr(Liep, g)).
Let o and 7 belong to Gk (g(e)). One easily shows that
log oy, = L1og0,)(1) + log o

in End(Qe{{X1, X2}}) (see also [6] Proposition 5.1.7.). Let us set s =
(logop)(1) and t = (log 7p)(1). After short calculations we get

[log 0,108 Tp] = Lis 1+ (1og o) () (log 7)(s) T [l0g 0, log T].

It follows from Lemma 1.1.8 that (logo)(X;) = 0 mod I'2L(X7, X5) for any
0 € Gg(pp~)) and i = 1,2. Hence we get

(pry ®Idg,) o (r® Idg,) o[, ]o (gr(Lie(),) ® Idg A gr(Lie(),) ® Idg) = 0.

At the beginning of section 2.2 we have assumed that the representation
gr(Lie()p) is an f-adic realization of the representation gr(Liep, ;) in the
sense that there exists a surjective morphism of Lie algebras

v: LieU ® Qp — grLie(Hi(z,0)/Hs(2,0)) ® Q

such that
(gr(Lie()p) ® Idg) o v = gr(Liep, 5) ® Idg,.
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This implies immediately the proposition. []
It follows from 2.1.1 that

(2.2.2) EXt}VIME(@ (0),H) = {f € Homg(LieU,w(H)) | d(f) = 0}.
On the other side

(2.2.3) Extj,(Q(0),H) = E(k) ® Q.

The composition of isomorphisms 2.2.3 and 2.2.2 is given by

Ek)®Q32®1 — [2,0)p, € {f € Homg(LieU,w(H)) | d(f) =0}.

PROPOSITION 2.2.4. Let pry2 5 : Lie(w(H)) — N2 w(H) be the projec-
tion on the degree 2 part. Then we have

d([2,00pr, 5 ) = [2,0peyy A 12, Oy,

PROOF. The proof is the same as the proof of Proposition 2.2.1. We
need only to notice that (logo)(X;) = 0 mod I'3L(X1, X3) for any o €
Gk (E(t>))- But this follows from Lemma 1.1.8. [

3. /{-adic Realization of Mixed Motives

3.0. Let p be a path from 0 to z. The equality

(3.0.1) Ayl 0) = Ap(7) - 7(Ap(0))

implies that the function

(3.0.2) Gr — Q{{X1,X2}}" givenby o — Apy(o)
is a 1-cocycle on G . Similarly the equality

(3.0.3) bp(7 - 0) = Pp(7) - (0(7) - Pp(0) - (7))
implies that the function

(3.0.4) Gr — GL(Qu{{X1,X2}}) given by o — (o)



374 7. WOJTKOWIAK

is a l-cocycle on Gk. The restriction of this cocycle to G (g is a
homomorphism

(3.0.5) Gr(B@=)) — GLQ{{X1, X2}})

given by o — oy,.

We shall study coefficients of these cocycles. We want to know when
a linear combination of such coefficients is a cocycle. We shall begin our
investigations with coefficients of Aj(o) in degree 1 and 2.

3.1. Let us define functions al a27p and b, , from Gg to Qg by the

zZ,p? z
following congruence

(3.1.0) log A, (o) = a;p(o) X1+ az’p(a) Xo+ b, p(0) [ X1, X2]
mod T3 L(X1, Xo).
We define functions
a,p:Gg — Hy and B.,:Gg — A%H,
setting

a,p(0) == a;p(a) X1+ aip(a) Xo and B p(0) :=b,p(o) [ X1, Xo].

ProrosITION 3.1.1.  The function o, : Gg — Hy is a 1-cocycle. The
class of oy in HY(Gg, Hy) does not depend on a choice of a path p from
0 to z. The map a : E(K) — HY(Gx,Hy) given by a(z) := [a.,] is a
homomorphism of groups, where [, | is the cohomology class of the cocycle

Qazp.
Proor. It follows from 3.0.1 that
(T 0) =, (1) + 7(azp(0)).

Therefore the function « ) is a cocycle.
Let ¢ be another path from 0 to z. Then there is S € Wl(E?\{O},ﬁ)
such that ¢ = p-S. The equality

Aps(o) = E(S)t- Ap(o) - k(S) - As(o)
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implies that
zps(0) = azp(0) + (oY) —Y)

for some Y € Hy.

The class of o, , in H' (G, Hy) we denote by a(z). Hence we get a map
a:E(K)— HYGg, Hy).

Let z € E(K). We chose a compatible family {7 }nen of £*-th division
points of z. We define a function k(z) : Gx — H/ setting

2N E o) YLy k(o) 2
0 () = 7 +Ki(0) o+ k(o) =

and vl s
kE)(0) = (Ki(0) T3 + k(@) ) e
(h_m(Zwl + ZWQ)/En(Zwl + sz) =Hy.
One easily verifies that k(z) is a cocycle.
Let 21,22 € E(K). Observe that {7+ + 72 }.eN is a compatible family of
¢"-th division points of z; + zo. Therefore k(z1 + 22) = k(z1) + k(22).
We shall show that the cohomology class of k(z) is equal a(z). Let
" . C/L — C/L be a map induced by a multiplication by ¢". This is
a covering of C/L£. The generator x; € m(Fx,0) maps 0 € C/L by the
monodromy action into %. We shall calculate the action of p~! -0 -p-o~!
on 0 € C/L. We have 7 1(0) = 0 because 0 is defined over K. The lifting
of p maps 0 to 7. Acting by o on 7 we get 7 + kf(o) 7 + k3(o) 37
Returning along the lifting of the path p~* we get kf(0) 4+ 4+ k3(0) %2. This
implies that a(z) = [k(z)]. O

We recall that W(EE\{O};Z,ﬁ) is a Wl(E?\{O},ﬁ)—torsor. The group
m1(E#\{0},0) is a pro-f group. Let m(Fz\{0},0) ® Q be its rational
completion. ~ We denote by 7(Fz\{0};2,0) ® Q the corresponding
wl(EF\{O},(_)') ® Q-torsor. Let p be a fixed path from 0 to z. The set
7(F#\{0}; z,0) ® Q we identify with the set p - 71 (E%\{0},0) ® Q.

LEMMA 3.1.2. Let p be a path from 0toz LetY € H ®Q. Then
there is a path p’ from 0 to z in m(E7\{0}; 2,0) ® Q such that

a,p(0) =ap(0)+o(Y)-Y
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for any 0 € Gg.

PrOOF. The element Y € Hy ® Q corresponds to y € m1(Ex\{0},0) ®
Q, whose image in 7 (Ex\{0},0)? ® Q is Y. We have Ay, (o) = k(y) " -
Ay(0) - k(y)-k(y)~L-o(k(y)). This implies a, 4y (0) = azp(o) +o(Y) =Y. O

COROLLARY 3.1.3.  The restriction of . p to G gy i a homomor-
phism, which does not depend on a choice of a path p from 0 to z.

PROOF. The corollary follows from the proof of Proposition 3.1.1. [J

3.2.  Now we shall study the coefficient b, ;(c) of log Ay(o).

LEMMA 3.2.1. Let z1,...,2, € E(K) and let A be a Q-linear subspace
of E(K)® Q generated by z1,...,z,. Then we can choose paths p; from 0
to z; in w(E\{0}; 2,00 @ Q fori=1,...,n such that the map

ADz — Oz p; € Zl(GK,Hg)
18 a homomorphism.

PROOF. We can assume that z1,..., 2., r < nis a base of the Q-vector
space A. Let us fix paths ¢; from 0 to z; for i = 1,...,n. We set p; = ¢; for
T

i<r. Let k>r. If mgzp=>. m;z for mg and mq,...,m, in Z, then
=1

1 T
[azy.q) = o Z mi[az, p,] -
ki

It follows from Lemma 3.1.2 that there is a path py, in 7(E#\{0}; 2, 0) @ Q
such that

1 T
Qzppr, = mr E :ml Qzip; -
1=1

This finishes the proof of the lemma. [

PROPOSITION 3.2.2. Let z1,...,2, € E(K) and let my,...,my, € Qq.
n

If > mizi=01in E(K)®Qp and if Y m;z;®z; =0 in BE(K)E(K)®Qy
i=1 1=1
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then there are paths p; € W(Ef\{O};zi,ﬁ) ®Q fori=1,...,n such that
n
> mibs, p, is a cocycle on G with values in Qp(1).
i=1
Proor. We recall from Corollary 1.2.2 that

o(Xi) = aj(0) X1 + aj(0) X + % (ah(0) = ai(o) + (=1)"" x(0)) [X1, X2]

mod I'® L(X1, Xs) for i = 1,2. Let us set

for ¢ = 1,2. It follows from Lemma 0.1.4 that

(3.2.3) byp(T-0) = b (1) + x(T) b p(0) +di(T) -aiyp(a) +da(T) -azyp(a)—i-

L ol(r) ad(r)\ [aL,(0)
5 (az,p(T)’ az,p(T)) A
ay(r) o3(r)/) \aZ,(0)

Let A be a vector subspace of F(K) ® Q generated by zi, ..., z,. It follows
from Lemma 3.2.1 that we can choose paths p; € 7m(Ex%\{0}; 2:,0) ® Q for
i=1,...,nsuch that the map ¢ : A — Z1(Gg, Hy), given by ¢(z;) = oz, ;)
is a homomorphism. This implies that

(3.2.4) im dp(t)a® (0)=0  fork=1,2.

ZiyPi
=1

Let us consider the following map
¢: A0 A0 Q — Z'(Gr,H) ® Z'(Gx, Hy)
given by ¢(z ® ') = p(2) ® p(Z') and
Y ZYGg, Hy) ® Z1 (G, Hy) — Maps (Gx x G, Hy A Hy)

given by ¥(a; ® ag)(7,0) = a1(7) A "(ae(0)). Both maps are homomor-
phisms. Hence we get

n ai(7), ai(r) al, (o)
(3.25) Y _mylal, ,,(7),a2, (7)) A

i=1 05%(7')7 O‘%(T) agiypi (o)
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= 3 i ey () A (s i (0)) = 0.

i=1
It follows from 3.2.3 and 3.2.4, 3.2.5 that

Z m; bzmm (7_ : U) = Z my bzmpi (T) + X(T) Z m; bzizpi (U)

=1 =1 1=1

3.3.  Now we are looking for conditions when a linear combinations of
coefficients of arbitrary degree of log A,(o) is a cocycle.
Let 0 € Gk. Let us set

log Ay(0) = ai,p(a) X1+ az’p(a) X5

+ > > b o). [... U, Xi],X]] | mod L".

DEFINITION 3.3.0. We define functions 87, from Gk to N> Hy
S"2H, setting

(o) = > b)) [ U X, XY

We recall that a, , : Gxg — Hy is given by o, (o) = al:,p(a) X1 +ag7p(a) Xo.
Let 7 € Gi. We recall from section 1 that

T(X;) = ali(’l') X1+ aé(T) Xo + wi(7),

where w;(7) € T?L(X1, X2). Hence we get that

T(azp(0) = al,(0)(ai(r) X1+ az(r) Xa)
+ a2, (0)(ai(r) X1 4 a5(7) Xa)
+ a;p(a) wy (1) + a;p(a) wo(T) .

We define the degree n-part of 7(a ,(0)) setting

o0
i "
T(0zp(0)) = E T(0z p(0))n mod L
n=1
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and requiring that 7(a; (o)), belongs to a Qq-vector subspace generated
by [...[...U, X1], X3] for i + j = n — 2.

Notation. The n-th symmetric power of E(K) we shall denote by
E(K)®".

ProposITION 3.3.1. Let z1,...,2, € E(K) and let my,...,my, € Qq.
Let A be a Q-linear subspace of E(K) ® Q generated by z1,...,z,. Let
pi € T(E\{0}; 2, 0) ®Q fori=1,...,n be paths from 0 to z such that
the map

A>Sz— Az p; € Zl(GK,Hg)

is a homomorphism. Assume that
n

)Y mi(z®z)©27N 2 =0 in B(K)® B(K) ® E(K)°VN =2 Qy;
i=1
n
i) > mizi®zi®k =0 1n E(K)@E(K)Qk@)(@z fork=0,1,... N—-1;
i=1
n
i) 3 miz?* @ BN, 8 =0 in B(K)®F @ Map(Gi, A > He @ SN ~F=2 )
i=1

fork=1,....N —2.
Then zn: m; ﬁé\;pi is a cocycle on G with values in )\ H, SN2 H,,
i.e., it bellozni]s to ZV(Gg, \ 2 Hy® SN2 H,).
PrROOF. Let 7,0 € Gg. It follows from Lemma 0.1.4 that
log Ap(7-0) =log Ap(7) o T(log Ap(o)) .

Comparing terms in degree N we get

é\,fp(T ’ 0) = é\,[p(T) +7 :{'\,[p(o-) + T(aZ,p(O-))N
5 fanp(), BN )] 5 Ir{asplo))r, B (0)]
+ glaey(r), rasp(o))y 1] +

a linear combination with rational coefficients of terms of the form

(3.3.2) [z p(T), T(azp(@)], azp(T)] - .. T(azp(o))i];
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(3.3.3) [ (lazp(T), 7 f{k(a)]a @z p(T)] o T(azp(0))],

[ (1825 " (1), T(@zp(@))1), (7)) - T(azp(0))a]

(3.3.4) [ Moz p(7), T(@zp(0)) N —k]s 0z p(T)] - - T(@zp()] -

Hence we get that

(3.3.5) Z m; B (1 0) Z m; B . ( Z m; TR . (

=1 =1 1=1

n
+ > (linear combination with Q-coefficients of terms of the form 3.3.2 +
i=1
linear combination with Q-coefficients of terms of the form 3.3.3 for k =

1,..., N — 2 + linear combinations with Q-coefficients of terms of the form
334 fork=1,...,N —2.

Let 71,...,7n € Gg. Let us consider amap ¢, -y : AQA® AN ~2g
Qp — /\2 H,® SN~2 H, given by

T1RT2R(T3R. . .RTN) — Qg1 (T1) AQag g5 (T2) D Qg 45 (73) O - . Oy qn (TN)

where each pair (z,¢;) € {(21,p1),-..,(#n,pn)}. The map ¢, . is a
n
homomorphism. Therefore if we apply the map ¢ -, to > mi(z ®
i=1
zi) ® zi@ N=2 \e get 0 by the assumption i). Hence in the expression 3.3.5
terms of the form 3.3.2 vanish.
Let 71,...,7x,0 € Gi. Let

2 2
Xryompo : APF @ Map(G, /\ HooSY *2H) — /\ Hyo SN2 H,
be a map given by

XT1,-~~,Tk,U(x1 O...07Q f) = pr(ath (Tl) ©...0 awk,Qk(Tk) ® f(O')) )

where pr : Sng@)/\2 HoSN-+F-2H, - /\2 H,® SN ~2 H, is the natural

projection. The map Xr,.. 7.0 s a homomorphism. Therefore the assump-

Tk

tion iii) implies that if we evaluate the map xr, ... 7., o0 Z m; z @ ke ﬁzl s
=1

we get 0. Hence in the expression 3.3.5 terms of the form 3.3.3 vanish.
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Let 7,7,...,7,0 € Gg. Let

2
Yot AQ A @ Qe — \ He® SV 2 H,
be a map given by
Yrr o (T @21 @ ... @) = pr(7(0z,q(0)) Nk

g1, (T1) O - © Qg (Tk)) -
The map Y-+, .m0 is @ homomorphism. Therefore if we apply ¥7 7. 7 .o

to > m;z ® z?k we get 0 by the assumption ii). Hence in the expres-
i=1
sion 3.3.5 terms of the form 3.3.4 vanish.

Hence we get

Zmlﬁz p:(T0) Zm’ imi( (Zm’ﬂzm )

=1 1=1 =1

COROLLARY 3.3.2. Let z € E(K) be a m-torsion point. Then there
1s a path p from 0 to z such that é\fp 1s a cocycle on Gk with values in

/\2 Hy ®SN_k_2Hg.

PROOF. It is enough to show that there is a path p € m(Ez\{0};2,0)®
Q such that a,, = 0. We shall use the function k(z) : Gx — H; which
appears in the proof of Proposition 3.1.1. If ¢ does not divide m then we
can choose a compatible family of ¢™-th division points of z contained in
E(K). Then it follows immediately that k(z) =0

In a general case a (suitably chosen) compatible family of £"-th division
points of z defines an element Y of Hy. Hence k(z)(c) = o(Y) — Y. The
function k(%) is equal a, ;s for some path p’. The cocycle o, ; is a cobound-
ary hence by Lemma 3.1.2 we can replace p’ by another path p such that
o, =0.0

4. Measures

4.0. In this section we shall calculate explicitly the functions g7 ,. In
fact they are already calculated in [5] and we only adopt calculations of
Nakamura to our more general picture.
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We recall from section 0 that E(C) = C/L. Let us set
E":=C/tmL.

Let py, : E™ — E(C) be induced by the identity map of C. It is a Z/¢™ x
Z/€™-covering.
Let us set

Eo:= E(C)\{0} and EJ:= E™\p,'(0).
The restriction of the map p,, to Ej*,
pm : Byt — Ep

is also a Z/¢™ x Z/¢™-covering. We have the following exact sequence

1 — m(EPOn) 2 m(E,0) I zpemxziem — 0,

where (py,)» is the map induced on fundamental groups, (pm)«(0m) = 0 and
fm(z1) = (1,0), fin(z2) = (0,1). We recall that

71-I(E()a(_)’) = <IL'1,J,‘2,Z | (Jil,I‘Q)Z = 1)

and

m

Wl(Eén,Gm) = <x€ ,xém,zab; 0<a,b< ™

’ H Zab € (Wl(Eénaam)v Trl(Egl76m))>a
0<a,b<im

where z,, ;= x;b-mfa'z-x‘f'mg for 0 < a,b < ™.
We recall that the elliptic curve E is defined over a number field K. Let

o € Gg. Then

7(12’1,(0') 70,;1)(0') m
Ty Ty “lp(o) € m(Eg", Om)
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for any m. Hence there are )% (o) € Zy such that

a

—a? (o —al (o KT (o
(4.0.0) T =l )-1;1 l )-lp(a) = H (zap) a(7)

0<ab<em
(a,b) # (0,0)

mod (71 (Ey", 0m), T1(EF, 0m)) -

Assume that m’ < m. Then we have a commutative diagram

1 — m(ER0n) — m(Ey,0) — Z/M™XZ/™ — 0

l I l

1 — m(EY,0p) — m(Eo,0) — Z/M™ XZ/™ — 0.

Hence we get a map

A (B 00,)% — (ES”/, O )™ .

m

LEMMA 4.0.1. Let 0 <a/,b/ <™ and (a/,0') # (0,0). Then we have

k(o) = > wMe)— Y ko).

0<ab<em

0<ab< ™
(a,b) = (a/,b') o™’ =

(a,b) = (0,0) om’

(a,b) # (0,0)

PROOF. Observe that h7(244) = 2oy if (a,b) = (a/,b) mod ™. If
(a,b) = (0,0)mod ™ then R (2ap) = — 3 Zg py- The lemma

0<al b <em’
(a7} # (0.0
follows by applying A", to both sides of 4.0.0. [

The system (/i'gfb(o))m;oga,b<gm does not form a measure. To get a
measure we must modify it. To simplify the notation we set

koo(o) =0 for m>0.
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Let 0 < a,b < ™. Let (a,b) be such that (a,b) = (0,0) mod ¢". Hence we

can write
(a, b) = (ar7 br) "+ (ar+17 br+1) ET—H +oeee (am—la bm—l) gm—l )

where 0 < a;,b; < ¢. For such pair (a,b) we set

/QZZJ&’)(T) (0’) = ,%Z?b(()') - Hﬁ,b) _ (ar,b’r)gr (U) .
(K{@b) = (ar by er TCADS K5l prpp gr)-

LEMMA 4.0.2. The system

m,(r) m>r
(Fap  (9))g §>a,b <tm,(a,b) = (0,0) ¢

is a measure on £"(Zy X Zy) which vanishes on {7 1(Zy x Zy).

PrROOF. It is clear from the definition of /i;nl;(r) (o) that it vanishes

on {"1(Z; x 7;). Hence it is enought to show that we get a measure on
KT(ZK X Zg) \€T+1(Z4 X Z@).
Let m > m’. Using Lemma 4.0.1 we get

Yo 0= Y (W0) Ky e e (0) =

0<a,b<e™ 0<a,b<e™
(a,b) = (0,0) " (a,b) =(0,0) "
(a,b) £ (0,0) "1 (a,b) £ (0,0) "1
(a,b) = (o by 6™ (a,b) = (a b €™
fap @)+ D Ran(0) = Ky @y (@)= D k(o) =
0<a,b<e™ 0<a,b< ™
(a,b) = (0,0) ™' (asb) = (0,0) €™’
(a,b) #(0,0) (a,b) #(0,0)

= K (0) = K% ) — (ariy e (0) = K30 (o). OO

Hence we have measures

k(o) = (”Z?l;(())(a) ?;:,KW on Zg x Zy which vanishes on ¢(Zy x Zy);
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KV (0) = (k3D (o)) > on ((Zg x Zy)

0<a,b<t™

(a,b) = (0,0) £

which vanishes on ¢*(Z; x Zy);

K () = (k)5 (o)) > on ("(Zy x Zy)

0<ab<e™

(a,b) = (0,0) £"

which vanishes on ET‘H(Zg X Zy);

Problem 4.0.3. Ts >.3° k() () a measure on Zy x Zy ?

REMARK. If the sum

Z /1;20) (o) + Z /s;iiél)(a) + Z ,%Zf)(a) +...

0<ab<t 0<a,B<t 0<a,B<t

(a,b) = (Lo, LB) (a,b) = (£2a,028)

converges then 2% x()(0) is a measure on Z; x Zj.
Let (a,b) € Z/0™ x Z/¢™. Then we can write

(a,b) = (ag,bo) + (a1,b1) £+ (a2, b2) £* + -+ + (am —1, by —1) €™ 1
where 0 < a;,b; < £. We set

sk(a,b) == (ag, bp) 0F + (g4 1,06 4 )T 4+ 4 (@1, b 1) 0™ L
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—a2 ,(0) —a} ,(0)
LEMMA 4.0.4. We have zy 7 - zy 77 - l(0) = II
(a,b) #(0,0) £
nml’fl)(o)
/{ml’)(o)(o)
(Zap)" : I1 Zab’ [1 Zap Tt I1
(a,b) = (0,0) ¢ (a,) Z (0,0) ¢ (a,b) = (0,0) €7
(a,b) # (0,0) £2 s1(e,8) = (a,b) (a,b) Z (0,0) £7+1
I{ZZJ(T>(U)
Zab- II Zap . . I
(e, 3) # (0,0) £ (a,b) = (0,0) gm—1
sr(o,B) = (a,b) (a,b) # (0,0) L™
H'Z?i)(mfl)(o_)
Za,b H Zap
(@,8) # (0,0) ¢m—1

sm—1(a,B) = (a,b)

PROOF. Let (a,b) = (0,0)mod¢" and (a,b) # (0,0)mod¢"+!. Then

m m,(r m,(r+1 m,(m—1 .. .

we have k' (o) =k, ™) () +"sr+(1@,z)7> (o) +--- —i—/{sm(_l(a’g) (o). This implies
the lemma. [

4.1.  We shall calculate coefficients ;" (o) defined in 4.0.0. Let us fix

N > m. Let fgl’?N(z) be an elliptic function on C/¢m*+ 1+~ L which has

a pole of order 12 (¢2(N+1 — 1) at 0 and zeroes of order 12 at points of
0™ L\{0}. Let 0 < a,b < ™. Let us set

fs{,bN(Z) = 7?{?]\/(2 —aw; —bwg).
In the next lemma we shall describe monodromy of functions ( fg;bN(z))l/ a

LEMMA 4.1.1. Let 0 < a,b < ™ and let 0 < z,y < (TN The

action of m (EJ T TN 0,414 ) on functions (ffn’bN(z))l/ZN is given by

D) 2oyt (FEh NV — €R(FE0 NV if (v,y) = (a,b) mod €7
i) gy ¢ (ful (DY = (J0 ()Y if (2,) # (a,b) mod ™.

PrROOF. The function fﬁle(z) has a pole of order 12 (¢(2(N+1 _ 1)

in awy + bws. Hence 2, acts on (ffr;bN(z))l/KNas a multiplication by

19 (¢2(N+1) _
KNH(Z b _ l}]% At each point xw; + ywe such that (z,y) =
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(a,b) mod /™ and (x,y) # (a,b) mod /™ +1+N the function ffnbN(z) has a
zero of order 12. Therefore z,, acts on ( f:;’f)N(z))l/ " as a multiplication
by felj% O

PROPOSITION 4.1.2.  Let 0 € Gk (pe)) and let p be a path from 0 to

—

zo € E(K)\{0}. Then the coefficient 123" (0) is given by the Kummer
character

GK(E(goo)) >0
a—l_Id(fs{f?N(O)l/éN) . a(fTCTl{f)N(ZO)I/ZN)

1/£N) (f;_;%om(")’b_agom(") (ZO))I/KN

—

U_lfld((a—12(e2<N+1>—1))

al g a2 g
)

U(fg{f)N(ZO)l/ZN)

EH’ZN7

where a_y9(2(N+1)_1) U5 @ leading coefficient of f%ON(z) expressed as a power
series of a parameter t at 0 on Ey.

PrOOF. We consider the elliptic function @%ON(,Z) on E, which has

a pole of order 12(£2(N*+1 — 1) at 0 and zeroes of order 12 in points of
ﬁ L\L. Let 0 < a,b< ™. We set

a,b (z)-— 0,0 sy —a w1 _b w2
P, N\Z) = Py N JmA 1T N ym+1+N )

The elliptic functions cpg;?N(z) and cpfr’Lle (2) (as functions of z = P,(z) and
y = Pp(z)) are defined over K(E(¢>)). On E at the point 0 we have a
local parameter t = —%. The functions (pg;ON(z) and gonLbN(z) expressed as
formal power series of the variable ¢ have coefficients in K (E(£>)).

Let f : E — E be a multiplication by ¢™+1*N_ The functions goS;?N(z)

and cp?r’bbN(z) are elliptic functions on the source of the map f : £ — E.
We shall consider them as multivalued functions on the target and we shall

study them as power series of the variable ¢ on the target.
_azo,p(”)ml—“;om(a)_ -1 1

We shall study the action of 7,,(0) := z, p~op-o” " on
these power series. The function go?r’loN(z) has a pole of order 12(£2(V+1) 1)
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at 0. Let a_19(p2(N+1)_1) be a leading coefficient of ‘PS}LON(Z) expressed as a
power series of the parameter ¢ on the target.
. — . b 0,0 N .
The action of o~ on the power series (gome(z:)/cpm,N(z))l/IZ is as fol-
lows

- b 0,0
ot (SO%,N(Z)/QDWN

(c—1-Id) (‘PZ{?N(O))UEN

ab 0,0 1/eN
. z z .
(U_lild)((a—12(Z2(N+1)_1)>1/£N) ((pmN( )/‘Pm,N( )

()

Next by the analytic continuation along the path p we are in the point z
and o acts on the corresponding power series of a local parameter at zg in

the following way:
J((pa,b (= /£m+1+N )1/£N
0(90?7;0 (Zo/gm+1+N )1/

o (@8N ()20 (N —

)
70‘% (0) z N
( 0:P 0@ (Z /£m+1+N))1/€
)

m,N
(‘PZL J‘on p(0)b—ady p(o (20 m+1+N))L/eN
O

( ;La%\?,p(d),*ago,p( )(Z))I/ZN

because o(zo/(™THN) = 20 /"IN al (o) mitey + 62 ,(0) Fiter
Hence we get that 7,(c) acts in the following way:

a N
(4.1.3) p(0) 1 (P8 () omn (2))
N G () R (G Vb A
071_Id(a_u(p(]vﬂ)_l))yw (@znfzio,p(o),bfazo,p(o)(zo/£m+1+N))1/gN

(spm ]i\? p( )7 ago,?(o)(20/6m+l+N))1/eN

(SOSY’L?N(ZO/gm—f—I—i-N))l/zN
By the definition 4.0.0 we can write

)= ] [T (o)™ @)

0<ab<t™ 0<z,y<emtl+N

(D% (2) 20 ()

(a:) #(0,0)  (z,y) = (a,b) £
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[T Gap=a@

0<a,B<emtitN
(o,8) = (0,0) €™
(a,8) # (0,0)
mod [y (BN 01 n)s m1 (BTN O3]
Let 0 < a,b < ™ and let (a,b) # (0,0). It follows from Lemma 4.1.1 that
the monodromy of functions (fng(z))l/gN and (f%?N(z))l/ZN along 7,(0)
is given by

12( z ngf;yHN(a))

Tp(O') . (fst(Z))l/éN - é-gN (z,y)=(a,b)t™ ) (fng(Z))l/ZN
and
( \
2 g
z,y)=(0,0)¢™
N x, s N
()t fn () = O ()Y
Hence Lemma, 4.0.1 implies that
a ’ N
(4.1.4) m(0) : (Frne (D) Fne NV =
1207, (0)
e (i (D) F DV

We have a commutative diagram
Em+1+N 9 E

Pt 1+N N\ i
E

where ¢ is induced by a multiplication by ¢mT'+N of C. The map ¢ is
an isomorphism of elliptic curves and it identifies functions gonLbN(z) with

fa’bN(z). The proposition follows from 4.1.4 and 4.1.3. O

m

4.2. The function fSL’ON(z) can be explicitly defined as

0(z, €m+1+N£)€2(N+1)

2 2N
U din(2) = bt () bna(2) o () = =2
m 2
where 6,,(z) := zg’gT% and 6(z, £) is the fundamental theta function (see

[5] p. 203-204).
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4.3.  We recall that we defined an inclusion
k: m1(Eo,0) — Qu{{X1, X2}}.

We recall from section 1 that the element U € L(X1, X2) is defined by the
equality
k(u) =€V,

where (z1,22) - u=1.

LEMMA 4.3.1. We have

i -1 n+m—1 B -
U= Y. %[m[_..[xl,){ﬂ,x? 1, X7 mod L" .

PRrROOF. Observe that

oo (X X XP, X5 = () X XY
+ terms, which do not contain monomial X7* - XQB )
when we decompose the Lie bracket as a sum of monomials. Hence we shall

calculate the coefficient of log(eXt - eX2 . e=X1 . ¢=X2) at X . Xg. Observe

that taking into account only terms containing X{" - Xg we have

> E [xo,x7)

X1 X2 o= X1 o= X2 — onlo ™ e_XQ =
) mXPXe oy X X -X
en=0 e 2= (14e (e —1)) e 2=
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Let a1,...,a;, € Q. Then there is a € Qp such that a1,...,a,, € Z; - a.
Let z,y € Z¢ - a. We say that x = ymod /(" if x —y € " Zy - a.
Let us define coefficients By% (o) € Q; by the following equality:

_a’z,p(o—) _az,p(g) .
(4.3.2) log k(x4 - Xy Ap(0)) =

o0
> Bi(o)[...[...U,X{],X3] mod L".
i,j =0
The coefficients Bi’gg can be expressed by bl/p For example ngg = bS;S -
1
205" 02 p

In the next proposition we shall work in Z, - a for some a. We shall not
give a explicitely but it will be clear from the proof that such a exists.

PROPOSITION 4.3.3. Let o0 € Gi. For any natural number n we have

y at b’
B (o) = g Ko p(0) A mod ¢"
0<ab<en
(a,b) # (0,0)

in Zyg - a for some a independent of n.

PROOF. Applying the map k£ and then log to ] (za,b)"avb(")

0<a,b<em
(a,0) % (0.0)
(see 4.0.0) we get that the coefficient at [...[...U, X!, X3] is

0<ab< m
o o (@) % (0.0
k(o) % To calculate the coefficient Bz%(c) we should understand
the contribution from the commutator [r1(Eg,0,), 71 (E},0,)]. We have
three types of generators in the commutator subgroup: (z{",x5"), (z¢", Zab)

and (zqp, 2¢c,d). The elements (zqp, 2c,q4) have no contribution to the co-
_ 2 1 ) .
efficient of log k(x, “=.(0) -1y (%) (o)) at [...[... U, X}], X3]. We have
n —_ym)h d e
logh((af',zap)) = X S5 4 B LU XT XS] mod L,
h=1,d=0,e=0 -
hence the contribution to the coefficient By%(c) is in £ Z; - a.

It follows from Lemma 4.3.1 that log k((e" X1, X2)) = 37
a=1, =1

(Mo tB L (X, Xo), X0, X2 mod L. Assume that [...[...[X],

(=1)*+8
al B!
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Xo], X071, X0 1= % aP ... [...U, X1],X3]. We replace U by
i=a—1,j=8-1

the expression given in Lemma 4.3.1. Let us replace [...[...[Xj, Xo], X1,

Xg_l] by s'-t/. Then we get the equality of power series in commuting

variables s and ¢

o0
a B8 _ (o= _ —t _ apf igj
s t7 = —(e 1)(e 1) Z a;; s't
i=a—1,j=8-1
Hence we get

o0

t - S t _ _
af’.sz.t-j:— . Saltﬁl
Z J es—1 et—-1
i=a—1, j=p—1

These calculations allow us to determine a. Therefore the contribution of
(X{", X£") to the coefficient B3%(c) is in £" Z, - a. Hence we have proved
the proposition. []

Using Lemma 4.0.4 we can express the coefficient Bi’g)(a) as an infinite
sum of integrals.

PROPOSITION 4.3.4. Let o € Gg. We have

y iy iy
B () = / LY 45O (o) + / LY 40 (o)
’ ez vJ- m\ezz vJ-

i j
S S
(NPT il j!

0<a,B<t
(a,B) # (0,0)

%

/ at oyl
TR\ il j!

i, J
ETZ?\Z’I‘-‘—lZ? A j

0<a,B<Lr
(a,8) #(0,0)

dr) (o) +

We shall express the coefficients Bi’g, as Kummer characters. First how-
ever we need the following lemma.
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LEMMA 4.3.5. Let n be a natural number. Then > o<ap<m a't’ is

(a,b) # (0,0)
divisible by 12(n—1).
The proof of the lemma is elementary so we left it to the reader.

PROPOSITION 4.3.6. Let 0 € G gy Let i and j be two non nega-
tive integers. Letn and N be natural numbers such thatn < N < 2(n—1).
The coefficient 12B24,(c)ilj! mod £"~"0 is given by the exponent of the root
of 1,

o1 a,b % o a,b #
H ((fn,N(O)e ) ((fn,N(z)é ) E€Z/ZN
0 b vy b a—al ,(0)b—a2 (o) \ aibl N
osginn IRO)F (gt )

taken mod "™ for some ng depending only on i and j.

Proor. The proposition follows from Proposition 4.1.2, Proposition
4.3.3 and Lemma 4.3.5. [

COROLLARY 4.3.7.  The assumptions are the same as in Proposition
4.3.6. The coefficient 12B%(a)ilj! mod £7~™ is given by the exponent of
the root of 1

atbd
H o1 ((0(—awy — bwg, ML) )
a’bl

0<a,b<en o(— — n N
(a,b) # (0,0) (—awy — bwy, 1L)

ipJ

o((0(z0 — awr — bwa, K”E)GZ_N)

0<ab<tn 0(z0 + (al a)w + (a? b)wa, (ML) N

. _ _
b) # (0,0) #0,P #0,P

PRrOOF. The corollary follows from 4.2 and Proposition 4.3.6. [

REMARK. The corollary generalizes the formula (3.11.5) from [5].
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5. Functional Equations

5.0. Let m : B — E be the multiplication by a positive integer m.

Let E(()m) = E\m~1(0) and Ey := Ez\{0}. We assume that K contains

coordinates x and y of all m-torsion points of E(K). This implies that E((Jm)

is also defined over K. We have
m(Eo,0) = (21, 22,u | (x1,22) -u = 1)

and

m JI
m (BS L 0) =t 20 0 < 00 < m(00) £ (0,00

where y; = 1", y2 = x5’ andz&b:x;b-xl_“-u-x‘f-xg for 0 <a,b <m.

Let z € E(K(E(¢*)))\{0} and let p be a path from L 0toz ie,pe
0 (E(gm); z, % 6) Then m(p) is a path from 0 to mz; m(p) € n(Eo; mz,0).
The map induced by m on fundamental groups

m 1 ~ ~
My @ T <E(() );E()) — 71(Ep, 0)

is an inclusion. We have

(5.0.1) My (lp(0)) = Ly (o) -

We define a multiplicative embedding

m 1=
k:m (E((] )’EO> — Q{{Y1,Y2, Zap | 0 < a,b < m, (a,b) # (0,0)}}

Y;

sending y; to €Y and zg to eZ*t. The homomorphism of fundamental

groups ms induces a morphism of Q-algebras

My 2 QZ{{YlaYQa Za,b | 0< a,b <m, (CL, b) 7& (07 0)}} - Q@{{XMX?}}

given by
0o i i
' at b , .
ms(Y;) =m - X; for i =1,2 and m.(Zy) = Z T .. [... U, X3], X3)
i,j=0



On a Torsor of Paths 395

for 0 < a,b < m and (a,b) # (0,0). The map m, is obviously compatible
with Galois actions.

We assume that the degree of Y7,Ys and X1, Xo is one and the degree
of Z,p for 0 < a,b < m is two. The map induced by m, on the associated
graded Lie algebras we denote also by m,. This map

My @ Lie(Yl,YQ, Za,b | 0<a,b<m, (a, b) 75 (O, 0)) — Lie(Xl,Xg)

is given by
m*(}/z) = le ) m*(Zab) = [X27X1] .

Let i + 7 =n — 2. Then we get

(5.0.2) ma([- [ Zap, Vi, YS)) = m" 2 [ [ Xe, X0, X, XD
and
(5.0.2)  ma([... [ [V, Ya], YL YY) = mP L[ [ X, X, X, XD

on the associated graded Lie algebras.

51. Letw=a+b2(0<a,b<m,(ab)# (0,0)) be an m-torsion
point of F. Let
iy ES™ — Ey

be the composition of the inclusion Eém) — EF\{w} and the translation
E\{w} — Ex\{0}, 2 — 2 — w. Let g, be a path from 0 to —w. Let

qu : 7T1(E0, —w) — 7T1(E0,6)
be given by ¢, () = ¢5 -7 - ¢ Let
- m) 15 5
Jw + 1 E() s T 0] — Wl(Eﬂa O)
m
be the composition j, := cq, © (iqp)«. We have

]w(yz) =T, jw(zab) =u, jw(zc,d) =1 if (Cv d) 7& (a, b) .

The map j, induces

Ju: QZ{{YlaYQa Zap | 0<a,b<m, (avb) 7& (070)}} - Qﬁ{{XbXQ}}
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given by ]w(Y;) = Xia jw(Za,b) = U, jw(ch) = 0 if (07 d) 7é (a, b) The
induced map on associated graded Lie algebras

jw : Lie(Yl,Yg, Za,b | 0< a,b <m, (a,b) 75 (0,0)) — Lie(Xl,Xg)
is given by

Jo(Yi) = Xi, ju(Zap) = [X2, X1], ju(Zea) =0 if (c,d) # (a,b).

Let i + 7 =n — 2. Then we get
(5.1.1) Gl [ Zap, YL, YD) = [ [ - [X2, Xu], X1, X3,

Ju([V1, V), Y11, Y5]) = [[[X1, Xa), Xi], X3) and jo,([[Zea, Y11, Y5]) = 0
if (¢,d) # (0,0) on the associated graded Lie algebras.

Finally we consider the inclusion igq : Eém) — Fy. Let go be a path
from 0 to % 0. Let jo : m (E(()m), %6) — 7T1(E0,6) be the composition
Jo 1= gy © (i0,0)+. The induced map on the associated graded Lie algebras
is given by

jo(Y;) = Xz' and j()(Zaﬁ) = 0 .

Let ¢ + j =n — 2. Then we get

(5'1'2) jO(["'['-~Za,ﬁ’Y1i]7}/g]) =0,
Jo(lo [ [V1, Yol YL, Y5 ) = [ [ [X0, Xo], X1, X3).
We have
(tab)«(Ip(0)) = i, ,(p) ()
and
lia,b(p)qw (o) = qujl ’ lz‘a,b(p)(g) G g, (o).

Hence we get
(5.1.3) Jo(lp(9)) = g, ((ia0) (1(0))) = Li, ()0 (9) - (g ()7

It follows from 5.0.2, 5.1.1 and 5.1.2 that on the associated graded Lie
algebras modulo double commutators in degree n we have

(5.1.4) My — m" 2 Y Gu| =0.
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We recall from 3.3 that

ra(0) = Y (o). [ U X)X
i+)j=n—2
4,7 >0
The element U equals log(eX? - eX1 . e7*2 . ¢=X1), Hence it follows that

U = [Xy, X1] mod I L(X1, X»). Let BY,,(c) be the degree n part of 57 ,(0),
ie.,

Br (o) = > bA(o).. [ [X2, X1], X{], X3
itj=n—2
0,5 >0

Hence each B, is a function from Gk to N H, @ S"2H,.
We recall that at the end of section 1.1 we have defined filtrations
{Gn(Eém), L 0)}nen and {Hn(E(()m); z, 0) }nen of the Galois group G .

DEFINITION 5.1.5.  Let z belong to E(f)\\{O} Let r be a path from 0
to z. Let us set

=,

P n
Sn(z) = Bz,T‘lHn(Eém)7z7% 0)

for n > 2.
One can easily show that s,(z) does not depend on a choice of a path
from 0 to z (see [6] Theorem 5.3.1, where a related result is proved).

THEOREM 5.1.6. Let z € E(K)\{0} and let n > 2. Then we have

sn(mz) =m"2 3 (sulz +w) = sa(w)) .

mw =0
<sn(0) = sn(6)>.
Proor. It follows from 5.0.1 and 5.1.3 that
(5.1.7) mx(log Ap(0)) = log Ay (o)
and

(5.1.7) Jw(log Ap(0)) =log(Ai, ,(p)-q. () - Mg, (o)1),
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Let 0 € Hn(E((Jm); z,
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0). It follows from 5.1.4 and 5.1.7 that

1
m

10g Ay () (0) = m" 2 > (log Ay, (p)q.(0) = Ag.(0))

mod T"L(Xq, Xo) + L.

This implies immediately

sp(mz) = mn2 Z (sp(z —w) — sp(—w))

mw =0
mn 2 Z (sn(z +w) — sp(w)),
mw =0
because s, (0) = sn(L 0). O
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